Author(s)
Term
10. term
Publication year
2010
Submitted on
2010-06-02
Pages
78 pages
Abstract
The purpose of this thesis is to investigate how autonomous robust flight with a miniature quadrotor can be done while minimizing the lag in time of a fast moving reference. A general introduction to how quadrotors work and how they are controlled are given. A mathematical model is derived for the X-3D quadrotor from Ascending Technology and an Extended Kalman Filter is used with a IMU-driven model to estimate the state doing flight, handle sensor fusion and handle failing sensors. A LQR using various reference models and a Robust H controller are derived and tested. Good results was obtained with the LQR, but the H controller was not able to stabilize the quadrotor in real flight, only in simulation. It is assumed to be caused by the assumption made that the on-board controller is fast enough to ignore any dynamics caused by the controller, motor controller and aerodynamics. The derived estimator in combination with the LQR, using feed forward of the reference velocity, was able to follow a fast trajectory with a minimum of lag in time.
Documents
Colophon: This page is part of the AAU Student Projects portal, which is run by Aalborg University. Here, you can find and download publicly available bachelor's theses and master's projects from across the university dating from 2008 onwards. Student projects from before 2008 are available in printed form at Aalborg University Library.
If you have any questions about AAU Student Projects or the research registration, dissemination and analysis at Aalborg University, please feel free to contact the VBN team. You can also find more information in the AAU Student Projects FAQs.