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Abstract

When the prognosis of a disease is studied it has been shown that co-
morbid diseases have an in�uence on the outcome. To adjust for this
in�uence a comorbidity index can be used. The most used index is the
Charlson comorbidity index, which was developed in 1987 on a small
cohort of patients from the medical service at New York Hospital. The
aim of this thesis is to investigate the ability of the Charlson comor-
bidity index to predict mortality on a cohort of pneumonia patients,
and to develop and validate a new comorbidity index.

We used a cohort of hospitalized pneumonia patients from the Danish
National Registry of Patients. We validated the Charlson comorbidity
index by including it in a logistic regression with 30 day mortality as
an outcome and assessing the performance.

Both logistic regression, naive Bayes and classi�cations trees were used
to develop new indexes. When using the logistic regression method we
updated the weights on the original Charlson diseases, included three
new diseases, included �rst degree interaction terms and a variable for
'time since diagnosis'.
The naive Bayes method and classi�cation trees were used as alterna-
tives to the logistic regression model. Indexes made by these methods
included the original Charlson diseases and the three new diseases.

We validated the indexes by assessing their performance for both 30
day and 1 year mortality. Their crude performance was assessed by the
Pearson χ2 test of a contingency table for the index and mortality. To
assess their adjusted performance we included each index in a logistic
regression adjusted for sex and age.

Our analysis showed that the Charlson comorbidity index predicted
death among pneumonia patients well, and therefore it is still usable.
All of our developed indexes performed well and most of them better
than CCI. Our analysis showed that four of our indexes were better
than the rest. For these indexes their complexity increased with per-
formance. Choosing the best index out of these is therefore a balance
between performance and simplicity and depends on the situation at
hand.
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Resumé

Når prognosen af en sygdom studeres, er det vist, at komorbide syg-
domme har en e�ekt på resultatet. For at justere for denne e�ekt kan et
komorbiditets indeks bruges. Det indeks, der oftest anvendes, er Charl-
sons komorbiditetsindeks, som blev udviklet i 1987 på en lille kohorte
af patienter fra New York Hospital.
Formålet med dette speciale er at undersøge Charlson komorbiditetsin-
deksets evne til at prædiktere dødeligheden i en kohorte af lungebe-
tændelsespatienter, og at udvikle samt validere et nyt komorbiditetsin-
deks.

Vi anvender en kohorte af hospitalsindlagte lungebetændelsespatien-
ter fra Landspatient Registeret. Vi validerer Charlson komorbiditets
indekset ved at inkludere det i en logistisk regression med 30 dages
dødelighed som udfald og dernæst vurdere dets præstation.

Både logistisk regression, naive Bayes og klassi�kations træer blev
brugt til at udvikle et nyt indeks. Da den logistiske regression blev
brugt, opdaterede vi vægtene på Charlsons originale sygdomme, inklu-
derede vi tre nye sygdomme, inkluderede vi førstegrads-interaktionsled
og en variable for 'tid siden diagnose'.
Som et alternativ til den logistiske regression blev naive Bayes og
klassi�kationstræer brugt. Indekserne udviklet på baggrund af disse
metoder inkluderede de originale Charlson sygdomme samt de tre nye
sygdomme.

Vi validerede indekserne ved at undersøge deres prædiktionsevne for
både 30 dages- og 1 årsdødelighed. Deres rå prædiktionsevne blev vur-
deret ved hjælp af en Pearson χ2 test på en frekvenstabel indeholdende
indekset og dødeligheden. For at vurdere deres justeret prædiktionsev-
ne blev hvert indeks inkluderet i en logistisk regression justeret for køn
og alder.

Vores analyser viste, at Charlson komorbiditetsindekset er udmærket
til at prædiktere død blandt lundebetændelsespatienter, og derfor er
det stadig brugbart.
Alle vores indekser præsterede udemærket og de �este af dem bedre end
Charlson komorbiditetsindekset. Vores analyser viste, at �re af vores
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indekser var bedre end resten. For disse indekser steg kompleksiteten
med prædiktionsevnen. Det at vælge det bedste indeks er derfor en ba-
lance mellem prædiktionsevne og enkelhed og afhænger af den enkelte
situation.
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Introduction

When the prognosis of a disease is studied it has been shown that
comorbid diseases have an in�uence on the outcome. Such mixing of
e�ects may be handled in several ways. One method is to apply a re-
stricted criteria to exclude patients who have comorbid diseases. This
method increases the certainty that any observed e�ect is caused by
the disease of interest, and not by the confounding in�uence of co-
morbid diseases. However, studies that focus on the prognosis of a
disease among patients with no comorbid diseases can not be gener-
alized. Alternative methods such as matching, strati�cation and ad-
justment all require that the amount of comorbid diseases can be
measured. Such a measure can be a comorbidity index, which can be
used to e.g. adjust for the confounding e�ect of comorbid diseases.
[Charlson, 1987],[Extermann, 2000]

There are several di�erent indexes to choose from when wanting to
adjust for comorbidity in a study. Before preceding to the problem
de�nition a short review on the four most commonly used indexes is
given.[Extermann, 2000]

Charlson Comorbidity index (CCI)

The Charlson comorbidity index was developed by Mary Charlson and
colleagues in 1987. They used data from a medical service at New
York hospital to analyze the 1 year mortality as a function of di�erent
comorbidities. For each disease a relative risk for death was calculated
and those with a relative risk for death ≥ 1.2 were retained. This
analysis resulted in a list of 19 diseases where each disease was given
a weight. If the relative risk was ≥ 1.2 and < 1.5 the weight was 1, if
≥ 1.5 and < 2.5 the weight was 2, if ≥ 2.5 and < 3.5 the weight was
3 and the two diseases with a relative risk of 6 or more were given the
weight 6. The index was calculated by adding the weights of those of the
19 diseases the patient had. The index was validated on breast cancer
patients with 10 year mortality as endpoint. The index can then e.g.
be collapsed into four categories; 0, 1-2, 3-4 and ≥ 5. [Charlson, 1987],
[Extermann, 2000]

Page 1



Table of contents

The Cumulative Illness Rating Scale (CIRS)

The CIRS was designed by Linn and colleagues in 1968. The aim was to
record all the comorbid diseases of a patient. It classi�es comorbidities
according to the organ system a�ected and rates them according to
their severity from 0 to 4. The CIRS has 14 organ system subdivisions.
If two diseases are present in an organ system, the disease with the
highest severity is used. The scale can then be summarized as a total
number of categories used, total score, mean score or number of diseases
with a grade of 3 or 4. [Extermann, 2000]

The index of Coexistent Disease (ICED)

The ICED was developed in 1987 by Green�eld and colleagues to ad-
dress issues of intensity of care. The ICED consists of two subscales,
a physical and a functional. The physical scale rates the diseases from
0 to 4 according to severity, and then regroups them in 14 disease
categories. The functional scale has 12 categories of functional impair-
ment, and each impairment is rated from 0 to 2. The scales are each
summarized by the highest score and they are then lumped together
according to a grouping system, to form an overall score ranging from
0 to 3. The grouping system can be seen in table A.4 in the appendix.
[Extermann, 2000]

The Kaplan-Feinstein index

The Kaplan-Feinstein index was developed in 1974 by these two au-
thors. The index consists of some diseases "that might be expected to
impair a patient's long-term survival". The diseases are grouped in 12
categories and then rated from 0 to 3 according to severity. The number
and severity of the diseases are evaluated and the overall comorbidity
score ranging from 0 to 3 is calculated. The overall score is the grade
of the disease with the highest score, but if two or more diseases have
the grade 2 the overall grade is then 3. [Extermann, 2000]
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Problem definition

The fact that the Charlson comorbidity index was based only on pres-
ence of diseases and not on severity of diseases or functional impairment
makes it very easy to use. The index is actually the most simple and
most used index [Extermann, 2000]. Because of this, it is the index we
choose as a starting point.
The CCI has however some problems. Firstly, the index was developed
in 1987 and since the treatment of the di�erent diseases has become
much more e�cient, the weights appointed to the 19 diseases should
probably be changed. Secondly, the index would probably not contain
the same 19 diseases if it was made today since the improved treat-
ments results in patients dying from other diseases. Thirdly, the dataset
used by Mary Charlson only consisted of 604 patients so the dataset
was relatively small. Some comorbidities had a low prevalence and oc-
cured only a few times if any at all in the dataset. This resulted in poor
relative risk estimation. Since all the patients were from the New York
Hospital, there could be bias so the results might not be generalizable
to the rest of the USA or the world. The patients in the study were
collected during 1 month, which may have resulted in bias since the
seasonal variation in disease prevalence was not taken into account. In
addition to these issues there might be a time e�ect to consider. As
an example a cancer diagnosis may not have the same in�uence on the
mortality 10 years after the diagnosis compared to 10 days after the
diagnosis.

We wish to keep the simplicity of the CCI, but at the same time develop
it to handle some of the above problems. To handle the �rst two prob-
lems we could, with a representative dataset, do as Mary Charlson and
use the relative risks to �nd an updated list of diseases. However this
may result in computational di�culties, since all the diseases recorded
would be included in the model. Another approach could be to con-
sult a clinician for a list of additional diseases and then calculate new
weights for both the additional and the original diseases (some of the
diseases might be given the weight zero).

To address the issue of seasonal variation and the issue of generaliza-
tion subjects are found in the Danish National Registry of Patients
(DNRP). The DNRP is used because it is a nation based registry
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containing 99.5% of all hospitalizations [Andersen et al., 1999], which
mean that the generalization to Denmark is apparent, but general-
ization to other countries has to be validated. The seasonal variation
can be expected to even out if the study period is a number of whole
years. Using the DNRP as a basis of the dataset will thereby make
the dataset representative and minimize a potential bias. To deal with
the time e�ect of the comorbidity diagnoses mentioned above, some
diseases could be subdivided into di�erent groups depending on the
'age' of the diagnosis.

Aim of the thesis

The objective of this study is to investigate the ability of the Charlson
comorbidity index to predict mortality on a cohort of pneumonia pa-
tients and on the basis of this investigation to develop and validate an
updated comorbidity index.

We start part I by introducing the general concepts of study design
and how to choose a statical model. Next basic theory on logistic re-
gression, naive Bayes and classi�cation trees, with focus on application
is provided.

We start part II by investigating how well the CCI predicts the mortal-
ity on a cohort of pneumonia patients. Next we modify CCI by updat-
ing the weights in the index and by including three new diseases. We
gradually increase the complexity of the index by including �rst degree
interaction terms and the 'age' of the diagnosis. Finally we validate the
new indexes and see if any improvements have been made.

The choice of study population

We choose hospitalized pneumonia patients as our group of interest,
since the prevalence of pneumonia is increasing and because pneumo-
nia is the most frequent cause of death in Danish hospitals
[Christensen et al., 2007]. Furthermore the well de�ned medical group
consisting of hospitalized pneumonia patients is known to have a high
mortality and a high number of comorbidities [Thomsen et al., 2006].
When the mortality and prevalence of the comorbidities are high the
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statistical results have more power. Choosing the homogeneous and
general internal medical group of hospitalized pneumonia patients gives
the results medical credibility, and means that the admission diagnosis
does not need to be taken into account. The pneumonia discharge di-
agnoses are validated and has a positive predictive value of 90%, which
is high compared to other diagnoses [Thomsen et al., 2006].
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Theory
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Chapter 1

Study design

In this chapter an introduction to the main observational study designs
used in clinical epidemiologic research is given. The chapter is written
on the basis of [Hulley et al., 2001].
In an observational study design the study population is only observed
and values of variables are registered, where in experimental studies
part of the predictor variables are modi�ed and controlled by the in-
vestigator.
Observational studies are especially useful in situations, where modi�-
cations of variables will cause ethical problems or simply be not possi-
ble.

1.1 Cohort studies

A cohort study is an observational study, where subjects are followed
over time in order to describe the incidence of a condition and to ana-
lyze predictors (risk factors) for a chosen outcome. Baseline is the time
where subjects enter the study and follow-up is the time where the
outcome is registered. The strength of a cohort design can be compro-
mised by incomplete follow-up.

Prospective cohort study

In prospective studies, illustrated in �gure 1.1, the investigator de�nes
the sample of subjects, and measures the predictor variables, before
any outcomes have occurred. The main strength of a prospective study
design is, that it is possible to measure predictor variables thoroughly
without risking, that they are biased by outcomes or by poor memories
(e.g. it can be di�cult to remember what you ate a month ago). This
study design is however expensive and ine�cient when outcomes are
rare in a population.

Retrospective cohort study

In retrospective studies, illustrated in �gure 1.1, the investigator de�nes
the sample of subjects and measures the predictor variables after the
outcomes have occurred. This study design requires that measurements
of the predictor variables are available for a cohort of subjects. Typi-
cally these data have been gathered for other purposes. The strength
is that like in prospective studies the measurements of the predictor
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Chapter 1. Study design

variables are not biased by the outcome. The retrospective study is
less time consuming and expensive than the prospective study, since
measurements already are made and time to outcome already has past.
However the investigator has limited control over study design, study
population, predictor variables, measure methods and so on, which may
result in incomplete and inaccurate key variables.

Figure 1.1 The upper �gure illustrates the prospective study design and
lower �gure the retrospective study design.

1.2 Cross-sectional study

A cross-sectional study, illustrated in �gure 1.2, is an observational
study, where all variables are measured at the same time. On the ba-
sis of subject matter, prior knowledge and of the distributions of the
variables, the investigator then chooses the outcome and predictors
among the measured variables. The advantages of this study design
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Chapter 1. Study design

compared to cohort studies are time e�ciency, and the fact that there
is no problem with subjects being lost to follow-up. It may reveal un-
known associations and can be implemented as an extra study in a
cohort setting when waiting for the follow-up.

An important descriptive statistic in cross-sectional designs is the preva-
lence. The prevalence is given by the number of exposed subjects over
the number of subjects in the sample. This should not be mistaken
for the incidence used in cohort studies given by the number of sub-
jects getting an exposure over the number of subjects in the sample.
A weakness of the cross-sectional study is that only the prevalence can
be found and not the incidence. Prevalence is a mix of both incidence
and duration of the disease. To show causation the investigator needs
to show a di�erence in incidence for the di�erent predictor levels, so
causation can not be assessed by a cross-sectional study, only associa-
tion.

Figure 1.2 The cross-sectional study design.

1.3 Case-control study

A case-control study, seen in �gure 1.3, is an observational study, where
the investigator chooses cases from a population with presence of an
outcome and controls from a population with absence of the outcome.
The levels of the predictor variables are then compared for the cases
and controls.
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Chapter 1. Study design

Case-control studies do not provide prevalence or incidence for the out-
come, it provides odds ratios, which approximates relative risks when
outcomes are rare.
The main advantage of case-control studies is that only a small number
of subjects, compared to cohort studies, is required to obtain the same
strength of the study. This is an advantage both when the outcome
is rare and when the waiting time for the outcome is long. The main
disadvantage of this study design is, that there is a large risk of bias,
both from the separate sampling of the cases and controls and from
the retrospective measurements of the predictors.

When sampling the cases, where the outcome is a disease, the sampling
may not be representative, since misdiagnosed, undiagnosed and dead
subjects are not available. To minimize this bias, only well de�ned and
representative outcomes should be used.

Matching ensures that cases and controls are comparable with respect
to characteristics, that might be related to the outcome, but of no in-
terest to the investigator.

In general when population based registries are available these should
be used to sample controls. This makes the study nested within a cohort
and can minimize sampling bias. To avoid measurement bias blinding
both the investigator and the patients should be done when possible.

Nested case-control study

A nested case-control study, seen in �gure 1.3, is a case-control study
nested within a prospective or retrospective cohort study. The cases are
all the subjects in the cohort with present outcome, and the controls
are sampled among the subjects in the cohort with absent outcome.
If the subjects are followed for di�erent lengths of time, it may be a
god idea to match the cases and controls by the length of follow-up. In
some situations matching on other characteristics such as sex and age
might improve the model.

Nested case-cohort study

A nested case-cohort study is the same as a nested case-control study
except that the controls are selected in the entire cohort and not only
among those who did not develop the outcome. This has the advantage,
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Chapter 1. Study design

that a set of randomly selected controls can be used in several studies
with the same cohort and di�erent outcomes. The random sample also
contains information on the overall prevalence of the risk factors.

In nested case-control and case-cohort studies the predictor variables
are not needed for the entire cohort, but only the cases and controls.
This is an advantages if some predictor variables which already are
stored are di�cult or expensive to assess.
In general all the cohort studies share the advantage that predictor
variables are not biased by knowledge of the outcome, and the disad-
vantage that the observed associations can be caused by confounders.

