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Abstract:

This report details the development of
diverse fault detection and diagnosis al-
gorithms employed for detecting faults
in cooling fans utilized for temperature
management in control cabinets of wind
turbines. To replicate the thermodynamic
behavior of an actual cabinet, two mod-
els were created: a single-zone model
and a multi-zone model. These mod-
els simulated and collected temperature
measurements of both the cabinet and
the nacelle. To identify the system para-
meters, a calibration phase utilizing the
Recursive Least Squares (RLS) method
was implemented based on the temper-
ature measurements. The acquired para-
meters, along with the measurements,
were then employed in the fault detection
and diagnosis (FDD) algorithms, includ-
ing a bank of Observers, Multiple Model
Adaptive Estimation (MMAE), and Joint
State estimation. Through these methods,
reliable temperature estimation and pre-
diction of the cooling fans’ health status
within a certain range were achieved.
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Chapter 1

Introduction

Energy demand has been increasing over the last decades around the world, and fossil
fuels have been the leading source, providing around 80% of the total energy demand.
This has caused greenhouse emission gases to negatively impact the climate. For that
reason, agreements such as the one established in Paris (2015), aim to limit global warm-
ing to 2°C above the pre-industrial levels [1]. However, according to the World Energy
Outlook 2022 (IEA), this trend is finally switching with the prediction of declining (cur-
rently at around 70% of fossil global demand) and being replaced by the growing scope
of renewable energies [2].

It can be observed from the below Figure 1.1 how the prediction for the future of
global energy are dominated by the decline of hydrocarbons, the rapid expansion of
renewable energy sources, and the increase of electrification and the use of low-carbon
hydrogen.

Figure 1.1: Global energy prediction by energy source

[3]

The emission of greenhouse gases has negatively impacted the climate, therefore,
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to prevent a higher growth in the average global temperature and speed up the green
transition to a low-carbon scene, the implementation of emission-free power sources is
required, such as wind. Wind power is a renewable energy technology that harnesses the
kinetic energy from the movement of the wind and converts it into mechanical energy
and electricity, without consuming fuels or producing carbon emissions. Currently, most
wind energy develops from turbines. The kinetic energy created by the air in motion
provides the initial force to turn the blades on the turbine that, through a shaft connected
to a generator, provides the mechanical energy to produce electricity.

In the last few decades, both the physical dimensions and power-generating capab-
ility of wind turbines have increased due to the huge market demand and technological
advances [4, 5]. Wind turbines are becoming complex machines that operate under
harsh conditions and, over time, will decline in performance and efficiency. This situ-
ation has led to focus on maintenance and fault detection topics. Although technology
has improved to minimize failure rates, wind turbine failures are constantly occurring.
Major faults, such as the gearbox, generator, yaw system, or rotor, represent 25% of
all failures but account for 95% of the downtime [6]. These failures often result in an
extended downtime lasting more than a day, require costly repairs, and inhibit power
generation [7]. Also, wind farms have been rapidly expanding in recent years and are
located in onshore and offshore remote sites with difficult accessibility, which makes
reliability important, and maintenance becomes an issue since an unscheduled appoint-
ment is excessively expensive. A quantitative example is referenced in [8], where a $5000
bearing replacement can evolve into a quarter-million-dollar project plus the power gen-
eration loss. Also, for a typical turbine with an expected operating life of 20 years, the
costs of operation, component replacements, and maintenance, already cover between
10-15% of the total generation income.

As observed, detecting and isolating faults as early as possible is crucial to prevent
undesired results and apply the necessary actions on time, which has acted as an initial
motivation for this project. Maintenance systems are required, so condition monitoring
(CM) and fault detection algorithms are needed. Those can help reduce maintenance
costs, minimize unplanned downtime, and extend the lifespan of the turbine. Further,
controlling the Cost of Energy (COE) and formulating optimized Operations and Main-
tenance (O&M) strategies can improve the wind turbine’s performance and reduce its
energy cost [4]. This will also decrease maintenance costs and make wind energy more
commercially competitive [5].

Condition Monitoring (CM) is the process of monitoring a parameter (e.g., temperat-
ure) to detect a significant change that could indicate a developing failure [9]. According
to [10] fault detection is defined as “the process of detecting, isolating, and identifying
a fault in a system through condition monitoring, using techniques such as signal pro-
cessing or data analysis”. As previously mentioned, there are many types of faults that
can occur on a wind turbine depending on manufacturing defects, deterioration or dam-
age from components, environmental factors, and more. The severity of those is another
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concept to consider since it can vary from a minor issue to a major problem that can res-
ult in repairs or even a total wind turbine shutdown. The main objective is to primarily
focus on identifying faults that have the potential to cause a complete shutdown of the
wind turbine.

1.1 Control Cabinets

A wind turbine consists of the main structures of the foundation, the tower, the rotor
and hub (including blades), and the nacelle. The nacelle is located at the top of the tower
and contains the most important components of the turbine, including the yaw system,
main-shaft bearing, gearbox, generator, and electrical control cabinets that enable the
turbine to generate electricity [11].

A control cabinet is an enclosure unit that contains electrical components such as
control systems, power electronics, or other machinery to regulate and manage the pro-
duced electricity by the generator. These may differ in size, the components integrated,
and configuration, depending on the specific design and application of the wind tur-
bine. Large wind turbines, such as offshore, have a more complex design, hence they
require larger control cabinets. They are usually equipped with temperature sensors
and cooling fans.

The electrical system in the cabinet generates heat as a result of operating, therefore,
the fans’ function is to circulate the air inside to dissipate the generated heat and prevent
overheating. The inlet fan, usually located at the bottom of the cabinet, will draw cool
air from the outside and, the outlet fan, located at the top, will push out the heated air.
As observed, it is essential that the temperature is managed correctly, and it remains
within the operational limits of the components. Failing to manage the temperature
within the manufacturer’s rated temperature can lead to component failure, decreasing
the efficiency, damaging the equipment, and eventually leading to component failure
that can result in an unexpected turbine shutdown. For that reason, it is fundamental
to have solid fault detection algorithms to identify an abrupt increase in temperature,
which can indicate an occurring fault in the system.



Chapter 2

Problem Analysis

Temperature management plays a crucial role in assuring the optimal performance and
reliability of control cabinets and their components, which are sensitive to temperature
fluctuations. Despite its importance, the existing literature on this specific topic is re-
markably limited. Although some work has been done regarding control cabinets and
temperature management of wind turbines and the nacelle, an extensive review was
done to find the available papers and publications in this area, and it became evident
the lack of investigation about temperature management of a control cabinet, which em-
phasizes the need for further exploration. Though, related topics have been discussed
such as temperature management of HVAC systems, indoor climate control of build-
ings, and different methods of fault detection algorithms for temperature estimation.
In this analysis, different methods for temperature control and fault detection algorithms
on different scenarios are discussed, and new methods will be proposed.

2.1 State of the art

In [12], et al. Yang developed a model-based optimal indoor climate control for a real-
sized livestock stable system. This system applies a single-zone method that uses hy-
brid ventilation and low-pressure climate strategies and is based on the energy balance
and the mass principle. The system is described as a non-linear state space model
from which an ideal equilibrium point is calculated, and a linearized model is obtained.
Parameter estimation is attained through experiments and only the temperature is con-
sidered as a unique control criterion. A constrained MPC is developed and kept the
indoor temperature within the required range around the set point, although results
show that the indoor temperature (20.5 degrees) is higher than the steady-state temper-
ature at the equilibrium point (20 degrees) due to the outside temperature being higher
than its steady-state value (15 degrees). The model is then compared to the real system
and shows the feasibility of using a single-zone for optimal climate control.

Another paper [13], et al. Yang and Valente study the viability of improving the

5
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HVAC system for manned offshore oil-and-gas platforms by using an MPC constraint
strategy to manipulate the inlet opening area to control the indoor pressure. The single-
zone concept is used to model the system where the only controllable input is the inlet
opening area Ain and the outputs are the indoor temperature Tr and the indoor pressure
Pr. The developed controller consists of a Kalman Filter for state estimation and a
constraint MPC solution based on estimated states (Pr and Tr). When compared to the
previous PID, the controller let the indoor pressure drift away from the expected level
– more than 50 Pa over the ambient temperature during 12-15 sec. In comparison, the
MPC results in better performance in terms of faster time responses, fewer overshoots,
and more robustness to disturbance.

As an extension to the previous paper, [14] proposes a combined feed-forward and a
PI-based feedback control solution and an MPC solution to regulate the variable-speed
pressurization fan system, by operating the inlet throttle openness of [13], also based on
the single-zone concept. The inlet air pressure is assumed constant, assuming that the
pressurization control loop via the fan-speed control mechanism is guaranteed. The con-
trol solution is developed by combining a static fan model and a feed-forward/feedback
system for indoor pressure control. The feed-forward calculates the steady-state fan
speed through the indoor pressure and the variable fan speed, subject to the inlet and
outlet throttle positions.

Previous methods for fault detection were reviewed in Turner et al. (2017), where a
data-driven approach is proposed to automate a building HVAC fault detection relying
on parameter estimation based on a computational RLS algorithm used for real-time
fault tracking. Depending on the specific faults to be detected, a time-varying ARX or
ARMAX model is formulated. By tracking the model parameter values it is possible to
detect faults online and in real-time. This approach does not require a detailed physics-
based model of the building. Heating and cooling system faults can be detected by
simply tracking indoor and outdoor air temperatures [15].

