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Abstract

In this thesis the reflectance of ultra-sharp periodic groove arrays in a gold surface is studied for a gen-
eral direction of light incidence. This includes the case of incident light propagating along the grooves.
These structures are interesting due to their tunable absorption selective properties, which make them
promising candidates in various methods of renewable energy production such as thermophotovoltaics
and concentrated solar power. Two efficient numerical modelling approaches are presented, namely
a simple and approximate stack matrix method that uses the mode-index of gap-plasmon polaritons
(G-SPP’s) as an effective index, and a rigorous Green’s Function Surface Integral Equation Method
(GFSIEM). The results of the highly simple stack matrix method show remarkable similarity to the
exact results obtained with the rigorous GFSIEM, which reinforces the idea that the physics of light
absorption in such structures is dominated by the coupling of light into plasmons.

Danish Abstract

I denne afhandling undersøges reflektansen af ultraskarpe periodiske rillestrukturer i en guldoverflade
for en generel indfaldsvinkel af lys. Dette inkluderer situationen, hvor lyset propagerer langs rillerne.
Disse strukturer er interessante grundet deres kontrollerbare absorptionsegenskaber, som gør dem
til attraktive materialer til brug i forskellige metoder til produktion af vedvarende energi såsom
thermophotovoltaics og koncentreret solenergi. To effektive numeriske metoder præsenteres: en
simpel og tilnærmet lag-matrice-metode, der bruger mode-indekset for gap-plasmoner (G-SPP’er)
som et effektivt brydningsindeks, og en grundig Greens-funktions Overflade-integrale-lignings-metode
(GFSIEM). Resultaterne af den simple lag-matrice-metode viser bemærkelsesværdige ligheder med de
præcise resultater opnået med den nøjagtige GFSIEM, hvilket forstærker idéen om, at fysikken bag
absorptionen af lys i sådanne strukturer domineres af koblingen af lys til plasmoner.
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Preface

This Master thesis was written by the authors during the Master’s degree program Nanophysics
and -materials at the Department of Physics of Nanotechnology at Aalborg University during
the period of September 1, 2013 - June 4, 2014.

Sources are denoted by numbers in square brackets, [#]. These numbers correspond to en-
tries in the bibliography found at the end of the thesis. Page numbers are given in citations
when relevant. In the bibliography sources are listed by author, title, and year. Publisher
and ISBN are given for books, and journal is given for articles and papers.

The work presented in this thesis was submitted to the Journal of the Optical Society of
America B under the title Modeling the Reflectivity of Plasmonic Ultra-sharp Groove Arrays:
General Direction of Light Incidence on May 1, 2014, and it is currently undergoing peer
review. The submitted manuscript is included in Appendix C.

The cover illustration depicts one of the ultra-sharp groove structures under consideration in
this thesis and the magnetic field distribution in the groove as well as a possible use of the
structure in a concentrated solar power application.

Attached to the back cover of this thesis is a CD containing a PDF of the paper, a PDF of
the submitted manuscript, as well as the developed MATLAB programs for calculating the
reflectance of ultra-sharp groove structures.
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CSP: Concentrated Solar Power
GFSIEM: Green’s Function Surface Integral Equation Method
G-SPP: Gap-Surface-Plasmon-Polariton
PBM: Plasmonic Black Metal
SMM: Stack Matrix Method
SPP: Surface-Plasmon-Polariton
TPV: Thermophotovoltaics
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Introduction 1
The design of materials with absorption selective properties is relevant in many current fields
of research such as thermophotovoltaics (TPV) and concentrated solar power (CSP). TPV
and CSP are both promising technologies for renewable energy production. TPV is similar to
conventional photovoltaics in the sense that it is based on the conversion of electromagnetic
radiation into electricity. In TPV, however, the incident electromagnetic radiation comes
from thermal emission from a source heated to a high temperature. The advantage of TPV
compared to conventional photovoltaics lies in the fact that it is possible to convert a larger
amount of the total input energy into electricity by modifying the properties of the emit-
ting material to fit with the photovoltaic material used. By tuning the emitting material
such that the wavelength of maximum emission corresponds to the bandgap of the semicon-
ductor used as the photovoltaic material, a high level of efficiency can be achieved. The
source used to heat the emitter can be e.g. sunlight or excess heat from other methods of
electricity production. For a comprehensive treatment of concepts related to TPV see e.g. [1].

CSP is based on the use of large mirrors to capture and focus sunlight onto a collector.
A variety of different CSP systems exist, but common for all of them is that the collector
is heated through absorption of focused sunlight. A common construction of a CSP system
consists of large parabolic mirrors, which focus the sunlight onto absorber tubes filled with
a synthetic oil acting as a heat transfer fluid. The fluid is transported to a heat exchanger,
where a reservoir of water is heated and converted into steam, which drives a turbine to pro-
duce electricity. Fig. 1.1 shows a schematic of a CSP based power plant. In many modern
CSP power plants a thermal storage is included in the form of a reservoir of molten salt. In
this way the energy can be stored to accomodate for periods of peak electricity consumption,
which typically do not coincide with the periods of maximum production of solar based power
plants. [2]
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1. Introduction
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Figure 1.1. Schematic of a power plant based on CSP.

From the brief introduction to TPV and CSP given above it is evident that both of these meth-
ods of electricity production are highly dependent on materials with appropriate absorption
and emission properties. In the case of TPV the ideal emitter material has a sharply defined
wavelength of maximum emission, with little emission occurring at other wavelengths. For a
CSP system the absorber material should absorb the incident sunlight very efficiently while
minimizing losses due to thermal radiation at infrared wavelengths. According to Kirchhoff’s
law of thermal radiation, the emittance of a material is identical to its absorbtance. Thus
for a TPV emitter it is desirable to produce a material with a sharply defined absorbtance
maximum, and for a CSP absorber it is desirable to produce a material with high absorbtance
across the visible spectrum and low absorptance (high reflectance) at infrared wavelengths
corresponding to thermal radiation.

A widely used approach to the creation of materials with tunable absorption properties
is the structuring of metal surfaces on a sub-wavelength scale. Specifically the production of
black materials based on metal nanostructures is widely investigated [3–7]. The main subject
of this thesis is a so-called plasmonic black metal (PBM) based on a periodic array of ultra-
sharp grooves in a metal surface. Such structures have been demonstrated to drastically
alter the optical properties of a metal surface for a broad wavelength range, turning it into
a broadband absorber or black surface [8].

The optical properties of a PBM are connected to the coupling of incident light into gap-
surface-plasmon-polaritons (G-SPP’s), which are waves propagating in the dielectric gap
between the metal groove walls. The structures under consideration in this thesis are one-
dimensionally periodic arrays of ultra-sharp grooves in a gold surface constructed such that
they allow for adiabatic nanofocusing of G-SPP’s. This is done by designing convex groove
walls with slopes such that the reflection for a G-SPP propagating into the groove is min-
imized [9]. Such a surface may also be used as a broadband low-dispersion polarizer for
ultra-short laser pulses [10]. In general it is observed that the absorption properties are
sensitive to the exact surface geometry and the angle of light incidence. The focus of this
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thesis is the modelling of these structures under a general direction of light incidence. As an
example of the structures under consideration in this thesis, Fig. 1.2 shows the surfaces of
the structures with bottom widths of 0.3 and 10 nm.
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Figure 1.2. The surfaces of the groove structures with bottom widths of 0.3 (left) and 10 nm (right).
Each graph represents one period of the respective structure.

In many theoretical studies of the optics of one-dimensionally periodic gratings it is common
to only consider a direction of light incidence in the plane spanned by the surface normal
vector and the direction of periodicity (see e.g. [9, 11–16]). This is a convenient restriction,
since it greatly reduces the complexity of the theoretical problem. However, this means that
out of convenience a general direction of light incidence on such structures is rarely consid-
ered. In some cases a general direction of light incidence has been considered for non-periodic
structures [17], and the rigorous coupled wave analysis has been applied to a general direction
of light incidence for small angles [18].

In this thesis two efficient numerical methods are applied to model the reflectance of periodic
arrays of ultra-sharp grooves. These methods are an approximate stack matrix method and
a rigorous Green’s Function Surface Integral Equation Method (GFSIEM). The stack matrix
method takes advantage of the physical interpretation that wave propagation in the grooves
is almost entirely governed by G-SPP waves. The GFSIEM, on the other hand, is a rigorous
and highly efficient method for the modelling of general electromagnetic scattering problems
[19–24]. While the GFSIEM is widely used for two-dimensional scattering problems, not
much attention has been given to formulating a GFSIEM for solving scattering problems
under a general direction of light incidence.

With the above considerations in mind, this thesis contains

• A presentation of the theory behind the stack matrix method and the GFSIEM as well
as a brief introduction to the concepts of G-SPP’s and thermal emission.

• A description of the MATLAB code developed to model the reflectance of periodic
groove structures.

• A presentation of the results of the reflectance calculations with the different numerical
methods.
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Theory 2
This chapter contains a presentation of relevant theory for the understanding of the concepts
treated in this thesis. First an introduction to plasmons and G-SPP’s is given, since the
interaction of light with the structures under consideration is heavily dominated by the
coupling of light into G-SPP’s. This is followed by a description of the concepts behind the
stack matrix method and an outline of the required components for describing a given system
as a stack matrix. In the sections following this a description of Green’s functions and the
GFSIEM is given. First the dyadic Green’s function is introduced, which is followed by a
description of the construction of a two-dimensional Green’s function as well as a periodic
two-dimensional Green’s function. These Green’s functions are then used as the starting point
for describing the GFSIEM for both non-periodic and periodic cases. Finally an introduction
to the basic concepts of thermal emission is given. While no specific treatment of thermal
emission is given in this thesis, this section is included since it is highly relevant for potential
applications of the investigated groove structures, such as TPV and CSP.

2.1 Plasmons

This section contains an introduction to the concepts of surface-plasmon-polaritons (SPP’s)
as well as a description of G-SPP’s. SPP’s are introduced first since the basics of G-SPP’s
are very similar to those of SPP’s. The description of G-SPP’s also contains a derivation of
the equations required to determine the effective mode index of a G-SPP in a given structure
as well as a description of how to solve these equations numerically on a computer.

2.1.1 Surface-Plasmon-Polaritons

Surface-plasmon-polaritons (SPP’s) are oscillations in charge density propagating along a
surface. SPP’s represent specific solutions to Maxwell’s equations, which appear when certain
boundary conditions are fulfilled. The simplest form of SPP’s can appear at a plane interface
between a metal and a dielectric. In order to illustrate this, an interface between two materials
with different dielectric constants, ε1 and ε2, as illustrated in Fig. 2.1 is considered. [25, pp.
377-379]
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2.1. Plasmons

x

z

0
ε2

ε1

E1

E2

ESPP

Figure 2.1. An interface between two materials with different dielectric constants, ε1 and ε2. E2

represents incident radiation in medium 2, E1 represents the transmitted radiation into
medium 1, and ESPP represents the electric field of a SPP bound to the interface and
propagating in the x direction. The electric field of the SPP decays exponentially away
from the interface, i.e. in the z direction. Inspired by [25, p. 378].

In a situation as illustrated in the figure an SPP is characterized by a solution of the wave
equation localized at the interface. Starting from the wave equation gives

(
∇2 + k2

0ε(r)
)
E = 0 ⇒ −k2

x − k2
z + k2

0ε = 0 ⇒ kz =
√
k2

0ε− k2
x. (2.1)

In order for an interface bound mode to exist kz must be purely imaginary. Furthermore,
the incident radiation must be p polarized, since an electric field component in the direction
of propagation is required. As such the electric field is given by

z > 0 : E = (x̂Ex1 + ẑEz1) e−ikxxe−ikz1z, (2.2)

z < 0 : E = (x̂Ex2 + ẑEz2) e−ikxxeikz2z. (2.3)

Since both materials are source free, ∇·D = ∇·εE = 0 must be fulfilled for z > 0 and z < 0.
That is

z > 0 : ∇ ·E = −ikxEx1 − ikz1Ez1 = 0 ⇒ Ez1 = Ex1

(
− kx
kz1

)
, (2.4)

z < 0 : ∇ ·E = −ikxEx2 + ikz2Ez2 = 0 ⇒ Ez2 = Ex2

(
kx
kz2

)
. (2.5)

Furthermore, the tangential component of the E field and the normal component of the D

field must be conserved across the interface, i.e.

E
‖
1 = E

‖
2, (2.6)

D⊥1 = D⊥2 . (2.7)

Applying boundary condition (2.6) gives

Ex1 = Ex2 = Ex, (2.8)

and boundary condition (2.7) gives

Dz1 = Dz2 ⇒ ε1

(
− kx
kz1

)
Ex = ε2

(
kx
kz2

)
Ex

⇒ ε1kz2 + ε2kz1 = 0. (2.9)

5



2. Theory

With some further calculations an expression for kx can be found:

ε2
1k

2
z2 = ε2

2k
2
z1 ⇒ ε2

1(k2
0ε2 − k2

x) = ε2
2(k2

0ε1 − k2
x)

⇒ k2
x(ε2

1 − ε2
2) = k2

0(ε2
1ε2 − ε2

2ε1) = k2
0ε1ε2(ε1 − ε2)

⇒ k2
x = k2

0

ε1ε2

ε1 + ε2
⇒ kx = k0

√
ε1ε2

ε1 + ε2
. (2.10)

Inserting this expression for kx into the expression for kz given by Eq. (2.1) gives

kz1 = k0

√
ε1(ε1 + ε2)− ε1ε2

ε1 + ε2
= k0

√
ε2

1

ε1 + ε2
, (2.11)

kz2 = k0

√
ε2

2

ε1 + ε2
. (2.12)

In order for the wave to propagate along the x direction and be dampened in the z direction,
which corresponds to a surface-bound wave, kx must be real, and kz must be imaginary. In
order for this to be fulfilled, the dielectric constants for the two materials must obey

ε1 + ε2 < 0 and ε1ε2 < 0. (2.13)

Eq. (2.13) is the so-called SPP criterion. It is fulfilled when the dielectric constant of one
material has a negative real part with a greater absolute value than the (positive) real part
of the dielectric constant of the other material. [25, pp. 377-379]

It should be noted, however, that Eq. (2.13) arises from the assumption that both of the
dielectric constants are real. In reality the dielectric constants are complex, where the imag-
inary part describes losses in the materials. When losses in the materials are taken into
account, the SPP criterion will not be as simple as Eq. (2.13).

2.1.2 Gap-Surface-Plasmon-Polaritons

Another type of plasmons is gap-surface-plasmon-polaritons (G-SPP’s), which are SPP’s
propagating in a thin dielectric layer sandwiched between two metal surfaces. This situation
is illustrated in Fig. 2.2. Structures supporting propagating G-SPP’s have been studied by
several groups such as Prade, Vinet and Mysyrowicz [26] and Bozhevolnyi and Jung [27].
Furthermore, the optical properties of the ultra-sharp groove structures under consideration
in this thesis are heavily influenced by the coupling of light into G-SPP’s [8]. In this section
we derive an analytical expression for a determinant, which may be solved numerically in
order to obtain the G-SPP mode index.

d

0

M

I

M

x

y

z

εM

εI

εM

Figure 2.2. A dielectric layer, I, of thickness d sandwiched between two metal surfaces,M , allowing
for propagation of G-SPP’s along the x-direction.
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2.1. Plasmons

Consider a dielectric layer, I, of thickness d sandwiched between two metal surfaces, M , as
shown in Fig. 2.2. Similar to the situation of SPP’s, where surface-bound modes can only
exist for p polarized radiation, the existence of solutions to the problem of G-SPP’s requires
the propagating wave to be p polarized. With the chosen coordinate system the magnetic
field of a p polarized wave is purely in the z direction, H = ẑH. The magnetic field as a
function of x and y can then be written as

H(x, y) = e−iβxf(y), (2.14)

where β is the propagation constant corresponding to kx for the SPP case given in Eq.
(2.10), and f(y) is an appropriate function, which describes the variation in the y-direction.
In order to describe a G-SPP, this function should be constructed such that the field decays
exponentially into both metal layers. This can be done as

y > d : H = e−iβxAe−iκyM (y−d), (2.15)

0 < y < d : H = e−iβx
(
Be−iκyIy + CeiκyIy

)
, (2.16)

y < 0 : H = e−iβxeiκyMyD. (2.17)

Here A, B, C, and D are constants to be determined. Furthermore, requiring the expressions
to satisfy the wave equation gives

(
∇2 + k2

0ε(y)
)
H = 0 ⇒ κyM =

√
k2

0εM − β2, (2.18)

κyI =
√
k2

0εI − β2, (2.19)

where εM and εI are the dielectric constants of the metal and the dielectric, respectively.
In order to determine the constants A, B, C, and D in Eqs. (2.15)-(2.17) the appropriate
boundary conditions have to be considered. At both metal/dielectric interfaces the tangential
components of the magnetic and electric fields have to be conserved. Since the interfaces are
located at y = 0 and y = d, the conservation of the tangential component of the magnetic
field yields, from Eqs. (2.15)-(2.17),

A = Be−iκyId + CeiκyId, (2.20)

B + C = D. (2.21)

The tangential component of the electric field is found as

∇×H =
∂D

∂t
= iωε0εE ⇒ Ex =

−i
ωε0ε

∂H

∂y
. (2.22)

Once again using Eqs. (2.15)-(2.17), the conservation of the tangential component of the
electric field yields

1

εM
iκyMA−

1

εI
iκyIBe

−iκyId +
1

εI
iκyICe

iκyId = 0, (2.23)

− 1

εM
iκyMD −

1

εI
iκyIB +

1

εI
iκyIC = 0. (2.24)

The set of Eqs. (2.20), (2.21), (2.23), and (2.24) can then be reduced to a set of two
equations with two unknowns. This process is shown in detail in Appendix A.1. With the
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2. Theory

final expression for the determinant given as

1

ε2
I

κ2
yI +

1

ε2
M

κ2
yM −

1

ε2
I

κ2
yIe

2iκyId − 1

ε2
M

κ2
yMe

2iκyId

− 2

εMεI
κyMκyI −

2

εMεI
κyMκyIe

2iκyId = 0 (2.25)

m

[1− exp (2iκyId)]

(
κ2
yI

ε2
I

+
κ2
yM

ε2
M

)
− [1 + exp (2iκyId)]

2κyMκyI
εMεI

= 0, (2.26)

it is possible to solve the rest of the problem numerically on a computer such that an effective
mode index may be obtained. [27]

One possible way of numerically solving the problem is by use of the Newton-Raphson
method, which is the method that is used in the present work. The basic idea of the Newton-
Raphson method is to start from a guess for the solution, x0, and then iteratively approach
the correct solution by making new guesses on the form of

xn+1 = xn −
f(xn)

f ′(xn)
, (2.27)

where xn+1 is the new guess, and xn is the previous guess. f(xn) and f ′(xn) represent the
value and the derivative of the function in the point xn, respectively. This form of guesses
iteratively approaches the root of the function by shooting closer and closer to the correct
value using the slope of the tangent in a given point. In order for the Newton-Raphson
method to converge, however, the initial guess should be relatively close to the correct solu-
tion. Otherwise the next guess might overshoot and thus never arrive at the correct solution.