Figure 1.3 The upper �gure illustrates the case-control study design and
the lower the nested case-control study design.
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Chapter 1. Study design

1.4 Interpretation of associations

When an association between an outcome and a predictor is found,
the question is if it represents a cause-e�ect (that the predictor caused
the outcome). The main explanations of associations are cause-e�ect,
chance (that it is due to a random error), bias (that it is due to a
systematic error), e�ect-cause (that the outcome caused the predic-
tor) and confounding. To minimize the possibility that the association
is explained by chance, su�cient sample size and precision is needed
and p-values should be assessed. Bias is minimized by choosing study
design and research question carefully. E�ect-cause is made less likely
by carefully considering biological plausibility. Confounding happens
when some third factor causes both the outcome and the predictor.
It can be minimized by sampling data within a cohort with the same
levels of the potential confounder, by adjusting for this third factor as
described in section 2.1.5, by matching or by stratifying the subjects
in the analysis according to each level of the potential confounder. One
of the great advantages of adjustment is that it is possible to adjust
for several potential confounders at the same time. On the other hand
adjusting for too many confounders may result in problems with the
statistical models used in the analysis phase.
So when evaluating whether a found association in fact represents
cause-e�ect, the four alternative explanations must be considered and
ruled out.

1.5 Secondary data analysis

Secondary data is data gathered for a di�erent purpose than the pur-
pose of the analysis. Using secondary data analysis reduces time and
cost in research. This leaves the investigator with limited control over
data, meaning that the investigator must settle with the variables at
hand, their quality and the way they are recorded. Investigators can
�nd a dataset or a database that is useful for an existing research ques-
tion or the other way around. Administrative and clinical databases and
registries are very useful, especially when studying rare outcomes and
assessing use and e�ectiveness of e.g. a medical drug or a treatment,
that has been shown to work in an experimental setting.
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Chapter 2

Logistic regression

In this chapter generalized linear regression with an application to lo-
gistic regression is introduced. Furthermore the concept of hypothesis
testing, goodness-of-�t statistics and validation is also given.

In statistical data analysis, regression models are the main approach,
when describing the relationship between a response variable and ex-
planatory variables. The most commonly used model is the linear re-
gression model, but when the response variable is discrete that mod-
el is inadequate. With the principles from the linear model, a family
of models called generalized linear models are employed. What dis-
tinguishes the generalized linear model and the ordinary linear mod-
el is the choice of the parametric model and the model assumptions.
When dealing with a binary response logistic regression, which belongs
to the generalized linear models, is the standard method of analysis.
[David W. Hosmer, 2000]
Often when studying dichotomous outcomes contingency tables are
used. In a case with a continuous explanatory variable, this method
requires that the values of the continuous variable are divided in in-
tervals, compromising the information contained in the variable. Us-
ing a statistical model like the logistic regression model this prob-
lem is solved, since the association between the dichotomous outcome
and the continuous variable can be modeled and evaluated directly.
[Frank E. Harrell, 2001]

2.1 Generalized linear models

This section is written on the basis of [Azzalini, 2002] and [Dobson, 1990]
and contains a generalization of the ordinary linear regression model.
The insu�ciencies of the linear model are summarized in the following
three items:

• The relationship between the response variable and the explana-
tory variables is not necessarily linear.

• The variance of the response variable is not necessarily constant.

• The response variable may not be normally distributed.
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Chapter 2. Logistic regression

Before making the generalization we introduce a family of distributions
called the exponential family, which have a number of properties in
common with the normal distribution. It is de�ned by the following.
The distribution of the stochastic variable Y is said to belong to the
exponential family if the probability density function can be written in
the form

f(y|θ) = exp (a(y)b(θ) + c(θ) + d(y)) ,

where θ is a vector of distribution parameters, a(·), b(·) are known
vector functions and c(·), d(·) are known functions. When using the
exponential family later, θ, a(·) and b(·) are one dimensional, so they
are from this point regarded as such.
If a(y) = y the distribution is said to be in canonical form. The term
b(θ) is called the natural parameter of the distribution. In table 2.1 a
list of examples of natural parameters can be seen.

Distribution Natural parameter

Poisson (θ) log(θ)
Normal (µ,σ) µ

σ2

Binomial (π) log
(

π
1−π

)
Table 2.1 Natural parameters for the poisson, normal and binomial dis-

tributions. Note that σ is a known parameter. [Dobson, 1990]

The mean and variance of a(Y ) are now found for later use. Note
that 1 =

∫
f(y|θ)dy, where f(·|θ) is the probability density function.

Di�erentiating with respect to θ and reversing the integration and dif-
ferentiation gives

0 =
d

dθ

∫
f(y|θ)dy

=
∫

d

dθ
f(y|θ)dy

=
∫

[a(y)b′(θ) + c′(θ)]f(y|θ)dy

=b′(θ)E[a(Y )] + c′(θ).
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Chapter 2. Logistic regression

The last equality follows by
∫
a(y)f(y|θ)dy = E[a(Y )] from the de�ni-

tion of the expected value. Rearranging the above gives

E[a(Y )] =
−c′(θ)
b′(θ)

. (2.1)

Di�erentiating twice with respect to θ and reversing the integration
and di�erentiation gives

0 =
d2

dθ2

∫
f(y|θ)dy

=
∫

d2

dθ2
f(y|θ)dy

=
∫

d

dθ
[a(y)b′(θ) + c′(θ)]f(y|θ)dy

=
∫

[a(y)b′′(θ) + c′′(θ)]f(y|θ) + [a(y)b′(θ) + c′(θ)]2f(y|θ)dy

=
∫

[a(y)b′′(θ) + c′′(θ)]f(y|θ) + [b′(θ)]2{a(y)−E[a(Y )]}2f(y|θ)dy

=b′′(θ)E[a(Y )] + c′′(θ) + [b′(θ)]2Var[a(Y )]

Since
∫
{a(y) − E[a(Y )]}2f(y|θ)dy = Var[a(Y )] by de�nition. Using

equation (2.1) and rearranging gives

Var[a(Y )] =
b′′(θ)c′(θ)− c′′(θ)b′(θ)

b′(θ)3
. (2.2)

The scoring vector is de�ned by U(θ|y) = d`(θ|y)
dθ , where `(θ|y) is the

log likelihood function. The likelihood function is proportional to the
probability density function, so for an exponential family this becomes

U(θ|y) = a(y)b′(θ) + c′(θ).

Given y, it can be seen as a random variable. The Information function
de�ned by I = −E[dU/dθ] is

I =−E[a(Y )b′′(θ) + c′′(θ)]

=
c′(θ)
b′(θ)

b′′(θ)− c′′(θ).
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This is actually the Var(U) since

Var(U) = Var[a(Y )b′(θ) + c′(θ)] = Var[a(Y )]b′(θ)2 =
b′′(θ)c′(θ)
b′(θ)

− c′′(θ).

Hence

I =Var(U) = E[U2]−E[U ]2 = E[U2], (2.3)

since E[U ] = E[a(Y )]b′(θ) + c′(θ) = −[c′(θ)/b′(θ)]b′(θ) + c′(θ) = 0.

The generalization of the linear model

The characteristics of the linear model is �rst identi�ed and then de-
veloped in two ways.
Given the linear model Y = Xβ+ε, the i'th observation of Y is de�ned
by the linear predictor ηi = x>i β, where xi is the i'th row in X. Assume
that the observations Yi are drawn independently from Yi ∼ N(µi, σ2),
where µi = ηi. This can be summarized to:

• Yi's are mutually independent

• Yi ∼ N(µi, σ2)

• µi = ηi

• ηi = x>i β

The generalized linear models are now achieved by allowing the follow-
ing two expansions:

• The distribution of the Yi is not restricted to the normal dis-
tribution, but can have any distribution belonging to a given
exponential family.

• The relationship between ηi and µi is not restricted to the iden-
tity, so

g(µi) = ηi,

where g(·) called the link function is a di�erentiable and monotonous
function.
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This means that a generalized linear model is characterized by

g(µi) = ηi, ηi = x>i β (2.4)

and the distribution of the mutually independent Yi's, which belongs
to an exponential family.

A statistical model is a generalized linear model, when it satis�es these
three statements:

• The observations y1, . . . , yn are realizations of mutually indepen-
dent stochastic variables Y1, . . . , Yn, where the distributions of
the Yi's belong to an exponential family.

• The function g(·) exists, so that g(µi) = x>i β, where β is a vector
of parameters.

• The functions a(·), b(·), c(·) and d(·) are known, and the dis-
tributions of Yi have the same shape (either normal, binomial
etc.).

2.1.1 Choosing the model

In this section a few guidelines as how to choose a model is given. This
section is based on [Frank E. Harrell, 2001].

In biostatistics, epidemiology, economics and many other �elds it is
seldom that prior knowledge on the subject exists so that the analyst
can prespecify a model, a transformation for the response variable,
and a structure for how predictors appear in the model (e.g., transfor-
mations, addition of nonlinear terms, interaction terms). The analyst
is therefore often forced to develop models empirically. Fortunately, a
careful and objective validation of the accuracy of model predictions
against observed responses can make the model more trustworthy, if a
good validation is not merely the result of over�tting.

There are a few guidelines that can help in choosing the basic form of
the statistical model.

1. The model must use the data e�ciently. If, for example, the pre-
diction of the probability that a patient with a speci�c set of
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characteristics would live �ve years from diagnosis is of interest,
an ine�cient model would be a binary logistic model. A more
e�cient method would be a parametric survival model. Such a
model uses individual times of events in estimating coe�cients,
but it can easily be used to estimate the probability of surviving
�ve years.

2. Choose a model that �ts overall structures which are likely to be
present in the data. In modeling survival time in chronic diseases
it might be important that most of the risk factors are constant
over time. In that case, a proportional hazards model such as the
Cox model would be a good initial choice.

3. Choose a model that is robust to problems in the data that are
di�cult to check. For instance, the Cox proportional hazards
model and ordinal logistic regression models are not a�ected by
monotonic transformations of the response variable.

4. Choose a model whose mathematical form is appropriate for the
response being modeled. This has to do with minimizing the
need for interaction terms that are included only to address a
basic lack of �t. For example when an ordinary linear regression
model is used for a binary response. Such a model allow predict-
ed probabilities outside the interval [0, 1], and therefore strange
interactions among the predictor variables are needed to make
predictions remain in the interval.

5. Choose a model that easily can be extended. The Cox model, by
its use of strati�cation, easily allows a few of the predictors to
violate the assumption of equal regression coe�cients over time,
that is the proportional hazards assumption.

2.1.2 Binary responses

This section is written on the basis of [Dobson, 1990] and contains the
derivation of the likelihood and link function in logistic regression.

The special case where the response is binary often appears in bio-
statistics. As an example one may want to investigate how of a medical
treatment a�ects the mortality among patients. In this case, the med-
ical treatment is the explanatory variable and the response variable is
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binary with the possible outcomes 'dead' or 'alive'. A general binary
response variable is de�ned by the following, where the interpretation
of this response depends entirely on the situation analyzed.

Z =

{
1 if the outcome is success,

0 if the outcome is failure,

where P (Z = 1) = π and P (Z = 0) = 1 − π, is the familiar Bernoulli
distribution B(π) with E[Z] = π. Given n independent stochastic vari-
ables Z1, . . . , Zn with probability P (Zj = 1) = πj the joint probability
density function is

f(z1, . . . , zn|π1, . . . , πn) =
n∏
j=1

f(zj |πj)

=
n∏
j=1

π
zj
j (1− πj)1−zj

= exp

 n∑
j=1

zj log
(

πj
1− πj

)
+

n∑
j=1

log(1− πj)

 .
This belongs to the exponential family, where a(zj) = zj , b(πj) =
log(πj/(1 − πj)), c(πj) = log(1 − πj) and d(zj) = 0 for each of the
observations.
In the case, where all πj = π,

Y =
n∑
j=1

Zj

is the number of successes, which is binomially distributed,
Y ∼ Bin(n, π).
This means, that for N stochastic variables, Y1, . . . , YN given by the
number of successes in N di�erent subgroups, where Yi ∼ Bin(ni, πi),

Page 21



Chapter 2. Logistic regression

the log likelihood function is

`(π|y) = log

(
N∏
i=1

f(yi|πi)

)

=
N∑
i=1

log
[(
ni
yi

)
πyii (1− πi)ni−yi

]

=
N∑
i=1

[
yi log

(
πi

1− πi

)
+ ni log(1− πi) + log

(
ni
yi

)]
. (2.5)

The probability density function for the stochastic variables Y1, . . . , YN
belongs to the exponential family where, a(yi) = yi,
b(πi) = log(πi/(1− πi)), c(πi) = ni log(1− πi) and d(yi) = log

(
ni
yi

)
.

To describe the behavior of the binary response, the probability for
success, πi = Yi/ni is considered. Since E[Yi] = niπi and thereby
E[Yi/ni] = πi, the probabilities, πi are modeled by the generalized
linear model

g(πi) = x>i β.

Logistic regression

As seen in line (2.5) the natural parameter for the binomial distribu-
tion is b(πi) = logit(πi). When the link function results in the natural
parameter, it is called a canonical link function. In logistic regression
the canonical link function is used, so the logistic regression model
becomes

g(πi) = logit(πi) = log
(

πi
1− πi

)
= x>i β. (2.6)

Written in another way this gives the regression model

πi =
exp(x>i β)

1 + exp(x>i β)
. (2.7)

The logistic regression has a very suitable property, that is, it models
the πi's in the range between 0 and 1.
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Other statistical methods

Another statistical model, with similar properties is obtained via the
probit link function. This model is based on the cumulative normal
distribution. It has the same shape as the logistic model, but the
link function involving the inverse of the cumulative normal distri-
bution makes the computations quite heavy. This link function is not
the natural parameter, so using the iterative weighted least squares
procedure, described in the following section, does not guaranty that
the right parameter estimates are found as described in section 2.1.3.
[Frank E. Harrell, 2001]

Discriminant analysis is a statistical tool, which is computationally
easier than logistic regression [David W. Hosmer, 2000]. Discriminant
analysis actually have the same assumptions about the model as logistic
regression plus the additional assumptions, that the joint distribution
of the explanatory variables is multivariate normal. These additional
assumptions are unlikely to be met in practice, especially if one of the
explanatory variables is discrete. The assumptions come from the fact,
that the model in discriminant analysis is based on the distribution
of X|Y and has to be inverted using Bayes' rule to derive P (Y ). The
logistic regression model on the other hand is based on P (Y |X) direct-
ly. The distribution of a binary random variable is completely de�ned
by the true probability that Y = 1, so no assumptions about X is
made in the logistic regression model. If the assumptions in discrimi-
nant analysis are violated the logistic regression yields a better model
[Press and Wilson, 1978], [Halperin et al., 1971] and if not, the logistic
regression is just as good [Frank E. Harrell and Lee, 1985].

2.1.3 Estimating model parameters in generalized linear

models

This section is written on the basis of [Dobson, 1990] and contains a
mathematical derivation of the procedure used when estimating the
parameters in a generalized linear model with the maximum likelihood
method.
When �tting the ordinary linear model the method of least squares is
used. Using the method of least squares, the parameters, which mini-
mize the distance between the observed response and the model pre-
dicted values, is chosen. When the error terms are normally distributed,
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this method is equivalent to the maximum likelihood method. The me-
thod of least squares is not suitable for the generalized linear model,
but the maximum likelihood is a convenient replacement. Since the
assumption of normal distributed error terms does not apply for the
generalized linear model, the maximum likelihood method results in a
more complex equation. The idea in maximum likelihood estimation is
to �nd the parameters, which make the observed data most probable.
That is, to maximize the likelihood function with respect to the param-
eters or equivalently the log likelihood function. Using the maximum
likelihood method to �t the generalized linear model can be done with
an iterative weighted least squares procedure. This procedure is used
in most software packages and is described in the following.

The method of maximum likelihood applied on generalized

linear models

Except in special cases, where all the explanatory variables are discrete,
the maximum likelihood problem can not be solved directly. The fastest
and most applicable method for solving a function iteratively is general-
ly the Newton-Raphson method, that approximates the given function
with a linear function in a small region. [Frank E. Harrell, 2001]

We now derive the so called iterative weighted least squares procedure,
to determine the maximum likelihood estimates in a generalized linear
model. The derivation is for the generalized linear model with a canon-
ical likelihood function, so a(Yi) = Yi.

