Author(s)
Term
10. term
Education
Publication year
2009
Submitted on
2009-06-02
Pages
0 pages
Abstract
Sinusoidal parameter estimation is an important problem in a wide range of signal processing applications such as audio coding, compression, signal enhancement and restoration. In this thesis, sinusoidal parameter estimation is treated from a Bayesian perspective which is an emerging signal processing field. In this connection, we give in the first part of the thesis an introduction to the fundamentals of Bayesian thinking and compare it against traditional signal processing methods. In the second part of the thesis, we propose and develop a new Bayesian inference scheme for the sinusoidal model parameters of the dynamic sinusoidal model. This model can be used for modelling non-stationary signals and it is thus more flexible than the more popular static sinusoidal model. The developed inference scheme is evaluated through simulations on synthetic signals as well as on a real audio signal. These simulations show that the developed inference scheme works very well for making inference about unknown model parameters as well as for restoration. The major drawback of the inference scheme is that it suffers from a high computational complexity which renders it infeasible for most real-time applications.
Estimering af sinusparametre er et vigtigt problem inden for en lang række af signalbehandlingsapplikationer. Det drejer sig for eksempel om audiokodning, komprimering, signalforbedring og -genoprettelse. I dette speciale er estimering af sinusparametre behandlet fra et Bayesiansk synspunkt, der er et voksende område inden for signalbehandling. I den første del af specialet gives der en introduktion til den fundamentale Bayesianske tankegang, og den sammenlignes med traditionelle signalbehandlingsmetoder. I den anden del af specialet fremsættes og udvikles en ny Bayesiansk metode til at drage statistiske slutninger for sinusparametre i en dynamisk signalmodel. Denne model kan bruges til at modellere ikke-stationære signaler og er derfor mere fleksibel end den mere populære statiske signalmodel. Den udviklede Bayesianske metode er evalueret ved hjælp af simuleringer på syntetiske signaler og på et rigtigt audiosignal. Simuleringerne viser, at den udviklede Bayesianske metode med succes kan bruges til at drage slutninger om de ukendte sinusparametre og til signalgenopretning. Den største ulempe ved metoden er, at den lider af en så høj beregningsmæssig kompleksitet, at den ikke ville kunne bruges i de fleste realtidsapplikationer.
Documents
Colophon: This page is part of the AAU Student Projects portal, which is run by Aalborg University. Here, you can find and download publicly available bachelor's theses and master's projects from across the university dating from 2008 onwards. Student projects from before 2008 are available in printed form at Aalborg University Library.
If you have any questions about AAU Student Projects or the research registration, dissemination and analysis at Aalborg University, please feel free to contact the VBN team. You can also find more information in the AAU Student Projects FAQs.