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Chapter 1

Introduction

Source separation is a an area of research that is applicable in a wide array of other fields.
The area focuses on the development of techniques whose goals are identifying, and sepa-
rating, the individual signals in a mixture of signals. This is best illustrated in the "cocktail
party problem", which concerns the separation human speech. This problem was first
described thoroughly in a paper by Cherry [10] in 1953. It states that at a cocktail party,
where many people are speaking at the same time, in every direction, it is possible for
humans to clearly distinguish the speech of a single person. This is significant as there is
no clear mathematical model for how this could be achieved, yet our brains are doing it
with ease, with only limited information. In essence this problem states that we know a
mixture of voices can be divided into its constituent parts, however we do not have a clear
model for how this is done. The paper also lays out 5 factors humans might use in this
process:

1. "The voices are coming from different directions"

2. "Lip-reading, gestures, and the like"

3. "Different speaking voices, mean pitches, mean speeds, male and female, and so
forth"

4. "Accents differing"

5. "Transition probabilities (subject matter, voice dynamics, syntax)"

These are direct quotes from the paper, where Cherry also states that the only factor that
can be worked on is number 5, as recording two statements on the same magnetic tape
would be "babel". However, since then technology has improved and the field of source
separation has expanded. Instead of focusing on factor 5, most modern techniques focus
on factor 1 and 3, the phase and frequency content of the different source signals. These
are also the focuses of this paper.

3



4 Chapter 1. Introduction

Newer, more difficult, variations of the field has also been developed as more advanced
problems have been encountered. These more difficult areas are called blind source sep-
aration and single-channel blind source separation. Blind separation means that no infor-
mation about the sources is available beforehand, and single-channel means that only one
audio track is available, making detecting phase differences in sources difficult.

Traditionally these problems have been tackled by purely statistical methods, such as
non-negative matrix factorization [15, 34, 63] (NMF), individual component analysis [3,
1] (ICA) and computational auditory scene analysis [11, 65] (CASA), to a lesser degree
of success. However, in recent years many new machine learning techniques have been
developed, which has allowed for more powerful models to be constructed, and for more
general solutions to be found. Machine learning models have allowed for huge increases
in signal-to-noise ratio (SNR) and signal-to-distortion ratio (SDR) on many speech sepa-
ration tasks. Though they are not limited to speech, and can also be trained to separate
other audio or other kinds of signals.

If better models can be constructed, that can generalize the solutions more, it could be
very significant for not just audio separation but also a number of other fields. It could
be utilized in electroencephalography (EEG), the technique used to record and locate dif-
ferent electrical signals in the brain[32]. In this field a large amount of sensors is placed
at various locations on the participants skull, such that all record the mixture of electrical
signals in the brain. The phase differences of the signals and the placement on the skull
can then be used to triangulate where different signals are emitted inside the brain [9, 6,
33].

However, if some sensors are not making good contact with the skin they will return
erroneous signals and potentially make the data useless. If signal separation could be
applied efficiently and accurately then much fewer sensors could be used and the effects
of one sensor making bad contact could be lessened if the algorithm is robust enough.
Another application could be in the development of virtual reality (VR) experiences. In
VR, the location of sounds is key to feeling that the environment is realistic. This means if
a group of virtual characters is talking, it is important to have a source of sound emitted
from each of them, so that we can take advantage of the first factor Cherry described, to
distinguish them. Normally in the development of a VR experience this is manageable as
the character’s voices can be recorded individually. However if a group wants to create
a virtual orchestra experience instead of a virtual conversation, this becomes a lot more
difficult as it is few who has access to a full orchestra and the resources to record every
single musician individually. It is in such instances that a source separation model could
be used to separate recordings of other orchestras and thus create better VR experiences.
In the same vein small game development companies, DJs or other private users, could use
this technology to create novel music pieces from the separated instruments of other songs.
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As discussed, source separation is a big field with many applications and a wide array
of different techniques. This is why this report will begin with a chapter about the back-
ground and concepts used in the report, which will contain a more general description
of these fields and theories. Chapter 3 will then describe specific state-of-the-art papers,
and will end with a plan for which concepts will be used in the implementation. Chapter
4 will contain the re-implementation of two of these papers and the implementation of a
new model called "HydraNet". In chapter 5 these models will be evaluated with different
hyper-parameters and model structures, and the results will be shown. The results will
be discussed in chapter 6, along with errors that were made and suggestions for improve-
ments in future works. The report will then be summarized and the results reiterated in
the conclusion chapter.
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Chapter 2

Background And Concepts

In this chapter, some of the general and specific concepts that are utilized by the cited state
of the art papers will be explained.

2.1 Source Separation

As stated in the introduction, source separation is a field with a long history and many
different techniques for solving it. In this section the main concepts of the field will be ex-
plained, along with the difficulties faced by the techniques used and how those techniques
are evaluated.

2.1.1 Multi-Channel Source Separation

The best case scenario for source separation techniques is having an equal amount or more
signals than the number of sources one is trying to separate. This is because with more sig-
nals one gains more spatial information about the mixture, as some sources will decrease
in strength in the signal while others will be amplified due to the sensor being moved
closer to or further away from the source. This problem is called multi-channel source
separation and can handle even noisy signals fairly well because of the extra information
gained from the additional channels. However this group of methods fall short when pre-
sented with more sources than channels, and can in this case erroneously output signals
from multiple sources as a single source. This case can happen if the number of sources in
the signal is unknown or uncertain, also called the blind source separation problem.

2.1.2 Single-Channel Blind Source Separation

Blind source separation is one of the hardest problems to solve in the source separation
field, as many techniques rely on some certainties in the signal, like the number of sources
being constant. However, it is also the most true to real life, as it cannot always be ex-
pected that the number of sources will be constant. When faced with the blind source

7
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separation problem, some methods seek to use many channels to be certain that the num-
ber of channels will always be above the number of sources [48, 66, 16, 54].This is called
overdetermining the problem, i.e. adding so much information that patterns can be easily
found. Though having many channels is not always possible in real-world scenarios, often
only a single channel is available. This is called an underdetermined problem.
The field that studies this problem is called single-channel blind source separation [22, 34,
30, 17, 40], which, as the name suggests, seeks to find all sources in a signal based on a
single channel. This is the hardest version of the source separation problem, and is even
more extreme than what humans deal with. Humans have two channels that can detect
phase differences in the signals they receive and help separate sources in that way, that is
not an option when using only a single channel. This is why techniques in this field have
to be inventive and generalize very well, and why machine learning algorithms have been
solving this problem better than any other statistical methods.

2.1.3 Signal-To-Noise Ratio And Signal-To-Distortion Ratio

The main ways of calculating the accuracy of source separation techniques were proposed
in [61], namely the signal-to-noise ratio (SNR), signal-to-distortion ratio (SDR), signal-to-
interference ratio (SIR) and signal-to-artifact ratio (SAR). It should be noted that these
metrics were not invented by the paper, though the equations that are used to calculate
the metrics were. These formulas have been implemented in a blind source separation
toolbox for Matlab, which was then converted to a Python library[51]. This toolbox, and
thus the equations of the paper, have been used to evaluate many state-of-the-art papers
and used as a standard in the signal separation evaluation campaign, SISEC[41, 59]

The paper describes that there are three main errors in a signal, the noise, the inter-
ference and the artifacts, and it is through these that the SNR, SDR, SIR and SAR can be
calculated. Interference in a signal is when another unrelated signal is also present. It is
the ratio of the clean signal to these other signals that SIR seeks to find. The noise is simi-
lar, as it is some other signal that is present in the generated signal, however in the paper
[61] it is defined more as sensor noise, or generation noise. The paper therefore makes a
clear distinction between SIR and SNR, which is often overlooked by other papers where
any interference in the signal is also counted as noise [24], and measured solely by SNR.
A similar thing often happens with the SAR, which measures differences in the signal that
are neither from noise or other signals interfering, like sudden audio spikes that only last
a couple of milliseconds or less, as those are often also simply considered noise and as
part of the SNR.

The SDR measures the combined distortion of these other effects in comparison to
the clean signal, and is therefore often used as a general measurement of how well the
separation is working.

The paper says that if we have j sources sj and j approximated sources ŝj then to
calculate the SNR, SDR and SAR we need to project the approximated sources into the
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space spanned by the real sources. This is done with an orthogonal projection matrix,
which is a matrix that is used to find the closest point on some shape from some arbitrary
point in the same space. The simplest version of this is projecting a point in 2D space
onto a 2D line, or a 3D point onto a plane. They denote making such a matrix with using
k vectors with the Π{y1, ...., yk}. To get this matrix from the k vectors this calculation is
done.

P = A(AT A)−1AT (2.1)

where A is a N×k matrix, with N as the length of each vector, consisting of y1, ...., yk.
P is then an N×N orthogonal projection matrix. The paper states that to calculate the
interference, noise and artifacts, three of these orthogonal projection matrices need to be
constructed..

Psj := Π{sj} (2.2)

Is the projection matrix to the space spanned by sj.

Ps := Π{(sj′)1≤j′≤n} (2.3)

Is the projection matrix to the space spanned by all the clean sources.

Ps,n := Π{(sj′)1≤j′≤n, (ni)1≤i≤m} (2.4)

Where n is all the known noise sources, such as known microphone noise or generation
noise. These matrices are then used to calculate the four parts that make up ŝj, which were
discussed before, interference, noise and artifacts, along with the clean source signal.

ŝj = starget + enoise + einter f erence + earti f act (2.5)

starget := Psj ∗ ŝj (2.6)

This projects ŝj onto sj, and is essentially a N dimensional point to line projection. This
projection shows how much of ŝj stems from sj, and is therfore what we want to maximize.

einter f erence := Ps ∗ ŝj − Psj ∗ ŝj (2.7)

This compares the projection of ŝj onto the single source sj, to the projection of ŝj onto the
hyper-plane spanned by all the sources. If there are other signals interfering in ŝj the point
on the plane will land closer to those sources, while if there are no other signals in ŝj then
the points will project to the exact same place and this will go to 0. This is also smart as it
can show which sources are interfering the most.

enoise := Ps,n ∗ ŝj − Ps ∗ ŝj (2.8)

This projection compares the two hyper-planes the one spanned by the clean sources and
the one spanned by both clean sources and noise. By projecting ŝj onto both hyper-planes
the direct contribution of the noise sources to ŝj can be compared accurately without
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considering the interference measurement. If the equation had instead looked like this:
Ps,n ∗ ŝj − Psj ∗ ŝj, then both the interference from other signals and the noise would have
been measured, and contribution of each would not be able to be calculated.

earti f act := ŝj − Ps,n ∗ ŝj (2.9)

This measures the difference between ŝj and ŝj projected onto the hyper-plane spanned
by all the clean and noise sources. This means that any remainder of this operation is
something in ŝj that does not stem from the clean sources or the noise sources, making
it an artifact. After these measures have been calculated they are used to calculate SDR,
SNR, SIR and SAR And these measures are used to calculate the SNR, SDR and SAR

SDR = 10 log10
||starget||2

||einter f erence + enoise + earti f act||2
(2.10)

As said before, this measures the overall distortion of the signal, from all the error sources,
compared to the amount of the clean signal is in ŝj.

SNR = 10 log10

||starget+einter f erence ||2

|enoise||2
(2.11)

As said, this paper makes a clear distinction between SNR and SIR, which is why inter-
ference is in the nominator for this equation. The objective is to calculate how much noise
there is in the signal compared to all clean sources, not compared to the correct clean
source. This is also because of how noise is calculated in equation 2.8, the point in clean
space compared to the point in noisy and clean space. If interference was not included in
the SNR calculation then there might be some distortion from how the noise is calculated.

SIR = 10 log10
||starget||2

|einter f erence||2
(2.12)

As can be seen SIR is calculated only based on the interference from other signals, without
any consideration for noise.

SAR = 10 log10

||starget+einter f erence+enoise ||2

||earti f act||2
(2.13)

The reason the interference and the noise are in the nominator of this equation is the same
reason as for the SNR calculation, if they were not then there might be some distortion in
the result due to them being left out.

As can be seen, these measures are separated well and are therefore very powerful
when analysing the results of an algorithm. However, noise sources are not always known,
and because of that the Ps,n matrix cannot be constructed and enoise and earti f act cannot be
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calculated separately. This is why some papers[42, 66] define scale-invariant SNR (SI-SNR)
as SDR. This measure is calculated as

enoise = ŝ− starget (2.14)

SI − SNR = 10log10(
||starget||2

||enoise||2
) (2.15)

where starget is the same as before. This measure is a combination of the enoise and earti f act
calculations before. By simply comparing the estimated signal to the signal projected onto
the clean signal, this measures all the three error sources, interference, noise and artifacts,
as one.
Often in practical implementations of this, starget is defined as

starget =
< ŝ, s > s
||s||2 (2.16)

which is another way to write the projection of ŝ onto s. And as can be seen this measure
is very similar to SDR when considering that enoise covers for both noise, interference and
artifacts.

2.2 Neural Networks

Neural networks are powerful statistical models, which are used to find complex map-
ping or classification functions[7, 21, 52]. A common example of this is modelling the
likelihood of a person voting on a certain party based on their income, age, gender and
ethnicity. These values individually does not tell much about political orientation, how-
ever if they are all given to a neural network it can find patterns in them that can predict
voting patterns. A neural network consists of nodes, called neurons or units, that each do
calculations based on their input. The most common calculation these neurons are used
for is a weighted sum of their input. This allows the network to adjust how much each
neuron is affected by a certain input, like the income of a person, by adjusting the weight
for that input in the neuron. In this way the appropriate weight can be found such that
the network accurately predicts the persons political orientation. The calculation for the
output of a neuron looks like this

xl
j = σ(b +

n

∑
i=0

wixl−1
i ) (2.17)

Where xl
j is neuron j in layer l, n is the number of neurons in layer l-1, wi is the weight for

the connection to the ith neuron in layer l-1, xl−1
i is the output of the ith neuron in layer l-1,
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b is a bias and σ is some activation function. Such a function could be a logistic sigmoid
function

σ(x) =
1

1 + e−x (2.18)

which converts its input to a range between 0 and 1. Another useful function is the softmax
function which measures the ratio of the outputs of the neurons in the layer.

σ(xj) =
exj

∑n
i=0 exi

(2.19)

These equations are useful as they regularize the output of each neuron to some known
range.

For the adjustment of the weights, an algorithm called backpropagation [23] is often
used, where a "loss" is calculated and propagated backwards in the network. The loss is a
function that in some way tells how wrong the network’s output is. This can then be used
to go back through the network and calculate how much each neuron and each weight has
contributed to this loss, and the weights that have contributed the most wrong information
can be adjusted to contribute less. The weights are adjusted based on the negative gradient
of this loss function at that neuron, which will move it towards a value that will provide
the least amount of loss at the output. To calculate these gradients, a partial derivative is
used. The partial derivative is taken of the network as a whole with regards to a single
weight, which can be done because the network in essence is nothing more than a very
complicated equation, with each of its parts being a neuron or a weight.

There are many ways of constructing a neural network, however the most common way
is to use "layers" of neurons, that are not connected within the layer but rather connected
to all the neurons in the layers before and after. These layers are often referred to as
dense layers, as the connections between these layers often look dense when visualized.
However, dense layers are not the only layers that exist, and they are not the best for every
task.

2.2.1 Recurrent Neural Networks

Recurrent neural networks (RNN), and layers, function similarly to dense layers, in that
they are often densely connected to the layers in front and behind them [4, 12]. However,
they differ in that they get their previous output as an input. This gives the layer a tempo-
ral axis where inputs are no longer separate, but rather seen as a chain of connected events.
An example of this could be predicting population size of animals, where the population
of the previous year is connected to the population next year, and thus knowledge of all
previous years will inform what the population could be next year. Thus these layers are
very good at predicting sequences of inputs, also sometimes call time-series.
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However, these networks come with a major disadvantage compared to traditional
dense layers, when it comes to backpropagation. The problem is that by having the layers
connected in time, the error of a single neuron is no longer only depending on its con-
nections to the previous layer but also its own output last sample, and that is dependant
on the sample before that and so on. This creates a very long chain that the error has
to be propagated through, and in this process the error almost vanishes due to how it is
transferred back through the model. This is called the vanishing gradient problem [27, 71],
and it has been tackled in many different ways. One of the most popular ways is called
the Long Short-Term Memory layer (LSTM).

2.2.2 Long Short-Term Memory Layers

The LSTM "cell" was proposed by [18] as a way to combat this problem of vanishing
gradients. It is called a cell because it is not a single neuron, but rather a series of connected
neurons that have their own weights and purpose. The LSTM adds a "cell state vector",
which does not contain any weights or connections, only values from the previous state
of the cell. However, the current state of the cell is then modified by the input to the cell,
the previous output and an intermediate value in the cell. This vector is then used to
modify the output of the cell. The cell state vector makes it possible for the cell to store
information inside itself, and enables it to forget things about previous inputs and states,
if they are not relevant to the current problem. This alleviates the vanishing gradient
problem as only information that is very relevant will be kept for a long time, while other
information is stopped and thus the number of states the backpropagation algorithm has
to go through is significantly smaller. The structure of the LSTM can be seen in figure 2.1.
The mathematical expressions for an LSTM look like this.

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (2.20)

Where it is the output of the input gate, xt is inputs at time t, Wxi is the weights for
connection from x to i, ht−1 is the output of the hidden vector at time t-1, ct−1 is the
cell state at t-1 and bi is the bias for the gate.σ is the logistic sigmoid activation function
described in equation 2.18. In the following equations all the variables and subscripts
follow these conventions.

ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f ) (2.21)

Which is the forget-gate of the cell, which allows it to regulate what it remembers in the
cell state, which functions like this.

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc) (2.22)

Where tanhis an activation function

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (2.23)
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Which is the output of the gate that regulates the output of the network

ht = ottanh(ct) (2.24)

Figure 2.1: A LSTM cell, taken from [18]

Even with the advantages LSTMs provide, they still have a problem which also plagues
other RNNs. This problem is that they only process a sequence in one direction, forward,
while there might be connections bacwards in the sequence too. The classic example would
be analyzing a text. There might be crucial information at the end of the text that will
inform the meaning of the words in the beginning. However, traditional RNNs will only
process the text once and will not go back to the beginning and change their predictions
based on the end of the text. This is the problem bidirectional RNNs seek to solve.

2.2.3 Bidirectional RNN

A bidirectional RNN (BRNN)[55] is, as the name implies, a RNN that processes the in-
put in both directions. This has the advantage that the output will take into account the
temporal connections in both directions, and will therefore often be more powerful than
regular RNNs. The downside is that it requires double the amount of units as a normal
RNN to produce the same size output in either direction. What is meant by this, is that
a standard RNN with 20 units will produce an output of RT×20, where T is the number
of samples in the time series, while a BRNN with 20 units will produce an output of
RT×40. This is because a BRNN with 20 units actually has 40 units, 20 for the forward
direction and 20 for the backwards direction. When two BRNNs are connected this can
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become a bigger problem if the input is large. If two BRNNs with 200 units are connected
then the first BRNN will give the next BRNN an output of RT×400. This BRNN will also
have 400 internal units that should all be densely connected to the previous layer, mean-
ing that 400× 400 = 160000 connections are made between the two BRNNs as opposed
to the 200× 200 = 40000 connections that would have been made between to RNNs or
dense layers. This is a quadrupling in connections for the connected BRNNs. This is why
BRNNs can be very memory intensive, however they are also immensely powerful. Any
type of RNN can be made bidirectional, even LSTMs in which case they are called BLSTMs.

As discussed RNNs and BRNNs are powerful layers that can analyze time-series and
find connections that traditional dense layers cannot, however sometimes the input can
also have local dependencies without being a time-series. This is best seen in images
where neighbouring pixels often share information, but pixels in opposite corners of the
image might not. In this case RNNs are not the best layers to use, though a layer called a
convolutional layer has been developed to handle this problem.

2.2.4 Convolutional Networks

Convolutional neural networks take inspiration from the field of image processing, by
adopting the concept of kernels or filters[38, 37]. These kernels are in essence matrices of
weights that are passed over each pixel in an image and the output is the weighted sum of
the pixel itself and the pixels around it according to the kernel. If a 3×3 kernel is passed
over an image, and used on a pixel at (x = 10, y = 3), where x and y are pixel coordinates,
then the kernel will produce the weighted sum of the pixels at indexes {(9, 2), (10, 2), (11,
2), (9, 3), (10, 3), (11, 3), (9, 4), (10, 4), (11, 4)}. This notion of using a weighted sum to find
features, and produce an output, is the same as for neural networks. In a convolutional
network the kernel is represented as connections between neurons. This means that the
layers are not densely connected, a neuron in one end of the layer does not get an input
from a neuron in the other end of the previous layer. Because convolutional layers, as
an idea, came from image processing most are 2 dimensional layers. This means that the
neurons are no longer in a straight line as in the dense layers, but that they are structured
as a grid, with an x and y coordinate. just like an image. Thus if a convolutional layer
has a 3×3 kernel, then the neuron at index (10,3) will be connected to the neurons in the
previous layer at indexes {(9, 2), (10, 2), (11, 2), (9, 3), (10, 3), (11, 3), (9, 4), (10, 4), (11, 4)}
just like the kernel was before.

However, convolutional layers can also suffer from the same problems faced in image
processing, namely border conditions. If a neuron lays on the border of its layer, and the
previous layer is equally big, then some of its connections might lay outside of the border
of both layers, i.e. there are no neurons to connect to. One option is to simply disregard
these border neurons, however that will shrink the image over time, since the edges will
always be disregarded. Another way this is solved is by using zero-padding, where a line
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of zeros is appended to all the edges of the previous layer, and thus the border neurons
simply get these zeros as input.

One other thing that convolutional layers can manage easily is what is called channels.
Channels are different versions of an image that store different information, for example
the red, green and blue channels of a png image. These all store the individual colour
values for the image, and should therefore be processed individually by the convolutional
layer. The layers themselves can also output multiple channels, also called feature maps,
to generate different outputs. In these cases a neuron in a convolutional layer will have
connections to the neurons in its kernel, in all the channels of the previous layer.

Convolutional layers can also reduce the size of the input to the output by having a
"stride" that is higher than 1. The stride determines where a neuron in the current layer is
connected to a neuron in the previous layer based on its position. If a layer has a kernel
of 1 and a stride of 1, then a the neuron at (0,0) will be connected to the neuron at (0,0)
in the previous layer and the neuron at (1,1) will be connected to the neuron at (1,1) in
the previous layer too. However if the kernel is 1 and the stride is 2 then (0,0) will still be
connected to (0,0), but (1,1) will be connected to (2,2). This means that a stride of 2 will
halve the image, while a stride of 3 will make the image a third as large as originally. This
is very useful for reducing the size of the image very quickly and keep the memory usage
down, but it is also useful for generalization. By reducing the amount of information so
much between each layer, the network is forced to find a good generalization of the input
to make the output accurate.

It should also be noted that convolutional layers can also be 3 dimensional and 1 di-
mensional, it is simply a matter of removing or adding connections and neurons. 1 dimen-
sional convolutions are useful in some cases where input is 1 dimensional but too large to
let a dense layer handle, or it is desired to find local features in the input. As said before
they can also be used to reduce the size of the input very quickly and find a more abstract
representation of the input in a smaller amount of space. This is also the idea behind a
type of network called an auto-encoder.

2.2.5 Embedding Spaces And Auto-Encoders

Auto-encoders are neural networks that seek to create an embedding space, such that the
original input can be reconstructed from that space[2, 50, 26, 62]. An embedding space,
also called latent space, is a space that is an abstract representation of the input, such
that useful information from the input is somehow represented in the space while non-
important information is discarded. These spaces are often what are created in neural
networks in some way, though auto-encoders actively seek to create them in the best way
possible. An embedding space could be binary values, where when a 2 is transferred to
the embedding space, it becomes a 01. The information is still retained, but it is trans-
formed in some way. This transformation also often means a reduction from the size of
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the input to the size in the embedding space. Maybe an input of 10 values will be reduced
and represented by 5 values in the embedding space.

An auto-encoder tries to create these embedding spaces by using a funnel shaped
network. This network can consist of dense or convolutional layers, that at each layer
in the network reduce the size of the output. When the input has been reduced enough
the embedding space has been created, and the decoding can begin. The decoder takes
the information in the embedding space and passes it through a reverse funnel network,
where at each layer the size of the output increases. This is done until the output of the
last layer is the size of the original input. The goal of the decoder is to reconstruct the
input based on the embedding space.
This type of network is very useful when working with generation algorithms, as after the
network is trained, random values in the embedding space can be given to the decoder
and it can generate novel images. If an auto-encoder has been trained to produce animals
then the locations of a horse and a dog can be found in the embedding space, and can
then be smoothly interpolated between to produce a horse dog hybrid. In practical use
this could also handle music and interpolate between a Bach piece and a Mozart piece to
create a novel symphony, though this is not as easy as the animals example.

2.3 Clustering

Clustering is a statistical technique operating on some RN valued dimensional space,
where N is some integer. Given a set of points in this space, clustering methods will put
the points into some sub-sets, or clusters, based on some metric and criterion. The most
common metric to use is the euclidean distance between two points, though other distance
metrics and criteria can be used too. The distance measure can be used in different ways
to create the clusters. One way is called agglomerative clustering.

2.3.1 Agglomerative Clustering

Agglomerative clustering starts with the assumption that all points are their own indi-
vidual "clusters", and is given some distance threshold parameter to evaluate by. The
algorithm will then take the two clusters with the lowest inter-cluster distance and then
merge them into a bigger cluster. This will continue until there are no two clusters with
an inter-cluster distance lower than the distance threshold parameter given in the begin-
ning. If this distance threshold is high in comparison to the maximum distance between
two points then it is highly probable that all points will be in clusters containing at least 2
points. However if the distance threshold is relatively low then there is a high probability
that some points may never be clustered with others. This can be a good thing if finding
outliers in the data is desired, but bad if one wants to find connections between all points
in the set.
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2.3.2 Divisive Clustering

Divisive clustering algorithms start with the assumption that all points belong to a single
cluster, and it is also given some distance threshold parameter to evaluate by. The algo-
rithm then finds the point inside the cluster that has the highest distance to the rest of the
points of the cluster, and splits it into its own cluster. When this is done a sub-algorithm is
used to cluster the found point with all other points in the other cluster that are closer to
it than to the cluster itself. This is then redone until the maximum distance between any
two clusters reaches the distance threshold parameter. This ensures that most points will
always stay inside clusters with other points, unless the distance threshold parameter is
lower than the minimum distance between any two points in the set.

2.3.3 Metrics And Criteria

There are multiple different ways of evaluating the distance between two clusters, and
they will change the final clusters gotten from the algorithm. Four of the most commonly
used metrics are Ward linkage, Complete linkage, average linkage and single linkage.

Ward Linkage

This type of linkage criteria uses the sum of all squared distances between all points of
both clusters. This has the effect of clustering clusters that are generally very close together
and will not cluster clusters that only have a few points that are far apart.

Complete Linkage

This linkage type uses the maximum distance between points in two clusters to determine
if the clusters should be merged. With this approach two clusters that have close means
but high variances will not be clustered together as easily, as there might be some points
in the clusters that are very far away from each other due to both having high variance.
This also allows the distance threshold to be set higher than other methods as the general
distances will be higher.

Average Linkage

Average linkage uses the distances between the averages of two clusters to determine if
they should be clustered. If the data is uniformly distributed this will be good at find-
ing clusters, however if there are some dimensions where more variance exists then this
method might incorrectly cluster some points. Theoretically this method will cluster in a
spherical manner, however clusters will often have straight edges where they meet other
clusters as the distance from the points to the mean of either cluster will be very similar in
that area.
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Centroid Linkage

The centroid of a cluster is the point that is closest to the mean of the cluster. Usually
using average linkage instead of centroid linkage yields similar results, however if the
data contains torus, also called donut, shapes then this method will not act similarly to
average linkage, and instead try to split up parts of the toruses into clusters, instead of
clustering the entire torus as one.

Single Linkage

Single linkage algorithms take distance between the closest points in two clusters and uses
that as the criterion for clustering. This has a very good effect when the data has clearly
separated clusters within it, however in uniformly distributed data the method tends to
favor only a few clusters and might just cluster the entirety of the data set together.

2.3.4 K-Means

K-means clustering is an agglomerative algorithm that makes use of both average and
centroid linkage to cluster n points into k clusters. It does this by putting k random
"mean points" into the point space and then clustering the points to the mean closest to
them. After doing so k clusters are achieved, however due to the random placement of
the initial mean points in the space, these clusters cannot be assumed to have found any
meaningful structure in the data. Because of this the process is repeated, however the
centroid of each cluster is now used as the new mean of that cluster, instead of using a
random point. Points from other clusters are then aggregated based on the new mean of
the clusters. This process continues until all points within each cluster are closer to that
clusters centroid than to any other clusters’ centroid.

2.4 Permutation And Output Dimension Mismatch Problem

The permutation problem is a problem that is often encountered in blind source separation,
as methods can sometimes provide the predicted sources in an unknown order. This is a
problem as it makes comparing generated sources and clean sources a guessing game, for
which two sources are supposed to be the same. The output dimension mismatch problem
stems from the rigidity of neural networks, and arises when there is an unknown amount
of sources in the signal, as in blind source separation. In this case the network is stuck with
a fixed amount of outputs and cannot dynamically adapt to the number of sources, thus
making accurate separation of all the sources impossible. This is fixed by [24] by simply
creating an embedding space as the output of the network, which can then be analyzed by
clustering algorithms such as k-means to find the correct number of sources.
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2.4.1 Permutation Invariant Training

The permutation problem can be solved in a couple of different ways. One way is to use
permutation invariant training (PIT) as proposed by [72]. The method computes all the
ways the estimated sources and clean sources could be compared, and then evaluates those
ways using MSE. The combination of estimated and clean sources, with the least MSE is
then used for the loss.

2.5 Fourier Transforms, Spectrograms And Scales

A Fourier transform is a function that converts a real-valued signal into a complex number,
representing a given frequency’s strength and phase in the signal[14]. The original function
concerned continuous signals.

X( f ) =
∫ ∞

−∞
x(t)e−i2π f tdt (2.25)

where f is a given frequency, and x(t) is the magnitude of the signal at time t measured in
seconds. This will work for any given continuous signal, and if repeated for all continuous
frequency values a spectrum will be obtained. However, it is impossible to store a contin-
uous signal in a computer, it has to be discretized in some way to fit in a RAM module
or on a hard disk. To handle these kinds of signals the discrete time Fourier transform
(DTFT) was created.

2.5.1 Discrete Time Fourier Transforms

To support discrete time-steps the Fourier transform in equation 2.25 had to be changed.
Time is no longer measured in continuous fractions of seconds, but in integer samples
instead. This also means that a continuous signal has to be sampled before a DTFT can
be applied. To do this, the magnitude of the continuous signal will be measured at points
with some set interval, called the sampling rate, and these measured values will be the
samples for our discrete signal. After this is done the DTFT can be applied to the signal
and a spectrum can be obtained. The DTFT equation now looks like this

X( f ) =
N−1

∑
n=0

x[n]e−i2π f n (2.26)

where N is the number of samples in the signal and x[n] is the value of sample n in the
discrete signal. The advantage of this approach is that it does not require an infinite con-
tinuous signal, however the disadvantage is that its frequency detection is less powerful
the lower the sampling rate is. The Nyquist theorem[49] states that for a sampling rate
of N the maximum frequency that can be detected accurately is N/2. This means that for
a sampling rate of 1000 Hz only frequencies up to 500 Hz can be reliably detected. It
also means that we have to choose a sampling rate for the signal, which will capture the
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frequencies we are interested in.

Another difference between the DTFT and the original continuous Fourier transform
is that f is no longer treated as a continuous value, but is rather a discrete value too.
Rather than capture all possible frequencies up to the nyquist limit, only key frequencies
are measured, and frequencies close together are "binned". This means that the strength
of a 100 Hz frequency, a 100.5 Hz and a 99.5 Hz frequency in a signal, might be added
together and put in a bin labeled 100 Hz even though two of them are slightly above and
below that frequency. In this case 100 Hz is called the center frequency of the bin, each
bin will have some width that they span over, which depends on the number of bins and
the maximum measurable frequency. If a signal is sampled at 10000Hz and a 1000 bins
are used to describe this range, then each bin will have a center frequency that are 10Hz
apart and a width of 5Hz in both directions. This ensures that the entire range is covered.
However, it also loses information about the precise frequencies, though if more precision
is desired more bins can be used and the range can be more accurately divided.

This discrete time Fourier transform enables digital Fourier transforms to be done,
which is very useful, however it still has one major problem. It only measures all the
frequencies for all of the signal, and does not tell when in the signal those frequencies
occur. This kind of information might be very useful if it is desired to know when a
person starts and stops speaking, or when a certain instrument plays, as it would allow
for the filtering of these events when they happen. This problem is what the short time
Fourier transform (STFT) seeks to solve.

2.5.2 Short Time Fourier Transforms And Spectrograms

The short time Fourier transform solves the problem of locality in time by analysing the
signal multiple times with a sliding window function applied. This window function’s
purpose is to diminish the signal around the area that is being analyzed, but still retain
the signal within that area. There are many different window functions that can be used,
and which all have their separate advantages and disadvantages. However they all have
the same objective, to enable analysis of a short portion of the signal. The equation for
STFT is almost the same as the DTFT function, but with the addition of the window
function.

X( f ) =
N−1

∑
n=0

x[n]w[n−m]e−i2π f n (2.27)

Where w[n-m] is the value of a window function at n-m, with the center at m and an un-
known window length. The window length is the number of samples that should be inside
the window. This function is applied to the signal iteratively, meaning that the function is
applied with a window at m, the result is recorded, m is then incremented and the process
is done again. This is repeated until the entire signal has been processed. It should be
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noted that m is often incremented by less than the window length, between each itera-
tion. This creates some overlap between the fourier transforms, which has the advantage
of recording the gradual change in frequencies over the signal instead of sudden shifts as
would be obtained with an increment above the window length. The increment is often
called the hop length.

By having this shifting window, and iterative process, a spectrum for each window in
the signal is gained. When combined into one plot of time and frequency this is called
a spectrogram. Spectrograms are a very used tool when analyzing music as they can
be used to give a visual representation of the signal that is easily understandable, and
where artifacts in the signal can be identified. However, sometimes the 1024 bins, which
is the default for most STFT implementations, are just too much when a program has
to analyze them. The answer is often to reduce the number of bins, though this is not
ideal either in some cases, as a lot of important information might be stored in the low
frequency bins, while irrelevant information might be stored in higher frequency bins. In
this case decreasing the amount of bins would expand the bin width equally for all bins,
and therefore might group together important low frequency information that is important
while not reducing the irrelevant high frequency information enough. This is the problem
frequency scales seek to handle.