Other investigations regarding fault detection in cabinets have been studied, where
Lijun et. al [16] proposed a new method of state detection of a switch cabinet, which
combined fuzzy theory with D-S evidence reasoning. Here, temperature and humidity
sensors are used to detect the ambient temperature and humidity within the cabinet.
Infrared sensors are applied to find the electrical components’ temperature which will
reflect the heating state as the temperature increases, and ultraviolet sensors are applied
to detect the partial discharge of the electrical components. All this data is then fused
with the fuzzy theory to reflect the states and make an appraisal of potential faults.
The accuracy of the state detection is increased to 92%, while the accuracy of the state
detection only by infrared sensors is 79%, and only by ultraviolet sensors is 85º%.
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2.2 Summary

From a previous project committed in AAU Esbjerg [17], a detection algorithm was ap-
plied by using parameter estimation and RLS techniques to detect a fault in a fan within
a thermal model of a control cabinet and the nacelle. By calculating some system para-
meter values, an indication of a fault occurring can be interpreted when these values
deviate from the nominal value. The algorithms are tested with the fans working at
rates of 90%, 75%, and 0%. There is a proportional correlation between the working
rate of the fan and the cabinet temperature, the lower the working rate, the higher the
temperature. RLS results showed a temperature deviation of 10% from the expected in
all scenarios, suggesting that either the thermal model needs further development, or
that the used Forgetting factor requires more precision.

So, inspired by the literature from [17], this project aims to continue with the invest-
igation and work towards an industrialization solution. The simulation model will be
based on the single-zone concept in order to fulfill industry requests and align with the
desired approach of employing simple model-based FDDs. This model will be expan-
ded to a multi-zone model which will include further thermodynamic properties and
will act as validation for the following FDDs. Besides, different fault detection methods
will be considered and evaluated for estimating the control cabinet temperature in order
to detect a fault in the cooling fans. Furthermore, a parameter estimation process (calib-
ration) will be initiated, from which several proposed model-based FDD methods will
be applied. The proposed FDDs for this project will include a simple bank of observers,
an MMAE (Multiple Model Adaptive Estimation) technique based on Liniger et. al [18],
as well as the Joint State estimation approach based on Yang et. al [19].



Chapter 3

Task Statement

3.1 Task Statement

Based on the method chosen and described in Chapter 2, the task statement for the
ongoing project is: To detect a fault in a cooling fan by analyzing the temperature inside
a control cabinet through different FDD algorithms.

3.2 Delimitation

In order to solve the above-stated problem, a thermodynamic model to simulate the con-
trol cabinet will be created, based on the single-zone concept, followed by an expansion
into a multi-zone model. The procedure and development of both models are described
in Chapter 4.

As the next step, a calibration/parameter estimation process will be conducted using
the RLS algorithm, only based on the single one. Since the system parameters are
unknown, calibration is necessary to identify the system. The estimated parameters
from the calibration process will then act as inputs to the different FDD methods, which
will consist of a bank of Observers, an MMAE, and a Joint State estimation. The theory
of the proposed parameter estimation and fault detection methods will be described in
Chapter 5, and the results from the different FDDs will be analyzed, compared, and
finally validated by the multi-zone model in Chapter 6.

8



Chapter 4

Modelling

In this section, a control cabinet setup is described, which has acted as an initial inspir-
ation for the dynamical model formulation. Also, the thermal properties of the single
and multi-zone models are explained.

4.1 Setup

The initial design of the control cabinet was developed at the offices of Siemens Gamesa
(Brande) as a starting point, to have realistic measurements for the simulation. The
cabinet follows a very simple architecture: has dimensions 2m x 1m x 0.8m, is made
of steel, and is composed of an electrical heating device (transformer), a temperature
sensor and two cooling fans, an inlet, and an outlet. The transformer is located at the
bottom centre of the cabinet, and the fans are at opposite extremes from each other,
being the inlet fan at the bottom part, and the outlet at the opposite top part of the
cabinet. A simple representation of this design is illustrated in Figure 4.1:

Figure 4.1: Representation of the control cabinet for the multi-zone model

9
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The thermal specifications of these elements as well as the cabinet are described in
the following table:

Symbol Constant Value Unit
AC Cabinet surface area 8.8 m2

cp,air Specific heat capacity of air 1005 J
kg·K

cp,steel Specific heat capacity of steel 445 J
kg·K

cp,cop Specific heat capacity of copper 385 J
kg·K

ρair Air density 1.255 kg
m3

msteel Mass of steel 200 kg
msteel Mass of copper 50 kg

h Convective heat transfer coefficient 50 W
m2·K

δs Thickness of the steel wall 0.002 m
ks Thermal conductivity of steel 45 W

m·K

Table 4.1: Thermal specifications of the model

These values have been gathered through comparison with other industrial control
cabinets with similar dimensions. Furthermore, the technical details and the initial
conditions of the electrical component and the cooling fans were provided by Frank
Vandborg, and have been included in the cabinet design. These conditions specify to
work with an air flow range of 200-600 m3

h generated by the fans, heat generation in a
range of 2-5 kW, and a temperature limit set at around 50°C. So, an electrical component
that fits these characteristics could be a "TT3 20-4-4" isolating transformer with 20 kVA
of rated power [20], and the cooling fans could be a "PF 65SL-Pfannenberg" with an
unimpeded airflow up to 550 m3

h and area of 0.08 m2 [21]. Also, a "Pt100" model is
the chosen temperature sensor applied in this model, which is a platinum resistance
thermometer.
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4.2 Single-zone Model

4.2.1 Thermal Dynamics

The dynamical model of the control cabinet system is considered and is under the fol-
lowing assumptions: (1) A single-zone concept is adopted to model the thermal dy-
namics; (2) The pressures are neglected, and the air is assumed incompressible; (3) The
volume flow rate from the fans is constant.
This model is focused on the dynamics of the temperature inside the cabinet. To con-
trol the temperature, both the nacelle and the cabinet are considered closed systems, so
their energy balance must be conserved. Therefore, the 1st Law of Thermodynamics is
implemented, which is based on the conservation of energy, meaning that “energy can
neither be created nor destroyed, only altered in form” [22]. A thermal model can be
further simulated by obtaining the equations that define the system’s thermodynamic
properties. The energy balance equation of a system is the difference between the energy
entering and leaving a system and can be expressed as:

∆E = EI − EO (4.1)

And the change of energy over time:

∆̇E = ĖI − ĖO (4.2)

Where E is the energy.

Since the change of energy over time leads to a change in temperature, the energy
balance equation can be defined in a more specific way as follows:

cp,air · mair ·
dT
dt

= Q̇I − Q̇O (4.3)

Where cp,air is the specific heat capacity coefficient of air, mair is the mass of air, Q̇I is the
heat transfer rate into the system, Q̇O is the heat transfer rate out of the system, and dT

dt
is the change of temperature over time.

As mentioned before, the cabinet includes a transformer that will generate heat. So,
the energy balance for the project in hand can be inspired by Eq. 4.3 and expanded by
considering the effects of the heat generated by the electronic device, the heat transfer
from the walls, the heat entering and leaving the cabinet, and some random disturb-
ances. The energy balance for the single-zone model can be expressed as:

Cp · Ṫc = Q̇in − Q̇out + Q̇heat − Q̇wall + Q̇dist (4.4)

where Q̇heat represents the heat generated by the electrical device, Q̇wall is the heat
dissipation through the walls, Q̇in is the heat entering the cabinet through the inlet
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fan, Q̇out is the heat leaving the cabinet through the outlet fan, and Q̇dist represents the
electronic and ambient disturbances.

The coefficient Cp is the combined heat capacity of the system and is formulated as:

Cp = cp,air · mair + cp,steel · msteel + cp,copper · mcopper (4.5)

This coefficient considers the mass and the specific heat capacity of the air, steel (the
material of the cabinet), and copper (the material of the electrical components).

The heat transfer equations described in Eq. 4.4 are represented as:

Q̇in = cp,air · ṁin · (Tn − Tc) (4.6)

Q̇out = cp,air · ṁout · (Tc − Tn) (4.7)

Q̇wall =
1
Rt

· (Tc − Tn) (4.8)

Where min and mout are the mass flow of air going in and out of the system, Tn is the
nacelle temperature, Tc is the temperature inside the cabinet and Rt is the total thermal
resistance, which is explained below. Finally, since the aim is to obtain the change of
cabinet temperature over time, the state equation for the system can be expressed as:

dTc

dt
=

cp,air · ρair · (q f an,1 + q f an,2) + 1/Rt

Cp
· (Tn − Tc) +

Q̇heat

Cp
+ w(t) (4.9)

where w(t) is the process noise obtained from the division of Qdist and Cp, and q f an,1
and q f an,2 are the volume flow rate generated by the inlet and outlet fan, respectively.

Thermal Resistance

The total thermal resistance (Rt) is used to measure the heat dissipation through the
walls. Thermal resistance is a property that measures the temperature difference to
which a material resists a heat flow. In other words, represents the resistance to heat
flow through a material or combination of multiple layers. So, Rt is the sum of all the
individual thermal resistances, each one of them representing a specific layer or material
[23]. For this model, the heat flow is across a plane wall of uniform thickness, where Rt

is expressed by the equation:
Rt = Rcond + Rconv (4.10)

where Rcond is the thermal conduction, and Rconv is the thermal convection. This equa-
tion considers the thermal resistances of all the wall’s individual layers and the system’s
heat transfer interfaces. It splits the wall into different thermal resistance sections and
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calculates the thermal conductivity of the material and the convection heat transfer from
both sides of the wall [24].

From Eq. 4.10, the thermal conduction and convection values can be calculated from:

Rcond =
δs

ks · Ac
(4.11)

Rconv = 2 · 1
h · Ac

(4.12)

where Ac is the cabinet area, h is the convective heat transfer coefficient of air, δs is
thickness of the steel wall, and ks is the thermal conductivity of the steel wall.

As seen, the total thermal resistance is composed of three resistances: the convection
heat transfer between the air and the wall on both sides of the cabinet, and the conduct-
ivity of the wall itself. Since the air properties are assumed identical inside and outside
the cabinet, the convection transfer is the same on both sides of the wall.

4.2.2 Simulation

In this section, the single-zone model has been fed with different step inputs and ini-
tial conditions to verify that the thermal properties and dynamics of the cabinet are
reasonable since no real temperature measurements were available for comparison.