The process of solving the problem with the Newton-Raphson method on a computer goes
as follows. First the determinant given in Eq. (2.26) is calculated for a range of values of
β. The values of β are chosen in a way such that they span a grid of combinations of real
and imaginary parts. Since the computation time for this problem scales as N2, where N is
the number of different values of real or imaginary parts tested, this grid should be relatively
small in order to minimize the required computation time. The next step is to examine each
area of the resulting grid of determinant values. As the problem will have a solution when
the resulting determinant is 0, the idea is to find zeroes in the determinant grid. Due to
the way the grid is constructed it is highly unlikely that any of the grid points result in a
determinant value of exactly 0. However, if the signs of both the real and imaginary part of
the determinant change between neighbouring grid points, there will be a root somewhere
between these points. Thus the determinant values for each set of four grid points are com-
pared, and when an area is found in which both the imaginary and real parts change sign, an
initial guess for the solution can be made by taking the centre of this area as the guess. For
this method to be able to locate zeroes, however, it is important that the grid points are not
spaced too far from each other. If the grid points are spaced too far it is possible that one
or both of the real and imaginary parts may change sign twice within the same area, and in
this case the check will fail even if the solution is within the given area.

8



2.2. The Stack Matrix Method

The process of constructing new guesses on the form of Eq. (2.27) is continued until a
given guess xn+1 is within some threshold of the guess xn, e.g. xn+1 − xn < 10−8. As
mentioned previously the Newton-Raphson method essentially shoots closer and closer to
the correct solution, and as such when a given guess is very close to the previous guess, this
guess will also be very close to the correct solution. If the initial guess is good, the method
will usually converge quickly. Thus if the process runs for more than e.g. 100 iterations it
can be assumed that the initial guess was not good enough, and the process should be run
again with a different initial guess.

2.2 The Stack Matrix Method

The stack matrix method is a method used to determine the reflectance and transmittance
of an optical system consisting of a stack of layers with parallel interfaces such as the one
shown in Fig. 2.3. While the structures under consideration in this thesis do not consist
of stacks of parallel layers it is possible to model them as such by using the effective mode
index for a G-SPP, which was described in the previous section. In this way a representation
of the structure may be constructed by considering the groove structure as a stack of layers,
where each layer is described by an effective mode index corresponding to that for a G-SPP
propagating in a gap of the same width as the groove width at that point.

The basic idea of the stack matrix method is to set up specific matrices to represent the
various factors that affect the propagation of light through a multilayer system and then
combine these matrices into a single stack matrix, which describes the entire system. The
approach presented in the following is based on s polarized light, although a completely anal-
ogous procedure may be carried out for p polarization by using the magnetic fields rather
than the electric fields.

θ

n1 n2 n3 nN

z

x

y

ni

zi− zi+

Eri E
′
ri

Eli E′li

Figure 2.3. A multilayer system consisting of a stack of N parallel layers. Inspired by [28, p. 297].

Consider the stack of N parallel layers shown in Fig. 2.3. In each layer the electric field
is described by the field components Eri and E′ri propagating to the right and the field
components Eli and E′li propagating to the left. The unprimed and primed notations refer to
the fields on the left and right sides of the layer, respectively. For s polarization the electric
fields are given as E = ŷE(x, z). The electric field in the first layer near the interface to the

9



2. Theory

second layer, i.e. E′1, can then be expressed as

E′1(x, z) = E′r1e
−ik0n1(cos (θ)z+sin (θ)x) + E′l1e

−ik0n1(− cos (θ)z+sin (θ)x)

= e−ik0n1 sin (θ)x
(
E′r1e

−ik0n1 cos (θ)z + E′l1e
ik0n1 cos (θ)z

)
. (2.28)

Similarly the field in the second layer near the interface to the first layer, i.e. E2, can be
expressed as

E2(x, z) = e−ik0n1 sin (θ)x
(
Er2e

−iβ2z + El2e
iβ2z
)
. (2.29)

In this equation β2 represents the phase shift of the electric field caused by the change in
material from layer 1 to layer 2. An expression for β2 can be found by inserting Eq. (2.29)
into the wave equation, (∇2 + k2

0n
2)E = 0. This gives

k2
0n

2
1 sin2 (θ) + β2

2 − k2
0n

2
2 = 0

⇒ β2
2 = k2

0n
2
2 − k2

0n
2
1 sin2 (θ). (2.30)

A general expression for βi in layer i is similarly found as

β2
i = k2

0n
2
i − k2

0n
2
1 sin2 (θ). (2.31)

The electric fields (2.28) and (2.29) must fulfil the boundary condition

E′1(x, z = 0−) = E2(x, z = 0+) ⇒ E′r1 + E′l1 = Er2 + El2. (2.32)

Furthermore, the tangential components of the magnetic fields must be conserved across the
interface. These are found through the relation

∇×E =
−∂B
∂t

= iωµ0H = −x̂∂E
∂z

+ ẑ
∂E

∂x
. (2.33)

Conservation of the tangential component of H thus yields

∂E′1
∂z

∣∣∣
z=0−

=
∂E2

∂z

∣∣∣
z=0+

⇒ iβ1(E′l1 − E′r1) = iβ2(El2 − Er2). (2.34)

For the case where only the first interface is considered, no light propagates to the left in
layer 2, i.e. El2 = 0. Then Eqs. (2.32) and (2.34) reduce to

E′r1 + E′l1 = Er2, (2.35)
β1

β2
(E′r1 − E′l1) = Er2. (2.36)

From these equations the reflection coefficient between layers 1 and 2, ρ12, can be found as
the ratio between E′l1 and E′r1,

E′r1 + E′l1 =
β1

β2
(E′r1 − E′l1)

⇒ E′r1

(
β1

β2
− 1

)
= E′l1

(
1 +

β1

β2

)

⇒ E′l1
E′r1

= ρ12 =

β1
β2
− 1

β1
β2

+ 1
=
β1 − β2

β1 + β2
. (2.37)

10



2.2. The Stack Matrix Method

The transmission coefficient, τ12, is simply

τ12 =
Er2
E′r1

=
2β1

β1 + β2
= 1 + ρ12. (2.38)

From the definition of the reflection and transmission coefficients it follows naturally that
ρ12 = −ρ21 and τ21 = 1+ρ21. If the incident light is p polarized, the coefficients must instead
be found from the magnetic fields. In this case they become

ρ12,p =
H ′l1
H ′r1

=

β1
ε1
− β2

ε2
β1
ε1

+ β2
ε2

, (2.39)

τ12,p =
Hr2

H ′r1
=

2β1ε1
β1
ε1

+ β2
ε2

= 1 + ρ12,p, (2.40)

where ε1 and ε2 are the relative dielectric constants of materials 1 and 2. The reflection and
transmission coefficients given by Eqs. (2.37)-(2.40) are completely general and can be used
for any two adjacent layers i and j by substituting the appropriate β’s. Using the coefficients
for s polarization the electric field components in two adjacent layers i and j can be expressed
in terms of each other as

E′li = ρijE
′
ri + τjiElj , (2.41)

Erj = τijE
′
ri + ρjiElj , (2.42)

or

E′ri =
1

τij
(Erj − ρjiElj), (2.43)

E′li =
ρij
τij

(Erj − ρjiElj) + τjiElj =
1

τij


Erjρij +


τjiτij − ρjiρij︸ ︷︷ ︸

1


Elj


 . (2.44)

By introducing the interface transition matrix

Hij =
1

τij

[
1 ρij
ρij 1

]
, (2.45)

Eqs. (2.43) and (2.44) can be expressed in matrix form as
[
E′li
E′ri

]
= Hij

[
Elj
Erj

]
. (2.46)

In order to fully describe the system by matrices one more relation is needed, namely the
relation between the fields at the two ends of a layer, Eli, Eri and E′li, E

′
ri. The field inside

the layer can be expressed as functions of z in two ways as

Ei(z) = e−ik0ni sin (θ)x
(
Erie

−iβi(z−zi− ) + Elie
iβi(z−zi− )

)
, (2.47)

Ei(z) = e−ik0ni sin (θ)x
(
E′rie

−iβi(z−zi+ ) + E′lie
iβi(z−zi+ )

)
, (2.48)

where zi− is the position in z of the interface between layers (i − 1) and i, and zi+ is the
position in z of the interface between layers i and (i + 1), see Fig. 2.3. By inserting the

11



2. Theory

values z = zi− and z = zi+ into Eqs. (2.47) and (2.48) and setting the two expressions equal
to each other for each of these values of z, Eri and Eli can be expressed as functions of E′ri
and E′li, respectively. With the thickness of layer i defined as zi+ − zi− = di, the relation can
be described through the layer propagation matrix

Li =

[
exp(−iβidi) 0

0 exp(iβidi)

]
, (2.49)

such that the relation becomes
[
Eli
Eri

]
= Li

[
E′li
E′ri

]
. (2.50)

The matrices Hij and Li of Eqs. (2.45) and (2.49) for the entire stack of N layers are then
combined into a single stack matrix

H12L2 . . .HN−2,N−1LN−1HN−1,N = S1N =

[
S11 S12

S21 S22

]
, (2.51)

which describes the relation between the fields in the incident layer, 1, and the final layer,
N , through the equation

[
E′l1
E′r1

]
= S1N

[
ElN
ErN

]
. (2.52)

Since layer N is the final layer of the stack ElN = 0, and as such E′l1 = S12ErN and
E′r1 = S22ErN . Thus the final reflectance of the entire system is found as

R =

∣∣∣∣
E′l1
E′r1

∣∣∣∣
2

=

∣∣∣∣
S12

S22

∣∣∣∣
2

, (2.53)

and the transmittance is found as

T =

∣∣∣∣
E′rN
E′r1

∣∣∣∣
2

=

∣∣∣∣
1

S22

∣∣∣∣
2

. (2.54)

[28, pp. 295-300]

2.3 The Dyadic Green’s Function

In this section we shall consider a solution to an inhomogeneous differential equation. The
solution we find is known as the dyadic Green’s function. The Green’s function plays an
important role in solving electromagnetic scattering problems, as the electromagnetic wave
equation is a linear partial differential equation. As such this and the following sections
lead towards a description of the required equations for solving an electromagnetic scattering
problem such as the one for the groove structures under consideration in the present work.
Consider an inhomogeneous differential equation of the form

LA(r) = B(r). (2.55)

12



2.4. Construction of a Two-Dimensional Green’s Function

Here L is a linear operator acting on the vector field A(r) to give another vector field B(r). A
general solution to this problem can be constructed as the sum of the homogeneous solution of
Eq. (2.55) and a particular inhomogeneous solution. For the purpose of finding a particular
inhomogeneous solution we consider the following inhomogeneous equation

LGi(r, r
′) = niδ(r− r′), i = x, y, z. (2.56)

In this case the inhomogeneous part of the equation is a Kronecker delta function δ(r− r′).
This function is defined such that it is zero everywhere except at the point r = r′, where it
has the value 1. In this case Gi(r, r

′) is the solution of the operator L, and ni is a constant
unit vector. Here we shall write the three equations of Eq. (2.56) as

L
↔
G (r, r′) =

↔
I δ(r− r′), (2.57)

where L operates on each column of the dyadic Green’s function,
↔
G, and

↔
I is the unit dyad

given as
↔
I= x̂x̂+ ŷŷ + ẑẑ. (2.58)

If we have the solution of
↔
G, we can postmultiply Eq. (2.57) with B(r′) and integrate over

the volume to get
∫

V
L
↔
G (r, r′) ·B(r′)dV ′ =

∫

V
B(r′)δ(r− r′)dV ′. (2.59)

Due to the property of the delta function the right hand side reduces to B(r). It then follows
from Eq. (2.55) that

A(r) =

∫

V

↔
G (r, r′) ·B(r′)dV ′. (2.60)

Thus we see that the dyadic Green’s function plays an important role in finding the solution
of an inhomogeneous differential equation such as the wave equation. [25, pp. 25-26]

2.4 Construction of a Two-Dimensional Green’s Function

In this section we consider how to construct a two-dimensional Green’s function for a layered
structure in the xy plane. This is done in order to provide a simple introduction to the
main ideas behind the periodic Green’s function, which is described in the next section. The
construction of the Green’s function is done through mode expansion. This concept can
be understood in a quantum mechanical formalism, where we seek to construct a Green’s
function G, which meets the requirement that when an operator Ĥ acts on it, the result is
−1, i.e

ĤG = −1. (2.61)

Using the same operator Ĥ we consider the construction of wavefunctions through the
eigenvalue problem

Ĥϕn = λn|ϕ〉. (2.62)

13



2. Theory

The complete set of wavefunctions,

|ϕ〉 =
∑

m

|ϕm〉am, (2.63)

is a solution to the stated eigenvalue problem, where we have that the wavefunctions are
linearly independent and orthogonal. The linear independence and orthogonality of the
wavefunctions entails that

∫
ϕn(r)∗ϕm(r)d3r = 〈ϕn|ϕm〉 = δnmNn, (2.64)

where Nn is a normalization constant and δnm is the Kronecker delta function. We now
consider the operator

Â =
∑

n

|ϕn〉〈ϕn|
Nn

. (2.65)

We see that with the way the wavefunctions, ϕ, are constructed, Â operating on ϕ returns
the wavefunctions themselves, i.e

Â|ϕ〉 =
∑

n

1

Nn
|ϕn〉〈ϕn|

∑

m

|ϕm〉am =
∑

n

an|ϕn〉, (2.66)

which demonstrates that Â is a unit operator,

Â =
∑

n

|ϕn〉〈ϕn|
Nn

= 1. (2.67)

We then see that a Green’s function fulfilling Eq. (2.61) can be constructed as

G = −
∑

n

|ϕn〉〈ϕn|
Nnλn

, (2.68)

where the division by the eigenvalue λn is included because our operator returns an eigen-
value when it operates on G.

We may now use this concept for the construction of the Green’s function used in elec-
tromagnetic scattering problems. That is we construct the Green’s function as a sum of
modes where each mode, ϕλ, is a solution to the eigenvalue problem,

(∇2 + k0εref )ϕλ(r) = λϕλ(r), (2.69)

which leads to

(∇2 + k2)ϕk(r) = 0, k2 = k2
0εref − λk, (2.70)

with λ being the eigenvalue to the eigenfunction ϕλ. The complete set of solutions for the
eigenvalue problem is of the form ϕk(r) = e−ik·r and as such we can write

∫
ϕk(r)ϕk′(r)∗d2r = Nkδ(k− k′) =

∫
ei(k−k

′)·rd2r = (2π)2δ(k′x− kx)δ(k′y − ky), (2.71)
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2.5. Construction of the Periodic Green’s Function

where we find the normalization constant as Nk = (2π)2. For a derivation of this see appendix
A.2. Recalling that our Green’s function should satisfy

(
∂2

∂x2
+

∂2

∂y2
+ k0εref (r)

)
G(r, r′) = −δ(r, r′), (2.72)

we may construct our Green’s function as

G(r, r′) = −
∫

k

ϕk(r)ϕk(r′)∗

Nkλk
d2k = −

∫
e−ik·re+ik·r′

(2π)2(k2
0εref − k2)

d2k. (2.73)

Here we add a small imaginary part, iε, in the denominator of the Green’s function. Doing so
simply adds a homogeneous solution to Eq. (2.72), but it ensures that the Green’s function
satisfies the radiating boundary condition. The Green’s function is then written as

G(r, r′) = −
∫

e−ik·re+ik·r′

(2π)2(k2
0εref − k2 − iε)d

2k, (2.74)

which we may decompose and write as

G(r, r′) = −
∫

e−ikx(x−x′)e−iky(y−y′)

(2π)2(
√
k2

0εref − k2
x − iε− ky)(

√
k2

0εref − k2
x − iε+ ky)

dkxdky, (2.75)

where we have used that

k2
0εref − k2 − iε = (

√
k2

0εref − k2
x − iε− ky)(

√
k2

0εref − k2
x − iε+ ky). (2.76)

We now evaluate the integral over ky by integrating over a closed curve in the complex
half-plane using the residue theorem,

∮
f(z)

z − z0
dz = −i2πf(z0). (2.77)

We then get that our Green’s function can be constructed as

g(r, r′) =
i2π

(2π)2

∫
e−ikx(x−x′)e−i

√
k20ε−k2x|y−y′|

2
√
k2

0ε− k2
x

dkx

=
i

2π

∫ ∞

−∞

e−ikx(x−x′)e−iky |y−y
′|

2ky
dkx, ky =

√
k2

0ε− k2
x. (2.78)

For a layered structure the incident light will undergo reflection and transmission at each
interface. These effects can be incorporated in the Green’s function by including Fresnel
reflection and transmission coefficients in Eq. (2.78). [29, pp. 24-27]

2.5 Construction of the Periodic Green’s Function

In this section we consider the construction of a periodic Green’s function, which is
an essential part for the solution of periodic scattering problems such as those under
consideration in this thesis. The construction of the periodic Green’s function follows the
same overall approach as used in the previous section. The Green’s function should still
satisfy

(∇2 + k0εref )G(r, r′) = −δ(r, r′), (2.79)
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as well as the radiating boundary condition in the direction where the structure is not
periodic. However, the constructed Green’s function should now take into account the
underlying periodicity of the structure in question. This is done through the Bloch boundary
condition. For a structure with a periodicity along the x direction, we require our Green’s
function to satisfy the Bloch boundary condition g(x+Λ, y;x′, y′) = g(x, y;x′, y′) exp(−ikxΛ),
where Λ is the period of the structure and kx is the Bloch wave number. Once more we seek
solutions to the eigenvalue problem

(∇2 + k0εref )ϕλ(r) = λϕλ(r). (2.80)

Here, however, the solutions should also satisfy the periodic boundary condition, ϕλ(x +

Λ, y) = ϕλ(x, y) exp(ikxΛ). For this problem we have eigenfunctions of the form

En,ky(r) = e−i(kx−nG)xe−ikyy, (2.81)

where inserting this eigenfunction into Eq. (2.80) leads to the eigenvalue λn,ky = k2
0εref −

(kx − nG)− k2
y, with G = 2π/Λ and n being an integer. We find the normalization constant

through

Nn,kyδnmδ(ky − k′y) =

∫ x=Λ

x=0

∫ y=∞

y=−∞
ϕn′,k′y(r)(ϕn,ky(r))∗dxdy

=

∫ x=Λ

x=0

∫ y=∞

y=−∞
e−iG(n−m)xe−i(ky−k

′
y)ydxdy

= Λ2πδnmδ(ky − k′y), (2.82)

and thus we see that Nn,ky = 2πΛ. For a detailed derivation see Appendix A.2. The Green’s
function is now constructed through mode expansion as

G(r, r′) =
∑

n

∫

ky

ϕn,ky(r)(ϕn,ky(r′))∗

Nn,kyλn,ky
dky

=
∑

n

∫

ky

e−i(kx−nG)(x−x′)e−iky(y−y′)

(2π)Λ(k2
0εref − (kx − nG)2 − k2

y)
. (2.83)

Here we again add a small imaginary part, iε, in order for the Green’s function to satisfy the
radiating boundary condition such that we get

G(r, r′) =
∑

n

∫

ky

e−i(kx−nG)(x−x′)e−iky(y−y′)

(2π)Λ(k2
0εref − (kx − nG)2 − k2

y − iε)

=
∑

n

∫

ky

e−i(kx−nG)(x−x′)e−iky(y−y′)

(2π)Λ(
√
k2
xεref − (kx − nG)2 − iε− ky)(

√
k2
xεref − (kx − nG)2 − iε+ ky)

.

(2.84)

Using the residue theorem we integrate in both the upper and lower complex half-plane and
find that our periodic Green’s function can be constructed as

G(r, r′) =
−i
2Λ

∑

n

e−i(kx−nG)(x−x′)e−iky(y−y′)
√
ky,n

, (2.85)

with ky,n =
√
k2

0εref − (kx − nG)2. [29, pp. 36-37]
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2.6. 2D Green’s Function Surface Integral Equation Method

2.6 2D Green’s Function Surface Integral Equation Method

In this section the basics of the Green’s Function Surface Integral Equation Method
(GFSIEM) are outlined. The GFSIEM is a powerful method for the determination of electric
and magnetic fields at any given position in a scattering configuration. The strength of the
GFSIEM [30] has been demonstrated in several applications ranging from simple scattering
configurations [19–24] to more complex periodic structures [31, 32]. In the GFSIEM the
electric and magnetic fields are determined through a simple identity which relates the fields
to a simple overlap integral between a Green’s function and the normal derivatives of the
fields at the surface of the scattering object. The focus of this section is therefore to arrive
at these identities. In order to do this a scattering configuration as shown in Fig. 2.4 is
considered.

x
y

z

ε2

ε1

n̂1

n̂2

c2

c1

n̂1f

c1f

Figure 2.4. A scattering configuration in which a scatterer with dielectric constant ε2 is surrounded
by a material with dielectric constant ε1. Here the dashed curves of c1, c2, and c1f
represent imaginary curves with normal vectors n̂1, n̂2, and n̂1f .