Given N independent stochastic variables Y1, . . . , YN , which satis�es
the assumptions for the generalized linear regression, the joint log like-
lihood function can be written in the form

`(β|y) =
N∑
i=1

`i(θi|yi) =
N∑
i=1

yib(θi) +
N∑
i=1

c(θi) +
N∑
i=1

d(yi),

since it belongs to the exponential family and is on the canonical form.
Remember from line (2.1), (2.2) and (2.4) that

E[Yi] = µi = −c′(θi)/b′(θi) (2.8)

Var[Yi] = [b′′(θi)c′(θi)− c′′(θi)b′(θi)]/[b′(θi)]3 (2.9)

g(µi) = ηi = x>i β, (2.10)
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where xi is the i'th row in X. These equalities also gives the connection
between β and θ.
The maximum likelihood estimate can be found by solving the score
equation

0 =
∂`

∂βj
= Uj =

N∑
i=1

[
∂`i
∂βj

]
=

N∑
i=1

[
∂`i
∂θi

∂θi
∂µi

∂µi
∂βj

]
. (2.11)

Each of the factors on the right side in equation (2.11) are treated
separately. The �rst factor is by line (2.8)

∂`i
∂θi

= yib
′(θi) + c′(θi) = b′(θi)(yi − µi).

By di�erentiating line (2.8) and using equation (2.9) the second factor
is

∂θi
∂µi

=
(
∂µi
∂θi

)−1

=
(
−c′′(θi)b′(θi) + c′(θi)b′′(θi)

[b′(θi)]2

)−1

=
(
b′(θi)Var(Yi)

)
.−1

By line (2.10) the last factor can be written as

∂µi
∂βj

=
∂µi
∂ηi

∂ηi
∂βj

=
∂µi
∂ηi

xij .

Hence the score equation is

Uj =
N∑
i=1

[
(yi − µi)
Var(Yi)

xij

(
∂µi
∂ηi

)]
. (2.12)

The Information matrix from line (2.3) then becomes

Ijk = E[UjUk]

= E

{
N∑
i=1

[
(Yi − µi)
Var(Yi)

xij

(
∂µi
∂ηi

)] N∑
l=1

[
(Yl − µl)
Var(Yl)

xlk

(
∂µl
∂ηl

)]}

=
N∑
i=1

E[(Yi − µi)2]
[Var(Yi)]2

xijxik

(
∂µi
∂ηi

)2

,

as E[(Yi− µi)(Yl − µl)] = E[Yi− µi]E[Yl − µl] = 0 for i 6= l, because of
the independence of the Yi's.
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Since E[(Yi − µi)2] = Var(Yi), Ijk can be reduced to

Ijk =
N∑
i=1

xijxik
Var(Yi)

(
∂µi
∂ηi

)2

, (2.13)

from where it can be seen, that

I = X>WX,

where W is an N ×N diagonal matrix with the elements

wii =
1

Var(Yi)

(
∂µi
∂ηi

)2

.

Estimating the parameters, β is then done with a modi�ed version of
the Newton-Raphson method for maximization by

b(m) = b(m−1) +
[
I(m−1)

]−1
U (m−1), (2.14)

where b(m) is the estimation of β at the m'th iteration, and the in-
formation matrix

[
I(m−1)

]−1
and the scoring vector U (m−1) both are

computed with b(m−1). This is actually quite similar to the equations
used in linear regression, which can be seen by the following derivation.
Written in a di�erent way equation (2.14) is

I(m−1)b(m) = I(m−1)b(m−1) + U (m−1). (2.15)

The expression on the right side of equation (2.15) is the vector with
the elements

p∑
k=0

N∑
i=1

(
xijxik
Var(Yi)

(
∂µi
∂ηi

)2

b
(m−1)
k

)
+

N∑
i=1

(yi − µi)xij
Var(Yi)

(
∂µi
∂ηi

)
,

by equation (2.13) and (2.12), where p+1 is the number of parameters.
This means that the expression on the right side of equation (2.15) is

X>Wz,

where z has the elements

zi =
p∑

k=0

xikb
(m−1)
k + (yi − µi)

(
∂ηi
∂µi

)
, (2.16)
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with µi and ∂ηi/∂µi computed with b(m−1).
All in all equation (2.15) is equivalent to

X>WXb(m) = X>Wz. (2.17)

This equation is similar to the weighted normal equations X>WXb =
X>Wy used in ordinary weighted linear regression for parameter esti-
mation. Ordinary weighted linear regression is similar to ordinary linear
regression except from that fact, that each observation has a weight.
Most statistical programs use this iterative weighted least squares pro-
cedure, when estimating parameters in a generalized linear regression
model.

The procedure starts with an initial value, b(0), used to compute z and
W . With these and equation (2.17), b(1) is computed. Then new z and
W is computed and so on. If the log likelihood gets worse at b(i+1) than
at b(i), b(i+1) is replaced by (b(i) + b(i+1))/2. If this does not help, b(i+1)

is replaced by (3b(i) + b(i+1))/4, and the normal procedure is resumed.
[Frank E. Harrell, 2001]

When the -2 log likelihood function changes with less than some thres-
hold, k, the procedure is stopped and the maximum likelihood estimate
is found. Often k = 0.05 is chosen because a change in the parame-
ter values of this size, does not a�ect the statistical conclusions since
the -2 log likelihood function is χ2 distributed. [Frank E. Harrell, 2001]

Because the probability density functions belongs to an exponential
family, the canonical link function yields a concave likelihood function.
With a concave likelihood the maximum found by the procedure is a
global maximum. Hence the choice of b(0) only have little in�uence on
the result of the procedure, if the procedure has converged. To make
sure the procedure has converged keep an eye on the number of itera-
tions, a rule of thumb is that under 10 iterations is �ne [Green, 1984].

Considering the Taylor expansion of the link function g(yi) at µi

g(yi) ≈ g(µi) + (yi − µi)g′(µi)

= ηi + (yi − µi)
∂ηi
∂µi

= zi,
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it is seen that zi is a local approximation to g(yi). For this reason the
algorithm can be initiated by letting z

(0)
i = g(yi) and W (0) be the

identity matrix. From these b(1) can be computed and the algorithm is
started.
For some models the value of zi can not be computed. An example is
the logistic regression model, where g(yi) = log yi

ni−yi and one of the
observations yi = 0 or yi = ni. A solution to this can be to make a
slight adjustment to the approximation by

z
(0)
i = log

yi + 0.5
ni − yi + 0.5

.

This approximation is called the empirical logit and reasons for the
choosing 0.5 is given in [Cox and Snell, 1989].
The estimation and sample distributions are based on asymptotic re-
sults, so for small data sets the parameter estimates may result in a
poor model. For logistic regression the case where every covariate pat-
tern has few observations or where the frequencies of success are close
to one or zero, the model may be poor.

Estimating the variance of the parameters

This section is written on the basis of [Frank E. Harrell, 2001].
The observed information, de�ned as

I(β) = E
[
−∂2

∂β ∂β>
`(β)

]
,

describes how much 'information' the observations contain about the
parameters. Information in the sense, that the �bigger� the observed
information is, the more distinct the peak of the log likelihood function
is (the peak is at the maximum likelihood estimate). With a distinct
peak of the log likelihood follows an estimate with a small variance
and thereby high precision. Note that in general the more observations
the �bigger� the observed information is and thereby the higher the
precision.

Estimating the covariance matrix of the parameters can be done with
the observed information by

V = I−1(β̂).
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This estimation is consistent and it is assumed, that the model is spe-
ci�ed correctly in terms of distribution, regression assumptions and
independence assumptions.

2.1.4 Hypothesis tests

This section is written on the basis of [Frank E. Harrell, 2001] and con-
tains a general introduction of likelihood based test statistics.

After �tting a model by estimating its unknown parameters, it should
be investigated if the model can reveal anything about the response
variable. This can be tested with a global test introduced in the next
section. If the global test does not show, that the model is signi�cant,
interpretation of individual parameters and associations is risky.

The relevance of each of the parameters should be evaluated, by test-
ing if the model tells more about the response with the parameter or
without it. This is done by testing for the signi�cance of parameters.
[David W. Hosmer, 2000]
When testing the signi�cance of a model or a subset of its parameters,
the null hypothesis is H0: β = 0, where β is the vector with the model
parameters or the vector with the parameters of interest. The general
null hypothesis H0: β = β0 is used in the next sections in the name of
generality.
Remember that test conclusions are only concerning statistical evi-
dence and factors concerning clinical importance should be evaluated
separately.

Global test statistics

When testing the global hypothesis that the model parameters β are
known, H0: β = β0 two test statistics arise from likelihood theory.
For a large number of observations they are both χ2 distributed under
the null hypothesis with p + 1 degrees of freedom, where p + 1 is the
number of entries in the vector of parameters β and β̂ is the maximum
likelihood estimate of β.

The likelihood ratio test statistic is given by

LR = −2[`(β0)− `(β̂)].

Page 29



Chapter 2. Logistic regression

This test statistic is based on the ratio of the likelihood of the hypoth-
esis value and the likelihood of the maximum likelihood parameter
estimates. Applying the log function and multiplying with −2 ensures
an appropriate distribution.

The other statistic is the Wald test statistic

W = (β̂ − β0)>V −1(β̂ − β0).

This test statistic is a generalization of the z statistic from the normal
distribution. It is a function of the di�erence between the maximum
likelihood parameter estimates and the hypothesis value, normalized
by an estimate of the variance of the maximum likelihood parameter
estimates.

A special likelihood ratio test statistic is

D =− 2[`(�tted model)− `(saturated model)].

Note that the saturated model is the �full model� with as many pa-
rameters as observations.
This likelihood ratio statistic is called the deviance and plays a cen-
tral role when dealing with goodness-of-�t. As shown later the deviance
computed for a linear regression is equal to the residual sum of squares,
so the deviance has similar properties to the residual sum of squares.
For the logistic regression, where all observations have di�erent co-
variate patterns and the response is binary, the log likelihood of the
saturated model becomes:

`(saturated model) = log

[
n∏
i=1

yyii (1− yi)(1−yi)

]
= log[1] = 0. (2.18)

So the deviance is D = −2`(�tted model).

Testing of a subset of parameters

If a subset, β1, of the model parameters, β = {β1, β2} needs testing,
the null hypothesis H0: β1 = β0

1 can be tested with the following test
statistics. In this case, β2 is treated as a nuisance parameter. This might
be useful when adjusting for confounding or evaluating the relevance of
a speci�c parameter. Under the null hypothesis and for a large number
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of observations the test statistics are all χ2 distributed with k degrees
of freedom, where k is the number of parameters of interest, that is k
is the number of entries in β1.
The likelihood ratio test statistics is then given by

LR = −2[`(β0
1 , β̂
∗
2)− `(β̂)],

where β̂∗2 is the maximum likelihood estimate of β2 under the null
hypothesis. This test statistic is the same as the change in the log
likelihood ratio, when including the parameters in question and not,
since

LR[H0 : β = β0]− LR[H0 : β2 = β0
2 | β1 = β0

1 ]

=− 2[`(β0)− `(β̂)] + 2[`(β0
1 , β

0
2)− `(β0

1 , β̂
∗
2)]

=− 2[`(β0
1 , β̂
∗
2)− `(β̂)].

The Wald test statistic is now

W = (β̂1 − β0
1)>V −1

11 (β̂1 − β0
1), where V =

[
V11 V12

V >12 V22

]
.

This test statistic is a global Wald statistic limited to the parameters
in question.
Note, that when dealing with non-binary discrete explanatory variables
the test of signi�cance has to include all design variables concerning
the explanatory variable. Statistical programs may give the signi�cance
level for each design variable, but a separate analysis must be made to
have a valid signi�cance conclusion.

Choosing a test statistic

When choosing between the statistics, both statistical properties and
computational expenses should be taken into account. The likelihood
ratio test statistic has the best statistical properties followed by the
score and Wald test statistic.

When testing the global hypothesis that no e�ects are signi�cant, LR
is often used, because the log likelihood evaluated at the model in ques-
tion is available from the �tting process and the log likelihood at the
model containing only the intercept is easy to compute.
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When testing a subset of parameters, the likelihood ratio test statistic
requires estimation of all p + 1 model parameters and of the k pa-
rameters of interest under the null hypothesis. The Wald test statistic
requires estimation of the p+ 1 model parameters, so the Wald test is
the obvious choice, if estimations of the p + 1 model parameters are
made in advance. If there are any problems with the Wald test statistic
the likelihood ratio test statistic should be used instead.

Testing the logistic regression

The major statistical problem withW is that it is sensitive to potential
problems with the estimated covariance matrices. This is a problem in
logistic regression, where the covariance matrix generally is overesti-
mated as e�ects increase. The result of an overestimated covariance
matrix is an underestimated W and it is thereby more di�cult for the
statistic to be signi�cant.
The Wald test statistic also have a problem with large parameter es-
timates. If the di�erence between the parameter estimate and the null
value increases, the Wald statistic for H0: β = β0 becomes larger, but
after a certain point, it then drops and becomes smaller again. If the
parameter estimate increases to ±∞, W drops to zero. In�nite esti-
mates might occur in logistic regression if the mean of the predictor is
close to 0 or 1 for one or more of the covariate patterns. In this case
the likelihood ratio is preferable.
In the special case where all the explanatory variables are discrete the
logistic model statistics are equivalent to a contingency table χ2 statis-
tics. As an example the global likelihood ratio statistic for all design
variables in a k-sample model is the same as the k × 2 contingency
table likelihood ratio χ2 statistic.

Con�dence intervals

Pointwise con�dence intervals for the parameters can be found with the
introduced test statistics. The con�dence interval based on the Wald
test statistic is

β̂ ± z1−α/2s,

where s is the vector of the diagonal entries in V . This interval is often
used because of its simplicity.
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The Wald based con�dence interval for �tted values corresponding to
a given covariate pattern, x, of the explanatory variables is

exβ̂±z1−α/2SE[xβ̂]

1 + exβ̂±z1−α/2SE[xβ̂]
,

where SE[xβ̂] is the estimated standard deviation found from the es-
timated variance given by

V̂ ar[xβ̂] =
p∑
j=0

x2
j V̂ ar(β̂j) +

p∑
j=0

p∑
k=j+1

2xjxkĈov(β̂j , β̂k)

= xV̂ x>.

[David W. Hosmer, 2000]
Note that the Wald based con�dence intervals are strictly symmetrical
intervals on the scale, they are found.
Nonsymmetrical con�dence intervals can be found on the basis of the
likelihood ratio statistic and the score statistic. They are not as com-
putationally easy as the Wald test statistic though.

2.1.5 Testing model assumptions

In this section methods used to test the model assumptions in a logistic
regression are given. The section is written on the basis of
[Frank E. Harrell, 2001].
The logistic regression model is a direct probability model, so there is
no assumptions about the parameters, only about the regression equa-
tion. The regression equation assumptions are possible to verify both
graphically and with tests. To do this, the concept of interaction is
needed. Interaction can be seen as a variable describing the e�ect of
combining two or more covariates. This is described further in section
2.1.5. When such a combined e�ect is absent, it is assumed, that the
relationship between the log odds and a continuous explanatory vari-
able is linear, when holding the other explanatory variables constant.
This means, that the parameter βj is the change in the log odds ratio
per unit change in Xj .

Consider the simple model with a binary variable X1 and a continuous
variable X2.

logit(Y = 1|X) = β0 + β1X1 + β2X2.
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In this case the model assumptions can be evaluated graphically by
plotting logit(Y = 1|X) versus X2 for both values of X1. If this plot
shows two straight and parallel lines, the assumptions are met. In a
more complex setting a similar approach can be used, where a number
of di�erent combinations of the explanatory variables are plotted.
Evaluating the assumptions can also be done in a more strict manor
by testing for linearity and interaction. Testing for interaction is done
by adding an interaction variable, so the model is

logit(Y = 1|X) = β0 + β1X1 + β2X2 + β3X1X2,

and then testing the null hypothesis β3 = 0. If the interaction is in-
signi�cant, the assumptions are met. Testing for linearity can by done
by adding transformations or the like of the variable and testing for
their signi�cance. In a more complex setting the transformations for
all the continuous explanatory variables and all possible interactions
should be tested in the same way.

Interaction and confounding

In this section the concept of interaction and confounding is introduced
and it is shown how to control for their e�ects in a logistic regression
model. The section is based on [David W. Hosmer, 2000].

The term confounder is used to describe a covariate that is associated
with both the outcome variable and a primary independent variable or
risk factor. When both associations are present, the relationship be-
tween the risk factor and the outcome is said to be confounded.