For both models, the single and multi-zone, the sampling time is set to 1 second due
to the temperature sensor specifications. Also, the variance for the measurement noise
is set to σ2

v = 0.001, and the variance for the process noise, which was an arbitrary guess,
is set to σ2

w= 10−7.

The initial condition for the first simulation consists of the cabinet temperature set at
25°C and the following inputs: Tn= 25°C, q f an,1=q f an,2= 600m3/h and Qheat= 5kW. The
cabinet temperature settles at 33°C after 15 minutes. This is a reasonable value for Tc

since it is expected to be above Tn without surpassing the operational limits.
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Figure 4.2: Cabinet temperature simulation with inputs: Tn=25°C; q f an= 600m3/h; Qheat= 5kW

This next simulation consists of the cabinet temperature set at 50°C and the following
inputs: TN= 25°C, q f an,1=q f an,2= 600m3/h and Qheat= 0kW. Neglecting the heat generated
by the transformer causes Tc to rapidly go towards Tn, at around 900 seconds.

Figure 4.3: Single-zone cabinet temperature simulation with inputs: Tn=25°C; q f an= 600m3/h; Qheat= 0kW



4.3. Multi-zone model 15

The last simulation consists of the cabinet temperature set at 50°C and the following
inputs: Tn= 25°C, q f an,1=q f an,2= 0m3/h and Qheat= 0kW. Here, the heat is again neglected
along with the air circulation generated by the cooling fans. Omitting the cooling vent-
ilation forces the cabinet to only rely on the natural ventilation, and the rate at which
Tc approaches the nacelle temperature is more than twice as slow as in the previous
simulation, at around 2500 seconds.

Figure 4.4: Single-zone cabinet temperature simulation with inputs: Tn=25°C; q f an,i= 0m3/h; Qheat= 0kW

4.3 Multi-zone model

4.3.1 Thermal Dynamics

This section extends the single-zone model to a multi-zone model by dividing the cab-
inet into zones. The concept of the zone is used to define control volumes in the model,
where the thermal dynamics such as temperature, volume flow rate, density, and other
properties, are treated as uniform throughout the zone [25]. This is done to achieve a
more realistic system, hence the assumptions from the single-zone are no longer applic-
able, and concepts such as natural ventilation and thermal buoyancy are added.

Natural ventilation and Thermal buoyancy

Natural ventilation is the process of using natural forces to drive airflow through (in and
out) a space, with the purpose of ventilation. It relies on the pressure and temperature
difference between the inside and outside to create an airflow. The general objective is
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to provide sufficient air from the outside to achieve appropriate air quality standards
and is a fundamental technique for reducing energy usage in buildings and rooms [26].

Natural ventilation depends on two natural forces: wind from the enclosing space
and buoyancy forces developed due to temperature gradients within the room [27].

If natural ventilation is not sufficient to ensure thermal comfort or its flow rate is too
low, the addition of mechanical systems might be needed. This is the concept of “Hybrid
ventilation”, which are systems that provide a comfortable cooling capacity using both
natural ventilation and mechanical systems, such as fans [28]. There are several ways to
achieve natural ventilation such as cross ventilation, single-sided ventilation, or the one
treated in this model, stack ventilation.

The stack-effect or buoyancy-driven ventilation is the reaction of the temperature
difference between the air inside and outside a room or building to create a flow.

This process is driven by thermal buoyancy, which is the buoyancy force that arises
due to temperature differences. This is the natural aftermath of hot air being less dense
than cold air, so the warmer fluid will rise and the colder one will sink, creating a flow.
So, if the outdoor temperature is lower than the inside, the air that enters the room will
warm up, becoming lighter and rising up. This action creates an air movement, where
the inside air will escape through the openings at the top of the room [27, 29].

Then, the new model is now divided into two levels - lower and upper. The lower
level is composed of the inlet fan (fan 1) and the transformer located at the bottom
center of the cabinet, and the upper level is composed only of the outlet fan (fan 2). This
is designed according to thermal energy conservation, like the single-zone, with the
addition of air mass conservation. The thermal energy from the lower and the upper
level are expressed as:

Cp,low · Ṫl = Q̇in,l − Q̇out,l + Q̇heater,l − Q̇wall,l + Q̇dist,l (4.13)

Cp,up · Ṫu = Q̇in,u − Q̇out,u + Q̇heater,u − Q̇wall,u + Q̇dist,u (4.14)

where Tl and Tu denote the lower and upper level temperature, respectively. It can
be observed that the total heat capacities Cp,low and Cp,up are specific to each level since
they will be affected by the air mass ml and mu.

Q̇in,l in Eq. 4.13 is the heat transfer rate into the lower level through the inlet and it
is modeled as

Q̇in,l = cp,air · ρlow · qin · (Tn − Tl) (4.15)

where qin is the flow rate through the inlet at the lower level. Once the inlet flow rate is
estimated, the lower mass flow rate ṁin,l can be calculated by ṁin,l = ρlow · qin.

Similarly, Q̇out,u in Eq. 4.14 is the heat transfer rate leaving the upper level through
the outlet and it is expressed as

Q̇out,u = cp,air · ρup · qout · (Tu − Tn) (4.16)
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where qout is the flow rate through the outlet at the upper level. Again, once the outlet
flow rate is estimated, the upper mass flow rate ṁout,u can be calculated by ṁout,u =

ρup · qout.
Normally, a fan curve from the cooling fans is provided, where the relation between

the air volume flow and the pressure is compared. Since this was not supplied and
to simplify the calculations, the total flow is defined as a superposition of the air flow
generated by the fans (q f an,i) and the natural ventilation effect (qnat,in and qnat,out). So,
the inlet flow can be described as:

qin = q f an,1 + qnat,in (4.17)

where q f an,1is the flow rate generated by the inlet fan (fan 1) and qnat,in is the natural
ventilation flow rate through the inlet at the lower level.

Similarly, the outlet flow can be defined as:

qout = q f an,2 + qnat,out (4.18)

where q f an,2 is the flow rate generated by the outlet fan (fan 2) and qnat,out is the natural
ventilation flow rate through the outlet at the upper level.

To simplify the computational process of the system and conserve the mass principle,
it is assumed that the energy leaving the lower level Q̇out,l and the energy entering the
upper level Q̇in,u is the same. This section is treated as a boundary layer between the
zones and expressed as

Q̇out,l = Q̇in,u = cp,air · qb · ρlow · (Tl − Tu) (4.19)

where qb is the volume flow rate at the boundary layer.
The thermal dissipation through the walls is estimated by

Q̇wall,l =
1

Rt,l
· (Tl − Tn) (4.20)

Q̇wall,u =
1

Rt,u
· (Tu − Tn) (4.21)

where Rt,l , Al , and Rt,u, Au are the total thermal resistance and area of the lower and
upper level, respectively. Again, the calculation of Rt follows the same procedure as the
single-zone model. The main difference in the calculation of the wall dissipation is the
convective heat transfer coefficient (hl and hu) applied on each level.

The thermal energy generated by the transformer is defined as:

Q̇heater,l = Q̇heater · f (4.22)

Q̇heater,l = Q̇heater · (1 − f ) (4.23)
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where Q̇heater is a constant value expressed in Watts. The coefficient f (0.5<f<1) reflects
the assumption that the lower level is more affected by the transformer than the upper,
since it is located on the ground floor of the cabinet.

According to the mass balance principle, the conservation of mass for both levels is
expressed as:

ṁl = ṁinl − ṁb (4.24)

ṁu = ṁb − ṁoutu (4.25)

where ṁb represents the mass flow rate at the boundary layer and can be estimated
by ṁb = ρlow · qb.

It is noticeable that the inlet and outlet heat transfer coefficient from both levels, as
well as the boundary layer, are certainly dependent on the flow rate.

Since the natural ventilation principle is considered, the volume flow rate can be
calculated through Bernoulli’s equation [12]. However, the general form of the equation
used to obtain the volume flow considering the airflow from thermal buoyancy, cooling
fans, and other driving pressure differences is the Orifice equation [26]. In this particular
scenario, the inlet and outlet behavior follow this principle. The inlet flow rate can be
modeled as:

qin = cd · A f an ·

√
2 · (Pn − Pl)

ρlow
(4.26)

where cd is the discharge coefficient, A f an is the area of the fan, Pn is the nacelle pressure,
and Pl is the pressure at the lower level.

The outlet flow rate is estimated:

qout = cd · A f an ·
√

2 · (Pu + Pbu − Pn)

ρup
(4.27)

where Pu is the pressure at the upper level and Pbu is the thermal buoyancy effect on
that level.

And finally, the flow rate at the boundary layer is calculated by:

qb = Across ·

√
2 · (Pl + Pbl − Pu)

ρlow
(4.28)

where Across is the cross-sectional area of the cabinet, and Pbl is the thermal buoyancy
effect at the lower level. Here, the discharge coefficient is not applied since the space is
considered a cross-section rather than a nozzle or an orifice.

In contrast to the single-zone model, the air is assumed compressible and therefore,
the ideal gas law is used to calculate the pressure and the density. The pressure from
the nacelle, lower and upper level, is obtained using the following equations:

Pn = Ra · ρair · Tn (4.29)
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Pl =
ml

Vl
· Ra · Tl (4.30)

Pu =
mu

Vu
· Ra · Tu (4.31)

where Ra is the ideal gas coefficient of air, which is 287 J/kg*K.
From these equations, the level densities can be obtained by dividing the air mass

over the volume as:
ρlow =

ml

Vl
(4.32)

ρup =
mu

Vu
(4.33)

This is known as the density formula, which states that density equals mass over
volume. The air mass of the levels can be estimated by integrating the mass flow rate
from Eq. 4.24 and 4.25, and the volumes Vl and Vu are assumed constant values.

Finally, the differential pressure due to thermal buoyancy is estimated by

Pbl = (Hc/2 − Hinlet) · g · ρlow · Tl − Tu

Tl
(4.34)

Pbu = (Houtlet − Hc/2) · g · ρup ·
Tu − Tn

Tu
(4.35)

where Hinlet is the height of the inlet fan center, Houtlet is the height of the outlet fan
center, and Hc is the height of the cabinet which refers to the natural pressure level. This
equation represents the buoyant pressure between two vertical points [30, 31].

