Author(s)
Term
10. term
Publication year
2010
Submitted on
2010-06-02
Pages
255 pages
Abstract
Dette kandidat speciale dokumenterer udviklingen af en controller til at gå dynamisk med AAU-BOT1. En tobenet robot kan beskrives som et hybrid system, da meget store dele af gangen kan forklares med kontinuerte bevægelses ligninger, og resten, som f.eks. når foden rammer jorden, kan forklares med diskrete opdateringer af states. AAU-BOT1 er fysisk ude af stand til at opnå statisk gang, delvist pga. begrænsninger i kinematikken og placeringen af vægten på robotten, men også pga. de små motorer og den høje friktion i gear. Det er tidligere projekter med AAU-BOT1 blevet foreslået at bruge en klassisk PID regulator som servo kontrol, og det er forventet af tidligere grupper at en PID regulator skulle kunne undertrykke de non-lineære effekter i systemet. I dette speciale bliver det forslag testet i praksis, og en PID regulator er brugt som servo kontrol. Gangen bliver genereret online, på baggrund af en fremskrevet model, og numerisk integration af et nonlineært omvendt 3d pendul. At få robotten til at følge den genererede bevægelse kræver at servo kontrollen kan holde ledene stabile under gang, det er dog vist i praksis at den relativt simple PID regulator ikke kan håndtere alle de non-lineære artefakter, og kan blive ustabil, når f.eks. benene skal strækkes meget hurtigt ud, eller en fod sættes hårdt i jorden. Hvis gang trajektoriet simplificeres så benene er udstrakte under hele skridtet, og at impacts bliver kørt langsomt, kan quasi statisk gang dog opnåes med en PID regulator som indre løkke.
The thesis treats the development of a dynamic walk controller for AAU-BOT1. AAU-BOT1 is a biped robot developed at Aalborg University. A Biped Robot system, can be described as a hybrid system, as long time spans of the gait are governed by continous motions, and the impacts with the ground can be considered discrete events. Planning a trajectory, and applying it on the system must take this into account. AAU-BOT1 is physically unable to walk statically, this is partly due to kinematics, and weight distribution, and partly due to the combination of small actuators and large frictions in the joints. It has been suggested numerous times during the development, that a traditional PID regulator can be used as a servo controller, and that all the non-linear effects, both discrete as well as continuous can be suppressed on the robot. This claim is put to the test in this thesis, as a traditional PID regulator is tuned and applied for the physical system. The gait is generated on line, based on model prediction, and numeric integration, of a nonlinear inverted 3d pendulum. Applying the trajectory to the robot requires that the implemented PID controller can handle the system sufficiently well, it is however shown that non-linearity's can occur which can destabilize a PID regulator. Slowing down the trajectory, and keeping the knees stretched counters the problems, and a stable quasi-static gait is achieved.
Keywords
Documents
Colophon: This page is part of the AAU Student Projects portal, which is run by Aalborg University. Here, you can find and download publicly available bachelor's theses and master's projects from across the university dating from 2008 onwards. Student projects from before 2008 are available in printed form at Aalborg University Library.
If you have any questions about AAU Student Projects or the research registration, dissemination and analysis at Aalborg University, please feel free to contact the VBN team. You can also find more information in the AAU Student Projects FAQs.