2.5.3 Frequency Scales And Filter Banks

A frequency scale is a function that describes what the center frequencies of each bin
should be. As discussed the STFT uses a linear frequency scale by default, increasing the
center frequency of each bin by a set amount between each bin. However, a popular scale
to use when handling human voices is the mel frequency scale[64]. This scale is logarith-
mic as it tries to emulate the human perception system, as it too seems to be logarithmic.
This logarithmic approach means that lower frequencies are given smaller bin widths, in-
creasing the resolution of the frequencies in these sections, while higher frequencies are
given much wider bin widths, grouping together information that is harder to distinguish
for humans. After this transformation the spectrogram is called a mel spectrogram, where
mel can be substituted for the name of the applied frequency scale.

In practise this filter is applied with filterbank, a set of M filters, where M is the num-
ber of desired bins after the transormation. This filterbank is often calculated as a matrix
of the filters, such that a matrix multiplication between the spectrogram and filterbank can
be done. This can also be undone by applying the inverse of the filterbank to the mel spec-
trogram. However this process is lossy in the sense that all the information of the original
spectrogram cannot be recovered this way. This is because a given bin in the mel spectro-
gram is the weighted sum of the values in the original spectrogram, however it does not
know which values were originally populated. An example would be a filter being applied
to these three bins with values {3,0,1} and with a filter {0.5, 1, 0.5}. The resulting bin will
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contain the value 3*0.5 + 0*1 + 1*0.5 = 2. When the inverse filter (in this example we just
reuse the same filter) is applied it will populate all the three bins with these values {0.5*2,
1*2, 0.5*2} = {1, 2, 1}. As can be seen this operation does not consider that some bins will
be unpopulated in the orignal spectrogram, and the spectrogram produced by the method
can therefore have many artifacts. However, this is an issue that is not easy to solve and is
outside the scope of the project, though it is important to mention it.

Once a spectrogram, or mel spectrogram, has been created there are many different
methods of processing it and retrieving information from it. One of those methods is
called spectral clustering.
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Chapter 3

Analysis

3.1 Deep clustering: Discriminative embeddings for segmenta-
tion and separation

This paper [24] tries to handle the difficult problem of blind single-channel speech sepa-
ration. Their approach is to combine neural networks and clustering to assign the bins of
a spectrogram to the speaker who "dominates" that bin. They call this "deep clustering".
Specifically this works by first analyzing the sound using STFT and then fitting that spec-
trogram to the mel scale to reduce the dimensionality of the frequency bins. The STFT uses
a square root Hann window with a window length of 32ms and a hop length of 8ms. The
log of the magnitude of each bin is also taken and used instead of the magnitude in the
spectrogram. During training the spectrogram is passed through a threshold filter which
multiplies all bins under the threshold by 0 and all others by 1. This reduces noisiness in
the spectrogram and reduces the risk of noisy miss-classification during training time.

The reduced spectrogram is then split up into 100 frame segments that do not overlap
which are then used as input for a neural network. This neural networks consists of two
600 unit BLSTM layers, one used as the input layer and the other as an intermediate layer,
and a dense layer as the output layer with N units, where N is the desired embedding
dimension. This step creates an N dimensional embedding for each time-frequency (T-
F) bin which is then used by the clustering algorithm. The goal is to cluster all bins
that belong to each speaker into separate clusters. The algorithm used during training
is k-means, however any clustering algorithm can be used during testing. After this has
been done for all the 100 frame segments, the algorithm is done and the separated bins
can be used to reconstruct the audio in separate channels. This is done using the phase
information from the original spectrogram and doing an inverse STFT with that and the
separated bins. However during training this introduces the permutation problem when
trying to calculate the loss of the model as the clusters are not in any particular order and
therefore it is unknown which cluster corresponds to which original source. However only

25



26 Chapter 3. Analysis

two and three sources are used for training and therefore only two and six permutations
respectively are needed to find the right cluster source match.

Figure 3.1: The deep clustering model, taken from [66]

The network outputs an embedding matrix the paper calls V ∈ RFT×D, where FT is the
frequency and time, and D is the embedding dimension, this is the matrix that is used for
clustering. The algorithm also has access to an ideal binary mask Y∈ RFT×C, where FT is
still frequency and time, but C is the number of sources. Because the two matrices are of
different dimensions on one axis they cannot be multiplied directly to get a loss function,
they first need to be made into their affinity matrix forms, A and Â. This is done like this

A = Y ∗YT (3.1)

Â = V ∗VT (3.2)

This makes both A and Â into A∈ RFT×FT and thus they can be multiplied to make a
cost function for the network, which the paper calls CY(V). The paper states that turning
the Y into an affinity matrix also has the added bonus of making it permutation invariant,
meaning the permutation problem is solved during training.

CY(V) = ||Â− A||2F = ||V ∗VT −Y ∗YT||2F (3.3)
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Where the ||A||2
F of a matrix is the squared Frobenius norm. The paper also proves

that this calculation can be further reduced by considering that the problem is low-rank
since Y is very sparse. This can improve the performance very much since constructing
the A∈ RFT×FT is no longer necessary and can instead be a A∈ RD×D for the V matrix and
the Y matrix can be A∈ RC×C, where both C and D are significantly smaller than FT. This
conjecture leads to a cost function in the form of

CY(V) = ||VT ∗V||2F − 2 ∗ ||VT ∗Y||2F + ||YT ∗Y||2F (3.4)

This function bypasses the miss-match in dimension between V and Y by only summing
their Frobenius norms, and only multiplying them along their shared FT axis. As said
before this formulation leads to dense low rank matrices that adequately capture the sparse
structures of V and Y.
An efficient gradient calculation is also derived from equation 3.4

∂CY(V)

∂VT = 4 ∗V(VT ∗V)− 4 ∗Y(YT ∗V) (3.5)

These equations, 3.4 and 3.5, are the loss and gradient calculations used for the training of
the model in the paper.

The model is trained on the WSJ0 dataset and reaches a SDR of 6.61dB. The SDR calcu-
lation used is from [61], seen in section 2.1.3. Before training, all sounds in the dataset are
downsampled to 8KHz. Two or more words from the two same speakers are found and
mixed together at -5dB to 5dB SNR, before being processed by the spectrogram process de-
scribed above. For the implementation of the network, the paper uses the CURRENNT[70]
python library.

3.2 Single-Channel Multi-Speaker Separation using Deep Clus-
tering

This work [30] is an extension of [25, 24] and suggests some improvements that can make
the algorithm better as a whole. The main improvements come in the training procedure
of the model, where the paper suggests that global mean-variance normalization is done
on the STFT spectrogram as a preprocessing step before using it as input to the model.
They also suggest that a curriculum learning-like aproach is used where the model is
first trained with 100 frame windows of the spectrogram as in the original paper and then
trained with 400 frame windows. This will increase the temporal resolution of the network
without increasing training-time significantly. The third suggestion is that dropout is used
in the BLSTM layers to allow for a higher initial learning rate while preventing overfitting.
However this is a known problem in LSTM’s, that they do not respond well to traditional
dropout methods as it can interfere with the memory module. The way this is avoided is
to only use dropout on specific connections within the LSTM cells, like output and input
channels, and in this way the memory module of the cell is not disrupted[47, 73].
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This paper also defines SDR as scale invariant SNR, which is defined in equation 2.15.

Another suggestion by the paper is not to the training procedure but to the model itself.
This involved doubling the amount of BLSTM layers to 4 however halving the amount of
nodes in each layer to 300. This was tested against the old model and Another suggestion
by the paper is not to the training procedure but to the model itself. This involved doubling
the amount of BLSTM layers to 4 however halving the amount of nodes in each layer to
300. This was tested against the old model and an improvement, of 8.6dB SDR, was found
in same-gender speech separation, in comparison to 7.4dB of the old model. However
no difference was found in different gender separation was achieved. The paper also
implements soft k-means clustering which uses a similar formula, equation 3.6 , to the
softmax function used in neural networks.

γi,c =
e−α|vi−µc|2

∑c′ e−α|vi−µc′ |2
(3.6)

Where i is the index of a point, c is a cluster index, α is some scalar, µ is the estimated
mean of cluster c and vi is the i’th datapoint of v. This soft k-means is done to get more
adjustable assignments of each T-F bin, as the old method is completely binary and non-
adjustable.

The last improvement the paper proposes is an end-to-end approach where another
neural network is used instead of the clustering step. This network consists of two 300
unit BLSTM layers and a dense layer with a softmax actiavation function and N units,
where N is the number of sources in the audio. This approach sacrifices the versatility
of the unsupervised clustering, but gets better accuracy when the amount of sources is
known in return.

This paper does not have a figure of the model, however much of the structure is the
same as seen in figure 3.4. Only the mask inference head in the figure is not part of this
mode, and the input has two or more channels instead of one as in the figure.

3.3 Deep clustering with gated convolutional networks

This work [39] builds on [25] and [30] by using gated convolutional layers instead of the
BLSTM layers and the dense layer. Gated convolutional layers differ from regular layers
in that there is a second layer which also processes the input, which is called the gate.
This layer functions like the memory module of a LSTM, by regulating what information
is important and should be passed on. This gate uses a sigmoid activation function which
allows it to produce 0 values in neurons that are not important. Its output is then mul-
tiplied with the output of the regular layer and the product is passed to the next layer.
This can be seen in figure 3.2. The σ in the figure, is the sigmoid activation function, W
is the weight kernel of the layer, b is the bias, * is the convolution operator and ⊗ is a
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element-wise multiplication.

Figure 3.2: A gated convolutional layer, taken from [39]

The paper evaluates multiple different versions of the model, a bottleneck structure,
like an auto-encoder, and a dialated convolution structure. It also tests 1D and 2D convo-
lutions to see which produce the best results. It found that 2D convolutions with a dialated
structure were the best, however they did not reach the same SDR levels as [24] or [30].

3.4 Multi-Channel Deep Clustering: Discriminative Spectral and
Spatial Embeddings for Speaker-Independent Speech Separa-
tion

This paper [66] seeks to improve the deep clustering performance by moving away from
single-channel separation, and adding more channels. The paper states that adding more
channels will provide additional phase information that can be used to distinguish sources
more easily. However, the paper does not simply give the extra channels as input to the
network, instead a series of spatial features are extracted from the channels and given
to the network along with the mel log magnitude spectrogram of one channel. The fea-
tures are called the inter-channel phase/time/level difference (IPD, ITD, ILD). The paper
also states that only IPD is used as the ITD and ILD are very unreliable when used on
reverberant recordings. The equation to calculate IPD is this

cosIPD(t, f , p, q) = cos(θt, f ,p,q) (3.7)

sinIPD(t, f , p, q) = sin(θt, f ,p,q) (3.8)

θt, f ,p,q = ∠xt, f ,p −∠xt, f ,q (3.9)

where ∠xt, f ,p and ∠xt, f ,p are the phase of the time, t, and frequency, f, bin in two channels,
p and q.
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Figure 3.3: Multi-channel deep clustering model, taken from [66]

As can be seen in figure 3.3 is that the IPD, denoted as spatial(xt), is added on as an
extra channel in the input. This IPD can be cosIPD, sinIPD or both, and all three of these
possibilities are tested in the paper. The paper uses the WSJ0-2mix speech dataset. For
training the sounds from the database were downsampled to 8KHz and mixed together at
SNR’s of -5dB to 5dB. These mixtures were also passed through a room impulse response
generator, which simulated reverberance. The STFT used to generate the spectrograms
had a window size of 32 ms and a hop length of 8 ms. This was then passed through a
mel filterbank with 129 filters, and the log magnitude of the spectrogram was taken.
The model itself used 4 BLSTM layers with 600 units and 1 dense layer with an unknown
amount of units, presumably 10 as that was the best performing size from previous papers.
The segments of spectrogram used for the training of the model were 400 frames long, as
opposed to the 100 used in [24]. The paper achieved 12.9dB SDR by adding both cosIPD
and sinIPD as inputs for sounds made in an anechoic environment with 2 channels. For
reverberant recordings the paper achieved 8.9dB, 9.3dB, 9.4dB SDR with 2, 3 and 4 channels
respectively, also by adding cosIPD and sinIPD as inputs.
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3.5 Deep Clustering And Conventional Networks For Music Sep-
aration: Stronger Together

This paper [43] builds on [30] by proposing a network structure that has two "heads", one
being the original clustering step, while the other is a fully connected layer with a softmax
function. This structure can be seen in figure 3.4. By training the body of the network with
a combination of the loss from those two heads the network achieves performance greater
than either method on their own. As in [25] they define their deep clustering loss function
as in equation 3.3, which they call LDC. However for the softmax head they define the loss
as the magnitude spectrum approximation (MSA)[28, 13]

LMSA = ∑
c
||R(c) −M(c) � S||22 (3.10)

where M(c) is the estimated mask for source C, S is the original signal and R(c) is the true
signal for source C. ||A||22 is the squared L2 euclidean norm of the matrix. However, the
paper states that this is not a reliable loss function as the magnitude of S might be smaller
than the magnitude of R(c) as there might be destructive interference in S from the other
sources. This means that the loss function can never truly 0 as M(c) is only between 0 and
1, and therefore cannot make up for the lower magnitude of S in the subtraction. As a
result the paper proposes another loss function

LmMSA = ∑
c
||(O(c) −M(c))� S||22 (3.11)

Where O(c) is a reference mask such that O(c) � S ≈ R(c). In this way M can converge to O
smoothly with no fear of getting stuck at some point. However this also creates a problem
for the accuracy of the algorithm. The generated single source audio will always contain
destructive interference from the other sources, because of the network being trained with
a loss that converges to an approximation of the true source signal, instead of the signal
itself.
They define the total loss of the network as

LCHI = α ∗ LDC

TF
+ (1− α) ∗ LMI (3.12)

where LMI is the loss of the softmax head and α is some scalar between 0 and 1. This
allows the network to be trained either fully on clustering, α = 1, or on softmax, α = 0,
or somewhere in between. The paper is evaluated on the DSD100 dataset and formerly
public iKala dataset. Before evaluation the songs are downsampled to 16KHz and then
analyzed by an STFT with a 512 sample window size and 128 sample hop length. This
spectrogram is then filtered with a mel filterbank with 150 filters. The network used 4
BLSTM with 500 units and a dense layer with 20 units, each head used dense layers with
D units, where D is the embedding dimension, and the MI head used another dense layer
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Figure 3.4: The chimera model, taken from [43]

with C units, where C is the number of sources. For training the rmsprop[23] algorithm
was used. As a performance measurement they used SDR, which they defined as scale
invariant SNR, seen in equation 2.15. The paper obtains a 10.8dB instrument separation
and a 6.6dB vocal separation on the iKala dataset, and a 7.9dB instrument and 5.5 vocal
separation on the DSD100 dataset.

3.6 Alternative Objective Functions for Deep Clustering

This paper [67] builds on [43] by suggesting new loss functions for the model, while
retaining the structure of the model. The paper suggests that a graph Laplacian distance
can be used as a loss function for the deep clustering head, which takes this form

L(Y, V) = ||VT ∗ D−1
V ∗V||2F + C− 2 ∗ ||VT ∗ D−

1
2

V ∗ D−
1
2

Y ∗Y||2F (3.13)

Where V is FT× K embedding matrix, where FT is the number of time-frequency bins
in the spectrogram and K is the embedding dimension, and Y is the FT × C ideal binary
mask matrix, where C is the number of sources.
And DV = diag(V ∗ VT∗ 1) and DY = diag(Y ∗ YT∗ 1). The paper states that this function
will help normalize the clusters that k-mean will form as it compares the graph Laplacian
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of the embeddings to that of the true clusters.

The paper also suggests that deep linear discriminant analysis (deep-LDA) could be
used to condition the embeddings. This could be done using this equation

L(Y, V) =
∑C

c=1 ∑i,yi ,c=1(vi − v̂(c))2

∑i(vi − v̂)2 (3.14)

where vi is an element in V, v̂ is the mean of all the embeddings and v̂(c) is the mean of the
embeddings belonging to source c. The paper states that this loss focuses on the ratio of
within-class variance, which is in the nominator of the equation, to global variance, which
is the denominator. The objective here is to have low within-class variance while having
large global variance to ensure that embeddings from different classes are not close.

For the mask inference head of the network, the paper suggests a new loss function
that does not use an approximate mask like in equation 3.11, but rather accounts for the
difference in phase between the source and the mixture. This is done using phase sensitive
spectrum approximation[36] and the paper truncates this to between 0 and |X|, where X
is the mixture signal. They call this tPSA and the equation is this

LMI,tPSA = min
π∈P

∑
c
||M̂c ◦ |X| − T|X|0 (|sπ(c)|◦cos(θX−θπ(c)

)||2 (3.15)

Where, as said, X is the mixture signal, P is the possible permutations of the sources
and predicted signals, π is a single permutation, M̂c is the generated binary mask, T|X|0 (X)

is the truncation operation, sπ(c) is clean source c in permutation π and θX is the phase of
signal X.

Models with the new loss functions were trained on the WSJ0-2mix dataset, which
underwent the same pre-processing steps as [43]. They achieved a SDR of 11.5 dB using
the tPSA method. For this result they also experimented with the griffin-lim algorithm[19]
and the MISI algorithm [20], both for phase reconstruction. These algorithms are much
better for reconstructing the source signal, than simply using the original phase of the bin
in the mixture spectrogram, as [24] and [43] do.