These thermodynamic equations lead to obtaining the cabinet temperature, which is
conditioned to the control volumes of both zones, and can be expressed as:

Tc =
Tl · Vl + Tu · Vu

Vl + Vu
(4.36)

4.3.2 Simulation

In this section, following the premises in Section 4.2.2, the multi-zone model has been
fed with various step inputs and initial conditions to analyze the reliability of the
thermal properties of the system. Two scenarios are considered.

The first scenario is formulated on the initial condition that both lower temperature
Tl and upper temperature Tu are set to 25°C, and the inputs to the model are Tn= 25°C,
q f an,1=q f an,2 600m3/h and Qheat= 5kW.

The model is designed in such a way that the lower zone is considerably influenced
by the heat dissipation from the transformer, resulting in higher temperatures compared
to the upper zone. For that reason, after 20 minutes, Tl settles at 35.8°C and Tu a couple
of degrees below at 34.1°C.
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Figure 4.5: Lower and Upper temperature simulation with inputs: Tn=25°C; q f an= 600m3/h; Qheat= 5kW

The relation between temperature and density is inversely proportional. For that
reason, the upper pressure is slightly above the lower one as anticipated, since the warm
air rises to the top of the cabinet due to its lower density, settling after 20 minutes at
around 1.0482 bar.

Figure 4.6: Lower and Upper pressure simulation with inputs: Tn=25°C; q f an= 600m3/h; Qheat= 5kW

As described in Section 4.3.1, Tc is obtained through the relationship between both
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temperature zones and their constant volumes. Tl is assumed to reach a higher temper-
ature than Tu as seen in Figure 4.5. Therefore, Tc is slightly more affected by the lower
zone and settles at 35°C after 20 minutes.

Figure 4.7: Multi-zone cabinet temperature simulation with inputs: Tn=25°C; q f an= 600m3/h; Qheat= 5kW

The second scenario is formulated on the initial condition that the lower temperature
Tl is set at 51°C and the upper temperature Tu is set at 49°C. The inputs to the model
are now: Tn= 25°C, q f an,1=q f an,2= 0m3/h and Qheat= 0kW.

When the heat dissipation and the air circulation are neglected, the cabinet is forced
to rely on natural ventilation to dissipate the air. Here, the temperatures are initially set
high, which takes the cabinet temperature 1 hour to settle at the nacelle temperature of
25°C. The lower temperature is assumed to be higher, however, throughout the ventila-
tion process the warm air rises to the top of the cabinet due to its lower density, as seen
in Figure 4.6. For that reason, Tu is above Tl while tending towards Tn.
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Figure 4.8: Lower and Upper temperature simulation with inputs: Tn=25°C; q f an= 0m3/h; Qheat= 0W

Following the basis of the above Figure 4.8, the cabinet temperature will go towards
the nacelle temperature and settle at 25°C after 1 hour.

Figure 4.9: Multi-zone cabinet temperature simulation with inputs: Tn=25°C; q f an= 0m3/h; Qheat= 0kW



Chapter 5

Methodology

Prior to presenting the results, the theory behind the proposed parameter estimation
technique will be introduced in this chapter, along with an introduction to the state
estimation techniques used for the considered FDD methods in this project.

5.1 Parameter Estimation

When the parameters of a system is unknown, parameter estimation methods are typic-
ally applied in order to identify the system. A system can be described by the following
linear combination in Eq. 5.1.

y = Φ · θ+ v (5.1)

Here, y = [y1, y2, ..., yl ]
T is a vector of l number of noisy measurements, θ = [a1, a2, ..., an]T

is a vector of n number of unknown parameters, v = [v1, v2, ..., vl ]
T is a vector containing

the measurement noises and Φ is an l × n regression matrix containing all the regressor
terms of the system [32] [33].

Given an estimate θ̂ the prediction error is described as the difference between the
measured output and the estimated output:

ϵ = y − Φ · θ̂ (5.2)

5.1.1 Least Squares Method

A common approach for estimating unknown parameters is through the Least Squares
method (LS). The idea behind this method is to minimize the sum of squared errors
given by the cost function J(θ̂), see Eq. 5.3.

J(θ̂) = ϵTϵ = (y − Φ · θ̂)T(y − Φ · θ̂) (5.3)

23
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Under this principle, the value of θ̂ should minimize J(θ̂). Since this is a second
order polynomial, the minimum value for J(θ̂) should satisfy the following equation:

∂J
∂θ̂

= 0 (5.4)

The estimate θ̂ is then achieved by solving for θ̂ in Eq. 5.4, giving the following
solution, assuming that (ΦTΦ)−1 exists:

θ̂ = (ΦTΦ)−1ΦTy (5.5)

This is the basic equation for the offline RL method. This requires that all the meas-
urements have already been obtained. More often, however, the measurements are ob-
tained sequentially, and the estimates will need to be updated with each new measure-
ment. This then requires an online parameter estimation approach [32].

5.1.2 Recursive Least Squares (RLS)

For online parameter estimation, a common approach is the recursive least squares
method (RLS). As the name indicates, this will recursively compute the estimate from
the least squares method. Supposing that a newly obtained measurement yk is given by
Eq. 5.6.

yk = Φk · θ+ vk (5.6)

Here, Φk is an m × n regression matrix, where m is the number of measurements
contained in one sample, and the noise vk is assumed to follow a Gaussian distribution
with zero mean and covariance Rk, meaning that it will be white noise. In addition
to being an online estimation method, RLS also assigns weights to each measurement,
which determines the confidence in each individual measurement. These weights are
based on the covariance of the measurement noise [32] [33].

The general estimation algorithm for RLS is described by the following equations:

Kk = Pk−1ΦT
k (ΦkPk−1ΦT

k + Rk)
−1 (5.7)

Pk = (I − KkΦk)Pk−1 (5.8)

θ̂k = θ̂k−1 + Kk(yk − Φkθ̂k−1) (5.9)

Here, Kk is an n×m gain matrix, also known as a Kalman gain (this will be explained
further in section 5.2.2). Pk is the error covariance matrix of the estimate θ̂. Likewise, the
term Sk = ΦkPk−1ΦT

k + Rk corresponds to the error covariance of the estimated output
ŷk = Φk · θ̂k−1. The RLS algorithm takes into account the statistical properties of the
noise and the errors when updating the gain matrix Kk. The idea behind this is to
reduce the effect from the measurement noise on the estimate θ̂.
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5.1.3 Forgetting Factor Recursive Least Squares (FFRLS)

An extension to the RLS method is the introduction of the forgetting factor λ, where 0 <

λ ≤ 1. The function of the forgetting factor is to assign more weight to the most recent
measurements, thus weakening the influence of older measurements. When λ = 1, it
will weigh all previous measurements equally, meaning that no forgetting occurs. When
λ < 1, the algorithm will have more confidence in the recent measurements and slowly
"forget" the older measurements. This is useful if the RLS algorithm needs to adapt to
changes in the parameters. The updated RLS algorithm uses the following equations:

Kk = Pk−1ΦT
k (ΦkPk−1ΦT

k + λ)−1 (5.10)

Pk = (I − KkΦk)Pk−1
1
λ

(5.11)

θ̂k = θ̂k−1 + Kk(yk − Φkθ̂k−1) (5.12)

Here, the covariance matrix Rk is replaced by λ since the weights need to be updated
at each iteration and Rk is normally considered a constant. Depending on the dynamics
of the system and the sample rate, the FFRLS algorithm can be highly sensitive to λ,
causing it to "forget" too fast, thus resulting in back propagation. As so, λ is usually set
to a value close to 1. Other options can include having an adaptable forget factor that
will readjust itself based on the prediction error of the output [33].

5.2 State Estimation

Unlike parameter estimation, state estimation considers the unknown values to be the
states of the system rather than constant parameters, thus they will be dynamically
changing over time. For a linear system, the states can be described through the state
space model:

ẋ(t) = Ax(t) + Bu(t) + w(t) (5.13)

y(t) = Cx(t) + Du(t) + v(t) (5.14)

Here, x(t) is the state vector, u(t) is the input vector and y(t) is the output vector.
w(t) and v(t) are the process- and measurement noises respectively. A, B, C and D are
the state-, input-, output- and feed-forward matrices respectively. The ODE (Ordinary
Differential Equation) in Eq. 5.13 is the state equation that describes the dynamics of the
system. Eq. 5.14 describes the output of the system. However, D = 0 is usually the case,
meaning there is no feed-forward interaction. Here, x(t) contains the unknown states
that is to be estimated based on known inputs and outputs of the system.
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5.2.1 State Observer

A common way of estimating the unknown states of the system is through a state ob-
server. Assuming no feed-forward in the system, the model of the observer is described
by the following equations:

˙̂x(t) = Ax̂(t) + Bu(t) + L(y(t)− Cx̂(t)) (5.15)

ŷ(t) = Cx̂(t) (5.16)

Here, ˙̂x(t) is the estimated state vector, ŷ(t) is the predicted output and L is the
observer gain matrix. The correction term y(t)− Cx̂(t) is introduced as a feedback to
the observer in order to make the estimation error e(t) = x(t)− x̂(t) converge to zero.
The error dynamics of the observer can be derived and reduced to the following:

ė(t) = (A − LC)e(t) + (w(t)− Lv(t)) (5.17)

From this equation, it is clear that L needs to be designed in a way that will cause
the error dynamics to have stable poles. However, increasing L will also amplify the
measurement noise. A rule of thumb is to make the dynamics of the observer five times
faster than the dynamics of the system.

5.2.2 Kalman Filter

Another type of state estimation is the Kalman Filter (KF). Unlike a state observer, the
KF also considers the statistical properties of the noise in the system. The KF uses an
update algorithm similar to the one used in the RLS method, but with the addition of a
prediction step. The two steps of the algorithm is shown below.

