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nusoidal model parameters of the dynamic
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static sinusoidal model.
The developed inference scheme is evalu-
ated through simulations on synthetic sig-
nals as well as on a real audio signal. These
simulations show that the developed infer-
ence scheme works very well for making in-
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as well as for restoration. The major draw-
back of the inference scheme is that it suf-
fers from a high computational complexity
which renders it infeasible for most real-
time applications.
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Resumé:

Estimering af sinusparametre er et vigtigt
problem inden for en lang række af sig-
nalbehandlingsapplikationer. Det drejer sig
for eksempel om audiokodning, komprimer-
ing, signalforbedring og -genoprettelse. I
dette speciale er estimering af sinusparame-
tre behandlet fra et Bayesiansk synspunkt,
der er et voksende område inden for sig-
nalbehandling. I den første del af specialet
gives der en introduktion til den fundamen-
tale Bayesianske tankegang, og den sam-
menlignes med traditionelle signalbehan-
dlingsmetoder. I den anden del af specialet
fremsættes og udvikles en ny Bayesiansk
metode til at drage statistiske slutninger for
sinusparametre i en dynamisk signalmodel.
Denne model kan bruges til at modellere
ikke-stationære signaler og er derfor mere
fleksibel end den mere populære statiske
signalmodel.
Den udviklede Bayesianske metode er eval-
ueret ved hjælp af simuleringer på syn-
tetiske signaler og på et rigtigt audiosig-
nal. Simuleringerne viser, at den udviklede
Bayesianske metode med succes kan bruges
til at drage slutninger om de ukendte sinus-
parametre og til signalgenopretning. Den
største ulempe ved metoden er, at den lider
af en så høj beregningsmæssig komplek-
sitet, at den ikke ville kunne bruges i de
fleste realtidsapplikationer.

Indholdet af denne rapport er frit tilgængeligt, men offentliggørelse (med kildeangivelser) må kun ske
efter aftale med forfatteren.



i
i

“master” — 2009/6/1 — 23:33 — page iv — #6 i
i

i
i

i
i



i
i

“master” — 2009/6/1 — 23:33 — page v — #7 i
i

i
i

i
i

Contents

Preface ix

List of Symbols xi

List of Abbreviations xiii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Classical versus Bayesian Statistics . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Key Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I Fundamentals 9

2 Bayesian Inference 11
2.1 Bayes’ Theorem and Bayesian Terminology . . . . . . . . . . . . . . . . 11

2.1.1 The General Data Model . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Types of Variables and Parameters . . . . . . . . . . . . . . . . . 15

2.2 The Prior Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Informative and Conjugate Priors . . . . . . . . . . . . . . . . . . 17
2.2.2 Non-informative Priors . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Summarising Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 The MMSE and MAP Point Estimates . . . . . . . . . . . . . . . 19
2.3.2 Credible Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Posterior Odds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



i
i

“master” — 2009/6/1 — 23:33 — page vi — #8 i
i

i
i

i
i

vi Contents

3 Numerical Bayesian Inference 29
3.1 Basic Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Inverse Transform Sampling . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Rejection Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Markov Chain Monte Carlo Sampling . . . . . . . . . . . . . . . . . . . 33
3.2.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 The Metropolis-Hastings Algorithm . . . . . . . . . . . . . . . . 34
3.2.3 The Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 The Laplace Approximation . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 The Bayesian Information Criterion . . . . . . . . . . . . . . . . 44

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Case Study: Bayesian Inference for the Frequency 45
4.1 Inference based on a Gibbs Sampler . . . . . . . . . . . . . . . . . . . . 46
4.2 Inference Based on the Metropolis-Hastings Algorithm . . . . . . . . . . 49
4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

II Bayesian Inference for the Dynamic Sinusoidal Model 55

5 The Dynamic Sinusoidal Signal Model 57
5.1 State-Space Formulation of the Sinusoidal Model . . . . . . . . . . . . . 57
5.2 Relationship Between the Static and Dynamic Models . . . . . . . . . . 59
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Derivation of Inference Scheme 63
6.1 Definitions and Problem Formulation . . . . . . . . . . . . . . . . . . . . 63
6.2 Bayesian Inference using a Gibbs Sampler . . . . . . . . . . . . . . . . . 65

6.2.1 Conditional Distribution for the States . . . . . . . . . . . . . . . 65
6.2.2 Conditional Distribution for the State Noise Covariance . . . . . 69
6.2.3 Conditional Distribution for the Observation Variance . . . . . . 71
6.2.4 Conditional Distribution for the Frequency Parameters . . . . . . 72
6.2.5 Conditional Distribution for the Log-Damping Coefficients . . . . 75

6.3 Missing Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4 Summary of Inference Scheme . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Simulation Study on Synthetic and Real Signals 83
7.1 Validation of the Individual Sampling Steps . . . . . . . . . . . . . . . . 83

7.1.1 Simulation Smoothing for the States . . . . . . . . . . . . . . . . 84
7.1.2 Simulating from the von Mises Distribution . . . . . . . . . . . . 86



i
i

“master” — 2009/6/1 — 23:33 — page vii — #9 i
i

i
i

i
i

Contents vii

7.1.3 MH-based Sampling of the Log-Damping Coefficients . . . . . . . 86
7.2 Case 1: Inference for a Single Static Sinusoid . . . . . . . . . . . . . . . 88
7.3 Case 2: Inference in a Simplified Dynamic Model . . . . . . . . . . . . . 90
7.4 Case 3: Inference in a Full Dynamic Model . . . . . . . . . . . . . . . . 91
7.5 Case 4: Inference for a Real Audio Signal . . . . . . . . . . . . . . . . . 95
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8 Conclusion 99

Bibliography 101

Appendices 107

A Probability Distributions and Bayesian Inference for the Gaussian 107
A.1 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.1.1 Inverse Gamma Distribution . . . . . . . . . . . . . . . . . . . . 107
A.1.2 Inverse Wishart Distribution . . . . . . . . . . . . . . . . . . . . 108
A.1.3 Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . . 109
A.1.4 Student’s t-Distribution . . . . . . . . . . . . . . . . . . . . . . . 112
A.1.5 Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.1.6 Von Mises Distribution . . . . . . . . . . . . . . . . . . . . . . . 114

B Bayesian Inference for the Gaussian 117
B.1 Inference for an Unknown Mean . . . . . . . . . . . . . . . . . . . . . . . 118
B.2 Inference for an Unknown Covariance . . . . . . . . . . . . . . . . . . . 120
B.3 Inference for an Unknown Mean and an Unknown Isotropic Covariance . 123

C The Kalman Filter and Smoother 127
C.1 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
C.2 The Kalman Smoother . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

D WASPAA 2009 Paper 133



i
i

“master” — 2009/6/1 — 23:33 — page viii — #10 i
i

i
i

i
i

viii Contents



i
i

“master” — 2009/6/1 — 23:33 — page ix — #11 i
i

i
i

i
i

Preface

This master thesis is written by me, Jesper Kjær Nielsen, at the Department of Elec-
tronic Systems on Aalborg University during the 9th and 10th semesters in the project
period spanning from September 1, 2008 to June 3, 2009. During the project period,
I was affiliated with the Multimedia Information and Signal Processing (MISP) Group
at Aalborg University. The thesis is concerned with making inference about sinusoidal
parameters. This is a very important problem in a wide range of application, and it
has been an active field of research in recent years in the MISP group. The developed
approaches so far for solving the inference problem have been based on tools from clas-
sical statistics. In this thesis, however, a different approach is taken based on tools from
Bayesian statistics. This approach offers some conceptual advantages over the methods
from classical statistics.

The purpose of the master project has been twofold: First of all, it has been to
analyse a well known problem to the MISP group, but from a different perspective
by using Bayesian signal processing. In this way, new knowledge of Bayesian signal
processing has been added into the MISP group and this may be important for future
research work. Secondly, a purpose has been to develop new methods for sinusoidal
parameter inference based on tools from Bayesian statistics.

The contents of the thesis reflects the two purposes. After a short introduction in
chapter 1, part I of the thesis is concerned with the fundamentals of Bayesian thinking
in chapter 2 as well as the fundamental numerical Bayesian methods in chapter 3.
Chapter 4 concludes part I by applying Bayesian signal processing to the sinusoidal
parameter inference problem. This also serves the purpose of demonstrating the state-
of-the-art Bayesian inference scheme for the sinusoidal frequency. Part II of the thesis
is concerned with the proposal and development of a new Bayesian inference scheme for
the sinusoidal parameters of the dynamic sinusoidal model. In chapter 5, the dynamic
sinusoidal model is defined and the inference scheme for the parameters of it is developed
and evaluated in chapter 6 and chapter 7. The thesis in concluded in chapter 8. In the
appendices, important background information is provided in terms of a list of several
probability distributions and their properties in appendix A, Bayesian inference for
the parameters of the Gaussian distribution in appendix B, and the Kalman filter and

ix
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x Preface

smoother in appendix C. Appendix D includes a submitted paper for WASPAA 2009
based on the proposed inference scheme in part II of the thesis.

The reader should pay attention to the following typographical conventions on pe-
rusal of this thesis:

• The main part of the thesis is divided into numbered chapters whereas the appen-
dices are arranged alphabetically.

• Figures, tables, equations, examples and algorithms are numbered consecutively
according to the chapter symbol. Hence, the first figure in chapter one is named
figure 1.1, the second figure figure 1.2 and so on.

• Two types of figures are used. Closed figures are used for displaying results of
simulations whereas open figures are used for displaying conceptual and illustrative
figures.

• In the first part of the thesis, several examples are presented in order to demon-
strate important points. These examples are marked with a vertical grey line
in the left margin. Several algorithms are given in this thesis and they are all
presented in a framed box.

I would like to take the opportunity to thank my main supervisors Prof. Søren Holdt
Jensen and especially Ass. Prof. Mads Græsbøll Christensen who have carefully guided
me through this long term master project as well as the projects conducted on the 7th
and 8th semester. They have been an integral part of what I have achieved during
the learning process that I have underwent in the last couple of years. They have also
played a major part in setting up a three month visit to Prof. Simon J. Godsill and
his signal processing and communications group at University of Cambridge, UK in
January-March 2009. In that connection, I would like to thank Prof. Godsill for having
me and being an inspirational source of information and ideas as well as for spending
some of his precious time on supervising me.

Last but not least, I would also like to thank Ass. Prof. Ali Taylan Cemgil previ-
ously affiliated with University of Cambridge but now with Boğaziçi University, TR. He
initially proposed the idea behind the developed inference scheme in this thesis. I would
also like to thank Ass. Prof. Cemgil for reading my numerous e-mails and answering
some of my many questions.

Aalborg University June 3, 2009

Jesper Kjær Nielsen
<jkjaer@es.aau.dk>
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Chapter 1

Introduction

1.1 Background
A fundamental problem encountered in a wide range of applications is the ability to
extract characteristic features from some physical process based on a set of observations.
Some examples of such applications are:

• Speech recognition in which a computer converts spoken words into text or com-
mands. This, e.g., enables a human being to interact with his or her electronic
equipment by means of his or her voice. A related field is that of speaker recogni-
tion in which a computer uniquely identifies the speaker.

• Compression in which a computer discards irrelevant and/or redundant parts of
an auditory or visual signal thus decreasing the total amount of data. Audio
coding and video streaming are well known and widespread examples of this.

• Source separation in which a computer separates a mixture of sound sources. This
enables, e.g., hearing aids to focus the listening attention to a single speaker within
a mixture of speakers and background noise.

• Automatic music transcription in which a computer translates an acoustic signal
from a musical instrument into musical notation, i.e., notes in a stave.

• Restoration in which a computer approximately recovers a distorted or corrupted
signal. Examples of this are restoration of old gramophone recordings or recon-
struction of lost packages on a package based network.

Due to the wide range of applications in which this feature extraction problem shows
up, extensive research has been conducted throughout the years. This has resulted

1
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2 Chapter 1. Introduction

in several proposed solutions which can be divided into two groups based on whether
they assume an underlying parametric structure, i.e., a model, for the physical process
or not. If a parametric model is assumed, the method is referred to as a parametric
method whereas it is referred to as a non-parametric method in the absence of the
model assumption. There exists an almost endless number of parametric models with
some of the more popular being the autoregressive (AR), the moving average (MA), the
autoregressive moving average (ARMA) and the sinusoidal model.

In this thesis, we initially restrict our attention to the real static1 sinusoidal model
given by

xn =
L∑
l=1

αle
−γln cos(ωln+ ϕl) + wn , for n = 1, · · · , N (1.1)

where αl > 0, ϕl ∈ [−π, π], ωl ∈ [0, π], γl > 0 are the amplitude, phase, (angular)
frequency and log-damping coefficient of the l’th sinusoid, respectively. The observed
signal xn is at time index n the sum of L of these sinusoids and the stochastic noise
term wn. Unless stated otherwise, we always assume the noise to be white and Gaussian
distributed with variance σ2

w. This model accurately describes segments of observations
from physical processes such as voiced speech, a wide range of musical instruments
and the direction of arrival of a received wireless signal. Since the signal is completely
specified once the parameters of the model are known, the task is to acquire the values
of these parameters based on the observations. This process of drawing conclusions from
the observations about the characteristics features of the underlying signal is referred
to as statistical inference.

Due to the applicability of the sinusoidal model, the estimation of the sinusoidal
parameters has received a lot of attention. Especially the frequency parameter has been
subject to extensive research since it enters the signal model in a non-linear fashion. A
thorough overview of some of the fundamental frequency estimators is given in [Stoica
and Moses, 2005, ch. 4]. Almost all research has been based on the widespread classical
approach to statistics. The research based on the other major statistical approach,
Bayesian statistics, has been much more sparse primarily due to practical problems
such as evaluation of complicated high-dimensional integrals. In recent years, however,
many computational algorithms such as Markov chain Monte Carlo (MCMC) sampling
have been embraced and developed by the Bayesian community. This has to a large
extend overcome many of the practical problems and led to various developments in
Bayesian frequency estimation (see, e.g., [Bretthorst, 1988], [Andrieu and Doucet, 1999],
[Davy et al., 2006] and the references therein). In this thesis, we also use the Bayesian
approach, and we extend this work further by proposing an inference scheme for the

1In this thesis, static refers to that the amplitudes of the sinusoids do not change with time while
the amplitudes in a dynamic model do. Strictly speaking, the model in Eq. (1.1) is only static for zero
damping, i.e., γl = 0, and dynamic for non-zero damping, i.e., γl > 0. In this thesis, however, we refer
to the model in Eq. (1.1) as the static model for both zero and non-zero damping.
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1.2. Classical versus Bayesian Statistics 3

parameters of the sinusoidal model in which the amplitude and phase are allowed to
vary as a function of time. We refer to this model as the dynamic sinusoidal model.
Before proposing this new inference scheme in part II, however, we first briefly outline
the basic difference between the two schools of statistical inference in the rest of the
introduction, and give an introduction to the fundamentals of analytical and numerical
Bayesian inference in part I.

1.2 Classical versus Bayesian Statistics
As mentioned above, the field of statistics is divided into two schools: The school of
classical statistics (also known as sampling theory, orthodox and frequentist statistics)
and the school of Bayesian statistics. The main difference between these two statistical
approaches is the way they use and interpret probability. Classical statisticians interpret
probability as the frequency of outcomes of repeated random experiments, i.e., the prob-
ability of a particular outcome is the limiting ratio between the number of observations
of the outcome to the total number of trials. For example, if we want to discover the
probability of heads for a tossed coin, we simply toss the coin N times while counting
the number of heads Nh. The probability of heads is then the fraction p = Nh/N for
N →∞. This interpretation of probability has two consequences [Bolstad, 2007, p. 5]:

• The underlying parameters of the experiments are unknown and deterministic
variables, i.e., they are fixed for every (hypothetical) repetition of the experiment.
For example, we would not be able to compute the probability of heads as the
fraction p = Nh/N if we did not assume p to be fixed for all of the N tosses.

• The statistical inference scheme is evaluated from the long-run average perfor-
mance over an infinite number of (hypothetical) repetitions of the experiment.
For example, the fraction Nh/N for a finite number of tosses is only an estimate
of the probability of heads. In order to evaluate this estimate, we have to imagine
that we have access to an infinity number of similar observation sets and then
investigate the statistical properties of this estimate.

Bayesian statisticians treat probability in a more general way as the degree of belief
[Bolstad, 2007, p. 6]. That is, before an experiment is conducted the possible outcomes
x are given a prior probability reflecting the subjective anticipation of the outcome.
After the experiment has been conducted, the prior probabilities are updated with the
new knowledge obtained from a set of observations y. The distribution summarising the
prior belief and the knowledge from the observations is called the posterior probability.
The relationships between these quantities are given by Bayes’ theorem [Gelman et al.,
2003, p. 8]

p(x|y) =
p(y|x)p(x)

p(y)
(1.2)
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4 Chapter 1. Introduction

which is the cornerstone of Bayesian statistics. For the coin tossing, for example, we
would expect the coin to be approximately fair for which reason we would assign a prior
probability p(x) that would reflect that. After observing some tosses, we then, by using
Bayes’ theorem, compute the posterior probability p(x|y) which now summarises our
current state of knowledge on the probability of heads. If we at some later point are
given another set of observations, we could again update our knowledge by using Bayes’
theorem. Due to the notion of prior probabilities, the underlying parameters from a
Bayesian point of view are random variables.

It is beyond the scope of this thesis to perform a comprehensive comparison between
the two approaches to statistics. However, we devote the rest of the introduction to il-
lustrate some of the key differences between the two approaches. This also motivates the
use of the Bayesian methods for the frequency estimation problem treated in chapter 4
and part II of this thesis.

1.2.1 Key Differences
The Bayesian approach to statistics has been struggling at two major points:

• From a philosophical point of view, the classical statisticians have been criticising
the use of prior probabilities in the Bayesian approach. Since the prior is designed
and chosen before any observations are made, they inject to much subjectivity
into the analysis. Also, the use of a prior leads to an interpretation of an unknown
parameter as a random variable, and the classical statisticians argue that this is
inconsistent with what a parameter really is; a fixed quantity.

• From a practical point of view, the Bayesian approach requires, in most cases,
evaluation of high-dimensional and complex integrals. This requirement arise from
marginalisation of uninteresting parameters (known as nuisance parameters) and
from computation of moments and intervals of the posterior distribution. In many
cases, even simple ones, analytical solutions may not exist and numerical integra-
tion might be infeasible. In recent years, many computational algorithms based
on analytical approximations or stochastic sampling techniques have highly reme-
died for this practical obstacle. However, the computational complexity of these
algorithms is typically still much higher than their classical counterparts.

From an engineering point of view, the philosophical concerns are rarely an issue. The
practical concerns are still the major drawback of the methods offered by the Bayesian
approach. This is unfortunate since Bayesian statistics offer some important analytical
and conceptual advantages over classical statistics.

The results of statistical analysis is often reported in the form of point estimates,
interval estimates or hypothesis tests. In the classical approach, terms such as bi-
ased/unbiased estimators, confidence intervals, significance levels and p-values describe
the basic set of tools for performing the statistical inference. In the Bayesian approach,
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1.2. Classical versus Bayesian Statistics 5

all statistical inference is based on the posterior distribution and this entails some key
advantages as we describe next.

Point Estimation

Point estimation is an important subject since results are most often reported in this
form. In the classical approach, point estimates are computed by using various estima-
tors which loosely can be defined as mappings of the observations into a single point:
the estimate. However, it is not always clear which estimator to use for a particular
problem. Classical statisticians often struggle with the problem of deriving optimal es-
timators for the inference problem at hand. This is in general a very difficult task so the
search is often constrained to that of finding optimal unbiased estimators. Even in this
case, an optimal estimator does not always exist and, if it does, it may be hard to find
and/or infeasible to compute [Kay, 1993, p. 12+19-22]. In some cases, unbiased esti-
mators, despite having good statistical properties, also lead to non-sensible answers. A
prominent example of this is that the use of an unbiased covariance matrix estimate in a
power spectral estimation problem can lead to negative power spectral density estimates
which, for physical reasons, have zero probability. The estimators are often derived from
the likelihood function (also known as the sampling distribution) whose parametric form
is the same as the conditional distribution p(y|x) of Bayes’ theorem2. These estimators
are referred to as maximum likelihood estimators, and their popularity stems from the
fact that they are optimal unbiased and efficient estimators in the limit of an infinite
number of observations [Kay, 1993, p. 157]. An inspection of the scientific literature
confirms the importance and difficulty of point estimation within the classical frame-
work. The large majority of publications are concerned with deriving new estimators
and benchmarking their statistical performance against other estimators and bounds,
and entire books have been written with the purpose of finding good estimators (see,
e.g., [Stoica and Moses, 2005] and [Kay, 1993]) for different problems.

In the Bayesian approach, there is no need to search for good estimators since the
point estimates are derived from the posterior distribution and thus uniquely defined.
Or, as stated by David MacKay, an advocate of the Bayesian approach [MacKay, 2002,
p. 50]

There is no need to invent ’estimators’; nor do we need to invent criteria
for comparing alternative estimators with each other. Whereas orthodox
statisticians offer twenty ways of solving a problem, and another twenty
different criteria for deciding which of these solutions is the best, Bayesian
statistics only offers one answer to a well-posed problem.

2In the classical approach, the likelihood function is just a deterministic function and not a probabil-
ity distribution as in the Bayesian approach. Strictly speaking, it is therefore misleading to refer to the
conditional distribution as the likelihood function when using Bayesian inference methods. However,
in accordance with most of the literature, we adopt this naming convention anyway.
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Interval Estimation

In the classical approach, confidence intervals are used for describing intervals likely to
contain the value of an unknown parameter. The confidence level is used for quanti-
fying how likely the confidence interval is to contain the parameter. The confidence
level is often misinterpreted as the probability that the confidence interval contains the
true value of the unknown parameter [Bolstad, 2007, p. xxi]. This interpretation is
only valid when using the Bayesian approach to statistics in which case the confidence
interval is called the credible or posterior interval. The correct interpretation of the
confidence interval is that, for an infinite number of repetitions, a proportion (equal to
the confidence level) of the calculated confidence intervals contain the true value of the
parameter. In many typical cases, the numerical outcome of the confidence interval and
credible interval is the same; however, their interpretation is very different. The latter
is demonstrated in example 1.1.

Example 1.1 (Confidence Interval for a Constant in Uniform Noise)
Consider the case of an unknown constant A in zero-mean uniform noise, i.e.,

xn = A+ wn , wn ∼ U(−∆/2,∆/2) (1.3)

where the length of the interval ∆ is assumed known. We want to find a confidence
interval for the parameter A from N observations at some confidence level 1− α.

We write the confidence interval as (u(x), v(x)) where x is a vector containing the
N observations, and u(x) and v(x) are statistics which map the observations into the
lower and upper endpoints, respectively, of the confidence interval. These statistics
are not uniquely defined, but are often selected as points on the distribution of the
estimate of A at the significance level α. Using this approach, we first have to select
an estimate of A. One candidate could be the sample mean, but it can be shown to
have a larger variance than the estimator [Grachev, 1977]

Â =
min(x) + max(x)

2
(1.4)

which we therefore select as our estimator for A. From an analysis of the distribution
of Â at the significance level α, the confidence interval can be found to [Grachev, 1977](

Â− ∆
2

(1− N
√
α), Â+

∆
2

(1− N
√
α)
)
. (1.5)

Now, suppose we were given the N = 2 observations 0.4 and 0.9 for ∆ = 1 and were
asked to compute the 75 % confidence interval for A. Inserting these observations into
Eq. (1.5) yields the confidence interval (0.4, 0.9) for A with a confidence level of 75
%. By logic, however, this confidence interval must contain the true value of A with
probability one since the two observations are separated by at least ∆/2 (for these two
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1.3. Concluding Remarks 7

observations, the separation is exactly equal to ∆/2). This clearly underlines the fact
that we cannot interpret the confidence level as a probability interval.

For the case of N = 2, we could also compute a confidence interval in a more
heuristic way. Since, in the long run, the interval defined by the two observations con-
tains the true value of A with probability 0.5, the confidence interval (min(x),max(x))
has a confidence level of 50 %. If we observe the same two points as before, the con-
fidence interval would still contain the true value of A with probability one but even
so, according to classical statistics, we should report it as a 50 % confidence interval.
The numerical values of this interval are the same as in the previous case, but since
our choice of statistics, u(x) and v(x), is different, the confidence levels differ. This
highlights the importance of selecting appropriate estimators but also the fact that a
confidence interval is not fully specified if the statistics are not provided.

The Bayesian credible interval is derived from the posterior distribution and can
be interpreted as the probability of containing the true value of the parameter. This
illustrates once more the conceptual simplicity and power of the Bayesian approach; the
current knowledge is encapsulated in the posterior distribution, and statistical inference
is entirely based on computing statistical quantities from it.

Hypothesis Testing

Hypothesis testing is important for, e.g., model comparison. Given some observations
we could propose several hypothesis of the underlying model structure responsible for
the generation of the observations. We could, for example, propose sinusoidal models
of different model orders or an alternative structure such as an AR-model. In the
classical approach, the hypothesis are accepted or rejected at some significance level.
As in the case of interval estimation, the significance level cannot be interpreted as the
probability of the hypothesis being true. Instead it is the proportion of possible set
of observations which would be at least as extreme as the observed data set. Due to
the fact that hypothesis are accepted or rejected at some significance level, it is hard
to answer how much more probable one hypothesis is compared against one or more
alternative hypothesis [MacKay, 2002, p. 460]. Using the Bayesian approach, we can
answer this question by using a posterior probability distribution over the alternative
hypothesis. In this way, we can select the most probable model as well as access how
much more probable it is compared against the other models.

1.3 Concluding Remarks
Although the comparison of the classical and Bayesian approaches to statistical inference
is an important and interesting research area, it is not the topic of this thesis. The short
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comparison above barely scratched the surface of this subject3, and it only served as
a motivation for using the Bayesian approach to the problem of performing statistical
inference in the sinusoidal model. By doing so, we obtain some attractive advantages:

• There is no need to search for optimal estimators and compare them against vari-
ous bounds since the Bayesian approach offers the complete and optimal solution
in terms of the posterior distribution. This distribution is always obtained using
a single tool: Bayes’ theorem.

• The Bayesian approach allows us to interpret the reported statistics as probability
statements about the parameters using, e.g., credible intervals.

• In the case of model selection, we can derive probabilities for alternative hypothe-
sised models. Also, we avoid the problem of over-fitting which is a severe drawback
of the maximum likelihood method of the classical approach.

In the remaining of this thesis, we therefore adopt the Bayesian approach and apply it to
inference for the parameters of the dynamic sinusoidal model. This model formulation
is a generalisation of the static sinusoidal model in equation Eq. (1.1), and it allows
the amplitudes and phases to evolve according to an autoregressive process. Part I
of this thesis provides an introduction to the fundamentals of Bayesian thinking and
how the practical problems previously outlined are overcome by using various numerical
techniques. Equipped with these tools, we describe in part II how Bayesian inference is
performed for the parameters of the dynamic sinusoidal model.

3A more thorough discussion on the different approaches to statistics can be found in, e.g., [Jaynes,
2003, ch. 16-17], [Bolstad, 2007, ch. 9+12], [Bernardo and Smith, 1994, ap. B] and [MacKay, 2002, ch.
37].
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Chapter 2

Bayesian Inference

In this chapter, we give an introduction to the Bayesian approach to statistical infer-
ence. We begin with a presentation of Bayes’ theorem on which Bayesian inference is
based, and we give a description of the types of variables and probability distributions
constituting it. One of these probability distributions is the prior distribution which, as
discussed in the introduction, constitutes one of the key differences between the classi-
cal and Bayesian approaches. We describe various strategies for selecting it and outline
the basic terminology pertaining to it. A unique feature of the Bayesian approach is
that all inference is based on the posterior distribution. Therefore, we consider it and
derive some important point estimates from it. We also introduce the Bayesian pen-
dant to confidence intervals, the credible interval. Finally, we introduce Bayesian model
selection.

2.1 Bayes’ Theorem and Bayesian Terminology
As alluded in the introduction, Bayesian inference is based on a single fundamental tool:
Bayes’ Theorem. Before introducing it, however, we restate the two fundamental rules
of probability [Bishop, 2006, p. 14]

Sum rule: p(x) =
∫
p(x, y)dy (2.1)

Product rule: p(x, y) = p(x|y)p(y) (2.2)

where p(·, ·), p(·) and p(·|·) denote the joint, marginal and conditional distribution,
respectively. These two rules constitute the theoretical basis on which probability dis-
tributions are manipulated. Since p(x, y) = p(y, x), we obtain from the product rule

11
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12 Chapter 2. Bayesian Inference

Bayes’ Theorem in the general form as

p(x|y) =
p(y|x)p(x)

p(y)
. (2.3)

In the Bayesian framework, we know the value of y and wish to infer the value of
x. Assuming a probabilistic model for y’s dependence on x as well as independent
probabilistic models for x and y, Bayes’ Theorem is used for combining these terms into
a probabilistic model summarising the uncertainty about x given the known value y.

2.1.1 The General Data Model
In this thesis, we consider a specific setup in which we observe some data D which
originate from one of K modelsM1, · · · ,MK . For each of these K models, our setup
also includes several types of unknown variables and parameters which we for the k’th
model collectively denote as ϑk. Given the k’th model we therefore consider Bayes’
theorem as

p(ϑk|D,Mk) =
p(D|ϑk,Mk)p(ϑk|Mk)

p(D|Mk)
. (2.4)

Since this form is so fundamental to Bayesian inference, the distributions of Bayes’
theorem are assigned special names:

p(ϑk|Mk): Prior Probability Distribution
This term is one of the key differences between the classical and Bayesian ap-
proaches. It contains the knowledge of the unknown parameters ϑk before any
data D have been observed.

p(D|ϑk,Mk): Likelihood Function or Sampling Distribution
This term is frequently used in the classical approach where it is often denoted
as p(D;ϑk) or L(D;ϑk). It is a key element of the maximum likelihood method
where it is treated as a function of ϑk and not the data D [Box and Tiao, 1973,
p. 10]. In the Bayesian framework, it expresses the probability that a certain set
of parameters ϑk would have generated the observed data D.
p(ϑk|D,Mk): Posterior Probability Distribution
This term is a measure of how probable a particular set of parameters ϑk is given
the observation D. The posterior probability combines the prior information about
the parameters and the obtained information about these from observing the data
in an optimal way [Godsill and Rayner, 1998, p. 75]. In the Bayesian approach, all
statistical inference such as point and interval estimates is based on the posterior
distribution. This is in contrast to the classical approach in which the optimal
estimator depends on the inference problem.
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2.1. Bayes’ Theorem and Bayesian Terminology 13

p(D|Mk): Evidence
This term is a scale factor independent of the parameters ϑk. It is a measure of
the probability that we would observe a particular realisation D, and its primary
function is to ensure that the posterior probability integrates to one [Duda et al.,
2000, p. 23]. It is usually evaluated by marginalisation, i.e.,

p(D|Mk) =
∫
p(D|ϑk,Mk)p(ϑk|Mk)dϑk , (2.5)

and is in many situations infeasible to compute. Since the evidence is independent
of ϑk, it is used for model selection. From Bayes’ theorem we have

p(Mk|D) =
p(D|Mk)p(Mk)

p(D)
(2.6)

for every candidate model. Thus, the evidence acts as the likelihood for the model
selection inference problem.

