AAU Student Projects - visit Aalborg University's student projects portal
A master thesis from Aalborg University

Nanostructured Surfaces for Controlling Absorption and Thermal Radiation

[Styring af Absorption og Termisk Udstråling med Nanostrukturerede Overflader]

Author(s)

Term

4. term

Education

Publication year

2014

Submitted on

2014-06-04

Pages

82 pages

Abstract

I denne afhandling undersøges reflektansen af ultraskarpe periodiske rillestrukturer i en guldoverflade for en generel indfaldsvinkel af lys. Dette inkluderer situationen, hvor lyset propagerer langs rillerne. Disse strukturer er interessante grundet deres kontrollerbare absorptionsegenskaber, som gør dem til attraktive materialer til brug i forskellige metoder til produktion af vedvarende energi såsom thermophotovoltaics og koncentreret solenergi. To effektive numeriske metoder præsenteres: en simpel og tilnærmet lag-matrice-metode, der bruger mode-indekset for gap-plasmoner (G-SPP'er) som et effektivt brydningsindeks, og en grundig Greens-funktions Overflade-integrale-lignings-metode (GFSIEM). Resultaterne af den simple lag-matrice-metode viser bemærkelsesværdige ligheder med de præcise resultater opnået med den nøjagtige GFSIEM, hvilket forstærker idéen om, at fysikken bag absorptionen af lys i sådanne strukturer domineres af koblingen af lys til plasmoner.

In this thesis the reflectance of ultra-sharp periodic groove arrays in a gold surface is studied for a general direction of light incidence. This includes the case of incident light propagating along the grooves. These structures are interesting due to their tunable absorption selective properties, which make them promising candidates in various methods of renewable energy production such as thermophotovoltaics and concentrated solar power. Two efficient numerical modelling approaches are presented, namely a simple and approximate stack matrix method that uses the mode-index of gap-plasmon polaritons (G-SPP's) as an effective index, and a rigorous Green's Function Surface Integral Equation Method (GFSIEM). The results of the highly simple stack matrix method show remarkable similarity to the exact results obtained with the rigorous GFSIEM, which reinforces the idea that the physics of light absorption in such structures is dominated by the coupling of light into plasmons.

Keywords

Documents


Colophon: This page is part of the AAU Student Projects portal, which is run by Aalborg University. Here, you can find and download publicly available bachelor's theses and master's projects from across the university dating from 2008 onwards. Student projects from before 2008 are available in printed form at Aalborg University Library.

If you have any questions about AAU Student Projects or the research registration, dissemination and analysis at Aalborg University, please feel free to contact the VBN team. You can also find more information in the AAU Student Projects FAQs.