Here we shall consider the incident field being p polarized such that the H field purely has a
z component

H = ẑH(x, y). (2.86)

The choice to consider either s or p polarized light has the important consequence of reducing
the problem to requiring only the consideration of one scalar field component. As explained
in Sec. 2.3 the Green’s function used in the overlap integral is constructed such that it
satisfies

(∇2 + k0εi)g(r, r′) = −δ(r, r′), (2.87)

(∇′2 + k0εi)g(r, r′) = −δ(r, r′), (2.88)

where ∇2 = ∂2

∂x2
+ ∂2

∂y2
and ∇′2 = ∂2

∂x′2 + ∂2

∂y′2 . A Green’s function that satisfies these conditions
is

gi(r, r
′) =

1

4i
H

(2)
0 (k0ni|r− r′|). (2.89)
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This Green’s function has been chosen such that it satisfies the radiating boundary condition,
entailing that the scattered field propagates away from the scatterer. A requirement for the
magnetic field is that it satisfies

(∇2 + k0εi)H(r) = 0. (2.90)

If we now consider the field at a point inside the imaginary surface c2 we propose that we
can write the field identity as

H(r) =

∮

c2

{(n̂′2 ·∇′H(r′))g2(r, r′)− (n̂′2 ·∇′g2(r, r′))H(r′)}dl′. (2.91)

The first step in deriving Eq. (2.91) is to convert the surface integral on the right hand
side to an area integral. This is done simply by using Gauss’ theorem. That is we use the
relation

∮
n̂ · f(r)dl =

∫ ∇ · f(r)dA. We then get that the right hand side of Eq. (2.91) can
be written as

∫

A=Ω2

{∇′ · ((∇′H(r′))g2(r, r′)−H(r′)(∇′g2(r, r′))
)}
dA′

=

∫

A=Ω2
{(∇2H(r′))︸ ︷︷ ︸
−k0εH(r′)

g2(r, r′) + ∇′H(r′) ·∇′g2(r, r′)

−∇′H(r′) ·∇′g2(r, r′)− H(r′)∇′2g2(r, r′)︸ ︷︷ ︸
(−k20εg2(r,r′)−δ(r−r′))H(r′)

}dA′. (2.92)

After the cancellation of terms we are left with
∫

A=Ω2
H(r′)δ(r− r′)dA′, (2.93)

which is exactly equal to H(r) due to the integration over the delta function only giving a
non-zero value for r = r′. If we consider a position enclosed by the curves c1 and c1f , we find
in a similar fashion that

H(r) =

∮

c1+c1f

{(n̂′1 ·∇′H(r′))g1(r, r′)− (n̂′1 ·∇′g1(r, r′))H(r′)}dl′. (2.94)

Here we choose c1f to be far away from the scatterer. Far away from the scatterer
the total field should be equal to a sum of the incident field and the scattered field,
H(r) = H0(r)+Hscat(r), where the scattered field in accordance with the radiating boundary
condition is on the form Hscat(r

′) ≈ 1√
r′
e−ikr

′
f(θ′). We can then look at the integral equation

for c1f separately for the incident and scattered fields, H0 and Hscat. For H0 a similar
procedure as Eqs. (2.92)-(2.93) yields

H0(r) =

∮

∞
{(n̂′∞ ·∇′H0(r′))g(r, r′)− (n̂′∞ ·∇′g(r, r′))H0(r′)}dl′, (2.95)

entailing that the incident field gives a contribution to the total field outside the scatterer. As
for the scattered field we know that in the far field, the Green’s function can be approximated
as

g(r, r′) ≈ e−ikr
′

√
r′
f(r, θ′). (2.96)
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It then follows

∇′Hscat ≈ −ik
r

r
f(θ)Hscat(r), (2.97)

∇′g(r, r′) ≈ −ik r
r
g(r, r′). (2.98)

Using both the far field expressions and their derivatives we see that
∮

∞
{(n̂′∞ ·∇′Hscat(r

′))g(r, r′)− (n̂′∞ ·∇′g(r, r′))Hscat(r
′)}r′dθ′ = 0. (2.99)

As such we see that the contribution from the scattered field in region 1 is zero. In a similar
manner as before it can be shown for the contribution from c1 that

H(r) =

∮

c1
{(n̂′1 ·∇′H(r′))g1(r, r′)− (n̂′1 ·∇′g1(r, r′))H(r′)}dl′. (2.100)

Combining the results for c1 and c1f and using n̂′2 = −n̂′1 = n̂′ we end up with an integral
equation describing the field outside the scatterer given as

H(r) = H0(r)−
∮
{(n̂′ ·∇′H(r′))g1(r, r′)− (n̂′ ·∇′g1(r, r′))H(r′)}dl′ r ∈ Ω1. (2.101)

While Eqs. (2.91) and (2.101) accurately describe the fields inside and outside the scatterer,
respectively, they contain four unknowns. As such they have to be treated further to reduce
the amount of unknowns in order to simplify the problem. To do this we let the two imaginary
surfaces approach the scattering surface until they are infinitesimally close. We can equate the
normal derivatives of the magnetic field for each side by using the fact that the tangential
components of the electric field must be continuous across the interface. From Maxwell’s
equations we have that

∇×H =
∂D

∂t
= iωε0εE =

(
n̂
∂

∂n
− t̂ ∂

∂t

)
× (ẑH), (2.102)

where the cross product of the tangential derivative and the field vanishes. We then find

iωε0εEt =
∂H

∂n
= n̂ ·∇H ⇒ 1

ε1
n̂ ·∇HΩ1 =

1

ε2
n̂ ·∇HΩ2. (2.103)

Using this boundary condition we find

H(r) = H0(r)−
∮
{(n̂′ ·∇′HΩ1(r′))g1(r, r′)− (n̂′ ·∇′g1(r, r′))HΩ1(r′)}dl′ r ∈ Ω1,

(2.104)

H(r) =

∮
{(n̂′ ·∇′HΩ1(r′))

ε2

ε1
g2(r, r′)− (n̂′ ·∇′g2(r, r′))HΩ1(r′)}dl′ r ∈ Ω2. (2.105)

These equations describing the field can be solved by discretizing the scattering surface into
N small curve segments. This results in N sets of equations in which the fields and their
normal derivatives are the only unknowns. In each of these segments the fields and their
normal derivatives are assumed constant. The resulting set of equations can easily be solved
when formulated as a matrix in the form of

[
H0

0

]
=

[
1
2I −B(1) A(1)

1
2I +B(2) −A(2)

][
H

φ

]
, (2.106)
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where A(n) and B(n) are matrices, in which the elements are given as

A
(1)
i,j = P

∫

j
g1(si, s

′)dl′, (2.107)

B
(1)
i,j = P

∫

j
n̂′ ·∇′g1(si, s

′)dl′, (2.108)

A
(2)
i,j =

ε2

ε1
P

∫

j
g2(si, s

′)dl′, (2.109)

B
(2)
i,j = P

∫

j
n̂′ ·∇′g2(si, s

′)dl′. (2.110)

Here si is a position on the i’th curve segment. The P ’s in Eqs. (2.107)-(2.110) indicate that
the integrals must be calculated as principal value integrals. These integrals are calculated
numerically as sums in which the singular point of the integrand is excluded from the integral.
The elements 1

2I in Eq. (2.106) arise from an approximation to the Green’s function, which
is used when r = r′. An explanation of this is given in Appendix A.5. [29, pp. 15-21]

2.7 2D GFSIEM for a General Direction of Light Incidence

In this section we expand the GFSIEM described in the previous section to provide a method
for solving scattering problems for a general direction of light incidence, which has not
previously been given a lot of attention in the literature. Consider a scattering structure
with a surface as shown in Fig. 2.5.

Λ

h

x

y

z

ε2

ε1

t

s1

si

sN

n̂

n̂

Figure 2.5. The surface of a scattering structure divided into surface elements. For the periodic
scattering problem considered here, the figure represents a single period, Λ, of the
structure.

For propagation in the xy plane and either s or p polarization the electric or magnetic field will
only have a z component, and the other field will be perpendicular to the z axis, which greatly
simplifies the problem to a formulation with only one scalar field component as described
in previous section. This is no longer the case for a general direction of light incidence.
However, as we shall show, the two scalar field components Ez and Hz are sufficient. Due to

20



2.7. 2D GFSIEM for a General Direction of Light Incidence

the translational invariance along the z axis and periodicity along the x axis the fields can
be decomposed into Bloch waves of the form

E(r) = UE(ρ; kx, kz)e
−ikxxe−ikzz, (2.111)

H(r) = UH(ρ; kx, kz)e
−ikxxe−ikzz, (2.112)

where Uj=E,H is a periodic function satisfying Uj(ρ+ x̂Λ) = Uj(ρ) with Λ being the period
of the structure, ρ = x̂x+ ŷy, and r = x̂x+ ŷy+ ẑz. We see that there are three components
for both the magnetic field and the electric field. However, by inserting these expressions for
the fields into Maxwell’s equations it can be shown that the x and y components of the fields
may be described purely from the z components of the magnetic and electric fields, i.e.

Hx =
k2

0ε

k2
0ε− k2

z

(
i

ωµ0

∂Ez
∂y
− ikz
k2

0ε

∂Hz

∂x

)
, (2.113)

Hy =
k2

0ε

k2
0ε− k2

z

(
− i

ωµ0

∂Ez
∂x
− ikz
k2

0ε

∂HZ

∂y

)
, (2.114)

Hx =
k2

0ε

k2
0ε− k2

z

(
− i

ωε0ε

∂Hz

∂y
− ikz
k2

0ε

∂Ez
∂x

)
, (2.115)

Ey =
k2

0ε

k2
0ε− k2

z

(
i

ωε0ε

∂Hz

∂x
− ikz
k2

0ε

∂Ez
∂y

)
. (2.116)

These in-plane components of H and E are expressed in a condensed form as [33]

Hs(ρ) =
−i
k2
s

[kz∇sHz + ωε0εẑ ×∇sEz], (2.117)

Es(ρ) =
−i
k2
s

[kz∇sEz + ωµ0ẑ ×∇sEz], (2.118)

where

k2
s = k2

0ε− k2
z , (2.119)

∇s = x̂
∂

∂x
+ ŷ

∂

∂y
. (2.120)

The z components of the fields must satisfy the scalar wave equation, i.e.

∇2Ez + k2
0εEz = ∇2

sEz + k2
sEz = 0. (2.121)

In addition to the electric and magnetic fields, the field due to a point source is considered
in each material,

(∇2
s + k2

si)gi(ρ;ρ′) = −δ(ρ− ρ′). (2.122)

Here k2
si = k2

0εi−k2
z with εi being the dielectric constant of material i, and gi is the appropriate

Green’s function in material i. For a structure with periodicity in the x direction a solution for
gi that satisfies the radiating boundary condition along y and the Bloch boundary condition
along x can be constructed through mode expansion (see Sec. 2.5) as

gi(r, r
′) =

−i
4π

∑

n

e−i(kx−nG)(x−x′)e−ikyi,n|y−y
′|

kyi,n
G. (2.123)
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Here kx is the Bloch wave number in the direction in which the structure is periodic,
G = 2π/Λ with Λ being the period of the structure, and kyi,n = [k2

si − (kx − nG)2]1/2

with Im(kyi,n) ≤ 0.

Similar to the case of kz = 0 (see Sec. 2.6) we can obtain the integral equations

Ez(ρ) =





Ez0(ρ)−
∮
{g1(ρ;ρ′)n̂′ ·∇′Ez(ρ′)− Ez(ρ′)n̂′ ·∇′g1(ρ;ρ′)}dl′ ρ ∈ Ω1

∮
{g2(ρ;ρ′)n̂′ ·∇′Ez(ρ′)− Ez(ρ′)n̂′ ·∇′g2(ρ;ρ′)}dl′ ρ ∈ Ω2,

(2.124)

Hz(ρ) =





Hz0(ρ)−
∮
{g1(ρ;ρ′)n̂′ ·∇′Hz(ρ

′)−Hz(ρ
′)n̂′ ·∇′g1(ρ;ρ′)}dl′ ρ ∈ Ω1

∮
{g2(ρ;ρ′)n̂′ ·∇′Hz(ρ

′)−Hz(ρ
′)n̂′ ·∇′g2(ρ;ρ′)}dl′ ρ ∈ Ω2.

(2.125)

Here Ω1 and Ω2 refer to positions outside and inside the metal, respectively (dielectric
constants ε1 and ε2), and Ez0 and Hz0 are the incident fields. Inserting Eqs. (2.117) and
(2.118) into the boundary conditions n̂ ×H1 = n̂ ×H2 and n̂ × E1 = n̂ × E2 we get (see
Appendix A.4)

Ez1 = Ez2, (2.126)

Hz1 = Hz2, (2.127)

n̂ ·∇Hz2 = n̂ ·∇Hz1
k2

0ε2 − k2
z

k2
0ε1 − k2

z

− t̂ ·∇Ez1
kz
k0

√
ε0

µ0

k2
0(ε1 − ε2)

k2
0ε1 − k2

z

, (2.128)

n̂ ·∇Ez2 = n̂ ·∇Ez1
ε1

ε2

k2
0ε2 − k2

z

k2
0ε1 − k2

z

− t̂ ·∇Hz1
kz
k0

√
µ0

ε0

k2
0(ε2 − ε1)

k2
0ε1 − k2

z

. (2.129)

We see that in the case of kz 6= 0 there is a coupling between Hz and Ez, and if kz = 0

Eqs. (2.128) and (2.129) reduce to n̂ ·∇Hz2 = n̂ ·∇Hz1ε2/ε1 and n̂ ·∇Ez2 = n̂ ·∇Ez1, in
which case there is no coupling, and it is sufficient to consider each field separately, greatly
reducing the complexity of the problem to the case described in Sec. 2.6. In this case the
integral equations can be solved by a numerical approach, in which the fields and their normal
derivatives are considered constant in each surface element. However, for the case of kz 6= 0

where there is a coupling between Hz and Ez this representation of the fields is inadequate
for describing the tangential derivative in Eqs. (2.128) and (2.129). In order to expand the
model to account for the tangential derivative, we introduce a linear variation of the fields
in each element by combining two weight functions N1 and N2 as shown in Fig. 2.6. By
combining the weight functions N1 and N2 the linear variation of the field between two points
with field values A and B will look as shown in the rightmost graph of Fig. 2.6.
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1
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N1(x) N2(x) AN1(x) +BN2(x)

Figure 2.6. The weight functions used in constructing linearly varying fields in each surface element.

The z component of the fields and the z component of their normal derivatives along a surface
element may then be described as

Ez(s) = Ez(s(t)) ≈
N∑

i=1

E
(s)
z,iN1

(
t− t(s)i
Li

)
+ E

(e)
z,iN2

(
t− t(s)i
Li

)
, (2.130)

Hz(s) = Hz(s(t)) ≈
N∑

i=1

H
(s)
z,iN1

(
t− t(s)i
Li

)
+H

(e)
z,iN2

(
t− t(s)i
Li

)
, (2.131)

φE(s(t)) = [n̂ ·∇Ez(r)]r=s(t) ≈
N∑

i=1

φ
(s)
E,iN1

(
t− t(s)i
Li

)
+ φ

(e)
E,iN2

(
t− t(s)i
Li

)
, (2.132)

φH(s(t)) = [n̂ ·∇Ez(r)]r=s(t) ≈
N∑

i=1

φ
(s)
H,iN1

(
t− t(s)i
Li

)
+ φ

(e)
H,iN2

(
t− t(s)i
Li

)
, (2.133)

where s = s(t) is a position along the surface, with t being the distance along the surface
from a starting point (see Fig. 2.5), t(s)i is the start point of element i, Li is the length of ele-
ment i, and E(s)

z,i and E(e)
z,i are the values of Ez in the start and end points of surface element

i, respectively. The factor (t−t(s)i )/Li represents a fractional distance along surface element i.

The tangential derivative, t̂ ·∇Ez at all sampling points t(s)i given as a column vector tE ,
can then be approximated as the average slope of the field values in neighbouring surface
elements,

tE = T E
(s)
z , (2.134)

where T is a matrix constructed from a finite-difference scheme using nearest neighbour
sampling points. The concept is illustrated in Fig. 2.7, where the tangential derivative in
the point t(s)i is found as the average slope of the linearly varying fields in the two adjacent
surface elements.
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Ez
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(s)
z,j
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z,i
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(e)
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(s)
i t

(s)
i + Li

Figure 2.7. Illustration of the finite-difference approach for the tangential derivative.

Using this scheme we approximate the tangential derivative of element i as

tE,i = t̂ ·∇Ez,i ≈
1

2

(
1

Lj
− 1

Li

)
E

(s)
z,i +

1

2Li
E

(e)
z,i −

1

2Li
E

(s)
z,j , (2.135)

tH,i = t̂ ·∇Hz,i ≈
1

2

(
1

Lj
− 1

Li

)
H

(s)
z,i +

1

2Li
E

(e)
z,i −

1

2Li
H

(s)
z,j . (2.136)

It is then clear that T is of the form

T =




1
2

(
1
LN
− 1

L1

)
1

2L1
0 0 . . . −1

2Ln

−1
2L1

1
2

(
1
L2
− 1

L1

)
1

2L2
0 . . . 0

...
...

...
...

. . .
...

0 . . . 0 −1
2LN−2

1
2

(
1

LN−2
− 1

LN−1

)
1

2LN−1

1
2LN

0 . . . 0 −1
2LN−1

1
2

(
1

LN−1
− 1

LN

)




.

(2.137)

Another convenient matrix can be constructed by considering that the end point of surface
element i is the start point of element (i+ 1). That is

E
(e)
z = DE

(s)
z , (2.138)

where E(s)
z and E(s)

z are column vectors containing all of the values E(s)
z,i and E(e)

z,i , and the

matrix D is of the form

D =




0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1

1 0 0 0 . . . 0



. (2.139)

The matrix describing the magnetic and electric fields governed by Eqs. (2.124) and (2.125)
is then constructed as




E
(s)
z,0

0

H
(s)
z,0

0


 =




B1 A1 0 0

B2 −A2f1 A2Tf2 0

0 0 B1 A1

A2Tf4 0 B2 −A2f3







E
(s)
z

φ
(s)
E

H
(s)
z

φ
(s)
H



, (2.140)
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where

f1 =
ε1

ε2

k2
0ε2 − k2

z

k2
0ε1 − k2

z

, (2.141)

f2 =
kz
k0

1

ε2

k2
0(ε2 − ε1)

k2
0ε1 − k2

z

, (2.142)

f3 =
k2

0ε2 − k2
z

k2
0ε1 − k2

z

, (2.143)

f4 =
kz
k0

k2
0(ε1 − ε2)

k2
0ε1 − k2

z

, (2.144)

B1 =

(
1

2
I −B(1,1) −B(1,2)D

)
, (2.145)

A1 =
(
A(1,1) +A(1,2)D

)
, (2.146)

B2 =

(
1

2
I +B(2,1) +B(2,2)D

)
, (2.147)

A2 =
(
A(2,1) +A(2,2)D

)
, (2.148)

and

A
(u,v)
i,j = P

∫
gu(si, s(t

′))Nv

(
t′ − t(s)j
Lj

)
dt′, (2.149)

B
(u,v)
i,j = P

∫
[n̂′ ·∇′gu(si, r

′)]r′=s(t′)Nv

(
t′ − t(s)j
Lj

)
dt′. (2.150)

2.8 Thermal Emission

The previous sections contain the theory used to model the reflectance of the periodic groove
structures under consideration in this thesis, but there is another important concept to con-
sider if the structures are to be used in TPV or CSP, namely thermal emission. While the
thermal emission properties of the structures are not specifically investigated in this thesis,
this section contains an introduction to the basic concepts of thermal emission, since it is
paramount in the aforementioned applications.

