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Abstract:

This thesis explores the popular bag-of-
features framework for human action recogni-
tion. Different feature detectors and descrip-
tors are described and compared.
The combination of the Harris3D detector and
the HOG/HOF descriptor is chosen for use in
the experimental setup. Unsupervised and su-
pervised classification methods are compared
to show the difference in performance. The
supervised algorithm used is a support vector
machine, and the unsupervised algorithms are
k-means clustering, and affinity propagation,
where the latter has not been used before for
action recognition. The algorithms are tested
on two different datasets. The simple KTH
dataset with 6 classes, and the more compli-
cated UCF50 with 50 classes.
The SVM classification obtains good results
on both KTH and UCF50. Of the two unsu-
pervised methods, affinity propagation obtains
the best performance. SVM outperforms both
of the unsupervised algorithms. The strategy
used for building the vocabulary, which is a
central part of the bag-of-features framework
is tested. The results show, that increasing
the number of words will slightly increase the
classifier performance.
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Chapter 1

Introduction

This thesis addresses the task of human action recognition. Action recognition can be described
as recognizing what is going on in a video using a computer algorithm. Describing the actions
in a video have a large number of applications, and as the amount of video data grows, and our
technology becomes more capable, the demand for action recognition grows. Historically, action
recognition has mainly been a human task, but automating the process, or parts of it, could
provide a number of advantages.

(a) Facial expression classifica-
tion. [36]

(b) Soccer juggling. UCF50 dataset. [25] (c) Detection of unusual crowd
activity. [26]

Figure 1.1: Examples of different applications and abstractions of human action recognition.

The number of surveillance cameras gathering footage of areas with human activity is increasing
each day. The cameras are used by e.g. law enforcement to monitor cities for criminal activity.
The large number of cameras in a big city requires many people to monitor the cameras, with an
increasing chance of missing important events in the videos. A computer vision based solution
would make it possible to monitor most, if not all, video sources at the same time to look for
events that requires further human interaction. This would make it possible for a small team of
people to monitor a whole city. By configuring the system to look for certain events, it can alert
the user if one of these events occur so he can take further action. Figure 1.1c shows an example
of action recognition research in the area of surveillance. The proposed application is to detect
abnormal crowd activity such as a panic, where people flee from a scene as seen in figure 1.1c.
It is easier than ever to capture video with e.g. a smartphone and upload it to the Internet. The
popular video sharing site Youtube.com receives one hour of new video uploaded every second
[39]. The person uploading the video has the option to describe the content of the video with a
description and tags, which can later be used to locate the video in a search. It is then possible
to locate a video that contains a person playing soccer, as in figure 1.1b, if this has been input

7



CHAPTER 1. INTRODUCTION

Figure 1.2: Children playing a game controlled via motion capture by Microsoft Kinect [21].

in the title and/or description of the video. But what if a user is interested in searching for all
goals or free kicks in a soccer match between two teams? It is not common for a description
of a video to include this many details because the user who uploaded the video has to input
it manually. This kind of detailed search could be possible if the video had been annotated by
an action recognition system that recognizes such events. It could even be possible to locate the
exact time instant where a goal happens. Using action recognition for video categorization and
annotation will enable us to make better use of the vast amounts of video data in ways that are
not possible today.
The progress in video capture and processing hardware has also spawned products like the Mi-
crosoft Kinect, that acts as a motion capture controller for a gaming console. The Kinect combines
action, gesture and voice recognition for a total interactive experience, as seen in figure 1.2, with-
out the use of an old-fashioned joystick. The system is robust enough to work in a normal living
room with varying lighting and background clutter. The idea of gesture control is extending to
devices such as televisions, where we soon will be able to change channels or lower the volume
with the use of gestures.
Action recognition remains a challenging problem, and so far only the tip of the iceberg has been
revealed. Most of the existing solutions only work for simple or synthetic scenes which have been
created for the purpose of testing action recognition algorithms. The best solutions still require
large amounts of supervised training data, which is expensive to obtain. This leads us to the
following initiating problem:

• What is the state of the art in human action recognition, and what is the best
way to take advantage of the large number of unlabelled videos?
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Chapter 2

Analysis

This section describes the different methods and algorithms used for Human Action Recognition.
Different datasets are presented to show that action recognition has evolved from classifying simple
synthetic datasets to new challenging realistic datasets. The main frameworks and models used to
represent an action recognition problem are presented in section 2.3 along with the bag-of-features
framework which is the one used in this thesis. Finally a problem statement is presented to give
a concise description of the contribution and scope of this thesis.

2.1 Human Action Recognition

Initialisation Tracking Pose 
Estimation Recognition

Figure 2.1: Taxonomy for describing the parts of a Human Motion Capture systems, introduced
by Moeslund and Granum [22].

The area of human action recognition is closely related to other lines of research within a common
field known as Human Motion Capture. There are different ways of structuring the different
disciplines of human motion capture, and defining where one ends and another begins. One
notable way of structuring the problem, is the taxonomy introduced by Moeslund and Granum
[22]. The same taxonomy is later reused by Moeslund et al. [23] and has also been adopted by
many other authors. Figure 2.1 shows the structure, which consists of: initialisation, tracking,
pose estimation and recognition. First the system is initialised. Next, the subject is then tracked
to obtain the position in the scene, which implies a figure-ground segmentation to separate the
subject from the background. Pose estimation might be part of the output or be used as input
to the recognition process. Recognition classifies the actions performed by the subject. A system
does not need to include all four processes, and some processes might be implicitly performed
by one of the subsequent processes. Example of this can be found in action recognition systems
described in the following sections, where actions are classified in a clip, but the position and pose
of the actor is unknown.
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CHAPTER 2. ANALYSIS

2.2 Datasets

In this section four action recognition datasets are presented: Weizmann, KTH, Hollywood and
UCF50. Weizmann and KTH are both scripted datasets, where the actors have been told to
perform a specific action in a controlled setting with only minor changes in viewpoint, background
and illumination. This makes them easy to classify, and every state of the art algorithm is able to
get over 90% average precision, which makes these datasets less interesting to use as a benchmark.
Developing an algorithm that solves these datasets does not necessarily mean that the algorithm
will be good at solving the more advanced datasets because the challenges there are different.
Hollywood and UCF50 have been sampled from existing video, that was not created for the
purpose of action recognition. This provides a more realistic environment but also much more
challenging. The huge differences in the videos mean that an algorithm have very few conditions
to rely on. It has to be adaptable to different viewpoints, cluttered backgrounds, multiple actors,
occlusions, etc. These conditions makes it much harder to obtain good results, especially for
algorithms that depend on e. g. being able to get a good segmentation.

2.2.1 Weizmann
The Weizmann dataset, figure 2.2 [1], contains 10 different actions: walk, run, jump, gallop
sideways, bend, one-hand wave, two-hands wave, jump in place, jumping jack and skip. Each
action is performed by 10 different actors resulting in a total of 100 clips. The viewpoint and
background are static and equal for all clips.
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Figure 2.2: Example frames from Weizmann dataset.

2.2.2 KTH
KTH, figure 2.3 [32], contains 6 different actions: walking, jogging, running, boxing, hand waving
and hand clapping. The actions are performed by 25 different actors in four different scenarios:
outdoors, outdoors with zooming, outdoors with different clothing and indoors. Compared to
Weizmann, KTH has considerable amounts of intraclass differences. There are differences in
duration and somewhat in viewpoint.

2.2.3 Hollywood
The original Hollywood dataset, figure 2.4 [16], contains 8 different actions. It has later been
extended with 4 additional actions [20]. The actions are: answer phone, get out of car, handshake,
hug, kiss, sit down, sit up, stand up, drive car, eat, fight, run. There are approximately 150
samples per class. All actions are taken from 69 different Hollywood movies, resulting in huge
variety between viewpoint, background and action performance.
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Figure 2.3: Example frames from KTH dataset.

Figure 2.4: Example frames from Hollywood dataset.

2.2.4 UCF50
UCF50 [25] is an extension of the UCF Youtube dataset. The dataset has 50 different actions
having at least 100 clips for each action for a total of 6681 clips. The actions are all user-submitted
videos from Youtube.com, and by that nature very different from each other. Many of the videos
include large amounts of camera motion, illumination changes and cluttered backgrounds.
The actions in UCF50 are: baseball pitch, basketball shooting, bench press, biking, biking, bil-
liards shot,breaststroke, clean and jerk, diving, drumming, fencing, golf swing, playing guitar,
high jump, horse race, horse riding, hula hoop, javelin throw, juggling balls, jump rope, jumping
jack, kayaking, Lunges, military parade, mixing batter, nun chucks, playing piano, pizza tossing,
pole vault, pommel horse, pull ups, punch, push ups, rock climbing indoor, rope climbing, row-
ing, salsa spins, skate boarding, skiing, skijet, soccer juggling, swing, playing tabla, taichi, tennis
swing, trampoline jumping, playing violin, volleyball spiking, walking with a dog, and yo yo.