3.7 End-to-End Speech Separation with Unfolded Iterative Phase
Reconstruction

Based on the findings of [67] this paper [69] sought to find a better way of reconstructing
the original phase of the source signal. To do this it proposes a model based on the MISI
algorithm [20], where instead of using the iSTFT operations as an algorithm, they are used
as a deterministic layer in the model which can be backpropagated through. The model is
seen in figure 3.5, where the chimera model can be seen at the bottom, and the iterative
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phase reconstruction is seen above.

Figure 3.5: The iterative phase reconstruction chimera model, taken from [20]

The MISI algorithm works by continuously computing the iSTFT of the sources and
compare their sum to the mixture signal, the resulting signal of this operation is then
divided by the number of sources to create an average. After this is done it is added to
each other the estimated signals and the phase of that signal is calculated. The iSTFT of
this new signal with the new phase is then calculated and the process is repeated. This is
called an iteration, and the more iterations the better. In the model an iteration corresponds
to one of the layers seen in the top of figure 3.5, the more iterations, the more layers. This
model was trained on the WSJO-2mix dataset, with the same preprocessing steps as [43].
The model used 4 BLSTMs with 600 units in each direction, on 400 frame segments of the
log mel magnitude spectrograms. As an optimizer this paper used ADAM[35]. The best
results came by using 5 of the phase reconstruction layers, and resulted in a 13.2 dB SDR
and 12.8 dB SI-SNR.
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3.8 TaSNet: Time-Domain Audio Separation Network for Real-
Time, Single-Channel Speech Separation

TaSNet [42] is a model developed to handle time-domain audio separation, as opposed
to frequency domain separation done in deep clustering and most other recent state-of-
the-art methods. This was done because time-domain separation affords near real-time
separation, if the sample duration needed for the model is low enough. This paper states
that this method can achieve state-of-the-art separation using only 5ms samples, which is
low enough latency to be considered real-time.

The model does this by estimating the mixture matrix of the sources in the sample,
just like ICA and other matrix factorization methods. It’s advantage is that only a single
channel is required for this method, while other methods require equal or more channels
than sources to work. The model is based on the idea that any signal can be split into basic
signal components, and that these components can be added together to create any part
of the signal, such as an individual source. The challenge is the find the basis signals and
the mixture matrix for them.
The model has four steps; preprocessing,encoding, separation and decoding as can be seen
in figure 3.6.
In the preprocessing step, the signal is divided into K non-overlapping L length segments
which are then each fed to the network.
The encoding stage contains a 1D gated convolutional layer which finds an embedding
for the signal, which is then passed on to the separation stage. This part of the model
contains LSTM layers, and a dense layer, whose task it is to find the mixture weights for
the basis signals that will be generated in the decoding module. The LSTM layers have
skip connections every two layers, such that information is retained more easily between
them. It is unclear what the structure of decoding module actually is, the paper simply
states that 1D convolutions are used to create the basis signals. It is therefore assumed that
by this the paper means that 1D convolutional layers get the signal input from the start of
the network, and generate new basis signals based on this. These basis signals are then
multiplied by the weights found by the separation stage, and summed together to create
the two source signals.

This method uses SI-SNR as a loss function, seen in equation 2.15 and uses permutation
invariant training[72] to handle the permutation problem. The model uses 4 LSTM layers
with 1000 neurons, and 1000 neurons for the dense layer as well. The paper also suggests
that BLSTMs with 500 neurons can be used, however that removes the real-time capabilities
of the model. The model was trained on the WSJ0-2mix dataset, which was downsampled
to 8KHz as a preprocessing step, and the sounds were mixed at 0dB to 5dB SNR. An
ADAM[35] optimizer with a learning rate of 3e−4 was used for training. The LSTM model
reached a SDR of 8.0dB which is better than the original deep clustering paper [24], and
the BLSTM model reached 11.1dB SDR, which is better than the Chimera model[43].
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Figure 3.6: The TasNet model, taken from [42]

3.9 FurcaNet: An end-to-end deep gated convolutional, long short-
term memory, deep neural networks for single channel speech
separation

This paper [57] seeks to solve the single channel blind source separation problem in the
time-domain like TasNet[42]. It does this by using a network consisting of 5 1D gated
convolutional layers, the internal structure of which is shown in figure 3.2, followed by
two LSTM layers and two dense layers. Between all the gated convolutional layers are
batch-normalization sections that prevent overfitting. For training the paper uses what it
calls the "utterance-level SDR" (uSDR). The equations for this are

x̂ =
< x, s >
< x, x >

x (3.16)

e = x̂− s (3.17)

uSDR = 10log10(
< x̂, x̂ >

< e, e >
) (3.18)

where s is the predicted signal and x is the clean source. Equation 3.18 is actually the same
as equation 2.15, as < x, x >= ||x|| ∗ ||x|| ∗ cos(0) = ||x||2. And since equation 3.16 and
equation 2.16 are the same too, it can be concluded that uSDR is simply SI-SNR.

The model was trained on the WSJ0-2mix dataset, downsampled to 8KHz, with an
ADAM[35] optimizer. The 1D gated convolution layers had kernel sizes of 1000, while the
BLSTM layers contained 1000 neurons in each direction, and the dense layers contained
2000 neurons each. The model reached an SDR of 13.3dB.
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3.10 Singing voice separation with deep U-Net convolutional net-
works

This paper [31], seeks to find the ideal binary mask of a spectrogram. It does this using
a deep convolutional network that has nearly the same hourglass structure as an autoen-
coder, however this network uses skip connections between the downsampling layers and
the upsampling layers. It does this to retain information throughout the network, and thus
make it easier for the upsampling layers to reconstruct the information and find the ideal
binary mask. These skip connections go all the way through the network and "binds" it
together into a "U" shape. There is also a skip connection from the input to the last layer of
the model, which allows the network to focus on finding the best embedding space to store
information about the different sources in, without having to focus on storing information
for reconstructing the whole spectrogram. All the convolutional layers used a 5× 5 kernel,
and the downsampling layers used a stride of 2 to halve the image in each direction each
layer, but each layer also outputted double the amount of input channels. Except for the
input layer, which outputted 16 channels.

Figure 3.7: The U-net model, taken from [31]

The model was trained on a dataset that is not publicly available, generated in the
paper [29]. This dataset consisted of songs from Spotify, and their instrumental versions,
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which made it possible to separate the vocals from the instruments, and made it the biggest
dataset of its kind. The model was evaluated on the MedleyDB and iKala datasets. It used
the normalized SDR (NSDR) as a performance measure together with SIR and SAR. NSDR
is calculated as

NSDR(Se, Sc, Sm) = SDR(Se, Sc)− SDR(Sm, Sc) (3.19)

Where Se is the estimated signal, Sc is the clean source signal c and Sm is the mixture
signal. This is in some way another way to phrase the original definition of noise and
SNR in equations 2.8 and 2.11, where interference from other signals is not included in
the noise. Here the interference from other sources is counted in the second term and
subtracted from the first term to leave only distortion caused by noise and artifacts.

All the tracks from the datasets were downsamples to 8KHz before being analyzed by
a STFT with window size 1024 samples and 768 sample hop length, giving 512 bins per
time-frame. 128 time-frames were given to the network at a time. The network reached
a mean NSDR of 11.094dB for vocals and 14.435dB for instruments, on the MedleyDB
dataset, compared to 8.749dB vocals and 11.626dB instruments of the Chimera model.

3.11 Wave-U-Net: A Multi-Scale Neural Network for End-to-End
Audio Source Separation

This paper [58] is an extension of the U-net structure proposed in [31]. The paper proposes
new configurations of the model and how to apply it to a waveform instead of a spectro-
gram, as the original paper did. This was motivated by other papers such as TasNet [42,
44], which utilizes the waveforms perfect phase information to achieve state-of-the-art re-
sults in BSS separation. However, this paper does not generate intermediate waveforms
and weights like TasNet, but rather keeps all information internal in the models 1D con-
volutional layers. This is also the biggest change to the original U-net model, the use of 1D
convolutional layers, as opposed to the original 2D layers. Only 1D convolutional layers
are required since the waveform is only 1D, and not like the 2D spectrogram used as input
for the U-net.

Like U-net, the Wave-U-Net continuously halves the input size, but adds more chan-
nels. This process is lossy, as the the amount of channels are not always doubled between
layers, meaning that the final latent space is much smaller than the initial input. For
an input of size R16384×1 the output of the final downsampling layer will be R4×288, for
a Wave-U-Net with 12 downsampling layers, and an additional 24 channels per layer of
downsampling. This is a latent size of 1152 points, in comparison to the 16384 input points.
The benefit of this reduction is that it reduces memory size of the model, while it is as-
sumed that the latent space will still contain enough information to reconstruct the sources.

The paper also suggests ways to improve the upsampling steps, as it is suspected
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Figure 3.8: The Wave-U-Net model, taken from [58]

the traditional transposed convolutional technique used in other papers produces high-
pitched noise in the final output. Instead of upsampling the paper suggests that linear
interpolation is used. The paper also states that this interpolation might not be an ideal
solution as it is unknown if the latent space between layers is linear or convex. There-
fore the paper also proposes that learned interpolations could be used instead, to ensure
that the latent space geometry is considered when interpolating. The proposed learned
interpolation equation takes this form

ft+0.5 = σ(w)� ft + (1− σ(w))� ft+1 (3.20)

Where σ(w) is a sigmoid activation function with w parameters. This makes non-linear
interpolation possible and ensures that the upsampling will always generate latent points
that make sense.

Multiple different sizes of input to the network were tested, from 16384 samples to
233459 samples. It was also tested whether or not having more input samples than ex-
pected output samples would be beneficial. This was done because having more context
might enable the network to make a more accurate prediction about the samples in the
middle of the signal.
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The network was trained on the MUSDB dataset and evaluated on the MUSDB and
CCMixter datasets, all of which were downsampled to 22050 Hz as a preprocessing step.
The network was trained with one less output than there were sources, as the last source
could be seen as the mixture signal minus the sum of the other estimated signals.
The network was trained using a mean-squared-error (MSE) loss function, and an ADAM[35]
optimizer with learning rate 1e−4 and betas of β1 = 0.5 and β2 = 0.999. The paper states
that is defines one epoch as 2000 "iterations", though it is unclear what is meant by this.
Most likely it is 2000 samples, which is actually not a lot when considering some of the
sample lengths used, since 2000 * 16384 samples at 22050 Hz sampling rate corresponds to
roughly 25 minutes of audio. Compared to the 10 hours and 30 hours of audio per epoch
used by other papers [24].

The paper found that using more samples as input than what is required for the output
increased the performance of the model. The best model got a mean vocal separation SDR
of 0.65dB and a mean instrumental SDR of 11.85dB.

3.12 Final Problem Specification

Based on these papers it was seen that FurcaNet reached very good results by combining
convolutional layers and BLSTM layers. It was also seen that Wave-U-Net and Chimera
had similar ideas of giving the input of the network to the output, and have it modulated
by the output in some way. The Wave-U-Net had a connection to the output layer from
the input, such that it was processed in the last convolutional layer of the network, while
Chimera predicted a mask which was used on the input mel spectrogram. This ensures
that the network finds ways to modulate the input instead of training to reconstruct it,
which makes training the model easier.
This trend of combining LSTM/BLSTM layers and convolutional layers was also seen in
TasNet, where it also performed very well.
All the above lead to the conclusion that a new network should be constructed that works
with these concepts, by combining the spatial resolution of convolutional nets with the
temporal resolution of BLSTM layers, and having these layers interconnected, which can
greatly benefit the separation of sources. If this network is similar to another state of
the art structure then it should also make use of one of the loss functions that has been
successfully used by that paper. This is because having different loss functions were shown
to have a great effect on the SDR the model could achieve, and if the model structures are
similar, using a loss that is good for one will be good for the other.
It was also decided that the most interesting problem to work on would be signing voice
separation, and musical separation in general, as it is a field that could also be used to
separate a human voice from any given background signal, thus it can have many different
applications.
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Implementation

In this chapter the proposed model, HydraNet, will be discussed and implemented. This
model will be the combination of two other models, Chimera [43] and Wave-U-Net [58].
The HydraNet is based on these models as they are both state-of-the-art models that solve
similar problems with good results. They also both contain elements described in section
3.12. Wave-U-Net uses convolutional layers to seperate a signal, while Chimera uses LSTM
layers to generate embeddings for a spectrogram which separates it into spectrograms for
each source. Wave-U-Net is also structured like an auto-encoder, in that there is a defined
place in the model for the latent space, where LSTM layers can be added to add to that
latent space and make it a better representation of the audio. By doing this it is expected
that the separation of the model will surpass that of both Chimera and Wave-U-Net.

For the purpose of implementing HydraNet, both the Chimera model and Wave-U-
Net will be implemented first, such that it is certain that those models are accurate before
combining them to HydraNet.

4.1 Environment, Libraries And System

For this project it was decided to use the programming language Python, version 3.5, for
the implementation of the models. This language was chosen due to its large user-base
and its big selection of libraries. The libraries used for this project were Numpy, Librosa,
Scikit-learn, Tensorflow, Keras and PyTorch 1.0.1, together with visualisation libraries such
as Matplotlib and Tensorboard. Only Numpy, Librosa and PyTorch were used for the final
implementation, however Tensorflow, Scikit-learn and keras were used for experimenta-
tion during the project development phase.

All computation will be done on this system. CPU work will be done on a quadcore
Intel i5-4690K 3.60 GHz processor1 with 16 GB of RAM. All GPU work is done on a

1ark.intel.com/content/www/us/en/ark/products/80811/intel-core-i5-4690k-processor-6m-cache-up-to-
3-90-ghz.html

41
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NVIDIA GTX 9702 with 4 GB of GDDR5 VRAM and 1664 CUDA cores at 1.05 GHz.

4.1.1 Tensorflow and Keras

Tensorflow is a machine learning library made by Google, which has many optimizations
of tensor operations to make training models faster. It also has integration with NVIDIA’s
CUDA toolbox/drivers for GPU computation, meaning it can take advantage of the heav-
ily paralellized processing capabilities of the GPU to optimize tensor operations even more.
Tensorflow allows for fast computation of tensor operations such as dot products and ma-
trix multiplications, which are heavily used in most neural networks and other machine
learning techniques.

Tensorflow has a deferred execution style that is very different to Python’s normal ea-
ger execution. This means that in Tensorflow a model is first defined by defining each
layer as an object with certain hyper-parameters, such as number of nodes in the layer and
the shape of the input. Then the connections between these layers is defined, together with
other operations, such as activation functions, that should be done on the output of the
layers. After this is done the computation graph, i.e. the graph of dataflow through the
model, has been defined and data can be given to the model. This is deffered execution as
the same functions are called multiple times in different contexts and give different out-
puts as a result. During the second stage, the compilation of the computation graph, no
data is actually flowing in the model and the only information each function is getting is
the meta-data about the layer or function it is supposed to operate on. This means that a
sigmoid activation function will first be given the meta-data about the layer it is supposed
to operate on, and then it will be given the output of that layer once data has been given
to the model.

Keras is a higher level library that can operate with multiple different backend libraries
such as Tensorflow or Theano. It allows for single line definitions of layers with activation
functions and is therefore very useful for increasing the understandability of the model. It
also has an optimized workflow for creating sequential models, as it can then take care of
the definition of the dataflow through the model, by itself. This makes it a very popular
library to use in conjunction with Tensorflow, or other supported libraries, and ensures
that most sequential models will be immediately understandable for other users.

4.1.2 PyTorch

PyTorch is similar to Tensorflow, however it is different in some key aspects. PyTorch uses
same deferred execution style as Tensorflow, but it also uses a dynamic model definition
style. This means that an initial model is first defined, it is then executed on some data and

2www.geforce.com/hardware/desktop-gpus/geforce-gtx-970/specifications
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provides some resulting prediction that can be used for loss calculation and backpropaga-
tion. After this is done, the model can be changed and be executed again on other data.
Before this execution, PyTorch will recompute the graph structure, with respect to the in-
put shape, and execute this new graph structure. This is very different to Tensorflow’s
single definition approach, where the model is defined once and if anything about input
changes then the graph breaks. The dynamic nature of PyTorch is especially useful when
it comes to RNN layers, as it allows the structure to adapt to variable length time series,
and with convolutional layers it allows for some differently shaped images to be computed
by the same network structure. However, it is also something to be kept in mind when
minimizing run-time, as it adds overhead to the model execution by continuous graph
re-definition.
Another benefit of PyTorch’s dynamic nature is that data is easily accessible, it can be
manipulated by other libraries, such as numpy, and it can be reentered into the graph at
any point one wants. Any tensor can also be moved freely between the CPU and the GPU,
provided that the GPU has CUDA. This can be used to integrate a CPU method into an
efficient GPU graph structure.

4.2 Chimera network Implementation

4.2.1 Tensorflow and Keras Implementation

After the analysis it was decided that the Chimera network model[43], should be re-
implemented. Other implementations were available online, however a re-implementation
would give more knowledge about the model, and enable further development on the
model. It was also decided that Tensorflow and Keras should be used for this implemen-
tation. This was due to the fact that other Python implementations of Chimera network
had been found online, all of which used Tensorflow and Keras.
The main Python Chimera network implementation that was found, was from Github user
"arity-r"3 who was initially believed to be one of the authors of the paper. Because of this,
this implementation was used as a reference for the initial re-implementation.