Any material continuously absorbs and emits electromagnetic radiation. Thermal emission
is the process by which materials emit electromagnetic radiation. The process is also often
called radiative heat transfer or thermal radiation. The radiation emitted in this way is af-
fected by both the type and temperature of the emitting material. The wavelength spectrum
of the thermal radiation is highly dependent on the temperature of the emitting material,
while the type of material mainly affects the strength of the radiation. Among the three
possible methods of heat transfer thermal radiation is unique in that it does not require a
medium for its transfer. The other two methods, conduction and convection, both require
the presence of a medium. In thermal conduction in solids energy is transferred by free
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electrons or phonons, whereas in gases or liquids the transfer occurs through collisions be-
tween molecules or atoms. Convection works in a somewhat similar way, only with some of the
higher energy molecules being swept away by a flow to be replaced by lower energy molecules.

A further difference between the methods of heat transfer is found in the heat transfer rate
or heat flux, q. While the fluxes for conduction and convection are linearly proportional to
temperature differences, i.e. q ∝ T2 − T1, the flux for thermal radiation is proportional to
differences in temperature to the fourth power, q ∝ T 4

2 − T 4
1 . Thus radiative heat transfer

becomes increasingly important at higher temperatures, eventually completely dominating
over conduction and convection at very high temperatures.

While these properties make thermal radiation very important in vacuum and high-temperature
applications they also tend to complicate the analysis of related problems. Typical ranges
for interactions in conduction and convection are on the order of 10−9 m, while for ther-
mal radiation the distances can easily span the range of 10−10 to 1010 m, depending on
the situation. Thus conservation of energy cannot be applied to infinitesimal volumes but
must instead be applied over the entire volume under consideration, which, in turn, leads
to integral equations with up to seven different independent variables. Furthermore, while
properties related to conduction and convection are easily measured and often well behaved,
radiative properties tend to be difficult to measure and display erratic behaviour as well as
being strongly dependent on the wavelength of the radiation. [34, pp. 1-3]

For these reasons the detailed study of thermal radiation is a rather extensive topic, and
a thorough description is beyond the scope of this thesis. Instead only the basic principles
of thermal emission are described in this section.

In order to describe the basic principles of thermal emission a few terms must be intro-
duced. When electromagnetic radiation propagating through some medium encounters an-
other medium, the wave might be partially or totally reflected, and any remaining part of
the wave penetrates into the medium. Materials are classified depending on their interaction
with a penetrating electromagnetic wave. If the wave passes through the material without
any attenuation the material is called transparent, whereas a material with partial attenua-
tion is called semitransparent. If the wave is partially attenuated but the transmitted light
is scattered into many directions the material is instead termed translucent. Any material in
which the penetrating electromagnetic wave is completely attenuated is defined as opaque.
Materials generally fall into different categories depending on the wavelength of the incident
radiation and the thickness of the material. For instance, gold is generally opaque but for
extremely thin layers it becomes semitransparent, and while window glass is highly transpar-
ent in the visible spectrum it is opaque to both ultraviolet and infrared radiation.

If an opaque surface does not reflect any radiation it is called a perfect absorber or black
surface. An object with black surfaces is also typically referred to as a blackbody. While a
blackbody absorbs the maximum possible amount of energy it also emits the maximum pos-
sible amount of energy. This can be demonstrated by considering an object at a temperature
T inside a black-walled enclosure, which is thermally insulated on the outside, such as the
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one shown in Fig. 2.8. In accordance with the second law of thermodynamics, the entire sys-
tem will eventually reach thermal equilibrium, such that the entire enclosure and the object
inside are at a single uniform temperature. The object will receive exactly the same amount
of energy whether it is black or not, though if it is black it will absorb more energy than it
would otherwise. It is evident that in order to reach and maintain thermal equilibrium the
object must emit the same amount of energy as it absorbs, i.e. in the case of a blackbody
the maximum possible amount. This principle is called Kirchhoff’s law. Since the blackbody
absorbs the same amount of energy regardless of the direction of incidence, it must also emit
the same amount of energy in all directions. [34, pp. 4-5]

T

Figure 2.8. An object inside a thermally insulated black-walled enclosure used to illustrate
Kirchhoff’s law. Inspired by [34, p. 5].

When describing thermal radiation the heat flux emitted from a surface is referred to as
emissive power, which is typically described as either spectral emissive power, Eν , or total
emissive power, E. The spectral emissive power is given as emitted energy per unit time per
unit area per unit frequency (hence the subscript ν for frequency), while the total emissive
power is the heat flux across the entire frequency spectrum. The relationship between Eν
and E is simply

E(T ) =

∫ ∞

0
Eν(T, ν)dν. (2.151)

Max Planck showed in 1901 that the spectral emissive power distribution for a blackbody at
a given temperature T surrounded by vacuum is given as

Ebν(T, ν) =
2πhν3

c2(ehν/kBT − 1)
, (2.152)

which is commonly referred to as Planck’s law. Here h is Planck’s constant, kB is Boltzmann’s
constant, and c is the speed of light in vacuum. Eq. (2.152) can be expressed in terms of the
wavelength in vacuum, λ0, by using the relationships

ν =
c

λ0
, (2.153)

dν = − c

λ2
0

dλ0, (2.154)

Eb(T ) =

∫ ∞

0
Ebνdν =

∫ ∞

0
Ebλdλ0. (2.155)
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Using these relationships Eq. (2.152) can be rewritten as

Ebλ(T, λ0) =
2πhc2

λ5
0(ehc/λ0kBT − 1)

. (2.156)

Eq. (2.156) shows that an increasing temperature increases the overall level of emission,
and that the peak of maximum emission shifts towards shorter wavelengths. Introducing the
constants C1 = 2πhc2 and C2 = hc/kB allows for Eq. (2.156) to be rewritten as

Ebλ
T 5

=
C1

(λ0T )5(eC2/nλT − 1)
, (2.157)

which is a function of only λ0T . From this equation the scaled emissive power can be plotted
simply as a function of the product of the wavelength in vacuum, λ0, and the temperature,
T . This function is plotted in Fig. 2.9.
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Figure 2.9. Scaled blackbody emissive power as a function of the product of the wavelength in
vacuum and temperature.

The maximum of the curve can be found by simply differentiating Eq. (2.157), which solved
numerically gives

(λ0T )max = C3 = 2898 · 10−6 m K. (2.158)

Eq. (2.158) is called Wien’s displacement law and allows for easy determination of the wave-
length of maximum emission for a blackbody at a temperature T in vacuum.

From Eq. (2.155) it is evident that the total emissive power of a blackbody may be de-
termined by integrating Eq. (2.156) over the entire wavelength spectrum. The integration
results in

Eb(T ) = σT 4, (2.159)
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2.8. Thermal Emission

where σ = π4C1/15C4
2 is the Stefan-Boltzmann constant. Another value, which is often of

interest, is the fraction of emissive power within a certain wavelength range. This is typically
described in terms of the fraction of emissive power in the interval of 0 to λ0T ,

f(λ0T ) =

∫ λ0
0 Ebλdλ0

Eb(T )
. (2.160)

With this definition the fraction of emissive power in the wavelength range of λ1 to λ2 is
found as

∫ λ2

λ1

Ebλdλ0 = [f(λ2T )− f(λ1T )]σT 4. (2.161)

As an example of the usage of Eqs. (2.158) and (2.161), it is found by treating the sun as a
blackbody at a temperature of T = 5777 K (which is a reasonable approximation) that its
maximum emissive power is at a wavelength of λmax,sun ≈ 500 nm, and roughly 37 % of its
total emission lies in the visible spectrum between λ1 = 400 nm and λ2 = 700 nm. [34, pp.
6-11]

A commonly used term in the description of thermal radiation is the radiative intensity,
which is simply the energy flow per unit solid angle per unit area normal to the rays. A solid
angle is the projection of an area onto a unit hemisphere centred in a reference point. Similar
to the case of emissive power a distinction is made between spectral and total intensity, Iλ
and I, which are related by

I(r, ŝ) =

∫ ∞

0
Iλ(r, ŝ, λ0)dλ0. (2.162)

In this expression r is a vector describing a location in space, and ŝ is a unit vector in the
direction from the surface of the emitter to the point described by r. The intensity can be
converted to emissive power by integrating over all directions from the surface. An expression
for this can be developed by considering a geometry as illustrated in Fig. 2.10. In this figure
dA is a small area of the surface of the emitter, and dAp = dA cos θ is the projection of dA
onto a plane normal to the direction ŝ. dAp thus describes the way dA is seen when viewed
from the direction −ŝ.

n̂

dA

θ

dAp = dA cos θ

ŝ

Figure 2.10. The geometry used to relate the blackbody emissive power to the intensity. Inspired
by [34, p. 14].

The energy emitted from dA in the direction ŝ within a small solid angle dΩ = sin θdθdφ is
found as

I(r, ŝ)dApdΩ = I(r, ŝ)dA cos θ sin θdθdφ. (2.163)
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2. Theory

By integrating Eq. (2.163) over all possible directions, the total energy emitted by dA can
be found. Dividing this expression by dA gives

E(r) =

∫ 2π

0

∫ π/2

0
I(r, θ, φ) cos θ sin θdθdφ =

∫

2π
I(r, ŝ)n̂ · ŝdΩ. (2.164)

An identical expression would be obtained if the spectral emissive power, Eλ, and spectral
intensity, Iλ, were used.

Using Kirchhoff’s law it can be shown that the radiative intensity for a blackbody is inde-
pendent of direction. By using this fact in combination with the spectral radiative intensity
Eq. (2.164) reduces to

Ebλ(r, λ0) = πIbλ(r, λ0). (2.165)

The intensity is given per unit area normal to the rays, dAp. If the intensity is to be compared
to the emissive power per area it is important to remember that the emissive power is given
per unit surface area dA. Due to the relation dA = dAp cos θ the directional emissive power
is found as

E′bλ(r, λ0, θ, φ)dA = Ibλ(r, λ0)dAp

⇒ E′bλ(r, λ0, θ, φ) = Ibλ(r, λ0) cos θ. (2.166)

This cosine dependence of the directional emissive power is often called Lambert’s law. [34,
pp. 13-15]

The treatment presented above is heavily based on idealized objects. No real object is a
true blackbody, although many may be modelled as one to a reasonable approximation. Fur-
thermore, a blackbody was introduced as an object with perfectly black surfaces, whereas in
real objects the actual surface does not absorb or emit any radiation; both absorption and
emission actually occur in a thin layer beneath the surface. In the description of real objects
the following four radiative properties are used: reflectance, ρ, absorbtance, α, transmittance,
τ , and emittance, ε. The first three of these are simply defined as the fraction of the total
incoming radiation which is reflected, absorbed, or transmitted by the object, respectively.
Thus ρ + α + τ = 1, and for a blackbody α = 1 and ρ = τ = 0. Since a blackbody is the
perfect emitter, the emittance for a real object is defined as the ratio between the energy
emitted by the object and the energy emitted by a blackbody at the same temperature.
From Kirchhoff’s law ε = α for any object. Note, however, that all four properties may be
dependent on temperature and wavelength. [34, pp. 20-22]

All of the radiative properties described above are also dependent on one or both of the
incoming and outgoing directions. When describing these properties it is thus customary to
distinguish between spectral and total properties as well as between directional and hemi-
spherical properties. Further treatment of these concepts is beyond the scope of the present
work, and the reader is instead referred to [34].

It should be noted that the radiative properties are also highly dependent on the mate-
rial in question and the structure of the surface, the latter being the main focus of the
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2.8. Thermal Emission

present work. The thermal radiation emitted by a given structure is easily found through the
reflectance. From the definitions given above the emissivity of an opaque object can be found
as ε = α = 1− ρ. The energy emitted by the object in a given direction at a temperature T
is then found as

E′λ(r, λ0, θ, φ, T ) = εE′bλ(r, λ0, θ, φ, T ), (2.167)

where E′λ(r, λ0, θ, φ, T ) is the directional emissive power of the object, and E′bλ(r, λ0, θ, φ, T )

is the directional emissive power of a blackbody at the same temperature. The total
energy emitted by the object is found by integrating Eq. (2.167) over all directions and
all wavelengths at which thermal radiation occurs. It is important to remember that thermal
radiation typically occurs at long infrared wavelengths, while the wavelengths of interest when
considering absorption are often in the visible spectrum. Thus it is important to consider
a wide range of wavelengths if a complete description of the radiative properties of a given
surface is desired.
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Program Code 3
In this chapter the code produced in relation to this thesis is presented. The first section
contains an overview of all of the individual programs developed as well as the motivations
behind each of them. An explanation of the different numerical techniques tested in the
GFSIEM programs is also given. This is followed by a description of the stack matrix code
used to model the structures under angles of incidence in both the xy plane and the yz
plane. Finally an overview of the flow of the GFSIEM code is given for both directions of
light incidence.

3.1 Overview of Programs

This section contains an overview of the program code produced in relation to the present
work. Each of the individual MATLAB programs is introduced along with a brief explana-
tion of the purpose of creating that particular program. The intention of this section is not
to give a thorough description of all of the code, but rather to provide an overview of the
thought process that led to the choices made.

The first code produced was a simple program to calculate the magnitude of the electric
or magnetic field on the surface of a cylinder using the GFSIEM. This was done in order
to become familiar with the GFSIEM through a simple geometry before moving on to more
complex problems. A direct development to the first program was made by expanding it to
calculate the scattering of light by the cylinder. This was done by using the calculated field
on the surface of the cylinder to calculate the field in a grid of points around the cylinder.
Aside from being a natural progression from the first program, this program served to further
increase familiarity with the GFSIEM.

It was decided to calculate the reflectance of a sharp groove structure by using the stack
matrix method. This was done because of the authors’ prior knowledge of this method as
well as a desire to compare this simplified model to the results obtained with the GFSIEM.
The sharp grooves would be represented as a stack of thin layers with varying mode in-
dices. In order to do this, however, two things were required. First, the appropriate mode
indices for G-SPP’s travelling through the grooves would have to be known. For this reason
a program was developed to find the mode indices for G-SPP’s in a large range of different
wavelengths and gap widths. The program used the Newton-Raphson method to approach
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3.1. Overview of Programs

the solution within a very small error margin as explained in Sec. 2.1.2. After calculating
the mode indices, a set of coordinates representing the structure in question was needed. As
such a program was developed to produce a sharp groove structure from a given requirement
of angle of inclination and height of the structure. Using the obtained set of coordinates the
structure could be converted into a stack of layers with mode indices corresponding to those
for a G-SPP travelling in a gap of a certain width. A program using the stack matrix method
was then used to calculate the reflectance of the multilayer system.

A basic program using the GFSIEM was then produced to calculate the reflectance of the
same structures as those treated by the stack matrix method. The program used a rather
crude approximation to the structure by simply representing the surface with a certain num-
ber of points, and for each point the Green’s function was calculated anew. In order to verify
the results produced by this program, they were compared to those presented in [9].

Since the obtained results were found to deviate from those of [9], various modifications
of the program were tested. First it was attempted to reduce the running time of the pro-
gram by simply tabulating the Green’s function and interpolating in this table rather than
calculating the Green’s function for every single point on the surface. The same method
of tabulating the Green’s function was also attempted where the singularity was subtracted
from the results before tabulation. This was done in order to make the interpolation more
accurate, and the singularity was then simply added after performing the interpolation. Fur-
ther attempts at increasing the accuracy of the method and reducing the required running
time were made by using angle calculations (see Sec. 3.1.1) when the points in question were
close to each other. Further calculations were made by including subdivisions of each line
segment representing the surface. This was expected to improve the accuracy of the method
as well as enabling the use of fewer points on the surface for the calculations, thus reducing
the required running time. All of the programs used Johnson and Christy’s model for the
dielectric constant [35].

All of the programs described above were designed to allow for an angle of incidence only in
the plane parallel to the direction of periodicity. It was desired to also perform calculations
for angles of incidence in the plane perpendicular to the direction of periodicity, i.e. along
the grooves. For this reason new versions of the stack matrix program and the GFSIEM
program were produced to allow for an angle of incidence in this direction.

3.1.1 Numerical Techniques

Two main numerical techniques were tested in order to improve the convergence of the
GFSIEM code. These techniques were the subdivision of surface elements and the inclusion of
an angle calculation for elements close to each other. The concepts behind the two techniques
are shown in Fig. 3.1.
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θ

i j i j

Figure 3.1. The principles of the numerical techniques used in the GFSIEM code. Left: Subdivision
of surface elements. Right: Angle calculation for elements close to each other.

For the subdivision of surface elements each surface element was divided into a number of
subelements, and in the calculation of the contribution from an element j to the field in
an element i each subelement was considered separately. The total field contribution from
element j would then be found as the sum of the contributions from each subelement. That is
the Eqs. (2.107)-(2.110) or (2.149)-(2.150) are calculated as sums with a number of elements
equal to the number of subelements. The angle calculation was introduced to provide a better
approximation to the normal derivative of the Green’s function for terms in Eqs. (2.106) or
(2.140), where the elements i and j are close to each other. In these terms the normal
derivative was approximated as the angle θ spanned by the vectors from the sampling point
in element i to each end of the element j. The two numerical techniques presented here were
both used on their own and in combination with each other.

3.2 Stack Matrix Code

As described in Sec. 2.2 the stack matrix method (SMM) is used for calculating the reflectance
and transmittance of stacks of parallel layers. While the groove structures considered in
the present work do not consist of stacks of parallel layers, they can in a simple model be
represented as stacks of layers with refractive index corresponding to the mode index for
a G-SPP propagating in a gap of the same width as the groove width in that layer. This
principle is shown in Fig. 3.2. The mode indices used in the SMM are calculated by the
process described in Sec. 2.1.2.

x
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z nN (gold)

n1 (air)

increasing
mode indexni

E
θ

di

Figure 3.2. The principle used to convert one period of the groove structure into a multilayer
structure to be used in the SMM. The figure also shows the physical interpretation of
light incidence under an angle in the xy plane used in the SMM.
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With the multilayer representation of the groove structure constructed by the principle shown
in Fig. 3.2 the reflectance at normal incidence is simply calculated by applying the SMM
to this multilayer structure. For incidence at an angle to the normal direction the problem
must be treated differently depending on the direction of incidence. In the calculations for
an angle of incidence in the xy plane the light is treated as p polarized light, but in all layers
except the incident (air) layer the angle of incidence is set to 0 as illustrated in Fig. 3.2. In
this case the in-plane wavenumber is not conserved across the first interface, which it would
be for a stack of layers with parallel interfaces. This affects the reflection and transmission
coefficients, which instead of the usual Fresnel coefficients described by Eqs. (2.39) and (2.40)
become

ρ12 =
(n2/n1) cos (θ)− 1

(n2/n1) cos (θ) + 1
, (3.1)

τ12 = 1 + ρ12. (3.2)

In this representation the physical interpretation is that the incident light couples to a G-
SPP, which propagates straight down into the groove.