2.3 Action Recognition Methods

This section provides an overview of the different approaches to action recognition, taken from
various surveys [22, 23, 27, 37, 41].

2.3.1 Body models
One of the most intuitive approaches to action recognition is body models. To recognize an action
performed by a human, the different body parts are detected according to a body model. The
model constraints how one body part is positioned compared to the others, e. g. a foot can not
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CHAPTER 2. ANALYSIS

Figure 2.5: Example frames from UCF50 dataset.

be connected to an arm, and the angle between the upper arm and forearm can only be within
the range that is physically possible with the human join configuration. The recognition works
by comparing the movement performed by the body model extracted from a video with existing
ground truth body models. The ground truth body models can be generated synthetically or taken
from motion capture of a human performing the action in a controlled setting, where markers or
other remedies are used to obtain a ground truth body model. There are two common approaches
in the use of body models: recognition by reconstruction and direct recognition.
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(a) Moving Light Display(MLD).
[12]
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(b) Body model based on rectan-
gular patches. [28]

Figure 2.6: Examples of body models.

Recognition by reconstruction is a 3D approach, where the motion of the body is captured and a
3D model of the body is estimated. This is a challenging approach because of the large number
of degrees-of-freedoms of the human body. Marr and Nishihara [19] proposed a body model
consisting of cylindrical primitives . Using such a model is called a top down approach. This
refers to the fact that the 3D body models are found by matching 2D projections sampled in
the search space of joint configurations. The opposite method is called bottom-up and works by
tracking body parts in 2D and subsequently lifting the 2D model into 3D. An example of the

12



2.3. ACTION RECOGNITION METHODS

bottom-up approach is seen in figure 2.6b, where the body parts are tracked using rectangular
patches and lifted into 3D using an orthographic camera model.
Direct recognition works on a 2D model without lifting this model into 3D. Many different 2D
models have been investigated. Some models consist of anatomical landmarks like joint positions.
This was pioneered by Johansson [12], who showed that humans can recognize actions merely
from the motion of a few moving light displays(MLD) attached to the human body as seen in
figure 2.6a. Other models use stick figures which can be detected from a space-time volume.

2.3.2 Holistic approaches

The holistic approach, also referred to as global model or image model, encodes the whole subject
as one entity. This often involves locating a ROI via segmentation and/or tracking. Common
representations are silhouettes, edges or optical flow. This representation can be much simpler
and faster to compute than body model, but still be as discriminative in problems consisting of a
large number of classes.
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(a) MEI and MHI for 3 different ballet actions.
[2]

(b) Space-time shapes. [1]

Figure 2.7: Examples of holistic methods.

Silhouettes have proved to be a useful global representation of a subject. The silhouette can
be found by background subtraction, and can be encoded in a contour or by the area inside.
Silhouettes are insensitive to color, texture and contrast changes, but have problems with self-
occlusion and depend on robust segmentation. An early examples of the use of silhouettes, extracts
silhouettes from each frame of the video which results in a motion energy image(MEI). A motion
histogram image(MHI) is also computed which is function of the history at that pixel over time
as seen in figure 2.7a. Silhouettes can also be combined over time to form space-time shapes as
shown in figure 2.7b.
Other holistic approaches are based on flow and gradients. This works by extracting optical flow
or gradients within the ROI or in the entire image. A grid is often used to divide the extraction
area to partly overcome partial occlusions and changes in viewpoint. This grid can be defined
in different ways. Danafar and Gheissari [6] divides the ROI into horizontal slices corresponding
approximately to head, body and leg, and use optical flow extracted in these areas. Histograms
of oriented gradients(HOG) have also been used to represent the ROI by a number of histograms
that consists of gradient directions.
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2.3.3 Local features
Local features describes the action in a video as a set of local descriptors instead of one global
descriptor as in the global approach. These local descriptors are combined in one representation
of the video, which can be done in different ways to either ignore, or maintain the spatial and/or
temporal relationship between the features. The features can either be extracted densely or at
spatio-temporal interest points(STIPs), which are points that contain information important to
determining the action in the video.
STIP detectors usually works by evaluating the response of one or more filters applied to the video.
Laptev [14] extended the Harris corner detector to 3D and detects STIPs by finding local maxima
of the extended corner function. Dollár et al. [8] uses a Gabor filter in the temporal dimension,
and overcomes the problem of too few interest points that predecessors had. Rapantzikos et al.
[29] apply discrete wavelet transform in spatial and temporal direction of the video, and uses a
filtered version to detect salient regions. Willems et al. [38] identifies saliency as the determinant
of a 3D Hessian matrix. Chakraborty et al. [3] filters out points that belong to the background
using a surround suppression measure. The final points are selected based on point matching and
Gabor filtering in the temporal direction.

of the cuboid over multiple scales and locations in both space and
time. In related work by Scovanner et al. [126], the SIFT descriptor
[79] is extended to 3D. Wang et al. [151] compared local descrip-
tors and found that, in general, a combination of image gradient
and flow information resulted in the best performance.

Several approaches combine interest point detection and the
calculation of local descriptors in a feed-forward framework. For
example, Jhuang et al. [58] use several stages to ensure invariance
to a number of factors. Their approach is motivated by the human
visual system. At the lowest level, Gabor filters are applied to dense
flow vectors, followed by a local max operation. Then the re-
sponses are converted to a higher level using stored prototypes
and a global max operation is applied. A second matching stage
with prototypes results in the final representation. The work in
[96] is similar in concept, but uses different window settings.
Schindler and Van Gool [124] extend the work by Jhuang et al.
[58] by combining both shape and flow responses. Escobar et al.
[31] use motion-sensitive responses and also consider interactions
between cells, which allows them to model more complex proper-
ties such as motion contrasts.

Comparing sets of local descriptors is not straightforward due to
the possibly different number and the usually high dimensionality
of the descriptors. Therefore, often a codebook is generated by
clustering patches and selecting either cluster centers or the clos-
est patches as codewords. A local descriptor is described as a code-
word contribution. A frame or sequence can be represented as a
bag-of-words, a histogram of codeword frequencies (e.g. [95,125]).

2.2.3. Local grid-based representations
Similar to holistic approaches, described in Section 2.1.1, grids

can be used to bin the patches spatially or temporally. Compared
to the bag-of-words approach, using a grid ensures that spatial
information is maintained to some degree.

In the spatial domain, _Ikizler and Duygulu [56] sample oriented
rectangular patches, which they bin into a grid. Each cell has an
associated histogram that represents the distribution of rectangle
orientations. Zhao and Elgammal [180] bin local descriptors
around interest points in a histogram with different levels of
granularity. Patches are weighted according to their temporal dis-
tance to the current frame.

Nowozin et al. [98] use a temporal instead of a spatial grid. The
cells overlap, which allows them to overcome small variations in
performance. Observations are described as PCA-reduced vectors
around extracted interest points, mapped onto codebook indices.

Laptev and Pérez [74] bin histograms of oriented gradients and
flow, extracted at interest points, into a spatio-temporal grid. This
grid spans the volume that is determined based on the position and
size of a detected head. The distribution of these histograms is
determined for every spatio-temporal cell in the grid. Three differ-
ent block types are used to form the new feature set. These types
correspond to a single cell, a concatenation of two temporally
neighboring cells and a concatenation of spatially neighboring
cells. A subset of all possible blocks within the grid is selected
using AdaBoost. A larger number of grid types, with different spa-
tial and temporal divisions and overlap settings, is evaluated in
[73]. Flow descriptors from [27] are used by Fathi and Mori [35],
who select a discriminative set of low-level flow features within
space–time cells which form an overlapping grid. In a subsequent
step, a set of these mid-level features is selected using the Ada-
Boost algorithm. In the work by Bregonzio et al. [13], no local im-
age descriptor are calculated. Rather, they look at the number of
interest points within cells of a spatio-temporal grid with different
scales. This approach is computationally efficient but depends on
the number and relevancy of the interest points.

2.2.4. Correlations between local descriptors
Grid-based representations model spatial and temporal rela-

tions between local descriptors to some extent. However, they
are often redundant and contain uninformative features. In this
section, we describe approaches that exploit correlations between
local descriptors for selection or the construction of higher-level
descriptors.