Initially it was believed that the k-means clustering step, described in the Chimera net-
work and Deep Clustering papers[43, 24], was vital to the training of the model, and to the
loss function described in [24]. To integrate the k-means into the Tensorflow computation
graph was conceptually difficult, and it was therefore decided that this approach should
be avoided.

It was found that there were some key differences between the model described in [43]
and the implementation by "arity-r". The most major difference were the shape of the input
to the model and the structure of an intermediate layer immediately after the bi-directional

3https://github.com/arity-r/ChimeraNet
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LSTMs. As can be seen in figure 4.1a the input to the model is of size RFT×1, where FT
is the size of the flattened mel spectrogram with F frequency bins and T time-steps. This
means that when this is passed through an LSTM, each FT index will be treated as a time-
step and an embedding is created such that the output of the LSTM is RFT×L, where L is
the amount of neurons in the LSTM.

Figure 4.1: (a) is the original chimera model, (b) is the modified chimera model.

In figure 4.1b it can be seen that the input to the model is of size RT×F meaning that
the output of the LSTM layer will be RT×L, where F is the number of frequency bins, T is
the number of time-steps and L is the number of neurons in the LSTM. This is a significant
loss of information, compared to the original structure, which is why the model needs
an additional layer to reconstruct this information. This additional layer is the one seen
in figure 4.1b right after the bi-directional LSTM (BLSTM) layers . This layer utilizes F
different densely connected channels to construct an embedding for each frequency bin in
each time-step. Each dense module takes in the L values for each time-step and outputs D
values, where D is the embedding dimension, thus generating a RT×F×D space when the
outputs are concatenated on the second dimension. Because this is a three dimensional
space and the cost functions need a two dimensional input space, this output is flattened
in the first two dimensions before being passed on in the model.

These deviations from the model lead to the decision to change from Tensorflow to
PyTorch, where no other implementations of Chimera network were available but the
integration of k-means clustering into the training graph would be possible.
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4.2.2 PyTorch Implementation

As said earlier in the description of PyTorch, the advantage of PyTorch over Tensorflow
is its flexibility in graph construction and data handling. It is the ability to convert ten-
sors into numpy arrays and back into tensors, that allows PyTorch to handle integration
of k-means clustering into the training graph. This ability was utilized in the initial im-
plementation of the original Chimera network structure. The model is the one seen in
figure4.1a, with a flattening layer in the beginning to reshape the RT×F mel spectrograms
into a flat series of RTF×1. This flat spectrogram was then used as input into the BLSTM
layers with 600 units in each direction, which was connected to another similar LSTM
layer, after which a time-distributed dense layer created embeddings of size D for each of
the TF points.

However, it was found that this model was very memory intensive due to how BLSTMs,
and LSTMs in general, process data. As discussed in section 2.2.3 a BLSTM outputs a
vector of size RT×2L where L is the amount of LSTM units in one direction. This is because
each input is processed by two LSTM units, and the outputs are concatenated into one
output vector. It also means that when two BLSTMs are connected, and they have the
same amount of units, amount of connections between them will be RT×4L, since each of
the outputs of the first BLSTM will be connected to two units in the next BLSTM. In practise
this means that if two connected BLSTMs each have 600 units, the space between them will
be of size 2400. If we also consider the length of the time series, 100 × 150 in this case, we
can see that space between the two BLSTMs must reach R15000×2400. When the byte size of
data types is considered, in this case 4 byte floats are used, then we can calculate that this
space will fill 144MB in memory. This is for a single sample, not considering the size of all
the weights in each BLSTM, or the size of the spaces in the rest of the network. The size
of this space limits the batch size to 3 samples, on the GPU described in section 4.1. It was
also observed that for a single batch of 3 samples, the time to execute the model and do
backpropagation was on average around 55 seconds. This means that for a dataset of 1600
samples, the average epoch time would be around 24 hours. Of course the average batch
run time was only based on less than 10 batches, and is therefore not the true average run
time, though it is a good enough estimate.

Loss Functions

This implementation used the same loss functions as described in [43] and [24]. However
the modified mask inference loss function loss function described in [43] cause problems
as it was not clear how exactly it should be calculated. This is the loss function in equation
3.11. The confusion stemmed from the calculation of O, the modified ideal ratio mask, as
there are multiple ways to calculate it. The problem is that when sources have the same
magnitude in a frequency bin, but opposite phases, then in the mixture spectrogram this
bin will have 0 magnitude as the two sources cancel out, but the two source magnitudes
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have to be reconstructed as a ratio of the mixture spectrogram magnitude in that bin. This
is a problem as that is not possible. In the less extreme case where the sources don not
quite cancel out, but just produce a mixture magnitude that is lower than on one of the
sources, this source cannot be reconstructed as a ratio of the mixture magnitude below
1. This is the problem that O seeks to rectify as it is supposed to be a ratio mask of the
mixture which approximates the source, but does not reconstruct it fully. However, as
stated there are multiple ways of calculating this O, but the paper does not state which
they use. In implementation the O was calculated as this

Rc =
Sc

Sm (4.1)

where Rc is the ideal ratio mask for source C, Sc is the spectrogram of source c and Sm is
the spectrogram of the mixture

O =
R2

||R||2 (4.2)

In this way O is the square of the normalized ideal ratio mask. The norm of R is taken
along the second dimension, as R is of size RFT×C, where FT is the number of time-
frequency bins and C is the number of sources. This normalization is done because, as
discussed before, some of the magnitudes of the sources might be bigger than the mag-
nitude of the mixture, meaning that Rc might contain values that are bigger than 1. The
squared normalization ensures that proper fractions are created in every bin.

This might also create some artifacts in the training, because if more sources have
bigger magnitudes than the mixture, in the same bin, then those sources will be seen as
contributing only half or less to that bin. This is due to the normalization term.

Signal Reconstruction

The signal reconstruction is something that later papers[69, 45, 68] have worked on, by try-
ing to more accurately reconstruct the original phases of each time-frequency bin. How-
ever, Chimera network simply uses an inverse mel-filterbank to translate the magnitude
mel-spectrogram back to a full magnitude spectrogram. The original phase of each bin,
from the original full spectrogram, is then applied to the magnitude spectrogram and the
inverse STFT is then taken of this. This is also the approach taken in this implementation.
It should be noted that this is a naive reconstruction that is guaranteed to cause errors
and artifacts in the reconstructed signal, due to limited phase information about the true
sources.

4.3 Wave-U-Net Implementation

Because Wave-U-Net’s structure was so simple and easily modifiable it was decided that
it should be re-implemented in PyTorch. This was also decided due to the insights that
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could be gained into the practical issues of the model, and how it could be optimized or
changed.

4.3.1 Model Structure

As stated before, PyTorch uses dynamic models and layers, meaning that convolutional
layers do not need to know the size of the sequence that they are processing, only the
number of input and output channels. This is also true for recurrent layers, however here
channels are exchanged for input feature size and number of recurrent units in the layer.
In a sequential model, convolutional layers in the middle of the model do not need a spec-
ified number of input channels, only output channels, as the amount of channels from
the previous layers is assumed to be the amount of input channels for the current layer.
However, in the case of Wave-U-Net this is not true and thus all input and output channels
have to be defined. For the downsampling layers this was done using an array, in which
a series of values could be defined manually if wanted. However, in this case a desired
channel increase per layer was chosen, and a simple algorithm was used to populate the
array with values incremented by this amount. This means that if a channel increase of 24
per layer was desired for a 3 layer model, the array would be "1, 24, 48, 72". The 1 is added
in the beginning of the array as an initial input channel size, and can be changed if more
channels are given as input.

To calculate the number of input and output channels of the convolutional layers in
the upsampling part of the network, the array storing the channels for the downsampling
network was reversed and doubled. Meaning that for a 3 layer model with a 24 channel
increase per layer the upsampling channel array would be "144, 96, 48, C", where C is
the number of output sources. This doubling is done due to the residual connections
from the downsampling to the upsampling layers, which concatenate the output of the
downsampling layer to the input of the upsampling layer, doubling the amount of channels
in the input.

4.3.2 Differences

This implementation does not use the proposed "learned upsampling" method from the
Wave-U-Net paper[58], and instead uses a linear interpolation upsampling method. An-
other key difference is that this implementation has C outputs, corresponding to the
amount of sources that should be separated, and not C-1 as the Wave-U-Net paper. This
was done so the difference in performance could be measured between the two approaches.
It also makes the model end-to-end, as all the sources are be generated directly by the
model. This is not true for the original Wave-U-Net as the last source was generated by
subtracting the sum of the model outputs from the mixture signal, thus the remaining
signal should be the last source.
This implementation also does not use the dialeted convolutional layers that the Wave-
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Figure 4.2: The Wave-U-Net Model

U-Net paper proposes for one of its model variations. This is due to the fact that this
model will be combined with the Chimera model, and thus the most simple version of the
Wave-U-Net model was wanted.

4.4 HydraNet Implementation

HydraNet is the main contribution this paper makes to the field of source separation. The
model was inspired by the Chimera networks use of BLSTM layers to expand a latent
space, to make it coherent over the time series, and the Wave-U-Net’s use of the time
domain representation of the signal as input. Thus the HydraNet was a combination of
the two networks.

4.4.1 Concept

It was observed, that the latent space generated at the "bottom", or middle, of the Wave-
U-Net was very similar in shape to the mel magnitude spectrogram used as input for the
Chimera Network. This is also true for the latent spaces in higher layers of the Wave-U-
Net model. Because of this similarity it was decided that the body of the Chimera network
should be inserted before the middle layer of the Wave-U-Net, taking input from the last
downsampling layer and outputting into the middle layer of the model. The idea was that
the Chimera network body would generate a latent space that was more coherent in time
than the space generated by the Wave-U-Net without dialated convolutional layers. It was
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also thought that BLSTM, and LSTM layers in general, would capture long term depen-
dencies better than dialated convolutional layers, as the BLSTM layers process the entire
time series in one layer, while the dialated convolutions need many layers to process the
entire series. In this way BLSTMs will capture the time dependencies with a single pass
of the signal, while the dialated convolutions will need many layers to process the signal
before time dependencies can be found.

Figure 4.3: The full HydraNet model

In this HydraNet model the normal convolutional layers will find the short term de-
pendencies of the signal while the BLSTM will capture the longer dependencies, that can
then be processed by the convolutional layers in the upsampling. This is also why BLSTMs
are used as opposed to LSTMs, as there might be critical information in the last part of the
signal which will help separation in the first part, and vice versa.

4.4.2 Implementation

The code and logic for the Wave-U-Net model was reused for this model, together with
the code for the first three layers of the Chimera network seen in figure 4.1b. This Chimera
model was used as it did not require flattening of the input before processing, making it
work well with the 2 dimensional input of the model. It was decided that two BLSTM
layers with 600 units would be used, however it was also decided that the following array
of dense layers was not needed, and that a single dense could be used instead. This was
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Figure 4.4: The short HydraNet model

because only a 2 dimensional output was desired, not a 3 dimensional output as the array
of dense layers would produce. The array of dense layers was designed such that from an
input of size RT×N , T is the amount of time-steps and N is the amount of BLSTM units, an
output of size RT×F×D could be constructed, where T is the same as before, F is the num-
ber of channels and D is the desired embedding dimension. However in this case only a
output of RT×F was desired, thus a timedistributed dense layer with F units could be used.

As with the Wave-U-Net model, this model was made to be easily re-sizable, with a
parameter for the amount of downsampling and upsampling layers, and a generated array
keeping track of the input and output channels for those layers. The BLSTM layers, and
timedistributed dense layer, also refer to this array for the size of their input and output
channels, thus keeping the model re-sizable. This also gives the opportunity to test differ-
ent depths of the model.

A variant of the HydraNet was also created, which placed BLSTM layers before the first
downsampling layer, after the last upsampling layer, and after every two downsampling or
upsampling layers. This is called the "time sensitive HydraNet" as its goal is to more easily
capture long term dependencies. This architecture was chosen to allow for a shallower
network with less convolutional layers, and will therefore not be tested with more than 4
convolutional layers, which is the structure seen in figure 4.4
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Evaluation And Results

All the implemented models were evaluated using different optimizers, loss functions and
hyper-parameters, which were either based on the original papers of the models or found
by experiment. The dataset used for all three models was DSD100 [41], however Chimera
and the two other models have different preprocessing procedures that will be described
in their sections. The mir_eval [51] python library from MUSDB18 [59] was used for all
evaluation of the models.

5.1 Chimera Evaluation

Several tests were performed on the Chimera model. Two different loss functions were
tested for the binary mask head, mean squared error and the sparse matrix multiplication
loss described in [24]. For the mask inference head only a mean squared error was tested.
The model was also trained with three optimizers, stochastic gradient descent (SGD), rm-
sprop and ADAM. This was done as SGD and rmsprop were used by [24] for the deep
clustering model, and rmsprop was used by [43] for Chimera. ADAM was chosen as an
experiment to evaluate if a decay would increase the SDR or make training faster.

5.1.1 Data Preprocessing

All songs were loaded using the librosa [46] library, and the two channels of each "wav"
file were averaged to a single channel. The signals were also downsampled from a native
44.1KHz sampling rate to a 8KHz sampling rate. The source sound files for the instruments
were added together to create one instrumental track per song, and one vocal track. A
short time fourier transform (STFT) was then applied to the signals, with 1024 frequency
bins, and a mel-filter bank with 150 filters was applied to each spectrum to reduce the
number of bins to 150. A window size of 8 milliseconds was used for the STFT, with a hop
length of 4 milliseconds. The magnitude of the complex value in each bin in the resulting
mel spectrogram was then calculated to create a real-valued magnitude mel spectrogram.

51
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This spectrogram was then split into non-overlapping windows of 100 time-frames, like
[24] describes, and the resulting array of windows was saved as a numpy file for easy
access during training.

5.1.2 Training Procedure

abandoned. The second approach of using a non-flattened spectrogram was pursued in-
stead. This model was trained with SGD and rmsprop to verify the results with both [24]
and [43], and with ADAM for experimentation. The models were trained until it was ob-
served that training loss for one head had plateaued for 10 epochs. For SGD a learning
rate of 10−4 was used with a momentum of 0.9, based on the hyper-parameters used in
[24]. This was then trained for 70 epochs before training loss plateaued. For rmsprop a
learning rate of 10−4 was used with no other hyper-parameters. This was trained for 30
epochs. For ADAM a decay of 10−6 was used, with a delta1 of 0.5 and delta2 of 0.999. This
was trained for 70 epochs before training loss plateaued. The loss functions described in
section 4.2.2 were used for all training.

5.1.3 Results

All three models were used to predict the DSD100 test data, which was preprocessed in the
same manner as the training data- The resulting mel magnitude spectrograms, with 100
time-steps each, were recombined to their original length and their signals reconstructed
as described in section 4.2.2. This signal reconstruction step was also performed on the
clean sources, such that any detected SDR would be not be affected by the reconstruction
process. Results are reported for both original and reconstructed clean sources. The results

Cl. Instruments Cl. Vocal Gen. Instruments Gen. Vocals
mean SD mean SD mean SD mean SD

SGD -21.58 5.67 -34.69 1.89 -25.36 6.08 -29.80 8.05
rmsprop -20.75 5.52 -34.68 1.90 -25.42 6.58 -29.81 8.06
ADAM -20.77 5.53 -34.68 1.90 -25.41 6.59 -29.81 8.07

Table 5.1: Chimera mean SDR (dB) and standard deviation (SD), Cl. is the results comparing to clean tracks
and Gen. is the results comparing to clean tracks that have been transformed to a mel spectrogram and
generated again in the same manner as the output of the model

of this network are not good, as higher SDR means a better separation, and these methods
produce results far below the 8.1dB instruments SDR and 6.1dB vocals SDR of the Chimera
paper[43]. It should also be noted that the "Gen." sources should be closer to the estimated
sources of the network, due to being processed by the same signal reconstruction method,
however the instrument tracks seem to produce worse results for the the Gen. sources than
the "Cl." sources. Though vocal seperation results are consistently higher when compared
to the "Gen." tracks rather than the "Cl." tracks. It can only be assumed that SDR calcu-
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lations cannot handle the added noise of the reconstruction method, in supposedly clean
sources.

5.2 Wave-U-Net Evaluation

The several versions of the Wave-U-Net model were trained using two different loss func-
tions. The optimizer used was ADAM. The two loss functions were mean squared error
(MSE) and scale-invariant signal-to-noise-ratio (SI-SNR) which was used by TasNet [42]
and which is shown in section 3.8 equation 2.15. SI-SNR was not originally used as a loss
function in Wave-U-Net [58], however since the output of Wave-U-Net and TasNet is the
same, this loss function could be used to improve the performance of Wave-U-Net with-
out changing the model structure. However, using SI-SNR as a loss function introduced
some restrictions on the training data. These restrictions were that no section of the audio
could be silent, else a negative infinity would be generated by the function, due to it being
a logarithmic function. This problem was handled during the preprocessing of the data.
All models described in this section used 12 downsampling and upsampling layers, and a
channel increment of 24.