The term interaction is used when a model contains a risk factor and a
covariate and the e�ect of these two variables are not additive, that is
when the e�ect of the risk factor on the outcome depends on the lev-
el of the covariate and vice versa. Epidemiologists use the term e�ect
modi�er to describe a variable that interacts with a risk factor.

Interaction can take many di�erent forms. Consider a model containing
a binary risk factor variable and a continuous covariate. If the associa-
tion between the covariate and the outcome variable is the same within
each level of the risk factor, then there is no interaction between the
covariate and the risk factor. Graphically, the absence of interaction
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yields a model with two parallel lines, one for each level of the risk
factor.
When interaction is present, the association between the risk factor and
the outcome variable di�ers, or depends on the level of the covariate.
The simplest and most commonly used model for including interaction
is one where the logit is linear in the confounder for all the levels of
the risk factor but with di�erent slopes. In any model, interaction is
incorporated by the inclusion of second or higher order terms involving
two or more variables.

Determining whether a covariate, X, is an e�ect modi�er and/or a con-
founder involves several issues. Determining e�ect modi�cation status
involves the parametric structure of the logit, while determination of
confounder status involves two things. First the covariate must be as-
sociated with the outcome variable. This means that the logit must
have a nonzero slope in the covariate. Secondly the covariate must be
associated with the risk factor variable. The association between the
covariate and the risk factor may be very complex, but the essence
is that there must be incomparability in the risk factor groups. This
incomparability must be accounted for in the model if a correct, un-
confounded, estimate of the e�ect for the risk factor is to be obtained.

In practice, one method to check the confounder status of a covariate
is to compare the estimated coe�cient for the risk factor variable from
models with and without the covariate. If there is a clinically impor-
tant change in the estimated coe�cient for the risk factor this suggests
that the covariate is a confounder and should be included in the model,
regardless of the statistical signi�cance of its estimated coe�cient.

On the other hand, a covariate is an e�ect modi�er only when the
interaction term added is both clinically meaningful and statistically
signi�cant. When a covariate is an e�ect modi�er, its status as a con-
founder is of secondary importance since the estimate of the e�ect of
the risk factor depends on the speci�c value of the covariate.

The concept of confounding, interaction and e�ect modi�cation, may
be extended to the situations involving any number of variables on any
measurement scale. The principals for identi�cation and inclusion of
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confounder and interaction variables in the model are the same regard-
less of the number of variables and their measurement scales.

2.1.6 Variable selection

In this section various methods for selecting the variables that result in
a �best� model within the scienti�c context of the problem is presented.
The section is based on [David W. Hosmer, 2000].

In statistical model building it is tradition to seek the most simple
model that still explains the data. When the number of variables in
the model are minimized, the model is more likely to be numerically
stable, and is more easily generalized. The more variables included in
a model, the greater the estimated standard errors become, and the
more dependent the model becomes on the observed data. Epidemio-
logic methodologists suggest including all clinically and intuitively rel-
evant variables in the model, regardless of their statistical signi�cance.
This is done in order to provide as complete control of confounding as
possible within the given dataset.
The major problem with this approach is that the model may be over�t-
ted and produce numerically unstable estimates. Over�tting is typically
characterized by unrealistically large estimated coe�cients and/or es-
timated standard errors.

There are several steps that can be followed to aid the selection of
variables for a logistic regression model.

Univariate analysis

Begin with a careful univariate analysis of each variable. For nominal,
ordinal, and continuous variables with few integer values, this can be
done with a contingency table of outcome versus the k levels of the
independent variable. The Pearson χ2 test can then be used to test for
association.

For continuous variables, the most desirable univariate analysis involves
�tting a univariate logistic regression model to obtain the estimated co-
e�cient, the estimated standard error and the likelihood ratio test for
signi�cance of the coe�cient.
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Select variables for multivariate analysis

Upon completion of the univariate analysis, the variables for the mul-
tivariate analysis is selected. Any variable whose univariate test has a
p-value < 0.25 is a candidate for the multivariate model along with all
variables of known clinically importance. The level of 0.25 is chosen
since traditional levels, such as 0.05, often fails to identify variables
known to be important. Use of higher levels has the disadvantage of
including variables that are of questionable importance
[David W. Hosmer, 2000].

One problem with any univariate approach is that it ignores the pos-
sibility that a collection of variables, each of which is weekly associat-
ed with the outcome, can become an important predictor of outcome
when taken together. The chosen signi�cance level should then be large
enough to include the suspected variables in the multivariate model.

If the overall sample size and the number in each outcome group rela-
tive to the total number of candidate variables are large enough, it may
be useful to begin with the multivariate model containing all possible
variables. However, when the data are inadequate, this approach can
produce a numerically unstable multivariate model.

Examine whether the included variables are signi�cant

Following the �t of the multivariate model, the importance of each
variable included in the model should be veri�ed. This should include
an examination of the Wald statistic for each variable and a compar-
ison of each estimated coe�cient with the coe�cient from the model
containing only that variable. Variables that do not contribute to the
model based on this criteria should be eliminated and a new model
should be �tted. The estimated coe�cients for the remaining variables
should be compared to those from the full model. If a variable coe�-
cient have changed markedly in magnitude, this indicates that one or
more of the excluded variables was important in the sense of providing
a needed adjustment of the e�ect of the variables that remained in the
model.
This process of deleting, re�tting and verifying continues until it ap-
pears that all of the important variables are included in the model.
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Check the linearity assumptions for continuous variables

Once a model that contains the essential variables is obtained, the vari-
ables in the model should be examined closer. For continuous variables
the assumption of linearity in the logit should be checked.

If a continuous variable is represented as X1 in a model, the model is
assumed to be linear in X1. Often, however, the outcome of interest,
Y , does not behave linearly in all the predictors. The simplest way
to describe a nonlinear e�ect of X1 is to include a nonlinear term,
X2 = X2

1 in the model

g(E[Y |X1]) = β0 + β1X1 + β2X
2
1 ,

where g is a monotonous and continuous function called the link func-
tion, described in chapter 2.

If the model is linear in X1 then β2 will be zero. When including X2
1

it is assumed that the model is parabolic in X1, however nonlinear ef-
fects will often not be parabolic. If a transformation of the predictor
is known to induce linearity, this transformation may be used. This
transformation is, however, seldom known. Higher power of X1 may be
included in the model to approximate many types of relationships, but
polynomials have some undesirable properties and will not adequately
�t many functional forms. For instance, polynomials do not adequate-
ly �t logarithmic functions or threshold e�ects [Frank E. Harrell, 2001].

Linear spline

Instead of including di�erent transformations of the continuous predic-
tor directly in the model, spline functions can be used. Spline functions
are piecewise polynomials used in curve �tting. This means that they
are polynomials within intervals of the continuous variable, X, that are
connected.
The simplest spline function is a linear spline function, i.e. a piecewise
linear function. If the x-axis is divided into intervals with endpoints at
a, b, and c, called knots, the linear spline function is given by

f(X) = β0 + β1X + β2(X − a)+ + β3(X − b)+ + β4(X − c)+,
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where

(u)+ =
{
u, u > 0;
0, u ≤ 0.

The number of knots can vary depending on the amount of data avail-
able for �tting the function.

The general linear regression model can be written assuming only piece-
wise linearity in X by incorporating constructed variables X2, X3 and
X4

f(X) = Xβ

where Xβ = β0 + β1X1 + β2X2 + β3X3 + β4X4, and X1 = X, X2 =
(X − a)+, X3 = (X − b)+, X4 = (X − c)+. By modeling a slope incre-
ment for X in an interval (a, b] in terms of (X − a)+ the function is
constrained to join at the knots. Overall linearity in X can be tested
by testing H0 : β2 = β3 = β4 = 0. [Frank E. Harrell, 2001]

Cubic spline functions

Although the linear spline is simple and can approximate many com-
mon relationships, it is not smooth and will not �t highly curved func-
tions well. These problems can be overcome by using piecewise polyno-
mials of order higher than linear. Cubic polynomials have been found
to have nice properties with good ability to �t highly curved functions.
Cubic splines can also be constructed so they are smooth at the join
points, by forcing the �rst and second order derivatives of the function
to agree at the knots.

Such a smooth cubic spline function with three knots (a, b, c) is given
by

f(x) = β0+β1X+β2X
2+β3X

3+β4(X−a)3
++β5(X−b)3

++β6(X−c)3
+

If a cubic spline function has k knots, it is necessary to estimate k+ 3
regression coe�cients besides the intercept. [Frank E. Harrell, 2001]

Restricted cubic splines

Even though the cubic spline function has good ability to �t highly
curved functions, it do have some drawbacks. The cubic spline function
can behave poorly in the tails, i.e. before the �rst knot and after the
last knot. To handle this problem the function is restricted to be linear
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in the tails. The restricted cubic spline function has the additional
advantage that only k − 1 parameters besides the intercept needs to
be estimated as opposed to k+ 3 parameters in the unrestricted cubic
spline. The restricted cubic spline function with k knots t1, . . . , tk is
given by

f(X) = β0 + β1X1 + β2X2 + . . .+ βk−1Xk−1

where X1 = X and for j = 1, . . . , k − 2

Xj+1 = (X − tj)3
+ −

(X − tk−1)3
+(tk − tj)

tk − tk−1
+

(X − tk)3
+(tk−1 − tj)

tk − tk−1

Once β0, . . . , βk−1 are estimated, the restricted cubic spline can be
stated as

f(X) = β0 + β1X + β2(X − t1)3
+ + β3(X − t2)3

+ + . . .+ βk+1(X − tk)3
+

by computing

βk =
β2(t1 − tk) + β3(t2 − tk) + . . .+ βk−1(tk−2 − tk)

tk − tk−1

βk+1 =
β2(t1 − tk−1) + β3(t2 − tk−1) + . . .+ βk−1(tk−2 − tk−1)

tk−1 − tk
.

A test of linearity in X can be obtained by testing

H0 : β2 = β3 = . . . = βk−1 = 0.

[Frank E. Harrell, 2001]

Choosing number and position of knots

The location of knots in a restricted cubic spline model is not very im-
portant in most situations. The �t depends much more on the choice
of the number of knots, k. Placing knots at �xed quantiles of a predic-
tor's marginal distribution is a good approach in most datasets. This
ensures that enough points are available in each interval, and it also
guards against letting outliers overly in�uence the placement of the
knots.
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The number of knots chosen is determined by the sample size available
to estimate the unknown parameters. More than 5 knots are seldom re-
quired in a restricted cubic spline model. [Frank E. Harrell, 2001] The
decision is then between k = 3, 4, or 5. For many datasets, k = 4 o�ers
an adequate �t of the model and is a good compromise between �exi-
bility and loss of precision caused by over�tting a small sample. When
the sample size is large k = 5 is a good choice, and with small samples
k = 3 may be adequate. [Frank E. Harrell, 2001]

Interaction terms are included

When the model is re�ned and all the continuous variables are scaled
correctly, the model is checked for interactions among the variables.
The �nal decision as to whether an interaction term should be includ-
ed in the model should be based on statistical as well as practical
considerations. Any interaction term in the model must make sense
from a clinical perspective.

Before the model is used for inferences the �t of the model must be
checked. Methods for assessment of �t are described in chapter 2.2.

2.2 Assessment of model fit

In this section various methods used to describe the goodness-of-�t
of a logistic regression model are presented. The section is based on
[David W. Hosmer, 2000].

Assessment of the �t of a model or the goodness-of-�t of a model is
a measure that tells how e�ectively the model describes the outcome
variable. To assess the �t of the model it is necessary to know exactly
what it means that the model �ts.

Let the observed sample values of the outcome variable be denoted as
y where y> = (y1, y2, . . . , yn) and the values predicted by the model,
the �tted values, as ŷ where ŷ> = (ŷ1, ŷ2, . . . , ŷn). The model �ts well
if

• summary measures of the distance between y and ŷ are small,
and
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• the contribution of each pair (yi, ŷi), i = 1, 2, 3, . . . , n to these
summary measures is unsystematic with respect to the covariates
or the outcome, and it is small relative to the error structure of
the model.

So to get a complete assessment of the �t of the model both calcula-
tions of the summary measures of the distance between y and ŷ and a
thorough examination of the individual components should be made.

2.2.1 Summary measures of goodness-of-�t

Goodness-of-�t is assessed over the combinations of �tted values de-
termined by the predictors in the model, not the total collection of
predictors. For example, suppose that the model contains p indepen-
dent variables, x> = (x1, x2, . . . , xp), and let J denote the number of
distinct values of x observed. If some of the n observations have the
same value of x then J < n. Let the total number of observations with
x = xj be denoted by mj , j = 1, 2, . . . , J , then

∑J
j=1mj = n. Let

yj denote the total number of positive responses among the mj obser-
vations with x = xj . The distribution of the goodness-of-�t statistic
is then obtained by letting n become large. If the number of covari-
ate patterns increases with n then the number of observations in each
pattern, mj , becomes small. Distributional results obtained when only
n → ∞ are said to be based on n-asymptotics. If J < n is �xed then
mj → ∞ when n → ∞. Distributional results based on mj → ∞ are
said to be based on m-asymptotics.
Initially it is assumed that J ≈ n, as is expected when there is at least
one continuous predictor in the model.

Pearson χ2 statistic and the deviance

In logistic regression there are many ways to measure the di�erence
between the observed and �tted values. To emphasize the fact that the
�tted values in a logistic regression are calculated for each covariate
pattern and depend on the estimated probability of that pattern, the
�tted value for the j'th covariate pattern is denoted as ŷj ,

ŷj = mj π̂j = mj
eĝ(xj)

1 + eĝ(xj)
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where π̂j is the estimated probability of the j'th covariate pattern and
ĝ(xj) is the estimated logit.

Two measures of the di�erence between the observed and the �tted val-
ues are now considered, the Pearson residual and the deviance residual.
For a given covariate pattern the Pearson residual is de�ned as

r(yj , π̂j) =
yj −mj π̂j√
mj π̂j(1− π̂j)

. (2.19)

The Pearson chi-square statistic is then the summary statistic based
on these residuals

X2 =
J∑
j=1

r(yj , π̂j)2.

The deviance residual is de�ned as

d(yj , π̂j) = ±
{

2
[
yj log

(
yj

mj π̂j

)
+ (mj − yj) log

(
mj − yj

mj(1− π̂j)

)]}1/2

(2.20)

where the sign + or − is decided by sign(yj − mj π̂j). The summary
statistic based on the deviance residuals is the deviance

D =
J∑
j=1

d(yj , π̂j)2.

Under the assumption that the �tted model is correct in all aspects,
the distribution of the statistics X2 and D is chi-square with J−(p+1)
degrees-of-freedom. For the deviance this follows from the fact that D
is the likelihood ratio test statistic of the �tted model with p+1 param-
eters versus a saturated model with J parameters, as seen in section
2.1.4. For the X2 this follows from the fact that X2 is asymptotically
equivalent to D. The prof of the relationship between X2 and D uses

Page 43



Chapter 2. Logistic regression

the Taylor series expansion of s log s/t about s = t.

D

= 2
J∑
j=1

{
(yj −mj π̂j) +

1
2

(yj −mj π̂j)2

mj π̂j
+ [(mj − yj)− (mj −mj π̂j)]

+
1
2

[(mj − yj)− (mj −mj π̂j)]2

mj −mj π̂j
+ . . .

}
≈ 2

J∑
j=1

1
2

(
(yj −mj π̂j)2

mj π̂j
+

[(mj − yj)− (mj −mj π̂j)]2

mj −mj π̂j

)

=
J∑
j=1

(yj −mj π̂j)2

mj π̂j

+
(mj − yj)2 + (mj −mj π̂j)2 − 2(mj − yj)(mj −mj π̂j)

mj(1− π̂j)

=
J∑
j=1

(yj −mj π̂j)2

mj π̂j
+
y2
j + (mj π̂j)2 − 2yjmj π̂j

mj(1− π̂j)

=
J∑
j=1

mj(1− π̂j)(yj −mj π̂j)2 +mj π̂j(yj −mj π̂j)2

m2
j π̂j(1− π̂j)

=
J∑
j=1

(yj −mj π̂j)2

mj π̂j(1− π̂j)

= X2.

However, if J ≈ n the chi square distribution is obtained under n-
asymptotics, meaning that the number of parameters is increasing with
the sample size. Thus, p-values calculated for these two statistics when
J ≈ n using the χ2(J − p− 1) distribution, are incorrect. One way to
avoid the above di�culties with the distributions of X2 and D when
J ≈ n is to group the data such that m-asymptotics can be used.