In the calculations for an angle of incidence in the yz plane the in-plane wave number,
kz = k0n1 sin(θ), must be conserved through all layers, because the structure is invariant
along the z axis. In this case, however, the light is treated as s polarized in the SMM. This
situation is shown in Fig. 3.3. In this figure it is also seen that the choice of s polarization in
the SMM is justified, since the main component of the electric field of the G-SPP is oriented
as shown. The G-SPP also has a smaller electric field component in the direction of prop-
agation. However, it is curious that the inherently p polarized G-SPP’s must be modelled
using s polarization. The ray path shown in Fig. 3.3 can be understood in a geometric optics
picture and follows from Snell’s law and the increasing mode index [36].

n1 (air)

nN (gold)

increasing
mode indexni

θE

x

y

z

Figure 3.3. The physical interpretation of light incidence under an angle in the yz plane used in
the SMM. For simplicity reflections at interfaces other than the last are omitted in the
figure.

There is an important concern with regards to the usage of the SMM for the calculation of
the reflectance of the sharp groove structures. This concern lies in the fact that the mode
index for a G-SPP rapidly approaches very large values at small gap thicknesses and does

35



3. Program Code

not approach the refractive index of gold in the limit of d → 0. The final stack of layers
will then contain layers with very large mode indices, which suddenly jump to the refractive
index of gold at the bottom of the stack. In the model used here layers are only included for
gap thicknesses down to 0.3 nm in order to avoid extremely large values of the mode index
in the last layers.

A further modification to the standard SMM is made in the final layer of the structure
by modifying the reflection phase in the reflection coefficient between the final layer and the
gold substrate. The appropriate value of this reflection phase is assumed to be close to that
for the reflection of a plane wave incident on an air-gold interface. As such the final reflec-
tion in the stack matrix, i.e. the reflection coefficient ρN−1,N in HN−1,N , is instead treated
as a reflection between air and gold. Calculations were performed in which this reflection
occurred under normal incidence as well as under the angle that would be obtained in the
final layer by applying Snell’s law at each interface of the stack of layers. The results of
these calculations deviated only slightly from each other, and as such the final model simply
models this reflection as normal incidence.

3.3 GFSIEM Code

The GFSIEM code follows the theory presented in Secs. 2.6 and 2.7. In this section the flow
of the code for the programs for each direction of light incidence is described. While the
overall flow is very similar for the two directions of light incidence, both are given here to
clarify the differences between the two programs.

3.3.1 Angle of Incidence in the xy Plane

When calculating the reflectance under an angle of incidence in the xy plane the GFSIEM
code:

1. Loads the structure coordinates and refractive index data for gold and sets angle of
incidence and wavelength interval.

2. Stores start and end points for each surface element and subelement and calculates the
length and normal vectors of each element. Sampling points are set to the middle of
each element.

3. Loops over wavelengths:

a) Interpolates refractive index and dielectric constant of gold at the specific
wavelength.

b) Sets up the incident H field in each surface element

c) Calculates the values of g1 and g2 as well as their normal derivatives with respect
to x and y for a predefined grid of values of (x−x′) and (y− y′), then subtracts a
Hankel function to remove the singularity, and finally stores these values in tables
g1, g2, ndg1x, ndg1y, ndg2x, and ndg2y.

d) Loops over surface elements r and r′:
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i. Extracts the appropriate coordinates and normal vectors for the current
element and its subelements.

ii. Interpolates in the tables of g1, g2, ndg1x, ndg1y, ndg2x, and ndg2y at the
appropriate values of (x − x′) and (y − y′), then adds a Hankel function to
restore the previously removed singularity, and finds final values of g1, g2,
ndg1, and ndg2.

iii. If r = r′ replaces the values of g1, g2, ndg1, and ndg2 at the middle subelement
(sampling point) with appropriate approximations to avoid a singularity.

iv. Calculates the matrix elements of A1, A2, B1, and B2 at the specific set of
(r, r′).

e) Creates the final matrix using A1, A2, B1, and B2 and creates and solves the
matrix equation to find the values of the H field and its normal derivative, φ, in
each surface element.

f) Uses the H and φ values to calculate the field in a specific point far away from the
surface and compares this to the value of the incident field to obtain the reflectance
at the given wavelength.

3.3.2 Angle of Incidence in the yz Plane

When calculating the reflectance under an angle of incidence in the yz plane the GFSIEM
code:

1. Loads the structure coordinates and refractive index data for gold and sets angle of
incidence and wavelength interval.

2. Stores start and end points for each surface element and subelement and calculates the
length and normal vectors of each element. Sampling points for large elements are set
to the starting point of the element, and sampling points for subelements are set to the
middle points of the subelements.

3. Loops over wavelengths:

a) Interpolates refractive index and dielectric constant of gold at the specific
wavelength.

b) Sets up the incident H and E fields in each surface element.

c) Calculates the values of g1 and g2 as well as their normal derivatives with respect
to x and y for a predefined grid of values of (x−x′) and (y− y′), then subtracts a
Hankel function to remove the singularity, and finally stores these values in tables
g1, g2, ndg1x, ndg1y, ndg2x, and ndg2y.

d) Loops over surface elements r and r′:

i. Extracts the appropriate coordinates and normal vectors for the current
element and its subelements.

ii. Interpolates in the tables of g1, g2, ndg1x, ndg1y, ndg2x, and ndg2y at the
appropriate values of (x − x′) and (y − y′), then adds a Hankel function to
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restore the previously removed singularity, and finds final values of g1, g2,
ndg1, and ndg2.

iii. If r = r′ or r = r′ + 1 or r = 1 ∧ r′ = N replaces the values of g1, g2,
ndg1, and ndg2 at the first subelement (sampling point) with appropriate
approximations to avoid a singularity.

iv. Weights each element of g1, g2, ndg1, and ndg2 by the weight functions N1

and N2 and calculates the matrix elements A(1,1), A(1,2), A(2,1), A(2,2), B(1,1),
B(1,2), B(2,1), and B(2,2) at the specific set of (r, r′).

e) Constructs the matrices A1, A2, B1, and B2 and creates and solves the matrix
equation to find the E and H fields and their normal derivatives, φE and φH , in
each surface element.

f) Uses the E, H, φE , and φH values to calculate the field in a specific point far away
from the surface and compares this to the value of the incident field to obtain the
reflectance at the given wavelength.
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Numerical Results 4
This chapter contains a presentation of the results produced with the different programs for
calculating the reflectance of periodic groove arrays. The calculations were performed for
groove arrays constructed in the same way as those presented in [9]. Reflectances were calcu-
lated using both the GFSIEM and the SMM. The reflectance calculations with the GFSIEM
include all reflected waves, and not only specular reflection.

The first GFSIEM programs were developed to test the different numerical techniques de-
scribed in Sec. 3.1.1 in order to optimize the convergence of the calculations. The goal of
the tests of the numerical techniques was to reproduce the results of Figs. 7a and 9a of [9] in
the simplest and fastest way possible. The results of the different combinations of numerical
techniques are presented in Sec. 4.1. It was found that the best results were obtained when
using subdivision of the surface elements without an angle calculation for elements close to
each other. For this reason all of the results presented in subsequent sections use this nu-
merical technique. The calculations were tested for convergence by running calculations with
significantly increased numbers of points. The results of these tests are presented in Sec. 4.2.

In Secs. 4.3-4.6 the results of the reflectance calculations using the GFSIEM and the SMM
are presented for angles of incidence in both the xy plane and the yz plane. All of the groove
arrays used in these calculations are made in a gold surface and have periods of Λ = 250

nm, groove depths of h = 500 nm, and 10 nm plateaus between neighbouring grooves. Seven
different groove bottom widths are used, namely 0.3, 1, 2, 5, 10, 20, and 50 nm. The groove
arrays are represented in the code as coordinate sets describing the surface of a single period
of the structure. The structure with a bottom width of 0.3 nm is represented by 700 surface
elements, while the structures with bottom widths of 1 and 2 nm are represented by 716
surface elements, and the structures with bottom widths of 5, 10, 20, and 50 nm are repre-
sented by 340 surface elements. Each surface element is further divided into 21 subelements.
The number of surface elements for a given structure is chosen such that the field along the
surface can be described properly. At smaller gap widths the field varies more rapidly with
distance along the surface, and as such more points are required to accurately describe the
field as the groove becomes narrower. For this reason the density of points is larger near the
bottom of the structures with smaller bottom widths.

For ease of reading Secs. 4.3-4.6 only contain reflectance graphs for the structures with
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bottom widths of 0.3 and 10 nm. A collection of reflectance graphs for all of the considered
structures and angles of incidence is included in Appendix B.

4.1 Test of Different Numerical Techniques

In this section the results of the different numerical techniques presented in Sec. 3.1.1 are
summarized. Here the numerical techniques will be referred to as angle calculation and
subdivision. In order to evaluate the numerical techniques in relation to each other, two sets
of reflectance spectra were produced with each combination of the numerical techniques, i.e.
with and without angle calculation and subdivision as well as without any of them. The
purpose of testing the different combinations of numerical techniques was to determine the
most efficient way to obtain accurate results. Figs. 7a and 9a of [9] were used as guidelines
when determining the quality of the results produced by each of the methods presented here.
In the first set of reflectance spectra the reflectance was calculated at normal incidence for
each of the different structures with bottom widths of 0.3, 1, 2, 5, 10, 20, and 50 nm. These
results are shown in Fig. 4.1. In the second set of spectra, which is shown in Fig. 4.2, the
reflectance was calculated at the angles of incidence of 0, 20, 40, 50, 60, 70, and 80◦ for the
structure with a bottom width of 0.3 nm.
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Figure 4.1. Reflectance of the different structures at normal incidence as calculated by the GFSIEM
with different numerical techniques.
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Figure 4.2. Reflectance of the structure with a bottom width of 0.3 nm under different angles of
incidence as calculated by the GFSIEM with different numerical techniques.

It is evident from Figs. 4.1 and 4.2 that the GFSIEM calculations do not converge prop-
erly without subdivision of the surface elements with the chosen amount of surface elements
for these structures. Regardless of whether or not the angle calculation is used, reflectance
values above 1 are seen for the calculations without subdivision. Since this does not make
sense physically, all of these results are considered inaccurate. The inaccuracy of these cal-
culations is seen to increase with increasing bottom width and increasing angle. However,
as mentioned previously the structures with larger bottom widths were represented by fewer
surface elements, and as such the error is more likely an indication that this lower amount
of surface elements is inadequate for properly describing the surface. In the calculations
with subdivision it is immediately evident that the calculations have produced better results,
since no reflectance values above 1 are seen. Furthermore, by comparison with the reference
graphs of [9] these results appear identical.

It was found that the quality of the results without subdivision could be improved by in-
creasing the amount of surface elements. However, even with twice the amount of surface
elements they still deviated significantly from those with subdivision. Since part of the crite-
ria used in determining the best numerical technique was the running time of the code, and
the running time scales as the square of the number of surface elements, it was concluded
that subdivision of the surface elements was required. The addition of the angle calculation
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was not sufficient to make up for the difference between subdivision and no subdivision, and
for most of the structures it actually made the calculations converge even more poorly.

As for the calculations with subdivision it is seen that the inclusion of the angle calcula-
tion makes very little, if any, difference. Both the results with and without angle calculation
and with subdivision are practically identical to the reference graphs of [9]. While the run-
ning time of the code with angle calculation is not noticeably longer than that of the code
without angle calculation, the code is more complex, where the ideal code would be as simple
and as accurate as possible. For these reasons it was decided not to use the angle calculation
in subsequent calculations, and as such all GFSIEM results presented in the next sections
were made with subdivision and without angle calculation.

4.2 Test of Convergence

In order to test the convergence of the GFSIEM calculations a set of calculations was
made in which the number of surface elements used to represent each structure was greatly
increased. If the GFSIEM calculations have converged, no change in the results should occur
by increasing the amount of points used in the calculations. As an example of the convergence
tests Fig. 4.3 shows the reflectance spectra of the structures with bottom widths of 0.3, 2,
and 10 nm as calculated by the GFSIEM with the structures represented by 700, 716, and
340 points, respectively, compared to the reflectance spectra with the structures represented
by 1272, 1272, and 632 points, respectively. It is seen that the two sets of calculations are
nearly identical, and as such it is concluded that the GFSIEM calculations have converged
with the lower amount of points.
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Figure 4.3. The reflectance of the structures with bottom widths of 0.3, 2, and 10 nm as calculated
by the GFSIEM with different numbers of surface elements.
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4.3. GFSIEM, xy Incidence

4.3 GFSIEM, xy Incidence

In this section the results of the reflectance calculations performed with the GFSIEM for
an angle of incidence in the xy plane are presented. The results were produced with the
code described in Sec. 3.3.1. Reflectance spectra were calculated for the different groove
bottom widths of 0.3, 1, 2, 5, 10, 20, and 50 nm in the wavelength range of 450-850 nm at
angles of incidence of 0, 20, 40, 50, 60, 70, and 80◦. Fig. 4.4 shows the reflectance spectra of
the structures with bottom widths of 0.3 and 10 nm. The reflectance spectra for the other
structures are shown in Appendix B.1.
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Figure 4.4. Reflectances of the structures with bottom widths of 0.3 and 10 nm under angles of
incidence in the xy plane as calculated by the GFSIEM.

It is seen that the overall reflectance is smaller for smaller bottom groove widths. For all of
the structures it is seen that an increasing angle of incidence increases the overall reflectance.
However, the angle of incidence also results in oscillations in the reflectance spectra, even
for structures where the reflectance at normal incidence does not exhibit oscillations. The
oscillations start at wavelengths near 600 nm, with the onset shifting slightly towards shorter
wavelengths with an increasing bottom width. An increasing bottom width also leads to a
reduction in the frequency of the oscillations. This is clearly seen from the fact that the
reflectance spectra for the structure with a bottom width of 0.3 nm show four periods of
oscillations, whereas only two periods are seen in the spectra for the structure with a bottom
width of 10 nm. The positions of the maxima and minima of the oscillations are constant
across all of the tested angles of incidence for each structure. It is observed that the magni-
tudes of the maxima in the oscillations increase with an increasing angle of incidence, and for
all structures except the one with a bottom width of 0.3 nm the magnitudes of the minima
decrease with an increasing angle of incidence.

The structures with bottom widths of 1, 2, and 5 nm are particularly interesting in this
respect. All of these structures exhibit reflectance minima with magnitudes very close to 0
at wavelengths where the structures display high reflectance at normal incidence. A very
strong dependence on the bottom groove width is seen for these minima, which are located
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4. Numerical Results

at wavelengths of roughly 795, 720, and 650 nm for the bottom widths of 1, 2, and 5 nm,
respectively. The reflectance minima correspond to maxima of both absorption and emis-
sion, indicating that the structures can be tailored to a specific requirement for absorption
or emission.

While all of the structures exhibit reflectances very close to 0 at normal incidence and short
wavelengths (below 500-600 nm depending on the structure) it is seen that the reflectance in
this wavelength range increases significantly at larger angles of incidence. Especially notable
is the difference between the angles of 70 and 80◦, where an almost two-fold increase in re-
flectance is seen for most of the structures. Another effect of the increasing angle of incidence,
which is seen in this wavelength range, is the presence of sharp changes in the reflectances at
wavelengths just below 500 nm. These features arise from diffraction effects, which become
prevalent at larger angles of incidence. This can be seen from the grating equation,

Λ (sin θi + sin θm) = mλ, (4.1)

which describes the condition for diffraction maxima. Here Λ is the period of the grating, θi
is the incident angle, θm is the angle at which the diffracted light exhibits maximum intensity,
λ is the wavelength of the incident light, and m is an integer. From Eq. (4.1) it is seen that
diffraction at normal incidence only occurs for periods Λ ≥ λ, whereas an increasing angle of
incidence leads to diffraction effects at wavelengths longer than the period.

4.4 SMM, xy Incidence

In this section the results of the reflectance calculations performed with the SMM for an
angle of incidence in the xy plane are presented. These results were produced with the code
described in Sec. 3.2. Reflectance spectra were calculated for the different groove bottom
widths of 0.3, 1, 2, 5, 10, 20, and 50 nm in the wavelength range of 600-850 nm at angles
of incidence of 0, 20, 40, 50, 60, 70, and 80◦. Fig. 4.5 shows the reflectance spectra of
the structures with bottom widths of 0.3 and 10 nm. The reflectance spectra for the other
structures are shown in Appendix B.2. The reflectance calculations using the SMM have only
been performed for wavelengths in the range of 600-850 due to the fact that gold behaves
as a dielectric material at short wavelengths. Since a dielectric material cannot support
G-SPP’s, the physical interpretation used in the SMM does not hold at short wavelengths.
Nevertheless, the reflectance graphs calculated with the SMM are plotted with wavelength
axes ranging from 450 to 850 nm to facilitate comparison with the GFSIEM results.
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4.5. GFSIEM, yz Incidence
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Figure 4.5. Reflectances of the structures with bottom widths of 0.3 and 10 nm under angles of
incidence in the xy plane as calculated by the SMM.

It is immediately evident that the results of the SMM are remarkably similar to those of the
GFSIEM. For this reason the features seen in the reflectance spectra will not be discussed
here, since everything that was mentioned in Sec. 4.3 still applies.

Perhaps the most apparent similarity between the results of the two methods is found in
the positions of the minima and maxima in the reflectance spectra. In the case of the larger
bottom widths it is seen that the degree of similarity between the GFSIEM and the SMM
decreases, as the magnitudes of the reflectance spectra differ slightly, and in some cases the
positions of the minima or maxima are slightly shifted. However, the same features are clearly
reproduced in the spectra produced with the SMM. It is remarkable that such a large degree
of similarity is obtained with the two very different methods employed here, especially since
the SMM is a highly simplified model. The fact that the SMM produces very similar results
to the exact GFSIEM supports the physical interpretation that the low reflectance is caused
by the coupling of light into G-SPP’s, and it further indicates that the interaction between
the light and the structures is dominated by this coupling effect. It should be noted that
in the SMM used here, it is assumed that all of the incident light couples to G-SPP’s. A
contributing factor to the similarity between the SMM results and the GFSIEM results is
thus the fact that the investigated structures have very small plateaus between neighbouring
grooves, such that nearly 100% of the light couples to G-SPP’s. If the plateaus were larger it
would be necessary to incorporate some coupling factor into the first layer of the structure in
the SMM in order to accommodate for the lower amount of light coupling into the structure.

4.5 GFSIEM, yz Incidence

In this section the reflectance spectra for the angles of incidence of 0, 20, 40, 50, 60, and 70◦ in
the yz plane as calculated with the GFSIEM are presented. The spectra were produced with
the code described in Sec. 3.3.2. The results for the structures with bottom widths of 0.3 and
10 nm are shown in Fig. 4.6, while the results for all of the structures are shown in Appendix
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4. Numerical Results

B.3. Results have not been included for angles larger than 70◦, since the z components of the
fields become small compared to the total fields at large angles of incidence in the yz plane.
This, in turn, results in poor convergence of the GFSIEM calculations as the implementation
used here is based on the z components of the fields.
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Figure 4.6. Reflectances of the structures with bottom widths of 0.3 and 10 nm under angles of
incidence in the yz plane as calculated by the GFSIEM.

As with the results for an angle of incidence in the xy plane these results show a tendency
for lower overall reflectances for smaller bottom widths, as well as an oscillatory behaviour in
the spectra. The frequency of the oscillatory behaviour is larger for smaller bottom widths.
Unlike the results for angles of incidence in the xy plane it is seen that the positions of
the reflectance maxima and minima shift towards shorter wavelengths at larger angles of
incidence. From the relation k2

s = k2
0ε−k2

z it is seen that the behaviour may be attributed to
the fact that an increasing angle of incidence in the yz plane increases the magnitude of kz,
which in turn reduces ks. The reduction of ks naturally leads to a shift in resonances towards
shorter wavelengths. It is worth noting that for small bottom widths the reflectance spectra
have several minima where the reflectance is close to zero. For larger bottom widths minima
in the spectra are still observed, although with larger reflectance values. Furthermore, an
increasing angle of incidence is observed to increase the overall reflectance as was the case
for an angle of incidence in the xy plane. Here, however, the increase is smaller than for an
angle of incidence in the xy plane.