Scovanner et al. [126] construct a word co-occurrence matrix,
and iteratively merge words with similar co-occurrences until
the difference between all pairs of words is above a specified
threshold. This leads to a reduced codebook size and similar
actions are likely to generate more similar distributions of code-
words. Similar in concept is the work by Liu et al. [76], who use
a combination of the space–time features and spin images, which
globally describe an STV. A co-occurrence matrix of the features
and the action videos is constructed. The matrix is decomposed
into eigenvectors and subsequently projected onto a lower-dimen-
sional space. This embedding can be seen as feature-level fusion.
Instead of determining pairs of correlated codewords, Patron-Perez
and Reid [106] approximate the full joint distribution of features
using first-order dependencies. Features are binary variables that
indicate the presence of a codeword. A maximum spanning tree
is formed by analyzing a graph between all pairs of features. The
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Fig. 3. Extraction of space–time cuboids at interest points from similar actions performed by different persons (reprinted from [71], ! Elsevier, 2007).
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Figure 2.8: Extraction of space–time cuboids at interest points from similar actions performed by
different persons [15].

The feature descriptor should capture the important information in the area around a STIP and
represent it in a sparse and discriminative way. The size of the volume or patch used to compute
the descriptor is usually determined by the detection scale. Examples of volumes extracted at
interest points is seen in figure 2.8. Schuldt et al. [32] uses patches based on normalized derivatives
with respect to space and time. Similar to the global approach, descriptors can also be grid-based
like HOG [5]. Many of these grid-based methods have also been extended to 3D. ESURF features
is an extension of the SURF descriptor to 3D introduced in [38]. HOG is extended to HOG3D by
Kläser et al. [13]. A 3D version of the popular 2D descriptor SIFT was introduced by Scovanner
et al. [33].
The set of feature descriptors in a video needs to be combined to form a representation that
makes is possible to compare videos to each other. A popular representation is the bag-of-features
representation [32], where a vocabulary is generated by clustering feature descriptors from all
possible classes into a number of words. Each video is then represented by a histogram that
counts the number of occurrences of each possible word in the video. The histograms can then be
used to train a classifier, like e. g. a support vector machine(SVM).

2.3.4 Un- and semisupervised approaches
The amounts of unlabelled data is increasing and there is a high cost of labelling the large amounts
of data needed for typical machine learning applications. This makes methods that require little or
no supervised data become attractive. Supervised methods have so far received far more attention,
but the interests in un- and semisupervised methods is growing.
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2.4. FRAMEWORK

Niebles et al. [24] proposed unsupervised classification of bag-of-features histogram using latent
topic models such as the probabilistic Latent Semantic Analysis(pLSA) model and Latent Dirichlet
Allocation (LDA). Savarese et al. [31] replaced bag-of-features with spatio-temporal correllograms
to better describe the temporal pattern of the features. Dueck and Frey [9] uses affinity prop-
agation [10] for unsupervised learning of image categories, obtaining better results than using
k-means clustering.
One of the most simple and intuitive methods for semisupervised learning is self-training. In
self-training a supervised classifier is trained on available the labelled samples. The unlabelled
points are then classified using this weakly trained classifier, and the most confident points are
used to retrain the classifier together with the labelled points. This is repeated until all points are
used. Rosenberg et al. [30] used self-training for object detection. A common way of developing
a semisupervised algorithm is to extend an unsupervised algorithm to respect constraints. One
notable example is constrained expectation maximization [34].

2.4 Framework
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Figure 2.9: Human action recognition framework.

This section describes the action recognition framework that is used in this thesis. The framework
focuses on a subset of the methods presented in the former sections. The representation used is
local features in a bag of words framework, because it is a promising direction for describing the
more advanced datasets like UCF50. Supervised and unsupervised classification will be compared,
to see how training data affects the recognition rate. There has not been many attempts to do
unsupervised classification within this framework, so this will be explored in this thesis by a test
of the clustering algorithm: affinity propagation that, to our knowledge, has not been used before
in action recognition.
The framework consists of four main components: feature detector, feature descriptor, video
representation and classification. The different parts of this framework can be replaced with
different algorithms to form different combinations and thereby produce different results.
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CHAPTER 2. ANALYSIS

Feature detector

The first step is to detect interest points in the video, which are the positions where the feature
descriptors are computed. These points should ideally be located at places in the video where the
action is taking place.

Feature descriptor

The feature descriptor encodes the information in the area of an interest point into a representation
suited for representing the action. The feature descriptor should ideally be invariant to changes
like orientation, scale and illumination to be able to match features across different kinds of videos.

Video representation

The set of local feature descriptors in a video has to be combined into a representation that enables
the comparison with other videos. The most popular method is the bag-of-features representation,
where the spatial and temporal locations of the features are ignored. Other methods tries to take
the relationship between the features into account.

Classification

The classification step can be: unsupervised, semi-supervised or supervised.
In the unsupervised approach, we assume that we do not know the labels of any of the videos.
The videos are then grouped together based on their similarities. The number of groups used for
unsupervised learning can be given as part of the problem, or can be dynamic where different
partitions of videos corresponds to different semantically meanings.
In semi-supervised classification there is some prior knowledge about the videos, which can consist
of a few labelled samples, or e. g. a constraint saying that sample a and b are from different classes
without giving the label. Semi-supervised learning is not explored further in this thesis.
Supervised classification uses a large number of training samples to train a classifier.

2.5 Problem Statement

The analysis described different approaches to action recognition, and a specific framework was
chosen to examine further. The rest of this thesis tries to answer the following problem statement:

• What are the pros and cons of the different components in the bag-of-features
framework, and which combination yields the best performance?

– How does unsupervised clustering algorithms compare to supervised classification?
– How does the performance of the methods change when the complexity of the dataset

change?
– What is the best strategy for bag-of-features vocabulary building?

2.5.1 Scope of this thesis

This thesis compares methods within the beforementioned framework, and does then not consider
all other possible action recognition frameworks beyond the brief introduction given in section 2.3.
All video clips are presumed to contain exactly one action being performed, i. e. the described
framework does not worry about action detection, multiple actors or multiple actions in the same
clip.

16



2.6. THESIS OUTLINE

2.6 Thesis outline

The rest of this thesis seeks to answer the questions asked in the above problem statement.
Notable examples of each component of the bag-of-features framework is described. Section 3
and 4 presents feature detectors and descriptors, respectively. A comparison of detector and
descriptor combinations is given in section 5. The bag of words representation is described in
section 6. Supervised and unsupervised classification is presented in section 7 and 8, respectively.
Finally the results of classification using various combinations of methods are presented in 9.
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Chapter 3

Feature Detectors

This section describes in detail some of the more notable local feature detectors. A feature detector
finds the points in the video where features are going to be extracted. These points are known as
Spatio-Temporal Interest Points(STIPs). A STIP is a point in space and time (x, y, t) that has
high saliency. High saliency means that there are high amounts of changes in the neighbourhood
of the point. In the spatial domain this shows as large contrast changes, yielding a Spatial Interest
Point(SIP). Saliency in the temporal domain occurs when a point changes over time, and when
this change occurs at a SIP the point is then a STIP.
The motivation for locating areas in the video having high saliency, is that they must be the
important areas for describing the action in the scene. This can be confirmed by observing a
video of a person running. The difference in appearance between the person and the background
will result in high spatial saliency all around the contour of the person. The fact that the person
is running results in high temporal saliency at the same points, thus giving rise to STIPs.

 

 

Good points

Bad points

Figure 3.1: Example of good and bad detected feature points. Video is class “running” from KTH
dataset.

In the human action recognition, the detected STIPs should ideally be located on the actor
performing the action that the video represents. The STIPs on a human body will represent
action primitives such as: “moving leg” or “lifting arm”, and it is the combinations of the STIPs
detected in a video that discriminates one video from another.
To achieve good discrimination between classes, it is therefore desirable to maximize the amount
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CHAPTER 3. FEATURE DETECTORS

of good STIPs, i. e. STIPs on the actors, versus bad STIPs, i. e. STIPs on the background or on
motion that does not represent the action in the video. Figure 3.1 shows a frame of detected
STIPs of “person running” from the KTH dataset. The detector has detected three points on the
background, which will not add any useful information about the action.