In many cases, we wish to make inference about the parameters ϑk. Since the evidence
is independent of these parameters, it is a mere scale factor which only complicates the
inference problem. For this reason, Bayes’ theorem is often written as

p(ϑk|D,Mk) ∝ p(D|ϑk,Mk)p(ϑk,Mk) (2.7)

where ∝ indicates that the posterior distribution is proportional to the product of the
prior distribution and the likelihood. Example 2.1 makes use of this trick to simplify
Bayesian inference in a regression model.

Example 2.1 (Bayesian Regression in the Sinusoidal Model)
In this and the next chapter, we illustrate some of the key concept of analytical and
numerical Bayesian inference by use of simple but useful examples. In these examples,
we consider a special case of the sinusoidal model in Eq. (1.1) in which the phases and
log-damping coefficients are zero. Further, we assume the signal to be harmonic so
that the value of the l’th frequency ωl is l times the fundamental frequency ω, which
we assume to be known, i.e.,

xn =
L∑
l=1

αl cos(lωn) + wn , for n = 1, · · · , N (2.8)

This can be written in matrix-vector notation as

x =

x1

...
xN

 =

 cos(ω) · · · cos(Lω)
...

. . .
...

cos(ωN) · · · cos(LωN)


α1

...
αL

+

w1

...
wN

 , Aα+w . (2.9)
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14 Chapter 2. Bayesian Inference

In this example, we assume the noise variance σ2
w and the model order L to be known.

The observed data D is the vector x and we wish to find the posterior distribution for
the unknown parameters ϑ which is the L amplitudes in the parameter vector α.

To solve this inference problem, we first select a prior distribution p(α) for the
amplitudes. We select the Gaussian prior N (θ;µα,Σα) with known mean and covari-
ance. The reason for selecting this prior is discussed in section 2.2. From Eq. (2.9),
we see that the likelihood of the parameters given the data, p(x|α), is also Gaus-
sian distributed and given by N (x;Aα, σ2

wIN ). Using Bayes’ theorem in the form of
Eq. (2.7), we thus have

p(α|x) ∝ p(x|α)p(α) = N (x;Aα, σ2
wIN )N (α;µα,Σα) (2.10)

which by result B.1 yields the Gaussian posterior distribution N (α;µα|x,Σα|x) with
mean and covariance given by

µα|x = Σα|x(ATσ−2
w x+ Σ−1

α µα) (2.11)

= Σα
[
σ2
w(ATA)−1 + Σα

]−1

(ATA)−1ATx

+ σ2
w(ATA)−1

[
σ2
w(ATA)−1 + Σθ

]−1

µα (2.12)

Σα|x = (Σ−1
α + σ−2

w ATA)−1 . (2.13)

In Eq. (2.12) and Eq. (2.13), we have expanded the expression for the posterior mean
and highlighted the terms pertaining to the prior and likelihood in order to enable an
interpretation of the moments of the posterior distribution. From Eq. (2.12), we see
that the posterior mean is a weighted linear combination of the prior mean µα and the
least-squares estimate α̂LS = (ATA)−1ATx of the parameter vector. The weights are
determined by the covariance matrix of the prior and a covariance term that depends
on the noise variance as well as the particular structure of the data. If we factor the
prior covariances matrix as Σα = σ2

αΣ̃α, we obtain

lim
σ2

α→∞
µα|x = α̂LS . (2.14)

Thus, in the absence of any prior knowledge the posterior mean asymptotically equals
the least-squares estimate. The posterior precision matrix, i.e., the inverse posterior
covariance matrix, is from Eq. (2.13) seen to be a simple sum of the prior precision
matrix and the precision term of the noise variance as well as the particular structure
of the data. Again, if we increase the prior noise covariance, i.e.,

lim
σ2

α→∞
Σα|x = σ2

w(ATA)−1 , (2.15)

the posterior covariance is entirely determined from terms pertaining to the likelihood.
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As in example 2.1, we usually omit the explicit conditioning on the k’th model in
order to keep the notation as simple as possible. Instead, the conditioning on the k’th
model is implicit and follows from the context.

2.1.2 Types of Variables and Parameters
In the previous section, we collectively denoted all variables and parameters, which our
inference problem depends on, as ϑ1. This symbol represents several types of variables
and parameters such as latent (hidden) variables, model parameters, hyperparameters
and nuisance parameters. One variable can easily be a representative of several types of
variables at the same time and the classification of a variable into one or more of these
different types is not unique. However, it is still useful to define and use these types of
variables and assign special symbols to them.

Latent variables
A latent variable is a hidden or unobservable variable which is used in the descrip-
tion of the probability distributions for one or more observable variables [MacKay,
2002, p. 436]. Examples of latent variables are the noise terms in the sinusoidal
model, states of a state-space model or a hidden Markov model, and missing sam-
ples in a set of observations. Model parameters such as the mixing coefficients of
a Gaussian mixture model are also latent variables [Bishop, 2006, p. 430].

Model parameters
Although model parameters are latent variables, they are so important that we
use a separate symbol θ for denoting them. Model parameters are quantities that
constitute the variables of a certain model. For example, the model parameters
of the sinusoidal model in Eq. (1.1) are the L amplitudes, phases, log-damping
coefficients and frequencies as well as the noise variance. Most statistical inference
is concerned with deriving point estimates for the unknown model parameters.
In this thesis, we use the symbol θ for denoting unknown model parameters.
For example, θ = α in example 2.1 since the phases, log-damping coefficients,
frequencies and noise variance are known.

Hyperparameters
In a Bayesian framework, we assign prior distributions to the unknown model
parameters. The parameters of these prior distributions are referred to as hy-
perparameters and we denote them as φ. An example of hyperparameters are
the mean and variance of the Gaussian prior distribution of the amplitudes in
example 2.1. The choice of hyperparameters is an important subject in Bayesian
inference, especially in the case of few observations. Therefore, hyperpriors are

1We have omitted the subscript k in order to simplify notation. The conditioning on the k’th model
is thus implicit.
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16 Chapter 2. Bayesian Inference

sometimes assigned to the hyperparameters. We consider the selection of hyper-
parameters in more detail in section 2.2.

Nuisance parameters
In some situations, we are only interested in estimating a subset of desired pa-
rameters, say ϑd, of the unknown parameters. The uninteresting parameters are
referred to as nuisance parameters and denoted as ϑu. Thus, the total set of
unknown parameters is written as ϑ = {ϑd, ϑu}. Since we are only interested in
ϑd, the marginal posterior distribution p(ϑd|D) describes all we need to know in
order to make inferences about ϑd. This marginal posterior distribution can be
obtained from the complete posterior distribution p(ϑd, ϑu|D) through marginali-
sation. Thus, we simply use the sum rule in Eq. (2.1) for integrating the nuisance
parameters out, i.e.,

p(ϑd|D) =
∫
p(ϑd, ϑu|D)dϑu . (2.16)

The ability to remove nuisance parameters by integration is one the advantages
of the Bayesian approach. In the classical approach, no general method exists for
dealing with nuisance parameters [Kay, 1993, p. 329]. An example of performing
Bayesian inference in the presence of nuisance parameters is given in example 2.2.

Example 2.2 (Prediction in the Sinusoidal Model)
Consider the same signal model as in example 2.1. Instead of computing the posterior
distribution of the unknown model parameters θ, we wish to find the posterior dis-
tribution over an unobserved sample, say, at time index m. Since we are performing
prediction, the posterior distribution over the future sample is sometimes called the
posterior predictive distribution [Gelman et al., 2003, p. 8]. We denote this future
sample as zm. As in example 2.1, we do not know the amplitudes of the sinusoids.
Since we are only interested in making a prediction is this example, the amplitudes are
nuisance parameters for this particular inference problem. The total set of variables is
thus ϑ = {zm,θ,µθ,Σθ} where zm is a latent variable constituting the set of desired
parameters ϑd, θ contains the unknown model parameters and constitutes the set of
nuisance parameters ϑu, and φ = {µθ,Σθ} is the set of known hyperparameters.

By using Eq. (2.16), we obtain

p(zm|x) =
∫
p(zm,θ|x)dθ =

∫
p(zm|θ)p(θ|x)dθ (2.17)

where the last equality follows from the product rule in Eq. (2.2) and the fact that
zm is independent of x given θ. The future sample zm obeys the same model as
our observations x so zm ∼ N (zm;aTmα, σ

2
w) with aTm =

[
cos(ωm) · · · cos(Lωm)

]
.

The distribution p(θ|x) is the posterior distribution found in example 2.1 since θ = α.
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Therefore, by using result B.1, the posterior predictive distribution is

p(zm|x) =
∫
N (zm;aTmα, σ

2
w)N (α;µα|x,Σα|x)dα (2.18)

= N (zm;aTmµα|x, σ
2
w + aTmΣα|xam) . (2.19)

Thus, by using the Bayesian approach, we have enabled ourselves to perform prediction
without explicitly having to estimate the values of the nuisance parameter α.

2.2 The Prior Distribution
The use of a prior distribution for the unknown variables in the Bayesian approach is
one of the most fundamental differences as compared against the classical approach. In
example 2.1 and 2.2, we used a Gaussian prior for the unknown model parameters α
without motivating or justifying why we choose it or how we selected the value of the
hyperparameters. In most real life examples, we do not know neither the functional form
of the prior distribution nor the value of the corresponding hyperparameters for which
reason we have to base our choice on assumptions. These assumptions are based on
various factors such as physical considerations, degree of knowledge and, more contro-
versially, mathematical convenience. Since the posterior distribution depends on these
subjective assumptions, the Bayesian approach is often criticised as being too biased
[Bishop, 2006, p. 23]. On the other hand, the use of priors enables us to incorporate
actual prior knowledge in the inference process which would otherwise be impossible or
hard to do in the classical framework.

2.2.1 Informative and Conjugate Priors
An informative prior distribution is used when prior knowledge is available. For exam-
ple in the case of an unknown noise variance, then, for physical reasons, we would a
priori know that the noise variance is positive, and we should therefore choose a prior
distribution reflecting that. An important subclass of the informative priors is the con-
jugate priors. If the posterior distribution has the same functional form as the prior
distribution, then the prior distribution is said to be conjugate to the likelihood. As we
saw in example 2.1, the likelihood as well as the posterior and prior distributions were
Gaussian distributions so the conjugate prior for the Gaussian distribution with known
variance is also a Gaussian distribution. In example 2.3, we consider the case in which
the noise variance of the sinusoidal model is unknown and the amplitudes are known.
The conjugate prior in this case, is the inverse gamma distribution. One of the advan-
tages of using a conjugate prior is that it is easy to update the posterior distribution if
additional data are observed. In this case, the old posterior distribution, which is now
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18 Chapter 2. Bayesian Inference

the prior, is the conjugate to the likelihood, and the new posterior distribution thus
keeps the same functional form.

2.2.2 Non-informative Priors
In cases where there is no or vague prior knowledge, non-informative priors can be used.
Non-informative priors, also called diffuse priors, reflects this uncertainty by being very
flat so that they play a minimal role. As we saw in example 2.1, we would obtain a non-
informative prior by selecting the prior covariance matrix to be very large. In the limit
of infinite covariance, the prior distribution did not affect the moments of the posterior
distribution at all. In this limit, however, the prior distribution is not a valid probability
distribution since it does not integrate to one. These priors are called improper priors
and are often used in practice since, in many cases, the posterior distribution is still
proper [Gelman et al., 2003, p. 62], i.e., it integrates to one. However, care must be
taken when using improper priors. This is also demonstrated in example 2.3.

Example 2.3 (Bayesian Regression for an Unknown Noise Variance)
Consider again the sinusoidal model in example 2.1 but this time with known am-
plitudes and unknown noise variance. We wish to find the posterior distribution for
the noise variance. For physical reasons, the noise variance must be positive so we
should select a prior distribution with positive support. A convenient prior fulfilling
this property is the inverse gamma prior Inv-G(σ2

w; a, b) since it is the conjugate prior
for the Gaussian distribution with known mean and unknown variance. Using this
prior, we obtain

p(σ2
w|x) ∝ p(x|σ2

w)p(σ2
w) = N (x;Aα, σ2

wIN )Inv-G(σ2
w; a, b) (2.20)

which from result B.3 yields an inverse gamma distribution Inv-G(σ2; aσ2|x, bσ2|x) with
parameters

aσ2|x = a+N/2 (2.21)

bσ2|x = b+
1
2

(x−Aα)T (x−Aα) . (2.22)

If we let a → 0 and b → 0, the inverse gamma prior converges to the uniform distri-
bution U(0,∞) which is clearly improper. The posterior distribution, however, is still
proper in this limit. On the other hand, if we wish to compute the evidence, then
from result B.3 we have that

p(x) =
∫
p(x|σ2

w)p(σ2
w)dσ2

w = St(x;Aα,
b

a
IN , 2a) (2.23)

which is improper for an improper prior. In general, the evidence is always improper
for an improper prior [MacKay, 2002, p. 354].
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2.3 Summarising Inference
As we have stated several times and illustrated in a few examples, the posterior dis-
tribution optimally combines the prior information about unknown parameters with
the information about these gained from observing the data. Thus, the posterior dis-
tribution is the complete answer to the inference problem. In practice, however, the
statistical inference is often summarised and reported in terms of point estimates, in-
terval estimates or posterior odds. A point estimate is often needed in signal processing
applications, and it is an estimate of the unknown parameter vector ϑ and is often de-
noted as ϑ̂. The point estimate is typically derived by using a cost-function C(E), also
called a loss-function, which expresses the cost (or loss) incurred in selecting a particular
set of parameters as an estimate. That is,

C(E) = C(ϑ− ϑ̂) . (2.24)

Since the parameters are random variables, the error E is a random variable too, and that
leads to a cost-function with the intractable property that is depends on the particular
realisation of the parameters ϑ2 and observed data D. The remedy for this is the Bayes’
risk which measures the average cost and is defined as [Kay, 1993, p.343]

R(ϑ̂) = E{C(E)} =
∫ ∫

C(E)p(ϑ,D)dϑdD (2.25)

where the expectation is with respect to the joint distribution of ϑ and D.

2.3.1 The Minimum Mean Square Error and Maximum a Pos-
teriori Point Estimates

Two widely used Bayesian point estimators, the minimum mean square error (MMSE)
and the maximum a posteriori (MAP), can be derived by minimising the Bayes’ risk in
Eq. (2.25) for two particular choices of the cost-function. These choices are the quadratic
cost-function defined by

C(E) = |E|2 (2.26)

and the uniform cost-function defined by

C(E) =

{
1 |E| ≥ ε
0 |E| < ε

(2.27)

2Recall that the parameters are interpreted as random variables in the Bayesian framework
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which lead to the MMSE estimator and the MAP estimator, respectively. In order to
find these estimators, we first rewrite Eq. (2.25) by using the product rule in Eq. (2.2).
This yields

R(ϑ̂) =
∫ [∫

C(E)p(ϑ|D)dϑ
]
p(D)dD (2.28)

from which it is seen that the dependence on ϑ is confined to the inner integral. Since
p(D) ≥ 0, we can thus minimise the Bayes’ risk if the inner integral is minimised.
Performing this minimisation for the quadratic cost-function yields the MMSE estimator
as given by [Godsill and Rayner, 1998, p. 76]

ϑ̂MMSE = E{ϑ|D} =
∫
ϑp(ϑ|D)dϑ (2.29)

and for the uniform cost-function the MAP estimator as given by [Godsill and Rayner,
1998, p. 76]

ϑ̂MAP = arg max
ϑ

p(ϑ|D) . (2.30)

Thus, the MMSE estimator is the mean of the posterior distribution whereas the MAP
estimator is the mode, i.e., the maximum, of the posterior distribution as illustrated
in figure 2.1. Notice that the MAP estimator resembles the maximum likelihood (ML)
estimator in that it is a point estimate corresponding to the argument of the maximum
of a function that relates the unknown parameters and the observed data. In fact, it can
be shown that for an improper uniform prior distribution or an infinite large sample size
the MAP and the ML estimators yield the same estimate [Godsill and Rayner, 1998, p.
77].

σ2
w

p(σ2
w|x)

σ̂2
wMMSE

mean

σ̂2
wMAP

mode

lower 90 % credible interval

Figure 2.1: Illustration of the posterior inverse gamma distribution for the noise variance σ2
w of

example 2.3. The figure also shows the MMSE and MAP estimate as well as the lower 90 % credible
interval.
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2.3.2 Credible Intervals
The Bayesian pendant to confidence intervals of classical statistics is the credible or
posterior interval. It is often useful to use this for expressing the uncertainty associated
with a point estimate. As opposed to a confidence interval, a credible interval can be
interpreted as the probability that the true parameter is contained in the interval. The
credible interval it typically two-sided with equal tail areas, but it can also be one-
sided or even separated into two or more intervals [Gelman et al., 2003, pp. 38-39].
Figure 2.1 shows the lower 90 % probability interval of an inverse gamma distribution
and example 2.4 derives the credible interval for the constant in uniform noise previously
considered from a classical viewpoint in example 1.1.

Example 2.4 (Credible Interval for a Constant in Uniform Noise)
We return to the problem of deriving an interval estimate for an unknown constant
A in uniform noise previously considered in example 1.1. There, we used the classical
confidence interval for the interval estimation, but the results were counter-intuitive
and more or less useless. In this example, we derive the Bayesian credible interval for
A.

We select the prior distribution to be a uniform distribution centred at zero and
with a width of δ, i.e., p(A) = U(A;−δ/2, δ/2). By selecting δ to be very large, we
can make the uniform distribution non-informative so it plays a minimal role. The
likelihood for the n’th observation is also uniform and given by

p(xn|A) = U(xn;A−∆/2, A+ ∆/2) =

{
∆−1 for A−∆/2 < xn < A+ ∆/2
0 otherwise

.

(2.31)
By interchanging the roles of xn and A in this equation, we see that every observation
xn is the centre of an interval of non-zero probability in which A must lie. This is
illustrated in figure 2.2 for a few observations and for the prior. From Bayes’ theorem,
we have

p(A|x) ∝ p(x|A)p(A) =

[
N∏
n=1

U(xn;A−∆/2, A+ ∆/2)

]
U(A;−δ/2, δ/2) (2.32)

so the posterior probability equals zero if any of the uniform distribution equals zero.
In terms of figure 2.2, this means that the posterior probability is only non-zero in
the interval which is included in all of the uniform intervals. Thus, the posterior
distribution must also be a uniform distribution U(A; a, b) with

a = max(max(x)−∆/2,−δ/2) = max(x,∆/2− δ/2)−∆/2 (2.33)
b = min(min(x) + ∆/2, δ/2) = min(x,−∆/2 + δ/2) + ∆/2 . (2.34)
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We see that the posterior distribution is proper for an improper prior so we let δ →
∞. The mean of the resulting posterior distribution, i.e., the MMSE estimate, is
ÂMMSE = (a + b)/2 = (min(x) + max(x))/2 which is the same as the mean estimate
used in example 1.1. Thus, the Bayesian approach directly provides us with the
optimal estimator! The 75 % credible interval for the N = 2 observations, 0.4 and
0.9, can be derived directly from the posterior distribution. Thus, the 75 % central,
two-sided credible interval for A is (0.525, 0.775). Notice, that the 100 % credible
interval for A is (0.4, 0.9) whereas the confidence level for the confidence interval
with the same numerical values was only 75 % for the optimal mean estimator in
example 1.1. This underlines ones more that credible intervals can be interpreted
according to our intuition as true probability intervals whereas the interpretation of
the confidence intervals is much more subtle and based on long run frequencies of
hypothetical observations.

∆

p(A|x)

p(A)
p(xn;A)

a bx1 x3 x2 δ/2

Figure 2.2: Illustration of the prior distribution, likelihood function and posterior distribution for
N = 3 observations. The height of the individual likelihood functions are shifted a little around the
true height for illustrative purposes.

2.3.3 Posterior Odds
If we take two points from the posterior distribution, say, p(ϑ1|D) and p(ϑ2|D), the
ratio between them is the posterior odds. When using posterior odds, Bayes’ Theorem
takes a particular form given as

p(ϑ1|D)
p(ϑ2|D)︸ ︷︷ ︸

Posterior odds

=
p(D|ϑ1)
p(D|ϑ2)︸ ︷︷ ︸

Bayes’ factor

p(ϑ1)
p(ϑ2)︸ ︷︷ ︸

Prior odds

(2.35)

where Bayes’ factor is sometimes referred to as the likelihood ratio [Gelman et al.,
2003, p. 9]. Posterior odds are used in cases of discrete distributions and in particular
for hypothesis testing. An example of this is model selection in which the odds for
alternative candidate models with respect to a reference model are compared. This is
described in greater detail in the next section.
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2.4 Model Selection
So far, we have assumed the model Mk as known and focused on estimating the un-
known parameters ϑk of this model. In practical problems, however, the model is not
always known so it is necessary to perform inference about it. One example of this is
the problem of making prediction for unobserved observations Z which we considered
in example 2.2 for a known model. In the case of an unknown model, the posterior
predictive distribution is given by

p(Z|D) =
K∑
k=1

∫
p(Z, ϑk,Mk|D)dϑk (2.36)

=
K∑
k=1

p(Mk|D)
∫
p(Z|ϑk,Mk,D)p(ϑk|Mk,D)dϑk (2.37)

=
K∑
k=1

p(Mk|D)p(Z|Mk,D) (2.38)

which is a mixture distribution where the posterior predictive distribution given the
k’th model p(Z|Mk,D) is weighted with the posterior probability p(Mk|D) for this
model. In many cases, the full posterior predictive distribution is approximated by
making predictions from the single most probable predictive distribution. The problem
of selecting the most probable model, which is equivalent to the problem of finding the
largest p(Mk|D), is known as model selection [Bishop, 2006, p. 162].

The Bayesian approach provides a unified method for doing so by using Bayes’
theorem. The posterior probability for the k’th model is given by Eq. (2.6) and restated
here for easy reference

p(Mk|D) =
p(D|Mk)p(Mk)

p(D)
(2.39)

where p(Mk) and p(D|Mk) are the prior model probability and model evidence of
Eq. (2.4), respectively. Since the latter acts as the likelihood in Eq. (2.39) and as a
marginal distribution in Eq. (2.4), it is often referred to as the marginal likelihood.
In the case of a uniform prior distribution for the models, the marginal likelihood is
proportional to the posterior probability for the models and is thus all we need to know
in order to select the most probable model. Alternative models are often compared
using posterior odds considered in the previous section. From Eq. (2.35), we see that
the posterior odds are equal to Bayes’ factor for a uniform prior. Therefore, Bayes’
factor is often used for the model selection task.

As we have seen so far, the marginal likelihood plays a key role for model selection.
The marginal likelihood favours the simplest possible model that can explain the data
reasonably well. This is in contrast to the maximum likelihood method of classical
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statistics which suffers from over-fitting, i.e., that the model is fitted to the particu-
lar noise realisation contaminating the observations. To understand why the marginal
likelihood does not suffer from over-fitting, write it as

p(D|Mk) =
∫
p(D|ϑk,Mk)p(ϑk|Mk)dϑk (2.40)

which is the integral over the numerator of Eq. (2.4), i.e., the product of the likelihood
and prior for the parameters ϑk, which is proportional to the posterior distribution
of the parameters. Now, assume that the prior and the posterior distributions are
approximately uniform distributions with width ∆prior

ϑk
and ∆post

ϑk
, respectively, with

the posterior distribution centred on the MAP estimate of the parameters. Then, the
integral in Eq. (2.40) can be written as the approximation

p(D|Mk) ≈ p(D|ϑ̂kMAP ,Mk)
∆post
ϑk

∆prior
ϑk

(2.41)

and taking the logarithm yields

ln p(D|Mk) ≈ ln p(D|ϑ̂kMAP ,Mk) + ln
∆post
ϑk

∆prior
ϑk

. (2.42)

The two terms on the right hand side of the latter equation are the maximum value of
the log-likelihood function and a penalty term. The value of the log-likelihood function
increases for increasing model complexity whereas the width ∆post

ϑk
of the posterior

distribution decreases for increasing model complexity [Bishop, 2006, p. 163]. Thus,
the largest marginal likelihood is a trade-off between these to competing terms. Due
to the build in penalty term in the Bayesian model selection inference scheme, over-
fitting is not an issue. The model selection methods of classical statistics often mimics
the Bayesian counter part by introducing a similar penalty term as demonstrated in
example 2.5.

Example 2.5 (Maximum Likelihood and Bayesian Model Selection)
Consider the sinusoidal model first considered in example 2.1 but this time with un-
known amplitudes and noise variance. Suppose the number of sinusoids L is also
unknown and we are asked to make inference about it based on an observed data
set. Figure 2.3 shows an example for four alternative models Mk for k = 1, · · · , 4
with k specifying the number of sinusoids L. Using result B.4, the marginal posterior
distributions for the amplitudes and noise variance are calculated based on N = 20
observed data points. Every plot in the top row shows these data points, which span
four periods of the fundamental frequency, as well as a fit to the data based on the
mean of the posterior distribution for the amplitudes. The plots in the bottom row
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Figure 2.3: Bayesian fitting of sinusoidal model with unknown amplitudes and noise variance for four
alternative candidate models.

show the posterior distribution for the observation noise variance pertaining to the
four models. Clearly, the mode of the posterior distribution for the noise variance
decreases with an increasing number of sinusoids. It is not clear from the plots which
model best explains the observations. Therefore, we use the Bayesian approach for
comparing the alternative models. Before discussing this, however, we review the
maximum likelihood method for solving this problem.

Maximum Likelihood Method

In classical statistics, the fitting is often based on the maximum likelihood solution
(which for Gaussian noise is the same as the least squares solution given in exam-
ple 2.1). This solution is obtained by a maximisation of the likelihood function given
by

θ̂kML = arg max
θk

p(x;θk) (2.43)

where θk is a k+1 dimensional vector denoting the k amplitudes and the noise variance
for the k’th model. The maximum value of the likelihood function p(x; θ̂kML) increases
as a function of increasing model order so we cannot simply obtain an estimate of the
number of sinusoids by jointly maximising p(x;θk) with respect to both θk and k. If
we did so, the model with the largest number of free parameters would be selected due
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to the over-fitting property of the maximum likelihood method. Therefore, a penalty
term is often introduced which compensates for the over-fitting, i.e., [Stoica and Moses,
2005, p. 417]

J(k) = −2 ln p(x; θ̂kML) + (k + 1)η(k,N) (2.44)

where η(k,N) is the penalty coefficient. Two simple and popular choices for the
this coefficient are η(k,N) = 2 and η(k,N) = lnN which are known as the Akaike
information criterion (AIC) and Bayesian information criterion (BIC), respectively.
Figure 2.4 shows the value of J(k) for the same data points as in figure 2.3. The
figure also shows the case where the two criteria, AIC and BIC, are used. Both of
these criteria favours the third model which corresponds to the model with three
sinusoids. However, neither of these two criteria indicate how much more probable
M3 is compared against the other models. In general, the two criteria do not yield
the same answer which leads to the problem of choosing the best penalty term.

Bayesian Method

We assume the joint prior distribution for the amplitudes and noise variance to be
given by

p(θk) = p(αk, σ2
w,k) = p(αk|σ2

w,k)p(σ2
w,k) (2.45)

= N (αk;µαk , σ
2
w,kCαk)Inv-G(σ2

w,k, ak, bk) (2.46)

since it is the conjugate prior for the likelihood. From result B.4, we know that
the evidence (or marginal likelihood) is a student’s t-distribution given by p(x|k) =
St(x;Akµαk ,

bk
ak

(IN + AkCαkA
T
k ), 2ak) with φk = {ak, bk,µαk ,Cαk} being the

known hyperparameters for the noise variance and amplitudes of the k’th model. If we
assume a uniform prior over the four models and assign zero probability to all other
models, the posterior distribution for the number of sinusoids is given by Eq. (2.39).
Figure 2.5 shows this distribution for the data points of figure 2.3 as well as for N = 30
and N = 40 observed data points. For N = 20 data points, the model with three sinu-
soids is the most probable, but it is not much more probable than the model with two
sinusoids. Increasing the number observations also increases the posterior probability
for the model with three sinusoids.