5.2.1 Data Preprocessing And Generation

The data used for these models was also DSD100, as Chimera used. However, all songs
were resampled to 22KHz, as opposed to the 8KHz used by Chimera. For the MSE train-
ing data the songs were then split up into non-overlapping sections of size 16384, as that
was one of the sample sizes that worked well in the Wave-U-Net paper [58]. The paper
also described that using big sample sizes, over 100.000, improved performance, however
as seen with the Chimera network these sample sizes are very memory intensive and can
slow down training a lot. As with the Chimera network, the instrumental tracks were
added together to create a single instrumental track for each song. The vocal and instru-
mental tracks were then added at their native SNR, to create a mixture track. The arrays
of the slices of the instrumental, vocal and mixture tracks were then saved in numpy files
to make loading faster during training. This data will be called "sequential" data.

For the SI-SNR training data no silent sections could be present in either vocals or in-
struments, as is also described in the TasNet paper[42], thus all silent sections had to be
removed. As the TasNet paper also notes this is mostly a problem in the vocal tracks, as
there are often long breaks of silence between verses. Removing silent sections in the vocal
tracks was done with a simple onset detection algorithm. This algorithm calculated the
envelope of the signal, and found places where the value of that envelope was above or
below a threshold. The signals were normalized before this calculation to ensure that the
threshold value would produce good results for all signals. Once the vocals had been sep-
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arated they were saved in a numpy array file, and the same was done for the instrument
tracks.

During training these files were then loaded and all tracks that had a length below the
sample size were discarded. The sample size used for these experiments was 16384. After
tracks that were too short had been discarded, a random set of vocal and instrumental
tracks were chosen. For both the chosen vocal and instrumental track, a random index
value was then chosen between 0 and the length of the track minus the sample size. The
tracks were then sliced from this index to the index plus the sample size, to generate a
new track with the same length as the sample size, in this case 16384. 10000 pairs of
vocal and instrumental tracks were generated this way. It should be noted that the vocal
and instrumental tracks were chosen randomly from the list of all the songs, meaning it
is unlikely that the chosen vocals and instruments are from the same original song. The
implications of this will be discussed more in section 6.4. Three experiments were done on
the mixing of the resulting slices of vocals and instrumentals, mixing them at their native
dB, mixing them at an SNR of 1 with overall dB between -5dB and 30 dB, and mixing them
at a SNR of -5dB to 5dB with the overall dB of each signal ranging from 0dB to 25dB. This
was done to see if mixing with a low SNR but random overall dB would improve results,
since most other papers [24, 42, 58] take this approach, or if it is inconsequential.These
approaches to data generation will be called "native", "random loudness" and "fixed range
SNR" respectively.

5.2.2 Training Procedure

As said Wave-U-Net was trained with two different loss functions, MSE and SI-SNR, and
four different data generation methods, the sequential method and the three generated
methods. All models were trained with the ADAM optimizer and a batch size of 50.

Two models models were trained with the MSE loss function, but with different hyper-
parameters. The first model (M1) was trained with the same hyper-parameters as the
Chimera model, 10−4 learning rate, 10−6 decay, a β1 of 0.5 and β2 of 0.999. The second
model (M2)) was trained using the recommended hyper-parameters from the Wave-U-Net
paper, 10−4 learning rate, a β1 of 0.9 and β2 of 0.999. Both models were trained with se-
quential data. Both models were trained for 100 epochs

One model (M3) was trained using the SI-SNR loss function, with the same hyper-
parameters of 10−4 learning rate, a β1 of 0.9 and β2 of 0.999. This model used the native
generation technique for its training data. This model was trained for 100 epochs.

Four models were trained using a hybrid training regimen with both SI-SNR and MSE
loss functions. Fixed range SNR data was used for these tests. The first of these models
(M4) was trained with a mixed loss function where the two loss functions were added
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together before backpropagation. However, it was observed that the MSE loss was increas-
ing with each batch, instead of decreasing as it should, and that the SI-SNR loss was not
decreasing much either. Because of this, this approach was abandoned quickly, though
it is still a valuable result and informed the next test of the second model (M5). Because
of M4’s poor results with a mixed loss, M5 was trained in an alternating regimen with
SI-SNR loss being used in even epochs and MSE being used in odd epochs. This model
used a native generation for its data. The third of the models (M6) used the same train-
ing regimen, but used random loudness generation, while the last model (M7) used fixed
range SNR generation. These models were traning for 100 epochs.

The idea behind this hybrid loss stems from the scale-invariance of the SI-SNR function.
An interpretation of this function could be that it favors the phase difference between the
signals more than the magnitude difference, due to its use of the scalar product in equation
2.16. This might cause the model to achieve good phase accuracy but non-optimal mag-
nitude accuracy. This is the problem that MSE might solve, as it only looks at magnitude
differences and will condition the model to achieve similar magnitude levels.

5.2.3 Results

The evaluation was done on the DSD100 test dataset and SDR was calculated using the
mir_eval library. All the songs were loaded like the sequential training data, and the out-
puts of the models were then combined to create a reconstructed signal. The SDR was then
taken of this full reconstructed signal. For the vocals the original Wave-U-Net method of
generation was also tested, by subtracting the generated instrumental track from the mix-
ture. The results from these are called subtracted vocals, (Sub. Vocals), while the generated
vocals are called (Gen. Vocals).

Instruments Gen. Vocal Sub. Vocal
Models mean SD mean SD mean SD

M1 9.69 2.55 1.31 2.84 1.52 2.73
M2 9.84 2.55 2.60 2.72 2.59 2.72
M3 7.54 1.76 1.73 2.61 1.41 2.50
M5 9.89 2.50 1.42 2.63 1.22 2.26
M6 5.97 1.21 0.96 2.43 -2.86 2.01
M7 6.31 1.47 1.61 2.57 -3.51 2.00

Table 5.2: Wave-U-Net mean SDR (dB) and standard deviation (SD), Instrument is the instrumental track
generated by the network, Gen. Vocal is the vocal track generated by the network, Sub. Vocal is generated by
subtracting the generated Instrument track from the mixture

As said before higher SDR means better separation of the sources, and in table 5.2 it
can be seen that all models reach much better results than the Chimera model in table 5.1.
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However, these results are still shy of the results produced by the original Wave-U-Net
[58]. Though it should be noted that all these results are from models that have only been
trained for 100 epochs as opposed to the unknown amount of epochs the original Wave-
U-Net was trained. It can also be seen that the models trained with random loudness and
fixed SNR data performed significantly worse in this test than the others that were trained
with the native SNR of the songs. These same models also obtained very poor results on
the subtracted vocal tracks, which indicates that there was still a lot of vocal information
in the instrumental track. It can also be seen that models using MSE did better than the
model using purely SI-SNR as a loss. Because of this it is suspected that in M5, which
used hybrid loss of MSR and SI-SNR, the MSE is mostly responsible for the performance
increase for the instrument separation. M2 was the model using the hyper-parameters
from the paper, which might be why it is performing so well on the vocal separation.

5.3 HydraNet Evaluation

HydraNet was evaluated in a similar way as Wave-U-Net, with some modifications. The
three loss function strategies were also tested with Hydranet, only MSE, only SI-SNR and
hybrid training regimen with MSE and SI-SNR. Only the ADAM optimizer was used
for the training. These models all used 12 upsampling and downsampling layers, and a
channel increment of 24.
The time sensitive HydraNet was tested with 4 upsampling and downsampling layers, and
a channel increment of 24, and the hybrid training regimen.
All models were trained with a batch size of 50.

5.3.1 Training Procedure

The first model (M1) used MSE loss and a learning rate of 10−4, decay of 10−6, β1 of 0.5
and β2 of 0.999 were used. For the second model (M2) SI-SNR was used. The third model
(M3) used the hybrid training regimen. Both M2 and M3 were trained with a learning rate
of 10−4, β1 of 0.9 and β2 of 0.999 were used.
M1 was trained for 400 epochs, and M2 and M3 for 100 epochs. However, to make com-
parison with Wave-U-Net fair the results from the 100th epoch of M1 and M3 will also be
shown in table 5.3.

A fourth model (M4) was also trained with the same parameters and loss as M3,
however every 30 epochs the training data was generated again, creating a new novel
dataset for the model to train on. The reasoning for this was that continuously giving the
model new data would prevent overfitting and generalise the model more. This approach
is akin to curriculum learning[5], where a model is trained on simple data to begin with,
and then trained with new, more difficult data once a threshold has been reached. The
major difference here is that in our case the new data is not more "difficult" to learn, and
thus a threshold technique is most likely no better than a simple timed technique that is
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used here. This model was trained for 300 epochs, and as with the other models the results
from the 100th epoch will also be shown.

The fifth model (M5) was the time sensitive HydraNet, seen in figure 4.3b. It was
trained exactly like M4, though only for 40 epochs due to time-constraints.

M3 to M5 were all trained using fixed SNR data generation. M2 used native SNR
generation.

5.3.2 Results

All of the models were evaluated on the DSD100 dataset with the sane procedure as Wave-
U-Net. The "Sub." tracks were generated by subtracting the estimated instrument track
from the mixture. This was done to compare the results with the Wave-U-Net imple-
mented in this project, and with the Wave-U-Net paper. This also gives a good measure
for interference, how much of the vocals are still in the instrument signal after separation.
If there still is some then, as we can see in table 5.2, the SDR will be low in the subtracted
signal.
The results are shown in table 5.3.

Instruments Gen. Vocal Sub. Vocal
Model epoch mean SD mean SD mean SD

M1 100 9.33 2.57 2.16 2.63 2.17 2.61
M2 100 8.28 1.97 2.16 2.54 1.42 2.41
M3 100 8.93 2.02 2.51 2.57 -2.82 2.05
M4 100 8.94 2.03 2.79 2.53 -2.96 2.05
M5 40 8.97 2.40 2.26 2.49 0.75 2.71
M1 400 9.83 2.60 2.07 2.72 2.15 2.66
M4 300 9.78 2.13 3.46 2.52 -2.67 2.10

Table 5.3: HydraNet mean SDR (dB) and standard deviation (SD), Instrument is the instrumental track gen-
erated by the network, Gen. Vocal is the vocal track generated by the network, Sub. Vocal is generated by
subtracting the generated Instrument track from the mixture

The results show that the model that used MSE loss, M1 is much better at separating
instruments than its counterparts that use SI-SNR or hybrid loss. However, it also shows
that the SI-SNR, and hybrid loss, are much better for generating vocals. This is especially
seen with M4, both at 100 epochs and 300 epochs it outperforms the other models in this
measure, even when having only been trained for 300 epochs rather than the 400 epochs of
M1. It is also shown that the short HydraNet, M5 performs equally well to models trained
for 100 epochs when it has only been trained for 40. M5 also has significantly higher SDR
in the subtracted vocals section, compared to the other methods that use hybrid loss. In
this regard the other hybrid loss models, M3 and M4, perform surprisingly poorly which
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suggests that there is still a significant amount of vocals in the instruments track, or that
the instruments track is somehow not captured fully these methods.

5.4 State-Of-The-Art Comparisons

The best models from Chimera, Wave-U-Net and HydraNet were taken and compared to
the results of the papers they were based on, and other state-of-the-art papers. This can be
seen in table 5.4.

Instruments Vocal
Model Epoch mean SD mean SD

Chimera [43] - 8.1 - 6.1 -
Wave-U-Net [58] - 11.9 7.0 0.7 13.7

TAK-3 [60] - 12.7 - 6.1 -
2DFT [56] - 5.1 2.5 2.7 1.6

MELO [53] - - - 3.7 5.0
ChimeraNet* 70 -20.8 5.5 -34.7 1.9

Wave-U-Net* M2 100 9.8 2.6 2.6 2.7
HydraNet M1 400 9.8 2.6 2.1 2.7
HydraNet M4 300 9.8 2.1 3.5 2.5

Table 5.4: Overall result comparisons of mean SDR and standard deviation (SD), the "-" are values that the
papers do not state, thus they are unknown. The models with stars "*" are the models implemented in this
paper

As can be seen in the table, the models evaluated in this project fall in the middle of the
performance field, with the exception of the Chimera model which performs very poorly.
HydraNet and Wave-U-Net surpass some of the other papers, such as the Chimera paper
and 2DFT, in instruments separation, while also surpassing the Wave-U-Net paper in vo-
cal separation. It is uncertain if this projects Wave-U-Net performance is generally better
than the original papers performance, as the paper reports a 13.7dB standard deviation,
meaning that some songs will have much better separation SDR than our best SDR. As
can also be seen in the table, the number of epochs each model was trained is unknown,
which makes it very difficult to compare results as the number of epochs they used might
be orders of magnitude larger than what we have used. Because of this the two models
Wave-U-Net and HydraNet should be trained more to see if they can reach the same level
of SDR as the state of the art papers. It can also be seen in the table that the HydraNet
M4 almost reaches the same level of vocal separation as MELO[53], an algorithm specif-
ically for separating vocals from songs, but which does not separate the instruments as
HydraNet does.
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Discussion

In this chapter the results will be discussed more, along with the possible causes for these
results and things that could be done to improve the models.

6.1 Main Findings

The main findings of the paper are that considering the low training time, the HydraNet
and Wave-U-Net models did surprisingly well, and that if trained more they could reach
the state-of-the-art performance of other papers. It is also thought that the performance
of the models might be increased by separating the instruments into their separate tracks,
and training the networks to estimate all the instruments, instead of a single track. It is
thought this might improve performance since all models trained with the hybrid loss
function and non-native generation methods, performed very poorly on the subtracted
vocal track. This was a track that was generated by subtracting the estimated instruments
track from the mixture, thus ideally leaving only vocals. However, as seen in tables 5.2 and
5.3, these models performed badly on those tracks. The reason for this will be discussed
in section 6.5.

Another finding was that all trained versions of Chimera performed very badly. This
is also surprising since the short HydraNet M5 was trained for a similar amount of time
and achieved almost the same SDR as models that had been trained longer. A possible
explanation for this lapse between the Chimera paper stated SDR and the SDR of the
Chimera model in this paper could be that the Chimera model implemented here was
altered slightly to make it less memory intensive, and make training much faster. This
modification and its effects will be discussed more in section 6.2.

It was also surprising how quickly the short HydraNet M5 actually learned to dis-
tinguish instruments and singing voices, as it was assumed beforehand that this would
probably take many 100’s of epochs. This was thought due to the complexity of the prob-
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lem, and the amount of overlap between singing voices and instruments, which might
confuse networks. It should be noted here that the tracks the networks performed worst
on were often tracks where vocals and instruments were in the same frequency range, such
as heavy metal and techno music. This result was obtained qualitatively finding the test
tracks that got the lowest SDR or SI-SNR and listening to them.

6.2 Modified model embedding space

One reason the modified Chimera model is performing worse than the version in the
paper, might be the modification of the third layer in the model. As seen in figure 4.1b
the third layer is array of dense layers connected to the BLSTM layers. As stated in section
4.2.1 the purpose of this layer is to reconstruct the frequency bins that were translated into
a latent space by the BLSTM layers. The second purpose of the layer is to also create an
D dimensional embedding for each reconstructed bin, to create a bigger latent space for
the k-means and softmax heads to classify. However, this is done by each of the dense
channels based on the same embedding for each time-step, meaning that each channel
has to extract a different thing from the same L dimensional embedding. The embedding
also has to contain enough information for this process. This is opposed to the original
implementation where each frequency bin, for each time-step, was transformed to an L
dimensional embedding, which could then be translated to D dimensions by the next
time-distributed dense layer. The requirement for the L dimensional embedding to contain
more information in the modified model is probably detrimental to the accuracy and will
probably require a longer training time to get similar results to the original model. This
could be one of the reasons for the extremely poor results. However this cannot be properly
tested by training the original model, due to its extreme training times.

6.3 Different datasets

Another reason why the results of this project are different from, or worse than, other
papers might be because the other papers were evaluated on a slightly larger dataset, the
MUSDB18[59] dataset, which combined the DSD100[41] dataset with some tracks from
the MedleyDB[8] dataset. The MUSDB18 dataset takes 50 tracks from MedleyDB and
adds them to 100 tracks in DSD100. These tracks were mostly added to the training data,
and the total amount of test songs, 50, remained the same. Thus it is unlikely that these
songs could account solely for the differences in SDR between this projects models and the
models of the other papers. However, in future this dataset should be used for training
and evaluation.
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6.4 Data Generation

By doing a random generation algorithm instead of training on slices of the original tracks,
this project might have simplified the dataset and made it easier for the models to learn,
but harder for them to master. This is because the original instruments with their belong-
ing vocals have rhythmic features that might not be represented by the generated dataset.
What is meant by this is that the vocals and instruments of the songs might have moments
where both vocals and instruments increase and decrease in volume together, and where
they have similar spectra of frequencies. However, this is not necessarily retained when
pairing random vocals with random instruments, as the similarities will not be guaranteed
anymore. To fix this while still keeping silent sections out of the dataset, the silent sections
should be found in both instrumental and vocal tracks, and these silent sections should be
discarded for both tracks. This will heavily reduce the dataset though, as there are often
silent sections in vocal tracks.