3.1 Scale space

In the more challenging datasets, there can be large intraclass differences between videos. Videos
have different camera viewpoint, scene composition, resolution, etc. This results in that the same
object, e. g. a human being, in one video can have the size of hundreds of pixels, while a human
in another video only takes up about 50 pixels of space. To be able to detect similar features
in these videos, STIPs are detected in different temporal and spatial scales. These scales are
represented as a convolution with a Gaussian blur function, where higher values of the variances
σ2, τ2, represents larger scales. This has intuitive meaning because the more the video is blurred
the more small details are lost, leaving only larger scale details behind. A video f(x, y, t) is then
represented by the scale-space

L(x, y, t;σ2, τ2) = f ∗ g(·;σ2
l , τ

2
l ) (3.1)

where g is the spatio-temporal Gaussian kernel

g(x, y, t;σ2
l , τ

2
l ) = exp(−(x2 + y2)/2σ2

l − t2/2τ2
l )√

(2π)3σ4
l τ

2
l

(3.2)

having spatial variance σ2
l and temporal variance τ2

l . Figure 3.2 shows the scale space of two
different videos from the same class: “Horse race”. In figure 3.2a, b and c the camera is close to
the race, while in 3.2d, e and f it is further away. This means that the number of features found
on the horse and rider will be larger, and represent smaller details in the close up video than the
one with distance. Scale space representation can compensate for this as the blur removes the
details. The features in 3.2c can then be comparable to the ones in 3.2d allowing the videos to
represent the same class even though their view point differs.

(a) Original (b) σ2
l = 4 (c) σ2

l = 16

(d) Original (e) σ2
l = 4 (f) σ2

l = 16

Figure 3.2: Parts of scale space representation of 2 videos from class: “Horse race” from UCF50.
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3.2. HARRIS

There are multiple approaches to find the best points across scales. The trivial method is to apply
a multi-scale approach where the resulting points are the collection of all points from all scales.
Another way is to try to estimate the best set of points across scales.

3.2 Harris

The Harris corner detector is a well-known algorithm for detection of salient regions in images
[11]. The detector operates on a windowed second moment matrix

µ = g(·;σ2
i ) ∗

(
L2
x LxLy

LxLy L2
y

)
(3.3)

where Lξ are derivatives of the image scale space

Lξ(x, y;σ2
l ) = ∂L(x, y;σ2

l )
∂ξ

(3.4)

and σi is the variance used in the gaussian kernel that serves as a window function. It is also
called the integration scale. The eigenvalues of µ determines if there is a corner, an edge or a
“flat” area. If λ1 and λ2 both are large the point is a corner. If λ1 >> λ2 or λ2 >> λ1 the point
is an edge, and if both eigenvalues are small the area is “flat”.
Since the computation of eigenvalues is expensive, the corners are detected as local maxima of
the corner function

H = det(µ)− ktrace2(µ) = λ1λ2 − k(λ1 + λ2)2 (3.5)

3.3 Harris3D

Laptev [14] extended the idea of the Harris corner detector to three dimensions. The second-
moment matrix is now spatio-temporal

µ = g(·;σ2
i , τ

2
i ) ∗

 L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 (3.6)

and the gaussian window function is now spatio-temporal having temporal variance τi. The corner
function becomes

H = det(µ)− ktrace3(µ) = λ1λ2λ3 − k(λ1 + λ2 + λ3)3 (3.7)

The implementation of the Laptev detector used in this thesis is the one provided on his webpage
which also bundles the feature extractor for HOG/HOF features. The original algorithm [14]
uses scale selection in space-time [17], but the newer implementation used in this thesis uses a
multi-scale approach.

3.4 Cuboid detector

Dollár et al. [8] reports that the Harris3D detector in many cases does not detect enough features
to perform well. The Cuboid detector is consequently tuned in a way that results in more STIPs
than Harris3D for the same videos. It is sensitive to periodic motions which occur often in action
videos. The response function is

R = (f ∗ g(·, σ2
l ) ∗ hev)2 + (f ∗ g(·, σ2

l ) ∗ hod)2 (3.8)

where hev and hod are the quadrature pair of one dimensional Gabor Filters, which are applied
temporally and g is two dimensional Gaussian function applied spatially.
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CHAPTER 3. FEATURE DETECTORS

3.5 Selective STIP

Selective STIP [3] tries to combine the best of existing approaches with a novel way of point
suppression to strengthen the quality of detected STIPs. Instead of computing a response in
space and time simultaneously, the algorithm starts out with a simple detection of Spatial Interest
Points(SIPs) using Harris. For each interest point, an inhibition term is computed. The idea
behind the inhibition term is that points belonging to the background follow a particular geometric
pattern. For this purpose, a gradient weight factor is introduced

∆Θ,σ(x, y, x− u, y − v) = |cos(Θσ(x, y)−Θσ(x− u, y − v))| (3.9)

where ∆Θ,σ(x, y) is the image gradient and u and v is the size of the mask. A suppression term
is then defined as the weighted sum of gradient weights in the suppression surround of that point

tα(x, y) =
∫ ∫

Ω
Cσ(x− u, y − v)×∆Θ,σ(x, y, x− u, y − v)dudv (3.10)

where Ω denotes the image coordinate domain. The resulting measure of corner strength, is the
difference between original Harris corner strength Cσ(x, y) and the suppression term

Cσ(x, y)− αtσ(x, y) (3.11)

where the factor α controls the amount of suppression.
Scale selection is then applied to the remaining points in the same way as the original Harris3D[17],
and the n best SIPs are kept as the final set of suppressed SIPs.
The SIPs are then temporally constrained by point matching and Gabor filtering. The points are
matched between two frames n and n − 1, and matching points are removed since static points
do not contribute to any motion information. The final points are selected based on the Gabor
response at their locations. The resulting set of STIPs are usually sparser having a higher number
of STIPs on the actors in the scene.

3.6 Dense Sampling

Instead of detecting feature points, feature points can be sampled uniformly over the whole frame
at every time instant in the video. The points are often distributed in a way the results in a
certain amount of both spatial and temporal overlap to be sure to capture all the information in
the video. Dense sampling results in massive amounts of information and comes close to the raw
pixel representation of the video. The amounts of bad features that dense sampling includes is
outweighed by the fact that it does not miss any information.
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Chapter 4

Feature Descriptors

Feature descriptors represents the underlying pixels in a way that maximizes classification perfor-
mance and gives a sparse representation. The descriptors should ideally be invariant to operations
like scale, rotation and illumination changes. This invariance enables descriptors to be matched
across videos which have differences in these parameters.
The descriptors are local, meaning that they are extracted in a predefined area around the detected
STIPs. This area is often proportional to the scale where the STIP was detected. The descriptors

(a) Optical Flow (b) Gradient

Figure 4.1: Most significant optical flow and gradient and gradient vectors. Action is “handwav-
ing” from KTH dataset.

are often based on gradients or optical flow, because these representations emphasize the parts in
the video where changes occur. Figure 4.1 shows an example of optical flow and spatial gradients
in a action video. The highest values are located on the actor, and the optical flow is concentrated
around the arms which makes sense because the action is “handwaving”.
A popular way of constructing motion feature descriptors, is to extend an existing spatial feature
descriptor to account for the temporal domain as well. Histograms of Oriented Gradients(HOG) is
one example of this. The 2D descriptor HOG is extended to 3D in two different ways: HOG/HOF
and HOG3D.
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CHAPTER 4. FEATURE DESCRIPTORS

4.1 Histograms of Oriented Gradients

Histograms of Oriented Gradients [5] is a popular 2D descriptor originally developed for person
detection. The important components of the detector are shown in figure 4.2. A HOG descriptor
is computed using a block consisting of a grid of cells where each cell again consists of a grid of
pixels. The number of pixels in a cell and number of cells in a block can be varied. The structure
performing best according to the original paper is 3× 3 cells with 6× 6 pixels.

Block
Cell

0 - 180

Gradient 
histogram

HOG 
Discriptor

Figure 4.2: Block diagram of HOG method.

For each cell in the block, a histogram of the gradients in the pixels is computed. The histogram
has 9 bins and a range of either 0-180◦or 0-360◦, where the former is known as unsigned and the
latter as signed. Each gradient votes for the bin corresponding to the gradient direction, with a
vote size corresponding to the gradient magnitude.
Finally, each block is concatenated into a vector v and normalized by its L2 norm

vnorm = v√
||v||22 + ε2

(4.1)

where ε is a small constant to prevent division by zero.
The HOG descriptor is very similar to the descriptor used in SIFT [18]. The difference is that
that the SIFT descriptor is rotated according to the orientation of the interest point.

4.2 HOG/HOF

HOG/HOF is the combination of histograms of oriented gradients with histograms of optical flow.
HOF is computed the same way as HOG but with gradients replaced by optical flow. In [16],
HOG is extended to include temporal information, by turning the 2D block in HOG into a 3D
volume spanning (x, y, t). This volume is then divided into cuboids that corresponds to cells. The
sizes of the volume is determined by the detection scale

∆x,∆y = 2kσl
∆t = 2kτl
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4.3. HOG3D

making volumes larger for larger scales.