If we were not willing to assign zero probability to all other models but the four of
figure 2.3 a priori, we would not be able to derive the posterior probabilities for the
four models directly. Instead, we could in this case use posterior odds for comparing
the four models.
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Figure 2.4: Different criteria for selecting between the alternative models in figure 2.3 using tools
from classical statistics.
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Figure 2.5: Posterior distributions for the number of sinusoids in the case of the N = 20 observations
in figure 2.3 as well as for N = 30 and N = 40 observations.
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2.5 Summary
In this chapter, we have revised the fundamentals of Bayesian inference and thinking.
As demonstrated through several examples, the Bayesian method basically boils down
to applying Bayes’ theorem on the inference problem whose answer is given in terms
of a posterior probability distribution. This distribution encapsulates and combines
in an optimal way the information gained from observing some data with the prior
knowledge of the unknown quantities, and it can be used for deriving statistics such as
point and interval estimates. There is no reason to search for other estimators or to
use performance bounds for the statistics since the Bayesian method offers the optimal
answer to the inference problem. This is the key strength of Bayesian statistics. The
major drawback of Bayesian statistics is that, except for the simple cases such as the
problems considered in the examples of this chapter, it is very hard or even impossible
to find the posterior distribution or its moments in closed form. The remedy for this
problem is to use various numerical techniques. We investigate some of these in the
next chapter.
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Chapter 3

Numerical Bayesian Inference

In chapter 2, we gave an introduction to the theoretical basis of Bayesian inference
and signal processing and demonstrated its applicability through several examples. In
all of these examples, we used Bayes’ theorem for deriving an analytical expression for
the posterior distribution of the interesting parameters or models. Unfortunately, it is
not possible in general to derive an analytical expression for the posterior distribution
and, as already discussed in the introduction, this has been the main drawback of the
Bayesian approach to statistical inference. This chapter discusses some of the solutions
to the practical problems that arise when analytical Bayesian inference is not feasible
or impossible. This is caused by the requirement to evaluate integrals needed for, e.g.,
computing expectations and for marginalisation of nuisance parameters. The main
difficulties, that prohibit analytical evaluation of these integrals, are highly complex
distributions, lack of closed-form solutions, and high dimensionality of the parameter
space [Bishop, 2006, pp. 461-462]. Therefore, alternative approximate methods have
been proposed and investigated in recent years, and they are generally partitioned into
two groups:

1. Deterministic methods which are based on analytical approximations by assuming
a particular parametric form or factorisation of the true distribution. For example,
a complex posterior distribution can be approximated by fitting another distribu-
tion to it from a subset of simpler distributions by using various optimisation
techniques. This is known as variational Bayesian inference.

2. Stochastics methods in which samples are drawn directly or indirectly from the
true posterior distribution. These samples then form a histogram which converges
to the true posterior distribution in the limit of infinitely many samples.

The deterministic methods never generate exact results but only approximate results.
This is in contrast to stochastic methods which converge to the exact result for an

29
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increasing amount of samples. On the other hand, the stochastic methods entail a
high computational complexity whereas the deterministic methods typically are more
efficient - especially for large and complex problems. In this thesis, we primarily focus
on the stochastic methods.

There exist several stochastic methods for approximate Bayesian inference with the
most dominating being the Monte Carlo methods and in particular an important sub-
class thereof known as Markov chain Monte Carlo (MCMC) methods. These methods
draw, say, T numerical samples y[τ ], for τ = 1, · · · , T , from a distribution p(y) in order
to evaluate the integral of the form [Bishop, 2006, p. 524]

E{f(y)} =
∫
f(y)p(y)dy (3.1)

by the approximation

f̂(y) =
1
T

T∑
τ=1

f(y[τ ]) . (3.2)

Notice, that the form of Eq. (3.1) is very general and can represent marginalisation
or expectation problems which are often encountered in Bayesian inference as already
alluded in the introduction of this chapter. For example, if p(y) is the posterior distri-
bution and f(y) = y, then f̂(y) = ŷ is the MMSE estimator. The approximation is
a classic unbiased and consistent estimator. Thus, the expected value of the estimator
is the true value, and the variance of the estimator decreases and approaches 0 as the
sample size T increases. If we therefore took an infinite sample size, there would not be
anything approximate about Monte Carlo methods. In practice, however, we have to
work with a finite sample size due to computational limitations.

3.1 Basic Sampling Techniques
A significant challenge of the Monte Carlo methods is that of drawing samples from some
known distribution. First of all, the samples must be truly random which is impossible
on a digital computer that produces pseudo-random numbers. Secondly, the samples
must be drawn according to some known distribution which can take on a large number
of forms, and we cannot in general assume that there exist an algorithm for that on the
computer. In our treatment of Markov chain Monte Carlo inference, we will therefore
begin with an investigation of two basic methods for drawing samples from some known
distribution.

Our discussion on the basic sampling techniques will be based on the assumptions
that we have access to an algorithm that can produce a random variate u sampled from
a uniform distributed on the interval [0, 1]. We also restrict ourselves to the univariate
case leaving the more complicated multivariate case to the Markov chain Monte Carlo
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sampling. This is justified by the fact that the basic sampling techniques are not suitable
for performing sampling in high dimensional problems [Bishop, 2006, p. 537].

3.1.1 Inverse Transform Sampling
In inverse transform sampling, the uniformly distributed random variable U is mapped
to the random variable Y through the relation Y = g(U). The mapping is such that
Y has the desired distribution p(y). In order to establish this mapping between the
random variables U and Y , we use the probability integral transform theorem [Devroye,
1986, p. 28]

U = F (Y ) =
∫ Y

−∞
p(η)dη (3.3)

where η is an integration variable. The theorem states that if Y is distributed according
to the distribution p(y) and has the cumulative distribution function F (y), then F (Y ) is
uniformly distributed on the interval [0, 1]. Thus, the inverse of the cumulative distribu-
tion function constitutes the desired mapping and we have that Y = F−1(U) = g(U)1.
Unfortunately, it is not always possible to find a closed-form solution for g(U) from
Eq. (3.3). Therefore, we have to resort to alternative techniques which we describe
next.

3.1.2 Rejection Sampling
We assume that the desired distribution p(y) is so complicated that we cannot use
inverse transform sampling for drawing sampling from it. Instead, we use a simpler
proposal distribution q(y) which satisfies kq(y) ≥ p(y) for all random variates y of
non-zero probability and which is feasible to sample from using, e.g., inverse transform
sampling. The algorithm is simple and summarised in algorithm 3.1.

Algorithm 3.1 (Rejection Sampling)
1. Select a proposal distribution q(y), which is feasible to sample from, satisfying
kq(y) ≥ p(y) for every y in the support for the desired distribution p(y).

2. Repeat for τ = 1, 2, 3, · · · , T
(a) Repeat until sample is accepted

i. Draw a candidate sample y∗ from the proposal distribution q(y).
ii. Draw a random variate u from the uniform distribution U(0, 1).

1A table of various functions g(·) for different desired distributions can be found in [Devroye, 1986,
p. 29].
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iii. Accept y∗ as a sample from p(y) if

u <
p(y∗)
kq(y∗)

.

Otherwise reject it.

(b) Set y[τ ] = y∗.

Figure 3.1 illustrates the idea of rejection sampling. We sample from the upper curve
q(y) and if that sample falls within the shaded area, we reject it. Since the purpose is
to generate accepted samples, we want to decrease the probability of rejecting a sample.
Intuitively, this is done by selecting a q(y) such that the shaded area is as small as
possible. The acceptance ratio is a measure of the expected proportion of samples that
are accepted, i.e.,

ηA =
∫

p(y)
kq(y)

q(y)dy =
1
k

∫
p(y)dy =

1
k
. (3.5)

Thus, since k > 1, maximising the acceptance ratio is equivalent to minimising k subject
to the constraint that kq(y) ≥ p(y).

y

p(y)

kq(y)

Figure 3.1: Illustration of rejection sampling which is used for drawing samples from the distribution
p(y) by sampling from the proposal distribution q(y) satisfying kq(y) ≥ p(y). The shaded area to the
total area under kq(y) indicates the proportion of rejected samples generated from q(y).
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3.2 Markov Chain Monte Carlo Sampling
The basic sampling methods described above are very useful for problems involving
distributions of low dimension, but for higher dimensional distributions they suffer from
severe limitations [Bishop, 2006, p. 537]. Markov chain Monte Carlo (MCMC) sampling,
however, has proven to be very versatile regardless of the dimension of the problem, and
it is therefore considered here. In MCMC sampling, samples are drawn from the desired
distribution p(y) by forming a Markov chain whose stationary distribution converges
to p(y). The most fundamental MCMC sampling technique is the Metropolis-Hastings
(MH) algorithm which resembles rejection sampling since samples are drawn from a
proposal distribution and accepted or rejected. An important special case of the MH-
algorithm is Gibbs sampling which we also consider. First, however, we give a short
review of Markov chains.

3.2.1 Markov Chains
A Markov random sequence is a random sequence whose samples satisfy the property
that, given the current state y[τ ], the future states are independent of the past states,
i.e., [Stark and Woods, 2001, p. 362]

p(y[τ+k]|y[τ ],y[τ−1], · · · ,y[1]) = p(y[τ+k]|y[τ ]) (3.6)

for some integers k > 0 and τ > 0. This property is called the Markov property. A
special case is the one-step case where k = 1 which we restrict ourselves to. If the states
{y[1], · · · ,y[τ+1]} are discrete-valued, then the Markov random sequence is referred to
as a Markov chain [Kay, 2005, p. 739]; however, the term is also sometimes used for
describing a Markov random process with a continuous state space.

The conditional distribution p(y[τ+1]|y[τ ]) on the right hand side of Eq. (3.6) is
for a continuous state space called the transition probability kernel and denoted as
T (y[τ+1]|y[τ ]). If the transition kernel does not change as a function of τ , the Markov
chain is homogeneous [Bishop, 2006, p. 540]. In the rest of this section, we assume
that the Markov chain is homogeneous and use the simpler notation T (y′;y) for the
transition kernel where y′ and y are generic variables representing the future state and
the current state, respectively. The marginal distribution of the current state p[τ ](y) is
called the state probability and is a function of τ . A homogeneous Markov chain is fully
specified by its initial state distribution and transition kernel.

The transition kernel relates two successive state distributions by

p[τ+1](y′) =
∫
T (y′;y)p[τ ](y)dy (3.7)

which is known as the Chapman-Kolmogorov equation [Stark and Woods, 2001, pp.
429-430]. Using this equation, we can find the state distribution at any time τ . In many
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applications involving Markov chains, the problem is to determine the stationary (or
invariant) distribution π(y), if it exists, which p[τ ](y) converges towards as τ increases,
i.e.,

π(y) = lim
τ→∞ p

[τ ](y) . (3.8)

For this distribution, the Chapman-Kolmogorov equation yields

π(y′) =
∫
T (y′;y)π(y)dy (3.9)

This equation may have zero, one or more solutions. If the Markov chain is reversible,
it satisfies the detailed balance property given by

p[τ ](y)T (y′;y) = p[τ ](y′)T (y;y′) . (3.10)

The detailed balance property is illustrated in figure 3.2 for a discrete state space and
univariate variable y. In the figure, y and y′ represents any two states that the samples
y[τ ] and y[τ+1] can be in. Reversibility of a Markov chain is a sufficient, but not necessary,
condition guaranteeing that p[τ ](y) = π(y) is a stationary distribution for the Markov
chain [Bishop, 2006, p. 540]. Finally, a Markov chain is ergodic if Eq. (3.8) is satisfied
for any initial state distribution. This means, that the Markov chain has only one
stationary distribution which the chain converges to from any initial state distribution.

y P [y[τ ] = y] y′P [y[τ ] = y′]

P [y[τ+1] = y|y[τ ] = y′]

P [y[τ+1] = y′|y[τ ] = y]

P [y[τ+1] = y|y[τ ] = y]

P [y[τ+1] = y′|y[τ ] = y′]

Figure 3.2: The property of detailed balance in a Markov chain with a finite number of discrete states.
When the product of the red probabilities equals the product of the blue probabilities for every pair of
states, the detailed balance property is fulfilled and stationarity of the Markov chain is ensured. The
dotted lines indicate that the shown states are a part of a larger set of states.

3.2.2 The Metropolis-Hastings Algorithm
The Metropolis-Hastings (MH) algorithm is the most general algorithm for performing
MCMC sampling, and other MCMC methods can be considered as a special case thereof
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[Liu, 2002, p. 105]. It requires that we know the posterior distribution p(y), that
we wish to draw samples from, up to some unknown normalisation constant Zp, i.e.,
p(y) = p̃(y)/Zp, and that we have some proposal transition kernel Q(y′;y) from which
we can easily draw samples. The MH-algorithm constructs, in a simple manner, a
Markov chain whose stationary state distribution is p(y). In order to explain why
the algorithm works, we use figure 3.2 even though it only illustrate the case for a
univariate variable y and a discrete state space. However, this special case is much
easier to illustrate.

The challenge in Markov chain theory is typically to determine, given the transition
probability kernel, the stationary distribution that the sequence of state distributions
converges to in case of convergence. Here, we face the opposite problem; we want to
determine the transition probabilities such that the sequence of state distributions con-
verges to the desired distribution p(y) that we know up to some normalisation constant.
From the detailed balance property, we know that if we can find a transition kernel that
fulfils the detailed balance property in Eq. (3.10), then convergence to the desired dis-
tribution is ensured, i.e., in terms of figure 3.2, the probability of being in state y and
then moving from state y to y′ is the same as being in state y′ and then moving from
state y′ to y. If we propose some random proposal transition kernel Q(y′;y), that we
draw samples from2, then the detailed balance property is most likely not fulfilled, and
we observe that we are, e.g., moving more often from state y to y′. This can be written
as

p(y)Q(y′;y) > p(y′)Q(y;y′) . (3.11)
In order to satisfy the detailed balance property, we are therefore forced to reduce the
number of moves from state y to y′. This can be obtained by introducing the new
bivariate distribution α(y′,y) yielding

α(y′,y)p(y)Q(y′;y) = p(y′)Q(y;y′) (3.12)

and solving for α(y′,y) yields

α(y,y′) =
p(y′)Q(y;y′)
p(y)Q(y′;y)

. (3.13)

In general, we cannot rely on that we select Q(y′;y) such that we move more often
from state y to y′ as we assumed in the inequality given by Eq. (3.11). Nevertheless,
we evaluate α(y′,y) in Eq. (3.13) when we are trying to move from state y to y′ and
take the following action:

• If α(y′,y) turns out to be greater than or equal to one, we make the move with
probability one since we are in a situation where it is more probable to move from
state y′ to y than from y to y′.

2Recall that the transition kernel is just a conditional distribution dependent on the current state.
We therefore assume that we can draw samples from it using one of the basic sampling algorithm
described in section 3.1.
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• If α(y′,y) turns out to be less than one, we make the move with probability
α(y′,y) since we are in a situation where it is more probable to move from state
y to y′ than from y′ to y.

Thus, the general expression for α(y′,y) can be summarised as

α(y′,y) = min
[
1,
p̃(y′)Q(y;y′)
p̃(y)Q(y′;y)

]
. (3.14)

where we have used the fact that we only know the desired distribution up to some
normalisation constant.

This concludes the derivation of the Metropolis-Hastings algorithm. A more thor-
ough introduction to it is given in [Chib and Greenberg, 1995]. The algorithm for the
Metropolis-Hastings algorithm is outlined in algorithm 3.2.

Algorithm 3.2 (Metropolis-Hastings Algorithm)
1. Initialise y[0].

2. Repeat for τ = 0, 1, 2, · · · , T
(a) Draw a candidate sample y∗ from the proposal transition kernel

Q(y;y[τ ]).

(b) Evaluate the probability of move given by

α(y∗,y[τ ]) = min
[
1,

p̃(y∗)Q(y[τ ];y∗)
p̃(y[τ ])Q(y∗;y[τ ])

]
where p̃(y) is the unnormalised desired distribution.

(c) Draw a random variate u[τ ] from the univariate uniform distribution
U(0, 1).

(d) If u[τ ] ≤ α(y∗,y[τ ]), then accept the sample y∗ as a sample from p(y)
and set y[τ+1] = y∗. Otherwise reject y∗ as a sample from p(y) and set
y[τ+1] = y[τ ].

The outlined algorithm does not put any restrictions on the choice of proposal tran-
sition kernel Q(y′;y). No matter the choice of proposal kernel, the MH algorithm guar-
antees that the desired distribution p(y) is the stationary distribution of the Markov
chain. The convergence rate, however, is affected by the choice of proposal distribution.
A common choice is a multivariate Gaussian centred on the current state and with vari-
ance selected as a trade-off between correlation time and rejection rate [Bishop, 2006,
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pp. 541-542]. Due to the convergence time, the first samples cannot be seen as samples
from the stationary distribution of the underlying Markov chain and are thus discarded.
These initial samples are referred to as burn-in samples and the convergence time is
referred to as burn-in time. The MH-algorithm is demonstrated in example 3.1.

Example 3.1 (Bayesian Inference using the Metropolis-Hastings Algorithm)
In this example, we again consider the sinusoidal model introduced in example 2.1.
For illustrative purposes, the signal in this example only consists of one sinusoid
with known frequency and unknown amplitude. The noise variance is also unknown
so the unknown model parameters are θ =

[
α σ2

w

]T . The prior distributions for
these model parameters are the same as in example 2.5, i.e., p(θ) = p(α, σ2

w) =
N (α;µα, σ2

wcα)Inv-G(σ2
w, a, b). We consider the problem of making inferences for the

joint posterior distributions for the amplitude and noise variance, i.e., p(θ|x). It is
given by the factorisation

p(θ|x) ∝ p(x,θ) = p(x|θ)p(θ) (3.15)

= N (x;Aα, σ2
w)N (α;µα, σ2

wcα)Inv-G(σ2
w; a, b) . (3.16)

Therefore, we can easily evaluate p(θ|x) up to a normalisation factor as required by
the MH-algorithm.

Suppose we are given a data set of N = 20 observations with a true, but unknown
amplitude and noise variance of α = 1 and σ2

w = 0.5, respectively. In order to apply the
MH-algorithm on these data, we have to specify a proposal transition kernel Q(θ,θ[τ ]),
from which we can easily draw samples, and we have to make and initial guess of the
model parameters θ. The proposal transition kernel is selected to be a bivariate
Gaussian distribution centred on the current state with isotropic covariance with the
variance term σ2 = 0.1, i.e.,

Q(θ,θ[τ ]) = N (θ;θ[τ ], σ2I2) . (3.17)

The initial state of the Markov chain was set to θ[0] =
[
2 0.1

]T . T = 100, 000 samples
were drawn using the MH-algorithm in algorithm 3.2, and the results are shown in
figure 3.3.

The middle plot shows three contours of the Gaussian-inverted gamma distribution
and the trace of the first 100 samples generated by the MH-algorithm. The proposed
samples, which were rejected, are shown as red dotted lines. Starting from the initial
state of the Markov chain θ[0], a proposed move to θ∗ =

[
1.98 0.04

]T is rejected.
Therefore, the state θ[1] of the Markov chain equals the initial state θ[0]. The next
proposed move is accepted and the Markov chain jumps to the state θ[2]. In the figure,
we see the trace of moves until the state given by θ[100]. The green circles centred on
this state show the 0.1 and 0.9 probability regions of the proposal transition kernel
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Q(θ,θ[100]). Thus, with a probability of 0.1 the next proposed move lies inside the
inner circle and inside the outer circle with a probability of 0.9. This illustrates that the
successive samples generated by the MH-algorithm are correlated and that the degree
of correlation depends on the variance of the proposal distribution. However, if we
increase the variance of the proposal, a larger fraction of proposed moves are rejected.
The key property of a good proposal distribution is therefore to find a distribution
which results in a good trade-off between acceptance ratio and correlation time.

The top and right plots of figure 3.3 show the (analytical) marginal distributions
and histograms for the amplitude and noise variance, respectively. The histograms are
computed from all of the 100,000 samples except for the burn-in samples. The burn-
in length was set to 100. We see that the histograms coincide with the (analytical)
marginal distributions so the samples obtained using the MH-algorithm are indeed
samples from the desired joint and marginal posterior distributions.

3.2.3 The Gibbs Sampler
Gibbs sampler is the most widely used MCMC method, and it can be seen as a special
case of the Metropolis-Hastings algorithm. It partitions the multivariate sampling from
the desired distribution p(y) = p(y1,y2, · · · ,yk) into lower dimensional sampling of the
k conditional distributions given by

p(y1|y2, · · · ,yk)
p(y2|y1,y3 · · · ,yk)
...

p(yi|y1, · · · ,yi−1,yi+1, · · · ,yk)
...

p(yk|y1, · · · ,yk−1) .

The conversion from a distribution of high dimensionality into a series of distribution
of lower dimensionality enables the use of the basic sampling methods described in
section 3.1.

At each iteration of the Gibbs sampler, we cycle through the set of conditional distri-
butions and draw one sample from each. When a sample is drawn from one conditional
distribution, the succeeding distributions are updated with the new value of that sample.
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0 0.5 1 1.5 2
0

0.5

1

θ[0]

θ[1]

θ[2]
θ[100]

α

σ
2 w

0
0.5

1
1.5

2

p
(α

|x
)

0 1 2 3
p(σ2

w|x)

Figure 3.3: Illustration of the MH-algorithm for drawing samples from a Gaussian-inverted gamma
distribution. The trace of the first 100 samples (blue curve) are shown on top of contour plots (black)
of the Gaussian-inverted gamma distribution. The red dotted lines indicate the rejected samples. The
green circles centred on θ[100] are the boundaries of the 0.1 and 0.9 probability regions of the proposal
transition kernel. The plots in the margin show the analytical marginal distributions as well as the
histograms based on 100,000 samples.

This yields the following drawings at the τ ’th iteration

y
[τ+1]
1 ∼ p(y1|y[τ ]

2 , · · · ,y[τ ]
k )

y
[τ+1]
2 ∼ p(y2|y[τ+1]

1 ,y
[τ ]
3 , · · · ,y[τ ]

k )
...

y
[τ+1]
i ∼ p(yi|y[τ+1]

1 , · · · ,y[τ+1]
i−1 ,y

[τ ]
i+1, · · · ,y[τ ]

k )
...

y
[τ+1]
k ∼ p(yk|y[τ+1]

1 , · · · ,y[τ+1]
k−1 ) .

Since we sample from the desired distribution, the detailed balance property is fulfilled
and we do not have to reject any samples. Like the Metropolis-Hastings algorithm,
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however, the Markov chain of the Gibbs sampler needs some initial transient period
to converge to the desired stationary distribution. The Gibbs sampler is outlined in
algorithm 3.3 and demonstrated in example 3.2.

Algorithm 3.3 (Gibbs Sampler)
1. Determine expressions for the conditional distributions

p(yi|y1, · · · ,yi−1,yi+1, · · · ,yk)

of the unknown variables for i = 1, · · · , k.
2. Initialise y[0]

i for i = 2, · · · , k.
3. Repeat for τ = 0, 1, 2, · · · , T

(a) Draw samples from the conditional distributions in an alternating pat-
tern. Once a new sample is drawn, it is immediately substituted into the
future conditional distributions

y
[τ+1]
1 ∼ p(y1|y[τ ]

2 , · · · ,y[τ ]
k )

y
[τ+1]
2 ∼ p(y2|y[τ+1]

1 ,y
[τ ]
3 , · · · ,y[τ ]

k )
...

y
[τ+1]
k ∼ p(yk|y[τ+1]

1 , · · · ,y[τ+1]
k−1 ) .

Example 3.2 (Bayesian Inference using the Gibbs Sampler)
Consider the same setup as in example 3.1. In this example, we use the Gibbs sampler
for drawing samples from the joint posterior distribution p(θ|x). Unlike the MH-
algorithm, we do not have to specify a proposal distribution. Instead, we have to
derive expressions for the conditional distributions p(α|σ2

w,x) and p(σ2
w|α,x). Using

result B.1, B.3 and B.4, we obtain from Eq. (3.16) that

p(α|σ2
w,x) = N

(
α; (c−1

α +ATA)−1(ATx+ c−1
α µα), σ2

w(c−1
α +ATA)−1

)
(3.19)

p(σ2
w|α,x) = Inv-G

(
σ2
w; a+

N + 1
2

, b+
1
2

(x−Aα)T (x−Aα) +
(α− µα)2

2cα

)
(3.20)

which we are able to sample from. Each iteration of the Gibbs sampler in algorithm 3.3
involves taking a sample from these two distributions given the previous samples. If
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we use the same initial state θ[0] as in example 3.1, we therefore first draw a sample
from p(α|σ2

w
[0]
,x). This is shown in figure 3.4 as the horizontal move from θ[0] to

the intermediate state
[
α[1] σ2

w
[0]
]T

. The second step of the first iteration of Gibbs

sampler is to draw a sample from p(σ2
w|α[1],x). This corresponds to the vertical move

from the intermediate state to θ[1]. The second iteration also consists of a horizontal
and vertical move and ends in θ[2]. The figure shows the trace of the first 25 of such
moves along with the histograms based on 100,000 samples with the first 100 samples
removed as burn-in samples.

The clear advantages of the Gibbs sampler as compared against the MH-algorithm is
that no proposal distribution is required, that no samples are rejected, and that we can
break the sampling process down to a series of lower dimensional samplings processes.
The latter often reduces the computational complexity significantly. Unfortunately,
the conditional distribution used in the Gibbs sampler are not always easy to sample
from. In this case, the MH-algorithm can be used within the Gibbs sampler for drawing
samples from the intractable distribution [Gelman et al., 2003, p. 292]. Later in this
thesis, we make use of this hybrid sampling scheme.

3.3 Model Selection
A significant challenge in Bayesian inference is to compute the value of the normalisation
constant Zp relating the normalised distribution p(y) by the unnormalised distribution
p̃(y) through

p(y) =
1
Zp
p̃(y) . (3.21)

Integrating both sides of this equation with respect to y readily yields that the normal-
isation constant is given by

Zp =
∫
p̃(y)dy . (3.22)

In applications such as model selection, as already encountered in section 2.4, it is
important to compute the value of Zp since it represents the model evidence p(D|Mk).
The unnormalised distribution p̃(y) is in this case the product of the likelihood and the
prior distribution for the parameters. Thus, Eq. (3.22) is for the case of model selection
given by

p(D|Mk) =
∫
p(D|ϑk,Mk)p(ϑk|Mk)dϑk . (3.23)

When it is not possible to compute the normalisation constant using analytical tools, the
numerical techniques discussed in this chapter can be used. This can be seen by com-
paring Eq. (3.23) with Eq. (3.1). These two equations have the same form so the basic
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Figure 3.4: Illustration of drawing samples from a Gaussian-inverted gamma distribution using the
Gibbs sampler. The trace of the first 25 samples (blue curve) are shown on top of contour plots (black)
of the Gaussian-inverted gamma distribution. The plots in the margin show the analytical marginal
distributions as well as the histograms based on 100,000 samples.

sampling techniques as well as MCMC-based sampling techniques can be used for the
computation of the model evidence p(D|Mk). Special MCMC-based algorithms have
also been introduced for computing the model evidence. Two of these are the Chib’s
algorithm [Chib, 1995], which is based on the Gibbs sampler, and the reversible jump
MCMC (RJMCMC) [Green, 1995]. It is beyond the scope of this thesis to present these
methods. Instead, we consider two simple approximate ways of computing the normal-
isation constant: The Laplace approximation and the Bayesian information criterion
(BIC).

3.3.1 The Laplace Approximation
The Laplace approximation is based on approximating p(y) by a Gaussian distribution
q(y) centred on a mode of p(y). We denote this mode as y0. The covariance of the
Gaussian distribution is found by using a second order Taylor expansion of the logarithm
of the unnormalised distribution p̃(y). This yields [Petersen and Pedersen, 2008, p. 58]
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ln p̃(y) ≈ ln p̃(y0) + gT (y0)(y − y0) +
1
2

(y − y0)TH(y0)(y − y0) (3.24)

where

g(y0) =
∂ ln p̃(y)
∂y

∣∣∣∣∣
y=y0

(3.25)

H(y0) =
∂2 ln p̃(y)
∂y∂yT

∣∣∣∣∣
y=y0

(3.26)

are the gradient and Hessian of ln p̃(y), respectively. Since y0 is the mode, the gradient
is a zero vector at y0. Thus, if we define Λ = −H(y0), then Eq. (3.24) can be written
as

ln p̃(y) ≈ ln p̃(y0)− 1
2

(y − y0)TΛ(y − y0) (3.27)

The second term of the right hand side of this equation has the same form as the expo-
nent of the exponential in the Gaussian distribution. Thus, if we take the exponential
on both sides, we obtain

p̃(y) ≈ p̃(y0) exp
{
−1

2
(y − y0)TΛ(y − y0)

}
∝ q(y) = N (y;y0,Λ−1) . (3.28)

The inverse covariance matrix Λ is referred to as the precision matrix. Using the
approximation in Eq. (3.28), we can easily compute the normalisation factor in Eq. (3.22)
as

Zp ≈
∫
p̃(y0) exp

{
−1

2
(y − y0)TΛ(y − y0)

}
dy = p̃(y0)(2π)D/2|Λ|−1/2 (3.29)

where D is the dimensionality of y.
For model selection, p̃(y0) = p(D, ϑ̂kMAP |Mk) = p(D|ϑ̂kMAPMk)p(ϑ̂kMAP |Mk) and

the Laplace approximation of the model evidence in Eq. (3.23) is therefore

ln p(D|Mk) ≈ ln p(D|ϑ̂kMAP ,Mk) + ln p(ϑ̂kMAP |Mk) +
D

2
ln 2π − 1

2
ln |Λ| . (3.30)

The first term of this equation is the log-likelihood, which grows with increasing model
complexity, whereas the last three terms are penalty terms that decrease with increasing
model complexity.
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3.3.2 The Bayesian Information Criterion
The Bayesian information criterion (BIC) is a further simplification of the Laplace
approximation. If the number of samples N is very large, the Hessian matrix Λ grows
as NΛ0 for some fixed Λ0. We can therefore write

ln |Λ| ≈ ln |NΛ0| = lnND|Λ0| = D lnN + ln |Λ0| . (3.31)

If we assume the prior distribution to be flat, and only keep the terms that depend on
N , we obtain the BIC from Eq. (3.30) as

ln p(D|Mk) ≈ ln p(D|ϑ̂kMAP ,Mk)− D

2
lnN . (3.32)

Since the BIC assumes a flat prior, the MAP estimate coincides with the maximum
likelihood estimate from classical statistics. As we have already seen in Eq. (2.44) in
example 2.5, the BIC is also used for model selection in the classical framework.