4.6 SMM, yz Incidence

In this section the reflectance spectra for the angles of incidence of 0, 20, 40, 50, 60, and 70◦

in the yz plane as calculated by the SMM are presented. The spectra were produced with
the code described in Sec. 3.2. The results for the structures with bottom widths of 0.3 and
10 nm are shown in Fig. 4.7, while the results for all of the structures are shown in Appendix
B.4.
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4.6. SMM, yz Incidence
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Figure 4.7. Reflectances of the structures with bottom widths of 0.3 and 10 nm under angles of
incidence in the xy plane as calculated by the SMM.

Comparing the stack matrix results to those of the GFSIEM reveals a high degree of similar-
ity. The results for the structures with smaller bottom widths exhibit notably high degrees
of similarity. A few smaller discrepancies are seen, however. Some of the positions of the
maxima and minima are shifted slightly, and the magnitude of the reflectance is also slightly
off in some cases. The latter is clearly seen for the structure with a bottom width of 0.3 nm
at an angle of incidence of 70◦, where the magnitude of the reflectance peak between 700 and
800 nm is roughly 15% smaller than that seen with the GFSIEM. In general the discrepancies
between the GFSIEM and SMM are more noticeable at larger angles of incidence. The larger
discrepancies between the SMM and the GFSIEM seen for this direction of light incidence
compared to the case of light incidence in the xy plane could be caused by the approxima-
tions used in describing the situation. For the case of light incidence in the yz plane, the
ray path is calculated purely from a geometric optics perspective and follows from Snellâ€™s
law and the increasing mode index. In reality the situation might be more complex, leading
to the minor inaccuracies seen here. The overall tendencies seen in the reflectance spectra
calculated with the GFSIEM are still clearly reproduced with the SMM, however.

It is important to note that the use of s polarization in the SMM for an angle of inci-
dence in the yz plane is essential for obtaining results with as high a degree of similarity to
the GFSIEM results as seen here. If p polarization is used the reflectance spectra deviate
significantly from those of the GFSIEM. This can be understood by considering the direction
of the field compared to the structure as shown in Fig. 3.3.
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Discussion and Conclusion 5
In the previous chapters a theoretical foundation of the physics of ultra-sharp plasmonic
grooves was given. The absorption processes in such structures are dominated by the cou-
pling of light into G-SPP’s. The physics and the conditions for the existence of G-SPP’s were
presented in Sec. 2.1. Following this two approaches for modelling the absorption of light in
two-dimensional structures were described, namely the SMM presented in Sec. 2.2 and the
GFSIEM presented in Secs. 2.3 through 2.7. In Sec. 2.8 it was described how the absorption
of light is related to thermal emission, as this is a highly relevant consideration in applications
such as TPV and CSP. The reflectance spectra of ultra-sharp plasmonic grooves were then
calculated numerically using the GFSIEM and the SMM. In this chapter we summarize and
discuss our theoretical work and the obtained numerical results.

Initially a program using the GFSIEM was constructed to calculate the scattering of light by
a cylinder, when the light is incident in a plane perpendicular to the longitudinal direction.
The program was then expanded such that the reflectance spectra of periodic structures
could be calculated. However, the computation time for a reflectance spectrum was so long
that it would become impractical for larger problems. As such the program underwent an
optimization process, which led to several modifications, the most important of which was
to tabulate the Green’s function in a large grid. In this manner the Green’s function could
be found through interpolation in the grid, rather than having to calculate it separately for
each surface point. Before tabulating the Green’s function the singularity was subtracted in
order to obtain smoothly varying values, and after interpolation it was added again. The
tabulation reduced the computation time significantly, although the structures still had to
be represented by large amounts of points in order for the results to converge. In order to
improve the convergence and reduce the required computation time two different numerical
techniques were tested, namely subdivision of surface elements and an angle calculation for
elements close to each other. It was found that the convergence of the calculations improved
significantly by using subdivision, such that the number of surface elements required to rep-
resent a given structure was reduced. This, in turn, greatly reduced the computation time.
The inclusion of the angle calculation did not reduce the required amount of surface elements,
and as such this numerical technique was not used in the final program.

After introducing the optimizations mentioned above, the program was used to calculate
the reflectance spectra of periodic arrays of ultra-sharp grooves in a gold surface. The groove
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arrays used in the calculations had periods of Λ = 250 nm, groove depths of h = 500 nm,
and 10 nm plateaus between neighbouring grooves. Reflectance spectra were calculated for
grooves with bottom widths of 0.3, 1, 2, 5, 10, 20, and 50 nm in the wavelength range of
450-850 nm at angles of incidence of 0, 20, 40, 50, 60, 70, and 80◦ in the xy plane. The
purpose of this was to examine the changes in the absorption properties of a gold surface
caused by the introduction of these structures. Several interesting features were seen from
the reflectance spectra. The most immediately apparent feature is a significant reduction
in the overall reflectance, with smaller groove bottom widths exhibiting lower reflectances.
At increasing angles of incidence the overall reflectance increases, although the effect is very
small for small angles of incidence (∼ 20◦). At larger angles of incidence oscillations appear
in the reflectance spectra. The magnitude of the oscillations increases with increasing angle
of incidence, although the positions of the maxima and minima of the oscillations remain the
same. These features could be utilized in devices, where the absorption can be controlled
by simply changing the angle of the device relative to the incident light. In order to get
a complete picture of the radiative properties of the structures reflectances should also be
calculated for infrared wavelengths as well as for a continuum of incidence angles. This is
essential for the calculation of the thermal emission of a structure, since integration over all
wavelengths and angles of incidence is required as described in Sec. 2.8. Due to the required
computation time this becomes a daunting task, however. As such a significant amount of
time can be saved by investigating one part of the spectrum, e.g. the visible wavelength
range, and then using these results to determine which structures warrant further investiga-
tions in other wavelength ranges.

As an alternative to the time consuming GFSIEM, a program using the SMM was con-
structed. This program was based on the approximation that the light incident on the
structure is coupled directly into a G-SPP propagating downward into the structure as ex-
plained in Sec. 3.2. This approximation is based on an effective medium approach, where
the structure is represented as layers with mode indices corresponding to the mode indices
of a G-SPP. The SMM program was used to calculate the reflectance spectra of the same
structures at the same angles of incidence as was done with the GFSIEM. Comparing the
results of the GFSIEM and the SMM shows remarkable similarities for small bottom widths.
This neatly demonstrates that the absorption processes in the structures are dominated by
light coupling into G-SPP’s. The strength of the SMM lies in its speed, as it is several
thousand times faster than the GFSIEM. However, the price to be paid in using the SMM
lies in the fact that it is based on approximations, and as such it does not produce exact re-
sults. Furthermore the model only works when the incident light couples to G-SPP’s, which
only occurs for p polarized light, and only at certain wavelengths due to the real part of
the dielectric function of gold becoming non-negative at some wavelengths. Despite these
shortcomings, the method quickly provides an overview of the reflection properties of a given
structure for a large range of visible wavelengths.

After producing reflectance spectra for light incidence in the xy plane, the next step was
to construct a program capable of calculating reflectance spectra for light incidence in the
yz plane. Since little attention had been given to this problem previously, new theory had
to be developed to expand the GFSIEM such that it could be used for a general direction of
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5. Discussion and Conclusion

light incidence. One of the challenges in this regard lies in the fact that, depending on the
direction of light incidence, the electric and magnetic fields may be coupled, and as such the
complexity of the problem increases significantly. However, since the computation time pri-
marily scales with the square of the number of surface elements, the inclusion of the coupling
between the fields does not noticeably affect the computation time.

This program was used to calculate the reflectance spectra for the same groove structures
with bottom widths of 0.3, 1, 2, 5, 10, 20, and 50 nm in the wavelength range of 450-850 nm
at angles of incidence of 0, 20, 40, 50, 60, and 70◦ in the yz plane. It was observed that the
overall reflectance was generally lower than for the case of light incidence in the xy plane.
Furthermore, the reflectance minima shift towards shorter wavelengths as the angle increases.
As the angle increases, so does the magnitude of the wavevector kz, which in turn reduces
the in-plane wavevector, ks. The reduction in ks leads to resonances at shorter wavelengths.
For smaller bottom widths several minima in the reflectance spectra with magnitudes close
to zero are seen. This, combined with the angular dependence of the resonances, may be
used in the design of a device to sort out desired visible light. The wavelength that is sorted
out could then be mechanically controlled by changing the angle of the device in relation to
the incident light. As before reflectance spectra were calculated with an SMM program, and
these results were then compared to the results produced by the GFSIEM. The comparison
shows that both methods produce similar results with slight variations in peak positions and
magnitudes of the reflectances, but overall the results show the same tendencies. The simi-
larity is most notable for smaller bottom widths.

Several topics are interesting for further work. Having examined several groove structures,
it is clear that the bottom widths have to be small in order to get significant absorption
of visible light, but it remains to be examined whether these structures are suitable for use
in applications such as TPV and CSP. It is therefore of interest to examine the reflectance
properties of these structures in the infrared spectrum. Furthermore, the primary method
for obtaining very small bottom widths is focused ion beam milling [8], which is a time
consuming and expensive process. As such it would be interesting to investigate the use of
other materials, which can also support G-SPP’s in similar structures, such as chromium,
nickel, platinum, and palladium. These materials are more lossy than gold, and as such the
requirement to the bottom groove width can be relaxed [9]. Other plasmonic materials such
as TiN [37] could also be of interest. Another relevant aspect to investigate further is the
incorporation of non-local effects in the GFSIEM calculations. Non-local effects are likely to
influence the properties of the structures with small bottom widths, and it is possible that
the model might more accurately predict the properties of a given structure by taking these
into account.
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Derivations A
A.1 Determinant for the G-SPP Mode Index

This section shows the process of reducing Eqs. (2.20), (2.21), (2.23), and (2.24) to a set of
two equations with two unknowns and finding the determinant of this set of equations. The
starting point is the equations

0 = −A+Be−iκyId + CeiκyId, (A.1)

0 = B + C −D, (A.2)

0 =
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0εM − β2. (A.6)

A and D are found from Eqs. (A.1) and (A.2) as

A = Be−iκyId + CeiκyId, (A.7)

D = B + C. (A.8)

Eq. (A.7) is inserted into Eq. (A.3) to give
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Eq. (A.8) is inserted into Eq. (A.4) to give
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The Eqs. (A.11) and (A.13) then constitute the desired set of two equations with two
unknowns. The determinant of this set of equations is then
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A.2 Normalization Constant

In this section we wish to evaluate the integral
∫ ∞

−∞
ei(k−k

′)xdx. (A.17)

To do this we consider the integral

lim
∆→∞

∫

k′

∫ x=∆

x=−∆
e−i(k−k

′)xf(k′)dxdk′ = 2πf(k). (A.18)

Here we use the residue theorem to evaluate the integral over x as

∫

k

[
ei(k−k

′)∆ − e−i(k−k′)∆
i(k − k′)

]
f(k′)dk′ = 2πi

ei0

−i f(k) = 2πf(k). (A.19)

The fact that the function f is evaluated at k after the integration is the equivalent of having
integrated over a delta function and as such we see that the integral (A.17) is equal to
2πδ(k − k′)
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A.3. Field Equations

A.3 Field Equations

In this section we wish to describe the electric and magnetic field relations for a field
propagating in the z direction. Our magnetic field is then on the form

H = H(x, y)e−ikzz. (A.20)

For such fields it is then clear that we may express the operator ∇ as

∇ = ∇s − ikz ẑ. (A.21)

In the absence of a current density, J, the electric and magnetic fields are related through
Maxwell’s equations as

∇×E = −iωµ0H, (A.22)

∇×H = iωε0εE. (A.23)

Decomposing Eq. (A.22) into terms for the in-plane component (x, y) and z component
yields

∇s ×Es + ∇s × ẑEz − ikz ẑ ×Es = −iωµ0(Hs + ẑHz) (A.24)

m
− iωµ0Hs = ∇s × ẑEz − ikz ẑ ×Es. (A.25)

Similarly decomposing Eq. (A.23) gives

∇s ×Hs + ∇s × ẑHz − ikz ẑ ×Hs = iωε0ε(Es + ẑEz) (A.26)

m
iωε0εEs = ∇s × ẑHz − ikz ẑ ×Hs. (A.27)

We now insert Eq. (A.27) into Eq. (A.25) and obtain

ω2µ0ε0εHs = iωε0ε∇s × ẑEz − ikz ẑ × (∇s × ẑHz − ikz ẑ ×Hs). (A.28)

In order to reduce this equation we apply the following relations

ẑ × (ẑ ×Hs) = −Hs, (A.29)

ẑ ×∇s × ẑ = ∇s, (A.30)

and get that the relation between the fields is given as
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z . Similarly we may insert Eq. (A.25) into Eq. (A.27) and get
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m

Es =
−i
k2
s

(kz∇sEz + ωµ0ẑ ×∇sHz). (A.35)
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A. Derivations

From Eqs. (A.32) and (A.35) we see that the in-plane components of the magnetic and
electric fields may be described purely from the z components of the electric and magnetic
fields.

A.4 Boundary Conditions

In this section we consider the field expressions of Eqs. (A.32) and (A.35). Using the
appropriate boundary conditions we derive expressions relating the fields across an interface.
Our boundary condition is that the tangential components of the magnetic and electric fields
are conserved across the interface. As the surface normal is orthogonal to the tangential part
of the field, we may express the boundary condition as

n̂×H1s = n̂×H2s, (A.36)

n̂×E1s = n̂×E2s, (A.37)

which results in

Ez1 = Ez2, (A.38)

Hz1 = Hz2. (A.39)

We now insert Eq. (A.32) into (A.36) and for the sake of transparency we here consider
the two terms separately. For the first term we use the vector identity A × (B × C) =

B(A ·C)−C(A ·B)) and get

n̂× (ẑ ×∇s)Hz = (ẑn̂ ·∇s −∇s(n̂ẑ))Hz = ẑn̂ ·∇sHz, (A.40)

while for the second term we use the same vector identity and ẑ × (ẑ ×A) = −A to get

n̂×∇sEz = −n̂× (ẑ × [ẑ ×∇sEz]) (A.41)

= −ẑ(n̂[ẑ ×∇s])− [ẑ ×∇sEz]n̂ · ẑ, (A.42)

where the last term vanishes as n̂ is perpendicular to ẑ. We now use the identity

A · (B×C) =

∣∣∣∣∣∣∣

Ax Ay Az
Bx By Bz
Cx Cy Cz

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

Cx Cy Cz
Ax Ay Az
Bx By Bz

∣∣∣∣∣∣∣
= C · (A×B), (A.43)

and see that

n̂ · (ẑ ×∇sEz) = (∇sEz)(n̂× ẑ), (A.44)

with t̂ = n̂× ẑ. For the electric field the tangential component on either side of the interface
may then be expressed as

n̂×E1s = − ikz
k2
s1

(−ẑ)(t̂ ·∇sEz) +
i

k2
s1

ωµ0ẑn̂ ·∇sHz1, (A.45)

n̂×E2s = − ikz
k2
s2

(−ẑ)(t̂ ·∇sEz) +
i

k2
s2

ωµ0ẑn̂ ·∇sHz2. (A.46)
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A.5. Matrix Element Approximation

In accordance with the boundary condition we equate these two expressions and get
i

k2
s2

ωµ0n̂ ·∇sHz2 +
ikz
k2
s2

t̂ ·∇sEz =
i

k2
s1

ωµ0n̂ ·∇sHz1 +
ikz
k2
s1

t̂ ·∇sEz (A.47)

m

n̂ ·∇sHz2 =
k2
s2

k2
s1

n̂ ·∇sHz1 + kz(
ks2
ks1
− 1)

1

ωµ0
t̂ ·∇sEz (A.48)

m

n̂ ·∇sHz2 =
k2
s2

k2
s1

n̂ ·∇sHz1 +
kz
k0

k2
0(ε2 − ε1)

k2
s1

√
ε0

µ0
t̂ ·∇sEz, (A.49)

where Eq. (A.49) is our first boundary condition for the fields. Through similar steps we
find that

n̂×H1s = ẑ(
i

k2
s1

[kz t̂ ·∇sHz]−
i

k2
s1

ωε0ε1n̂ ·∇sEz1), (A.50)

n̂×H2s = ẑ(
i

k2
s2

[kz t̂ ·∇sHz]−
i

k2
s2

ωε0ε1n̂ ·∇sEz2). (A.51)

Equating Eqs. (A.50) and (A.51) we find that

− i

k2
s1

ωε0ε1n̂ ·∇sEz1 +
i

k2
s1

kz t̂∇sHz = − i

k2
s2

ωε0ε2n̂ ·∇sEz2 +
i

k2
s2

kz t̂∇sHz (A.52)

m

n̂ ·∇sEz2 =
k2
s2

k2
s1

ε1

ε2
n̂ ·∇sEz1 + kz(1−

k2
s2

k2
s1

)
1

ωε0ε2
t̂ ·∇sHz (A.53)

m

n̂ ·∇sEz2 =
k2
s2

k2
s1

ε1

ε2
n̂ ·∇sEz1 +

kz
k0ε2

k2
0(ε1 − ε2)

k2
s1

√
µ0

ε0
t̂ ·∇sHz, (A.54)

where Eq. (A.54) is our second boundary condition for the fields.

A.5 Matrix Element Approximation

In this section, we show how the integral over the normal derivative of the Green’s function
may be approximated as 1/2. Consider a point close to a surface element as depicted in Fig.
A.1.

dl′

n̂′

α

dx

dθ

r

r′

Figure A.1. The geometry of a point r close to a surface point r′ used to approximate the normal
derivative of the Green’s function.
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A. Derivations

For small |r − r′| we have that the Green’s function can be approximated as a logarithmic
function, i.e.

g ≈ −1

2π
ln

(
k|r− r′|

2

)
. (A.55)

The normal derivative of this function is then given as

n̂′ ·∇′g dl′ = −1

2π

r− r′

|r− r′|2 · n̂
′dl′. (A.56)

The small length dx is given as

dx = |r− r′|dθ, (A.57)

and the angle α is given as

cosα = −n̂′ · r− r′

|r− r′| =
dx

dl
. (A.58)

Equating Eqs. (A.57) and (A.58) we get

−n̂′ · r− r′

|r− r′| =
|r− r′|dθ

dl′
. (A.59)

Rewriting this term we get an expression for the angle θ given as

dθ = −n̂′ · r− r′

|r− r′|2dl
′. (A.60)

From this equation we see that if the observation point is close to the surface element, we get
an angle of θ = π and we see by inserting this into Eq. (A.56) that the normal derivative of
the Green’s function may be approximated as 1/2. Alternatively the angle may be calculated
and a better approximation may then be expressed as θ/2π.
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Results B
This chapter contains all of the results of the reflectance calculations with both the GFSIEM
and the SMM. The results are presented in four sections, which correspond to the four sections
in the main results chapter, Ch. 4. These sections are GFSIEM with an angle of incidence
in the xy plane, SMM with an angle of incidence in the xy plane, GFSIEM with an angle of
incidence in the yz plane, and SMM with an angle of incidence in the yz plane. For easier
identification graphs are titled in the format Method, Bottom width of structure, Direction of
incidence. All graphs are plotted with the same axis values to facilitate comparison between
the different results.