4.3 HOG3D

changes. We base our descriptor on gradient orientations, as those are robust to changes
in illumination [6]. This also goes along with the works of Lowe [13] and Dalal et al. [3].

Laptev and Lindeberg [9] investigated single- and multi-scale N-jets, histograms of
optical flow, and histograms of gradients as local descriptors for video sequences. Best
performance has been obtained with optical flow and spatio-temporal gradients. Instead
of a direct quantization of the gradient orientations, however, each component of the
gradient vector was quantized separately. In later work, Laptev et al. [10, 11] applied
a coarse quantization to gradient orientations. However, as only spatial gradients have
been used, histogram features based on optical flow were employed in order to capture
the temporal information. The computation of optical flow is rather expensive and results
depend on the choice of regularization method [1]. Therefore, we base our descriptor on
pure spatio-temporal 3D gradients which are robust and cheap to compute. We perform
orientation quantization with up to 20 bins by using regular polyhedrons. Furthermore,
we propose integral histograms for memory-efficient computation of features at arbitrary
spatial and temporal scales.

An extension of the SIFT descriptor [13] to 3D was proposed by Scovanner et al. [17].
For a given cuboid, spatio-temporal gradients are computed for each pixel. All pixels vote
into a Nx ⇥Ny ⇥Nt grid of histograms of oriented gradients. For orientation quantization,
gradients are represented in polar coordinates f ,y that are divided into a 8⇥4 histogram
by meridians and parallels. This leads to problems due to singularities at the poles since
bins get progressively smaller. We avoid the problem of singularities by employing reg-
ular polyhedrons and use their homogeneously distributed faces as histogram bins. Ef-
ficient histogram computation is then done by projecting gradient vectors onto the axes
running through the center of the polyhedron and the face centers.

2 Spatio-temporal descriptor
Local descriptors are used to describe a local fragment in an image or a video. Usually,
local regions are determined first by using an interest point detector or by dense sampling

Figure 1: Overview of the descriptor computation; (a) the support region around a point
of interest is divided into a grid of gradient orientation histograms; (b) each histogram is
computed over a grid of mean gradients; (c) each gradient orientation is quantized using
regular polyhedrons; (d) each mean gradient is computed using integral videos.

Figure 4.3: HOG3D Block diagram. [13]

The former approach of using HOG as a spatio-temporal feature involved computing gradients
in cuboids instead of in cells, but the gradient directions are still two-dimensional. This makes
them unable to capture the temporal information in the video, which is why the addition of HOF
significantly improves the results.
HOG3D [13] changes the underlying approach by considering the three dimensional gradient
instead of the 2D gradient. The gradient is computed in three dimensions, and histograms are
quantized into polyhedrons. This elegant way of quantization is intuitive if we look at the standard
way of quantizing 2D gradient orientations by approximation of a circle with a polygon. Each
side of the polygon corresponds then to a histogram bin. By extending this to 3D the polygon
becomes a polyhedron. The polyhedron used is an icosahedron which has 20 sides, thus resulting
in a 20 bin histogram of 3d gradient directions. The final descriptor is obtained by concatenation
of histograms into a vector, and normalization by the L2 norm.
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Chapter 5

Feature comparison

There are many different combinations of detector and descriptor that can be used in the frame-
work, but which combination is the best? Wang et al. [35] tries to answer this question in a thor-
ough comparison of detectors and descriptors. The detectors compared are: Harris3D, Cuboid,
Hessian and Dense sampling. The descriptors used are HOG/HOF, HOG3D and ESURF. All
different combinations of detector and descriptor are tested, to find the combination the yields
the highest precision. The testing framework used, is the same as described in section 2.4, where
the videos are represented using bag-of-features and classified using a non-linear support vector
machine. Three different datasets are used: KTH, UCF sports and Hollywood2, to make sure
that a results are not only achievable in a certain kind of videos.

5.1 Results

Table 5.1 shows the results for the KTH dataset. Harris3D is the best performing detector, and
HOF is the best descriptor with the combination of the two gives the highest accuracy of 92.1%.
The detectors outperform dense sampling in this dataset, and this could be explained by the
simplicity of the dataset. The lack of camera movement and background clutter makes it less
likely for the detectors to detect STIPs on the background, while the dense sampling will always
include the background, which in KTH does not provide any valuable information about the
action.

HOG3D HOG/HOF HOG HOF Cuboids ESURF
Harris3D 89.0% 91.8% 80.9% 92.1% - -
Cuboids 90.0% 88.7% 82.3% 88.2% 89.1% -
Hessian 84.6% 88.7% 77.7% 88.6% - 81.4%
Dense 85.3% 86.1% 79.0% 88.0% - -

Table 5.1: Average accuracy for various detector/descriptor combinations on the KTH dataset.

Table 5.2 shows the results for UCF Sports. In this more complex dataset, dense sampling performs
better than all of the detectors. This can be explained the amounts of contextual information
available in the background which is being captured by the dense sampling. In a sports dataset like
UCF, the different actions will often have very similar background, e. g. stadium, pool or indoor
sports arena. Capturing these backgrounds can provide better accuracy. The best performing
descriptor is HOG3D and HOG/HOF the second-best.
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HOG3D HOG/HOF HOG HOF Cuboids ESURF
Harris3D 79.7% 78.1% 71.4% 75.4% - -
Cuboids 82.9% 77.7% 72.7% 76.7% 76.6% -
Hessian 79.0% 79.3% 66.0% 75.3% - 77.3%
Dense 85.6% 81.6% 77.4% 82.6% - -

Table 5.2: Average accuracy for various detector/descriptor combinations on the UCF Sports
dataset.

HOG3D HOG/HOF HOG HOF Cuboids ESURF
Harris3D 43.7% 45.2% 32.8% 43.3% - -
Cuboids 45.7% 46.2% 39.4% 42.9% 45.0% -
Hessian 41.3% 46.0% 36.2% 43.0% - 77.3%
Dense 45.3% 47.4% 39.4% 45.5 - -

Table 5.3: Average accuracy for various detector/descriptor combinations on the Hollywood2
dataset.

The results for Hollywood2 is shown in table 5.3. This dataset is the most varied of the three, and
this is reflected in the results. Dense is again performing better than the detectors, but this time
the difference is not more than about 1% which could be explained by the fact that the intraclass
variance in background and context is higher in Hollywood2 than in UCF Sports.
The best performing descriptor is HOG/HOF, and not HOG3D as in UCF Sports.It is hard to say
why there is a difference between the performance of the descriptors across the different datasets,
but some things can be concluded. Spatial Gradient information alone does not capture enough
information as HOG is consistently outperformed by the other descriptors.

5.2 Conclusion

In the two realistic datasets tested in this survey, dense sampling outperforms the detectors.
The detectors only perform slightly better in KTH because of the simple scene and background.
Feature detectors still needs a lot of improvement to truly capture the important information in
the video. Dense sampling does results in massive amounts of data, which can be time-consuming
to process. Cuboids is generally the best performing of the detectors, but not significantly better
than Harris3D.
The descriptor performing best is varying across datasets, but in general it seems to the descrip-
tors containing temporal information that yields the highest accuracy. HOG3D includes spatial
information by considering the gradient direction in both space and time and HOF includes opti-
cal flow which also encodes temporal changes in the video. HOG/HOF performs best in the most
complicated dataset: Hollywood2, and generally performs good in the other datasets as well.
The combination selected for use in the experiments conducted in this thesis is Harris3D and
HOG/HOF. This choice is made because it shows good results in all three datasets and although
dense sampling gives a slightly better result in KTH and Hollywood, the more sparse representa-
tion of STIPs is preferred. The implementation used [16] also has the advantage of bundling both
Harris3D and HOG/HOF.
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Chapter 6

Representation

This section describes the representation of videos in the framework. The features extracted from
a video have to be represented in a way that serves well for classification. This generally results
in a dimensionality reduction were the video often ends up being represented as a single vector,
which is a useful input to a classifier.

6.1 Bag-of-features

Bag-of-features is derived from the bag of words representation that is a used in natural language
processing to represent a text. The idea is that the text can be represented by the occurrences
of words, disregarding the order in which they appear in the text, or to use the metaphor in the
name, put all the words in a bag and draw them out without knowing the order in which they
were put in. The result of the algorithm is a histogram of word occurrences, which can be more
useful for comparing texts than a direct word-by-word comparison. The bins in the histogram are
called the vocabulary, and can be the complete set of all kinds of words used in the text, or only
a subset as it might be relevant to filter out common words like: the, be, to and of.
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Figure 6.1: Three examples of word histograms from KTH with a vocabulary size of 1087 words.