3.4 Summary
In this chapter, we have presented the most fundamental numerical techniques for draw-
ing samples from arbitrary probability distributions. This is a very important topic in
Bayesian statistics since analytical solutions to inference problems cannot always be
computed. In general there exist two numerical inference techniques: the deterministic
methods and the stochastic methods, and we focused on the latter. We introduced in-
verse transform sampling and rejection sampling as two simple ways of sampling from
low-dimensional distributions. For sampling in higher dimensions, these methods suf-
fer from severe limitations for which reason we looked into Markov chain Monte Carlo
techniques. In this connection, we presented the Metropolis-Hastings algorithm and
the Gibbs sampler, which are the most popular MCMC-based sampling techniques, and
we demonstrated their applicability to Bayesian inference by using two small-scale ex-
amples. Finally, we looked at methods for computing the normalisation constant of
an unnormalised distribution. This is an important problem for model selection, and
we presented two popular approximate techniques: the Laplace approximation and the
Bayesian information criterion. In the next chapter, we apply some of the introduced
techniques on sinusoidal frequency estimation. This is an example of an important real
world application in which analytical inference is impossible in general.
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Chapter 4

Case Study: Bayesian Inference
for the Frequency

In the last two chapters, we have presented the basic methods for making analytical and
numerical Bayesian inference. We demonstrated these methods through several exam-
ples on a simplified version of the static sinusoidal model first introduced in Eq. (1.1).
In all of these examples, we assumed the frequency as known. Although this assumption
does not reflect the state of knowledge in most real world applications, it was necessary
in order to enable analytical inference. In this chapter, we assume the much more re-
alistic (and interesting) scenario in which the frequency is unknown, and we focus on
making Bayesian inference about it. Specifically, we consider the model

xn = α cos(ωn+ ϕ) + wn , for n = 1, · · · , N (4.1)

where the amplitude α, phase ϕ and frequency ω are all unknown and the white Gaussian
noise term has unknown variance σ2

w. Notice, that we are restricting ourselves to the case
of a single sinusoid for illustrative purposes. As compared to the general static sinusoidal
model in Eq. (1.1), we have also assumed the log-damping coefficient to be zero. This is a
quite common assumption and this is also assumed in most Bayesian inference schemes
for the frequency. In this chapter, we present two of these inference schemes which
are based on the Gibbs sampler [Dou and Hodgson, 1995] and the Metropolis-Hastings
algorithm [Andrieu and Doucet, 1999], respectively. Both of these schemes are based
on a reformulated version of Eq. (4.1) given by

xn = β1 cos(ωn) + β2 sin(ωn) + wn , for n = 1, · · · , N (4.2)

where α =
√
β2

1 + β2
2 and ϕ = − arctan(β2/β1). In vector notation, we write this as

x = Dβ +w (4.3)

45
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46 Chapter 4. Case Study: Bayesian Inference for the Frequency

where we define

x ,
[
x1 · · · xN

]T (4.4)

D ,
[
d1 d2

]
(4.5)

d1 ,
[
cos(ω) · · · cos(ωN)

]T (4.6)

d2 ,
[
sin(ω) · · · sin(ωN)

]T (4.7)

β ,
[
β1 β2

]T (4.8)

w ,
[
w1 · · · wN

]T
. (4.9)

Since we focus on the inference for the frequency ω, we treat the amplitude β and noise
variance σ2

w as nuisance parameters.

4.1 Inference based on a Gibbs Sampler
We begin by presenting the approach based on Gibbs sampler given in [Dou and Hodg-
son, 1995]. The full joint posterior distribution for the unknown model parameters is
by Bayes’ theorem given by

p(β, ω, σ2
w|x) ∝ p(x|β, ω, σ2

w)p(β, ω, σ2
w) . (4.10)

In [Dou and Hodgson, 1995], the prior distribution for the unknown parameters are
assumed to be an improper prior proportional to the inverse noise variance, i.e., that
p(β, ω, σ2

w) ∝ p(σ2
w) ∝ σ−2

w , which we also assume. Since the noise is Gaussian dis-
tributed, we can therefore write the full joint posterior distribution as

p(β, ω, σ2
w|x) ∝ (σ2

w)−N/2 exp
{ −1

2σ2
w

(x−Dβ)T (x−Dβ)
}
σ−2
w . (4.11)

The marginal posterior distribution for the frequency can be found by marginalising the
full joint posterior distribution, i.e.,

p(ω|x) =
∫
p(β, ω, σ2

w|x)dβdσ2
w . (4.12)

Although this marginalisation can be performed analytically for a single sinusoid, it
cannot be done for the more general case of multiple sinusoids where we wish to compute,
say, p(ωl|x). In [Dou and Hodgson, 1995] a solution to this problem is proposed based
on the Gibbs sampler consisting of three conditional distributions from which samples
are drawn. These three conditional distributions are

Amplitude: p(β|ω, σ2
w,x)

Noise variance: p(σ2
w|ω,β,x)

Frequency: p(ω|β, σ2
w,x)
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and derived below.

Marginal Distribution for the Amplitude

If the frequency and noise variance are assumed known, the conditional distribution for
the amplitude is

p(β|ω, σ2
w,x) ∝ p(β,x|ω, σ2

w) = p(x|β, σ2
w, ω)p(β|ω, σ2

w) (4.13)

∝ p(x|β, σ2
w, ω) ∝ N

(
β; β̂, σ2

w(DTD)−1
)

(4.14)

where the last step follows from result B.1 and β̂ = (DTD)−1DTx. Thus, we can
obtain samples for the amplitude conditioned on the frequency and the noise variance
by sampling the bivariate Gaussian distribution1.

Marginal Distribution for the Noise Variance

If the amplitude and frequency are assumed known, the conditional distribution for the
noise variance is

p(σ2
w|ω,β,x) ∝ p(σ2

w,x|ω,β) = p(x|ω,β, σ2
w)p(σ2

w) ∝ N (x;Dβ, σ2
wIN )σ−2

w (4.15)

∝ Inv-G
(
σ2
w;N/2,

1
2

(x−Dβ)T (x−Dβ)
)

(4.16)

where the last step follows from result B.3.

Marginal Distribution for the Frequency

We cannot derive the conditional distribution for the frequency by following the same
procedure as above since this results in a non-standard conditional distribution for the
frequency

p(ω|β, σ2
w,x) ∝ exp

{ −1
2σ2

w

(x−Dβ)T (x−Dβ)
}

(4.17)

which we cannot sample from directly. To overcome this problem, [Dou and Hodgson,
1995] propose making the Laplace approximation to this distribution as described in
section 3.3.1, i.e., we approximate p(ω|β, σ2

w,x) by a Gaussian distribution. Thus, we
first find the MAP estimate of the frequency ω̂MAP as the frequency ω minimising

J(ω) = (x−Dβ)T (x−Dβ) . (4.18)
1This bivariate conditional distribution can also be broken down into two univariate Gaussian dis-

tributions or marginalised w.r.t the noise variance yielding a student’s t-distribution. See [Dou and
Hodgson, 1995] for details.
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48 Chapter 4. Case Study: Bayesian Inference for the Frequency

This is a nonlinear least-squares problem, and the MAP estimate is the mean of the
Gaussian we use for the approximation. Secondly, we find the Hessian of ln p(ω|β, σ2

w,x)
evaluated at ω̂MAP as [Dou and Hodgson, 1995]

H(ω̂MAP) = −β
T Ḋ

T
Ḋβ

σ2
w

∣∣∣∣∣
ω=ω̂MAP

, − 1
σ2

(4.19)

where Ḋ = ∂
∂ωD and σ2 is the variance of the Gaussian we use for the approximation.

The Laplace approximation of the conditional distribution of the frequency is therefore
given by

p(ω|β, σ2
w,x) ≈ N (ω; ω̂MAP, σ

2) (4.20)
from which we can easily draw samples.

The Gibbs sampling algorithm as proposed in [Dou and Hodgson, 1995] is sum-
marised in algorithm 4.1.

Algorithm 4.1 (Gibbs Sampler for Frequency Estimation)
1. Initialise σ2

w
[0] and ω[0]

2. Repeat for τ = 0, 1, 2, · · · , T
(a) Draw a sample for the amplitude

β[τ+1] ∼ N
(
β; β̂

[τ ]
, σ2
w

[τ ]
(D[τ ]TD[τ ])−1

)
where β̂

[τ ]
= (D[τ ]TD[τ ])−1D[τ ]Tx andD[τ ] denotes thatD is evaluated

using ω[τ ].
(b) Draw a sample for the noise variance

σ2
w

[τ+1] ∼ Inv-G
(
σ2
w;N/2,

1
2

(x−D[τ ]β[τ+1])T (x−D[τ ]β[τ+1])
)
.

(c) Find the MAP estimate of the frequency ω̂[τ+1]
MAP by minimising

J(ω) = (x−D[τ ]β[τ+1])T (x−D[τ ]β[τ+1])

w.r.t. ω.
(d) Draw sample for the frequency

ω[τ+1] ∼ N (ω; ω̂[τ+1]
MAP , σ

2[τ+1]
)

where σ2 is given by Eq. (4.19).
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There are two serious drawbacks of this algorithm. First of all, it is only an ap-
proximate Bayesian inference scheme since we use the Laplace approximation in order
to enable sampling for the frequency parameter. Secondly, step c) of the algorithm is
highly intractable since it involves minimisation of a sharply peaked multimodel cost
function which cannot be computed in closed form [Stoica and Moses, 2005, p. 159]. In
part II of this thesis, we develop a similar inference scheme based on the Gibbs sampler
but avoiding both of these drawbacks.

4.2 Inference Based on the Metropolis-Hastings Algo-
rithm

As we saw in the approach based on the Gibbs sampler, it was only approximate due to
the use of the Laplace approximation to the conditional distribution for the frequency.
In the more recent paper [Andrieu and Doucet, 1999], this is avoided by using the
Metropolis-Hastings inference scheme instead of the Gibbs sampler. In the paper, the
full joint posterior distribution for the unknown frequency, amplitude and noise variance
is again given by Eq. (4.10). The prior distribution, however, is assumed to factor as

p(β, ω, σ2
w) = p(β|σ2

w, ω)p(σ2
w)p(ω) (4.25)

= N (β; 0, σ2
wΣβ)Inv-G(σ2

w; a, b)U(ω; 0, π) (4.26)

where Σβ = g(DTD)−1. The scalar g can be interpreted as the expected signal-to-
noise ratio (SNR) [Andrieu and Doucet, 1999]. The particular form of the prior for
p(β, σ2

w|ω) = p(β|σ2
w, ω)p(σ2

w) corresponds to the Zellner’s g-prior [Zellner, 1986] which
is a special case of the prior distribution considered in example 2.5 and section B.3. The
assumed factorisation of p(β, ω, σ2

w) can be obtained using a maximum entropy method
[Andrieu and Doucet, 1999], i.e., the assumed factorisation is the least subjective prior
distribution in the case of little or no prior knowledge.

A convenient property of this prior is that it allows us to integrate the nuisance
parameters β and σ2

w out of the full joint posterior distribution. To see this, first
consider the full joint posterior distribution

p(β, ω, σ2
w|x) ∝ p(x|β, ω, σ2

w)p(β|σ2
w, ω)p(σ2

w)p(ω) (4.27)

= N (x;Dβ, σ2
w)N (β; 0, σ2

wΣβ)Inv-G(σ2
w; a, b)U(ω; 0, π) (4.28)

∝ (σ2
w)−N/2 exp

{ −1
2σ2

w

(x−Dβ)T (x−Dβ)
}

× (σ2
w)−1|Σβ|−1/2 exp

{ −1
2σ2

w

βTΣ−1
β β

}
× (σ2

w)−(a+1) exp
{−b
σ2
w

}
I(ω) (4.29)



i
i

“master” — 2009/6/1 — 23:33 — page 50 — #66 i
i

i
i

i
i

50 Chapter 4. Case Study: Bayesian Inference for the Frequency

where

I(ω) =

{
1 for 0 < ω < π

0 otherwise
(4.30)

is the indicator function. The terms can be rearranged and grouped in a clever way as

p(β, ω, σ2
w|x) ∝ (σ2

w)−1|Σβ|x|−1/2 exp
{ −1

2σ2
w

(β − µβ|x)TΣ−1
β|x(β − µβ|x)

}
×
[
b+

1
2
xT (IN +DΣβDT )−1x

]N
2 +a

(σ2
w)−(N2 +a+1) exp

{
−b+ 1

2x
T (IN +DΣβDT )−1x

σ2
w

}

×I(ω)|Σβ|−1/2|Σβ|x|1/2
[
b+

1
2
xT (IN +DΣβDT )−1x

]−(N2 +a)

(4.31)

where Σβ|x = (Σ−1
β + DTD)−1 and µβ|x = Σβ|xD

Tx. The first line of Eq. (4.31)
contains all factors dependent on β and is proportional to a Gaussian distribution. Thus,
integrating Eq. (4.31) w.r.t. β, is equivalent to integrating the Gaussian in line one w.r.t.
β. The integration is easily performed and gives a scale factor independent of σ2

w and
ω. After the integration w.r.t. β, the remaining parts dependent on σ2

w constitute an
inverse gamma distribution (line two of Eq. (4.31)). Thus, integrating w.r.t. σ2

w also
gives a simple scale factor independent of ω. Hence, the marginal posterior distribution
for the frequency is proportional to the third line of Eq. (4.31), i.e.,

p(ω|x) ∝ I(ω)|Σβ|−1/2|Σβ|x|1/2
[
b+

1
2
xT (IN +DΣβDT )−1x

]−(N/2+a)

(4.32)

∝ I(ω)
[
2b+ xT (IN +DΣβDT )−1x

]−(N/2+a)

, p̃(ω|x) (4.33)

where we have used the fact that

|Σβ|−1/2|Σβ|x|1/2 = |(Σ−1
β +DTD)Σβ|−1/2 = |I2+DTDΣβ|−1/2 = (1+g)−1 . (4.34)

The marginal posterior distribution p(ω|x) is clearly a non-standard distribution
and non-linear in the frequency parameter. Thus, we cannot find, e.g., the mean of
this distribution using analytical tools and we have to resort to numerical methods.
In [Andrieu and Doucet, 1999], the Metropolis-Hastings algorithm is used for drawing
samples from p(ω|x). For the MH-algorithm, we have to specify a proposal transition
kernel Q(ω′;ω) which, as discussed in section 3.2.2, should be selected as a trade-off
between correlation time and acceptance ratio. In order to achieve this, [Andrieu and
Doucet, 1999] suggest using the mixture proposal transition kernel given by

Q(ω′;ω) = λQ1(ω′;ω) + (1− λ)Q2(ω′;ω) (4.35)
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where Q1(ω′;ω) is a mixture distribution of uniform distributions with mixing coeffi-
cients ψ calculated from the periodogram, i.e.,

Q1(ω′;ω) =
K−1∑
k=0

ψ(ωk)U(ω;ωk, ωk+1) . (4.36)

The value of K can be selected to be equal to the number of samples N or larger to
improve the interpolation. The transition kernel Q2(ω′;ω) is a Gaussian distribution
with variance σ2 and centred on the current state. The advantage of using this mixture
kernel is that Q1(ω′;ω) is independent of the current state whereas Q2(ω′;ω), for a
small variance σ2, ensures a high acceptance ratio. Thus, Q1(ω′;ω) is used for making
independent jumps on p(ω|x) whereas Q2(ω′;ω) makes a local exploration on p(ω|x)
dependent on the current state. The MH-algorithm as proposed in [Andrieu and Doucet,
1999] is summarised in algorithm 4.2.

Algorithm 4.2 (MH-Algorithm for Frequency Estimation)
1. Compute the periodogram from the (possible zero-padded) vector of observa-

tions x and normalise it so it integrates to one. Denote the resulting distri-
bution as Q1(ω′;ω).

2. Select the mixing coefficient 0 ≤ λ ≤ 1 and the variance σ2 of the Gaussian
transition kernel given by Q2(ω′;ω) = N (ω′;ω, σ2).

3. Initialise ω[0].

4. Repeat for τ = 0, 1, 2, · · · , T
(a) Draw a sample u[τ ]

1 from the uniform distribution U(0, 1).

(b) If u[τ ]
1 < λ, set i = 1. Else set i = 2.

(c) Draw a candidate sample ω∗ from the proposal transition kernel
Qi(ω;ω[τ ]).

(d) Evaluate the probability of move given by

α(ω∗, ω[τ ]) = min
[
1,

p̃(ω∗|x)Qi(ω[τ ];ω∗)
p̃(ω[τ ]|x)Qi(ω∗;ω[τ ])

]
where p̃(ω|x) is the unnormalised desired distribution given by Eq. (4.33).

(e) Draw a random variate u[τ ]
2 from the univariate uniform distribution

U(0, 1).
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(f) If u[τ ]
2 ≤ α(ω∗, ω[τ ]), then accept the sample ω∗ as a sample from p(ω|x)

and set ω[τ+1] = ω∗. Otherwise reject ω∗ as a sample from p(ω|x) and
set ω[τ+1] = ω[τ ].

The algorithm requires that we select the mixing coefficient λ and the variance σ2

of the Gaussian distribution. Although these user defined parameters do not affect
the posterior distribution, which we draw samples from, they influence the convergence
time, correlation time and acceptance ratio.

4.3 Simulations
We demonstrate the applicability of the inference schemes in algorithm 4.1 and 4.2 on
a small-scale example. In the example, we generated N = 96 samples from the signal
model in Eq. (4.2) with a true frequency of ω = 0.4, true amplitudes of β = 1

2

[√
3 1

]T
,

and a true noise variance σ2
w = 1, i.e., the SNR was 0 dB. All of these values were

assumed unknown.
The Gibbs sampling inference scheme in algorithm 4.1 requires that we find the

MAP estimate of the frequency for every iteration by solving a non-linear optimisation
problem. This is very hard in general (see, e.g., [Stoica and Moses, 2005, pp. 457-462]),
but [Dou and Hodgson, 1995] do not mention how they solve this problem. We have
therefore selected to find the MAP estimate in the following way:

• For the first iteration, we sample the cost-function in Eq. (4.18) marginalised
w.r.t. to β on a fine grid and select the first MAP-estimate as the argument of
the minimum value.

• For all subsequent iterations, we find the new MAP estimate by performing one
Newton step given by

ω̂
[τ+1]
MAP = ω̂

[τ ]
MAP −

∂
∂ωJ(ω)
∂2

∂ω2 J(ω)

∣∣∣∣
ω=ω̂

[τ]
MAP

. (4.37)

Figure 4.1 shows the trace of samples generated from the marginal posterior dis-
tribution of the frequency by using the Gibbs sampling inference scheme. A total of
100,000 samples were drawn and the right margin of figure 4.1 shows the 50-bin his-
togram of these samples. The red curve shows the true marginal posterior distribution
for the frequency evaluated on a grid. The true marginal posterior distribution was
derived analytically from Eq. (4.12). Since the histogram and true distribution are ap-
proximately equal, the Laplace approximation in the inference scheme must be a good
approximation - at least for the data of this simulation.
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Figure 4.1: Trace of the T = 100, 000 samples for the frequency generated by the algorithm based
on Gibbs sampler. The plot in the margin shows the true distribution (solid red line) and the 50-bin
histogram of the generated samples with the first 100 samples removed as burn-in samples.

Before running the Metropolis-Hastings inference scheme in algorithm 4.2, the user-
defined parameters must be specified. For the prior distribution of β, we must select
the value of g. Although g can also be treated as a random variable and incorporated
into the sampling scheme (see [Andrieu and Doucet, 1999] for details), we selected it
to be large so that the prior covariance of the prior distribution of β was large. The
mixing coefficient and variance of the proposal Gaussian distribution were selected to
have the same values as in [Andrieu and Doucet, 1999], i.e., λ = 0.2 and σ2 = (5N)−1.
For the calculation of the periodogram, we selected an FFT-length of 2N .

Figure 4.2 shows the trace of samples generated from the marginal posterior distri-
bution of the frequency by using the MH inference scheme. As in the case of the Gibbs
sampler, a total of 100,000 samples were drawn and the right margin of figure 4.1 shows
the 50-bin histogram of these samples. The red curve shows the true marginal posterior
distribution for the frequency evaluated on a grid. The true marginal posterior distri-
bution is given by Eq. (4.33). The histogram has again the same envelope as the true
distribution. The acceptance ratio in the simulation was 71.3 %.

4.4 Summary
In this chapter, we have demonstrated the applicability of the numerical Bayesian in-
ference to a real world problem. This was accomplished by demonstrating how the
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Figure 4.2: Trace of the T = 100, 000 samples for the frequency generated by the MH-algorithm. The
plot in the margin shows the true distribution (solid red line) and the 50-bin histogram of the generated
samples with the first 100 samples removed as burn-in samples.

state-of-the-art Bayesian inference schemes for the frequency in the static sinusoidal
model work. Although we have only demonstrated the applicability of the state-of-
the-art sinusoidal frequency Bayesian inference schemes on a very simple example, it
should be clear what the strength and weaknesses of the algorithms are. The algorithm
proposed in [Dou and Hodgson, 1995] is based on a Gibbs sampler, but the inference
scheme suffers from that the conditional distribution for the frequency is a non-standard
distribution which is not easy to sample from. The proposed remedy for this is to use
the Laplace approximation which, as demonstrated in the simulations, is a very good
approximation. The major drawback of using the Laplace approximation is that we
have to solve a non-linear least squares problem in order to compute the mean of the
Laplace approximation. The algorithm proposed in [Andrieu and Doucet, 1999] is based
on the Metropolis-Hastings algorithm and does not employ any approximations. The
algorithm, however, requires careful tuning of the proposal distribution in order to ob-
tain a good trade-off between acceptance ratio and correlation time. In the next part
of this thesis, we propose and develop an inference scheme based on the more flexible
dynamic sinusoidal model. By using this model, the conditional distribution for the fre-
quency parameters in the Gibbs sampler turns out to be a standard distribution which
we can easily and efficiently draw samples from. Thus, we do not have to tune any pro-
posal distribution and we avoid sampling from an approximate distribution and solving
non-linear least squares problem.
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Bayesian Inference for the
Dynamic Sinusoidal Model
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Chapter 5

The Dynamic Sinusoidal Signal
Model

In the first part of this thesis, we introduced the basic analytical and numerical tools for
performing Bayesian inference. We also discussed the state-of-the-art Bayesian methods
for deriving the marginal posterior distribution for the frequency of a static sinusoidal
model. Although the static model given by Eq. (1.1), and its special cases, is by far the
most popular sinusoidal model, there exist other sinusoidal models. In the second part
of this thesis, we consider Bayesian inference for a dynamic sinusoidal model which is
based on a state space formulation of the static sinusoidal model. This dynamic model
has the static model as a special case and is thus more flexible. It allows the amplitudes
to evolve as a first-order autoregressive (AR(1)) model. In this chapter, we derive the
dynamic model and discuss its properties and relation to the static model. In the next
chapter, we develop the inference scheme for it.

5.1 State-Space Formulation of the Sinusoidal Model
So far we have only encountered the real static sinusoidal model in Eq. (1.1) which we
have restated here for easy reference

xn =
L∑
l=1

αle
−γln cos(ωln+ ϕl) + wn , for n = 1, · · · , N . (5.1)

The model parameters are the noise variance σ2
w of the white Gaussian noise wn and

the l’th amplitude αl > 0, the l’th phase ϕl ∈ [−π, π], the l’th (angular) frequency
ωl ∈ [0, π], the l’th log-damping coefficient γl > 0 for each of the L sinusoids. Using

57
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complex notation, we can rewrite this model as

xn =
L∑
l=1

(clznl + ccl (z
c
l )
n) + wn (5.2)

where (·)c denotes complex conjugation, cl = (αl/2)ejϕl , zl = e−γlejωl and j =
√−1 is

the imaginary unit. In matrix notation, we can write this as

xn =
[
zn1 (zc1)n · · · znL (zcL)n

]

c1
cc1
...
cL
ccL

+ wn (5.3)

=
[
1 1 · · · 1 1

]

z1 0 · · · 0 0
0 zc1 · · · 0 0
...

...
. . .

...
...

0 0 · · · zL 0
0 0 · · · 0 zcL


n 

c1
cc1
...
cL
ccL

+ wn (5.4)

, b̃T Ãn
c̃+ wn . (5.5)

This formulation constraints the log-damping coefficients and the frequency parameters
to be completely determined (in a deterministic way) by the time-invariant and complex
diagonal matrix Ã. The diagonal representation of xn is not unique since we for any
invertible matrix T have that

xn = b̃
T
(
T−1TÃT−1T

)n
c̃+ wn = b̃

T
T−1

(
TÃT−1

)n
T c̃+ wn (5.6)

= bTAnc+ wn (5.7)

where b, A and c are given by

b ,
(
b̃
T
T−1

)T
(5.8)

A , TÃT−1 (5.9)

c , T c̃ . (5.10)

Notice that Eq. (5.9) can be interpreted as an eigenvalue decomposition (EVD) of A
with Ã containing the eigenvalues and T the eigenvectors. Thus from any matrix A,
we can always recover the diagonal representation of xn by computing the eigenvalue
decomposition of A. The matrix Ã and vector c̃ are in general complex valued. In
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order to avoid the complex terms, we define the Hermitian complex block diagonal
matrix T = diag(T 1, · · · ,T l, · · ·TL) with

T l =
1√
2

[
1 1
j −j

]
. (5.11)

By using this particular choice of T , we now obtain

b =
√

2
[
1 0 · · · 1 0

]T (5.12)
A = diag(A1, · · · ,Al, · · · ,AL) (5.13)

Al = e−γl
[

cosωl sinωl
− sinωl cosωl

]
(5.14)

c =
√

2
[
α1 cosϕ1 α1 sinϕ1 · · · αL cosϕL αL sinϕL

]T
. (5.15)

which are all real. In the rest of this thesis, we use this real representation of xn.
Returning to Eq. (5.7), we can expand it into

xn = bT A · · ·A︸ ︷︷ ︸
n times

c+ wn (5.16)

from which we see that the amplitudes in c are rotated by the same matrix A for every
time index n. This update of the amplitude can be interpreted as a state sn of the
amplitude at time index n and can be done recursively by separating Eq. (5.16) into
an observation and a state equation. If we also introduce noise into the state equation,
we can write the sinusoidal model in Eq. (5.1) as a linear Gaussian time-invariant state
space model given by

yn = bTsn + wn (observation equation)
sn+1 = Asn + vn (state equation)

(5.17)

where vn is white Gaussian state noise with covariance matrix Q. We also assume a
Gaussian prior for the initial state vector s1 with mean vector µ and covariance matrix
P . The dynamic model in Eq. (5.17) is slightly different (hence the use of yn instead
of xn for denoting the observations) than the original model in Eq. (5.1) for state noise
having non-zero covariance. This allows the amplitudes in c to develop as an AR(1)
process. In the case of initial state vector equal to s1 = Ac and zero state-noise, the
two models are identical, i.e., yn = xn. In the next section, we establish a general
relationship between the static and dynamic models by examining the state noise vn.

5.2 Relationship Between the Static and Dynamic Mod-
els

In order to establish a connection between the static and dynamic sinusoidal models, we
want to see how the state noise shows up in the original sinusoidal model in Eq. (5.1).
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To do this, we simply merge the state and observation equation of the state space model
in Eq. (5.17) as

yn = bTsn + wn (5.18)

= bT (Asn−1 + vn−1) + wn (5.19)

= bT (A(Asn−2 + vn−2) + vn−1) + wn (5.20)
...

= bTAn−1s1 +
n−1∑
k=1

bTAk−1vn−k + wn (5.21)

which for s1 = Ac can be written as

yn =
L∑
l=1

αle
−γln cos(ωln+ ϕl) + en + wn (5.22)

= xn + en (5.23)

where we have defined the noise term en as

en ,
n−1∑
k=1

bTAk−1vn−k . (5.24)

Thus, the observations xn of the static model in Eq. (5.1) and observations yn of the
dynamic model in Eq. (5.17) are related by an additive noise term en which is a stochastic
process dependent on the log-damping coefficients as well as the frequency parameters.
The expression for en can be simplified to

en =
n−1∑
k=1

dTk−1vn−k (5.25)

di ,
√

2
[
e−γ1i

[
cosω1i
sinω1i

]T
· · · e−γLi

[
cosωLi
sinωLi

]T]T
. (5.26)
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The variance of en can now be calculated as

σ2
en = E


(
n−1∑
k=1

dTk−1vn−k

)(
n−1∑
k=1

dTk−1vn−k

)T (5.27)

=
n−1∑
k=1

n−1∑
r=1

dTk−1E
{
vn−kvTn−r

}
dr−1 (5.28)

=
n−1∑
k=1

dTk−1Qdk−1 (5.29)

where the last equality follows from the fact that

E
{
vn−kvTn−r

}
=

{
Q for k = r

0 for k 6= r
. (5.30)

Since the variance is a function of the time index n, the noise term en is in general
non-stationary. Except for the trivial case of zero state-covariance, the dynamic model
can thus be used for modelling non-stationary observations as opposed to the static
model. If we assume that the covariance matrix of the state noise has the structure
Q = diag(q1, q1, · · · ql, ql, · · · , qL, qL), the variance of en reduces to

σ2
en = 2

L∑
l=1

ql

n−1∑
k=1

e−γl(k−1) = 2
L∑
l=1

ql
1− e−γl(n−1)

1− e−γl . (5.31)

In the simplest case, we assume zero damping and Q to be isotropic, i.e, Q = qI2L.
This yields

σ2
en = 2qL(n− 1). (5.32)

Thus for these approximations, the variance increases linearly with time. This should
come as no surprise since we allow the amplitudes to develop as an AR(1) process in
the dynamic model.

5.3 Summary
In this chapter, we have rewritten the static sinusoidal model into the dynamic sinu-
soidal model, and we have established a connection between the two models. The static
sinusoidal model is the most popular sinusoidal model, but the dynamic sinusoidal model
is more flexible and can be seen as a generalisation of the static model. In this general-
isation, the amplitudes are allowed to evolve as a first-order autoregressive process, and
the dynamic sinusoidal model is therefore able to model non-stationary signals which
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are often encountered in practice. We can therefore expect the dynamic model to be
able to accurately model a much broader class of signals as compared against the static
model. The cost of the increased flexibility is that the number of unknown parameters
is much larger in the dynamic model than in the static model. In the next chapter, we
propose and develop an inference scheme for the unknown parameters of the dynamic
model. Although this inference scheme suffers from a high computational complexity,
it has some clear advantages over the inference schemes outlined in chapter 4.
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Chapter 6

Derivation of Inference Scheme

The dynamic sinusoidal model derived in the previous chapter has previously been
treated in a Bayesian framework for the application of music transcription (see, e.g.,
[Cemgil, 2004], [Cemgil and Godsill, 2005] and [Cemgil et al., 2006]). In these papers,
however, the sinusoidal frequency is defined as a discrete random variable corresponding
to the pitch of a musical note. The inference schemes suggested in the papers are based
on analytical approximations including variational inference. In this thesis, we do not
restrict ourselves to the application of music transcription and we therefore treat the
frequency as a continuous random variable. Also, we base our inference scheme on
stochastic methods such as the Gibbs sampler since it turns out to be a feasible inference
scheme for the dynamic model. In this chapter, we develop this inference scheme.

