Author(s)
Term
4. term
Education
Publication year
2010
Submitted on
2010-05-27
Pages
205 pages
Abstract
Når prognosen af en sygdom studeres, er det vist, at komorbide sygdomme har en effekt på resultatet. For at justere for denne effekt kan et komorbiditets indeks bruges. Det indeks, der oftest anvendes, er Charlsons komorbiditetsindeks, som blev udviklet i 1987 på en lille kohorte af patienter fra New York Hospital. Formålet med dette speciale er at undersøge Charlson komorbiditetsindeksets evne til at prædiktere dødeligheden i en kohorte af lungebetændelsespatienter, og at udvikle samt validere et nyt komorbiditetsindeks. Vi anvender en kohorte af hospitalsindlagte lungebetændelsespatienter fra Landspatient Registeret. Vi validerer Charlson komorbiditets indekset ved at inkludere det i en logistisk regression med 30 dages dødelighed som udfald og dernæst vurdere dets præstation. Både logistisk regression, naive Bayes og klassifikations træer blev brugt til at udvikle et nyt indeks. Da den logistiske regression blev brugt, opdaterede vi vægtene på Charlsons originale sygdomme, inkluderede vi tre nye sygdomme, inkluderede vi førstegrads-interaktionsled og en variable for 'tid siden diagnose'. Som et alternativ til den logistiske regression blev naive Bayes og klassifikationstræer brugt. Indekserne udviklet på baggrund af disse metoder inkluderede de originale Charlson sygdomme samt de tre nye sygdomme. Vi validerede indekserne ved at undersøge deres prædiktionsevne for både 30 dages- og 1 årsdødelighed. Deres rå prædiktionsevne blev vurderet ved hjælp af en Pearson chi i anden test på en frekvenstabel indeholdende indekset og dødeligheden. For at vurdere deres justeret prædiktionsevne blev hvert indeks inkluderet i en logistisk regression justeret for køn og alder. Vores analyser viste, at Charlson komorbiditetsindekset er udmærket til at prædiktere død blandt lundebetændelsespatienter, og derfor er det stadig brugbart. Alle vores indekser præsterede udemærket og de fleste af dem bedre end Charlson komorbiditetsindekset. Vores analyser viste, at fire af vores indekser var bedre end resten. For disse indekser steg kompleksiteten med prædiktionsevnen. Det at vælge det bedste indeks er derfor en balance mellem prædiktionsevne og enkelhed og afhænger af den enkelte situation.
When the prognosis of a disease is studied it has been shown that comorbid diseases have an influence on the outcome. To adjust for this influence a comorbidity index can be used. The most used index is the Charlson comorbidity index, which was developed in 1987 on a small cohort of patients from the medical service at New York Hospital. The aim of this thesis is to investigate the ability of the Charlson comorbidity index to predict mortality on a cohort of pneumonia patients, and to develop and validate a new comorbidity index. We used a cohort of hospitalized pneumonia patients from the Danish National Registry of Patients. We validated the Charlson comorbidity index by including it in a logistic regression with 30 day mortality as an outcome and assessing the performance. Both logistic regression, naive Bayes and classifications trees were used to develop new indexes. When using the logistic regression method we updated the weights on the original Charlson diseases, included three new diseases, included first degree interaction terms and a variable for 'time since diagnosis'. The naive Bayes method and classification trees were used as alternatives to the logistic regression model. Indexes made by these methods included the original Charlson diseases and the three new diseases. We validated the indexes by assessing their performance for both 30 day and 1 year mortality. Their crude performance was assessed by the Pearson chi squared test of a contingency table for the index and mortality. To assess their adjusted performance we included each index in a logistic regression adjusted for sex and age. Our analysis showed that the Charlson comorbidity index predicted death among pneumonia patients well, and therefore it is still usable. All of our developed indexes performed well and most of them better than CCI. Our analysis showed that four of our indexes were better than the rest. For these indexes their complexity increased with performance. Choosing the best index out of these is therefore a balance between performance and simplicity and depends on the situation at hand.
Keywords
Colophon: This page is part of the AAU Student Projects portal, which is run by Aalborg University. Here, you can find and download publicly available bachelor's theses and master's projects from across the university dating from 2008 onwards. Student projects from before 2008 are available in printed form at Aalborg University Library.
If you have any questions about AAU Student Projects or the research registration, dissemination and analysis at Aalborg University, please feel free to contact the VBN team. You can also find more information in the AAU Student Projects FAQs.