The idea is extended to action recognition by Schuldt et al. [32]. Instead of a text, the histogram is
now representing a video and instead of words consisting of letters, they are now features extracted
from the videos. The vocabulary has to be defined and is most often generated by clustering a
representative subset of all features in a dataset as seen in figure 6.2. There is no final answer to
the number of words a vocabulary should consist of, but usually a more complex dataset requires
a larger vocabulary. The bag-of-features histogram is computed by putting each feature into the
bin of the most similar word, most often measured by euclidean distance. Finally the histogram
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is normalized so that all feature vectors are comparable, even if there is a different number of
features in the videos. Figure 6.1 shows 3 examples of word histograms, where two are of the
same class. The histograms are not very meaningful to the human eye, and this lack of semantic
meaning is one of the downsides to the bag-of-features representation.

Input videos Vocabulary Word histograms

Figure 6.2: Bag-of-features representation.

Loosing the spatial and temporal information about the features is a strength and a weakness of
bag-of-features. It makes it possible to classify datasets that have high intraclass variance and
by that nature high differences in the spatio-temporal collocation of features. Throwing away the
location information does, on the other hand, cause classification problems as confusion between
similar classes.
There are ways to change the feature representation before bag-of-features to maintain the colloca-
tion information between the features. One example of this is a two step approach where features
are grouped together based on their collocation to form new features. Yuan et al. [40] groups
words together as phrases, where each phrase represents a combination of words. Chakraborty
et al. [3] uses a pyramid division of features that divides them into groups based on their spatial
location.
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Supervised Learning

Supervised learning uses training data to train a classifier that encodes the differences between
the classes. The training data are supervised, i. e. the labels of the samples are known, so the
classifier can learn the relationship between the features and the labels. Most of supervised
classifiers requires significant amounts of training data, depending on the number of classes and
the complexity of the dataset.
One challenge is not to overfit the classifier to the training data, resulting in that the classifier
is only able to perform well on data very similar to the training data. In the opposite case,
underfitting can cause the classifier to become too general, and the accuracy will suffer.

7.1 Support Vector Machine

A Support Vector Machine(SVM) is a linear binary classifier that seeks to maximize the distance
between the points of two classes. The solution consists of a hyperplane that separates the
two classes in the best way. It is possible to extend the SVM to achieve non-linear multi-class
classification.

Decis
ion hyperplane

Margin

Support vectors

Figure 7.1: Support Vector Machine
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7.1.1 Linear separable classes
In the simple case in fig 7.1, it is actually possible to obtain complete separation between two
classes using a linear function. When the space is extended from two dimensions to n dimensions
this linear function becomes a hyperplane. Many different hyperplanes could separate the points,
but the desired hyperplane is the one in middle between the two point clouds, i. e. it maximizes
the distance to the points. The points that influences the position of the hyperplane are the points
closest to the empty space between the classes. These points are called support vectors.
The distance between the hyperplane and the support vectors is the margin, so the desired hy-
perplane is defined as the hyperplane that maximizes the margin.
We have L training points, where each input xi is a D-dimensional feature vector, and is one of
two classes yi ∈ {−1,+1}. The hyperplane is defined as

w · x+ b = 0 (7.1)

where w is the normal to the hyperplane. The objective of the SVM can then be described as
finding w and b such that the two classes are separated

xi · w + b ≥ +1 for yi = +1 (7.2)
xi · w + b ≤ −1 for yi = −1 (7.3)

These equations can be combined into

yi(xi · w + b)− 1 ≥ 0 ∀i (7.4)

The objective is to maximize the margin, which by simple vector geometry is found to be 1
||w|| .

This means that the optimization problem can be formulated as a minimization of ||w|| or rather

minimize 1
2 ||w||

2

subject to yi(xi · w + b)− 1 ≥ 0 ∀i
(7.5)

as this makes it possible to perform quadratic programming optimization later on. By introducing
Lagrange multipliers α, the dual problem can eventually be reached

maximize
α

L∑
i=1

αi −
1
2α

THα

subject to αi ≥ 0 ∀i,
L∑
i=1

αiyi = 0

(7.6)

This problem is solved using a quadratic programming solver, yielding a solution for α and thereby
w and b. Points can now be classified using the decision function

y′ = sgn(w · x′ + b) (7.7)

7.1.2 Non-separable points
In the formulation used above, it is assumed that the two classes are completely separable by a
hyperplane, but this is often not the case. The points are often entangled in a way that makes it
impossible to separate them, but it is still desired to have a classifier that makes as few mistakes
as possible.
This is achieved by introducing a positive slack variable ξi, i = 1 . . . L. This slack allows the points
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to be located on the “wrong” side of the hyperplane as seen in the modified expressions

xi · w+b ≥ +1− ξi for yi = +1 (7.8)
xi · w+b ≤ −1 + ξi for yi = −1 (7.9)

ξi ≥ 0∀i (7.10)

The minimization problem is reformulated as

minimize 1
2 ||w||

2 + C

L∑
i=1

ξi

subject to yi(xi · w + b)− 1 + ξi ≥ 0 ∀i

(7.11)

where the parameter C controls how much the slack variables are punished.

7.1.3 Extending to non-linear

In the examples above, a linear decision function was considered, but in many cases, the data are
non-linear. A way to classify the non-linear data is to map the data onto another space where
the data are separable. In the example shown in figure 7.2a, a linear classifier would not yield
a good result, but by mapping the data to polar coordinates as shown in 7.2b, the data can be
completely separated by a linear classifier.

1.5 1.5
x

1.5

y

(a) Cartesian coordinates

0.0 1.6
r

7

θ

(b) Polar coordinates

Figure 7.2: Data points shown in cartesian and polar coordinates.

More formally, this can be written as finding a mapping x→ φ(x), which for the example in figure
7.2 is given by

φ : <2 → <2 (7.12)

(x, y)→ (r, θ) :=
(√

x2 + y2, arctan y
x

)
(7.13)

This can also be acheived in a simpler way, by doing the mapping implicitly in the optimization.
This can be done if there exists a funtion k for which it holds that

k(x, y) = φ(x) · φ(y) = φ(x)Tφ(y) (7.14)
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i. e. k is equal to the dot product of the vectors. K is called a kernel-function, and it enables the
problem to be solved in complexity of the original space, while having the classification accuracy
of the potentialy higher-order space.

Kernel Expression
Linear k(x, y) = xT y + c

Polynomial k(x, y) =
(
axT y + c

)d
Radial basis function(RBF) k(x, y) = exp

(
− ||x−y||

2

2σ2

)
Intersection k(x, y) =

n∑
i=1

min(xi, yi)

χ-squared k(x, y) = 1−
n∑
i=1

(xi−yi)2

1
2 (xi+yi)

Table 7.1: Different examples of kernel functions.

Table 7.1 shows some popular choices of SVM kernels. The intersection and χ-squared kernels
are especially useful when it comes to bag-of-features classification because they provide a good
way to capture the difference between histograms which is the common way to represent a video
in bag-of-features.

7.1.4 Multi-class approach
The above-mentioned SVM classifiers have all considered the binary case of labelling a video as
either one class or the other, but this can of course be extended to the general case of n classes.
Two common approaches are: one-vs-all and one-vs-one.
In one-vs-all, each classifier is trained using training data from one class, vs. the training data
from all other classes resulting in n classifiers for n classes. In classification, a point is assigned to
class that has the highest output of the descision function. The classifiers have to be trained in a
way that results in the same range of their output to make the descision functions comparable.
In one-vs-one a classifier is constructed for each combination of two classes which results in
n(n − 1)/2 classifiers. In the classification step, each point casts a vote for one of the classes in
each of the classifiers and in the end picks the class having the highest number of votes. In the
event of a tie, the class being assigned is usually arbitrary.
The implementation used in this work, libSVM[4], uses one-vs-one for multi-class approach.
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Unsupervised Learning

In unsupervised Learning, there is no prior knowledge of labels or constraints between the data,
and it is up to the algorithm to cluster the videos based on their features. This clustering can
have a fixed goal of a number of clusters, or the number can be variable making it part of the
problem to figure out how many clusters to choose.
One question is how to evaluate the results of an unsupervised algorithm. If the results has a
cluster that consists of 4 videos, where 2 videos are of class a and 2 of class b, is this evaluated
as 2 positive results for class a and 2 negative for class b, or the opposite? When there are no
supervised data involved, a cluster does not have a prior label, and if the algorithm does not
output a fixed number of clusters, there can be more than one cluster per label.
It could also be the case, that class a and b are actually similar in a way different from the problem
formulation. If e. g. class a is running, class b is boxing, but all videos in the cluster takes place in
a baseball stadium, the cluster could be representing baseball stadium and not running or boxing.
When the features used have no specific semantic meaning, the clusters found by an unsupervised
method can not be guaranteed to have the semantic meaning defined by the prior class definitions.