The Hosmer-Lemeshow test

Hosmer and Lemeshow suggested grouping based on the values of the
estimated probabilities. Suppose, for sake of discussion that J = n.
In this case the statistics are obtained from a 2 × n table with the
rows corresponding to the two outcomes and the columns to the n
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values of the estimated probabilities, with the smallest value as the
�rst column, and the largest value as the n'th column. There are two
di�erent grouping strategies:

1. Collapse the table based on percentiles of the estimated proba-
bilities.

2. Collapse the table based on �xed values of the estimated proba-
bilities.

In both strategies it is common to collapse the table into 10 groups. In
the �rst strategy the �rst group contains the n′1 = n/10 observations
having the smallest estimated probabilities, and the last group contains
the n′10 = n/10 observations with the largest estimated probabilities.

The second strategy obtains cutpoints at the values k/10, k = 1, 2, . . . , 9,
and the groups contain all observations with an estimated probability
between the adjacent cutpoints.

For the y = 1 row the expected probability for a given group is ob-
tained by summing the estimated probability of all the observations in
the group. For the y = 0 row, the expected probabilities are obtained
by summing one minus the estimated probability for all the observa-
tions in the groups. For both grouping methods, the Hosmer-Lemeshow
goodness-of-�t statistic, χ2

HL is calculated as follows

χ2
HL =

g∑
k=1

(ok − n′kπ̄k)2

n′kπ̄k(1− π̄k)

where g is the number of groups and n′k is the total number of observa-
tions in the k'th group. The number of covariate patterns in the k'th
group is denoted as ck, the number of responses in the k'th group as

ok =
ck∑
j=1

yj ,

and

π̄k =
ck∑
j=1

mj π̂j
n′k
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is the average estimated probability.

If J ≈ n and the �tted logistic regression model is the correct one,
the test statistic is approximately χ2 distributed with g − 2 degrees
of freedom. Research has shown that the grouping method based on
percentiles are to be preferred because it better adherence to the χ2

g−2

distribution, especially when many of the estimated probabilities are
small, i.e. less than 0.2 [David W. Hosmer, 2000]. Thus unless stated
otherwise the Hosmer-Lemeshow test statistic is based on the percentile
grouping.

Because the distribution of χ2
HL depends onm-asymptotics, the appro-

priateness of the p-value depends on whether the estimated expected
frequencies are large. If all the expected frequencies are greater than
5, then there is reason to believe that the calculation of the p-value is
accurate enough to support the hypothesis of model�t.
Additional comments on the calculations of χ2

HL are needed. When the
number of covariate patterns is less than n some of the patterns has
mj > 1 and there is therefore a possibility that a pattern will occur in
more than one probability group. The value of χ2

HL will then, to some
extent, depend on how these ties are assigned to the groups. Di�er-
ent statistical packages handles ties di�erently, but the use of di�erent
methods is not likely to be an issue unless the number of covariate
patterns is so small that assigning all tied values to one group results
in a huge imbalance in group size, or worse in fewer than 10 groups.
In addition, when too few groups are used to calculate χ2

HL the sensi-
tivity may be too small to distinguish between observed and expected
frequencies. If χ2

HL is calculated from fewer then 6 groups it will almost
always indicate that the model �ts.

The advantage of a summary goodness-of-�t statistic like χ2
HL is that

it gives a single value that can be used to assess the �t. The disadvan-
tage is however, that in the grouping process important deviation from
�t due to a small number of individual datapoints, may be missed.
Another disadvantage is that the test is fairly dependent on the choice
of how the predictions are grouped and therefore the choice of the
number of groups should be independent of n [Frank E. Harrell, 2001].
Hence before �nally accepting the model�t, an analysis of the individ-
ual residuals and relevant diagnostic statistics should be performed.
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This is described further in section 2.2.2.
However the table containing the expected and observed frequencies of
the di�erent groups, contains descriptive information about the ade-
quacy of the �tted model in the di�erent groups. Comparing observed
and expected frequencies within each group may indicate where the
model does not perform satisfactorily.

Power in detecting lack of �t

As mentioned before a complete assessment of �t involves summary
tests and measures as well as diagnostic statistics. This is especially
important to keep in mind when using overall statistics. The desired
outcome for most investigations is not to reject the null hypothesis that
the model �ts. With this decision one is subject to the possibility of
type II error and hence the power of the test becomes an issue. To get
powerful goodness-of-�t tests one should have a sample size of n > 400.

Another way to obtain more power for detecting lack of �t is to test
speci�c alternatives to the model. To test the assumptions of lineari-
ty and additivity, the model may be expanded with cubic splines for
each of the continuous predictors and with interaction terms for each
possible interaction, and then the new coe�cients are tested. There
are virtually no departure from linearity and additivity that cannot be
detected from this expansion. [Frank E. Harrell, 2001]

Another measure of model performance that often is a useful supple-
ment to the overall test of �t, will now be presented before the diag-
nostic statistics are discussed.

Area under the ROC curve

Sensitivity and speci�city rely on a single cutpoint to classify a test
result as being positive. A more complete description of classi�cation
ability is given by the area under the Receiver Operating Characteristic
(ROC) curve. The ROC curve maps the probability of true positives
versus false positives, i.e. the sensitivity versus 1-speci�city, for the en-
tire range of cutpoints. The area under the ROC curve, which ranges
from 0 to 1, gives a measure of the model's ability to discriminate be-
tween those observations with y = 1 and those with y = 0.
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As a general rule for the area A

• A = 0.5: suggests no discrimination

• 0.7 ≤ A < 0.8: is acceptable discrimination

• 0.8 ≤ A < 0.9: is excellent discrimination

• A ≥ 0.9: is outstanding discrimination.

In practice it is extremely unusual to observe areas under the ROC
curve greater than 0.9. This is because when there is complete separa-
tion it is impossible to estimate the coe�cients of a logistic regression
model, and to obtain an area greater than 0.9 almost complete sepa-
ration is required.

One should keep in mind that a poorly �tted model may still have good
discrimination. For example, if 0.25 is added to every probability in a
good �tted logistic model with good discrimination abilities, the new
model would now �t poorly but the discrimination would be una�ected.
The model performance should then be assessed by considering both
calibration and discrimination.

Other summary measures

A short discussion of R2 measures are now presented. In general, these
measures are based on various comparisons of the predicted values from
the �tted model to those from the null-model, the no data or intercept
only model, and as a result are not goodness-of-�t measures. A true
measure of �t is one based on a comparison of observed values and
values from the �tted model. However, there are situations where the
R2 measure can be useful when comparing the �t of competing models
on the same data.
Hosmer and Lemeshow, [David W. Hosmer, 2000] propose the follow-
ing as criteria for a good measure:

• The measure has an easily understood interpretation.

• The squared measure has a lower bound of 0 and an upper bound
of 1.

• The measure is not changed by a linear transformation of model
covariates.
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The linear regression-like sum-of-squares R2 satis�es these three crite-
ria.

When there are n covariate patterns the linear regression-like measure
is

R2
SS = 1−

∑n
i=1(yi − π̂i)2∑n
i=1(yi − ȳ)2

,

where π̂i is the estimated probability of the i'th covariate pattern and
ȳ = π̄ =

∑n
i=1 yi
n .

The extension of this measures to the setting of J < n covariate pat-
terns is

R2
SSC = 1−

∑J
j=1(yj −mj π̂j)2∑J
j=1(yj −mj ȳ)2

.

Another version of R2
SSC is obtained when the log-likelihoods are used

instead of sums-of-squares. If we let L0 and Lp denote the log-likelihoods
for the model containing only the intercept and the model containing
the intercept and the p covariates respectively, then the log-likelihood-
based R2 is

R2
L =

L0 − Lp
L0

= 1− Lp
L0
.

The maximum value for R2
L is obtained when the saturated model is

�tted. If J = n then the log-likelihood for the saturated model is zero,
LS = 0, as seen in line (2.18) and then R2

L = 1. However, if J < n
then the maximum is less than 1. A modi�cation of the statistic that
can attain 1 in the J < n case is

R2
LS =

L0 − Lp
L0 − LS

.

The value of the log-likelihood from the saturated model, LS , can be
calculated from the deviance for the model with p covariates:

LS = Lp + 0.5D,
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where D =
∑J

j=1 2
[
yj log

(
yj

mj π̂j

)
+ (mj − yj) log

(
mj−yj

mj(1−π̂j)

)]
. Unfor-

tunately low R2 values in logistic regression are the norm and this
presents a problem when reporting their values to an audience accus-
tomed to seeing linear regression values. Thus routinely publishing of
R2 values with results from �tted logistic regression models are not
recommended. However, they may be helpful in the model building
stage as a statistic to evaluate competing models.

2.2.2 Logistic regression diagnostics

As mentioned before summary statistics based on Pearson chi-square
residuals provides a single value that summarizes the agreement be-
tween observed and �tted values. However these statistics do not pro-
vide information about deviation from �t due to a small number of
individual data points. Therefore it is important to examine other mea-
sures to see if �t is supported over the entire set of covariate patterns
before concluding that the model �ts. This is done through a number of
specialized measures that falls under the general heading of regression
diagnostics.

The key quantities for logistic regression diagnostics are the compo-
nents of the residual sum-of-squares. In linear regression a key assump-
tion is that the error variance does not depend on the conditional
mean, E[Yj |xj ]. However, in logistic regression the error has a binomi-
al distribution and, as a result, the error variance is a function of the
conditional mean

Var[Yj |xj ] = mjE[Yj |xj ] (1−E[Yj |xj ])
= mjπ(xj) [1− π(xj)] .

Thus when looking at the residuals in line (2.19) and (2.20), it is seen
that they are divided by estimates of their standard errors. Let rj
and dj denote the values of the Pearson residual in (2.19) and the de-
viance residual in (2.20) respectively, for covariate pattern xj . Since
the residuals have been divided by an estimate of the standard error,
it is expected that if the model is correct these quantities have a mean
approximately equal to zero and a variance approximately equal to 1.
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In addition to the residuals for each covariate pattern, other quantities
important to the interpretation of linear regression diagnostics are the
hat matrix and the leverage values derived from it. In linear regression
the hat matrix is the matrix that provides the �tted values as the
projection of the outcome variable into the covariate space. Let X
denote the J × (p + 1) design matrix containing the values for all J
covariate patterns formed from the observed values of the p covariates.
In linear regression the hat matrix is H = X(X>X)−1X>. The hat
matrix for logistic regression is shown in [Pregibon, 1981] to be

H = V1/2X(X>VX)−1X>V1/2

where V is a J × J diagonal matrix with vj = mj π̂(xj)[1− π̂(xj)].
In linear regression the diagonal elements of the hat matrix are called
the leverage values and are proportional to the distance from xj to the
mean of the data. The concept of leverage is important in linear regres-
sion, since points far from the mean may have considerable in�uence
on the values of the estimated parameters.
Let hj denote the j'th diagonal element in the matrix H for logistic
regression. It can be shown that

hj = mj π̂(xj)[1− π̂(xj)]x>j (X>VX)−1xj = vjbj ,

where bj = x>j (X>VX)−1xj and x>j = (1, x1j , x2j , . . . , xpj) is the vec-
tor of covariate values de�ning the j'th covariate pattern.

When looking at the Pearson residuals it seems that they have to be
further standardized in order for them to have a variance of 1. This
can be seen from the following calculations. If a Taylor approximation
of the residual is made, the result is

y − ŷ ≈ y − π(β̂) +
∂π

∂β>
(β − β̂).

This can be rewritten as

V−
1
2 (y − ŷ) ≈ V−

1
2 (y − π(β̂)) +V−

1
2 (

∂π

∂β>
(β − β̂))

= X +V
1
2X(β − β̂),

Page 51



Chapter 2. Logistic regression

since ∂π
∂β>

= ∂π
∂θ>

∂θ
∂β>

= VX, where θ = logit(π) and where X is the
Pearson residual. By further expansion one gets:

(I−H)V−
1
2 (y − ŷ) ≈ (I−H)X + (I−H)V

1
2X(β − β̂)

= X

where HX = 0 since HX = V
1
2X(X>VX)−1X>V

1
2X and X>V

1
2X =

X>(y − ŷ) = 0. The variance of the Pearson residual X is then

Var(X ) = (I−H)V−
1
2Var(Y − ŷ)((I−H)V−

1
2 )>

= (I−H)V−
1
2VV−

1
2 (I−H)>

= (I−H)(I−H)> = (I−H),

where the last equality follows from the fact that (I−H) is idempotent.
The variance of the j'th covariate pattern is then 1−hj . Let rj denote
the Pearson residual in equation (2.19), then the standardized Pearson
residual for covariate pattern xj is

rsj =
rj√

1− hj
.

Another useful diagnostic statistic is one that examines the e�ect dele-
tion of the j'th covariate pattern has on the value of the estimated
coe�cient. The basic formula for the change in the estimate β̂j is given
according to [Pregibon, 1981] by,

∆β̂j = β̂ − β̂−j =
(X>VX)−1xj(yj − ŷj

1− hj

where β̂ and β̂−j are the maximum likelihood estimates computed us-
ing all observations and excluding the j'th covariate pattern. A scalar
measure that summarizes the e�ect of deleting the j'th covariate pat-
tern over all the coe�cients is

cj = (β̂ − β̂−j)>(X>VX)(β̂ − β̂−j)

=
r2
jhj

(1− hj)2

=
r2
sjhj

1− hj
.
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In [Pregibon, 1981] it is shown that the decrease in the value of the
Pearson chi-square statistic due to deletion of the observations with
covariate pattern xj is

∆X2
j =

r2
j

1− hj
= r2

sj .

A similar quantity may be obtained for the change in the deviance,
which also is shown in [Pregibon, 1981]

∆Dj = d2
j +

r2
jhj

1− hj
.

By replacing r2
j with d

2
j this approximation is obtained:

∆Dj =
d2
j

1− hj
.

These diagnostic statistics are appealing, since large values of ∆X2
j

and/or ∆Dj help identify those covariate patterns that are poorly �t-
ted, and since large values of cj identi�es those observations that have
a great deal of in�uence on the values of the estimated parameters.

The approach used to interpret the values of the diagnostic are graph-
ical. Large values of diagnostics either appear as spikes or reside in the
extreme corners of the plot.

A number of di�erent plots have been suggested for use, each direct-
ed at a particular aspect of �t. A few easily obtained plots that are
meaningful in logistic regression are

• the plot of ∆X2
j versus π̂j ,

• the plot of ∆Dj versus π̂j ,

• the plot of ∆β̂j versus π̂j .

If there are some overin�uential observations or covariate patterns these
may be deleted if they are not clinical relevant.
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2.3 Model validation

In this section model validation methods are described. If nothing else
is noted this section is based on [David W. Hosmer, 2000].

Model validation is done to ascertain whether predicted values from
the model are likely to accurately predict responses on future observa-
tions or observations not used to develop the model.

There are two major methods of model validation, external and inter-
nal. Within the clinical world, the most stringent external validation
involves testing a �nal model developed in one country on observations
from another country at another time. Testing a �nished model on new
observations from the same geographic area but from a di�erent insti-
tution as observations used to �t the model is a less stringent form of
external validation. The least stringent form of external validation in-
volves using the �rst m of n observations for model training and using
the remaining n−m observations as a test sample.
Internal validation involves �tting and validating the model by care-
fully using one series of observations. The one dataset is used in this
way to estimate the likely performance of the �nal model on new ob-
servations. [Frank E. Harrell, 2001]

The use of validation data amounts to an assessment of goodness-of-�t
where the �tted model is considered to be known, and no estimation
is performed.

The methods for assessment of �t in the validation sample parallel
those described in section 2.2.1 and 2.2.2 for the developmental sam-
ple. The major di�erence is that the values of the coe�cients in the
model are regarded as �xed constants rather than estimated values.

Suppose that the validation sample consists of nv observations, which
may be grouped into Jv covariate patterns. In keeping previous no-
tation, let yj denote the number of positive responses among the mj

observations with covariate pattern x = xj for j = 1, 2, . . . , Jv. The
probability for the j'th covariate pattern is πj , the value of the pre-
viously estimated logistic model using the covariate pattern xj , from
the validation sample. These quantities become the basis for the com-
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putation of the summary measures of �t, X2, D, and χ2
HL from the

validation sample.

The computation of the Pearson chi-square statistic follows directly
from equation (2.19), with proper substitution of quantities from the
validation sample. In this case X2 is computed as the sum of Jv in-
dependent terms. If each mjπj is large enough to use the normal ap-
proximation to the binomial distribution, then X2 is distributed as
χ2(Jv) under the hypothesis that the model is correct. In practice the
observed number of observations within each covariate pattern is often
small, with most mj = 1. Hence m-asymptotics cannot be employed.
In this case the Hosmer-Lemeshow test should be used.

