Author(s)
Term
4. term
Education
Publication year
2019
Submitted on
2019-05-28
Pages
78 pages
Abstract
This paper proposes a new model, called HydraNet, for solving the problem of single-channel blind source separation. The model is based on two other models called Chimera and Wave-U-Net. By combining these two it was hoped that the signal-to-distortion ratio (SDR) would increase. HydraNet was implemented in Python PyTorch, and evaluated on the DSD100 dataset for singing voice separation. It reached a SDR of 9.78dB for instrument separation and 3.46dB for singing voice separation. Chimera and Wave-U-Net were also implemented in Python PyTorch and tested on DSD100.
Keywords
Documents
Colophon: This page is part of the AAU Student Projects portal, which is run by Aalborg University. Here, you can find and download publicly available bachelor's theses and master's projects from across the university dating from 2008 onwards. Student projects from before 2008 are available in printed form at Aalborg University Library.
If you have any questions about AAU Student Projects or the research registration, dissemination and analysis at Aalborg University, please feel free to contact the VBN team. You can also find more information in the AAU Student Projects FAQs.