8.1 K-means clustering

K-meas clustering is a clustering method that divides n points into k clusters, where each cluster
belongs to a mean value of the cluster. Formally this is defined as minimizing the sum of squares
within each cluster

argmin
S

k∑
i=1

∑
xj∈Si

||xj − µi||2 (8.1)

where xj is a point and µi is the mean belonging to cluster i. Solving this problem is NP-hard,
but there are efficient heuristic algorithms to reach an approximation.

8.1.1 Standard algorithm

1. Initialization
The algorithm is usually initialized by setting all the means to a random value, but there
are also various heuristics that can choose starting means based on the data.

2. Assignment step
In the assignment step, each point is assigned to the nearest mean based on the distance
between the point and the means

Si = {xp : ||xp − µi|| ≤ ||xp − µj || ∀ j = 1 . . . k} (8.2)
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This distance is usually the euclidean distance, but other distance measures can be used.
When each point has been assigned to one mean, the result is k temporary clusters.

3. Update step
A new mean is calculated in each cluster as the centroid of all the points in the cluster, i. e.
the average of the point coordinates in a cluster.

µi = 1
|Si|

∑
xj∈Si

xj (8.3)

4. Repeat step 2 and 3 until convergence.

The algorithm is simple and efficient, but it also has a number of drawbacks. The solution found
will almost always only be a local minimum. Picking the best out of multiple runs with different
initializations is a way of improving the solution, but a guaranteed global minimum can of course
not be found.
K-means has a tendency to find clusters that are similar in size. This does not make it suitable
for data where there are significant differences in the sizes of the clusters.
Because that the distance measure used is the euclidean distance, the result is spherical clusters
which is not very well suited for certain distributions.

8.2 Affinity Propagation

Affinity Propagation [10] is a message passing algorithm. This means that each point in the
clustering exchanges messages with all other points to gain an understanding of the composition
of the data. The result of affinity propagation is a number of exemplars, which are points selected
from the input points. Each cluster has exactly one exemplar, which can be seen as the point the
best represents the points in the cluster. Because there can be only one exemplar in a cluster,
and every point has to choose an exemplar, each exemplar is its own exemplar. The number of

(a) Responsibilities (b) Availabilities

Figure 8.1: The two types of messages exchanged in affinity propagation. [10]

exemplars are not constrained to a fixed number like in e. g. k-means. Instead each point has a
number called the preference p(i). Points having a higher preference are more likely to become
exemplars. The preference is usually equal for all points, and the author suggest setting it to the
median of the similarities. When collective preferences determine the number of resulting clusters.
Exemplars are selected based on the messages which are passed between the points. The input
to the algorithm are pairwise similarities between all the points s(i, k). Any similarity measure
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can be used, and similarities do not have to be symmetric: i. e. s(i, k) = s(k, i) is always true, or
satisfy the triangle equality: s(i, k) < s(i, j) + s(j, k).
There are two types of messages that are being exchanged between the points: responsibility and
availability, as shown in figure 8.1. Responsibility r(i, k), sent from point i to candidate exemplar
point k, is the evidence of how much i wants k to be it’s exemplar. This evidence is based on how
i views its other options of exemplars.
Availability a(i, k), sent from candidate exemplar point k to i, is the evidence of how much k
thinks that it should be i’s exemplar. The availability from k is based on the responsibilities sent
to k, i. e. if other points like k as an exemplar, k must be a good candidate exemplar and will then
send a higher availability to i.

Figure 8.2: Visualization of iterations of 2D affinity propagation. [10]

The algorithm is initialized by setting all availabilities to zero: a(i, k) = 0. The responsibilities
are then computed using the update rule

r(i, k)← s(i, k)−max
k′ 6=k

{a(i, k′) + s(i, k′)} (8.4)

In the beginning when the availability is zero, r(i,k) will be equal to the similarity between i and
k, minus the maximum of the similarities between i and all other points. This means that the
responsibility is proportional to how similar i and k are to each other compared to other points,
which is in accordance to the description of responsibility given above. The special case of i = k:
r(k,k) is set to the input preference p(k).

a(i, k)← min

0, r(k, k) +
∑

i′ /∈{i,k}

max {0, r(i′, k)}

 (8.5)

The expression for the availability is also intuitive. The availability of k, send to i, is determined
by k’s preference plus the sum of how well all other points besides i, like k as an exemplar.
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The self-availability a(k, k) is a measure of the accumulated evidence that k is an exemplar and
is computed differently

a(k, k)←
∑
i′ 6=k

max {0, r(i′, k)} (8.6)

For each iteration of computing availabilities and responsibilities, the temporary exemplars are
determined by

exemplar(i) = argmax
k

a(i, k) + r(i, k) (8.7)

which means that if k = i, i is itself an exemplar, and else k is the exemplar of i. When the
exemplar choices does not change for a number of iterations, convergence is reached and the
algorithm terminates.
Figure 8.2 shows an illustration of the different iterations of affinity propagation. The messages
starts out being almost equal between all points, but as the number of iterations increase the
messages to some points increases and finally the algorithm converges with three exemplars.
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Results

This chapter presents the experimental results and comparison of the chosen subset of methods
described in the previous sections. Section 9.1 describes the algorithms and parameters used in
the tests. In section 9.2, the supervised results are presented for each of the datasets: KTH
and UCF50. The results from the unsupervised algorithms are presented in section 9.3, and
a comparison of supervised and unsupervised algorithms is given. Finally the parameters for
bag-of-features vocabulary generation are evaluated.

9.1 Experimental Setup

The framework used in all experiments is the one described in section 2.4. The two first steps in
the framework: feature detector and feature descriptor are fixed in all the experiments, while the
last two: video representation and classification are changed, to compare the results.
The feature detector used is Harris3D which is combined with the HOG/HOF descriptor. The
implementation used is the updated version of the one described in [16], obtained from the authors
web page. The default settings are used for parameters like number of temporal and spatial scales
and detector sensitivity. SVM is used for supervised classification and affinity propagation and
k-means clustering are used for unsupervised classification.
For each of the datasets, a number of different vocabularies are built to find the best strategy for
vocabulary generation. Each individual experiment utilizes the vocabulary that provides the best
result for that specific experiment.
The measure used for comparison is mean average precision. Average precision is the average of
all true positive percentages across classes. When cross validation is used, the test is run multiple
times resulting in different average precisions. The mean of all these runs is reported as the result
of the cross validation.

9.2 Supervised

This section presents the results of the supervised classifier. The classifier used is a support vector
machine(SVM) and the implementation used is libsvm [4], with a χ-squared kernel. Because
libsvm does not have native support for the χ-squared kernel, the kernel is precomputed using
an external function. The default option of one-vs-one approach for multi-class classification is
selected.
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9.2.1 KTH
The 600 videos in KTH are partitioned according to the directions given in the dataset [32], with
one exception: the video files are not split up into the sequences described in the directions, but
kept together meaning that one video file contains the same subject performing an action multiple
times. This does not seem to affect the recognition rate particularly, even when compared to Wang
et al. [35], where the mirrored versions of the clips also are used to gain more data.
Figure 9.1 shows the confusion matrix for the result of the SVM classification of KTH. The
average precision of 89.4% is close to the precision of 91.8% reported by [35], even though there
are differences in methodology.
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Figure 9.1: Confusion matrix of the best SVM classification of the KTH dataset. Avg. precision:
89.4%

There is some confusion among the arm classes and among the leg classes but not between the
two. This is expected, as a video involving movement of the arms should be more likely to be
confused with a class the involves arm movement. The highest error is found in handwaving,
which is confused as boxing almost 20% of the time.

9.2.2 UCF50
UCF50 is classified using 10-fold cross-validation, i. e. the videos are divided into 10 groups and
for each test run the classifier is trained using 1 group and tested on 9 remaining groups. The
reported precision and confusion matrix is the average over the 10 runs.
Figure 9.2 shows the confusion matrix for the best SVM classification. There are large differences
between the precision of the different classes, ranging from 98% in class 5: “Billiards” to 0% in
class 44: “TaiChi”. Class 45: “TennisSwing” has many false positives from other classes.