The same line of reasoning discussed in section 2.2.1 to develop the
Hosmer-Lemeshow test may be used to obtain an equivalent statis-
tic for the validation sample. Assume that 10 groups composed of the
deciles of risk is used. Any other grouping strategy could be used with
proper modi�cations in the calculations. Let nk denote the approxi-
mately nv/10 observations in the k'th decile of risk. Let ok =

∑Jvk
j=1 yj

be the number of positive responses among the covariate patterns
falling in the k'th decile of risk. The estimate of the expected value of
ok under the assumption that the model is correct is ek =

∑Jvk
j=1mjπj ,

where Jvk is the number of covariate patterns in the k'th decile of risk.
The Hosmer-Lemeshow statistic is as the Pearson χ2 statistic comput-
ed from the observed and expected frequencies

χ2
HL =

g∑
k=1

(ok − ek)2

nkπ̄k(1− π̄k)
,

where π̄k =
∑Jvk

j=1mjπj/nk. Under the hypothesis that the model is
correct, and the assumption that each ek is su�ciently large for each
term in χ2

HL to be distributed as χ2(1), it follows that χ2
HL is distribut-

ed as χ2(10). In addition to calculating a p-value to assess overall �t,
it is recommended that each term in χ2

HL is examined to assess the �t
within each decile of risk.

To assess the models ability to discriminate on the validation sample
the ROC curves may be plotted as described in section 2.2.1.
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Naive Bayes method

This chapter is written on the basis of [Elomaa and Rousu, 2003] and
[Tom M. Mitchell (2010), ] and contains a short introduction to the
naive Bayes method.
The naive Bayes is a simple and surprisingly e�ective classi�cation al-
gorithm. Its classi�cation performance is comparable to state-of-the-art
classi�ers [Friedman et al., 1997]. This is a surprise, because the naive
Bayes algorithm has extreme independence assumptions, which seldom
are met in practice.

The general idea behind classi�cation is to �nd a systematic way of
predicting what class a subject is in, given a set of measurements on
the subject. A classi�cation rule is a systematic way of predicting what
class a subject belongs to.
Assume X = (X1, X2, . . . , Xn) is a vector of n stochastic variables,
discrete or real numbered, where xi is a realization of Xi. Let Ψ, the
sample space, be the set of all possible samples x = (x1, x2, . . . , xn).
The binary variable Y is the classi�cation variable, with y being the
realization of Y .
According to Bayes' theorem the probability of a classi�cation variable
is then

P (Y = y|X = x) =
P (Y = y)P (X = x|Y = y)

P (X = x)
.

The naive Bayes assumes, that the stochastic variables are independent
given the class Y = y, so this becomes:

P (Y = y|X = x) =
P (Y = y)

∏n
i=1 P (Xi = xi|Y = y)
P (X = x)

(3.1)

=
P (Y = y)

∏n
i=1 P (Xi = xi|Y = y)∑1

j=0 P (Y = j)
∏n
k=1 P (Xk = xk|Y = j)

.

This means that a classi�cation rule based on Bayes' theorem is

arg max
y∈{0,1}

P (Y = y|X = x).

The values of P (Y = y) and P (Xi = xi|Y = y) can be estimated using
a training dataset.
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Consider the training dataset consisting of m observations
(x, y) ∈ (Ψ, {0, 1}) and let my be the number of observations with the
class y. Estimating P (Y = y) can then be done with p(y) = my/m.
When Xi is discrete the estimation of the conditional marginal proba-
bility P (Xi = xi|Y = y) can be done with p(xi|y) = mxiy/my, where
mxiy is the number of observations with Xi = xi and class y. Handling
the continuous Xi can be done by assuming normality and then esti-
mating the mean, µiy and standard deviation, σiy with the xi's from
the training dataset. These estimations, are then used to calculate the
conditional marginal probabilities

p(xi|y) =
1√

2πσiy
exp

(
−(xi − µiy)2

2σ2
iy

)
.

In naive Bayes continuous variables are often handled this way, but
doing so, the discrete and continuous variables are treated di�erent-
ly. Discretization of the continuous variable has been seen to improve
the classi�cation performance and make naive Bayes more e�cient
[Dougherty et al., 1995].
An example of one of the most simple discretization methods is equal-
width binning. The method is applied by setting a number of cut points
evenly over the range of Xk. A discrete variable de�ned by a number of
intervals with equal width and by the assumption that Xk is uniformly
distributed within the intervals, called bins is made.

Linking naive Bayes to logistic regression

Both logistic regression and the naive Bayes can be used to describe
P (Y = y|X = x). To be able to compare the estimates from logistic
regression and naive Bayes later, the following computations are made.
First the log odds ratio given by log [Odds(Y = 1|X = x)/Odds(Y = 1)]
is rewritten as:
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logit(P (Y = 1|X = x))− logit(P (Y = 1))

= log
P (Y = 1|X = x)
P (Y = 0|X = x)

P (Y = 0)
P (Y = 1)

= log
P (Y = 1)P (X = x|Y = 1)
P (Y = 0)P (X = x|Y = 0)

P (Y = 0)
P (Y = 1)

= log
∏n
i=1 [P (Xi = xi|Y = 1)]∏n
j=1 [P (Xj = xj |Y = 0)]

= log
n∏
i=1

[
P (Xi = xi|Y = 1)P (Y = 1)P (Y = 0)
P (Xi = xi|Y = 0)P (Y = 0)P (Y = 1)

]

= log
n∏
i=1

[
P (Y = 1|Xi = xi)P (Xi = xi)
P (Y = 0|Xi = xi)P (Xi = xi)

P (Y = 0)
P (Y = 1)

]

= log
n∏
i=1

[
P (Y = 1|Xi = xi)
P (Y = 0|Xi = xi)

P (Y = 0)
P (Y = 1)

]

=
n∑
i=1

[logitP (Y = 1|Xi = xi)− logitP (Y = 1)] .

This means, that naive Bayes can express the probability of belonging
to class Y = 1 given X = x for binary Xi's as

logit(P (Y = 1|X = x))

=(1− n)logitP (Y = 1) +
n∑
i=1

[logitP (Y = 1|Xi = 0)+

(logitP (Y = 1|Xi = 1)− logitP (Y = 1|Xi = 0))xi]

=β0 +
n∑
i=1

βixi, (3.2)

where

β0 =(1− n)logitP (Y = 1) +
n∑
i=1

logitP (Y = 1|Xi = 0)

and
βi = logitP (Y = 1|Xi = 1)− logitP (Y = 1|Xi = 0)
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for i = 1, . . . , n.
If Xl is a discrete variable with the possible values α1, α2, . . . , αm,
m > 2, then a reference value, say αm, is chosen and m − 1 indicator
variables are constructed. The indicator values are constructed, so that
Xl corresponds to the indicator variablesXl1 , . . . , Xlm−1 , whereXli = 1
if Xl = αi and zero otherwise. With use of these indicator variables
the function (3.2) can also be used when one or more X's are discrete.
When estimating β0, . . . , βn with the naive Bayes method, the function
(3.2) corresponds to the function from logistic regression, (2.6). This
function is suitable for the classi�cation task, but may not have as good
predictability performance as the logistic regression.
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Theory of classification

trees

In this chapter the concept of classi�cation trees is introduced. When
wanting to classify subjects a classi�cation tree is an alternative me-
thod to logistic regression and the naive Bayes method. Classi�cation
trees have the advantages that their results are simple to understand
and to interpret, and that they perform well with large data in a short
time. This chapter is based on [Leo Breiman, 1984].

The �rst thing is to de�ne a classi�cation rule for the classi�cation
trees. Let x = (x1, x2, . . . , xn) be a vector containing the measurements
of each subject, and let X be a set of all possible measurement vectors.
Suppose that the subjects fall into K classes and let C = {1, 2, . . . ,K}
be the set of classes.
A classi�cation rule is then a function d(x) de�ned on X taking val-
ues in C. Another way of looking at a classi�er is to de�ne Ak as the
subset of X on which d(x) = k, that is Ak = {x|d(x) = k}. The sets
A1, . . . , AK are disjoint and X =

⋃
k Ak, so the Aj form a partition of

X .

Classi�ers are constructed based on past experiences. These past ex-
periences are summarized by a learning sample, which consists of the
measurements on N subjects together with their actual classes. That
is a learning sample L consists of data (x1, k1), . . . , (xN , kN ) where
xn ∈ X and kn ∈ {1, . . . ,K}, n = 1, 2, . . . , N .

Estimating accuracy

When constructing classi�ers, the concept of estimating accuracy is
essential.

Given a classi�er, that is, given a function d(x) de�ned on X taking
values in C let R∗(d) denote the �true misclassi�cation rate� of the clas-
si�er. The value of R∗(d) can be conceptualized in the following way.
De�ne the space X × C as the set of all couples (x, k) where x ∈ X
and k ∈ C. Let P (A, k) be a probability on X × C, i.e. P (A, k) is
the probability that a measurement vector is in A and its class is k.
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Assume that the learning sample L is drawn at random from the distri-
bution P (A, k), and construct d(x) using L. Then de�ne R∗(d) as the
probability that d will misclassify a new sample drawn from the same
distribution as L, R∗(d) = P (d(X) 6= Y |L), where (X, Y ), X ∈ X ,
Y ∈ C is the new sample from the probability distribution P (A, k).

There are three ways of estimating the true misclassi�cation rate given
a learning sample. The �rst is the resubstitution estimate. The resub-
stitution estimate, R(d), is

R(d) =
1
N

N∑
n=1

I[d(xn) 6= kn].

The problem with the resubstitution estimate is that it is computed
using the same data used to construct d, instead of an independent
sample. R(d) can therefore give an overly optimistic estimate of the
accuracy of d.

The second method is test sample estimation. Here L is divided in-
to two sets L1 and L2 where L1 is used to construct d and L2 is used
to estimate R∗(d). Let N2 be the number of subjects in L2, then the
test sample estimate, Rts(d), is given by

Rts(d) =
1
N2

∑
(x,k)∈L2

I[d(x) 6= k]

Care needs to be taken so that the subjects in L2 can be considered
as independent of those in L1 and drawn from the same distribution.
The test sample approach has the drawback that it reduces e�ective
sample size.

For smaller sample sizes the third approach, called V-fold cross valida-
tion is preferred. The cases in L are randomly divided into V subsets
of nearly equal size. Denote these subsets as L1,L2, . . . ,LV . For every
v, v = 1, . . . , V , use the learning sample L − Lv to �nd d(v)(x). Then
Lv can be used to calculate a test sample estimate for R∗(d(v)):

Rts(d(v)) =
1
Nv

∑
(x,k)∈Lv

I[d(v)(x) 6= k]
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where Nv is the number of cases in Lv. The basic assumption of cross-
validation is that the classi�er d(v), v = 1, . . . , N have misclassi�cation
rates that approximates R∗(d). The V-fold cross-validation estimate is
then de�ned as

Rcv(d) =
1
V

V∑
v=1

Rts(d(v)).

Bayes rule

The major guide that has been used in the construction of classi�ers is
the concept of the Bayes rule. Suppose that (X, Y ), X ∈ X , Y ∈ C, is
a random sample from the probability distribution P (A, k) on X × C.
Then dB(x) is a Bayes rule if for any other classi�er d(x), P (dB(X) 6=
Y ) ≤ P (d(X) 6= Y ). The Bayes misclassi�cation rate is

RB = P (dB(X) 6= Y ).

4.1 Construction of the tree classifier

Tree structured classi�ers are constructed by repeating splits of subsets
of X into two descendant subsets, beginning with X . In the terminolo-
gy of tree theory, a node t is a subset of X , the root node t1 is X , and
the leaves of the tree are called the terminal nodes.

The construction of a classi�cation tree includes three elements:

• The selection of the splits

• When to stop splitting nodes

• The assignment of each terminal node to a class

4.1.1 Selection of the splits

The �rst problem in tree construction is how to use L to �nd the binary
splits that divides X into smaller and smaller subsets. The fundamen-
tal idea is to select each split of a subset, so that the data in each of
the descendant subsets are purer than the data in the parent subset.

For any node t, suppose that there is a candidate split s of the node
which divides it into tL and tR such that a proportion pL of the subjects
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in t go into tL and a proportion pR go into tR. Then the goodness of
the split is de�ned to be the decrease in impurity

∆i(s, t) = i(t)− pLi(tL)− pRi(tR),

where i(t) is a measure of impurity of t.

A tree is then grown in the following way. At the root note t1 a search
is made through all candidate splits to �nd that split s∗ which gives
the largest decrease in impurity, i.e.

∆i(s∗, t1) = max
s∈S

∆i(s, t1)

where S is a set of all candidate splits. Then t1 is split into t2 and t3
using the split s∗ and the same search procedure for the best split is
repeated on both t2 and t3 separately.
When a node t is reached such that no signi�cant decrease in impurity
is possible, then t is not splitted and becomes a terminal node.

4.1.2 Initial tree growing methodology

The initial methods used for constructing tree classi�ers is now formu-
lated in more detail.

In the learning sample L for a K class problem, let Nk be the number
of subjects in class k. The set of priors {π(k)} = {P (Y = k)} are either
estimated from the data as {Nk/N} or supplied by the analyst.

In a node t, let N(t) be the total number of subjects in L with x ∈ t,
and Nk(t) the number of class k subjects in t. The proportion of class
k subjects in L falling into t is Nk(t)/Nk. For a given set of priors, π(k)
is interpreted as the probability that a class k subject will be presented
to the tree. Therefore,

p(k, t) = π(k)Nk(t)/Nk

is taken as the resubstitution estimate for the probability that a subject
will both be in class k and fall into node t. Note that from this point
on lower case p denotes an estimated probability and upper case P a
theoretical probability.
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The resubstitution estimate p(t) of the probability that any subject
falls into node t is de�ned by

p(t) =
K∑
k=1

p(k, t).

The four elements needed in the initial tree growing procedure is:

• A set Q of binary questions.

• A goodness of split criterion Φ(s, t) that can be evaluated for any
split s of any node t.

• A stop-splitting rule.

• A rule for assigning every terminal node to a class.

The splitting and stop-splitting rule

The goodness of split criterion is derived from an impurity function.

An impurity function is a function Φ de�ned on the set of all K-tuples
of numbers (p1, . . . , pK) satisfying pk ≥ 0, k = 1, . . . ,K,

∑K
k=1 pk = 1

with the properties

(i) Φ is at maximum only at the point ( 1
k ,

1
k , . . . ,

1
k ),

(ii) Φ achieves its minimum only at the points
(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1),

(iii) Φ is a symmetric function of p1, . . . , pk.

Given an impurity function, the impurity measure i(t) is then de�ned
as

i(t) = Φ(p(1|t), p(2|t), . . . , p(K|t)).

If a split s of a node t sends a proportion pR of the subjects in t to tR
and the proportion pL to tL, then the decrease in impurity is de�ned
as

∆i(s, t) = i(t)− pLi(tL)− pRi(tR).
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Then the goodness of split Φ(s, t) is the decrease in impurity ∆i(s, t).
Suppose some splitting has been done and a current set of terminal
nodes is made. Denote the current set of terminal nodes by T̃ , set
I(t) = i(t)p(t), and de�ne the tree impurity I(T ) by

I(T ) =
∑
t∈T̃

I(t) =
∑
t∈T̃

i(t)p(t).

The decrease in tree impurity by splits on t is de�ned as

∆I(s, t) = I(t)− I(tL)− I(tR).

To stop splitting one sets a threshold β ≥ 0, and declare a node t
terminal if maxs∈S ∆I(s, t) < β.

The class assignment rule

Suppose a tree T has been constructed and has terminal nodes T̃ .

A class assignment rule assigns a class k ∈ {1, . . . ,K} to every termi-
nal node t ∈ T̃ . The class assigned to node t ∈ T̃ is denoted by k(t).

In particular, we focus on the class assignment rule k∗(t) de�ned as fol-
lows. If p(k|t) = maxi p(i|t), then k∗(t) = k. Using this rule gives that,
the resubstitution estimate, r(t) of the probability of misclassi�cation,
given that a subject falls into node t, is r(t) = 1−maxk p(k|t).
Denote R(t) = r(t)p(t), then the resubstitution estimate for the overall
misclassi�cation rate R∗(T ) of the tree classi�er T is

R(T ) =
∑
t∈T̃

R(t).

Initial Tree growing algorithm

At this point when one wants to grow a classi�cation tree one should
do as follows:

• Choose a set of binary questions.