6.5 Generated Vocals And Subtracted Vocals

As discussed, the HydraNet and Wave-U-Net were okay at generating instruments and
vocal tracks, while some of the models did not perform well on the subtracted vocals
tracks, though some did. This suggests that there is either still a lot of vocal content in
the generated instruments track, or that the instruments track is not being reconstructed
well. This reconstruction could either simply be a decrease, or increase, in magnitude of
the signal, which would either take too little of the instruments from the mixture or too
much. If that is the case then it might be due to the tracks being shifted too much in the
dB range during the random loudness and fixed SNR generation. This is consistent with
the results, as it was only models trained with these methods that performed poorly on
those tracks. With these generation methods the models might not learn a good estimate
of the loudness that should be produced, as they are trained on tracks that are between 0
and 30dB, while normal loudness tracks might be -10dB to 10dB. If this is the case, this is
clearly an error in the generation algorithm that should be fixed.
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Chapter 7

Conclusion

From the results it can be concluded that neither the Wave-U-Net, nor the HydraNet
reached state-of-the art performance in instrument separation, though they did surpass
the original Wave-U-Net results in vocal separation.
That the Wave-U-Net did not reach the same level of instrument SDR as the paper, is in-
dicative of the network not being trained for long enough. Thus the same can be said for
the HydraNet, and it can be concluded that these networks should get longer training to
test if they can reach state-of-the art performance. It can also be concluded that the hy-
brid training regimen used for training HydraNet M4 did have a significant effect on the
vocal separation SDR, when compared to the other models that were trained for the same
amount of epochs.

Not being trained for enough epochs is most likely also the cause of the Chimera mod-
els poor performance, though it is still uncertain what exactly factors contributed to this.

The final conclusion of this project is that single-channel blind source separation, which
used to be an extremely difficult problem, is now becoming a field that can be solved easily
by these hybrid networks consisting of convolutional, dense and recurrent layers. Thus
more focus should be put on these models, and how to develop more accurate and fast
models, like TasNet, such that they can be used in real-time applications. More research
should also be focused on making these models more general, not only solving singing
voice separation from music, but also separating EEG readings, or noisy recordings, and
furthering usefulness of this field in many other areas research and in daily life.
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Chapter 8

Future Works

8.1 Change Generation Methods

The datset generation methods of random loudness and fixed SNR should be changed such
that the loudness of the entire signal never surpasses a certain determined threshold which
will be found experimentally. It should also be changed to analyze the distribution of
volumes of the dataset it generates from, and try to generate tracks with similar loudness.
The generation method could even be altered to find segments with similar spectra and
pair them together, to create a more difficult dataset to solve.

8.2 Single Output For Wave-U-Net And HydraNet

An interesting experiment for Wave-U-Net and HydraNet could be to follow the Wave-U-
Net paper and generate one less source than is required, and then define the last source
as the sum of the other generated sources. In this way the other sources might learn more
about the missing source than if all sources are predicted.

8.3 Multi-Instrument Training

Another experiment that could be done is to train HydraNet to predict all instruments as
well as the vocals, to see if the network can achieve better results in the same amount of
time, 100 epochs. This might teach the network more about the different spectra of the
instruments and might help it seperate the spectra better than now.

8.4 Dual Training With Voices

This is a similar idea to training with all the instruments to learn their spectra, in this case
the suggestion is simply to also use another spoken voice in the signal. This will make the
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network have to solve both singing voice separation and the cocktail-party problem at the
same time, and might lead to some interesting results. The hope is that this will teach the
network more about the characteristics of human voices, and might enable it to separate
out back-up singers in some songs, or noise from other humans in a concert recording.

8.5 Deep Clustering Network

Another interesting experiment would be to make the HydraNet into an deep clustering
network that uses the error functions defined in [24] to create embeddings for the wave-
form that can then be clustered by a clustering algorithm. The advantage of this is that the
number of sources in the signal will be determined by the number of clusters in the space,
nothing in the model needs to be changed to handle more or fewer sources.

8.6 3D Latent Space

As the HydraNet is now, the latent space generated at the bottom of the model is 2D,
however it could easily be made into a 3D latent space, just like it is in the Chimera
model. By doing this more information could be retrieved from the space, however the
risk of overfitting the network is also increased due the the larger amount of parameters
the model would have.



Bibliography

[1] Shoko Araki et al. “Underdetermined blind sparse source separation for arbitrarily
arranged multiple sensors”. In: Signal Processing. Independent Component Analysis
and Blind Source Separation 87.8 (Aug. 2007), pp. 1833–1847. issn: 0165-1684. doi:
10.1016/j.sigpro.2007.02.003. url: http://www.sciencedirect.com/science/
article/pii/S0165168407000680 (visited on 05/25/2019).

[2] Suzanna Becker and Mark Plumbley. “Unsupervised neural network learning pro-
cedures for feature extraction and classification”. en. In: Applied Intelligence 6.3 (July
1996), pp. 185–203. issn: 1573-7497. doi: 10.1007/BF00126625. url: https://doi.
org/10.1007/BF00126625 (visited on 05/26/2019).

[3] Anthony J. Bell and Terrence J. Sejnowski. “An Information-Maximization Approach
to Blind Separation and Blind Deconvolution”. In: Neural Computation 7.6 (Nov.
1995), pp. 1129–1159. issn: 0899-7667. doi: 10.1162/neco.1995.7.6.1129. url:
https://doi.org/10.1162/neco.1995.7.6.1129 (visited on 05/25/2019).

[4] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term dependen-
cies with gradient descent is difficult”. In: IEEE transactions on neural networks 5.2
(1994), pp. 157–166.

[5] Yoshua Bengio et al. “Curriculum Learning”. In: Proceedings of the 26th Annual In-
ternational Conference on Machine Learning. ICML ’09. event-place: Montreal, Quebec,
Canada. New York, NY, USA: ACM, 2009, pp. 41–48. isbn: 978-1-60558-516-1. doi:
10.1145/1553374.1553380. url: http://doi.acm.org/10.1145/1553374.1553380
(visited on 05/23/2019).

[6] C. D. Binnie and P. F. Prior. “Electroencephalography.” en. In: Journal of Neurology,
Neurosurgery & Psychiatry 57.11 (Nov. 1994), pp. 1308–1319. issn: 0022-3050, 1468-
330X. doi: 10.1136/jnnp.57.11.1308. url: https://jnnp.bmj.com/content/57/
11/1308 (visited on 05/19/2019).

[7] Christopher M. Bishop and Professor of Neural Computing Christopher M. Bishop.
Neural Networks for Pattern Recognition. en. Google-Books-ID: T0S0BgAAQBAJ. Claren-
don Press, Nov. 1995. isbn: 978-0-19-853864-6.

[8] Rachel M. Bittner et al. “MedleyDB: A Multitrack Dataset for Annotation-Intensive
MIR Research.” In: ISMIR. Vol. 14. 2014, pp. 155–160.

67

http://dx.doi.org/10.1016/j.sigpro.2007.02.003
http://www.sciencedirect.com/science/article/pii/S0165168407000680
http://www.sciencedirect.com/science/article/pii/S0165168407000680
http://dx.doi.org/10.1007/BF00126625
https://doi.org/10.1007/BF00126625
https://doi.org/10.1007/BF00126625
http://dx.doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1162/neco.1995.7.6.1129
http://dx.doi.org/10.1145/1553374.1553380
http://doi.acm.org/10.1145/1553374.1553380
http://dx.doi.org/10.1136/jnnp.57.11.1308
https://jnnp.bmj.com/content/57/11/1308
https://jnnp.bmj.com/content/57/11/1308


68 Bibliography

[9] A. J. Casson et al. “Wearable Electroencephalography”. In: IEEE Engineering in Medicine
and Biology Magazine 29.3 (May 2010), pp. 44–56. issn: 0739-5175. doi: 10.1109/MEMB.
2010.936545.

[10] E. Colin Cherry. “Some Experiments on the Recognition of Speech, with One and
with Two Ears”. In: The Journal of the Acoustical Society of America 25.5 (Sept. 1953),
pp. 975–979. issn: 0001-4966. doi: 10.1121/1.1907229. url: https://asa.scitation.
org/doi/abs/10.1121/1.1907229 (visited on 05/19/2019).

[11] Daniel P. W. Ellis. “Prediction-driven computational auditory scene analysis”. en.
PhD thesis. Columbia University, 1996. doi: 10.7916/D84J0N13. url: https://doi.
org/10.7916/D84J0N13 (visited on 05/25/2019).

[12] Jeffrey L. Elman. “Finding structure in time”. In: Cognitive science 14.2 (1990), pp. 179–
211.

[13] H. Erdogan et al. “Phase-sensitive and recognition-boosted speech separation using
deep recurrent neural networks”. In: 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Apr. 2015, pp. 708–712. doi: 10.1109/ICASSP.
2015.7178061.

[14] Jean Baptiste Joseph baron Fourier. The Analytical Theory of Heat. en. The University
Press, 1878.

[15] Cédric Févotte, Emmanuel Vincent, and Alexey Ozerov. “Single-Channel Audio Source
Separation with NMF: Divergences, Constraints and Algorithms”. en. In: Audio Source
Separation. Ed. by Shoji Makino. Signals and Communication Technology. Cham:
Springer International Publishing, 2018, pp. 1–24. isbn: 978-3-319-73031-8. doi: 10.
1007/978-3-319-73031-8_1. url: https://doi.org/10.1007/978-3-319-73031-
8_1 (visited on 03/01/2019).

[16] Sharon Gannot et al. “A Consolidated Perspective on Multimicrophone Speech En-
hancement and Source Separation”. In: IEEE/ACM Trans. Audio, Speech and Lang. Proc.
25.4 (Apr. 2017), pp. 692–730. issn: 2329-9290. doi: 10.1109/TASLP.2016.2647702.
url: https://doi.org/10.1109/TASLP.2016.2647702 (visited on 05/26/2019).

[17] Emad M. Grais et al. “Single-Channel Audio Source Separation Using Deep Neural
Network Ensembles”. English. In: Audio Engineering Society, May 2016. url: http:
//www.aes.org/e-lib/online/browse.cfm?elib=18193 (visited on 02/05/2019).

[18] Alex Graves. “Generating Sequences With Recurrent Neural Networks”. In: arXiv:1308.0850
[cs] (Aug. 2013). arXiv: 1308.0850. url: http://arxiv.org/abs/1308.0850 (visited
on 05/26/2019).

[19] D. Griffin and Jae Lim. “Signal estimation from modified short-time Fourier trans-
form”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing 32.2 (Apr. 1984),
pp. 236–243. issn: 0096-3518. doi: 10.1109/TASSP.1984.1164317.

http://dx.doi.org/10.1109/MEMB.2010.936545
http://dx.doi.org/10.1109/MEMB.2010.936545
http://dx.doi.org/10.1121/1.1907229
https://asa.scitation.org/doi/abs/10.1121/1.1907229
https://asa.scitation.org/doi/abs/10.1121/1.1907229
http://dx.doi.org/10.7916/D84J0N13
https://doi.org/10.7916/D84J0N13
https://doi.org/10.7916/D84J0N13
http://dx.doi.org/10.1109/ICASSP.2015.7178061
http://dx.doi.org/10.1109/ICASSP.2015.7178061
http://dx.doi.org/10.1007/978-3-319-73031-8_1
http://dx.doi.org/10.1007/978-3-319-73031-8_1
https://doi.org/10.1007/978-3-319-73031-8_1
https://doi.org/10.1007/978-3-319-73031-8_1
http://dx.doi.org/10.1109/TASLP.2016.2647702
https://doi.org/10.1109/TASLP.2016.2647702
http://www.aes.org/e-lib/online/browse.cfm?elib=18193
http://www.aes.org/e-lib/online/browse.cfm?elib=18193
http://arxiv.org/abs/1308.0850
http://dx.doi.org/10.1109/TASSP.1984.1164317


Bibliography 69

[20] D. Gunawan and D. Sen. “Iterative Phase Estimation for the Synthesis of Separated
Sources From Single-Channel Mixtures”. In: IEEE Signal Processing Letters 17.5 (May
2010), pp. 421–424. issn: 1070-9908. doi: 10.1109/LSP.2010.2042530.

[21] Simon Haykin. Neural Networks: A Comprehensive Foundation. 1st. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 1994. isbn: 978-0-02-352761-6.

[22] Pengju He et al. “Single channel blind source separation on the instantaneous mixed
signal of multiple dynamic sources”. In: Mechanical Systems and Signal Processing. SI:
IMETI-MechElectro 113 (Dec. 2018), pp. 22–35. issn: 0888-3270. doi: 10.1016/j.
ymssp.2017.04.004. url: http://www.sciencedirect.com/science/article/pii/
S0888327017301905 (visited on 03/01/2019).

[23] Robert Hecht-nielsen. “III.3 - Theory of the Backpropagation Neural Network”. In:
Neural Networks for Perception. Ed. by Harry Wechsler. Academic Press, Jan. 1992,
pp. 65–93. isbn: 978-0-12-741252-8. doi: 10.1016/B978-0-12-741252-8.50010-8.
url: http://www.sciencedirect.com/science/article/pii/B9780127412528500108
(visited on 05/26/2019).

[24] J. R. Hershey et al. “Deep clustering: Discriminative embeddings for segmentation
and separation”. In: 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). Mar. 2016, pp. 31–35. doi: 10.1109/ICASSP.2016.7471631.

[25] John R. Hershey et al. “Deep clustering: Discriminative embeddings for segmenta-
tion and separation”. In: arXiv:1508.04306 [cs, stat] (Aug. 2015). arXiv: 1508.04306.
url: http://arxiv.org/abs/1508.04306 (visited on 01/06/2019).

[26] Geoffrey E Hinton and Richard S. Zemel. “Autoencoders, Minimum Description
Length and Helmholtz Free Energy”. In: Advances in Neural Information Processing
Systems 6. Ed. by J. D. Cowan, G. Tesauro, and J. Alspector. Morgan-Kaufmann,
1994, pp. 3–10. url: http://papers.nips.cc/paper/798-autoencoders-minimum-
description-length-and-helmholtz-free-energy.pdf (visited on 05/26/2019).

[27] Sepp Hochreiter. “The Vanishing Gradient Problem During Learning Recurrent Neu-
ral Nets and Problem Solutions”. In: International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems 06.02 (Apr. 1998), pp. 107–116. issn: 0218-4885. doi:
10.1142/S0218488598000094. url: https://www.worldscientific.com/doi/abs/
10.1142/S0218488598000094 (visited on 05/26/2019).

[28] P. Huang et al. “Singing-voice separation from monaural recordings using robust
principal component analysis”. In: 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Mar. 2012, pp. 57–60. doi: 10.1109/ICASSP.
2012.6287816.

[29] Eric J. Humphrey et al. “Mining Labeled Data from Web-Scale Collections for Vocal
Activity Detection in Music.” In: ISMIR. 2017, pp. 709–715.

http://dx.doi.org/10.1109/LSP.2010.2042530
http://dx.doi.org/10.1016/j.ymssp.2017.04.004
http://dx.doi.org/10.1016/j.ymssp.2017.04.004
http://www.sciencedirect.com/science/article/pii/S0888327017301905
http://www.sciencedirect.com/science/article/pii/S0888327017301905
http://dx.doi.org/10.1016/B978-0-12-741252-8.50010-8
http://www.sciencedirect.com/science/article/pii/B9780127412528500108
http://dx.doi.org/10.1109/ICASSP.2016.7471631
http://arxiv.org/abs/1508.04306
http://papers.nips.cc/paper/798-autoencoders-minimum-description-length-and-helmholtz-free-energy.pdf
http://papers.nips.cc/paper/798-autoencoders-minimum-description-length-and-helmholtz-free-energy.pdf
http://dx.doi.org/10.1142/S0218488598000094
https://www.worldscientific.com/doi/abs/10.1142/S0218488598000094
https://www.worldscientific.com/doi/abs/10.1142/S0218488598000094
http://dx.doi.org/10.1109/ICASSP.2012.6287816
http://dx.doi.org/10.1109/ICASSP.2012.6287816


70 Bibliography

[30] Yusuf Isik et al. “Single-Channel Multi-Speaker Separation using Deep Clustering”.
In: arXiv:1607.02173 [cs, stat] (July 2016). arXiv: 1607.02173. url: http://arxiv.org/
abs/1607.02173 (visited on 02/05/2019).

[31] A. Jansson et al. Singing voice separation with deep U-Net convolutional networks. en.
conference. Suzhou, China, Oct. 2017. url: https://ismir2017.smcnus.org/ (vis-
ited on 03/01/2019).

[32] Tzyy-Ping Jung et al. “Removing electroencephalographic artifacts by blind source
separation”. en. In: Psychophysiology 37.2 (Mar. 2000), pp. 163–178. issn: 1469-8986,
0048-5772. url: https://www.cambridge.org/core/journals/psychophysiology/
article / removing - electroencephalographic - artifacts - by - blind - source -
separation/2548D35629CAE17E6956C2FFF1B6C8AB (visited on 05/26/2019).

[33] L. G. Kiloh, A. J. McComas, and J. W. Osselton. Clinical Electroencephalography. en.
Butterworth-Heinemann, Oct. 2013. isbn: 978-1-4831-9215-4.

[34] H. Kim et al. “Single channel blind source separation based on probabilistic matrix
factorisation”. In: Electronics Letters 53.21 (2017), pp. 1429–1431. issn: 0013-5194. doi:
10.1049/el.2017.2013.

[35] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: arXiv:1412.6980 [cs] (Dec. 2014). arXiv: 1412.6980. url: http://arxiv.org/abs/
1412.6980 (visited on 05/27/2019).

[36] Morten Kolbaek et al. “Multitalker Speech Separation With Utterance-Level Permu-
tation Invariant Training of Deep Recurrent Neural Networks”. In: IEEE/ACM Trans.
Audio, Speech and Lang. Proc. 25.10 (Oct. 2017), pp. 1901–1913. issn: 2329-9290. doi:
10.1109/TASLP.2017.2726762. url: https://doi.org/10.1109/TASLP.2017.
2726762 (visited on 02/19/2019).