Prediction Step:

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1 (5.18)

Pk|k−1 = APk−1|k−1AT + Q (5.19)

Measurement Update Step:

Kk = Pk|k−1CT(CPk|k−1CT + R)−1 (5.20)

x̂k|k = x̂k|k−1 + Kk(yk − Cx̂k|k−1) (5.21)

Pk|k = (I − KkC)Pk|k−1 (5.22)

Similar to the RLS, the KF includes the measurement noise covariance R, the error
covariance P and the Kalman gain K. In the update step of the estimate x̂, the Kalman
gain determines how much the algorithm should trust the measurement compared to
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the estimated output. This will depend on how noisy the measurements are. If the
Kalman gain is approaching the left-side inverse of C, it means that the update algorithm
have no confidence in the estimated state and will trust the measurements only. If the
Kalman gain is approaching zero, it indicates that the estimated state represents the
true state, and only the measurement noise is contained in the prediction error. In the
prediction step, the state estimate and error covariance are predicted one step ahead
based on the given parameters of the system, where Q is the process noise covariance. It
is worth mentioning that the A, B and C matrices are in discrete time for this algorithm.

5.2.3 Extended Kalman Filter

An extension to the traditional KF is the Extended Kalman Filter (EKF). The EKF is
used when the system in question is nonlinear. This can be described by the following
nonlinear discrete system:

xk = f (xk−1, uk−1) + wk−1 (5.23)

yk−1 = g(xk−1, uk−1) + vk−1 (5.24)

For the prediction step, the nonlinear function f (x̂k−1|k−1, uk−1) is used to predict x̂
at time step k. And g(x̂k−1|k−1, uk−1) is used to estimate the output. Elsewhere, A and C
are replaced by the Jacobian matrices:

Ak−1 =
∂ f
∂x

∣∣∣∣
x̂k−1|k−1,uk−1

(5.25)

Ck−1 =
∂g
∂x

∣∣∣∣
x̂k−1|k−1,uk−1

(5.26)

The EKF linearizes the system, using the estimate and input at time step k − 1 as
linearization points. This way, the nonlinear equations can be treated as a linear system
at each iteration.



Chapter 6

Results

In this chapter, the procedure behind the development of the calibration and the FDDs
will be presented along with the obtained results based on the single-zone model. The
optimization of each algorithm will also be described. Finally, the performances of
the developed FDDs for the single-zone model will be validated using the multi-zone
model.

6.1 Calibration

In Chapter 4, the energy balance equation for the single-zone model resulted in the
following state equation:

dTc

dt
=

cp,air · ρair · (q f an,1 + q f an,2) + 1/Rt

Cp
· (Tn − Tc) +

Q̇heat

Cp
+ w(t) (6.1)

For the obtained model, the parameters of the system were determined based on
information provided by Frank Vandborg from Siemens Gamesa. These parameters
include the mass and dimensions of the cabinet, the volume flow rate of the fans and
the heat generated by the components inside the cabinet. However, in a real scenario,
the algorithm would not have any information about the specific cabinet. Thus, the
parameters of the system will have to be estimated during a calibration phase since it is
desired to have a universal algorithm that can be applied to any particular cabinet. In
order to reduce the number of parameters to be estimated, Eq. 6.1 will be reduced to
the following compact form:

Ṫc = a · ∆T + b + w(t) (6.2)

Where:

a =
cp,air · ρair · (q f an,1 + q f an,2) + 1/Rtotal

Cp
, b =

Q̇heat

Cp
, ∆T = Tn − Tc (6.3)

28
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Eq. 6.3 describes a linear relationship between Ṫc and the temperature difference ∆T.
Here, a is the "cooling factor" which is a combination of the natural and forced cooling
of the system, and b is the heat input. The focus of the calibration is to estimate a and b
so that the cabinet system can be identified. These parameters will be estimated using
the RLS method described in Section 5.1.2. For the RLS method, the following linear
relationship is assumed:

yk = Φk · θ (6.4)

Where:

yk = Ṫc(k) Φk =
[
∆T(k) 1

]
θ =

[
a
b

]
(6.5)

∆T(k) = Tn(k)− Tc(k) (6.6)

Here, Ṫc is obtained using forward Euler:

Ṫc(k) =
Tc(k)− Tc(k − 1)

ts
(6.7)

Where ts = 1sec is the sample time, and Tc(k) and Tn(k) are the measurements
of Tc and Tn, respectively, at time step k. The initial value of Tc(0) for the forward
Euler formula is set to 25°C. Since both Ṫc and ∆T are calculated by subtracting the
temperatures, the conversion from Celsius to Kelvin is not necessary. ∆T(k) and Ṫc(k)
will then be given as inputs to the RLS algorithm. The calibration is tested on the
following scenario for the single-zone model, see Figure 6.1:

Figure 6.1: Test scenario of healthy system. Q̇heat = 5kW. q f an = 600m3/h.
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Here, the nacelle temperature is given as a sinusoidal input with a period of one
day, where 25°C is the minimum and 40°C is the maximum temperature of the nacelle.
The initial conditions of both temperatures are set to 25°C. The cabinet temperature is
seen rising in the beginning, indicating some dynamics. After 15 minutes, the cabinet
temperature reaches a steady state, where it follows the nacelle temperature. The cor-
responding training data for ∆T and Ṫc, which is fed into the RLS algorithm, is seen in
Figure 6.2.

Figure 6.2: Training data for healthy system. Q̇heat = 5kW. q f an = 600m3/h.

Since ∆T is calculated using the measured values of Tc, it is sensitive to any noise in
the measurements. The calibration uses the following algorithm from Section 5.1.2:

Kk = Pk−1ΦT
k (ΦkPk−1ΦT

k + R)−1 (6.8)

Pk = (I − KkΦk)Pk−1 (6.9)

θ̂k = θ̂k−1 + Kk(yk − Φkθ̂k−1) (6.10)

Where the covariance is set to R = 1 and the initial guesses on the estimate and error
covariance are set to:

θ̂0 =

[
0
0

]
, P0 =

[
1 0
0 1

]
(6.11)

The results of the calibration using the unfiltered training data are illustrated in
Figure 6.3.
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Figure 6.3: Comparison of estimated parameters from RLS vs true parameters of the single-zone model.

The figure shows that the estimated values of a and b will start to drift away from the
true values after the system reaches a steady state, since ∆T will settle towards a constant
value while Ṫc will keep changing drastically. To account for this noisy training data,
a low pass filter is applied to Ṫc which will reduce the noise. The low pass filter is
designed using the following discrete transfer function in Simulink:

H(z) =
ts/τ

z + (ts/τ − 1)
(6.12)

Here, τ is the time constant that determines the strength of the filter. The filter allows
frequencies below a certain threshold to pass through, and the higher frequencies are
filtered out. This threshold depends on the time constant and the sample time. Since
this filter is a first-order transfer function, its initial output is zero and it has a rise time
before it reaches the correct output. Therefore, the first few data points at the beginning
are not used for the calibration as the values are incorrect. The effects of the filtering are
seen in Figure 6.4.



6.1. Calibration 32

Figure 6.4: Comparison of unfiltered training data vs filtered training data.

Through trial and error, the time constant for this filter has been set to 5 sec, and
the first 60 sec of samples will be discarded. This means that the calibration phase is
initialized at time t = 60. The new training data for the RLS algorithm is seen in Figure
6.5.

Figure 6.5: New training data for healthy system. Q̇heat = 5kW. q f an = 600m3/h.

And the results of the calibration is seen in Figure 6.6.
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Figure 6.6: Comparison of estimated parameters from RLS vs true parameters of the single-zone model.

Figure 6.6 shows how the estimated parameters rise to the true values during the
first 15 minutes, which is where the dynamics are introduced. When looking closer, see
Figure 6.7, it can be observed that after the system reaches its steady state, the estimated
parameters will start to oscillate around the true values. This is because all future data
points collected during the steady state will be stacked on top of each other, creating
a cluster of data points with only small variations due to noise. To ensure that the
dynamics have a greater impact than the noise, the calibration time is set to 20 minutes,
so that only a few data points from the steady state are included. Thus, the calibration
will run until the steady state is reached. The estimated parameters from the calibration
will then be used for the FDD methods.
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Figure 6.7: Comparison of estimated parameters from RLS vs true parameters of the single-zone model.

6.2 Modelling fault in fans

The focus of this project is to detect faults in the cooling fans in the cabinet. In the
model, these faults will affect the performance of the cooling fans, reducing the volume
flow rate generated by the particular fan. Thus, each fault can be introduced in the
following way:

q f an,i = (1 − fi)qnom (6.13)

where, qnom is the nominal volume flow rate of the particular fan type, and fi is the
fault that has occurred to the ith cooling fan. fi is a value between 0 and 1, where 0
indicates no fault on the cooling fan, and 1 indicates that the fan has stopped.

From Eq. 6.3, the cooling factor a is affected by the volume flow rate of the cooling
fans. This means that when a fault occurs in one of the fans, it will cause a to change.
Thus, the value of a depends on whether the system is healthy or faulty:

a =

{
a0, Normal system

a f , Faulty system

a0 is the cooling factor for a healthy system, and a f is the cooling factor for a faulty
system. The proposed FDD methods in this project will focus on monitoring a and see
if its value deviates from a0.
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6.3 Bank of Observers

The first proposed FDD method is a bank of observers. The idea is to design multiple
observers where each of them will represent a "copy" of the real system but under
different assumptions regarding the health condition of the cabinet.

Each observer will then try and estimate the states of the real system based on
the two temperature measurements. However, since each observer will have different
assumptions about the health of the system, they will also have different assumptions
regarding the dynamics of the system. Thus, the observer with the best estimation
performance is assumed to be the closest representation of the real system.