B.1 GFSIEM, xy Incidence
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Figure B.1. Reflectances of the structures with bottom widths of 0.3 and 1 nm under angles of
incidence in the xy plane as calculated by the GFSIEM.
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B. Results
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Figure B.2. Reflectances of the structures with bottom widths of 2 and 5 nm under angles of
incidence in the xy plane as calculated by the GFSIEM.
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Figure B.3. Reflectances of the structures with bottom widths of 10 and 20 nm under angles of
incidence in the xy plane as calculated by the GFSIEM.
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Figure B.4. Reflectances of the structure with a bottom width of 50 nm under angles of incidence
in the xy plane as calculated by the GFSIEM.
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B.2. SMM, xy Incidence

B.2 SMM, xy Incidence
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Figure B.5. Reflectances of the structures with bottom widths of 0.3 and 1 nm under angles of
incidence in the xy plane as calculated by the SMM.
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Figure B.6. Reflectances of the structures with bottom widths of 2 and 5 nm under angles of
incidence in the xy plane as calculated by the SMM.
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Figure B.7. Reflectances of the structures with bottom widths of 10 and 20 nm under angles of
incidence in the xy plane as calculated by the SMM.
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B. Results
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Figure B.8. Reflectances of the structure with a bottom width of 50 nm under angles of incidence
in the xy plane as calculated by the SMM.

B.3 GFSIEM, yz Incidence
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Figure B.9. Reflectances of the structures with bottom widths of 0.3 and 1 nm under angles of
incidence in the yz plane as calculated by the GFSIEM.
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Figure B.10. Reflectances of the structures with bottom widths of 2 and 5 nm under angles of
incidence in the yz plane as calculated by the GFSIEM.
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B.4. SMM, yz Incidence
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Figure B.11. Reflectances of the structures with bottom widths of 10 and 20 nm under angles of
incidence in the yz plane as calculated by the GFSIEM.
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Figure B.12. Reflectances of the structure with a bottom width of 50 nm under angles of incidence
in the yz plane as calculated by the GFSIEM.

B.4 SMM, yz Incidence
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Figure B.13. Reflectances of the structures with bottom widths of 0.3 and 1 nm under angles of
incidence in the yz plane as calculated by the SMM.
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B. Results
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Figure B.14. Reflectances of the structures with bottom widths of 2 and 5 nm under angles of
incidence in the yz plane as calculated by the SMM.
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Figure B.15. Reflectances of the structures with bottom widths of 10 and 20 nm under angles of
incidence in the yz plane as calculated by the SMM.
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Figure B.16. Reflectances of the structure with a bottom width of 50 nm under angles of incidence
in the yz plane as calculated by the SMM.

62



Modeling the Reflectivity of Plasmonic Ultra-sharp Groove
Arrays: General Direction of Light Incidence

Michael Odgaard,1, 2 Mads G. Laursen,1, 2 and Thomas Søndergaard1, ∗

1Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst, Denmark
2These authors contributed equally

compiled: June 3, 2014

The reflectivity of ultra-sharp periodic groove arrays in a gold surface is studied for a general direction of
light incidence. This includes the case of incident light propagating along the grooves. Two efficient numerical
modeling approaches are presented, namely a simple and approximate stack matrix method that uses the
mode-index of gap-plasmon polaritons as an effective index, and a rigorous Green’s Function Surface Integral
Equation Method (GFSIEM). The results of the highly simple stack matrix method show remarkable similarity
to the exact results obtained with the rigorous GFSIEM, which reinforces the idea that the physics of light
absorption in such structures is dominated by the coupling of light into plasmons.

OCIS codes: (240.6680) Surface plasmons, (250.5403) Plasmonics, (050.1755) Computational elec-
tromagnetic methods, (050.2065) Effective medium theory, (050.6624) Subwavelength structures.

http://dx.doi.org/10.1364/XX.99.099999

1. Introduction
The structuring of metal surfaces on a sub-wavelength
scale is interesting for creating materials with absorp-
tion selective properties that are useful in fields such
as thermophotovoltaics and concentrated solar power.
In particular, black materials that are based on metal
nanostructures have been the focus of several articles
[1–5]. In this paper we are concerned with a so-called
plasmonic black metal (PBM) based on a periodic array
of ultra-sharp grooves in a metal surface. Such a struc-
ture can drastically modify the optical properties of a
metal surface for a broad wavelength range from being
shiny and highly reflecting into a broadband absorber or
black surface [6].

The optical properties of a PBM are strongly con-
nected to the coupling of incident light into gap-surface-
plasmon-polaritons (G-SPP’s), which are waves propa-
gating in the dielectric gap between the metal groove
walls. More specifically, the structures under considera-
tion in this paper are one-dimensionally periodic arrays
of ultra-sharp grooves in a gold surface constructed in a
way such that they allow for adiabatic nanofocusing of
G-SPP’s. This is done by designing convex groove walls
with slopes such that the reflection for a G-SPP propa-
gating into the groove is minimized [7]. We will consider
groove arrays with periods of 250 nm, groove depths of
500 nm, bottom widths in the range of 0.3-50 nm, and
a 10 nm plateau between neighboring grooves. It was
recently demonstrated that this type of surface may be

∗ Corresponding author: ts@nano.aau.dk

used as a broadband low-dispersion polarizer for ultra-
short laser pulses [8]. In general it is observed that the
absorption properties are sensitive to the precise surface
geometry and the angle of light incidence. The modeling
of these structures when considering a general direction
of light incidence is the focus of this paper.

It is common in many theoretical studies of the optics
of one-dimensionally periodic gratings to consider only a
direction of light incidence in the plane spanned by the
surface normal vector and the direction of periodicity
(see e.g. [7, 9–14]). This restriction is convenient be-
cause it greatly simplifies the theoretical problem. How-
ever, this also means that out of convenience a general
direction of light incidence on such structures is rarely
considered. Some exceptions are that in [15] a general di-
rection of light incidence was considered for non-periodic
structures, while for periodic nanostructures the rigor-
ous coupled wave analysis (RCWA) has been applied to
a general direction of light incidence, although only for
small angles [16].

For the purpose of modeling our periodic arrays of
ultra-sharp grooves in a gold surface for a general di-
rection of light incidence we present two efficient nu-
merical methods, namely an approximate Stack Matrix
Method (SMM) and a rigorous Green’s Function Surface
Integral Equation Method (GFSIEM). In the SMM we
take advantage of the physical interpretation that wave
propagation in the grooves is governed almost entirely
by G-SPP waves. On the other hand the GFSIEM is
a rigorous and highly efficient method for the model-
ing of general electromagnetic scattering problems [17–
22]. Although the GFSIEM has been extensively used
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for two-dimensional scattering problems, not much at-
tention has been given to formulating a GFSIEM for
solving scattering problems under a general direction of
light incidence.

The paper is structured as follows. In Sec. 2 we
present a simple SMM for modeling light absorption in
ultra-sharp plasmonic grooves. In Sec. 3 we provide the
theoretical foundations of a GFSIEM for a general di-
rection of light incidence, and we provide a numerical
approach to the solution of the integral equations gov-
erning the behaviour of the electric and magnetic fields.
In Sec. 4 we compare the reflectivity of periodic arrays of
ultra-sharp grooves as calculated with the simple stack
matrix method and the exact GFSIEM model. In Sec.
5 we offer our conclusion.

2. Stack Matrix Method
The SMM is a method used to determine the reflectance
and transmittance of an optical system consisting of
a stack of homogeneous layers with parallel interfaces.
While the groove structures considered in this paper do
not consist of stacks of parallel layers, we will never-
theless as a simple model represent the structures as
stacks of layers with refractive index corresponding to
the mode index for a G-SPP propagating in a gap of
the same width as the groove width at that layer. This
principle is shown in Fig. 1. G-SPP’s and the concept
of an effective mode index have previously been studied
by many groups [23–27]. The idea of using an effec-
tive mode index to model the propagation of plasmons
with a SMM has been applied previously to model Bragg
gratings with weakly bound modes [28, 29].

The basic principles of the SMM are outlined here;
for a more thorough description see eg. [30]. Consider
a stack of N horizontal parallel layers. In each layer
the electric field will be described by the field compo-
nents Edj and E′

dj propagating downwards and the field

components Euj and E′
uj propagating upwards. The un-

primed and primed notations refer to the fields on the
upper and lower sides of the layer, respectively. At each
interface the fields are subject to reflection and transmis-
sion, which is described through the interface transition
matrix

Hij =
1

τij

[
1 ρij
ρij 1

]
, (1)

where ρij and τij are the Fresnel reflection and transmis-
sion coefficients between layers i and j. The propagation
through a layer is described by the layer propagation
matrix

Lj =

[
exp(−iβjdj) 0

0 exp(iβjdj)

]
, (2)

where dj is the thickness of layer j, and βj is a phase fac-

tor given as β2
j = k20n

2
j −k20n

2
1 sin

2(θ). Here k0 = 2π/λ0,
with λ0 being the wavelength of the incident light, nj

is the refractive index of layer j, and θ is the angle of
incidence in the first layer. The matrices Hij and Lj for

the entire stack of N layers are combined into a single
stack matrix

H12L2 . . .HN−2,N−1LN−1HN−1,N = S1N =

[
S11 S12

S21 S22

]
,

(3)
which describes the relation between the fields in the
incident layer, 1, and the final layer, N , through the
equation

[
E′

u1

E′
d1

]
= S1N

[
EuN

EdN

]
. (4)

As layer N is the final layer of the stack EuN = 0, and
the relation (4) gives the final reflectance of the entire
system as

R =

∣∣∣∣
E′

u1

E′
d1

∣∣∣∣
2

=

∣∣∣∣
S12

S22

∣∣∣∣
2

. (5)

An effective mode index for a G-SPP in a part of the
groove of width d can be found as follows. Consider a
G-SPP propagating in the x direction along a dielectric
material sandwiched between two parallel metal surfaces
located at y = 0 and y = d, respectively. The propagat-
ing G-SPP is p polarized, and as such the corresponding
field can be expressed as H = ẑH. The magnetic field
as a function of x and y can be written as

H(x, y) = exp (−ikG-SPP x)f(y), (6)

where f(y) is an appropriate function describing the
variation in the y-direction, and kG-SPP is the propa-
gation constant of the G-SPP. kG-SPP can be expressed
as kG-SPP = nmk0, where nm is the effective mode index
of the G-SPP. With appropriate boundary conditions
and constructions of the function f(y) we arrive at the
following expression, which can be solved on a computer
to determine the mode index:

[1− exp (2iκyId)]

(
κ2
yI

ε2I
+

κ2
yM

ε2M

)

−2κyMκyI

εMεI
[1 + exp (2iκyId)] = 0, (7)

where κyM = (k20εM − k2G-SPP)
1/2 and κyI = (k20εI −

k2G-SPP)
1/2, with εM and εI being the dielectric con-

stants of the metal and the dielectric, respectively. The
expression given in (7) was used as the starting point
for the mode index calculations performed in relation
to the present work. These calculations were done by
calculating the value of the left-hand side of (7) for a
range of different values of kG-SPP. When a value rela-
tively close to 0 was identified through sign changes in
the real and imaginary parts, the actual solution was
approached using the Newton-Raphson method. In this
way we found the effective mode index for the funda-
mental G-SPP propagating in an air layer between two
gold interfaces for a large number of gap thicknesses in
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the range of 0.3-250 nm at wavelengths in the range of
600-850 nm. For specific examples of the mode index see
[7]. At shorter wavelengths (below 550 nm) the approach
with an effective mode index for a G-SPP between two
gold interfaces can no longer be used, since gold behaves
as a dielectric at these wavelengths and as such the ge-
ometry no longer supports G-SPPs.

After constructing the multilayer structure used as a
representation of the groove by the principle shown in
Fig. 1 the reflectance at normal incidence was simply
calculated by applying the SMM to the constructed mul-
tilayer structure. For incidence at an angle to the normal
direction we treated the problem differently depending
on the direction of incidence. In the calculations for an
angle of incidence in the xy plane the light was treated
as p polarized light, but in all layers except the incident
(air) layer the angle of incidence was set to 0 as illus-
trated in Fig. 1. Thus, the in-plane wave number is
not conserved across the first interface as it would be for
stacks of layers with parallel interfaces. This affects the
reflection and transmission coefficients, which instead of
the usual Fresnel coefficients become

ρ12 =
(n2/n1) cos (θ)− 1

(n2/n1) cos (θ) + 1
, (8)

τ12 = 1 + ρ12. (9)

This represents the physical interpretation that the inci-
dent light couples to a G-SPP, which propagates straight
down into the groove. In the calculations for an angle
of incidence in the yz plane the in-plane wave number,
kz = k0n1 sin(θ), must be conserved through all lay-
ers, because the structure is invariant along the z axis.
Here, however, the light was treated as s polarized in the
SMM. This can be justified by the fact that the main
component of the electric field of the G-SPP will be ori-
ented as shown in Fig. 2. The G-SPP will also have a
smaller electric field component in the direction of prop-
agation. However, it is curious that waves (G-SPP’s)
which are inherently p polarized must be modeled using
s polarization. The ray path shown in Fig. 2 can be un-
derstood in a geometric optics picture and follows from
Snell’s law and the increasing mode index [31].

An important concern with regards to the usage of
the SMM for the calculation of the reflectance of the
sharp groove structures is the fact that the mode index
for a gap plasmon rapidly approaches very large values
at small gap thicknesses and does not approach the re-
fractive index of gold in the limit of d → 0. Thus the
final stack of layers would contain layers with very large
mode indices, which would suddenly jump to the refrac-
tive index of gold when reaching the bottom of the stack.
For this reason we chose to only include layers for gap
thicknesses down to 0.3 nm in order to avoid extremely
large values of the mode index in the last layers.

In order to further approach a complete model for the
reflectance of the system we introduced an additional
reflection phase in the reflection coefficient between the
final layer and the gold substrate. The appropriate value

ni

x

y

increasing
mode index

E

z

q n1

nN

(air)

(gold)

di

Fig. 1. The principle used to convert one period of the groove
structure into a multilayer structure to be used in the SMM.
The figure also shows the physical interpretation of light in-
cidence under an angle in the xy plane used in the SMM.

x

y

E

z

q n1

nN

ni
increasing
mode index

(air)

(gold)

Fig. 2. The physical interpretation of light incidence under
an angle in the yz plane used in the SMM. For simplicity
reflections at interfaces other than the last are omitted in
the figure.

of this reflection phase was assumed to be close to that
for the reflection of a plane wave incident on an air-gold
interface, and as such we modeled the final reflection in
the stack matrix (HN−1,N ) as a reflection between air
and gold. We performed calculations where this reflec-
tion occurred under normal incidence as well as under
angles corresponding to the incident angle or the angle
that would be obtained in the final layer by applying
Snell’s law at each interface of the stack of layers. The
results of these calculations were found to deviate only
slightly from each other, and as such we chose to model
it as normal incidence.

3. Green’s Function Surface Integral Equation
Method

The strength of the GFSIEM [32] has been demonstrated
in several applications ranging from simple scattering
configurations [17–22] to more complex periodic struc-
tures [33, 34]. Here we introduce a rigorous method
for solving scattering problems for a general direction of
light incidence, which has not previously been given a
lot of attention.
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Consider a scattering structure with a surface as
shown in Fig. 3. For propagation in the xy plane and
either s or p polarization the electric or magnetic field
will only have a z component, and the other field will be
perpendicular to the z axis, which greatly simplifies the
problem to a formulation with only one scalar field com-
ponent. This is no longer the case for a general direction
of light incidence. However, two scalar field components
are sufficient. Due to the translational invariance along
the z axis and periodicity along the x axis the fields can
be decomposed into Bloch waves of the form

E(r) = UE(ρ; kx, kz)e
−ikxxe−ikzz, (10)

H(r) = UH(ρ; kx, kz)e
−ikxxe−ikzz, (11)

where Uj=E,H is a periodic function satisfying Uj(ρ +
x̂Λ) = Uj(ρ) with Λ being the period of the structure,
ρ = x̂x + ŷy, and r = x̂x + ŷy + ẑz. We see that there
are three components for both the magnetic field and the
electric field. However, by inserting these expressions for
the fields into Maxwell’s equations it can be shown that
the x and y components of the fields may be described
purely from the z component of the magnetic and elec-
tric fields. We then get for the in-plane components of
H and E, Hs and Es, [35]

Hs(ρ) =
−i

k2s
[kz∇sHz + ωε0εẑ ×∇sEz], (12)

Es(ρ) =
−i

k2s
[kz∇sEz + ωµ0ẑ ×∇sEz], (13)

where

k2s = k20ε− k2z , (14)

∇s = x̂
∂

∂x
+ ŷ

∂

∂y
. (15)

The z components of the fields must satisfy the scalar
wave equation, i.e.

∇2Ez + k20εEz = ∇2
sEz + k2sEz = 0. (16)

In addition to the electric and magnetic fields, the field
due to a point source is considered in each material,

(∇2
s + k2si)gi(ρ;ρ

′) = −δ(ρ− ρ′). (17)

Here k2si = k20εi − k2z with εi being the dielectric con-
stant of material i, and gi is the appropriate Green’s
function in material i. For a structure with periodicity
in the x direction a solution for gi that satisfies the radi-
ating boundary condition along y and the Bloch bound-
ary condition along x can be constructed through mode
expansion as

gi(r, r
′) =

−i

4π

∑

n

e−i(kx−nG)(x−x′)e−ikyi,n|y−y′|

kyi,n
G.

(18)

x

y

z

s1 sN

si

e1

e2

t

L

n

n

h

Fig. 3. The surface of a scattering structure divided into
surface elements. For the periodic scattering problem con-
sidered here, the figure represents a single period, Λ, of the
structure.

Here kx is the Bloch wave number in the direction in
which the structure is periodic, G = 2π/Λ with Λ being
the period of the structure, and kyi,n = [k2si − (kx −
nG)2]1/2 with Im(kyi,n) ≤ 0. Similar to the case of kz =
0 (see e.g. [32]) we can obtain the integral equations

Ez(ρ) =





Ez0(ρ)−
∮

{g1(ρ;ρ′)n̂′ ·∇′Ez(ρ
′)

−Ez(ρ
′)n̂′ ·∇′g1(ρ;ρ′)}dl′ ρ ∈ Ω1

∮
{g2(ρ;ρ′)n̂′ ·∇′Ez(ρ

′)

−Ez(ρ
′)n̂′ ·∇′g2(ρ;ρ′)}dl′ ρ ∈ Ω2,

(19)

Hz(ρ) =





Hz0(ρ)−
∮

{g1(ρ;ρ′)n̂′ ·∇′Hz(ρ
′)

−Hz(ρ
′)n̂′ ·∇′g1(ρ;ρ′)}dl′ ρ ∈ Ω1

∮
{g2(ρ;ρ′)n̂′ ·∇′Hz(ρ

′)

−Hz(ρ
′)n̂′ ·∇′g2(ρ;ρ′)}dl′ ρ ∈ Ω2.