• De�ne the impurity measure I(t) = i(t)p(t) and calculate the
decrease in tree impurity

∆I(s, t) = I(t)− I(tL)− I(tR)

for each split s and terminal node t.
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• Stop splitting when ∆I(s, t) < β for all splits and terminal nodes
t.

• Assign a class to each terminal node by using the rule: If
p(k|t) = maxi p(i|t), then assign class k to the node.

• Calculate the overall misclassi�cation rate for the tree classi�er
T by

R(T ) =
∑
t∈T̃

R(t) =
∑
t∈T̃

r(t)p(t) =
∑
t∈T̃

(1−max
k

p(k|t))p(t).

4.1.3 Methodological development

In the initial tree growing method there are some de�ciencies.

Growing right sized trees

The most signi�cant di�culty is that the trees often gives dishonest
results. When using a threshold as a stopping rule, the splitting is ei-
ther stopped too soon at some terminal nodes or continued too far in
other parts of the tree. So instead of attempting to stop the splitting at
the right set of terminal nodes, continue the splitting until all terminal
nodes are very small. Then selectively prune this large tree upward, to
get a decreasing sequence of subtrees. Finally use cross-validation or
test sample estimates to pick out the subtree that has the lowest esti-
mated misclassi�cation rate. This procedure will be described further
in section 4.3.

Splitting rules

Many di�erent criteria can be de�ned for selecting the best split at
each node. In section 4.2 an often used rule is de�ned. However within
a wide range of splitting criteria the properties of the �nal tree are
insensitive to the choice of splitting rule. The criterion used to prune
upward is much more important.

4.2 The Gini splitting rule

In the next section, a method is given for selecting the right sized tree
assuming that a large tree Tmax is already grown. So in this section the
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Gini splitting rule which can be used to construct Tmax is introduced.
Assuming that a set S of splits at every node t has been speci�ed, then
the fundamental ingredient in growing Tmax is a splitting rule.

The impurity function given by

Φ(p1, . . . , pK) =
∑
k 6=j

p(k|t)p(j|t)

is known as the Gini index. It can also be written as

Φ(p1, . . . , pK) =

(
K∑
k=1

p(k|t)

)2

−
K∑
k=1

p(k|t)2 = 1−
K∑
k=1

p(k|t)2

and has an interesting interpretation: Instead of using the plurality
rule to classify subjects in a node t, use the rule that assigns a subject
selected at random from the node to class j with probability p(j|t). The
estimated probability that the subject is actually in class k is p(k|t).
Therefore, the estimated probability of misclassi�cation under this rule
is the Gini index ∑

j 6=k
p(j|t)p(k|t).

Note that the Gini index considered as a function Φ(p1, . . . , pK) is a
quadratic polynomial with nonnegative coe�cients. Hence, it is concave
in the sense that for r + s = 1, r ≥ 0, s ≥ 0

Φ(rp1 + sp′1, . . . , rpK + sp′k) ≥ rΦ(p1, . . . pK) + sΦ(p′1, . . . , p
′
K).

This ensures that for any split s

∆i(s, t) ≥ 0.

Actually, it is strictly concave, so that ∆i(s, t) = 0 only if p(k|tR) =
p(k|tL) = p(k|t), k = 1, . . . ,K.

4.3 Right sized trees and honest estimates

In this section methods to get the right sized tree T and to get more
accurate estimates of the true probability of misclassi�cation or of the
true expected misclassi�cation rate R∗(T ) is provided.
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At each step the stepwise tree structure does an optimization over a
large number of possible splits. The usual results when resubstitution
estimates are used, are much splitting, trees that are larger than the
data warrant, and a resubstitution estimate R(T ) that is biased down-
ward.

Another problem arises when using a threshold β as a stopping rule.
If β is set too low, then there is too much splitting and the tree is
too large. Increasing β leads to the following di�culty: There may be
nodes t where the decrease in impurity is small, but the descendant
nodes tL, tR of t may have splits with large decreases in impurity. By
declaring t terminal the good splits on tL or tR are lost. So instead of
using a stopping rule, a more satisfactory procedure can be used. The
procedure consisting of two key elements

1. Prune instead of stopping. Grow a tree that is much too large
and prune it upward in the right way until you �nally cut back
to the root node.

2. Use more accurate estimates of R∗(T ) to select the right sized
tree among the pruned subtrees.

4.3.1 Getting ready to prune

Recall that the resubstitution estimate of the overall misclassi�cation
rate is given by

R(T ) =
∑
t∈T̃

r(t)p(t) =
∑
t∈T̃

R(t),

where r(t) = 1−maxk p(k|t).
The �rst step is to grow a very large tree, Tmax by letting the splitting
procedure continue until all terminal nodes are either small, contain on-
ly identical measurement vectors or contain only subjects of the same
class. The size of the initial tree is not critical as long as it is large
enough.

To de�ne the pruning process more precisely, call a node t′ lower down
the tree a descendant of a higher node t if there is a connected path
from t to t′, and t an ancestor to t′.
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A branch Tt of T with root node t ∈ T consists of the node t and all
descendants of t in T . Then pruning a branch Tt from a tree T consists
of deleting from T all descendants of t. The tree pruned in this way
will be denoted T − Tt.

If T ′ is made from T by successively pruning o� branches, then T ′ is
called a pruned subtree of T and denoted by T ′ ≺ T. Even for a mod-
erate sized Tmax there is an extremely large number of subtrees and
an even larger number of distinct ways of pruning up to {t1}. A selec-
tive pruning procedure is necessary. That is, a selection of a reasonable
number of subtrees, decreasing in size, such that roughly speaking, each
subtree selected is the best subtree with its size.
The word best indicates the use of some criterion for determining how
good a subtree T is. Such a criterion is introduced next.

4.3.2 Minimal cost-complexity pruning

The idea behind minimal cost-complexity pruning is as follows. For any
subtree T � Tmax de�ne its complexity, |T̃ | as the number of terminal
nodes in T . Let α ≥ 0 be a real number called the complexity parameter
and de�ne the cost-complexity measure Rα(T ) as

Rα(T ) = R(T ) + α|T̃ |.

Thus, Rα(T ) is a linear combination of the cost of the tree and its
complexity.

Now a pruning process that both gives a unique subtree T � Tmax

which minimizes Rα(T ) and that ensures that the nesting
T1 � T2 � . . . � {t1} holds, is constructed.

Begin with: The smallest minimizing subtree T (α) for complexity pa-
rameter α is de�ned by the conditions

1. Rα(T (α)) = minT�Tmax Rα(T )

2. If Rα(T ) = Rα(T (α)), then T (α) � T.

This de�nition breaks ties in minimal cost-complexity by selecting the
smallest minimizer of Rα.
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The jumping-o� point for the pruning procedure is in this case not
Tmax but rather T1 = T (0). That is, T1 is the smallest subtree of Tmax

that satisfy R(T1) = R(Tmax). To get T1 from Tmax, let tL, tR be
any two terminal nodes in Tmax resulting from a split of the immedi-
ate ancestor node t. Breiman et al., [Leo Breiman, 1984] showed that
R(t) ≥ R(tL) + R(tR). If R(t) = R(tL) + R(tR), then prune o� tL
and tR. Continue this process until no more pruning is possible. The
resulting tree is T1.

For Tt any branch of T1, de�ne R(Tt) by

R(Tt) =
∑
t′∈T̃t

R(t′)

where T̃t is the set of terminal nodes of Tt.

The minimal cost-complexity pruning works by weakest-link cutting.
For any node t ∈ T1, denote by {t} the subbranch of Tt consisting of
the single node t. Set Rα({t}) = R(t) + α. For any branch Tt, de�ne

Rα(Tt) = R(Tt) + α|T̃t|.

As long asRα(Tt) < Rα({t}) the branch Tt has a smaller cost-complexity
than the single node {t}. But at some critical value of α, the two cost-
complexities become equal. At this point the subbranch {t} is smaller
than Tt, has the same cost-complexity, and is therefore preferable. To
�nd this critical value of α, solve the inequality

Rα(Tt) < Rα({t}),

getting

α <
R(t)−R(Tt)
|T̃t| − 1

,

and sinceR(t) > R(Tt) for any nonterminal node ([Leo Breiman, 1984])
then α > 0.

De�ne a function g1(t), t ∈ T1, as

g1(t) =

{
R(t)−R(Tt)

|T̃t|−1
, t /∈ T̃1

+∞, t ∈ T̃1.
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Then de�ne the weakest link t̄1 in T1 as the node such that

g1(t̄1) = min
t∈T1

g1(t)

and put α2 = g1(t̄1). The node t̄1 is the weakest link in the sense that
as the parameter α increases, it is the �rst node where Rα({t}) be-
comes equal to Rα(Tt). Then {t̄1} becomes preferable to Tt̄1 , and α2 is
the value of α at which equality occurs.

De�ne a new tree T2 ≺ T1 by pruning away the branch Tt̄1 , that is,

T2 = T1 − Tt̄1 .

Now, using T2 instead of T1, �nd the weakest link in T2. More precisely,
letting T2t be any branch of T2, de�ne

g2(t) =

{
R(t)−R(T2t)

|T̃2t|−1
, t ∈ T2, t /∈ T̃2

+∞, t ∈ T̃2.

and t̄2 ∈ T2, α3 by

g2(t̄2) = min
t∈T2

g2(t), α3 = g2(t̄2).

Repeat the procedure by de�ning T3 = T2 − Tt̄2 and �nd the weakest
link t̄3 in T3 and the corresponding parameter value α4.

If at any stage there is a multiplicity of weakest links, then prune away
both branches. Continuing this way, gives a decreasing sequence of
subtrees

T1 � T2 � . . . � {t1}.

Starting with T1, the algorithm initially tends to prune o� large sub-
branches with many terminal nodes. As the tree gets smaller, it tends
to cut o� fewer at a time.[Leo Breiman, 1984]
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4.3.3 The best pruned subtree: an estimation problem

The method of pruning results in a decreasing sequence of subtrees
T1 � T2 � . . . {t}, where Th = T (αh), α1 = 0. The problem is now to
select one of these as the optimum-sized tree. The optimum-sized tree
is the tree that minimizes the misclassi�cation cost.
If the resubstitution estimate R(Th) is used as a criterion, the largest
tree T1 would be selected. But if one had an honest estimate R̂(Th) of
the misclassi�cation cost, then the best subtree Th0 could be de�ned
as the subtree that minimizes R̂(Th).

In this section relatively unbiased estimates of the true misclassi�cation
cost are constructed.
To study the bias or the standard error of an estimate, a probability
model is necessary. Assume as previously that the subjects in L are N
independent draws from the probability distribution P (A, k) on X ×C,
and (X, Y ) is a random sample with distribution P (A, k), independent
of L.
In the general case, with variable misclassi�cation costs C(i|k), where
C(i|k) is the cost of misclassifying a class k subject as a class i subject,
de�ne

(i) Q∗(i|k) = P (d(X) = i|Y = k) so that Q∗(i|k) is the probability
that a subject in k is classi�ed as i by d.

(ii) R∗(k) =
∑

iC(i|k)Q∗(I|k) so that R∗(k) is the expected cost of
misclassi�cation for class k subjects.

(iii) R∗(d) =
∑K

k=1R
∗(k)π(k) as the expected misclassi�cation cost

for the classi�er d.

Both test sample and cross validation provides estimates of
Q∗(i|k), R∗(k) and R∗(d). The basic idea is that Q∗(i|k) can be esti-
mated using simple counts of class misclassi�cation. Then R∗(k) and
R∗(Th) are estimated through (ii) and (iii).

Test sample estimates

Select a �xed number N (2) of cases at random from L to form the test
sample L2. The remainder L1 form the new learning sample.

Page 73



Chapter 4. Theory of classi�cation trees

The tree Tmax is grown using L1 and pruned upward to give the se-
quence T1 � T2 � · · · � {t1}.
Now take the subjects in L2 and drop them through T1. Each tree Th
assigns a predicted classi�cation to each subject in L2. Since the true
class of each subject in L2 is known, the misclassi�cation cost of Th
operating on L2 can be computed. This produces the estimate Rts(Th),
called the test sample estimate.

In more detail, denote by N (2)
k the number of class k subjects in L2.

For T any one of the trees T1, T2, . . . , take N
(2)
ik to be the number of

class k subjects in L2 whose by T predicted class is i. Then Q∗(i|k) is
estimated as

Qts(i|k) = N
(2)
ik /N

(2)
k .

That is, as the proportion of test sample class k subjects that the tree
T classi�es as i.
The expected cost of misclassi�cation for class k is estimated as

Rts(k) =
∑
i

C(i|k)Qts(i|k).

For the priors this gives the estimate

Rts(T ) =
K∑
k=1

Rts(k)π(k).

If the priors are data estimated, L2 can be used to estimate them as
π(k) = N

(2)
k /N (2). In this case the estimate simpli�es to

Rts(T ) =
1

N (2)

∑
i,k

C(i|k)N (2)
ik .

Using the assumed probability model, it is easy to show that the esti-
mates Qts(i|k) are biased only if N (2)

k = 0 For any reasonable distribu-

tion of reasonable sample size, the probability that N (2)
k = 0 is so small

that these estimates may be taken as unbiased. As a consequence, so
are the estimators Rts(T ), in fact, in the estimated prior case, there is
cancellation and Rts(T ) is exactly unbiased.
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The test sample estimates can be used to select the right sized tree Th0

by the rule
Rts(Th0) = min

h
Rts(Th).

After selection of Th0, Rts(Th0) is used as an estimate of its expected
misclassi�cation cost.

Cross-validation estimates

Another method used to estimate the true misclassi�cation cost is
cross-validation. If the sample size in L is large the test sample esti-
mate should be used, but if it is small cross-validation is the preferred
estimation method.
In V -fold cross-validation, the original learning sample L is divided
into V subsets Lv, v = 1, . . . , V , each containing approximately the
same number of subjects. The v'th learning sample is

L(v) = L − Lv.

In V -fold cross-validation, V auxiliary trees are grown together with
the main tree grown on L. The v'th auxiliary tree is grown using the
learning sample L(v).
Start by growing V overly large trees T (v)

max, v = 1, . . . , V as well as
Tmax. For each value of the complexity parameter α, let T (α) and
T (v)(α), v = 1, . . . , V be the corresponding minimal cost-complexity
subtree of Tmax and T (v)

max respectively. For each v the trees T (v)
max and

T (v)(α) have been constructed without the subjects in Lv. Thus, the
subjects in Lv can serve as an independent test sample for the tree
T (v)(α).

Put Lv down the tree T (v)
max for v = 1, . . . , V . Fix the value of the

complexity parameter α. For every v, i, k de�ne

N
(v)
ik = the number of class k subjects in Lv classi�ed as i by T (v)(α),

and set Nik =
∑

vN
(v)
ik , so Nik is the total number of class k test

subjects classi�ed as i. The total number of class k subjects in all test
samples is Nk, the number of class k subjects in L.
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The idea is now that for V large, T (v)(α) should have about the same
classi�cation accuracy as T (α). Hence the estimate of Q∗(i|k) for T (α)
is

Qcv(i|k) = Nik/Nk.

For the prior {π(k)} given or estimated, set

Rcv(k) =
∑
i

C(i|k)Qcv(i|k)

and put

Rcv(T (α)) =
∑
k

Rcv(k)π(k). (4.1)

The implementation is simpli�ed by the fact that although α may vary
continuously, the minimal cost-complexity tree grown on L are equal
to Th for αh ≤ α < αh+1. Put

α′h =
√
αhαh+1

so that α′h is the geometric midpoint of the interval where T (α) = Th.
Then put

Rcv(Th) = Rcv(T (α′h)),

where Rcv(T (α′h)) is de�ned by (4.1).

Now the rule for selecting the right sized tree is: Select the tree Th0

such that
Rcv(Th0) = min

h
Rcv(Th).

Then use Rcv(Th0) as an estimate of the misclassi�cation cost.

4.4 Class probability trees

In some situations, given a measurement vector x, what is wanted
is an estimate of the probability that the subject is in class k, k =
1, 2, . . . ,K.
In terms of a probability model, suppose that data are drawn from the
probability distribution

P (A, k) = P (X ∈ A, Y = k).
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Then estimates of the probabilities

P (k|x) = P (Y = k|X = x), k = 1, 2, . . . ,K

are to be constructed. For this type of problem, instead of constructing
classi�cation rules, rules of the type

d(x) = (d(1|x), . . . , d(K|x))

with d(k|x) ≥ 0, k = 1, . . . ,K and

K∑
k=1

d(k|x) = 1, for all x

is constructed. Such rules are called class probability estimators.
The best estimator for this problem is called the Bayes estimator de-
�ned by

dB(x) = (P (1|x), . . . , P (K|x)).