6.1 Definitions and Problem Formulation
Having obtained the dynamic sinusoidal formulation in Eq. (5.17), we are now able to
derive a Bayesian inference scheme for the latent states and model parameters of it. The
state space model can also be defined in terms of three Gaussian distributions given by

p(yn|sn, σ2
w) = N (yn; bTsn, σ2

w) (6.1)
p(sn+1|sn,A,Q) = N (sn+1;Asn,Q) (6.2)

p(s1) = N (s1;µ,P ) , (6.3)

for n = 1, · · · , N , where yn is the scalar observation at time index n, sn is the 2L-
dimensional state vector at time index n, b is the 2L-dimensional system observation
vector, A is the 2L× 2L sinusoidal block-diagonal matrix, σ2

w is the variance of the ob-
servation noise, Q is the 2L×2L state noise covariance matrix, and the 2L-dimensional
vector µ and the 2L× 2L matrix P are the mean vector and covariance matrix, respec-
tively, of the initial state s1. The sinusoidal matrixA is dependent on the L-dimensional

63
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vectors of frequency parameters ω and log-damping coefficient γ in a non-linear but de-
terministic way given by Eq. (5.13) and Eq. (5.14).

The model contains several random variables which we, according to our definitions
in chapter 2, divide in three groups and denote as

Observations: y1:N = {y1, y2, · · · , yN}
Latent variables: s1:N = {s1, s2, · · · , sN}
Model parameters: θ = {Q, σ2

w,ω,γ}
ω =

[
ω1 ω2 · · · ωL

]T
γ =

[
γ1 γ2 · · · γL

]T
The model parameters θ can be further divided into desired parameters and nuisance
parameters depending on the specific inference problem. The prior distributions for the
unknown parameters are parametrised by hyperparameters φ. We base our inference
scheme on conjugate priors since they are, in most cases, general enough and they are
also convenient to work with from a mathematical perspective. We assume the initial
state statistics µ and P to be known.

With these definitions and assumptions, we can now state the inference problem as
the construction of the full joint posterior distribution for the unknown variables given
the observations y1:N , i.e.,

p(s1:N ,Q, σ
2
w,ω,γ|y1:N ) = p(s1:N ,θ|y1:N ) , (6.4)

or as the construction of the marginal posterior distributions such as

p(s1:N |y1:N ) =
∫
p(s1:N ,θ|y1:N )dQdσ2

wdωdγ (6.5a)

p(Q|y1:N ) =
∫
p(s1:N ,θ|y1:N )ds1:Ndσ

2
wdωdγ (6.5b)

p(σ2
w|y1:N ) =

∫
p(s1:N ,θ|y1:N )ds1:NdQdωdγ (6.5c)

p(ω|y1:N ) =
∫
p(s1:N ,θ|y1:N )ds1:NdQdσ

2
wdγ (6.5d)

p(γ|y1:N ) =
∫
p(s1:N ,θ|y1:N )ds1:NdQdσ

2
wdω . (6.5e)

The joint as well as the marginal posterior distributions are non-standard distribution.
Thus, we have to resort to numerical techniques in order to solve the inference problem.
In this chapter, we develop a numerical inference scheme based on a Gibbs sampler.
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6.2 Bayesian Inference using a Gibbs Sampler
The inference problem can be solved using a Gibbs sampler which we discussed in
section 3.2.3. In an alternating pattern, it draws samples from the desired marginal
distributions by drawing samples from the distributions of the individual unknown vari-
ables conditioned on the remaining unknown variables, the observations and the prior
information. Thus, we have to derive expressions for the conditional distributions given
by

State: p(s1:N |Q, σ2
w,ω,γ, y1:N )

State covariance matrix: p(Q|s1:N , σ
2
w,ω,γ, y1:N )

Observation variance: p(σ2
w|s1:N ,Q,ω,γ, y1:N )

Frequency: p(ω|s1:N ,Q, σ
2
w,γ, y1:N )

Log-damping: p(γ|s1:N ,Q, σ
2
w,ω, y1:N )

in the case where nothing but the model structure and the observations are given. If
some of the parameters are known, the steps in which samples are generated for them
are simply skipped. The derivation of these five conditional distributions is presented
in the next five sections.

6.2.1 Conditional Distribution for the States
By using Bayes’ theorem, the conditional state distribution can be factored as

p(s1:N |θ, y1:N ) ∝ p(y1:N |s1:N ,θ)p(s1:N |θ) . (6.6)

For known model parameters θ, the conditional state distribution p(s1:N |θ, y1:N ) thus
factors into a conditional distribution p(y1:N |s1:N ,θ) and a marginal distribution p(s1:N |θ).
By using the Markov property, the latter can be factored as

p(s1:N |θ) =

[
N−1∏
n=1

p(sn+1|sn,Q,ω,γ)

]
p(s1)

=

[
N−1∏
n=1

N (sn+1;Asn,Q)

]
N (s1;µ,P ) (6.7)
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where the last equality follows from the state space formulation in Eq. (6.2) and Eq. (6.3).
We can now write the marginal distribution as

p(s1:N |θ) ∝ exp

{
−1
2

[
N−1∑
n=1

(sn+1 −Asn)TQ−1(sn+1 −Asn) + (s1 − µ)TP−1(s1 − µ)

]}

= exp

{
−1
2

[
sTNQ

−1sN +
N−1∑
n=2

sTn (Q−1 +ATQ−1A)sn + sT1 (P−1 +ATQ−1A)s1

−
N−1∑
n=1

sTn+1Q
−1Asn −

N−1∑
n=1

sTnA
TQ−1sn+1 − 2sT1 P

−1µ+ µTP−1µ

]}
.

(6.8)

Using the method of completing the squares (see, e.g., the proof of result A.1), we can
construct the multivariate Gaussian distribution for s = vec(s1:N ) =

[
sT1 sT2 · · · sTN

]T
as

p(s|θ) = N (s;µs|θ,Cs|θ) (6.9)
where

µs|θ =
[
µ Aµ A2µ · · · AN−1µ

]T
(6.10)

C−1
s|θ =


P−1 +ATQ−1A −ATQ−1 · · · 0 0
−Q−1A Q−1 +ATQ−1A · · · 0 0

...
...

. . .
...

...
0 0 · · · Q−1 +ATQ−1A −ATQ−1

0 0 · · · −Q−1A Q−1


(6.11)

Notice that the inverse covariance matrix is block triagonal.
The construction of the conditional distribution p(y1:N |s1:N ,θ) is easier. We again

use the Markov property and obtain

p(y1:N |s1:N ,θ) =
N∏
n=1

p(yn|sn, σ2
w) =

N∏
n=1

N (yn; bTsn, σ2
w) (6.12)

∝ exp

{
−1
2σ2

w

N∑
n=1

(yn − bTsn)T (yn − bTsn)

}
(6.13)

∝ N (y;Bs, σ2
wIN ) (6.14)

where IN is the N ×N identity matrix and

y = vec(y1:N ) =
[
y1 y2 · · · yN

]T (6.15)

B = IN ⊗ bT . (6.16)
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The symbol ⊗ denotes the Kronecker product.
From these derivations, it is now clear that we can rewrite Eq. (6.6) as

p(s1:N |θ, y1:N ) = p(s|y,θ) ∝ p(y|s,θ)p(s|θ)

= N (y;Bs, σ2
wIN )N (s;µs,Cs) (6.17)

∝ N (s;µs|y,θ,Cs|y,θ) (6.18)

where the last proportional sign follows from result B.1 and

µs|y,θ = Cs|y,θ(σ−2
w BTy +C−1

s|θµs|θ) (6.19a)

Cs|y,θ = (C−1
s|θ + σ−2

w BTB)−1 . (6.19b)

Thus, we can obtain a sample for the states s1:N by sampling from a multivariate
Gaussian distribution of dimension 2LN × 1. In most cases, this dimension leads to
a very high computational complexity. The remedy for this is to use the simulation
smoother which is a more efficient sampling scheme for drawing one or more samples
for s1:N .

Simulation Smoothing

Samples for the states conditioned on the observations can be obtained in a more ef-
ficient way by using a recursive technique based on the Kalman filter and smoother
(see appendix C). One of the first algorithms employing this technique was proposed in
[Carter and Kohn, 1994] and it was based on the factorisation1

p(s1:N |y1:N ) = p(s1|s2:N , y1:N )p(s2|s3:N , y1:N ) · · · p(sN−1|sN , y1:N )p(sN |y1:N ) (6.20)

= p(sN |y1:N )
N−1∏
n=1

p(sn|sn+1:N , y1:N ) (6.21)

= p(sN |y1:N )
N−1∏
n=1

p(sn|sn+1, y1:n) . (6.22)

where the last equality follows from the fact that sn is independent of yn+1:N and sn+2:N

given sn+1 and y1:n
2. The distribution p(sn|sn+1, y1:n) is a Gaussian distribution and

given by Eq. (C.31). Its mean and variance are calculated by running the Kalman
filter which computes the means and variances of p(sn|y1:n) and p(sn+1|y1:n) for n =

1We have omitted the conditioning on the model parameters θ in order to keep the notation unclut-
tered.

2It can sometimes be hard to determine whether two random variables are conditional independent.
A systematic way of determining this is to use graphical models. For an introduction to graphical
models see [Bishop, 2006, ch. 8].
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1, · · · , N . Thus, the last mean and variance computed by the Kalman filter are the
moments of p(sN |y1:N ) from which we draw a sample s∗N . Inserting this sample as well
as the means and variances of p(sN−1|y1:N−1) and p(sN |y1:n−1), which are computed
in the N − 1’th iteration of the Kalman filter, into Eq. (C.31) enables us hereafter
to draw a sample s∗N−1 from p(sN−1|s∗N , y1:N−1). Continuing in this way enables us
to draw a sample for all states. The computational complexity of this algorithm was
decreased later by [De Jong and Shephard, 1995] and even further by [Durbin and
Koopman, 2002]. This was achieved by using the disturbance smoother [Koopman,
1993] which computes the posterior distribution for the observation and state noise.
The disturbance smoother thus acts in an analogue way to the Kalman smoother and
a thorough treatment of it is given in [Durbin and Koopman, 2001]. The simulation
smoother based on the disturbance smoother as proposed in [Durbin and Koopman,
2002] is outlined in algorithm 6.1. The algorithm basically consists of three steps. The
first step is a Kalman filtering step which is run in the forward time direction from n =
1, · · · , N . The second step is a disturbance smoothing step in which smoothed values
for the state noise is computed from a simple recursion in the reverse time direction
from n = N, · · · , 1. In the third and final step, the state equation of Eq. (5.17) is run
in forward time direction from n = 1, · · · , N .

Algorithm 6.1 (Simulation Smoother)
A set of samples s∗n for n = 1, · · · , N from the posterior distribution p(s1:N |y1:N )
for the states given the observation can be drawn by

1. Draw a sample s+
1 from p(s1) = N (s1;µ,P ) given by Eq. (6.3).

2. For n = 1, · · · , N do

(a) Draw a sample w+
n from p(wn) = N (wn; 0, σ2

w).

(b) Compute a simulated observation y+
n from the observation equation of

Eq. (5.17) by inserting s+
n and w+

n , i.e.,

y+
n = bTs+

n + w+
n .

(c) Draw a sample v+
n from p(vn) = N (vn; 0,Q).

(d) Compute a simulated state s+
n+1 from the state equation of Eq. (5.17)

by inserting s+
n and v+

n , i.e.,

s+
n+1 = As+

n + v+
n .
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3. Define the new observation y′n = yn−y+
n for n = 1, · · · , N . Using these obser-

vations, run the Kalman filter by means of the recursion given by Eq. (C.24).

4. Compute the means v̂′n of the smoothed posterior distributions for the state
noise p(v′n|y′1:N ) for n = N, · · · , 1 by running the recursion

v̂′n = Qrn

rn−1 = bF−1
n vn +LTnrn

where F n and Ln were computed by the Kalman filter in the previous step,
and rN = 0.

5. Compute the means ŝ′n of the smoothed posterior distributions for the state
p(s′n|y′1:N ) for n = 1, · · · , N by running the state equation of Eq. (5.17) using
the smoothed state noise computed in the previous step, i.e.,

ŝ′n+1 = Aŝ′n + v̂′n

where ŝ′1 = Pr0.

6. The samples s∗n for n = 1, · · · , N from p(s1:N |y1:N ) can now be computed
from

s∗n = ŝ′n + s+
n . (6.26)

This concludes the derivation of the sampling scheme for the conditional distribution
p(s1:N |Q, σ2

w,ω,γ, y1:N ) for the states. Although the simulation smoother reduces the
computational complexity as compared against direct sampling from the multivariate
normal distribution given by Eq. (6.18), the computational complexity of the algorithm
is still very high.

6.2.2 Conditional Distribution for the State Noise Covariance
By exploiting conditional independence as well as using Bayes’ theorem, we can rewrite
the conditional state noise covariance matrix distribution as

p(Q|s1:N , σ
2
w,ω,γ, y1:N ) = p(Q|s1:N ,ω,γ) ∝ p(s1:N |Q,ω,γ)p(Q|φQ) (6.27)

where φQ denotes the hyperparameters for Q. The conditional state noise covariance
matrix distribution can thus be factored into the prior distribution p(Q|φQ) for Q and
p(s1:N |Q,ω,γ). From Eq. (6.7), we already know that the parametric form of the latter
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distribution. Here, however, the states are known and the state noise covariance matrix
is unknown and we obtain

p(s1:N |Q,ω,γ) = p(s1)

[
1√

(2π)2L|Q|

]N−1

exp

{
−1
2

N−1∑
n=1

vTnQ
−1vn

}
(6.28)

= p(s1)(2π)−(N−1)L|Q|−(N−1)/2 exp

{
−1
2

tr

(
N−1∑
n=1

vnv
T
nQ
−1

)}
(6.29)

where | · | and tr(·) denote the determinant and trace, respectively. Notice that the
initial state distribution p(s1) is independent of Q for which reason it is ignored at a
later stage. The conjugate prior for this distribution is the inverse Wishart distribution
Inv-W(ν,Ψ) (see appendix A) with the hyperparameters φQ = {ν,Ψ} and given by

p(Q|φQ) = B(ν,Ψ)|Q|−(ν+2L+1)/2 exp
{
−1

2
tr(ΨQ−1)

}
(6.30)

where

B(ν,Ψ) =
|Ψ|ν/2

2νLπL(2L−1)/2
∏2L
i=1 Γ(ν+1−i

2 )
(6.31)

and Γ(·) is the gamma function. Since the inverse Wishart distribution is the conjugate
prior for Q in p(s1:N |Q,ω,γ), the posterior distribution is also an inverse Wishart
distribution. Inserting the inverse Wishart distribution for the prior in Eq. (6.27) and
combining terms readily yields

p(Q|s1:N ,ω,γ,φQ) = Inv-W
(
Q; ν +N − 1,Ψ +

N−1∑
n=1

vnv
T
n

)
. (6.32)

The hyperparameters ν and Ψ of the prior distribution are referred to as the degrees
of freedom and the scale matrix, respectively, and they can be selected such that the
prior is diffuse or concentrated. Although it is possible to draw samples from the in-
verse Wishart distribution, there is a couple of reasons for avoiding it. First of all, the
number of elements of Q grows quadratically with the number of sinusoids and the com-
putational complexity associated with sampling from the inverse Wishart distribution is
high. Secondly, it turns out that assuming a diagonal structure for Q greatly simplifies
the inference task for the frequency parameters and log-damping coefficients as well as
reduces the computational complexity of the simulation smoother. In the rest of this
thesis, we therefore restrict ourselves to two different structures of the state covariance:
the isotropic structure given by Q = qI2L and the diagonal structure given by

Q = diag(q1, q1, · · · ql, ql, · · · , qL, qL) . (6.33)
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Assume that Q is isotropic. If we insert this into Eq. (6.30), we obtain the univari-
ate inverse Wishart distribution which is the same as the inverse gamma distribution
Inv-G(av, bv) and given by

p(q|φq) =
1

Γ(av)
bavv q

−(av+1) exp
{−bv

q

}
(6.34)

where the hyperparameters φq = {av, bv} of the inverse gamma distribution are related
to the hyperparameters of the univariate Wishart distribution by av = ν/2 and bv =
Ψ/2. Inserting the isotropic covariance matrix into Eq. (6.29) and combining it with
the inverse gamma prior distribution yield

p(q|s1:N ,ω,γ,φq) = Inv-G
(
q; av + (N − 1)L, bv +

1
2

N−1∑
n=1

vTnvn

)
. (6.35)

If we assume that Q has a diagonal structure, then, by the same arguments as
above, we can decouple the sampling problem into sampling from L inverse Gamma
distributions given by

p(q1, · · · , qL|s1:N ,ω,γ,φq1 , · · · ,φqL)

∝
[
L∏
l=1

q2l

]−(N−1)/2 L∏
l=1

exp

{
−1
2ql

N−1∑
n=1

vTn,lvn,l

}
L∏
l=1

p(ql|av,l, bv,l) (6.36)

=
L∏
l=1

[
q
−(N−1)
l exp

{
−1
2ql

N−1∑
n=1

vTn,lvn,l

}
p(ql|av,l, bv,l)

]
(6.37)

∝
L∏
l=1

Inv-G
(
ql; av,l +N − 1, bv,l +

1
2

N−1∑
n=1

vTn,lvn,l

)
(6.38)

where the subvector vn,l contains the (2l − 1)’th and (2l)’th element of vn.
There exist straightforward and efficient methods for drawing samples from the in-

verse gamma distribution. By assuming an isotropic or diagonal structure of the state
noise covariance matrix, the number of unknown parameters is independent of the model
order and grows linearly with it, respectively, which is a clear advantage from a com-
putational complexity point of view as compared against the quadratic increase in the
number of unknown parameters associated with the use of an inverse Wishart prior
distribution.

6.2.3 Conditional Distribution for the Observation Variance
The conditional observation variance distribution can be derived by following the same
procedure as for the conditional state covariance matrix distribution. Thus, we first
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factorise it as

p(σ2
w|s1:N ,Q,ω,γ, y1:N ) = p(σ2

w|s1:N , y1:N ) ∝ p(y1:N |s1:N , σ
2
w)p(σ2

w|φσ2
w

) . (6.39)

Then, we recall from Eq. (6.1) that p(y1:N |s1:N , σ
2
w) is given by

p(y1:N |s1:N , σ
2
w) =

(
2πσ2

w

)−N/2
exp

{
−1
2σ2

w

N∑
n=1

wTnwn

}
(6.40)

so that, if we propose an inverse Gamma prior Inv-G(aw, bw) for the observation noise
variance, we obtain

p(σ2
w|s1:N , y1:N ,φσ2

w
) = Inv-G

(
σ2
w; aw +N/2, bw +

1
2

N∑
n=1

wTnwn

)
. (6.41)

6.2.4 Conditional Distribution for the Frequency Parameters
For a diagonal state covariance matrix Q, it turns out that we are able to decouple the
L-dimensional posterior distribution p(ω|s1:N , σ

2
w,Q,γ, y1:N ) into L univariate distri-

butions
p(ωl|s1:N , σ

2
w,Q,ω\l,γ, y1:N ) (6.42)

for l = 1, · · · , L where (·)\l denotes ’without element l’. The l’th distribution can by
using conditional independence and Bayes’ theorem be factored as

p(ωl|s1:N ,Q, σ
2
w,ω\l,γ, y1:N ) = p(ωl|s1:N ,Q,ω\l,γ) ∝ p(s1:N |Q,ω,γ)p(ωl) (6.43)

where p(ωl) is the prior distribution for ωl left undefined for the moment. Since A is
2×2 block diagonal and Q is diagonal, we can factor the likelihood of the state equation
into L bivariate likelihoods with the l’th given by

p(s1:N,l|ql, ωl, γl) = (2πql)−1 exp

{
−1
2ql

N−1∑
n=1

(sn+1,l −Alsn,l)T (sn+1,l −Alsn,l)

}
(6.44)

= Z̃−1
l exp

{
−1
2ql

N−1∑
n=1

sTn,lA
T
l Alsn,l +

1
ql

N−1∑
n=1

sTn+1,lAlsn,l

}
(6.45)

where Al is given by Eq. (5.14), s(·),l is the l’th 2 × 1 subvector of s(·) and Z̃l is a
normalisation constant containing the terms independent ofAl. Inserting the expression
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for Al and evaluating the two terms of the exponent in the exponential yield

−1
2ql

N−1∑
n=1

sTn,lA
T
l Alsn,l =

−1
2ql

N−1∑
n=1

sTn,le
−2γl

[
cosωl − sinωl
sinωl cosωl

] [
cosωl sinωl
− sinωl cosωl

]
sn,l

=
−1
2ql

N−1∑
n=1

sTn,le
−2γl

[
1 0
0 1

]
sn,l = −e−2γl

1
2ql

N−1∑
n=1

sTn,lsn,l

= −e−2γlα1,l (6.46)

where we have defined

α1,l ,
1

2ql

N−1∑
n=1

sTn,lsn,l , (6.47)

and

1
ql

N−1∑
n=1

sTn+1,lAlsn,l = e−γl(d1,l cosωl + d2,l sinωl) (6.48)

where we have defined[
d1,l

d2,l

]
, 1
ql

N−1∑
n=1

[
sTn+1,lsn,l∣∣[sn+1,l sn,l

]∣∣] . (6.49)

The notation | · | denotes the determinant. Thus, the first term of the exponent in
Eq. (6.45) is independent of ωl whereas the second term depends on it. We can therefore
write the likelihood in Eq. (6.45) as

p(s1:N,l|ql, ωl, γl) = Z̃−1
l exp

{−e−2γlα1,l + e−γl(d1,l cosωl + d2,l sinωl)
}

(6.50)

= Z−1
l exp

{
e−γld1,l cosωl + e−γld2,l sinωl

}
. (6.51)

The exponent now consists of a superposition of two sinusoids of the same frequency.
Thus, if we define

κl , e−γl
√
d2
1,l + d2

2,l (6.52a)

ψl , arctan
d2,l

d1,l
, (6.52b)

Eq. (6.45) can be rewritten as

p(s1:N,l|ql, ωl, γl) = Z−1
l exp {κl cos(ψl − ωl)} (6.53)
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which has the same parametric form as the von Mises distribution VM(ψl;κl, ωl) (see
appendix A). Notice, that ωl acts as the location parameter of this likelihood which is
therefore unknown. The concentration parameter κl is known.

The conjugate prior for the von Mises likelihood with unknown location and known
concentration is also the von Mises distribution [Guttorp and Lockhart, 1988]. Thus, if
the prior distribution is given by VM(ωl;κ0, µ0) with hyperparameters φωl = {κ0, µ0},
the posterior distribution in Eq. (6.43) is given by

p(ωl|s1:N ,Q,ω\l,γ) = p(ωl|s1:N,l, ql, γl) ∝ p(s1:N,l|ql, ωl, γl)p(ωl|φωl) (6.54)
∝ VM(ψl;κl, ωl)VM(ωl;κ0, µ0) (6.55)

∝ VM
(
ωl;
√
δ21,l + δ21,l, arctan

δ2,l
δ1,l

)
(6.56)

where

δ1,l , κl cosψl + κ0 cosµ0 = e−γld1,l + κ0 cosµ0 (6.57a)

δ2,l , κl sinψl + κ0 sinµ0 = e−γld2,l + κ0 sinµ0 . (6.57b)

For κ0 → 0, we obtain the uniform prior in the limit on the interval [−π, π] and the
posterior distribution is proportional to the likelihood. Notice, that since the support
of the von Mises prior is the interval [−π, π], it is wider than the support [0, π] for ωl
in the signal model given by Eq. (5.1). Our inference scheme has therefore the defect
that is assigns non-zero probabilities to negative frequencies. This can be avoided by
using another prior with the same support as for the frequencies. However, this leads
to a more intractable sampling scheme so we retain the von Mises prior distribution.

Simulation From the von Mises Distribution

It is not possible to draw samples directly from the Von Mises distribution, but samples
can be obtained by using an efficient rejection sampling scheme. The algorithm is
given in [Best and Fisher, 1979] and restated in algorithm 6.2 for easy reference. The
acceptance ratio depends on the value of κ, however, it can be shown that the minimum
expected acceptance ratio is

√
e/2π ≈ 0.66 [Best and Fisher, 1979].

Algorithm 6.2 (Best-Fisher Algorithm)
Given the concentration κ and location µ of the von Mises distribution VM(ω;κ, µ),
a sample can be drawn by

1. Calculate

τ = 1 +
√

1 + 4κ2 , ρ =
τ −√2τ

2κ
, r =

1 + ρ2

2ρ
.
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2. Repeat until sample is accepted

(a) Draw two independent random variates, u1 and u2 from U(0, 1).

(b) Calculate

z = cos(πu1) , f =
1 + rz

r + z
, c = κ(r − f) .

(c) Accept sample if c(2− c) > u2 or ln
c

u2
− 1 ≥ c .

3. Draw u3 ∼ U(0, 1)

4. The accepted sample is given by

ω = [(sign(u3 − 0.5) arccos f + µ+ π) mod 2π]− π .

6.2.5 Conditional Distribution for the Log-Damping Coefficients
For a diagonal state covariance matrix Q, we are again able to decouple the posterior
distribution p(γ|s1:N , σ

2
w,Q,ω, y1:N ) into L univariate distributions and factor the l’th

distribution as

p(γl|s1:N ,Q, σ
2
w,ω,γ\l, y1:N ) = p(γl|s1:N,l, ql, ωl) ∝ p(s1:N,l|ql, ωl, γl)p(γl) . (6.61)

From Eq. (6.50), we know that the parametric form of the l’th likelihood is

p(s1:N,l|ql, ωl, γl) = Z̃−1
l exp

{−e−2γlα1,l + e−γlβ1,l

}
(6.62)

where we have defined
β1,l , d1,l cosωl + d2,l sinωl . (6.63)

To our knowledge, this likelihood results in a non-standard posterior distribution, which
we cannot sample directly from, no matter how we choose a continuous and non-trivial
prior distribution for γl. Therefore, we propose generating samples from the posterior
distribution in Eq. (6.61) based on the Laplace approximation described in section 3.3.1.
This is motivated by the fact that the plausible values of the log-damping coefficients
for physical reasons are confined to a small interval. For example, if γl = 0.1 for the l’th
sinusoid e−γln cos(ωln) with unit amplitude and zero phase, then the envelope of the
sinusoid has decreased by a factor of e at time index n = 10. For larger values of γl, the
envelope decays even faster, so except for the case of a very small number of observations
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N , the contribution of this sinusoid is negligible. Since the Laplace approximation is a
second order approximation of e−γl around the mode of the posterior distribution, we
can therefore expect the approximation to be reasonable for the plausible interval of the
values of γl.

For the prior distribution p(γl), we assume a parametric form similar to the likeli-
hood, i.e.,

p(γl|φγl) ∝ exp
{−e−2γlα0,l + e−γlβ0,l

}
(6.64)

where the hyperparameters φγl = {α0,l, β0,l} are selected such that large values of γl
have very small probability. The posterior distribution is now readily found to be given
by

p(γl|s1:N,l, ql, ωl) ∝ p(s1:N,l|ql, ωl, γl)p(γl|φγl) (6.65)

∝ exp
{−e−2γl(α1,l + α0,l) + e−γl(β1,l + β0,l)

}
(6.66)

= exp
{−e−2γlαl + e−γlβl

}
, p̃(γl|s1:N,l, ql, ωl) (6.67)

The Laplace Approximation

The first order derivative of the log-posterior distribution is
∂

∂γl
ln p̃(γl|s1:N,l, ql, ωl) = 2αle−2γl − βle−γl = e−γl(2αle−γl − βl) . (6.68)

The maximum value of the posterior distribution thus occurs at

γ̂lMAP = − ln
βl

2αl
(6.69)

since the second order derivative of the log-posterior distribution is negative at this
point as we show next. The second order derivative at γ̂lMAP is

∂2

∂γ2
l

ln p̃(γl|s1:N,l, ql, ωl)
∣∣∣∣
γl=γ̂lMAP

= −4αle−2γl + βle
−γl
∣∣∣∣
γl=γ̂lMAP

(6.70)

= −4αl
β2
l

4α2
l

+ βl
βl

2αl
= − β2

l

2αl
(6.71)

so the variance of the Laplace approximation is

σ2
q =

2αl
β2
l

. (6.72)

The Laplace approximation p(γl|s1:N,l, ql, ωl) is therefore given by

p(γl|s1:N,l, ql, ωl) ≈ q(γl|s1:N,l, ql, ωl) = N (γl; γ̂lMAP , σ
2
q ) . (6.73)

Figure 6.1 shows how well the Laplace approximation performs for a few values of αl
and βl. Notice, that the approximation is in general very good and becomes better and
better the more selective p(γl|s1:N,l, ql, ωl) is.
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γl
0.1 0.2 0.3 0.4

1

0

αl = 50, βl = 100

αl = 553, βl = 1053

αl = 6107, βl = 11052

Figure 6.1: True probability distributions (solid colored lines) and their Laplace approximation
(dashed lines) for some values of αl and βl. For illustrative purposes, the distributions are noma-
lised such that their maximum value equals 1. Notice, that in contrast to the true distributions, the
support for the Laplace approximations also includes negative log-damping coefficients as indicated in
the figure.

Simulation using the Laplace Approximation

One caveat of drawing samples from the Gaussian approximation q(γl|s1:N,l, ql, ωl) to
the true posterior distribution p(γl|s1:N,l, ql, ωl) is that negative log-damping coefficients
have non-zero probability of being generated. This could simply be ignored, or it could
be remedied for by using a rejection sampling scheme which only accepts positive samples
as in [Mazet et al., 2005]. The latter approach, however, entails a larger computational
complexity.