(20)

Here Ω1 and Ω2 refer to positions outside and inside the
metal, respectively (dielectric constants ε1 and ε2), and
Ez0 and Hz0 are the incident fields. Inserting Eqs. (12)
and (13) into the boundary conditions n̂×H1 = n̂×H2
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Fig. 4. The weight functions used in constructing linearly
varying fields in each surface element.

and n̂×E1 = n̂×E2 we get

Ez1 = Ez2, (21)

Hz1 = Hz2, (22)

n̂ ·∇Hz2 = n̂ ·∇Hz1
k20ε2 − k2z
k20ε1 − k2z

− t̂ ·∇Ez1
kz
k0

√
ε0
µ0

k20(ε1 − ε2)

k20ε1 − k2z
, (23)

n̂ ·∇Ez2 = n̂ ·∇Ez1
ε1
ε2

k20ε2 − k2z
k20ε1 − k2z

− t̂ ·∇Hz1
kz
k0

√
µ0

ε0

k20(ε2 − ε1)

k20ε1 − k2z
. (24)

We see that in the case of kz 6= 0 there is a cou-
pling between Hz and Ez, and if kz = 0 Eqs. (23)
and (24) reduce to n̂ · ∇Hz2 = n̂ · ∇Hz1ε2/ε1 and
n̂ · ∇Ez2 = n̂ · ∇Ez1, in which case there is no cou-
pling, and it is sufficient to consider each field separately,
greatly reducing the complexity of the problem. In this
case the integral equations can be solved by a numerical
approach, in which the fields and their normal deriva-
tives are considered constant in each surface element.
However, for the case of kz 6= 0 where there is a cou-
pling between Hz and Ez this representation of the fields
is inadequate for describing the tangential derivative in
Eqs. (23) and (24). In order to expand the model to ac-
count for the tangential derivative, we introduce a linear
variation of the fields in each element by combining two
weight functions N1 and N2 as shown in Fig. 4. The
field along a surface element may then be described as

Ez(s) = Ez(s(t)) ≈
N∑

i=1

E
(s)
z,iN1

(
t− t

(s)
i

Li

)

+ E
(e)
z,iN2

(
t− t

(s)
i

Li

)
, (25)

where s = s(t) is a position along the surface, with t
being the distance along the surface from a starting point

(see Fig. 3), t
(s)
i is the start point of element i, Li is the

length of element i, and E
(s)
z,i and E

(e)
z,i are the values

of Ez in the start and end points of surface element i,

respectively. The magnetic fields are constructed using
the same weight functions. The tangential derivative,

t̂ · ∇Ez at all sampling points t
(s)
i given as a column

vector tE , can then be approximated as the average slope
of the field values in neighboring surface elements

tE = T E
(s)

z , (26)

where T is a matrix constructed from a finite-difference
scheme using nearest neighbor sampling points. An-
other convenient matrix can be constructed by consid-
ering that the end point of surface element i is the start
point of element (i+ 1). That is

E
(e)

z = DE
(s)

z , (27)

where E
(s)

z and E
(s)

z are column vectors containing all

of the values E
(s)
z,i and E

(e)
z,i , and the matrix D is of the

form

D =




0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
1 0 0 0 . . . 0



. (28)

The matrix describing the magnetic and electric fields
governed by Eqs. (19) and (20) is then constructed as




E
(s)

z,0

0

H
(s)

z,0

0


 =




B1 A1 0 0

B2 −A2f1 A2Tf2 0

0 0 B1 A1

A2Tf4 0 B2 −A2f3







E
(s)

z

φ
(s)

E

H
(s)

z

φ
(s)

H



,

(29)
where

f1 =
ε1
ε2

k20ε2 − k2z
k20ε1 − k2z

, (30)

f2 =
kz
k0

1

ε2

k20(ε2 − ε1)

k20ε1 − k2z
, (31)

f3 =
k20ε2 − k2z
k20ε1 − k2z

, (32)

f4 =
kz
k0

k20(ε1 − ε2)

k20ε1 − k2z
, (33)

B1 =

(
1

2
I −B(1,1) −B(1,2)D

)
, (34)

A1 =
(
A(1,1) +A(1,2)D

)
, (35)

B2 =

(
1

2
I +B(2,1) +B(2,2)D

)
, (36)

A2 =
(
A(2,1) +A(2,2)D

)
, (37)
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and

A
(u,v)
i,j = P

∫
gu(si, s(t

′))Nv

(
t′ − t

(s)
j

Lj

)
dt′, (38)

B
(u,v)
i,j = P

∫
[n̂′ ·∇′gu(si, r

′)]r′=s(t′)Nv

(
t′ − t

(s)
j

Lj

)
dt′.

(39)

The P ’s in Eqs. (38) and (39) indicate that the integrals
must be calculated as principal value integrals. These
integrals are calculated numerically as sums in which
the singular point of the integrand is excluded from the
integral. Because the period of the considered structures
will be sufficiently small compared to the wavelength,
the final reflectance can be found as the squared ratio
between the magnitude of the scattered far-field and that
of the incident field.

4. Results
In this section we present results produced with the sim-
ple SMM and the GFSIEM as described in the previous
sections. The structure coordinates used for these calcu-
lations are produced in the same way as those presented
in [7]. In all of the calculations we used the dielectric
constant of gold from [36]. We show reflectance spectra
calculated with both the SMM and the GFSIEM for an-
gles of incidence in both the xy plane and the yz plane
for structures with different bottom groove widths.

Fig. 5 shows the reflectance spectra calculated with
both methods for the structure with a bottom width of
0.3 nm under angles of incidence in the xy plane. We
see a very high degree of similarity between the results
of the exact GFSIEM and those of our SMM in both the
position and magnitude of the reflectance peaks. For the
larger angles of incidence the reflectance graphs calcu-
lated with the SMM are almost identical to those of the
GFSIEM. Even at smaller angles of incidence the differ-
ences between the results are surprisingly minor, consid-
ering the simplicity of the SMM. Note that the proce-
dures used at the first interface as described in Eqs. (8)
and (9) and at the last interface are crucial in order to
obtain good agreement between the two methods. Note
also that in this case kx = k0n1 sin (θ) and kz = 0 in the
GFSIEM.

The reflectance spectra obtained for the same struc-
ture with a bottom width of 0.3 nm under an angle of
incidence in the yz plane (kx = 0, kz 6= 0) are shown
in Fig. 6. In these results we also see clear similari-
ties between the results of the GFSIEM and those of the
SMM. These are also the first results presented for light
incidence along the non-periodic direction of this peri-
odic structure. Of particular note in these results is the
fact that the reflectance minima are shifted to shorter
wavelengths with an increasing angle, whereas the posi-
tions of the minima are largely unaffected by the angle
of incidence in the xy plane. The reflectance minima for
an angle of incidence in the xy plane are attributed to
resonances in the groove, which are unaffected by the

Fig. 5. (Color online) GFSIEM and SMM results for the
reflectance of the structure with a bottom width of 0.3 nm
(Λ = 250 nm, h = 500 nm) under angles of incidence in the
xy plane. The inset on the left-hand side of the bottom figure
shows one period of the actual structure.

details of the coupling of the incident light to plasmons.
The difference observed for an angle of incidence in the
yz plane is caused by the fact that an increasing angle
of incidence in this direction increases the magnitude of
kz, which in turn reduces ks, cf. Eq. (14). The reduc-
tion of ks naturally leads to a shift in resonances towards
shorter wavelengths. Note here that the choice of s po-
larization in the SMM is crucial in order to obtain good
agreement with the exact method. If p polarization is
used, the maxima and minima in the reflectance spectra
will shift to different wavelengths.

We performed similar reflectance calculations for
structures with bottom widths of 1, 2, 5, 10, 20, and
50 nm. The results of the calculations performed on the
structure with a bottom width of 10 nm are shown in
Figs. 7 and 8, which show the results for angles of in-
cidence in the xy plane and the yz plane, respectively.
Similar to the previously presented results for the struc-
ture with a bottom width of 0.3 nm we see a very high
degree of similarity between the results obtained with
the two methods. Once again the reflectance minima
are seen to be unaffected by angle of incidence in the xy
plane while they are shifted towards shorter wavelengths
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Fig. 6. (Color online) GFSIEM and SMM results for the
reflectance of the structure with a bottom width of 0.3 nm
(Λ = 250 nm, h = 500 nm) under angles of incidence in the
yz plane. The inset on the left-hand side of the bottom figure
shows one period of the actual structure.

at larger angles of incidence in the yz plane.

The results obtained for the other structures (not
shown) exhibit equal similarities between results pro-
duced with the two methods as those presented here.
It is remarkable that such a large degree of agreement
is obtained between the rigorous GFSIEM and a highly
simplified matrix model for a large range of different
structures. Since the SMM does not account for diffrac-
tion, a contributing factor to the remarkable results ob-
tained with the method here is the fact that the period
of the structure is relatively small compared to the wave-
length, which eliminates the case of far-field diffraction.
It should also be noted that in our matrix model we treat
the coupling of light to plasmons in a way such that all
light transmitted across the first interface is coupled to
plasmons in the groove. This is a reasonable assumption
for structures as those considered in this paper, where
the separation between neighboring grooves is very small
compared to the period of the structure, such that the
reflection caused by the plateaus between grooves is neg-
ligible. If the model were to be used for structures with
significantly larger groove spacing, it would be necessary
to incorporate some coupling factor in the transmission

Fig. 7. (Color online) GFSIEM and SMM results for the
reflectance of the structure with a bottom width of 10 nm
(Λ = 250 nm, h = 500 nm) under angles of incidence in the
xy plane. The inset on the left-hand side of the bottom figure
shows one period of the actual structure.

across the first interface in order to account for the in-
creased reflection caused by the larger plateaus.

We have not included results for angles of incidence
in the yz plane with θ > 70◦. At large angles in this
direction Ez and Hz will become small compared to Es

and Hs, and since our GFSIEM uses the z components
of the fields it converges poorly in cases where the z
components constitute a small part of the total fields.

While the results obtained for an angle of incidence
in the xy plane can be verified by comparison with
other results presented in the literature (see [7]), results
for incidence in the yz plane have not previously been
shown. The overwhelming similarity in the results ob-
tained with the two very different methods used here,
however, shows the validity of the method we present for
modeling periodic nanostructures under a general direc-
tion of light incidence.

5. Conclusion
In this paper we have introduced two methods for mod-
eling the reflection of light incident under a general di-
rection of incidence on arrays of periodic ultra-sharp
grooves in a gold surface. We presented a simple SMM
as well as a rigorous method based on the GFSIEM. The
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Fig. 8. (Color online) GFSIEM and SMM results for the
reflectance of the structure with a bottom width of 10 nm
(Λ = 250 nm, h = 500 nm) under angles of incidence in the
yz plane. The inset on the left-hand side of the bottom figure
shows one period of the actual structure.

results of the SMM show a remarkably large degree of
similarity to those of the exact GFSIEM. We obtained
good agreement between the two methods for structures
with different bottom groove widths in a large range
(0.3-50 nm).

The agreement between the two methods has two im-
portant consequences. First, it clearly demonstrates
that the absorption of light in ultra-sharp grooves is
dominated by the coupling of light into plasmons, since
the SMM is almost entirely based on the properties of
G-SPP waves. Furthermore, it opens possibilities for
much faster calculations of reflectance spectra of plas-
monic nanostructures. While our implementation of the
GFSIEM in MATLAB takes upwards of 20 minutes to
calculate the reflectance at a single wavelength for a sin-
gle angle of incidence when run on a single CPU core,
our SMM produces a full reflectance spectrum for 251
wavelengths in the range of 600-850 nm for seven differ-
ent angles of incidence in less than five minutes. As the
results of the SMM are very close to the exact results,
this method can be used to quickly obtain an overview
of the reflectance properties of a given structure.

While normal incidence exhibits the lowest reflectance

overall, the reflectance calculations for angles of inci-
dence in the yz plane generally show lower reflectances
across the wavelength spectrum than those for incidence
in the xy plane. As such this direction of incidence
would be preferable in applications such as thermopho-
tovoltaics, concentrated solar power, or broadband po-
larizers for short laser pulses, where low reflectivity is
desired and different angles of incidence may occur.
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[29] S. Jetté-Charbonneau and P. Berini, “Theoretical per-

formance of bragg gratings based on long-range surface
plasmon-polariton waveguides,” JOSA A 23, 1757–1767
(2006).

[30] M. V. Klein and T. E. Furtak, Optics, Second Edition
(John Wiley & Sons, Inc., 1986), chap. 5.4A.

[31] D. K. Gramotnev, “Adiabatic nanofocusing of plas-
mons by sharp metallic grooves: Geometrical optics ap-
proach,” Journal of applied physics 98, 104302 (2005).

[32] T. Søndergaard, “Modeling of plasmonic nanostruc-
tures: Green’s function integral equation methods,”
physica status solidi (b) 244, 3448–3462 (2007).

[33] T. Søndergaard, J. Gadegaard, P. K. Kristensen, T. K.
Jensen, T. G. Pedersen, and K. Pedersen, “Guidelines
for 1d-periodic surface microstructures for antireflective
lenses,” Optics express 18, 26245–26258 (2010).

[34] T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M.
Novikov, E. Devaux, and T. W. Ebbesen, “Extraordi-
nary optical transmission with tapered slits: effect of
higher diffraction and slit resonance orders,” JOSA B
29, 130–137 (2012).

[35] W. C. Chew, Waves and fields in inhomogeneous media
(IEEE press New York, 1995), chap. 8.

[36] P. B. Johnson and R. W. Christy, “Optical constants of
the noble metals,” Physical Review B 6, 4370 (1972).



Bibliography

[1] T. Bauer, Thermophotovoltaics: Basic Principles and Critical Aspects of System
Design (Springer, 2011). ISBN: 978-3-642-19964-6.

[2] International Energy Agency, “Technology roadmap: Concentrating solar power,”
(2010). URL: http:
//www.iea.org/publications/freepublications/publication/csp_roadmap.pdf,
Downloaded (29/6-13).

[3] M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh,
V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and
M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic
metamaterials,” Advanced Materials 23, 5410–5414 (2011).

[4] V. Kravets, S. Neubeck, A. Grigorenko, and A. Kravets, “Plasmonic blackbody: Strong
absorption of light by metal nanoparticles embedded in a dielectric matrix,” Physical
Review B 81, 165401 (2010).

[5] A. Pfund, “The optical properties of metallic and crystalline powders,” JOSA 23,
375–377 (1933).

[6] A. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” Journal of
applied physics 104, 053516 (2008).

[7] M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. Chang,
K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant
nanocavities,” Applied Physics Letters 102, 251105 (2013).

[8] T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han,
K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing
and absorption of light in ultra-sharp convex grooves,” Nature communications 3, 969
(2012).

[9] T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of plasmonic black gold:
periodic arrays of ultra-sharp grooves,” New Journal of Physics 15, 013034 (2013).

[10] E. Skovsen, T. Søndergaard, C. Lemke, T. Holmgaard, T. Leißner, R. Eriksen,
J. Beermann, M. Bauer, K. Pedersen, and S. Bozhevolnyi, “Plasmonic black gold based
broadband polarizers for ultra-short laser pulses,” Applied Physics Letters 103, 211102
(2013).

72

http://www.iea.org/publications/freepublications/publication/csp_roadmap.pdf
http://www.iea.org/publications/freepublications/publication/csp_roadmap.pdf


Bibliography

[11] J. Porto, F. Garcia-Vidal, and J. Pendry, “Transmission resonances on metallic
gratings with very narrow slits,” Physical review letters 83, 2845 (1999).

[12] F. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in
one-dimensional periodically nanostructured metals,” Physical Review B 66, 155412
(2002).

[13] J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen,
“Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).

[14] A. Christ, T. Zentgraf, S. Tikhodeev, N. Gippius, O. Martin, J. Kuhl, and H. Giessen,
“Interaction between localized and delocalized surface plasmon polariton modes in a
metallic photonic crystal,” physica status solidi (b) 243, 2344–2348 (2006).

[15] S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard,
“Nearly perfect fano transmission resonances through nanoslits drilled in a metallic
membrane,” Physical review letters 104, 027401 (2010).

[16] Y. Bao, Y. Hou, and Z. Wang, “Robust existence of the broadband optical
transmission effect in multiple-layer gratings,” JOSA B 31, 255–258 (2014).

[17] W. Yan, N. A. Mortensen, and M. Wubs, “Green’s function surface-integral method for
nonlocal response of plasmonic nanowires in arbitrary dielectric environments,”
Physical Review B 88, 155414 (2013).

[18] M. Moharam, E. B. Grann, D. A. Pommet, and T. Gaylord, “Formulation for stable
and efficient implementation of the rigorous coupled-wave analysis of binary gratings,”
JOSA A 12, 1068–1076 (1995).

[19] D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary integral methods applied
to the analysis of diffractive optical elements,” JOSA A 14, 34–43 (1997).

[20] D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-based synthesis
of finite aperiodic subwavelength diffractive optical elements,” JOSA A 15, 1599–1607
(1998).

[21] J. Liu, B.-Y. Gu, B.-Z. Dong, and G.-Z. Yang, “Interference effect of dual diffractive
cylindrical microlenses analyzed by rigorous electromagnetic theory,” JOSA A 18,
526–536 (2001).

[22] J. Jung and T. Søndergaard, “Green’s function surface integral equation method for
theoretical analysis of scatterers close to a metal interface,” Physical Review B 77,
245310 (2008).

[23] M. K. Choi, “Numerical calculation of light scattering from a layered sphere by the
boundary-element method,” JOSA A 18, 577–583 (2001).

[24] N. Zavareian and R. Massudi, “Controllable trapping of nanowires using a symmetric
slot waveguide,” The Journal of Physical Chemistry C 117, 17159–17166 (2013).

73



Bibliography

[25] L. Novotny and B. Hecht, Principles of Nano-Optics, Second Edition (Cambridge
University Press, 2012). ISBN: 978-1-107-00546-4.

[26] B. Prade, J. Vinet, and A. Mysyrowicz, “Guided optical waves in planar
heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572
(1991).

[27] S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Optics
express 16, 2676–2684 (2008).

[28] M. V. Klein and T. E. Furtak, Optics, Second Edition (John Wiley & Sons, Inc.,
1986). ISBN: 0-471-87297-0.

[29] T. Søndergaard, Lecture notes for Ph.D course: Green’s function integral equation
methods for electromagnetic scattering problems (2012).

[30] T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral
equation methods,” physica status solidi (b) 244, 3448–3462 (2007).

[31] T. Søndergaard, J. Gadegaard, P. K. Kristensen, T. K. Jensen, T. G. Pedersen, and
K. Pedersen, “Guidelines for 1d-periodic surface microstructures for antireflective
lenses,” Optics express 18, 26245–26258 (2010).

[32] T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W.
Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher
diffraction and slit resonance orders,” JOSA B 29, 130–137 (2012).

[33] W. C. Chew, Waves and fields in inhomogeneous media (IEEE press New York, 1995),
chap. 8.

[34] M. F. Modest, Radiative Heat Transfer, Second Edition (Academic Press, 2003). ISBN:
0-12-503163-7.

[35] P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical
Review B 6, 4370 (1972).

[36] D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves:
Geometrical optics approach,” Journal of applied physics 98, 104302 (2005).

[37] G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva,
“Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,”
Optical Materials Express 2, 478–489 (2012).

74


	Front Page
	Title Page
	Preface
	Contents
	Introduction
	Theory
	Plasmons
	Surface-Plasmon-Polaritons
	Gap-Surface-Plasmon-Polaritons

	The Stack Matrix Method
	The Dyadic Green's Function
	Construction of a Two-Dimensional Green's Function
	Construction of the Periodic Green's Function
	2D Green's Function Surface Integral Equation Method
	2D GFSIEM for a General Direction of Light Incidence
	Thermal Emission

	Program Code
	Overview of Programs
	Numerical Techniques

	Stack Matrix Code
	GFSIEM Code
	Angle of Incidence in the xy Plane
	Angle of Incidence in the yz Plane


	Numerical Results
	Test of Different Numerical Techniques
	Test of Convergence
	GFSIEM, xy Incidence
	SMM, xy Incidence
	GFSIEM, yz Incidence
	SMM, yz Incidence

	Discussion and Conclusion
	Appendices
	Derivations
	Determinant for the G-SPP Mode Index
	Normalization Constant
	Field Equations
	Boundary Conditions
	Matrix Element Approximation

	Results
	GFSIEM, xy Incidence
	SMM, xy Incidence
	GFSIEM, yz Incidence
	SMM, yz Incidence

	 Modeling the Reflectivity of Plasmonic Ultra-sharp Groove Arrays: General Direction of Light Incidence
	Bibliography

