

Control Engineering

Master’s Thesis

Fredrik Bajers Vej 7

Telephone +45 96 35 86 90

http://es.aau.dk

Title:
Autonomous Control of a Miniature
Quadrotor Following Fast Trajectories

Project period:
Fall 2009 and spring 2010

Written by:
Anders Friis Sørensen

Group number:
10gr939b

Supervisors:
Asst. Prof. Morten Bisgaard, AAU
Prof. Jakob Stoustrup, AAU
Asst. Prof. Pieter Abbeel, UC Berkeley

Publications: 5

Pages: 78 (98 including appendix)

Handend in: June 3rd, 2010

Abstract:

The purpose of this thesis is to investigate how au-
tonomous robust flight with a miniature quadrotor
can be done while minimizing the lag in time of a
fast moving reference.
A general introduction to how quadrotors work and
how they are controlled are given. A mathematical
model is derived for the X-3D quadrotor from As-
cending Technology and an Extended Kalman Fil-
ter is used with a IMU-driven model to estimate the
state doing flight, handle sensor fusion and handle
failing sensors.
A LQR using various reference models and a Ro-
bust H∞ controller are derived and tested. Good
results was obtained with the LQR, but the H∞ con-
troller was not able to stabilize the quadrotor in real
flight, only in simulation. It is assumed to be caused
by the assumption made that the on-board controller
is fast enough to ignore any dynamics caused by the
controller, motor controller and aerodynamics.

The derived estimator in combination with the

LQR, using feed forward of the reference velocity,

was able to follow a fast trajectory with a minimum

of lag in time.

Preface

This thesis is made as the final step towards my Master’s degree. It contains much of the knowledge I have
gained in the past two years. Much of my work with quadrotors and rotating frames has initiated in my previous
project concerning Autonomous Landing on a Moving Platform. I would therefore like to give a special thank
to my previous group consisting of Johannes Friis, Ebbe Nielsen, Jesper Bønding, Anders Jochumsen and
Rasmus Foldager for their contributions.
My supervisor Asst. Prof. Morten Bisgaard has been a great support through my entire Master’s degree and for
that I am very thankful. I would also like to thank my supervisor Prof. Jakob Stoustrup for his inspiration and
help with understanding the more advanced control theory. With his help I was allowed to spend one semester at
the department of Electrical Engineering and Computer Science at U.C. Berkeley. There, with the help of Asst.
Prof. Pieter Abbeel, I gained a more general perspective on control theory and in the field of Reinforcement
Learning.
Finally I want to thank Jan Stumpf and Ascending Technology for their help with making the hardware work
as intended.

Throughout the thesis the Harvard method has been used to indicate citations. Citations are denoted in square
brackets containing the surname of the prime author and the year of publication. All mathematical expressions
are described the first time they are used, but a complete list can be found in the nomenclature list in the back of
the thesis. All vectors and matrices is denoted with bold font to indicate that they contain multiple dimensions.

Anders Friis Sørensen

Contents

1 Introductory 2
1.1 Focus of the thesis . 3
1.2 The X-3D Quadrotor Test Environment . 3

I Building a Model 6

2 Modelling: An Introduction 9
2.1 Structure of the Modelling Chapters . 9
2.2 Rotating and Fixed Frames . 9
2.3 Orientation and Rotations . 10

3 Modelling of a Quadrotor 15
3.1 How do a Quadrotor Fly? . 15
3.2 Model Structure and Assumptions . 17
3.3 The On-board Controllers . 18
3.4 Forces and Accelerations . 21
3.5 Model Summery . 22

4 The Linear Quadrotor Model 24
4.1 state-space Model . 26

5 Verification of the Quadrotor Model 27
5.1 Time Derivative of the Quaternion . 27
5.2 Time Derivative of the Velocity . 29

6 Sensor Model 31
6.1 Position and Orientation . 31
6.2 Angular Velocity and Acceleration . 31

II State Estimation 34

7 State Estimation and Sensor Fusion 37
7.1 The Extended Kalman Filter . 38
7.2 The IMU-driven Estimator . 41

7.3 Fault Handling . 43
7.4 Analysis of Estimator Performance . 44

III Control Algorithms 48

8 Controlling a Quadrotor 51

9 Linear Quadratic Control 53
9.1 The General LQR Algorithm . 53
9.2 Following a Fast Trajectory . 55

10 Robust H∞ Control 58
10.1 The Standard Problem . 60
10.2 Matrix Inequalities . 62
10.3 Simulation . 62

11 Evaluation of Controllers 65
11.1 Hover using Various Vicon Sampling Frequencies . 65
11.2 Step Response . 67
11.3 Following a Trajectory . 67
11.4 Hovering in Low Height . 69
11.5 Overall Evaluation . 69

IV Epilogue 71

12 Conclusion 75
12.1 Future Work . 76

Bibliography 78

V Appendices 79

A The X-3D Interface 83
A.1 Classes . 83
A.2 Procedure . 85
A.3 Evaluation . 85

B Motion Tracking Lab (MTLab) 86
B.1 Simulink Block . 86

C Measurements Journals 88
C.1 Polynomial Relation of utrust and the force Flift . 88
C.2 Determination of Induced Inflow Constant . 90
C.3 Model Verification . 92

D CD Contents 95

Chapter 1
Introductory

Autonomous controlled aerial vehicles are not a new invention. They were first introduced doing World War I
(1917) [Valavanis, 2007, p. 3] as simple and unreliable systems. Throughout the history the Unmanned Aerial
Vehicle (UAV) has been an invisible player in many wars, usually used for gathering information, and in a few
cases actively in combat. One of the more recent platforms to appear is the quadrotor. The basic idea of the
quadrotor has existed since 1907 [Bouabdallah, 2007], but not until recently been flown autonomously. Au-
tonomous flight of the quadrotor has previously been investigated through projects on various universities such
as MIT [MIT, 2010], Standford/Berkeley [STARMAC, 2010] and others. Especially more advanced manoeu-
vres such as obstacle avoidance [STARMAC, 2010] and Simultaneous Localization and Mapping have been
investigated using the quadrotor platform. One reason why the quadrotor is good for these applications is that
the small size and simple structure makes it easy to obtain very stable flight.