The Gaussian approximation can also be used as a part of the proposal distribution
of the Metropolis-Hastings algorithm. Since the Laplace approximation is a very good
approximation to the true distribution, we expect a high acceptance ratio. Although this
approach entails an increased computational complexity as compared against the ap-
proximate sampling schemes, it is a viable way of drawing samples from p(γl|s1:N,l, ql, ωl)
without approximations. Algorithm 6.3 outlines this sampling scheme. Notice, that the
mean of the Laplace approximation is being lower bounded by 0 in order to minimise
the generated proportion of negative log-damping samples and thereby increase the
acceptance ratio.

Algorithm 6.3 (MH-based Simulation of Log-damping Coefficients)
Given the previous sample γ[τ ]

l for the l’th log-damping coefficient, a new sample
can be drawn from the conditional distribution p(γl|s1:N,l, ql, ωl) by
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1. Compute αl and βl from

αl = α1,l + α0,l

βl = β1,l + β0,l

where

α1,l =
1

2ql

N−1∑
n=1

sTn,lsn,l

β1,l =
1
ql

N−1∑
n=1

[
sTn+1,lsn,l

∣∣[sn+1,l sn,l
]∣∣] [cosωl

sinωl

]
and α0,l and β0,l are the hyperparameters of the prior distribution p(γl|φγl)
given by Eq. (6.64).

2. Calculate the mean and variance of the Gaussian proposal transistion kernel
Q(γl) = N (γl;µq, σ2

q ) as

µq = max(0, γ̂lMAP)

σ2
q =

2αl
β2
l

where γ̂lMAP is given by Eq. (6.69).

3. Draw a candidate sample γ∗l from the proposal transition kernel Q(γl).

4. Evaluate the probability of move given by

α(γ∗l , γl) = min

[
1,
p̃(γ∗l |s1:N,l, ql, ωl)Q(γ[τ ]

l )

p̃(γ[τ ]
l |s1:N,l, ql, ωl)Q(γ∗l )

]

where p̃(γl|s1:N,l, ql, ωl) is the unnormalised desired distribution given by
Eq. (6.67).

5. Draw a random variate u[τ ] from the univariate uniform distribution U(0, 1).

6. If u[τ ] ≤ α(γ∗l , γl), then accept the sample γ∗l as a sample from
p(γl|s1:N,l, ql, ωl) and set γ[τ+1]

l = γ∗l . Otherwise reject γ∗l as a sample from
p(γl|s1:N,l, ql, ωl) and set γ[τ+1]

l = γ
[τ ]
l .
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6.3 Missing Observations
In for example audio restoration applications (see, e.g., [Godsill and Rayner, 1998]
for an extensive treatment) some of the observations are corrupted or missing. This
can be caused by a variety of phenomena such as scratches on a physical media, bad
sectors in a storage media, noise bursts during recording, or package losses on a package
based network. Audio restoration techniques aim at recovering the corrupted or missing
samples by exploiting the correlation in the audio signal. For a set of observations y1:N ,
partition it as

y1:N = {y1:K , yK+1:K+R, yR+1:N} (6.74)

where the R observations z = yK+1:K+R are corrupted or missing3. The problem is
now to interpolate the samples in the gap z based on the valid observations y1:K and
yR+1:N . The interpolation is typically based on, in classical statistics, the maximum
likelihood function p(y1:K , yR+1:N |z) or, in Bayesian statistics, the marginal posterior
distribution

p(z|y1:K , yR+1:N ) . (6.75)

An intuitive way of recovering z is to use the ML estimate and MAP estimate for
it by maximising the likelihood function and the posterior distribution, respectively.
However, this has been shown to yield an atypical interpolant in the sense that it
does not agree with the stochastic behaviour of the valid observations [Ruanaidh and
Fitzgerald, 1994]. This is caused by the fact that ML/MAP minimises the variance
of the stochastic part of the valid observations and thus acts as a kind of noise filter.
In order to avoid this, the interpolant can be selected as a sample from the posterior
distribution p(z|y1:K , yR+1:N ). We demonstrate the difference between these two ways
of reconstruction the missing samples in the simulations in the next chapter.

The draw from p(z|y1:K , yR+1:N ) can easily be incorporated into our Gibbs sampling
inference scheme. The conditional distribution for the missing observations z given all
valid observation and all other latent and model parameters is

p(z|s1:N ,θ, y1:K , yR+1:N ) = p(z|sK+1:K+R, σ
2
w) (6.76)

=
K+R∏
n=K+1

p(yn|sn, σ2
w) . (6.77)

The R univariate distributions p(yn|sn, σ2
w) are given by the observation equation in

Eq. (6.1) and are thus Gaussian distributions which we can easily sample from. The
implementation of the other steps of the Gibbs sampling inference scheme are unaffected
by the inclusion of the interpolation stage and remain therefore the same.

3A significant problem in audio restoration is that of detecting and locating corrupt samples. In this
thesis, however, we assume that we know which samples are corrupted/missing and which are not.
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6.4 Summary of Inference Scheme
We have now derived the Gibbs sampling inference scheme for the latent states, model
parameters and missing observations given the valid observation for the dynamic si-
nusoidal model. The inference scheme is summarised in algorithm 6.4. If some of the
parameters are known a priori or all observations are valid, the sampling steps pertaining
to these variables can be skipped in the algorithm.

Algorithm 6.4 (Gibbs Sampling Inference Scheme for Dynamic Model)
For a diagonal or isotropic state noise covariance matrix, samples from the marginal
posterior distributions given by Eq. (6.5) and Eq. (6.75) can be obtained by

1. Select hyperparameters of the prior distributions.

2. Initialise z[0] and θ[0] = {σ2
w

[0]
,Q[0],ω[0],γ[0]} where Q[0] = q[0]I2L for the

isotropic case and Q[0] = diag(q[0]1 , q
[0]
1 , q

[0]
2 , q

[0]
2 , · · · , q[0]L , q[0]L ) for the diagonal

case.

3. Repeat for τ = 0, 1, 2, · · · , T
(a) Draw a set of samples for the states

s
[τ+1]
1:N ∼ p(s1:N |θ[τ ], y1:K , z

[τ ], yR+1:N )

by using the simulation smoother in algorithm 6.1.

(b) In the case of an isotropic state covariance matrix, draw a sample from

q[τ+1] ∼ Inv-G
(
q; av + (N − 1)L, bv +

1
2

N−1∑
n=1

v[τ ]
n

T
v[τ ]
n

)
where v[τ ]

n = s
[τ ]
n+1−A[τ ]s

[τ ]
n , and A[τ ] depends on ω[τ ] and γ[τ ] through

Eq. (5.13). In the case of a diagonal state covariance matrix, draw a
sample from

q
[τ+1]
l ∼ Inv-G

(
ql; av,l + (N − 1), bv,l +

1
2

N−1∑
n=1

v
[τ ]
n,l

T
v

[τ ]
n,l

)
for l = 1, · · · , L where v[τ ]

n,l = s
[τ ]
n+1,l−A[τ ]

l s
[τ ]
n,l, and A

[τ ]
l depends on ω[τ ]

l

and γ[τ ]
l through Eq. (5.14).
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(c) Draw a sample for the observation variance

σ2
w

[τ+1] ∼ Inv-G
(
σ2
w; aw +N/2, bw +

1
2

N∑
n=1

w[τ ]
n

T
w[τ ]
n

)
where w[τ ]

n = yn − bTs[τ ]
n . If yn is a missing sample, the sample corre-

sponding to it in z[τ ] is used in its place.

(d) Draw a sample for the frequency parameters

ω
[τ+1]
l = VM

(
ωl;

√
δ
[τ ]
1,l

2
+ δ

[τ ]
2,l

2
, arctan

δ
[τ ]
2,l

δ
[τ ]
1,l

)
for l = 1, · · · , L by using the Best-Fisher algorithm in algorithm 6.2. The
values for δ[τ ]1,l and δ

[τ ]
1,l depend on s[τ+1]

n+1,l, s
[τ+1]
n,l , q[τ+1]

l and γ[τ ]
l through

Eq. (6.57), Eq. (6.52) and Eq. (6.48).

(e) Draw a sample for the log-damping coefficients

γ
[τ+1]
l ∼ p(γl|s[τ+1]

n,l , q
[τ+1]
l , ω

[τ+1]
l )

for l = 1, · · · , L by using the Laplace approximation given by Eq. (6.73)
or the Metropolis-Hastings sampling scheme in algorithm 6.3.

(f) Draw an interpolant for the missing samples

z[τ+1] ∼ p(z|s[τ+1]
K+1:K+R, σ

2
w

[τ+1]
)

by drawing a sample from

p(yn|s[τ+1]
n , σ2

w
[τ+1]

) = N (yn; bTs[τ+1]
n , σ2

w
[τ+1]

)

for n = K + 1, · · · ,K +R.

For a sufficiently large sample size, this algorithm can be used for determining the
true joint as well as marginal posterior for the latent states, unknown variables and
missing observations of the dynamical sinusoidal model. Based on these distributions,
optimal point estimates as well as probability intervals can be computed. We do not
focus on this post-processing step in this thesis; however, in the simulations in the next
chapter, we give some examples of summarising the inference in terms of the MMSE
estimate. The major disadvantage of the algorithm is, like most other Bayesian inference
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schemes, the computational complexity which is very high.
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Chapter 7

Simulation Study on Synthetic
and Real Signals

After having derived the inference scheme for the latent variables and model parameters
of the dynamic sinusoidal model in the previous chapter, this chapter demonstrates the
application of the proposed method to analysis on synthetically generated signals as
well as on a real audio signal. This is achieved through four simulations:

1. Inference for the unknown parameters in the static model constituted by a single
damped sinusoid.

2. Inference in a reduced and simplified dynamic sinusoidal model where some pa-
rameters are assumed known.

3. Inference in a full dynamic sinusoidal model in which nothing but the model order
is assumed known.

4. Inference for a frame of observations from a real piano audio signal.

First, however, we validate the implementation of the inference scheme by comparing the
results obtained in individual sampling steps in the Gibbs sampler against the theoretical
results.

7.1 Validation of the Individual Sampling Steps
We validated our implementation of the inference scheme of algorithm 6.4 by treating the
sampling steps individually. This was necessary since we are unable to derive analytical
expressions for the complete sampling scheme. The sampling steps for the states, the

83
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frequency parameters and log-damping coefficients are not easily implemented whereas
the sampling steps for the noise variances and missing samples are straightforward since
they only involve sampling from inverse Gamma and Gaussian distributions, respec-
tively. In this section, we therefore only focus on the validation of the sampling steps
for the states, the frequency parameters and log-damping coefficients.

7.1.1 Simulation Smoothing for the States
We validated the implementation of the simulation smoother by using Monte Carlo
simulations and compared the results against analytical results. From Eq. (6.18), we
know that the posterior distribution for the states given the model parameters and
observations is a multivariate Gaussian distribution whose mean and covariance are
given by Eq. (6.19) and can be calculated analytically. For N = 50 observations from
a dynamic sinusoidal model with a single sinusoid, i.e., L = 1, with the parameters
Q = 0.01I2, σ2

w = 0.1, ω = 0.5, γ = 0, µ =
√

2
[
1 1

]T and P = 0.1I2, we generated
T = 10, 000 set of state vectors s[τ ]

1:N for τ = 1, · · · , T by running the simulation smoother
outlined in algorithm 6.1. From these T sets of state vectors, a sample mean and
covariance were calculated by

µ̂s|θ,y =
1
T

T∑
τ=1

s[τ ] (7.1a)

Ĉs|θ,y =
1

T − 1

T∑
τ=1

s[τ ]s[τ ]T (7.1b)

where s = vec(s1:N ) and y = vec(y1:N ). Since the dynamic model only consists of a
single sinusoid, each state vector sn is vector with two elements. We denote these two
elements as sn,1 and sn,2, respectively.

Figure 7.1 and figure 7.2 show the results of the simulation for sn,1 and sn,2, respec-
tively. In each of the two figures, two plots are shown; the left one comparing the true,
analytical and estimated smoothed means, and the right one comparing the diagonal
elements of the analytical and estimated covariance matrices. It is seen that the analyt-
ical and estimated smoothed means appear to completely coincide1. For the diagonal
elements in the analytical and estimated covariance matrices, a small random deviation
between the two curves are observed. However, they clearly follow the same trend.

Although we have not compared the off-diagonal elements of the analytical and
estimated covariance matrices, we believe that the results in figure 7.1 and figure 7.2
have provided sufficient evidence for that the implementation of the simulation smoother
produce samples from the posterior distribution for the states given by Eq. (6.18).

1Notice, that the thickness of the estimated mean has been increased in order to make it visible. It
would have been completely hidden behind the true mean if this was not done.
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Figure 7.1: Comparison of the true, analytical and numerically estimated mean (left plot) for the first
element of the 2-dimensional state vector. The right plot shows the diagonal elements of the analytical
and numerically estimated covariance matrices.
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Figure 7.2: Comparison of the true, analytical and numerically estimated mean (left plot) for the
second element of the 2-dimensional state vector. The right plot shows the diagonal elements of the
analytical and numerically estimated covariance matrices.
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Figure 7.3: True von Mises distribution (red curve) for parameters κ = 1.5 and µ = π/2 and 50-bin
normalised histogram for the 100,000 samples generated by the Best-Fisher algorithm.

7.1.2 Simulating from the von Mises Distribution
Samples for the frequency parameters are obtained by simulating random variates from
the von Mises distribution as we showed in section 6.2.4. The simulation can be effi-
ciently implemented by using the Best-Fisher algorithm outlined in algorithm 6.2 which
is a rejection sampling scheme guaranteeing a minimum expected acceptance ratio of√
e/2π ≈ 0.66. For the verification of the implementation of the Best-Fisher algorithm,

we drew T = 100, 000 samples by using this algorithm and compared the histogram
of the obtained samples against the von Mises probability density function. Figure 7.3
shows the results of the simulation with the parameters of the distribution selected as
κ = 1.5 and µ = π/2. The histogram consists of 50 bins and the magnitude of each
bin has been normalised such that the total area covered by the histogram equals one.
The acceptance ratio of the simulation was ηA = 0.757. From the figure, we see that
the magnitude of the bins of the histogram approximately equals the true probability.
We therefore believe that our implementation of the Best-Fisher algorithm generates
random variates from the von Mises distribution.

7.1.3 MH-based Sampling of the Log-Damping Coefficients
In section 6.2.5, we proposed an approximate and an exact way for generating sam-
ples from the conditional distribution for the log-damping coefficients. In this section,
we evaluate both of these proposed sampling schemes by comparing analytical results
against histograms for the obtained samples. We also demonstrate that using a MH-
sampling step within the Gibbs sampler leads to the desired results. In the simulations,
we generated N = 50 observations from a dynamic sinusoidal model with a single si-
nusoid with the parameters σ2

w = 0.1, ω = 0.5, µ =
√

2
[
1 1

]T and P = 0.1I2 and
known states s1:N . The state noise variance was assumed to be isotropic and unknown,
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Figure 7.4: True marginal posterior distribution (red curve) for the log damping coefficient
marginalised w.r.t. the isotropic state noise variance. The plots also show the 50-bin normalised
histograms obtained by simulating 100,000 random variates from the true distribution by using the
MH-sampling scheme (left plot) and the Laplace approximation (right plot).

i.e., Q = qI2. Thus, we have two unknown parameters γ and q with the latter being
a nuisance parameter. The true marginal posterior distribution for the log-damping
coefficient can be found as

p(γ|s1:N , σ
2
w, ω, y1:N ) = p(γ|s1:N , ω) =

∫
p(γ, q|s1:N , ω)dq (7.2)

∝
∫
p(γ, q, s1:N |ω)dq =

∫
p(s1:N |q, ω, γ)p(γ, q|ω)dq (7.3)

= p(γ)
∫
p(s1:N |q, ω, γ)p(q)dq (7.4)

∝ p(γ)
∫ [N−1∏

n=1

p(sn+1|sn, q, ω, γ)

]
p(q)dq . (7.5)

The distribution p(sn+1|sn, q, ω, γ) is the distribution governing the state equation given
by Eq. (6.2) and is thus a Gaussian distribution. Since the prior distribution p(q) is an
inverse Gamma distribution given by Eq. (6.34), the true marginal posterior distribution
for the log-damping coefficient can be found to be proportional to

p(γ|s1:N , ω) ∝ p(γ)

[
bv +

1
2

N−1∑
n=1

(sn+1 −Asn)T (sn+1 −Asn)

]−(av+N−1)

(7.6)

by using result B.3.
Since γ and q are the only unknown parameters, we can skip all sampling steps of

the Gibbs sampler in algorithm 6.4 but step b) and step e). We have implemented step
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e) using the exact way as given by the MH-based sampler in algorithm 6.3 as well as for
using the Laplace approximation given by Eq. (6.73). For the prior distribution p(γ) for
the log-damping coefficients, we have used the improper uniform distribution. Figure
7.4 shows the results of the two simulations compared against the true distribution
given by Eq. (7.6). The left plot shows the 50-bin normalised histogram obtained by
drawing 100,000 samples using the MH-based sampler whereas the right plot shows
50-bin normalised histogram obtained by drawing 100,000 samples from the Laplace
approximated marginal distribution. From the plots, we see that we are able to draw
samples from p(γ|s1:N , ω) by using the MH-based sampling scheme. We also see that
the Laplace approximation is a very good approximation although it generates negative
log-damping coefficients.

7.2 Case 1: Inference for a Single Static Sinusoid
In the first simulation, we considered how our inference scheme performed on a single
sinusoid generated by the static model in Eq. (1.1) in the case of missing observations.
As compared against the simulations performed in chapter 4, the model in our simulation
also included a log-damping coefficient. The true but unknown model parameters in the
simulation were α = 1, ϕ = 0, ω = 0.2, γ = 3 · 10−3 and σ2

w = 0.01 for the amplitude,
phase, frequency, log-damping coefficient and observation noise variance, respectively.
The initial state statistics were assumed known and equal to µ = 0 and P = 10I2.
For the prior distributions p(q|av, bv) and p(σ2

w|aw, bw) on the state noise variance and
observation noise variance, respectively, we used non-informative priors to ensure that
they played a minimal role by selecting av = bv = aw = bw = 10−5. For the prior
p(ω|κ0, µ0) on the frequency parameter, we used a prior favouring positive frequencies
over negative frequencies by selecting κ0 = 5 and µ0 = π/2. For the log-damping
frequency, the prior p(γ|α0, β0) was selected such that values greater than 0.1 had very
low probability by choosing α0,l = 500 and β0,l = 1000. The initial values for ω[0]

were found by using the subspace-based ESPRIT-estimator [Stoica and Moses, 2005,
pp. 174-175], and the initial value for σ2

w
[0] was found as the average noise-subspace

eigenvalue computed as a bi-product by the ESPRIT estimator. In a rather heuristic
way, the initial value for the state noise variance was selected as q[0] = σ2

w
[0]
/10 and the

missing samples were all set to equal zero, i.e., z[τ ] = 0.
The samples from index 150 to index 250 of N = 512 observations were missing as

shown in the top plot of figure 7.5. The remaining of the plots in the figure show the
traces of generated samples as well as the histograms computed from these traces. Each
trace consists of T = 10, 000 samples generated by running algorithm 6.4. After a short
burn-in time in which the underlying Markov chain converges to the correct posterior
distribution, the traces are stationary and are constituted by samples from the marginal
distributions defined in Eq. (6.5). The histograms in the margin are based on the
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Figure 7.5: The observations with missing samples (top plot) and the traces of the 10,000 samples
from the Gibbs sampler for the frequency, log-damping coefficient, state noise variance and observation
noise variance. The plots in the margin show the histograms for the traces with the first 100 samples
removed as burn-in samples.
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Figure 7.6: Missing samples (dashed line) and the reconstructed samples (red line) in the interpolation
section marked by the vertical lines. The green line indicates the posterior mean value of the missing
samples.

generated samples with the exception of the first 100 samples which were discarded as
burn-in samples. In the limit of an infinite number of samples, these histograms converge
to the true marginal distributions in Eq. (6.5). The histograms based on the 9, 900
samples, however, are a good approximation to these true distributions from which, e.g.,
means and confidence intervals can be derived. For example, the means of the histograms
are in the limit of infinitely many samples equal to the MMSE estimate which we
discussed in section 2.3. Computing those means yields the estimates µ̂ω|y1:N = 0.2001,
µ̂γ|y1:N = 3.2 · 10−3, µ̂q|y1:N = 1.41 · 10−5 and µ̂σ2

w|y1:N = 9.5 · 10−3 which are very close
the true values.

Figure 7.6 shows the result of the interpolation. The dashed line indicates the true
missing samples and the red line indicates the reconstructed samples. As we discussed
in section 6.3, the reconstructed samples are a sample from the posterior distribution
for the missing samples. This ensures that the noise is also modelled. The green
line indicates a recontruction based on the mean of the joint posterior distribution for
the missing samples. Clearly, the curve is smooth and the noise is thus not modelled
when using this approach for the reconstruction of the missing samples. This yields an
interpolant which is atypical for the underlying signal [Ruanaidh and Fitzgerald, 1994].

7.3 Case 2: Inference in a Simplified Dynamic Model
In the second simulation, we increased the complexity of the simulations by considering
the dynamic model with several unknown parameters. In this simulation, however,
we did not consider the full model but a simplified version of it in which we assumed
isotropic state noise covariance and known log-damping coefficients equal to zero. We
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did also assume that we did not have any missing or corrupted observations. The
states as well as the rest of the parameters were assumed unknown. Although we refer
to these model assumptions as a simplified model, the complexity of the model is so
high that it prohibits analytical evaluation. In the simulation, we observed N = 512
samples from the dynamic signal model consisting of two sinusoids, i.e., L = 2, with
the unknown model parameters Q = qI4 with q = 0.01, σ2

w = 0.5, ω =
[
ω1 ω2

]T =[
0.3 0.35

]T . The amplitude and the phase of the sinusoids were unknown and given
by α =

[
α1 α2

]T =
[
0.8 1

]T and ϕ =
[
ϕ1 ϕ2

]T =
[
0 π/2

]T . We selected the
same hyperparameters as in the simulations for a single static sinusoid.

Inference in the dynamic model based on these assumption were performed by run-
ning T = 10, 000 iterations of the Gibbs sampler in algorithm 6.4. Since the log-damping
coefficients were known and no samples were missing, step e) and f) of the algorithm
were skipped. Figure 7.7 shows the results of the simulations. The top plot shows the
N = 512 observation whose amplitude seems to follow a non-stationary envelope. One
of the strength of the dynamic model as compared with the static model is that this
does not necessarily violate the model assumptions as we previously pointed out in sec-
tion 5.2. The remaining three plots in the figure show the traces of samples generated
by the inference scheme.

It should be mentioned that the computational complexity of algorithm 6.4 is rather
high and renders the algorithm unsuitable for real-time applications. For this simulation,
the generation of the traces took approximately 10 minutes on a powerful 2.66 GHz Core
i7 desktop computer. This should be compared against the N = 512 observations which
corresponds to approximately 12 ms of audio sampled at a standard rate of 44,100 kHz or
64 ms of speech sampled at a standard rate of 8000 kHz. Although the implementation
of the sampling scheme probably can be heavily optimised for increased speed and the
number of generated samples can be lowered significantly, the algorithm would still only
be feasible for off-line applications.

7.4 Case 3: Inference in a Full Dynamic Model
In the third simulation, we increased the complexity of the simulation in the previous
section by introducing a third sinusoid with amplitude, phase and frequency and log-
damping coefficient given by α3 = 1.2, ϕ3 = −0.1, ω3 = 0.6 and γ3 = 0.02, respectively.
We also assumed the other log-damping coefficients as unknown with true values given
by γ1 = γ2 = 0, and we no longer assumed the state noise to be isotropic but diagonal
with q =

[
q1 q2 q3

]T =
[
0.01 0.01 0.025

]T . The prior distributions were selected
in the same way as in the simulation for the single static sinusoid. The rest of the
parameters were the same as in the previous simulation for the simplified dynamic
model. We again observed N = 512 samples but this time with the samples from index
200 to index 250 missing as shown in figure 7.8.
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Figure 7.7: Observed sequence (top plot) and the traces of the 10,000 samples from the Gibbs
sampler for the frequencies, state noise variance and observation noise variance. The margin shows the
histograms for the traces with the first 100 samples removed as burn-in samples.
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Figure 7.8: The N = 512 observations with missing samples from index 200 to index 250.

As in the previous simulation, we performed the simulations by running T = 10, 000
iterations of the Gibbs sampler in algorithm 6.4. However, step e) and f) were not
skipped in this simulation since the log-damping coefficients were assumed unknown
and observations were missing. Figure 7.9 shows the traces of generated samples and
the histograms calculated from these samples. From the figure, we see that the sampling
scheme quickly converged. It should be pointed out that this is not true in general for
the algorithm whose convergence time critically depends on the ESPRIT-based initiali-
sation.

As an example of performing inference based on the generated samples, we have
computed the means of the marginal posterior distribution for the parameters shown
in figure 7.9. As we discussed in section 2.3, these means are the MMSE estimators of
the unknown parameters. For the frequencies, log-damping coefficients and state noise
variances, the MMSE estimates were calculated asµ̂ω1|y1:N µ̂γ1|y1:N µ̂q1|y1:N

µ̂ω2|y1:N µ̂γ2|y1:N µ̂q2|y1:N
µ̂ω3|y1:N µ̂γ3|y1:N µ̂q3|y1:N

 =

0.2960 0.0048 0.0081
0.3496 0.0006 0.0195
0.6038 0.0154 0.0243

 (7.7)

and the MMSE estimate of the observation noise variance was µ̂σ2
w|y1:N = 0.4082. Com-

paring these values against the true values, we see that the frequency estimates are
very close to the true values. For the other parameters, some of the estimates are close
whereas others deviates more from the true value. The posterior distributions, from
which the deviating estimators are computed, however, are rather broad. This indicates
that a significant uncertainty is associated with these point estimates.

Figure 7.10 shows the results of the interpolation. In the figure, the interpolation
section is marked by vertical lines and it contains the true missing samples indicated by
the dashed curve along with the reconstruction indicated by the solid red curve.
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Figure 7.9: The traces of the 10,000 samples from the Gibbs sampler for the frequencies, log-damping
coefficients, state noise variances and observation noise variance. The margin shows the histograms for
the traces with the first 100 samples removed as burn-in samples.
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Figure 7.10: Missing samples (dashed line) and the reconstructed samples (red lines) in the interpo-
lation section marked by the vertical lines.

7.5 Case 4: Inference for a Real Audio Signal
In the fourth and final simulation, we have considered restoration of a real audio signal
with missing samples. The audio signal was a frame of length N = 1024 from a very
simple piano signal downsampled by a factor of four to a sample rate of 11,025. In the
top plot of figure 7.11, the time series of the piano signal is shown with a centred section
of 220 missing observations. For a sample rate of of 11,025, the gap corresponds to 20
ms and it causes an audible click. The bottom plot of the figure shows the periodogram
of the 1024 observations and it reveals that the piano signal is a harmonic signal with
an (angular) fundamental frequency of 0.15. It should be noticed that the periodogram
was computed from all 1024 samples with the true missing samples inserted in the gap.
Although this is not possible in a real world application, we did this in the simulation
in order to validate the results of our inference scheme.

In the simulations, we selected the model order as L = 4 and used a diagonal state
noise covariance matrix Q. For the prior distributions for the model parameters, we
used the same values as in the previous simulations with one noticeable exception. The
state as well as observation variances of the piano signal were very small which resulted
in a very slow convergence time. In order to avoid this, we increased the hyperparameter
bw of the prior distribution for the observation noise variance σ2

w from 10−5 to 10−3. By
doing so, we prevented the observation noise variance from collapsing to zero [Lindley
and Smith, 1972; Rajan et al., 1997] and increased the convergence speed significantly.

Figure 7.12 shows the traces of samples obtained by running algorithm 6.4 for
T = 10, 000 iterations. The traces of samples for the fundamental frequency and the first
two harmonics quickly converged to the true vales and the corresponding log-damping
coefficients and state noise variances decreased towards zero. The latter behaviour im-
plies that the audio signal is stationary which, based on the time series plot in figure 7.11,
seems to be reasonable. The samples on the fourth trace, however, does not appear to
originate from neither the third nor the fourth harmonic but from a mixture of them
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Figure 7.11: The N = 1024 observations (top plot) from a piano signal with a centred gap of 220
missing samples and the periodogram (bottom plot) of the observations with no missing samples.
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Figure 7.12: The traces of the 10,000 samples from the Gibbs sampler for the frequencies, log-damping
coefficients, state noise variances and observation noise variance.
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Figure 7.13: The true missing audio samples (dashed line) and the reconstructed samples (red lines)
in the interpolation section marked by the vertical lines.

and the variance of the samples is very high. However, since the corresponding log-
damping coefficient was very high, the fourth frequency had negligible influence on the
interpolation which is shown in figure 7.13. From the figure, it is seen that the missing
samples were reconstructed in a satisfactory way close to the true values of the missing
samples. Inserting these interpolated samples into the audio signal thus removes the
audible click.

7.6 Summary
In this chapter, we have demonstrated the applicability of the inference scheme derived
in chapter 6. This was accomplished through several simulations on various synthetic
signals as well as on a real audio signal. The inference scheme was demonstrated to be
able to draw samples from the marginal posterior distributions of the unknown model
parameters, and it was also shown to be able to handle signals with missing observa-
tions which were successfully reconstructed through interpolation. The computational
complexity of the inference scheme is very high and this renders the algorithm unusable
for real-time applications. This is a general problem for numerical Bayesian inference
schemes.
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Chapter 8

Conclusion

In this thesis, we have taken the Bayesian approach to statistical inference and applied
it to the problem of performing inference for the parameters of the sinusoidal model.
The Bayesian approach offers some attractive advantages over the classical approach to
statistical inference as we outlined in the introduction and demonstrated using several
small-scale examples throughout part I of this thesis. One of the major advantages is
that the Bayesian approach always offers the complete and optimal solution in terms
of the posterior distribution on which all probabilistic statements about the inference
problem are based. However, this attractive advantage of Bayesian statistics is often
dwarfed by the difficulties associated with deriving analytical solutions, which may not
exist, or evaluating high-dimensional integrals using numerical techniques. Although
computational algorithms such as the Metropolis-Hastings algorithm and the Gibbs
sampler to some extent have remedied for this, the computational complexity associated
with performing Bayesian inference may still render it infeasible for many applications.