For the observer design, the cabinet model is described in the following state space
form: [

Ṫc

Ṫn

]
=

[
−a a
0 0

] [
Tc

Tn

]
+

[
b
0

]
· u(t) + w(t) (6.14)

y(t) =
[

1 0
0 1

] [
Tc

Tn

]
+ v(t) (6.15)

Here, u(t) is considered an input that is either 0 or 1 that indicates if the transformer
inside the cabinet is running or not. In the second state equation, the nacelle temperature
is modeled as a constant as it is assumed to be slowly varying compared to the cabinet
temperature.

Observability

Before designing an observer, it is important to check that the system is observable. This
is done by calculating the observability matrix, see Eq. 6.16.

O =


C

CA
CA2

:
CAn−1

 (6.16)

Where n is the number of states. The observability of a system determines how well
the internal states can be determined from the external measurements. If the column
rank of the observability matrix is equal to n, the system is considered to be fully ob-
servable. The observability matrix of the given system is calculated to be:

O =


1 0
0 1
−a a
0 0

 (6.17)
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Which is full column rank, meaning that the system is fully observable.

6.3.1 Pole placement

The gain matrix L needs to be designed in a way that will give the observer the desired
poles [λ1, λ2] which correspond to the eigenvalues of the observer state matrix. Thus,
the desired characteristic equation for the observer becomes:

|sI − A + LC| = (s − λ1)(s − λ2) (6.18)

By solving L, the desired gain matrix becomes:

L =

[
−(λ1 + a) a

0 −λ2

]
(6.19)

As mentioned in Section 5.2.1, a rule of thumb is to make the observer five times
faster than the system. The state matrix in Eq. 6.14 has the eigenvalues [−a, 0], thus the
first pole of the observer becomes λ1 = −5a. However, the second pole should not be
zero since this is not a stable pole. To ensure that the observer will also track Tn, the
second pole is set to λ2 = λ1, meaning that the nacelle temperature error will have the
same dynamics as the cabinet temperature error at the expense of being more sensitive
to measurement noise. The gain matrix then becomes:

L =

[
4a a
0 5a

]
(6.20)

6.3.2 Observer Design

The bank of observers designed for this project will contain a total of five observers.
However, the observers will not know the true value of a and b from the cabinet model.
Furthermore, each observer needs to be designed with different values for a based on
the assumed health. The general design for the ith observer is described by the following
equations:

˙̂x(t) = Aix̂(t) + Bu(t) + Li(y(t)− Cx̂(t)) (6.21)

ŷ(t) = Cx̂(t) (6.22)

Where:

Ai =

[
−ai ai

0 0

]
, B =

[
b̂
0

]
, C =

[
1 0
0 1

]
, Li =

[
4ai ai
0 5ai

]

y(t) =
[

Tc

Tn

]
, x̂(t) =

[
T̂c

T̂n

]
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Here, b̂ is the estimated parameter achieved from the calibration. Likewise, ai will
depend on the estimated "healthy" cooling factor â0 from the calibration as well as the
assumed health, see Eq. 6.23.

ai = â0 · hi (6.23)

Where h is the "health factor" defined as:

h =
a
a0

(6.24)

If h = 1 then the system is 100 % healthy meaning that the cooling is working as
normal. Here, a different value for the cooling factor h will be assigned to each observer.
However, h = 0 is not considered as it would indicate that there is no cooling in the
cabinet, which is not possible for the real system due to the natural cooling. Instead, the
considered scenarios are h = [1; 0.8; 0.6; 0.4; 0.2].

6.3.3 Simulation with fault

The FDDs are tested on the same fault scenario in Simulink. For the simulation, the two
faults f1 and f2 are introduced as step inputs that start from zero. At time t = 60min
both faults are set to f1 = f2 = 1, meaning that both fans will break. The fault simulation
is seen in Figure 6.8.

Figure 6.8: Test scenario of faulty system. Q̇heat = 5kW

The simulation shows that the system is normal during the first hour i.e. a healthy
system. Then, both fans break after one hour resulting in a complete fault. This causes
the cooling factor to reduce by 65%. The health factor is seen in Figure 6.9.
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Figure 6.9: Health plot for the fault scenario.

6.3.4 Observer Test

For the FDD tests, the calibration phase and the FDDs are included in the same simula-
tion run. Based on the analysis in Section 6.1, the calibration time is set to 20 minutes
to include all the dynamics in the beginning as well as some data from the steady state.
After 20 minutes, the calibration will hold the last estimated value of each parameter, see
Figure 6.10, and the FDD method is then initialized using both the estimated parameters
and the two temperature measurements as inputs.

Figure 6.10: Comparison of estimated parameters from RLS vs true parameters of the single-zone model.
The true cooling factor "a" is seen to drop when the fault is introduced.



6.3. Bank of Observers 39

Since both temperatures are measured in discrete time with a sample time of ts = 1
sec, each observer is transformed into the following discrete model:

x̂k+1 = Ad,ix̂k + Bduk + Ld,i(yk − Cdx̂k) (6.25)

ŷk = Cdx̂k (6.26)

Where:

Ad,i = I + ts · Ai, Bd = ts · B, Cd = C, Ld,i = ts · Li, x̂0 =

[
30 + 273.15
20 + 273.15

]
For each observer, the residual rk = yk − ŷk between the measured output and the

estimated output are calculated and will be used to evaluate which observer is the best
representation of the cabinet system. The residuals from the five observers are compared
in Figure 6.11.

Figure 6.11: Comparison of residuals from the five observers.

Here, the 100% healthy corresponds to the observer with h = 1. Likewise, 80%
healthy corresponds to h = 0.8 and so on. Here, the observers are shown to quickly
track the nacelle temperature due to the enhanced error dynamics. It is clear that each
observer performs differently when trying to predict the cabinet temperature as each
observer makes different assumptions about the cooling based on the assigned value
of h. During the first hour, where the system is healthy, the "100% healthy" observer
shows the smallest residual i.e. the best prediction. After the fault occurs, the "health"
drops to 35%, and the residuals for Tc start to change. After reaching a steady state,
the "40% healthy" observer has the smallest residual, indicating that it is now the closest
representation of the real system. However, the residual from the "20% healthy" remains
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the furthest from zero. Due to the parameters for our particular model, the natural
cooling makes up 35% of the total cooling of the cabinet. Thus, the health factor h for
this model can never go below 0.35 which makes the last observer redundant for the
particular system. In reality, different cabinets will have different sizes, fan types etc.
meaning that for a particular cabinet, the natural cooling could potentially make up
only 20% of the total cooling (making all observers useful) or 50% (making one or more
observers redundant). In order to have a universal FDD algorithm that can be applied to
any cabinet without any redundant observers, the "health factor" needs to be redefined.
The health factor is instead defined as a normalized value of the cooling factor, see Eq.
6.27.

h =
a − min(a)

max(a)− min(a)
(6.27)

Where max(a) = a0 and min(a) = min(a f ). If h = 1, the system is healhy. If h = 0,
cooling has reached its minimum i.e. both fans are broken. The updated health factor
for the fault simulation is seen in Figure 6.12.

Figure 6.12: Updated health plot for the fault scenario.

For the observer design, ai is also updated in Eq. 6.28:

ai = (â0 − min(â f )) · h + min(â f ) (6.28)

Here, min(â f ) needs to be obtained through a distinct calibration process prior to
the main analysis. For this calibration, both fans are turned off to simulate a fault. By
introducing some dynamics into the system, the minimum value of a f can be estimated,
see Figure 6.13 and 6.14.
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Figure 6.13: Simulation with both fans turned off.

Figure 6.14: Comparison of estimated parameters from RLS vs true parameters of the single-zone model
with fans turned off.

Here, the calibration is given 30 minutes to include more dynamics for the training
data. It is observed that only a has changed when the fans are turned off, while b
remains unaffected.

6.3.5 Results

With the updated definition of the health factor, h = 0 can now be considered for one
of the observers. The five observers are given the new scenarios h = [1; 0.75; 0.5; 0.25; 0].
The updated bank of observers are tested on the same fault scenario as before (from
Figure 6.8). The new results of the observer residuals are seen in Figure 6.15.



6.3. Bank of Observers 42

Figure 6.15: Comparison of residuals from the five observers.

These residuals show that the "100% healthy" observer is identical to the real system
during the first hour. After the faults occur, the 0% observer becomes the best candidate
instead. The residuals of Tc can be further compared by looking at the normalized
squared residuals, see Figure 6.16.

Figure 6.16: Comparison of normalized squared residuals of Tc from the five observers.

Here, each residual is squared and divided by the sum of squared residuals in Eq.
6.29, where the normalized resulting values range between 0 and 1, making them easier
to compare and analyze.
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rnorm,i =
r2

i

∑N
j=1 r2

j

(6.29)

Where N is the number of observers. Figure 6.16 shows how each residual stands
against the other, with the biggest residual being the worst representation of the real
system, and the smallest being the best. Here, it makes sense that "20% healthy" would
be the second best estimation. The normalized values make it easier to determine in
what range, the "health" is located as it would be within the range of the scenario with
the smallest residual. Since the observers are designed to quickly track the nacelle
temperature, it is not possible to evaluate the residuals of Tn as the estimated outputs
are over-fitted to the measurements, see Figure 6.17.

Figure 6.17: Comparison of normalized squared residuals of Tn from the five observers.

This could suggest an alternative model-based FDD method that can evaluate both
residuals.

6.4 Multiple Model Adaptive Estimation (MMAE)

Another proposed FDD method is Multiple Model Adaptive Estimation. The first step
consists of a bank of Kalman filters, which, unlike the observers, also considers the
statistical properties of the noise to increase the accuracy of the estimated states. We
recall the algorithm presented in Section 5.2.2:
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Prediction Step:

x̂k|k−1 = Adx̂k−1|k−1 + Bduk−1 (6.30)

Pk|k−1 = AdPk−1|k−1AT
d + Q (6.31)

Measurement Update Step:

Sk = CdPk|k−1CT
d + R (6.32)

Kk = Pk|k−1CT
d S−1

k (6.33)

x̂k|k = x̂k|k−1 + Kk(yk − Cdx̂k|k−1) (6.34)

Pk|k = (I − KkCd)Pk|k−1 (6.35)

The Kalman filters are designed using the same Ad, Bd and Cd matrices as for the
observers. The observer gain L is replaced by the Kalman gain K.