The accuracy of a class probability estimator d(x) is de�ned by the
value

E

[
K∑
k=1

(P (k|X)− d(k|X))2

]
.

However, this criterion poses a problem, since its value depends on the
unknown P (k|x) that is to be estimated. This problem can be solved
by putting it into a di�erent setting. Let X, Y on X × C have the
distribution P (A, k) and de�ne new variables Zk, k = 1, . . . ,K by

Zk =
{

1, if Y = k
0, otherwise.

Then
E[Zk|X = x] = P (Y = k|X = x) = P (k|x).

Let d(x) = (d(1|x), . . . , d(K|x)) be any class probability estimator.
The mean square error, R∗(d) of d(x) is de�ned as

E

[
K∑
k=1

(Zk − d(k|X))2

]
.
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Thus, the mean square error of d(x) is the sum of its mean squared
errors as a predictor of the variables Zk, k = 1, . . . ,K.
The key identity is that for any class probability estimator d(x),

R∗(d)−R∗(dB) = E

[
K∑
k=1

(P (k|X)− d(k|X))2

]
.

From this it is seen that among all class probability estimators, dB
has minimum mean square error. It is also seen that the accuracy of
d di�ers from R∗(d) only by the constant term R∗(dB). Therefore,
to compare the accuracy of two estimators d1 and d2, the values of
R∗(d1) and R∗(d2) can be compared.
The signi�cant advantage gained here is that R∗(d) can be estimated
from data, while accuracy cannot.

The next step is then to use trees to produce class probability estimates
with minimal values of R∗.

4.4.1 Growing and pruning class probability trees

Assume that a tree T has been grown on a learning sample (xn, kn),
n = 1, 2, . . . , N, using an unspeci�ed splitting rule and has the set of
terminal nodes T̃ .
Associated with each terminal node t are the resubstitution estimates
p(k|t), k = 1, . . . ,K for the conditional probability of being in class k
given node t. The natural way to use T as a class probability estimator
is by de�ning d(x) = (p(1|t), . . . , p(K|t)) if x ∈ t.

For each subject (xn, kn) in the learning sample, de�ne K values {zn,i}
by

zn,i =
{

1, if kn = i
0 otherwise.

Then the resubstitution estimate R(T ) of R∗(T ) can be formed as
follows. For all (xn, kn) with xn ∈ t, kn = k, are∑

i

(zn,i − d(i|xn))2 = (1− p(k|t))2 +
∑
i 6=k

p(i|t)2 = 1− 2p(k|t) + S,
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where S =
∑

i p(i|t)2. Then put

R(d) =
∑
t∈T̃

K∑
k=1

(1− 2p(k|t) + S)p(k, t)

=
∑
t∈T̃

K∑
k=1

(1− 2p(k|t) + S)p(k|t)p(t)

=
∑
t∈T̃

(1− S)p(t).

Then 1 − S = 1 −
∑K

k=1 p(k|t)2 is exactly the Gini index. So growing
a tree by using the Gini splitting rule continually minimizes the re-
substitution estimate R(T ) for the MSE. As a consequence, the Gini
splitting rule is used as the best strategy for growing a class probability
tree.

The major di�erence between classi�cation trees grown using the Gini
rule and class probability trees is in the pruning and selection process.
Classi�cation trees are pruned using the criterion R(T ) + α|T̃ |, where
R(T ) =

∑
t∈T̃ r(t)p(t) and r(t) = 1 − maxk p(k|t) is the within-node

misclassi�cation cost.
Class probability trees are pruned upward using R(T ) +α|T̃ | but with
r(t) = 1−

∑
k p(k|t)2, the within node Gini diversity index.

The pruning is then done as follows. Grow Tmax as before, and prune
upward, to get the sequence
T1 � T2 � · · · � {t1}. To get test sample estimates Rts(T ) of R∗(T )
for T any of the Th, run all the N (2)

k class k subjects in the test sample
down the tree T. De�ne

Rtsk (T ) =
1

N
(2)
k

K∑
i=1

N
(2)
k∑

n=1

(zn,i − d(i|xn))2,

where the sum is over the N (2)
k test sample subjects. Then

Rts(T ) =
K∑
k=1

Rtsk (T )π(k).
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A.1 The development of the Charlson co-
morbidity index

This section is a summary of the original article introducing the Charl-
son comorbidity index, [Charlson, 1987].
The aim for Mary Charlson and colleagues was to develop a method
for classifying comorbid conditions which might alter the risk of short
term mortality for use in longitudinal studies.

The patients used for development

The training population consisted of all patients admitted to the medi-
cal service at New York hospital during a 1-month period in 1984. This
resulted in 604 patients being included.
At admission the reason for admission and the severity of the illness
were recorded. After discharge the number and severity of comorbid
diseases at the time of admission were recorded.
Follow-up information was obtained for 559 of the patients after one
year.
Survival was measured as months from the admission date to the date
of death or to 1 year after admission. Where follow-up information was
not found, the patients were considered as withdrawn alive at the last
date of contact with the hospital.

The patients used for validation

The validation population consisted of 685 women with histologically
proven primary carcinoma of the breast, who received their �rst treat-
ment at Yale New Haven Hospital between 1 January 1962 and 31
December 1969.
From medical records a chronology of each patient's illness was com-
piled. The number and severity of comorbid diseases were also noted.
A 5 year follow-up was obtained for 684 patients and 10 year follow-up
information was obtained for 680 patients.
Deaths were then registered as due to either breast cancer or comorbid
diseases. To be considered as a comorbid death, the patient must have
been free from metastatic diseases at the last examination before the
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time of death. Survival was measured in months and calculated from
the start of anti-neoplastic therapy to the primary site or if no such
treatment was given from the date of the �rst therapy to a metastatic
site.

Classi�cation of comorbidity

All comorbid diseases were recorded. For more common conditions data
were collected characterizing the disease severity.

Statistical methods

The relationship of potential important variables to survival in both
the training and validation population was assessed using Cox's regres-
sion method for life table data.
The proportional hazards analysis was performed using the PHGLM
procedure in SAS. The stepwise procedure was used and dummy vari-
ables were set up for nominal data. Comorbid diseases were coded as
0,1, severity was codes as 1 to 5, 1 being not ill and 5 being moribund
and age was coded in decades.
Unadjusted relative risks were calculated as the proportion of patients
with the condition who died divided by the proportion of patients with-
out the disease who died.
The adjusted relative risks were calculated from the beta coe�cients
generated by the stepwise backward proportional hazards model, as the
ratio of those with the disease to those without. The adjusted relative
risks estimated the risk of death with a given comorbid disease con-
trolling for all coexistent comorbid diseases as well as illness severity
and reason for admission.
In the validation population, survival rates were calculated by the life
table method, with cancer deaths handled by regarding the patient as
withdrawn alive at the time of death.

The development of the weighted index

A weighted index that takes both the number and the seriousness of
comorbid diseases into account was developed. The adjusted relative
risks were used as weights for the di�erent comorbid diseases. To sim-
plify the index, diseases with a relative risk of < 1.2 were assigned the
weight 0, relative risks of ≥ 1.2 < 1.5 were assigned 1; ≥ 1.5 < 2.5 a
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weight of 2; ≥ 2.5 < 3.5 a weight of 3, and those with a relative risk
of 6 or more were assigned a weight of 6.
The analysis was performed �rst with all the diseases with a relative
risk of 1.3 or more and secondly with only those diseases which had
a signi�cant or near signi�cant independent impact on mortality. The
results were similar.

Validation of the index

A comparison between the training and validation data of disease fre-
quencies showed a remarkable low prevalence of the diseases in the val-
idation study. Comparing 1-year survivals for patients with the same
index values showed that the validation study had higher 1-year sur-
vivals for all index values.
The signi�cance of potential predictors was found, and only age and
CCI were signi�cant. The relative risk for increasing level of comor-
bidity index was 2.3 (95% con�dence interval [1.9-2.8]) and for each
decade of age it was 2.4 (95% con�dence interval [2.0-2.9])
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A.1.1 The weights in the Charlson comorbidity index

Disease Weight

Myocardial infarction 1
Congestive heart failure 1
Peripheral vascular disease 1
Cerebrovascular disease 1
Dementia 1
Chronic pulmonary disease 1
Connective tissue disease 1
Ulcer disease 1
Mild liver disease 1
Diabetes I and II 1
Hemiplegia 2
Moderate to severe renal disease 2
Diabetes with end organ damage 2
Any tumor 2
Leukemia 2
Lymphoma 2
Moderate to severe liver disease 3
Metastatic solid tumor 6
AIDS 6

Table A.1 The weights from the Charlson comorbidity index.
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A.2 The grouping scheme for the Index
of Coexistent Disease (ICED)

Diagnosis Severity rating

Organic heart disease 1 2 3 4
Ischaemic heart disease 1 2 3 4
Primary arrhythmias and conduction problems 1 2 3 4
Congestive heart failure 1 2 3 4
Hypertension 1 2 3 4
Cerebral vascular accident 1 2 3 4
Peripheral vascular disease 1 2 3 4
Diabetes mellitus 1 2 3 4
Respiratory problems 1 2 3 4
Malignancies 1 2 3 4
Hepatobiliary disease 1 2 3 4
Renal disease 1 2 3 4
Arthritis 1 2 3 4
Gastro-intestinal disease 1 2 3 4

Table A.2 Physical scale.

Functional impairment

Circulation Respiration Neurological
0 1 2 0 1 2 0 1 2

Mental Status Urinary Fecal
0 1 2 0 1 2 0 1 2
Feeding Ambulation Transfer
0 1 2 0 1 2 0 1 2
Vision Hearing Speech
0 1 2 0 1 2 0 1 2

Table A.3 Functional scale.
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Peak intensity of Peak intensity of ICED Levels
physical scale functional impairment

0 0 0
0 1 0
1 0 1
2 0 1
1 1 2
2 1 2
3+ any(0-2) 3

any(0-4) 2 3
Total Score

Table A.4 Grouping System.
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A.3 ICD codes for comorbidities

Disease ICD-8 ICD-10

Myocardial infarction 410 I21, I22, I23

Congestive heart failure 427.09, 427.10, 427.11, I50, I11.0, I13.0, I13.2

427.19, 428.99, 782.49

Peripheral vascular 440, 441, 442, 443, I70, I71, I72, I73,

disease 444, 445 I74, I77

Cerebrovascular disease 430-438 I60-I69, G45, G46

Dementia 290.09-290.19, 293.09 F00-F03, F05.1, G30

Chronic pulmonary 490-493, 515-518 J40-J47, J60-J67,

disease J68.4, J70.1, J70.3, J84.1,

J92.0, J96.1, J98.2, J98.3

Connective tissue 712, 716, 734, 446, M05, M06, M08, M09,

disease 135.99 M30, M31, M32, M33,

M34, M35, M36, D86

Ulcer disease 530.91, 530.98, 531-534 K22.1, K25-K28

Mild liver disease 571, 573.01, 573.04 B18, K70.0-K70.3, K70.9,

K71, K73, K74, K76.0

Diabetes I and II 249.00, 249.06, 249.07, E10.0, E10.1, E10.9,

249.09, 250.00, 250.06, E11.0, E11.1, E11.9

250.07, 250.09

Hemiplegia 344 G81, G82

Moderate to severe 403, 404, 580-584, I12, I13, N00-N05,

renal disease 590.09, 593.19, N07, N11, N14,

753.10-753.19, 792 N17-N19, Q61

Diabetes with end 249.01-249.05, 249.08, E10.2-E10.8, E11.2-E11.8

organ damage 250.01-250.05, 250.08

Any tumor 140-194 C00-C75

Leukemia 204-207 C91-C95

Lymphoma 200-203, 275.59 C81-C85, C88, C90, C96

Moderate to severe 070.00, 070.02, 070.04, B15.0, B16.0, B16.2,

liver disease 070.06, 070.08, 573.00, B19.0, K70.4, K72,

456.00-456.09 K76.6, I85

Metastatic solid tumor 195-198, 199 C76-C80

AIDS/HIV 079.83 B20-B24, Z21, Z219

Table A.5 IDC codes for the diseases in the Charlson comorbidity index.
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Disease ICD-8 ICD-10

Alcohol related 291, 303, 979, 980, F10, K860, Z721, R780,

disorders 577.10 T51, K292, G621,

G721, G312, I426

History of obesity 277.99 E65, E66

Hypertension 400-404 I10-I15

Table A.6 IDC codes for the three new diseases.
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A.4 Kaplan-Meier curves

In this section Kaplan-Meier estimates are presented. The section is
based on [Frank E. Harrell, 2001] and [Collett, 1994]. The Kaplan-Meier
curves can be used to graphically assess the crude survival.

Survival function and hazard function

When summarizing survival data, there are two functions of central
interest, namely the survival function and the hazard function. Let T
be a random variable denoting the response, that is time until an event.
The distribution function of T is given by

F (t) = P (T < t) =
∫ t

0
f(u)du

and represents the probability that the survival time is less than some
value t.

The survival function, S(t), is de�ned as the probability that the sur-
vival time is greater than or equal to t, so

S(t) = P (T ≥ t) = 1− F (t).

If the event is death, S(t) is the probability that the subject will sur-
vive at least until time t. Since survival theory often is used to model
the event death, this terminology will be used from this point on.

The hazard function is the probability that a subject dies at time t,
conditioned on the subject having survived until then. The hazard at
time t is related to the probability that the subject will die in a small
interval around t, given that the subject is alive before time t. The
hazard function is de�ned as

h(t) = lim
u→0

P (t ≤ T < t+ u|T ≥ t)
u

.

From this de�nition a useful relationship between the survival and the
hazard function can be obtained. Using the law of conditional proba-
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bility the hazard function becomes

h(t) = lim
u→0

P (t ≤ T < t+ u)/P (T ≥ t)
u

= lim
u→0

(F (t+ u)− F (t))/u
S(t)

=
∂F (t)/∂t
S(t)

=
f(t)
S(t)

.

Kaplan-Meier estimate

As the true form of the survival distribution is seldom known, it is
useful to estimate this distribution without making any assumptions.

Let Sn(t) denote the empirical survival function. Sn(t) is given by the
fraction of observed failure times that exceed t

Sn(t) =
number of subjects with T ≥ t

number of subjects in the dataset

When censoring is present, S(t) can be estimated by the Kaplan-Meier
estimator.

To determine the Kaplan-Meier estimate of the survival function from
a sample of censored survival data, a series of time intervals is formed.
Each of these intervals is constructed so that only one death time is
contained in the interval, and so that this death time occurs at the
beginning of the interval. For example, suppose that t(1), t(2) and t(3)

are three observed survival times and that t(1) < t(2) < t(3). Let c be
a censored survival time falling between t(2) and t(3). The construct-
ed intervals then begin at times t(1), t(2) and t(3), and each interval
contains only one death time, although there could be more than one
subject who dies at a death time. The time origin is denoted by t0.

In general, suppose that there are n subjects with observed survival
times t1, t2, . . . , tn. Some of these observations may be censored, and
there may be more than one subject with the same observed survival
time. Suppose then, that there are r death times with r ≤ n. After ar-
ranging these death times in ascending order, the j'th is denoted t(j),
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for j = 1, 2, . . . , r. The number of subjects who are alive just before
time t(j) is denoted nj , for j = 1, 2, . . . , r, and dj denotes the number
of subjects who die at time t(j). Since there are nj subjects who are
alive just before t(j) and dj deaths at t(j), the probability of a subject
dying in the interval from t(j) − u to t(j) is estimated by dj/nj . The
corresponding estimated probability of survival through that interval
is then (nj − dj)/nj .

From the way the time intervals are constructed, the interval from t(j)
to t(j+1)− u contains no deaths. The probability of surviving from t(j)
to t(j+1) − u is therefore unity, and the joint probability of surviving
from t(j) − u to t(j) and from t(j) to t(j+1) − u can be estimated by
(nj − dj)/nj . As n → 0, (nj − dj)/nj becomes an estimate of the
probability of surviving from t(j) to t(j+1). It is now assumed that
the deaths of the subjects in the sample occur independently of one
another. Then, the estimated survival function at any time in the j'th
time interval from t(j) to t(j+1), j = 1, 2, . . . , r, where t(r+1) is de�ned
to be ∞, will be the estimated probability of surviving beyond t(j).
This is the Kaplan-Meier estimate of the survival function, which is
given by

SKM (t) =
j∏

k=1

nk − dk
nk

for t(j) ≤ t < t(j+1), j = 1, 2, . . . , r, with SKM (t) = 1 for t < t(1).
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