Initially we considered the static sinusoidal model since it is the most popular sinu-
soidal model. In that connection, we reviewed two of the Bayesian inference schemes
for the frequency parameter of the static sinusoidal model. In part II, however, we
introduced the dynamic sinusoidal model as an extension to the static model, and it
was shown to be able to model non-stationary signals. This is achieved by allowing the
amplitudes and phases of the sinusoids to change as a function of time. By using this
model, we are therefore able to model, e.g., audio signals much more accurately, and
we do not have to restrict ourselves to analysing only short time-frames in order not to
violate the local-stationarity assumption implicit in the static model.

The main contribution of this thesis consists in the proposed and developed inference
scheme based on the Gibbs sampler for the sinusoidal parameters of the dynamic sinu-
soidal model. Whereas previous Bayesian inference schemes for this model are based
on an assumed discrete frequency parameter and deterministic inference methods, the
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proposed inference scheme in this thesis considers the frequency parameters as contin-
uous random variables and is based on stochastic inference methods. This leads to
a more general inference scheme which gives the exact results in the limit of an in-
finitely large sample size. Another contribution of this thesis is the way samples for
the frequency parameters are generated. To our knowledge, it has not been established
before that the frequency parameters, conditioned on the other model parameters and
states, have a von Mises distribution in the case of a diagonal state noise covariance
matrix. This discovery enables simple, exact and user-parameter free sampling of the
frequency parameters. The applicability of the proposed inference scheme was demon-
strated on several synthetic signals as well as on a real audio signal. These simulations
showed that the inference scheme can be successfully applied to applications involving
parameter estimation and, in particular, restoration problems.

Although applicable to analysis and synthesis of real audio signals, the proposed
inference scheme is still subject to unsolved problems and open to further research.
For example, the proposed method for sampling the log-damping coefficient is based
on the Laplace approximation or the Metropolis-Hastings algorithm. Although the
latter is demonstrated to work in the simulations, the computational complexity of the
Metropolis-Hastings algorithm is very high for which reason it would be desirable to
derive a more efficient sampling scheme. Including the log-damping coefficients in the
sinusoidal model should also be coupled with some kind of adaptive segmentation of
the signal so that decays of the signal envelope are observed in the beginning of a time-
frame. For many audio signals such as the piano signal considered in the simulation,
the frequencies are related to one or more fundamental frequencies. These signals are
known as single and multi pitch signals, respectively, and it would be desirable to extend
the proposed inference scheme to handle these kind of harmonic structures. Another
obvious limitation of the proposed inference scheme is that it assumes the model order
as being known. In real world applications, this is almost never the case so the inference
should be extended to handle this as well. As we have shown in this thesis, the Bayesian
approach offers some sound methods for achieving this. Finally, a significant amount
of effort should be put into developing faster and more efficient implementations of the
individual sampling steps.
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Appendix A

Probability Distributions and
Bayesian Inference for the
Gaussian

In this appendix, we sum up the various probability distributions encountered in this
thesis. The summary comprises a short description as well as a list of important prop-
erties such as probability density function, mean, mode and variance. Special emphasis
is put on the Gaussian distribution for which we give and proof an important result.

A.1 Probability Distributions
The following list of probability distributions and their properties is not exhaustive in
any way since it only comprises the few distributions encountered in this thesis. A much
more complete list of probability distributions can be found in, e.g., [Bishop, 2006, ap.
B], [Gelman et al., 2003, ap. A] and [Evans et al., 2000]. In the presentation, we denote
the random variable as x in the univariate case, as the D-dimensional vector x in the
multivariate case, and as the D ×D-dimensional matrix X in the matrix-variate case.

A.1.1 Inverse Gamma Distribution
The inverse gamma distribution is a univariate distribution with two parameters and
denoted as Inv-G(x;α, β). It is the inverse of the Gamma distribution and is encoun-
tered as the conjugate prior for the variance of a univariate Gaussian distribution or
a multivariate Gaussian distribution with an isotropic covariance matrix and known
mean. Figure A.1 shows a few plots of the inverse gamma density function and some of
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Figure A.1: Three examples of the inverse gamma probability density function.

the main characteristics of the distribution are summarised below.

Density function : p(x|α, β) =
βα

Γ(α)
x−(α+1) exp

{
−β
x

}
(A.1)

Support : x ∈ (0,∞)
Parameters : α > 0 (Shape)

β > 0 (Scale)

Mean (for α > 1) : E(x) =
β

α− 1
(A.2)

Mode : Mode(x) =
β

α+ 1
(A.3)

Variance (for α > 2) : Var(x) =
β2

(α− 1)2(α− 2)
(A.4)

For α = ν/2 and β = 1/2 the inverse Gamma distribution is identical to inverse chi-
square distribution Inv-χ2(x; ν). The matrix-variate generalisation of the inverse gamma
is the inverse Wishart distribution.

A.1.2 Inverse Wishart Distribution
The inverse Wishart distribution is a matrix-variate distribution with two parameters
and denoted as Inv-W(X; ν,Ψ). It is the conjugate prior for the covariance matrix of
a multivariate Gaussian distribution with known mean vector. Its main characteristics
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are summarised below.

Density function : p(X|ν,Ψ) = B(ν,Ψ)|X|−(ν+D+1)/2 exp
{
−1

2
tr(ΨX−1)

}
(A.5)

B(ν,Ψ) =
|Ψ|ν/2

2νD/2πD(D−1)/4
∏D
i=1 Γ(ν+1−i

2 )
(A.6)

Support : X is p.d.
Parameters : ν > D − 1 (Degrees of freedom)

Ψ is sym. and p.d. (Scale matrix)

Mean : E(X) =
Ψ

ν −D − 1
(A.7)

Mode : Mode(X) =
Ψ

ν +D + 1
(A.8)

In the univariate case, i.e., D = 1, the inverse Wishart distribution is identical to the
inverse gamma distribution Inv-G(x;α, β) with parameters α = ν/2 and β = Ψ/2.

A.1.3 Gaussian Distribution

x

p(x|µ, σ2)

−3 −2 −1 1 2 3

1

0

µ = 0, σ2 = 1

µ = 1, σ2 = 0.5

µ = −2, σ2 = 0.1

Figure A.2: Three examples of the univariate Gaussian probability density function.

The Gaussian distribution, which is also known as the normal distribution, has two
parameters and denoted as N (x;µ,Σ). The Gaussian distribution is frequently en-
countered and it is the conjugate prior of the mean of the Gaussian distribution with
known covariance matrix. Figure A.2 shows a few plots of the univariate Gaussian
distribution. The main characteristics for the multivariate Gaussian distribution are
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summarised below.

Density function : p(x|µ,Σ) =
1√

(2π)D|Σ| exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
(A.9)

Support : x ∈ RD

Parameters : µ ∈ RD (Mean)
Σ is sym. and p.d. (Covariance)

Mean : E(x) = µ (A.10)
Mode : Mode(x) = µ (A.11)
Covariance : Cov(x) = Σ (A.12)

The covariance matrix is sometimes constrained to a particular structure such as the
diagonal or isotropic form. In the diagonal case, the non-diagonal elements are zero
which yields a covariance matrix of the form Σ = diag(σ2

1 , · · · , σ2
D). In the isotropic

case, the diagonal elements are further constrained to be equal, i.e., Σ = σ2ID.
The Gaussian distribution has many attractive analytical properties. We state one

of the most important ones below and several others in appendix B.

Result A.1 If the subvectors x =
[
xT1 xT2

]T are jointly Gaussian distributedN (x;µ,Σ)
with µ and Σ partitioned as

µ =
[
µ1

µ2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, (A.13)

then the conditional distribution p(x1|x2) is also Gaussian distributed and given by

p(x1|x2) = N (x1;µ1|2,Σ1|2) (A.14)

µ1|2 = µ1 + Σ12Σ−1
22 (x2 − µ2) (A.15)

Σ1|2 = Σ11 −Σ12Σ−1
22 Σ21 . (A.16)

Further, the marginal distribution p(x1) is also Gaussian distributed and given by

p(x1) = N (x1;µ1,Σ11) . (A.17)

Even tough the proof is rather involved mathematically, we restate it here since it high-
lights some important points regarding manipulation of the Gaussian. One of these ma-
nipulation techniques is called completing the squares and it is used frequently through-
out this thesis.

Proof. According to Bayes’ Theorem, we can factor the joint distribution as

p(x1,x2) = p(x1|x2)p(x2) . (A.18)
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Initially, we wish to determine p(x1|x2) from p(x1,x2). The distribution p(x2) acts
as a pure normalisation factor for a given x2 w.r.t. p(x1|x2) for which reason we only
consider

p(x1|x2) ∝ p(x1,x2) ∝ exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
. (A.19)

This formulation greatly simplifies the problem as it allows us to focus our attention to
the terms dependent on x1 without having to compute the part which is independent
of x1, i.e., the normalisation.

The inverse of the covariance matrix can be computed using the analytic inversion
formula [Bishop, 2006, p. 87]

Σ−1 =
[

M −MΣ12Σ−1
22

−Σ−1
22 Σ21M Σ−1

22 + Σ−1
22 Σ21MΣ12Σ−1

22

]
,
[
Λ11 Λ12

Λ21 Λ22

]
(A.20)

where M = (Σ11 −Σ12Σ−1
22 Σ21)−1 and we have introduced the precision matrices Λij

for notational convenience. Now, expanding the quadratic term in the exponent of the
exponential in Eq. (A.19) and using the fact that Λ12 = ΛT

21 yields

−1
2

(x− µ)TΣ−1(x− µ) = − 1
2

(x1 − µ1)TΛ11(x1 − µ1)− 1
2

(x1 − µ1)TΛ12(x2 − µ2)

− 1
2

(x2 − µ2)TΛ21(x1 − µ1)− 1
2

(x2 − µ2)TΛ22(x2 − µ2)

= − 1
2
xT1 Λ11x1 + xT1 [Λ11µ1 −Λ12(x2 − µ2)] + c2 (A.21)

where

c2 = −1
2
xT2 Λ22x2 + xT2 (Λ22µ2 + Λ21µ1)− 1

2
µT1 Λ11µ1 −

1
2
µT2 Λ22µ2 (A.22)

is a constant representing all terms independent of x1. We see that the function of x1 is
also quadratic which means that p(x1|x2) is Gaussian distributed completely specified
by its mean µ1|2 and covariance Σ1|2. In order to determine these parameters, we
expand the exponent of the exponential for p(x1|x2) and compare it to the expansion in
Eq. (A.21). This procedure is referred to as completing the squares. Expanding yields

−1
2

(x1−µ1|2)TΣ−1
1|2(x1−µ1|2) = −1

2
xT1 Σ−1

1|2x1 +xT1 Σ−1
1|2µ1|2−

1
2
µT1|2Σ

−1
1|2µ1|2 . (A.23)

By comparing the second order terms of Eq. (A.21) and Eq. (A.23) we immediately see
that

Σ1|2 = Λ−1
11 = M−1 = Σ11 −Σ12Σ−1

22 Σ21 . (A.24)

By a similar comparison for the first order terms, we obtain the equation

xT1 Σ−1
1|2µ1|2 = xT1 [Λ11µ1 −Λ12(x2 − µ2)] (A.25)
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from which we readily derive

µ1|2 = Σ1|2[Λ11µ1 −Λ12(x2 − µ2)] = µ1 + Σ12Σ−1
22 (x2 − µ2) . (A.26)

This concludes the proof for the conditional distribution p(x1|x2).
The marginal distribution is derived using similar procedures. First, we write

p(x1) =
∫
p(x1,x2)dx2 ∝

∫
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
dx2 . (A.27)

By expanding and collecting terms in the same way as before, but w.r.t. x2 instead of
x1, we obtain

p(x1) ∝ exp
{
c1 + µT2|1Σ

−1
2|1µ2|1

}∫
exp

{
−1

2
(x2 − µ2|1)TΣ−1

2|1(x2 − µ2|1)
}
dx2

(A.28)
where c1 and µT2|1Σ

−1
2|1µ2|1 are independent of x2. Expressions for them are given by

following the same procedure as in the first part of this proof, i.e., with swapped indices
c1, Σ2|1 and µ2|1 are given by Eq. (A.22), Eq. (A.24) and Eq. (A.26), respectively. The
integral is recognised as the integral over an unnormalised Gaussian proportional to
p(x2|x1) and is thus easy to evaluate; it simply gives a constant independent of x1 and
x2. By expanding and collecting terms of the exponent of the remaining exponential,
we obtain after some algebra

c1 + µT2|1Σ
−1
2|1µ2|1 = −1

2
xT1 Σ−1

11 x1 + xT1 Σ−1
11 µ1 + const (A.29)

where ’const’ denotes the terms independent of x1. The marginal distribution p(x1) is
thus Gaussian since the exponent is a quadratic function of x1. Completing the squares
yields easily the parameters and we have that

p(x1) = N (x1;µ1,Σ11) . (A.30)
�

A.1.4 Student’s t-Distribution
The student’s t-distribution has three parameters and is denoted as St(x;µ,Σ, ν). It
is, for example, encountered when marginalising the covariance matrix of a multivariate
Gaussian pdf with respect to a conjugate inverse Wishart prior. Figure A.3 shows a
few plots of the density function of the univariate student’s t-distribution. The main
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x

p(x|µ, σ2, ν)

−5 −4 −3 −2 −1 1 2 3 4 5

0.2

0.4

0

ν = 0.1
ν = 1
ν = ∞

Figure A.3: Three examples of the univariate Student’s t-probability density function. In all examples,
the mean and variance are fixed to 0 and 1, respectively.

characteristics of the multivariate student’s t-distribution are summarised below.

Density function : p(x|µ,Σ, ν) =
Γ(D/2 + ν/2)

Γ(ν/2)
√

(πν)D|Σ|

[
1 +

∆2

ν

]−D−ν
2

(A.31)

∆2 = (x− µ)TΣ−1(x− µ) (A.32)

Support : x ∈ RD

Parameters : µ ∈ RD (Mean)
Σ is sym. and p.d. (Covariance)
ν > 0 (Degrees of freedom)

Mean(for ν > 1) : E(x) = µ (A.33)
Mode : Mode(x) = µ (A.34)

Covariance(for ν > 2) : Cov(x) =
ν

ν − 2
Σ (A.35)

The student’s t-distribution can be interpreted as an infinite mixture of Gaussian dis-
tributions with equal mean values but with different variances, and it converges to the
Gaussian distribution given by N (x;µ,Σ) for ν →∞.

A.1.5 Uniform Distribution
The uniform distribution is a simple distribution with two parameters and denoted as
U(x; a, b). It is important in a wide range of applications and is often used as a building
block for random variate generations from other distributions. Figure A.4 shows a
few plots of the uniform density function and some of the main characteristics of the
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x

p(x|a, b)

−1 −0.5 0.5 1 1.5 2

1

2

0

a = −0.5, b = 1

a = −1, b = 2

a = 0.2, b = 0.7

Figure A.4: Three examples of the uniform probability density function.

distribution are summarised below.

Density function : p(x|a, b) =

{
(b− a)−1 for a ≤ x ≤ b
0 otherwise

(A.36)

Support : x ∈ (a, b)
Parameters : a ∈ (−∞, b) (lower boundary)

b ∈ (a,+∞) (upper boundary)

Mean : E(x) =
a+ b

2
(A.37)

Mode : any point in (a, b) (A.38)

Variance : Var(x) =
(b− a)2

12
(A.39)

For Bayesian statistical inference, a uniform distribution with a sufficiently large support
can be selected as a prior distribution in cases where little or no prior information is
available.

A.1.6 Von Mises Distribution
The von Mises distribution is also known as the circular Gaussian distribution since it is
the Gaussian distribution for periodic variables. An example of a periodic variable is an
angle. The distribution has two parameters and is denoted as VM(x;κ, µ). Figure A.5
shows a few plots of the von Mises density function and some of the main characteristics
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x

p(x|κ, µ)

−π −π
2

π
2

π

0.4

0.8

0

κ = 0, µ = 0

κ = 2, µ = −π/2

κ = 4, µ = 0

Figure A.5: Three examples of the von Mises probability density function.

of the distribution are summarised below.

Density function : p(x|κ, µ) =
1

2πI0(κ)
exp{κ cos(x− µ)} (A.40)

Support : any interval I of length 2π
Parameters : κ > 0 (Concentration)

µ ∈ I (Location)
Mean : E(x) = µ (A.41)
Mode : Mode(x) = µ (A.42)

Circular variance : Var(x) = 1− I1(κ)
I0(κ)

(A.43)

The function Ik(κ) is the modified Bessel function of the first kind of order k.
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Appendix B

Bayesian Inference for the
Gaussian

The single most important building block in statistical inference is the Gaussian dis-
tribution. This stems from the fact that it is an accurate model for many real world
random phenomena, that it is the maximum entropy distribution if nothing but the
mean and the variance is specified, and that it has convenient analytical properties.
In Bayesian statistics, the Gaussian distribution is also very popular and in this sec-
tion we state some of the important results associated with Bayesian inference for the
Gaussian distribution. The results are useful in the situation in which we observe M
D-dimensional i.i.d. random vectors

x =
[
xT1 xT2 · · · xTM

]T (B.1)

from a Gaussian distribution whose mean µ and/or covariance Σ are unknown. The
N = MD-dimensional vector x has also a Gaussian distribution with mean vector

m =
[
µT · · · µT

]T (B.2)

and covariance matrix

C = diag(Σ,Σ, · · · ,Σ) (B.3)

where the block diagonal structure of the covariance matrix follows from the fact that
the x1, · · · ,xM are independent random vectors. Using Bayes’ Theorem, we wish to
derive the posterior distributions for the mean µ and/or the covariance Σ as well as for
the model evidence. In some of the results, we assume the mean vector to be an affine
function of an L-dimensional parameter vector θ, i.e., µ = Aθ + b with A and b being

117
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known, and an isotropic covariance matrix Σ = σ2ID. For these assumptions, the mean
and covariance for x are m = Hθ + r with

H ,
[
AT AT · · · AT

]T
(B.4)

r ,
[
bT bT · · · bT

]T
(B.5)

and C = σ2IN , respectively. We constrain ourselves to these structures of the mean
vector and covariance matrix in some of the results below since these are encountered
frequently in this thesis.

B.1 Inference for an Unknown Mean
We observe M D-dimensional i.i.d. random vectors x1, · · · ,xM from a Gaussian distri-
bution N (xm;Aθ+b,Σ) with unknown mean parameter vector θ and known covariance
Σ. Assuming a conjugate Gaussian prior N (θ;µθ,Σθ) over the mean parameter vector
θ with known hyperparameters µθ and Σθ, and using Bayes’ theorem

p(θ|x) =
p(x|θ)p(θ)

p(x)
, (B.6)

we wish to find the posterior distribution p(θ|x) as well as the evidence p(x).

Result B.1 Let the prior distribution and the likelihood be given by

p(θ) = N (θ;µθ,Σθ) (B.7)
p(x|θ) = N (x;Hθ + r,C) , (B.8)

respectively. If the covariance matrix C and the hyperparameters µθ and Σθ are known,
the posterior distribution for the parameter vector is a Gaussian distribution given by

p(θ|x) = N (θ;µθ|x,Σθ|x) (B.9)

µθ|x = Σθ|x(HTC−1(x− r) + Σ−1
θ µθ) (B.10)

Σθ|x = (Σ−1
θ +HTC−1H)−1 . (B.11)

The marginal distribution over θ is also a Gaussian distribution and given by

p(x) = N (x;Hµθ + r,C +HΣθHT ) . (B.12)

Proof. From result A.1, we know how to compute the conditional distribution p(θ|x)
and the marginal distribution p(x) from their joint distribution p(θ,x). Thus, the proof
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focuses on deriving an expression for this joint distribution. For notational convenience,
we initially define the Gaussian random variable y =

[
θT xT

]T
with mean µy and

covariance Σy. We now have

p(y) = p(θ,x) = p(x|θ)p(θ) = N (x;Hθ + r,C)N (θ;µθ,Σθ) (B.13)

∝ exp
{−1

2
(x−Hθ − r)TC−1(x−Hθ − r)

}
exp

{−1
2

(θ − µθ)TΣ−1
θ (θ − µθ)

}
∝ exp

{−1
2
[
θT (HTC−1H + Σ−1

θ )θ + xTC−1x− θTHTC−1x− xTC−1Hθ

− 2θT (Σ−1
θ µθ −HTC−1r)− 2xTC−1r

]}
. (B.14)

By comparing the latter expression with the exponent of the exponential of p(y) given
by

−1
2

(y − µy)TΣ−1
y (y − µy) = −1

2
(
yTΣ−1

y y − 2yTΣ−1
y µy + µTyΣ−1

y µy
)
, (B.15)

we obtain by completing the squares that

yTΣ−1
y y =

[
θT xT

] [HTC−1H + Σ−1
θ −HTC−1

−C−1H C−1

] [
θ x

]
(B.16)

and

−2yTΣ−1
y µy = −2

[
θT xT

] [Σ−1
θ µθ −HTC−1r

C−1r

]
. (B.17)

From these two equations, we readily obtain that the mean and covariance for the joint
distribution p(y) = p(θ,x) are given by

µy = Σy

[
Σ−1
θ µθ −HTC−1r

C−1r

]
(B.18)

Σy =
[
HTC−1H + Σ−1

θ −HTC−1

−C−1H C−1

]−1

=
[

Σθ ΣθHT

HΣθ C +HΣθHT

]
(B.19)

where the last equality follows from Eq. (A.20). Using result A.1 and some straightfor-
ward algebra, we therefore obtain for the conditional distribution that

p(θ|x) = N (θ;µθ|x,Σθ|x) (B.20)

µθ|x = Σθ|x(HTC−1(x− r) + Σ−1
θ µθ) (B.21)

Σθ|x = (Σ−1
θ +HTC−1H)−1 (B.22)
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and for the marginal distribution that

p(x) = N (x;Hµθ + r,C +HΣθHT ) . (B.23)

This concludes the proof. �

B.2 Inference for an Unknown Covariance
We observe M D-dimensional i.i.d. random vectors x1, · · · ,xM from a Gaussian dis-
tribution N (xm;µ,Σ) with known mean vector µ and unknown covariance matrix Σ.
Assuming a conjugate inverse Wishart prior Inv-W(Σ; ν,Ψ) over the covariance matrix
Σ with known hyperparameters ν and Ψ, and using Bayes’ theorem

p(Σ|x) =
p(x|Σ)p(Σ)

p(x)
, (B.24)

we wish to find the posterior distribution p(Σ|x).

Result B.2 Let the prior distribution and the likelihood be given by

p(Σ) = Inv-W(Σ; ν,Ψ) (B.25)
p(x|Σ) = N (x;m,C)

=
M∏
m=1

p(xm|Σ) =
M∏
m=1

N (xm;µ,Σ) , (B.26)

respectively. If the mean vector µ and the hyperparameters ν and Ψ are known, the
posterior distribution for the noise covariance is an inverse Wishart distribution given
by

p(Σ|x) = Inv-W(Σ; νΣ|x,ΨΣ|x) (B.27)
νΣ|x = ν +M (B.28)

ΨΣ|x = Ψ +
M∑
m=1

(xm − µ)(xm − µ)T . (B.29)
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Proof. From Bayes’ theorem, we have that

p(Σ|x) ∝ p(x|Σ)p(Σ) =

[
M∏
m=1

N (xm;µ,Σ)

]
Inv-W(Σ; ν,Ψ) (B.30)

∝
[
M∏
m=1

|Σ|−1/2 exp
{−1

2
(xm − µ)TΣ−1(xm − µ)

}]

× |Σ|−(ν+D+1)/2 exp
{−1

2
tr(ΨΣ−1)

}
(B.31)

= |Σ|−M/2|Σ|−(ν+D+1)/2

× exp

{
−1
2

tr

(
M∑
m=1

(xm − µ)(xm − µ)TΣ−1

)
− 1

2
tr(ΨΣ−1)

}
(B.32)

= |Σ|−(ν+M+D+1)/2

× exp

{
−1
2

tr

([
M∑
m=1

(xm − µ)(xm − µ)T + Ψ

]
Σ−1

)}
(B.33)

∝ Inv-W
(

Σ; ν +M,Ψ +
M∑
m=1

(xm − µ)(xm − µ)T
)

(B.34)

where the last proportional sign follows from comparing the second last factorisation
against the expression for the inverse Wishart distribution given by Eq. (A.5). �

If we restrict the covariance matrix to be isotropic, i.e., Σ = σ2ID, the conjugate prior
is the inverse gamma distribution Inv-G(σ2; a, b). Assuming the hyperparameters to be
known and using Bayes’ theorem

p(σ2|x) =
p(x|σ2)p(σ2)

p(x)
, (B.35)

we wish to find the posterior distribution p(σ2|x) as well as the evidence p(x).

Result B.3 Let the prior distribution and the likelihood be given by

p(σ2) = Inv-G(σ2; a, b) (B.36)

p(x|σ2) = N (x;m, σ2IN ) , (B.37)

respectively. If the mean vector m and the hyperparameters a and b are known, the
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posterior distribution for the noise variance is an inverse gamma distribution given by

p(σ2|x) = Inv-G(σ2; aσ2|x, bσ2|x) (B.38)
aσ2|x = a+N/2 (B.39)

bσ2|x = b+
1
2

(x−m)T (x−m) . (B.40)

The marginal distribution over σ2 is a multivariate Student’s t-distribution given by

p(x) = St(x;m,
b

a
IN , 2a) . (B.41)

Proof. From Bayes’ theorem, we have that

p(σ2|x) ∝ p(x|σ2)p(σ2) = N (x;m, σ2IN )Inv-G(σ2; a, b) (B.42)

∝ |σ2IN |−1/2 exp
{ −1

2σ2
(x−m)T (x−m)

}
(σ2)−(a+1) exp

{−b
σ2

}
(B.43)

= (σ2)−N/2(σ2)−(a+1) exp
{ −1

2σ2
(x−m)T (x−m)− b

σ2

}
(B.44)

= (σ2)−(a+N/2+1) exp
{
−b+ 1

2 (x−m)T (x−m)
σ2

}
(B.45)

∝ Inv-G
(
σ2; a+N/2, b+

1
2

(x−m)T (x−m)
)

(B.46)

where the last proportional sign follows from comparing the second last factorisation
against the expression for the inverse gamma distribution given by Eq. (A.1).

For the marginal distribution, we have that

p(x) =
∫
p(σ2,x)dσ2 =

∫
p(x|σ2)p(σ2)dσ2 (B.47)

∝
∫

(σ2)−(a+N/2+1) exp
{
−b+ 1

2 (x−m)T (x−m)
σ2

}
dσ2 (B.48)

where the proportional sign follows from the derivation for p(σ2|x) given above. The
expression can be extended as

p(x) ∝
[
b+

1
2

(x−m)T (x−m)
]−(a+N/2) ∫ [

b+
1
2

(x−m)T (x−m)
](a+N/2)

× (σ2)−(a+N/2+1) exp
{
−b+ 1

2 (x−m)T (x−m)
σ2

}
dσ2 (B.49)
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so the integral is taken over the inverse gamma distribution scaled by the factor Γ(a+
N/2) and is therefore equal to Γ(a+N/2). Thus, we have that

p(x) ∝
[
b+

1
2

(x−m)T (x−m)
]−(a+N/2)

(B.50)

∝
[
1 +

(x−m)T ab (x−m)
2a

]−N−2a
2

(B.51)

∝ St(x;m,
b

a
IN , 2a) (B.52)

where the last proportional sign follows from comparing the second last factorisation
against the expression for the student’s t-distribution given by Eq. (A.31). �

B.3 Inference for an Unknown Mean and an Unknown
Isotropic Covariance

We observe M D-dimensional i.i.d. random vectors x1, · · · ,xM from a Gaussian dis-
tribution N (xm;µ,Σ) with unknown L-dimensional mean parameter vector θ and un-
known isotopic covariance σ2ID. The conjugate priors for θ and σ2 are the Gaussian dis-
tribution N (θ;µθ, σ2Cθ) and inverse Gamma distribution Inv-G(σ2; a, b), respectively.
Notice that the covariance of the Gaussian depends on the noise variance which is re-
quired for conjugacy, i.e., Σθ = σ2Cθ. The joint distribution p(θ, σ2) = p(θ|σ2)p(σ2)
constituted by these priors is often referred to as the Gaussian-inverted gamma distri-
bution. Using Bayes’ theorem

p(θ, σ2|x) =
p(x|θ, σ2)p(θ|σ2)p(σ2)

p(x)
, (B.53)

we wish to find the marginal posterior distributions p(θ|x) and p(σ2|x) as well as the
evidence p(x).

Result B.4 Let the prior distributions and the likelihood be given by

p(σ2) = Inv-G(σ2; a, b) (B.54)

p(θ|σ2) = N (θ;µθ, σ
2Cθ) (B.55)

p(x|θ, σ2) = N (x;Hθ + r, σ2IN ) , (B.56)

respectively. If the hyperparameters a, b, µθ and Cθ are known, the marginal posterior
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distribution for the variance is an inverse gamma distribution given by

p(σ2|x) = Inv-G(σ2; aσ2|x, bσ2|x) (B.57)
aσ2|x = a+N/2 (B.58)

bσ2|x = b+
1
2

∆2
x (B.59)

∆2
x = (x−Hµθ − r)T (IN +HΣθHT )−1(x−Hµθ − r) . (B.60)

The marginal posterior distribution for the mean parameter vector is a multivariate
Student’s t-distribution given by

p(θ|x) = St
(
θ;µθ|x,

bσ2|x
aσ2|x

Cθ|x, 2aσ2|x

)
(B.61)

µθ|x = Cθ|x(HTx+ Σ−1
θ µθ) (B.62)

Cθ|x = (HTH +C−1
θ )−1 . (B.63)

The marginal distribution over θ and σ2 is also a multivariate Student’s t-distribution
and given by

p(x) = St
(
x;Hµθ + r,

b

a
(IN +HCθHT ), 2a

)
. (B.64)

Proof. From Bayes’ theorem, we have that

p(σ2|x) ∝ p(x|σ2)p(σ2) (B.65)

for the marginal posterior distribution for the noise variance. The conditional distribu-
tion p(x|σ2) can be expressed as

p(x|σ2) =
∫
p(x,θ|σ2)dθ =

∫
p(x|θ, σ2)p(θ|σ2)dθ (B.66)

= N (x;Hµθ + r, σ2(IN +HCθHT ) (B.67)

where the last equality follows from result B.1. Inserting this into Eq. (B.65) and using
result B.3 yield

p(σ2|x) = N (x;Hµθ + r, σ2(IN +HCθHT )Inv-G(σ2; a, b) (B.68)

= Inv-G(σ2; aσ2|x, bσ2|x) (B.69)

where

aσ2|x = a+N/2 (B.70)

bσ2|x = b+
1
2

∆2
x (B.71)

∆2
x = (x−Hµθ − r)T (IN +HΣθHT )−1(x−Hµθ − r) . (B.72)
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This concludes the proof for the expression of the marginal posterior distribution p(σ2|x).
For the marginal posterior distribution for the mean parameter vector, we have that

p(θ|x) =
∫
p(θ, σ2|x)dσ2 =

∫
p(θ|σ2,x)p(σ2|x)dσ2. (B.73)

The expressions for the two distribution inside the integral are known from result B.1
and from the first part of this proof. Inserting the expressions yields

p(θ|x) =
∫
N (θ;µθ|x, σ

2Cθ|x)Inv-G(σ2; aσ2|x, bσ2|x)dσ2 (B.74)

= St
(
θ;µθ|x;

bσ2|x
aσ2|x

Cθ|x, 2aσ2|x

)
(B.75)

where Σθ|x = σ2Cθ|x and the last equality follows from result B.3. This concludes the
proof for the expression of the marginal posterior distribution p(θ|x).

