Author(s)
Term
4. semester
Education
Publication year
2023
Submitted on
2023-05-31
Pages
69 pages
Abstract
This report details the development of diverse fault detection and diagnosis al- gorithms employed for detecting faults in cooling fans utilized for temperature management in control cabinets of wind turbines. To replicate the thermodynamic behavior of an actual cabinet, two mod- els were created: a single-zone model and a multi-zone model. These mod- els simulated and collected temperature measurements of both the cabinet and the nacelle. To identify the system para- meters, a calibration phase utilizing the Recursive Least Squares (RLS) method was implemented based on the temper- ature measurements. The acquired para- meters, along with the measurements, were then employed in the fault detection and diagnosis (FDD) algorithms, includ- ing a bank of Observers, Multiple Model Adaptive Estimation (MMAE), and Joint State estimation. Through these methods, reliable temperature estimation and pre- diction of the cooling fans’ health status within a certain range were achieved.
Keywords
Documents
Colophon: This page is part of the AAU Student Projects portal, which is run by Aalborg University. Here, you can find and download publicly available bachelor's theses and master's projects from across the university dating from 2008 onwards. Student projects from before 2008 are available in printed form at Aalborg University Library.
If you have any questions about AAU Student Projects or the research registration, dissemination and analysis at Aalborg University, please feel free to contact the VBN team. You can also find more information in the AAU Student Projects FAQs.