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1097–
1105. url: http://papers.nips.cc/paper/4824-imagenet-classification-with-
deep-convolutional-neural-networks.pdf (visited on 05/26/2019).

[38] Yann LeCun and Yoshua Bengio. “Convolutional networks for images, speech, and
time series”. In: The handbook of brain theory and neural networks 3361.10 (1995), p. 1995.

[39] L. Li and H. Kameoka. “Deep Clustering with Gated Convolutional Networks”. In:
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Apr. 2018, pp. 16–20. doi: 10.1109/ICASSP.2018.8461746.

[40] Yevgeni Litvin and Israel Cohen. “Single-channel source separation of audio signals
using Bark Scale Wavelet Packet Decomposition”. In: Oct. 2009, pp. 1–4. doi: 10.
1109/MLSP.2009.5306232.

http://arxiv.org/abs/1607.02173
http://arxiv.org/abs/1607.02173
https://ismir2017.smcnus.org/
https://www.cambridge.org/core/journals/psychophysiology/article/removing-electroencephalographic-artifacts-by-blind-source-separation/2548D35629CAE17E6956C2FFF1B6C8AB
https://www.cambridge.org/core/journals/psychophysiology/article/removing-electroencephalographic-artifacts-by-blind-source-separation/2548D35629CAE17E6956C2FFF1B6C8AB
https://www.cambridge.org/core/journals/psychophysiology/article/removing-electroencephalographic-artifacts-by-blind-source-separation/2548D35629CAE17E6956C2FFF1B6C8AB
http://dx.doi.org/10.1049/el.2017.2013
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1109/TASLP.2017.2726762
https://doi.org/10.1109/TASLP.2017.2726762
https://doi.org/10.1109/TASLP.2017.2726762
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://dx.doi.org/10.1109/ICASSP.2018.8461746
http://dx.doi.org/10.1109/MLSP.2009.5306232
http://dx.doi.org/10.1109/MLSP.2009.5306232


Bibliography 71

[41] Antoine Liutkus et al. “The 2016 Signal Separation Evaluation Campaign”. en. In:
Latent Variable Analysis and Signal Separation. Ed. by Petr Tichavský et al. Lecture
Notes in Computer Science. Springer International Publishing, 2017, pp. 323–332.
isbn: 978-3-319-53547-0.

[42] Y. Luo and N. Mesgarani. “TaSNet: Time-Domain Audio Separation Network for
Real-Time, Single-Channel Speech Separation”. In: 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). Apr. 2018, pp. 696–700. doi: 10.
1109/ICASSP.2018.8462116.

[43] Y. Luo et al. “Deep clustering and conventional networks for music separation:
Stronger together”. In: 2017 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). Mar. 2017, pp. 61–65. doi: 10.1109/ICASSP.2017.7952118.

[44] Yi Luo and Nima Mesgarani. “TasNet: Surpassing Ideal Time-Frequency Masking
for Speech Separation”. In: arXiv:1809.07454 [cs, eess] (Sept. 2018). arXiv: 1809.07454.
url: http://arxiv.org/abs/1809.07454 (visited on 02/27/2019).

[45] P. Magron, R. Badeau, and B. David. “Model-Based STFT Phase Recovery for Audio
Source Separation”. In: IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing 26.6 (June 2018), pp. 1095–1105. issn: 2329-9290. doi: 10.1109/TASLP.2018.
2811540.

[46] Brian McFee et al. “librosa: Audio and music signal analysis in python”. In: Proceed-
ings of the 14th python in science conference. 2015, pp. 18–25.

[47] T. Moon et al. “RNNDROP: A novel dropout for RNNS in ASR”. In: 2015 IEEE Work-
shop on Automatic Speech Recognition and Understanding (ASRU). Dec. 2015, pp. 65–70.
doi: 10.1109/ASRU.2015.7404775.

[48] Francesco Negro et al. “Multi-channel intramuscular and surface EMG decompo-
sition by convolutive blind source separation”. en. In: Journal of Neural Engineering
13.2 (Feb. 2016), p. 026027. issn: 1741-2552. doi: 10.1088/1741-2560/13/2/026027.
url: https://doi.org/10.1088%2F1741- 2560%2F13%2F2%2F026027 (visited on
05/26/2019).

[49] H. Nyquist. “Certain Topics in Telegraph Transmission Theory”. In: Transactions of the
American Institute of Electrical Engineers 47.2 (Apr. 1928), pp. 617–644. issn: 0096-3860.
doi: 10.1109/T-AIEE.1928.5055024.

[50] Erkki Oja. “Neural networks, principal components, and subspaces”. In: International
Journal of Neural Systems 01.01 (Jan. 1989), pp. 61–68. issn: 0129-0657. doi: 10.1142/
S0129065789000475. url: https://www.worldscientific.com/doi/abs/10.1142/
S0129065789000475 (visited on 05/26/2019).

[51] Colin Raffel et al. “mir_eval: A transparent implementation of common MIR met-
rics”. In: In Proceedings of the 15th International Society for Music Information Retrieval
Conference, ISMIR. Citeseer, 2014.

http://dx.doi.org/10.1109/ICASSP.2018.8462116
http://dx.doi.org/10.1109/ICASSP.2018.8462116
http://dx.doi.org/10.1109/ICASSP.2017.7952118
http://arxiv.org/abs/1809.07454
http://dx.doi.org/10.1109/TASLP.2018.2811540
http://dx.doi.org/10.1109/TASLP.2018.2811540
http://dx.doi.org/10.1109/ASRU.2015.7404775
http://dx.doi.org/10.1088/1741-2560/13/2/026027
https://doi.org/10.1088%2F1741-2560%2F13%2F2%2F026027
http://dx.doi.org/10.1109/T-AIEE.1928.5055024
http://dx.doi.org/10.1142/S0129065789000475
http://dx.doi.org/10.1142/S0129065789000475
https://www.worldscientific.com/doi/abs/10.1142/S0129065789000475
https://www.worldscientific.com/doi/abs/10.1142/S0129065789000475


72 Bibliography

[52] Brian D. Ripley and N. L. Hjort. Pattern Recognition and Neural Networks. en. Google-
Books-ID: 2SzT2p8vP1oC. Cambridge University Press, Jan. 1996. isbn: 978-0-521-
46086-6.

[53] J. Salamon and E. Gomez. “Melody Extraction From Polyphonic Music Signals Using
Pitch Contour Characteristics”. In: IEEE Transactions on Audio, Speech, and Language
Processing 20.6 (Aug. 2012), pp. 1759–1770. issn: 1558-7916. doi: 10.1109/TASL.2012.
2188515.

[54] H. Sawada, S. Araki, and S. Makino. “A Two-Stage Frequency-Domain Blind Source
Separation Method for Underdetermined Convolutive Mixtures”. In: 2007 IEEE Work-
shop on Applications of Signal Processing to Audio and Acoustics. Oct. 2007, pp. 139–142.
doi: 10.1109/ASPAA.2007.4393012.

[55] M. Schuster and K. K. Paliwal. “Bidirectional recurrent neural networks”. In: IEEE
Transactions on Signal Processing 45.11 (Nov. 1997), pp. 2673–2681. issn: 1053-587X.
doi: 10.1109/78.650093.

[56] P. Seetharaman, F. Pishdadian, and B. Pardo. “Music/Voice separation using the 2D
fourier transform”. In: 2017 IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics (WASPAA). Oct. 2017, pp. 36–40. doi: 10.1109/WASPAA.2017.8169990.

[57] Ziqiang Shi et al. “FurcaNet: An end-to-end deep gated convolutional, long short-
term memory, deep neural networks for single channel speech separation”. In: arXiv:1902.00651
[cs, eess] (Feb. 2019). arXiv: 1902.00651. url: http://arxiv.org/abs/1902.00651
(visited on 02/26/2019).

[58] Daniel Stoller, Sebastian Ewert, and Simon Dixon. “Wave-U-Net: A Multi-Scale Neu-
ral Network for End-to-End Audio Source Separation”. In: arXiv:1806.03185 [cs, eess,
stat] (June 2018). arXiv: 1806.03185. url: http://arxiv.org/abs/1806.03185 (visited
on 02/28/2019).

[59] Fabian-Robert Stöter, Antoine Liutkus, and Nobutaka Ito. “The 2018 Signal Separa-
tion Evaluation Campaign”. en. In: Latent Variable Analysis and Signal Separation. Ed.
by Yannick Deville et al. Lecture Notes in Computer Science. Springer International
Publishing, 2018, pp. 293–305. isbn: 978-3-319-93764-9.

[60] N. Takahashi and Y. Mitsufuji. “Multi-Scale multi-band densenets for audio source
separation”. In: 2017 IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA). Oct. 2017, pp. 21–25. doi: 10.1109/WASPAA.2017.8169987.

[61] E. Vincent, R. Gribonval, and C. Fevotte. “Performance measurement in blind audio
source separation”. In: IEEE Transactions on Audio, Speech, and Language Processing
14.4 (July 2006), pp. 1462–1469. issn: 1558-7916. doi: 10.1109/TSA.2005.858005.

http://dx.doi.org/10.1109/TASL.2012.2188515
http://dx.doi.org/10.1109/TASL.2012.2188515
http://dx.doi.org/10.1109/ASPAA.2007.4393012
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1109/WASPAA.2017.8169990
http://arxiv.org/abs/1902.00651
http://arxiv.org/abs/1806.03185
http://dx.doi.org/10.1109/WASPAA.2017.8169987
http://dx.doi.org/10.1109/TSA.2005.858005


Bibliography 73

[62] Pascal Vincent et al. “Extracting and Composing Robust Features with Denoising
Autoencoders”. In: Proceedings of the 25th International Conference on Machine Learning.
ICML ’08. event-place: Helsinki, Finland. New York, NY, USA: ACM, 2008, pp. 1096–
1103. isbn: 978-1-60558-205-4. doi: 10.1145/1390156.1390294. url: http://doi.
acm.org/10.1145/1390156.1390294 (visited on 05/26/2019).

[63] T. Virtanen, J. F. Gemmeke, and B. Raj. “Active-Set Newton Algorithm for Over-
complete Non-Negative Representations of Audio”. In: IEEE Transactions on Audio,
Speech, and Language Processing 21.11 (Nov. 2013), pp. 2277–2289. issn: 1558-7916. doi:
10.1109/TASL.2013.2263144.

[64] J. Volkmann, S. S. Stevens, and E. B. Newman. “A Scale for the Measurement of the
Psychological Magnitude Pitch”. In: The Journal of the Acoustical Society of America
8.3 (Jan. 1937), pp. 208–208. issn: 0001-4966. doi: 10.1121/1.1901999. url: https:
//asa.scitation.org/doi/abs/10.1121/1.1901999 (visited on 05/25/2019).

[65] DeLiang Wang and Guy J. Brown. Computational Auditory Scene Analysis: Principles,
Algorithms, and Applications. Wiley-IEEE Press, 2006. isbn: 978-0-471-74109-1.

[66] Z. Wang, J. Le Roux, and J. R. Hershey. “Multi-Channel Deep Clustering: Discrim-
inative Spectral and Spatial Embeddings for Speaker-Independent Speech Separa-
tion”. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Apr. 2018, pp. 1–5. doi: 10.1109/ICASSP.2018.8461639.

[67] Zhong-Qiu Wang, Jonathan Le Roux, and John R. Hershey. “Alternative Objective
Functions for Deep Clustering”. In: Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2018.

[68] Zhong-Qiu Wang, Ke Tan, and DeLiang Wang. “Deep Learning Based Phase Recon-
struction for Speaker Separation: A Trigonometric Perspective”. In: arXiv:1811.09010
[cs, eess] (Nov. 2018). arXiv: 1811.09010. url: http://arxiv.org/abs/1811.09010
(visited on 02/28/2019).

[69] Zhong-Qiu Wang et al. “End-to-End Speech Separation with Unfolded Iterative
Phase Reconstruction”. In: arXiv:1804.10204 [cs, eess, stat] (Apr. 2018). arXiv: 1804.10204.
url: http://arxiv.org/abs/1804.10204 (visited on 02/25/2019).

[70] Felix Weninger, Johannes Bergmann, and Björn Schuller. “Introducing currennt: The
munich open-source cuda recurrent neural network toolkit”. In: The Journal of Ma-
chine Learning Research 16.1 (2015), pp. 547–551.

[71] Ronald J. Williams and David Zipser. “A Learning Algorithm for Continually Run-
ning Fully Recurrent Neural Networks”. In: Neural Computation 1.2 (June 1989),
pp. 270–280. issn: 0899-7667. doi: 10 . 1162 / neco . 1989 . 1 . 2 . 270. url: https :
//doi.org/10.1162/neco.1989.1.2.270 (visited on 05/26/2019).

http://dx.doi.org/10.1145/1390156.1390294
http://doi.acm.org/10.1145/1390156.1390294
http://doi.acm.org/10.1145/1390156.1390294
http://dx.doi.org/10.1109/TASL.2013.2263144
http://dx.doi.org/10.1121/1.1901999
https://asa.scitation.org/doi/abs/10.1121/1.1901999
https://asa.scitation.org/doi/abs/10.1121/1.1901999
http://dx.doi.org/10.1109/ICASSP.2018.8461639
http://arxiv.org/abs/1811.09010
http://arxiv.org/abs/1804.10204
http://dx.doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270


74 Bibliography

[72] D. Yu et al. “Permutation invariant training of deep models for speaker-independent
multi-talker speech separation”. In: 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Mar. 2017, pp. 241–245. doi: 10.1109/ICASSP.
2017.7952154.

[73] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. “Recurrent Neural Network
Regularization”. In: arXiv:1409.2329 [cs] (Sept. 2014). arXiv: 1409.2329. url: http:
//arxiv.org/abs/1409.2329 (visited on 01/30/2019).

http://dx.doi.org/10.1109/ICASSP.2017.7952154
http://dx.doi.org/10.1109/ICASSP.2017.7952154
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1409.2329

	Front page
	English title page
	Contents
	1 Introduction
	2 Background And Concepts
	2.1 Source Separation
	2.1.1 Multi-Channel Source Separation
	2.1.2 Single-Channel Blind Source Separation
	2.1.3 Signal-To-Noise Ratio And Signal-To-Distortion Ratio

	2.2 Neural Networks
	2.2.1 Recurrent Neural Networks
	2.2.2 Long Short-Term Memory Layers
	2.2.3 Bidirectional RNN
	2.2.4 Convolutional Networks
	2.2.5 Embedding Spaces And Auto-Encoders

	2.3 Clustering
	2.3.1 Agglomerative Clustering
	2.3.2 Divisive Clustering
	2.3.3 Metrics And Criteria
	2.3.4 K-Means

	2.4 Permutation And Output Dimension Mismatch Problem
	2.4.1 Permutation Invariant Training

	2.5 Fourier Transforms, Spectrograms And Scales
	2.5.1 Discrete Time Fourier Transforms
	2.5.2 Short Time Fourier Transforms And Spectrograms
	2.5.3 Frequency Scales And Filter Banks


	3 Analysis
	3.1 Deep clustering: Discriminative embeddings for segmentation and separation
	3.2 Single-Channel Multi-Speaker Separation using Deep Clustering
	3.3 Deep clustering with gated convolutional networks
	3.4 Multi-Channel Deep Clustering: Discriminative Spectral and Spatial Embeddings for Speaker-Independent Speech Separation
	3.5 Deep Clustering And Conventional Networks For Music Separation: Stronger Together
	3.6 Alternative Objective Functions for Deep Clustering
	3.7 End-to-End Speech Separation with Unfolded Iterative Phase Reconstruction
	3.8 TaSNet: Time-Domain Audio Separation Network for Real-Time, Single-Channel Speech Separation
	3.9 FurcaNet: An end-to-end deep gated convolutional, long short-term memory, deep neural networks for single channel speech separation
	3.10 Singing voice separation with deep U-Net convolutional networks
	3.11 Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source Separation
	3.12 Final Problem Specification

	4 Implementation
	4.1 Environment, Libraries And System
	4.1.1 Tensorflow and Keras
	4.1.2 PyTorch

	4.2 Chimera network Implementation
	4.2.1 Tensorflow and Keras Implementation
	4.2.2 PyTorch Implementation

	4.3 Wave-U-Net Implementation
	4.3.1 Model Structure
	4.3.2 Differences

	4.4 HydraNet Implementation
	4.4.1 Concept
	4.4.2 Implementation


	5 Evaluation And Results
	5.1 Chimera Evaluation
	5.1.1 Data Preprocessing
	5.1.2 Training Procedure
	5.1.3 Results

	5.2 Wave-U-Net Evaluation
	5.2.1 Data Preprocessing And Generation
	5.2.2 Training Procedure
	5.2.3 Results

	5.3 HydraNet Evaluation
	5.3.1 Training Procedure
	5.3.2 Results

	5.4 State-Of-The-Art Comparisons

	6 Discussion
	6.1 Main Findings
	6.2 Modified model embedding space
	6.3 Different datasets
	6.4 Data Generation
	6.5 Generated Vocals And Subtracted Vocals

	7 Conclusion
	7.1 Acknowledgements

	8 Future Works
	8.1 Change Generation Methods
	8.2 Single Output For Wave-U-Net And HydraNet
	8.3 Multi-Instrument Training
	8.4 Dual Training With Voices
	8.5 Deep Clustering Network
	8.6 3D Latent Space

	Bibliography