The marginal distribution over θ and σ2 can be found from

p(x) =
∫
p(x, σ2)dσ2 =

∫
p(x|σ2)p(σ2)dσ2 . (B.76)

From the first part of this proof, we know p(x|σ2). Thus

p(x) =
∫
N (x;Hµθ + r, σ2(IN +HCθHT ))Inv-G(σ2; a, b)dσ2 (B.77)

= St
(
x;Hµθ + r,

b

a
(IN +HCθHT ), 2a

)
(B.78)

where the last equality follows from result B.3. This concludes the proof. �
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Appendix C

The Kalman Filter and Smoother

In this appendix, we derive the Kalman filter and smoother for the linear time-invariant
Gaussian state space model. In contrary to many other derivations (see, e.g., [Kay,
1993, ch. 13], [Durbin and Koopman, 2001] and [Harvey, 1989]), we derive the Kalman
filter and smoother using the Bayesian inference methods for manipulating probability
distributions as described in chapter 2 and appendix A and appendix B.

The linear time-invariant Gaussian state space model is given by

yn = Bsn +wn (observation equation)
sn+1 = Asn + vn (state equation)

(C.1)

for n = 1, · · · , N where yn, sn, wn, vn, B andA are the N×1 observation vector,M×1
state vector, N × 1 observation noise vector, M × 1 state noise vector, N ×M output
matrix and M ×M observation matrix, respectively, at time index n. The observation
and state noise are both white Gaussian vector processes with covariance matrices Σw
and Σv, respectively. The prior distribution for the initial state s1 is also Gaussian
distributed with mean vector µ1 and covariance matrix P 1. Thus, we can summarise
the state space equation in Eq. (C.1) as the three Gaussian distributions given by

p(yn|xn) = N (yn;Bxn,Σw) (C.2)
p(xn+1|xn) = N (xn+1;Axn,Σv) (C.3)

p(s1) = N (s1;µ1,P 1) (C.4)

If we assume the model parametersB, A, Σw, Σv, µ1 and P 1 to be known, the Kalman
filter and smoother are used for solving the following two inference problems:

• In a real-time application, we have observed y1:n = {y1, · · · ,yn} at time index n
and we wish to compute the posterior distribution for the state at time index n
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128 Appendix C. The Kalman Filter and Smoother

given these observations, i.e., p(sn|y1:n). This inference problem is referred to as
filtering.

• In an off-line application, we have observed y1:N = {y1, · · · ,yN} and we wish
to compute the posterior distribution for the state at time index n given these
observations, i.e., p(sn|y1:N ). This inference problem is referred to as smoothing.

C.1 The Kalman Filter
At time index n, the posterior distribution for the state sn given the observations y1:n

is

p(sn|y1:n) =
p(yn, sn|y1:n−1)

p(yn)
=
p(yn|sn,y1:n−1)p(sn|y1:n−1)

p(yn)
(C.5)

=
p(yn|sn)p(sn|y1:n−1)

p(yn)
∝ p(yn|sn)p(sn|y1:n−1) (C.6)

where the one-step predictive posterior distribution is given by

p(sn|y1:n−1) =
∫
p(sn, sn−1|y1:n−1)dsn−1 (C.7)

=
∫
p(sn|sn−1,y1:n−1)p(sn−1|y1:n−1)dsn−1 (C.8)

=
∫
p(sn|sn−1)p(sn−1|y1:n−1)dsn−1 . (C.9)

Thus, the posterior distribution p(sn|y1:n) can be calculated recursively by inserting
Eq. (C.9) into Eq. (C.6). The recursion is initiated with p(s1) given by Eq. (C.4).
Since this distribution as well as p(yn|sn) given by Eq. (C.2) and p(sn|sn−1) given by
Eq. (C.3) are all Gaussian distributions, p(sn|y1:n) and p(sn|y1:n−1) are also Gaussian
distributions and given by

p(sn|y1:n) = N (sn;µn|1:n,P n|1:n) (C.10)

p(sn|y1:n−1) = N (sn;µn|1:n−1,P n|1:n−1) . (C.11)

Now, suppose we have computed the means and covariances of Eq. (C.10) and Eq. (C.11)
at time index n− 1. At time index n, we observe yn and we wish to find the posterior
distribution for sn given the new observation yn as well as the old observations y1:n−1.
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Using Eq. (C.9), we first compute the posterior predictive distribution, i.e.,

p(sn|y1:n−1) =
∫
p(sn|sn−1)p(sn−1|y1:n−1)dsn−1 (C.12)

=
∫
N (sn|Asn−1,Σv)N (sn−1;µn−1|1:n−1,P n−1|1:n−1)dsn−1 (C.13)

= N (sn;Aµn−1|n−1,Σv +AP n−1|1:n−1A
T ) (C.14)

= N (sn;µn|1:n−1,P n|1:n−1) (C.15)

where the second last equality follows from result B.1. Then, we compute the posterior
distribution from Eq. (C.6) which yields

p(sn|y1:n) ∝ p(yn|sn)p(sn|y1:n−1) (C.16)
= N (yn|Bsn,Σw)N (sn;µn|1:n−1,P n|1:n−1) (C.17)

∝ N
(
sn; (P−1

n|1:n−1 +BTΣ−1
w B)−1(BTΣ−1

w ym + P−1
n|1:n−1µn|1:n−1),

(P−1
n|1:n−1 +BTΣ−1

w B)−1
)

(C.18)

= N (sn;µn|1:n,P n|1:n) (C.19)

where the last proportional sign follows from result B.1. The update of the mean
values and covariances of the posterior and predictive posterior distributions given by
Eq. (C.19) and Eq. (C.15), respectively, constitute what is referred to as the Kalman
filter equations. They are typically stated in two phases. The prediction phase consists
of the two equations

µn|1:n−1 = Aµn−1|n−1 (C.20a)

P n|1:n−1 = Σv +AP n−1|1:n−1A
T , (C.20b)

and the update phase consists of the two equations

P n|1:n = (P−1
n|1:n−1 +BTΣ−1

w B)−1 (C.21)

µn|1:n = P n|1:n(BTΣ−1
w ym + P−1

n|1:n−1µn|1:n−1) . (C.22)

In order to avoid the many matrix inversions in the update phase, it can be rewritten
into another form given by [Harvey, 1989, pp. 105-106]

µn|1:n = µn|1:n−1 +Knen (C.23a)

P n|1:n = (IM −KnB)P n|1:n−1 (C.23b)



i
i

“master” — 2009/6/1 — 23:33 — page 130 — #146 i
i

i
i

i
i

130 Appendix C. The Kalman Filter and Smoother

where

en = yn −Bµn|1:n−1 (C.23c)

F n = Σw +BP n|1:n−1B
T (C.23d)

Kn = P n|1:n−1B
TF−1

n (C.23e)

are referred to as the innovation, innovation covariance and Kalman gain, respectively.
The innovation is also sometimes referred to as the prediction error or the residual.
Some authors prefer joining the prediction and update phases yielding a set of equations
involving only the moments of the posterior distribution or the moments of the one-step
predictive posterior distribution. In the latter case, this set of equations is given by
[Durbin and Koopman, 2001, p. 67]

en = yn −Bµn|1:n−1 F n = Σw +BP n|1:n−1B
T

Kn = P n|1:n−1B
TF−1

n Ln = A(IM −KnB)

µn+1|1:n = A(µn|1:n−1 +Knen) P n+1|1:n = AP n|1:n−1L
T
n + Σv .

(C.24)

C.2 The Kalman Smoother
The Kalman smoother is used for finding the moments of the posterior distribution for
state xn given all observations y1:N . This is in contrast to the Kalman filter which only
use the current and past observations for this inference task. Of course, the posterior
distributions computed by using the Kalman smoother has on average a smaller variance
since future observations are used. The price paid for including these future observations
is that the Kalman smoother is not feasible for use in real-time applications. In off-line
applications, however, it is very useful.

At time index n, the posterior distribution for the state sn given the observations
y1:N is

p(sn|y1:N ) =
∫
p(sn, sn+1|y1:N )dsn+1 (C.25)

=
∫
p(sn|sn+1,y1:N )p(sn+1|y1:N )dsn+1 (C.26)

=
∫
p(sn|sn+1,y1:n)p(sn+1|y1:N )dsn+1 (C.27)

where the last equality follows from the fact that sn is independent of yn+1:N given
sn+1 and y1:n

1. The distribution p(sn+1|y1:N ) is the posterior distribution for the next
1It can sometimes be hard to determine whether two random variables are conditional independent.

A systematic way of determining this is to use graphical models. For an introduction to graphical
models see [Bishop, 2006, ch. 8].
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smoothed state distribution. This suggest a recursive computation of p(sn|y1:N ) in the
reverse time direction. The distribution p(sn|sn+1,y1:n) can by using Bayes’ theorem
be written as

p(sn|sn+1,y1:n) =
p(sn+1|sn,y1:n)p(sn|y1:n)

p(sn+1|y1:n)
=
p(sn+1|sn)p(sn|y1:n)

p(sn+1|y1:n)
(C.28)

where p(sn+1|sn) is given by Eq. (C.3), p(sn|y1:n) is the posterior distribution computed
by the Kalman filter and given by Eq. (C.19), and p(sn+1|y1:n) is the predictive posterior
distribution computed by the Kalman filter and given by Eq. (C.15). Since all of these
distributions are Gaussian, p(sn|sn+1,y1:n) is also Gaussian and given by

p(sn|sn+1,y1:n) =
N (sn+1;Asn,Σv)N (sn;µn|1:n,P n|1:n)

N (sn+1;µn+1|1:n,P n+1|1:n)
(C.29)

= N
(
sn; (P−1

n|1:n +ATΣ−1
v A)−1(ATΣ−1

v sn+1 + P−1
n|1:nµn|1:n),

(P−1
n|1:n +ATΣ−1

v A)−1
)

(C.30)

= N
(
sn;µn|1:n + Γn(sn+1 − µn+1|1:n),P n|1:n − ΓnP n+1|1:nΓTn

)
(C.31)

where the second equality follows from result B.1 and Γn , P n|1:nA
TP−1

n+1|1:n. Insert-
ing this into Eq. (C.27) and performing the marginalisation using result B.1 yield the
posterior distribution for the smoothed state as

p(sn|y1:N ) = N (sn;µn|1:N ,P n|1:N ) (C.32)

where

µn|1:N = µn|1:n + Γn(µn+1|1:N − µn+1|1:n) (C.33)

P n|1:N = P n|1:n + Γn(P n+1|1:N − P n+1|1:n)ΓTn . (C.34)

In order to compute the moments of p(sn|y1:N ), we must know the moments of p(sn|y1:n)
and p(sn+1|y1:n), which can be computed using the Kalman filter, and the moments of
p(sn+1|y1:N ). This suggest that the moments of p(sn|y1:N ) can be computed by, first,
running the Kalman filter for n′ = 1, · · · , N and, second, running the Kalman smoother
for n′ = N, · · · , n.

For the case where only the moments of the one-step predictive posterior distribution
are computed by using the Kalman filter given by Eq. (C.24), the smoothed moments
are calculated by the recursion [Durbin and Koopman, 2001, p. 73]

rn−1 = BTF−1
n en +LTnrn Hn−1 = BTF−1

n B +LTnHnLn

µn|1:N = µn|1:n−1 + P n|1:n−1rn−1 P n|1:N = P n|1:n−1(IM −Hn−1P n|1:n−1)
(C.35)

where rN = 0 and HN = 0.
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Appendix D

WASPAA 2009 Paper

In this appendix, we have included a publication written in connection with this project.
The included paper was submitted for the Workshop on Applications of Signal Process-
ing to Audio and Acoustics (WASPAA) 2009 on April 15, 2009. At the time of writing,
the paper is still in the reviewing process so we have not been notified about whether
it has been accepted or not.
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ABSTRACT

In this paper, we consider Bayesian estimation and interpolation

in the dynamic sinusoidal model. This model is more flexible

than the static sinusoidal model since it enables the amplitude and

phase of the sinusoids to vary as a function of time. Based on

a Gibbs sampler, we derive a Bayesian inference scheme for the

frequencies, the state and observation noise variances as well as

for the case of missing observations. The problem of obtaining

samples for the frequency parameters is given particular attention

and we show that it can be solved in a simple and efficient way

by sampling directly from the von Mises distribution. Finally, we

demonstrate the application of the proposed method to analysis of

synthetically generated signals consisting of multiple sinusoids.

Index Terms— Sinusoidal signal model, Bayesian signal pro-

cessing, Gibbs sampler, state space modelling.

1. INTRODUCTION

The problem of estimating sinusoidal model parameters is an in-

tegral part of many audio signal processing applications such as

compression, signal enhancement and restoration, music transcrip-

tion and genre classification. In these applications, the problem is

to make point estimates of the sinusoidal parameters or predict un-

observed observations based on a set of observations. We consider

initially the real static sinusoidal model given by

xn =
LX

l=1

αle
−γlnαl cos(ωln + ϕl) + wn , (1)

for n = 1, · · · , N , where αl > 0, ϕl ∈ [−π, π], ωl ∈ [0, π]
and γl > 0 are the amplitude, phase, (angular) frequency and

log-damping coefficient of the l’th sinusoid, respectively. The ob-

served signal xn at time index n is the sum of L such sinusoids

and a white Gaussian noise term wn with variance σ2
w. The am-

plitudes and phases of the static model are assumed to be constant

over the set of observations. We later relax this assumption by

introducing the dynamic model. The problem of estimating the

The work of J.K. Nielsen was supported by the Oticon Foundation’s
Scholarship

The work of M.G. Christensen was supported by the Parametric Audio
Processing project, Danish Research Council for Technology and Produc-
tion Sciences grant no. 274–06–0521

The work of S.H. Jensen was partly supported by the Danish Tech-
nical Research Council, through the framework project Intelligent Sound,
www.intelligentsound.org (STVF No. 26-04-0092)

frequency parameters and log-damping coefficients is complicated

by the fact that they enter the model in a non-linear fashion. Nu-

merous approaches have been suggested in the scientific literature

to overcome this difficulty (see e.g. [1]) and the problem is still an

ongoing research area. Most of the suggested estimators are based

on frequentist statistics whereas only a few are based on Bayesian

statistics, despite the conceptual advantages of this approach. The

primary reason for this is that Bayesian methods struggle with

practical problems such as evaluation of high dimensional and in-

tractable integrals which arise frequently in the Bayesian frame-

work. In recent years, however, many computational algorithms

such as Markov chain Monte Carlo (MCMC) sampling have been

embraced and developed by the Bayesian community. Although

these suffer from a high computational complexity, they have to a

large extent overcome many of the practical problems and led to

various developments in Bayesian frequency estimation (see e.g.

[2], [3], [4] and references therein).

In this paper, we extend this work by proposing an inference

scheme for the parameters of the sinusoidal model in which the

amplitude and phase are allowed to vary stochastically as a func-

tion of time. This is obtained by firstly, rewriting the static sinu-

soidal model (1) as a dynamic model, the linear time-invariant state

space model, as in [5, 6] and secondly, by performing Bayesian

inference in this model using the Gibbs sampler. The detailed for-

mulation is considered in Sec. 2 and the derivation of the inference

scheme is given in Sec. 3. The inference scheme is evaluated in

Sec. 4 and Sec. 5 concludes this paper.

2. SINUSOIDAL STATE SPACE MODEL

Using complex notation, we rewrite (1) as

xn =
LX

l=1

(clz
n
l + c∗l z∗l

n
) + wn (2)

where (·)∗ denotes complex conjugation, cl = (αl/2)ejϕl and

zl = e−γlejωl . In matrix notation, we write this as

xn =

2666664
1
1
...

1
1

3777775
T 2666664

zn
1 0 · · · 0 0
0 z∗1

n · · · 0 0
...

...
. . .

...
...

0 0 · · · zn
L 0

0 0 · · · 0 z∗L
n

3777775

2666664
c1

c∗1
...

cL

c∗L

3777775 + wn (3)

, b̃
T
Ã

n
c̃ + wn (4)
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where (·)T denotes the transpose, b̃ and c̃ are 2L× 1 column vec-

tors, and Ã is a 2L × 2L diagonal matrix. This formulation con-

strains the log-damping coefficients and the frequency parameters

to be fully determined by the time-invariant complex diagonal ma-

trix Ã. The matrix Ã and vector c̃ are in general complex valued.

In order to avoid the complex terms, we define the Hermitian com-

plex block diagonal matrix T = diag(T 1, · · · , T l, · · ·T L) with

T l =
1√
2

»
1 1
j −j

–
(5)

where j is the imaginary unit. By use of T , we now obtain

xn = b̃
T

“
T−1T ÃT−1T

”n

c̃ + wn , bT Anc + wn (6)

where b, A and c are all real and given by

b =
“
b̃

T
T−1

”T

=
√

2
ˆ
1 0 · · · 1 0

˜T
(7)

A = T ÃT−1 = diag(A1, · · · , Al, · · ·AL) (8)

Al = e−γl

»
cos ωl sin ωl

− sin ωl cos ωl

–
(9)

c = T c̃ =
√

2

»
α1

»
cos ϕ1

sin ϕ1

–T

· · · αL

»
cos ϕL

sin ϕL

–T –T

. (10)

We are now able to write the sinusoidal model in (1) as a linear

Gaussian time-invariant state space model. The state space formu-

lation can be obtained from (6) as

yn = bT sn + wn (observation equation)

sn+1 = Asn + vn (state equation)
(11)

for n = 1, · · · , N , if we introduce white Gaussian state noise

vn with covariance matrix Q in the state equation and assume a

Gaussian prior for the initial state vector s1 with mean vector µ
and covariance matrix P . The model in (11) is slightly different

(hence the use of yn instead of xn for the observations) than the

original model in (1), since we have introduced state noise with

non-zero covariance matrix in the state equation. This allows the

amplitude and phase to be a time-varying AR(1) process. In the

case of initial state vector given by s1 = Ac and zero state-noise,

the two models are identical, i.e. yn = xn.

3. BAYESIAN INFERENCE

In this section, we consider Bayesian inference in the state model

model derived in the previous section and given by (11). We as-

sume the log-damping coefficients γl to be 0 (see [7] for unknown

γl), the model order L to be known and the state noise covariance

matrix to be diagonal, i.e. Q = diag(q1, q1, · · · , qL, qL). The

latter assumption is made in order to keep the number of unknown

parameters at a reasonable level. Thus, the unknown parameters

of the model are the N state vectors s1:N , the L frequency param-

eters in ω constituting the block diagonal system matrix A, the L
diagonal elements of the state noise covariance matrix q1, · · · , qL

and the observation noise variance σ2
w. In the Bayesian frame-

work, all statistical inference is based on the joint posterior distri-

bution over the unknown variables or a marginal posterior distri-

bution over some of these. For the model in (11), the joint poste-

rior distribution is p(s1:N , ω, Q, σ2
w|y1:N ) from which point es-

timates cannot be computed in closed form. We therefore have

to resort to numerical techniques in order to enable statistical in-

ference based on this distribution. One of the simplest and most

popular numerical techniques is the Gibbs sampler [8] which is

an MCMC-based algorithm and suitable for this task. The Gibbs

sampler draws samples from the joint posterior distribution over

the unknown variables by breaking it into a number of conditional

distributions of smaller dimensionality fromwhich samples are ob-

tained in an alternating pattern. After an initial burn-in time dur-

ing which the sampling scheme converges, the samples obtained

from sampling these lower dimensional conditional distributions

can be regarded as samples from the joint posterior distribution.

Applying the Gibbs sampler on the joint posterior distribution

p(s1:N , ω, Q, σ2
w|y1:N ) yields the set of conditional distributions

given by

State: p(s1:N |ω, Q, σ2
w, y1:N ) (12)

Frequency: p(ωl|s1:N , ω\l, Q, σ2
w, y1:N ) (13)

State variance: p(ql|s1:N , ω, Q\l, σ
2
w, y1:N ) (14)

Observation variance: p(σ2
w|s1:N , ω, Q, y1:N ) (15)

where (13) and (14) are evaluated for l = 1, · · · , L, and (·)\l de-

notes ’without element l’. In the following four sections, these

distributions are derived from (11) and by introducing prior distri-

butions over the unknown parameters.

3.1. Conditional Distribution for States

We can write the state space model in (11) as

p(s1) = N (s1; µ, P ) (16)

p(yn|sn, σ2
w) = N (yn; bT sn, σ2

w) (17)

p(sn+1|sn, ω, Q) = N (sn+1; Asn, Q) (18)

from which the conditional state distribution in (12) can be shown

to be a multivariate Gaussian distribution [7]. However, the di-

mensionality of this distribution is 2LN × 1 which would render

direct sampling from it infeasible for most applications. Instead,

we have used the the simulation smoother [9], which is an efficient

sampling scheme using standard Kalman smoothing, for drawing

samples from (12).

3.2. Conditional Distribution for Frequencies

By use of conditional independence and Bayes’ Theorem, we fac-

tor (13) as

p(ωl|s1:N , ω\l, Q, σ2
w, y1:N ) = p(ωl|s1:N , ω\l, Q) (19)

∝ p(s1:N |ω, Q)p(ωl) (20)

where p(ωl) is the prior distribution for ωl yet to be defined. Since

A is 2 × 2 block diagonal and Q is diagonal, we can factor the

likelihood of the state equation into L bivariate likelihoods with

the l’th given by

p(s1:N,l|ωl, ql) = (2πql)
−1

× exp

(
−1

2ql

N−1X
n=1

(sn+1,l −Alsn,l)
T (sn+1,l −Alsn,l)

)
(21)

where Al is given by (9) and s(·),l is the l’th 2 × 1 subvector of

s(·). Rearranging terms of this equation yields after some algebra

p(s1:N,l|ωl, ql) = Z−1
l exp {d1,l cos ωl + d2,l sin ωl} (22)
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where Zl is a normalisation factor independent of ωl and»
d1,l

d2,l

–
=

1

ql

N−1X
n=1

»
sn,l ,

»
0 1
−1 0

–
sn,l

–
sn+1,l . (23)

The exponent in (22) is a superposition of two sinusoids so the

likelihood has a parametric form proportional to the von Mises

distribution, i.e.

p(s1:N,l|ωl, ql) = Z−1
l exp {κl cos(θl − ωl)} (24)

where κl =
q

d2
1,l + d2

2,l and θl = arctan(d2,l/d1,l). The conju-

gate prior for this likelihood is also a von Mises distribution [10],

VM(ωl; κ0, µ0), which equals the uniform distribution on the in-

terval [−π, π] in the limit of κ0 → 0. Thus, (19) can be written

as

p(ωl|s1:N , ql) ∝ VM(θl; κl, ωl)VM(ωl; κ0, µ0) (25)

∝ VM
“
ωl;

q
δ2
1,l + δ2

2,l, arctan(δ2,l/δ1,l)
”

(26)

where δ1,l = d1,l+κ0 cos µ0 and δ2,l = d2,l+κ0 sin µ0. Samples

can be drawn efficiently from this distribution by use of the Best-

Fisher Algorithm [11].

3.3. Conditional Distribution for State Variances

Since Q is diagonal, we can write (14) as

p(ql|s1:N , ω, Q\l, σ
2
w, y1:N ) = p(ql|s1:N,l, ωl) (27)

∝ p(s1:N,l|ωl, ql)p(ql) (28)

where p(s1:N,l|ωl, ql) is given by (21) and p(ql) is the prior dis-
tribution for ql. We select the conjugate inverse gamma prior,

G−1(ql; α0, β0). Thus, (14) is also an inverse gamma distribution,

G−1(ql; αql , βql), with parameters

αql = α0 + N − 1 (29)

βql = β0 +
1

2

N−1X
n=1

(sn+1,l −Alsn,l)
T (sn+1,l −Alsn,l) (30)

In the case of an isotropic state noise covariance, i.e. Q = qI ,
the posterior distribution in also an inverse gamma distribution,

G−1(q; αq, βq), with parameters

αq = α0 + (N − 1)L (31)

βq = β0 +
1

2

N−1X
n=1

(sn+1 −Asn)T (sn+1 −Asn) . (32)

3.4. Conditional Distribution for Observation Variance

We can write (15) as

p(σ2
w|s1:N , ω, Q, y1:N ) = p(σ2

w|s1:N,l, y1:N ) (33)

∝ p(y1:N |s1:N,l, σ
2
w)p(σ2

w) (34)

where p(y1:N |s1:N,l, σ
2
w) is the likelihood of the observation

equation in (17) and p(σ2
w) is the prior distribution for σ2

w. We

select the conjugate inverse gamma prior, G−1(σ2
w; α0, β0). Thus,

(15) is also an inverse gamma prior, G−1(σ2
w; ασ2

w
, βσ2

w
), with pa-

rameters

ασ2
w

= α0 + N/2 (35)

βσ2
w

= β0 +
1

2

NX
n=1

(yn − bT sn)T (yn − bT sn) . (36)

The Gibbs sampling scheme is summarised in algorithm 1. Com-

pared to the inference scheme in [3], our algorithm does not re-

quire any tuning of user defined proposal distributions and user

defined parameters.

Algorithm 1

Given ω[0], Q[0] and σ2
w

[0]
do for i = 1, · · · , M

1) Draw s
[i]
1:N from (16)-(18) by use of the simulation smoother.

2) For l = 1, · · · , L do

a) ω
[i]
l ∼ VM

„q
δ2
1,l

[i−1] + δ2
2,l

[i−1], arctan
δ2,l

[i−1]

δ1,l
[i−1]

«
b) q

[i]
l ∼ G−1(α

[i−1]
ql , β

[i−1]
ql )

3) σ2
w

[i] ∼ G−1(α
[i−1]

σ2
w

, β
[i−1]

σ2
w

)

3.5. Interpolation of Missing Samples

In the case where some observations are missing, algorithm 1 can

easily be extended to handle this interpolation task. First, parti-

tion the observations into y1:N = {y1:K , yK+1:K+R, yK+R+1:N}
where z = yK+1:K+R are the R missing observations. Then, we

simply add a fourth stage to algorithm 1 in which we draw a sam-

ple from

p(z|s1:N , ω, Q, y1:K , yK+R+1:N , σ2
w) = p(z|sK+1:K+R, σ2

w)

which can be factored into R univariate Gaussian distributions

given by (17). The first three steps of the algorithm remain the

same.

4. SIMULATIONS

We demonstrate the applicability of the inference scheme on a

small-scale example. In the simulations, we generated N =
512 observations from the model in (11) with a model order

of L = 3. The amplitude, phase and (angular) frequency of

the sinusoids were α = [0.8, 0.5, 1.1], ϕ = [0, π/2, 0.2] and
ω = [0.3, 0.4, 0.5], respectively. The state noise covariance was

selected to be isotropic with q = 0.1 and the observation noise

variance was set to σ2
w = 0.5. The hyperparameters of the prior

distribution for the unknown parameters were selected such that

these distributions were diffuse. The initial values for the fre-

quency and the observation noise variance were computed by use

of the ESPRIT estimator. The initial value for the state noise co-

variance was somewhat heuristically set to q = σ2
w

[0]
/10. The

observations from time index 50 to 100 were removed and consid-

ered as missing. The Gibbs sampler in algorithm 1 was iterated

M = 10000 times and the burn-in time was set to 100.

Figure 1 shows the result of the simulation. Plots (a)-(c) show

the traces of samples obtained for the unknown parameters. It is

easy to make meaningful inference about the unknown param-

eters based on the histograms in the right margin of the plots.
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Figure 1: Traces of samples from the Gibbs sampler for the frequencies (a), state noise variance (b) and observation noise variance (c).

These plots also show the histogram based on all M = 10000 samples with burn-in samples removed. Figure (d) shows the result of the

interpolation (solid line) compared to the true signal (dotted line).

Plot (d) shows a typical sample for the missing observations com-

pared to the true signal. The interpolation section is marked by

vertical lines. Notice, that unlike maximum likelihood- and EM-

restoration techniques, the noise is also modelled when performing

the interpolation in the Bayesian framework. This yields a more

typical interpolant [12].

5. CONCLUSION

Based on Gibbs sampler, we have presented a Bayesian inference

scheme in which the frequency parameters of the dynamical sinu-

soidal model were sampled in a simple and efficient way from the

von Mises distribution. By considering the more flexible an realis-

tic dynamic sinusoidal model in (11), we have enabled the use of

Gibbs sampler which, except for the initial values, does not require

any user interaction or tuning. In the simulations, we demonstrated

that the algorithm can be used for parameter estimation and inter-

polation. This is a vital part of many audio applications [12]. It

is interesting to note that it is not possible to use the Gibbs sam-

pler for the static sinusoidal model in (1) without using analytical

approximations. For the static case, the Bayesian inference is usu-

ally based on sampling schemes involving user defined proposal

distributions and parameters which require careful tuning [3].
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