Author(s)
Term
4. term
Publication year
2012
Submitted on
2012-05-31
Pages
51 pages
Abstract
This thesis explores the popular bag-of- features framework for human action recogni- tion. Different feature detectors and descrip- tors are described and compared. The combination of the Harris3D detector and the HOG/HOF descriptor is chosen for use in the experimental setup. Unsupervised and su- pervised classification methods are compared to show the difference in performance. The supervised algorithm used is a support vector machine, and the unsupervised algorithms are k-means clustering, and affinity propagation, where the latter has not been used before for action recognition. The algorithms are tested on two different datasets. The simple KTH dataset with 6 classes, and the more compli- cated UCF50 with 50 classes. The SVM classification obtains good results on both KTH and UCF50. Of the two unsu- pervised methods, affinity propagation obtains the best performance. SVM outperforms both of the unsupervised algorithms. The strategy used for building the vocabulary, which is a central part of the bag-of-features framework is tested. The results show, that increasing the number of words will slightly increase the classifier performance.
Colophon: This page is part of the AAU Student Projects portal, which is run by Aalborg University. Here, you can find and download publicly available bachelor's theses and master's projects from across the university dating from 2008 onwards. Student projects from before 2008 are available in printed form at Aalborg University Library.
If you have any questions about AAU Student Projects or the research registration, dissemination and analysis at Aalborg University, please feel free to contact the VBN team. You can also find more information in the AAU Student Projects FAQs.