6.4.1 Test

The bank of Kalman filters are first tested on a healthy system to see how well it can
track the sinusoidal input for Tn using the following process- and measurement noise
covariance and initial guesses.

R =

[
σ2

v 0
0 σ2

v

]
, Q =

[
σ2

w 0
0 0

]
, x̂0|0 =

[
30 + 273.15
20 + 273.15

]
, P0|0 =

[
1 0
0 1

]
(6.36)

It assumes that only the first state equation contains process noise. The results of the
residuals are seen Figure 6.18.

Figure 6.18: Comparison of KF residuals for healthy system assuming no process noise for Tn
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It can clearly be observed that both residuals are drifting since the Kalman filters
are not accounting for the slow dynamics of Tn. Therefore, the Kalman filters need to
include process noise in both state equations:

Q =

[
σ2

w 0
0 σ2

w

]
(6.37)

The same process noise variance σ2
w is assigned to Tn. Figure 6.19 shows the per-

formance of the Kalman filters with the updated covariance matrix.

Figure 6.19: Comparison of KF residuals for healthy system assuming process noise for Tn

6.4.2 Results

The bank of Kalman filters are then tested on the same faulty scenario as the bank of
observers, recall Figure 6.8. The results are seen in Figure 6.20.
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Figure 6.20: Comparison of KF residuals for a faulty scenario.

Here, the residuals of Tn are shown to deviate from each other. The corresponding
normalized squared residuals for Tc and Tn are seen in Figure 6.21 and 6.22 respectively.

Figure 6.21: Comparison of normalized squared residuals of Tc from KFs.
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Figure 6.22: Comparison of normalized squared residuals of Tn from KFs.

The two figures show the same outcome as for the observer, with "100% healthy"
having the smallest residuals before the faults are introduced, and "0% healthy" having
the smallest residuals after the faults have occurred. However, the residuals of Tn only
have small deviations from each other in the beginning. This is clear in Figure 6.22,
where the residuals for "0%" and "25%" are very similar, and "0%" also appears to be
slightly closer to zero than "25%" before the faults occur. The small deviations also
cause the normalized residuals to become more noisy. This could suggest that the error
covariance S of the residuals needs to be evaluated as well.

6.4.3 Likelihood function

An extension to the bank of KFs is the likelihood function. The MMAE assumes that the
real system corresponds exactly to one of the five KF models. It uses the residual vector
r = y − ŷ together with the covariance S of the residual, assuming normal distribution
with zero mean, to calculate the likelihood function, which is the probability density
function (PDF) of the residual vector, see Eq. 6.38.

lk =
1√

(2π)n|Sk|
exp

(
−1

2
rT

k S−1
k rk

)
(6.38)

Where n is the dimension of r. The likelihood function is then applied to each KF.
The five likelihoods are then used to calculate the normalized probability value of each
KF using Baye’s rule, see Eq. 6.39.

pi|k =
li|k · pi|k−1

∑N
j=1 (lj|k · pj|k−1)

(6.39)
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The normalized probability values indicate which KF is most likely to correspond to
the real system.

In Simulink, the two formulas are expressed in their logarithmic form, see Eq. 6.40
and 6.41, to avoid potential over- and underflow issues when dividing or multiplying
with very small or very large numbers.

log(lk) = −1
2
(n · log(2π) + log|Sk|+ rT

k S−1
k rk) (6.40)

log(pi|k) = log(li|k) + log(pi|k−1)− log

(
N

∑
j=1

exp
(

log(lj|k) + log(pj|k−1)
))

(6.41)

However, this issue is not fully avoided in Simulink. At the time when the fault
occurs, all likelihoods will immediately drop to a number very close to zero, see exam-
ple in Figure 6.23, before slowly increasing. This number is smaller than the smallest
representable positive number in Simulink, causing an underflow issue.

Figure 6.23: Likelihood function for "100% healthy".

In Simulink, it causes the denominator of Eq. 6.39 to be approximated as zero at
the given time, and the resulting probability values become "NaN" (not a number). The
"NaN" values are then used in the next iteration for Bayes rule, causing the one-step
ahead probability value to also become "NaN". This creates a loop where all future
probability values will become "NaN" which can not be displayed, see Figure 6.24.
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Figure 6.24: Comparison of probability values with underflow issues. Here, the initial value of all five
probabilities is set to 0.2 giving them equal probability in the beginning.

To avoid this issue, the five probability values are collected into a vector and given
as an input to a MATLAB function. The MATLAB function takes all the elements which
are "NaN" and replaces them with 0.2. In other words, each probability is "reset" to its
initial value at the time a fault occurs. The "reset" probabilities are then used for the
next iteration. The five probabilities are seen in Figure 6.25.

Figure 6.25: Comparison of probability values without underflow issues.

The MMAE shows that the KF representing a normal system (100% healthy) has the
best probability of corresponding to the real system before the faults occur. When the
faults occur, there is a small transition between each probability as the other residuals
from Figure 6.20 are shown crossing zero. Afterward, the KF representing a completely
faulty scenario (0% healthy) shows the best probability.
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6.5 Joint state estimation

Another proposed FDD method is using an Extended Kalman Filter to directly estimate
the cooling factor a. Here, the cooling factor is considered as another state, resulting in
the augmented state vector:

x =

Tc

Tn

a

 (6.42)

This augmented state vector has a nonlinear state equation, due to the joint states,
thus the EKF is needed:

ẋ = f (x, u) + w(t) (6.43)

y = g(x) + v(t) (6.44)

For the EKF, the Jacobian matrix A:

A =

−a a Tn − Tc

0 0 0
0 0 0

 (6.45)

Together with the output matrix C:

C =

[
1 0 0
0 1 0

]
(6.46)

The A and C matrices are transformed into discrete time using forward Euler, and
the following EKF algorithm is applied:

Prediction Step:

x̂k|k−1 = f (x̂k−1|k−1, uk−1) (6.47)

Pk|k−1 = Ad(xk−1|k−1)Pk−1|k−1AT
d (xk−1|k−1) + Q (6.48)

Measurement Update Step:

Sk = CdPk|k−1CT
d + R (6.49)

Kk = Pk|k−1CT
d S−1

k (6.50)

x̂k|k = x̂k|k−1 + Kk(yk − Cdx̂k|k−1) (6.51)

Pk|k = (I − KkCd)Pk|k−1 (6.52)

Where the discrete Jacobian matrix of A is updated at each time step based on the
estimate xk−1|k−1.
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6.5.1 Observability

However, the observability of the new system equations needs to be evaluated. This is
done by checking that the new observability matrix is full column rank:

O =

 C
CA
CA2

 =



1 0 0
0 1 0
−a a Tn − Tc

0 0 0
a2 −a2 a · (Tc − Tn)

0 0 0


(6.53)

From Eq. 6.53 it is clear that the system is fully observable for Tc ̸= Tn.

6.5.2 Results

The Extended Kalman Filter is tested on the same faulty scenario from Figure 6.8. The
following covariance matrices and initial guesses are used:

R =

[
σ2

v 0
0 σ2

v

]
, Q =

σ2
w 0 0
0 σ2

w 0
0 0 0

 , x̂0|0 =

30 + 273.15
20 + 273.15

â0

 , P0|0 =

1 0 0
0 1 0
0 0 1


(6.54)

The residuals of Tc and Tn from the EKF are shown in Figure 6.26.

Figure 6.26: EKF residuals of Tc and Tn for a faulty scenario. Simulation time is 6 hours.

The initial guess on the error covariance matrix P causes the residuals to quickly con-
verge to zero in the beginning. P will then settle at a certain value. After the faults occur,
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the residuals then slowly converge back to zero, meaning that the estimated outputs are
converging towards the true values. This implies that the estimated states can also be
trusted. The estimated cooling factor is shown in Figure 6.27 where it is compared to
the true cooling factor of the single-zone model.

Figure 6.27: Comparison of estimated cooling factor using EFK vs. true cooling factor from single-zone
model. Simulation time is 9 hours.

The figure shows the estimated cooling factor slowly converging towards the true
value over time. The estimated value â is then used together with RLS estimates â0 and
â f from the calibration to estimate the health factor of the system, see Eq. 6.55.

ĥ =
â − min(â f )

â0 − min(â f )
(6.55)

The estimated health and the true health of the single-zone model are then compared
in Figure 6.28
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Figure 6.28: Comparison of estimated health factor using EFK vs. true health factor from single-zone
model. Simulation time is 9 hours.

The EKF is shown to give a reliable estimate of the "health" of the system over time
within some margin of error.

6.6 Validation

6.6.1 Fault scenarios

This section describes the two fault scenarios applied for the multi-zone model fault
detection methods.

Scenario 1: Simultaneous failure of both fans

The first scenario mirrors the simulation with faults from the single-zone model, where
both faults f1 and f2 are set to 1 and introduced as step inputs at time t = 60min,
meaning that both fans will break simultaneously. The fault simulation can be seen in
Figure 6.29.



6.6. Validation 54

Figure 6.29: Temperature reaction to the faulty scenario 1

The simulation in Figure 6.30 illustrates a healthy system through the first hour,
which is reduced to zero as expected after both fans break.

Figure 6.30: Health plot for the faulty scenario 1

Scenario 2: Sequential failure of both fans

In this next scenario, both fans are sequentially set to faulty mode, where f1 is set at
time t1 = 60min and f2 is set at time t2 = 120min. The fault simulation can be seen in
Figure 6.31.
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Figure 6.31: Temperature reaction to the faulty scenario 2

From the below plot, Figure 6.32, the health factor visibly declines to 33% when the
first fault arises. When the second fault occurs, the health factor drops to zero.

Figure 6.32: Health plot for the faulty scenario 2

After many simulations and different combinations, it can be concluded that the
sequence in which the faults are introduced has no impact on the resulting outcome, for
both cabinet temperature and health factor.