9.3 Unsupervised

The unsupervised algorithms use the same word histograms for input as the SVM. K-means uses
the histograms directly while affinity propagation uses their pairwise χ-squared distances. The

40



9.3. UNSUPERVISED

 

 

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9.2: Confusion matrix of the best SVM classification of the UCF50 dataset. Avg. precision:
60.6%

outcome of affinity propagation is deterministic, but the k-means algorithm uses random starting
means and will have a different solution each time. To partly overcome this difference, the best
of 10 k-means runs is used.
The unsupervised algorithms are presented as a function of the number of clusters. A cluster is
assigned the label of the most frequent occurring class in the cluster, which will make the precision
go towards 100% with increasing number of clusters.
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Figure 9.3: Comparison of Affinity propagation and K-means clustering for unsupervised cluster-
ing of KTH. The vertical line is located where the number of clusters is equal to the number of
classes.

41



CHAPTER 9. RESULTS

Figure 9.3 shows the results of the clustering. Affinity propagation is consistently better than
k-means across different number of clusters. The recognition rate at 6 clusters is notable, because
that is the number of classes in KTH. Affinity propagation obtains 58.8% while k-means only
obtains 46.0%.
Both algorithms improve their precision as the number of clusters increases. The graph could be
extended all the way to the number of videos in KTH, which is 600. At this point, the precision
would be 1, because each video would be in a cluster by itself and by the prior definition a true
positive.
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Figure 9.4: Confusion matrix of Affinity Propagation clustering of KTH. Average precision: 58.8%

Figure 9.4 shows the confusion matrix for the affinity propagation run that resulted in 6 clusters
on KTH. One of the problems with the used cluster labelling method, is that every class does not
have to be represented by a cluster, which is what happened in this case. There was no cluster in
the result labelled as jogging because 80% of jogging videos ended up together in a cluster with
92% of the running videos. The cluster was then labelled as running, resulting in a large quantity
of miss-labelled jogging samples.
Some classes are more greedy than others. Boxing not only includes 85% of its own points, but also
41% of handclapping and 30% of handwaving. The same is true for running, that also captures
many of the videos from the two other leg actions. This could be due to the histograms for boxing
and running videos being too general and not discriminative enough and thereby representing not
only their own class, but also the others.
One reason why affinity propagation is performing better than k-means could be that the distance
used for the similarity measure in affinity propagation is χ-squared distance, while k-means uses
euclidean distance. According to experiments conducted in [3] with the type of SVM kernel used,
the χ-squared kernel is the best performing kernel. This suggests that the χ-squared distance is
a good measure for the distance between bag-of-features histograms.
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Figure 9.5: Comparison of affinity propagation and K-means clustering for unsupervised clustering
of UCF50. The vertical line is located where the number of clusters is equal to the number of
classes.

9.3.2 UCF50

The unsupervised results for UCF50 are seen in figure 9.5. Affinity propagation performs better
than k-means over all number of clusters, and obtains a precision of 18.0% at 50 clusters. The
gap between AP and k-means is smaller than it is for KTH.
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Figure 9.6: Confusion matrix of affinity propagation clustering of UCF50. Average precision:
18.9%

Figure 9.6 shows the confusion matrix for the best affinity propagation result. There is significant
confusion, what mostly seems random, in almost every class apart from a few exceptions. Classes:
33: “Punch”, 14: “HorseRiding” and 19: “JumpingJack”, are the three classes having the highest
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precision. Class 1:“BaseballPitch” and 45: “TennisSwing” are attracting many false positives from
many other classes.

9.4 Comparison of supervised and unsupervised

This section compares the precision of the SVM classification with the precision of the unsuper-
vised algorithms.

SVM AP K-means
KTH 89.4% 58.8% 46.0%

UCF50 50% 18.9% 14.8%

Table 9.1: Comparison of average precision of supervised and unsupervised algorithms.

Table 9.1 shows the average precisions from supervised and unsupervised classification. The
unsupervised precisions used, are from the clustering runs that has number of clusters equal to
the number of classes, so that the results are comparable. SVM classification is over 30% more
precise in KTH, and more than double as precise for UCF50 compared to affinity propagation.

9.5 Vocabulary Building Strategy

Number of words
1078 2160 4856

AP 20.000 87.0% 85.6% 87.0%
KM 20.000 88.4% 82.4% 87.9%
KM 50.000 84.2% 85.6% 89.4%
KM 100.000 88.4% 85.6% 88.4%

Table 9.2: Comparison of different parameters for vocabulary building for KTH. AP is affinity
propagation and KM is K-means.

The vocabulary is an important part of the bag-of-features framework. This makes it interesting
to explore the different parameters used for vocabulary building to see which values that yields
the best performance. The vocabulary is the result of clustering where the input is a sample
of features from the dataset. Affinity propagation and k-means are compared to see if the used
clustering algorithm makes any difference.
Three different vocabulary sizes are tested for each dataset. Affinity propagation does not output
a fixed number of clusters, so by trying different p values, 3 different number of words were found
for each dataset. The number of words output by AP is then used as the input k to k-means to
get a comparable number of clusters. The number of input samples to the clustering algorithms
used are: 20,000, 50,000 and 100,000. To get a representative sample from the set of all features,
the same number of random features is sampled from each of the videos in the dataset to form
the collective set used for clustering. This is only done for k-means because the implementation
of AP has too high complexity in memory for running on large sample sizes, at least for the
computational power available in this project.
The different vocabularies have been tested only using the supervised algorithm.
Table 9.2 shows the results for KTH. There are not a huge difference between the different strate-
gies. K-means and AP perform similarly on 20.000 input features. There is a little gain in
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Number of words
591 2839 4327

AP 20,000 50.4% 55.7% 58.3%
KM 20,000 49.5% 56.4% 58.4%
KM 50,000 51.2% 54.4% 59.3
KM 100,000 51.1% 57.9% 60.6%

Table 9.3: Comparison of different parameters for vocabulary building for UCF50. AP is affinity
propagation and KM is K-means.

performance by using more input points. K-means with 50.000 points performs better than k-
means with 100.000 for the highest number of words, but this could be explained by the inherent
random outcome of k-means.
Table 9.3 shows the results for UCF50. Here, the performance increases significantly with the
number of words, which is not surprising as a diverse dataset is expected to require a diverse
vocabulary to represent it. The performance also increases a little with the number of input
samples, but not as much as expected.
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Chapter 10

Conclusion

This thesis has explored the pros and cons of methods within the bag-of-features framework. The
best methods within each component category were compared, and a few combinations selected
for experimental tests. The Harris3D detector with HOG/HOF descriptor was used in a bag-of-
features representation as a base for classification. Supervised and unsupervised classifiers were
compared on the simple KTH dataset and the more complicated UCF50 dataset.
The results of the supervised SVM classification was an average precision of 89.4% in KTH. This
was expected as this is simillar to what others achieved on KTH. This shows that KTH is getting
to simple for comparison of state-of-the art supervised algorithms, as there is not enough room
for future improvement. The mean average precision for SVM classification of UCF50 was 60.6%
in UCF50, with many higly varying performance of the different classes.
The two unsupervised algorithms tested were: affinity propagation(AP) and k-means. Affinity
propagation outperforms k-means for both KTH and UCF50, but the difference is more significant
in KTH, which could mean that affinity propagation works better for small problems. The average
precision of affinity propagation is 60% for KTH and 18.9% for UCF50.
One of the goals of this thesis was to compare supervised and unsupervised classification. SVM
outperforms AP by about 30% in KTH and 20% in UCF50. The training data used in SVM
provides a lot of information that the unsupervised methods do not have. UCF50 is especially a
problem for the unsupervised algorithms. Even though the unsupervised algorithms do not achieve
the best performance, they obtained their results without the use of training data which is a huge
advantage. Further development of unsupervised methods will make classification less dependant
of large amounts of training data. Semisupervised methods are also gaining attentention for their
ability to combine the advantages of supervised and unsupervised algorithms.
Two different algorithms were tested for vocabulary building: affinity propagation and k-means.
The clustering was done with a different number of words and a different number of input features
to see which combination that yielded the best performance for supervised classification. The
average precision of the SVM increases with the number of words in the vocabulary, having the
best vocabulary at 4856 words in KTH and 4327 in UCF50. One explanation could be that
SVM is good at dealing with many-dimensional points, and therefore benefits from having the
extra information provided by a larger vocabulary. Affinity propagation does not seem to provide
any advantage over k-means for vocabulary building as the two algorithms have almost the same
precision in the comparable case of 20,000 input samples. Increasing the number of sampled
features for clustering does not improve the vocabulary much above 50.000 features. The number
of samples is more important for UCF50 than for KTH which can be expected because UCF50 is
a much more diverse dataset.
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