6.6.2 Calibration

The multi-zone model follows the calibration process described in the single-zone model.
In addition, the "forgetting factor" concept was initially introduced in the RLS algorithm
to assess the response of the data. It highlights old data compared to the new data
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considered spurious, by giving exponentially less weight to the older error samples [34].
The forgetting factor is a very sensitive parameter so, through trial and error, the

value was modified by altering the thousandth place in the decimal. Figure 6.33 shows
the calibration process with a forgetting factor of 0.999.

It can be observed that estimated values deviate from the true ones. This occurs
because the forgetting factor forgets the initial data, where the model dynamics are
introduced, and forces the system to rely on the latest measurements which is the steady
state. Since the RLS is designed to identify the dynamic behavior of the system, applying
constant values from the steady-state, leads to poor performance. For the RLS algorithm
to work, dynamics should be introduced throughout the calibration process, which is
out of the scope of the present project.

Figure 6.33: RLS algorithm with a forgetting factor of 0.999

In order to address the drifting issue, the forgetting factor value was adjusted to 1,
preventing the RLS algorithm from disregarding any information. It can be seen that
both estimated parameters rise to the true values after 15 minutes, where the dynamics
are introduced, the same way as for the single-zone model in Figure 6.6, although there
is an offset with the estimated b due to the complex thermal dynamics.
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Figure 6.34: Estimation of a and b in the RLS algorithm

The health and performance of the two fans affect the outcome of a, therefore, when
both of them are broken, the magnitude of a drops 3 units, and the offset in b increases.

Figure 6.35: Estimation of a and b in the RLS algorithm with both fans off

The following FDD simulations were initialized after reaching the steady state.

6.6.3 Bank of Observers

Similar to the single-zone model, a bank of observers is selected as an FDD method
for the study. For the first part of this section, the simulation follows the conditions of
Scenario 1 described in section 6.6.1.

The observer residuals are represented in the following Figure 6.36 and, in a similar
manner to Figure 6.15, the "100% healthy" observer resembles the real system in the ini-
tial hour. When the fault occurs, the "0% healthy" observer becomes the best prediction
of the system.
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Figure 6.36: Residual comparison from the five observers in the multi-zone model

The normalized squared errors confirm the previous evaluation of the system’s pro-
gression and tracking of the faults. It can be observed in Figure 6.37 how the "100%"
observer remains at zero and, after the fault, the position is switched with the "0%"
observer.

Figure 6.37: Normalized squared errors comparison from the five observers in the multi-zone model

In order to enhance the comprehension of the system and investigate the attributes of
the multi-zone model, the faults are now introduced at different times. Here, in Figure
6.38, the simulation follows the conditions of Scenario 2. When the first fault occurs
after one hour, the best representation of the model is the "25% healthy" observer, which
aligns with the health factor dropping to 33% as described in Section 6.6.1. After the
second fan breaks, the system is completely faulty, pictured by the "0% healthy" observer
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having the lowest residual.

Figure 6.38: Normalized squared errors comparison with two faults in the multi-zone model

6.6.4 MMAE

In this section, a bank of Kalman filter is also considered as an additional FDD method.
The simulation follows again the conditions defined in Scenario 2.

The KF residuals are defined in Figure 6.39. It is distinctly visible where both faults
appear and which observer gives the best prediction, these two being the "25% healthy"
and "0% healthy" for the first and second fault, respectively.

Figure 6.39: KF residual comparison with two sequential faults

The probability of the five KFs is displayed in Figure 6.40, where it can be observed
how at the beginning, the best representation of the model is the healthy observer (100%
health). After the first fault transpires, there is a transition between the "50% healthy"
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and the "25% healthy" observers, being the last one the best prediction. Finally, when
the second fault occurs, the "0% healthy" observer is the best candidate for representing
the model.

Figure 6.40: Probabilities of the five KF with two sequential faults

6.6.5 Joint State Estimation

The last FDD method tested in the multi-zone model is the Extended Kalman Filter,
which is under the same scenario as the bank of Kalman Filters.

The first graph represents the EKF estimation of a, illustrated in Figure 6.41. Using
the healthy calibration, see Figure 6.34, the estimated value of b is utilized as an input
for the EKF to estimate a. However, since b̂ was too high, it results in â (from the EKF)
having an offset throughout the simulation. Although there are some inaccuracies in
the calibration process, it can be concluded that the estimation remains reliable.
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Figure 6.41: Estimation of a on the EKF with two sequential faults

Figure 6.42 illustrates how the health factor drops to 33% when the first fault occurs,
and falls to 0% after the second fan breaks. This outcome suggests that both fans are
coupled to each other, rather than being superimposed or combined.

Figure 6.42: Model health estimation on the EKF with two sequential faults



Chapter 7

Discussion

This chapter will discuss the challenges and limitations faced throughout the develop-
ment of the project, along with a brief description of future work.

As described in Chapter 4, some initial conditions and inputs to the system were
proposed at Siemens Gamesa, which the members of the group decided to stick with
throughout the project, such as constant heat generation from the electrical device, con-
stant flow rate from both fans and considering the nacelle as the environment. Also, the
single-zone model was designed without the mass balance equation and the pressures,
and the air was considered incompressible. Although the single-zone limitations are
covered in the multi-zone model, it would be interesting to observe the performance of
the simple model with the proper thermal properties.

Determining which thermal principles to apply during the design of the multi-zone
model was challenging. Various concepts were explored, such as forced ventilation or
the overall heat transfer coefficient, which ultimately proved to be incorrect or unreli-
able, before arriving at the final result. For future work, including the nacelle dynamics
holds the potential to significantly improve the robustness and give a better under-
standing of its interactions with the other components and the impact on the system’s
performance.

For this project, the calibration of the "healthy" system was conducted online, im-
mediately followed by the initialization of the FDD algorithms. The "faulty" calibration
of the system (with fans turned off) was also conducted online but in a separate run
prior to the FDD tests. However, in a real scenario, both calibrations can be conducted
offline prior to the FDD initialization. The calibrations require that some dynamics are
introduced into the system, however, in a real scenario it will not be necessary to turn
the transformer off and back on each time a new calibration is initialized, as dynamics
can also be introduced by turning the fans on and off. The calibrations can instead be
conducted while the system is running normally. Here the fans will need to be turned
off causing the cabinet temperature to rise and data can be collected for the "faulty"
calibration. The fans can then be turned back on, introducing more dynamics, and data
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can be collected for the "healthy" calibration. This process can be repeated multiple
times to ensure that a sufficient amount of data points have been collected for each cal-
ibration. Each calibration can then be conducted offline by simulating the collected data
sequentially for the corresponding scenario.

Regarding the FDDs, a challenge with the bank of observers is associated with the
gain matrix, which had to be tuned in order to improve the tracking performance of
the estimated nacelle temperature. However, this tuning process resulted in increased
sensitivity to measurement noise, posing a trade-off with accuracy.

In order to improve the parameter estimation, it would be appealing to combine the
available EKF with the maximum likelihood technique to give an estimate that would
maximize the likelihood function.

An extension to this work would also be to test how the FDDs react to other inputs
to the model such as size, mass, flow rates, and heat generated by the transformer.

Since the fault detection approach in this project relied on temperature observation,
the volume flow rate was manipulated, where an abrupt increase in temperature was
considered equivalent to the presence of a fault in the fan. Therefore, another potential
methodology for fault detection could involve monitoring the velocity of the fans and
analyzing how it affects the temperature variations if the fan-curve is available. This
could potentially be achieved by implementing a "cheap" encoder into the cooling fans
to measure the velocity in real time.

Additional future work would be to test the available FDD algorithms on data from
a real setup and, if successful, implement it into a SCADA or CMS system for fault-
tolerant control (FTC).



Chapter 8

Conclusions

The task statement of this project is to detect a fault in a cooling fan by analyzing the
temperature inside a control cabinet through different FDD algorithms.

To achieve this, the first task in hand was to develop a simple dynamic model that
mimics the behavior of a cabinet within a nacelle. Basic thermodynamic principles were
applied in order to cover the proposed suggestions by Siemens Gamesa. An extended
version was created to expand the single-zone into a multi-zone model, where further
thermodynamic principles were added. The simulation for both models showed satis-
factory results in calculating the cabinet temperature, given the absence of real data for
comparison.

Following the single-zone model, a calibration technique was then developed to
identify the system parameters based on the two temperature measurements. Through
trial and error, the calibration has shown reliable results for the single-zone model;
for the multi-zone, the calibration resulted in an offset due to small variations in the
parameters over time. A forgetting factor was introduced, however, this caused the
algorithm to forget the data containing the dynamics, thus new dynamics will need to
be introduced to the system. However, the RLS-based calibration without a forgetting
factor was still able to estimate the system parameters within an acceptable range.

The first developed FDD method was a bank of observers where each observer as-
sumes different scenarios regarding the "health" of the system. The residuals of each
observer were generated and then normalized for comparison. The normalized resid-
uals for the cabinet temperature were evaluated to determine which observer was the
closest representation of the real system. The bank of observers was able to estim-
ate within what range, the health status of the cabinet was located for both models.
However, when there are only small differences between two residuals, the normalized
values become noisy.

An MMAE method consisting of multiple Kalman filters for residual generation
was also developed. Each residual and error covariance was evaluated through the
likelihood function, and normalized probabilities were calculated for each Kalman filter.
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The probabilities were able to show which KF had the best chance of being the correct
representation of the cabinet system.

For the Joint State method, although the calibration of the multi-zone model showed
some inaccuracies in parameter estimation, the algorithm was able to estimate the health
within a range from the true value, making the FDD results reliable within some margin
of error. Furthermore, when the estimated health is above 1, which theoretically should
not occur, it gives an idea of the magnitude of the estimation error.

Finally, the task statement was completed by successfully detecting faults on a cool-
ing fan by analyzing the control cabinet temperature through different FDD algorithms.
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