Also outside the academic world is the interest for the quadrotor platform growing. One of the first commer-
cializations of the quadrotor is the Silverlit X-UFO (shown on Figure 1.1), that was sold as a toy from Germany.

Figure 1.1: The Silverlit X-UFO

A few German students visiting MIT used this frame to create a more advanced control board using fast Piezo
gyros and Piezo Accelerometers. The students continued this development and in 2003 they started their own
company called Ascending Technologies (AscTec). AscTec has since been developing quadrotor frames along
with other companies such as Draganflyer and AR Drone.

Introductory 3

Recently also the industry has gained an interest in the quadrotor frame, especially when it is combined with
autonomous control. Like any other remote controlled flying vehicle a quadrotor is not easy to fly. It takes
much time to learn how to fly in confined spaces and not every place is accessible by manual flight, not even
with an expert pilot.
Within the past year the technology has allowed microcomputers to become fast enough and sensors small
enough that a full autonomous controlled quadrotor can be made to fit in a lunch box and obtain more than
half an hours of flight time. New companies such as Sky-Watch (DK) and Microkopter (DE) is aiming directly
towards the industrial market. Currently the main target is companies who have the need for inspections in
places that is not easily accessed. This could be in areas where it is expensive or dangerous to send up people.
Quadrotors also serves as an easy access to live overhead footage or high quality still pictures.

Control of a quadrotor is typically done using either simple hand-tuned feedback compensators or a more
advanced model based feedback compensators. Throughout this thesis advantages for both types of control
will be discussed.

1.1 Focus of the thesis

The main focus of this thesis can be described as the solution to the following question:

Can robust flight with a miniature quadrotor be done in such a way that a fast moving reference can be followed
with minimum lag in time.

This question give rise to several challenges. Robust flight is defined such that the quadrotor is to remain
stabilized even when exposed to disturbances in the form of a reference and sensor noise. Robust flight, in this
thesis, also includes handling failing sensors and continuing flight with the limited sensibility.
A fast moving reference is defined to be a reference that is moving with a velocity, that would cause a normal
feedback controller to lag significantly in time. The challenge with regard to the fast moving reference is to
minimize this lag without compromising the steady-state performance of a constant reference.

To obtain robust flight with a minimum lag in time two types of controllers is developed (part III). A robust
H∞ controller and a Linear Quadratic Regulator (LQR) using a reference model. To minimize the time lag
feed forward of the velocity of the reference will be used.
An Extended Kalman Filter (EKF) is developed to both minimize the sensor noise and to handle failing sensors
(part II). To minimize computation time and to suppress modelling errors the EKF will be based on measure-
ments from the Inertial Measurement Unit (IMU).
Both the controllers and the estimator is based upon knowledge of the dynamics of the system. A general under-
standing and a mathematical model is therefore being derived to improve the performance of both controllers
and estimator (part I).

1.2 The X-3D Quadrotor Test Environment

The quadrotor chosen for experiments is manufactured by the German company AscTec [Gurdan et al., 2007].
The company supplies various models with different versions of firmware. The version used in this project is
installed with the ResearchPilot firmware which enables serial communication with the quadrotor. In this way
it is possible to read out sensor measurements and send commands over a digital interface. If a pair of X-bee

4 1.2 The X-3D Quadrotor Test Environment

communication devices are added this can be done over a wireless data link.

In this setup, all sensors are connected to a control PC on which is installed Matlab/Simulink. Matlab/Simulink
is used to implement the estimation of states and calculation of the control commands for the quadrotor. An
overview of the setup is shown in Figure 1.2.

Figure 1.2: Overview of the MTLab

1.2.1 Control Commands

Through the serial communication connector on the X-3D it is possible to communicate flight commands to
the quadrotor using the proper protocol [AscTec, 2009]. The flight commands are given as values which are
otherwise send from the RC-transmitter for roll, pitch, yaw and thrust. The definition of roll, pitch and yaw
commands is explained in more detail in a later chapter. Each value is, according to the protocol, defined as in
Table 1.1. In this setup positive roll is defined as a positive rotation around the x-axis and so forth.

Command Value

roll -2048 to 2047
pitch -2048 to 2047
thrust 0 to 4096
yaw -2048 to 2047

Table 1.1: Commands send to quadrotor

The quadrotor can be controlled by the commands send, but only as long as a command is received at least once
every 100ms. If this is not the case the control is given back to RC-transmitter.

Ascending Technologies supplies support for the protocol on the quadrotor, but no public available implementa-
tion for the PC exists. In order to establish communication an interface from Matlab/Simulink to the quadrotor
has therefore been developed. This interface enables configuration of which sensors to be read, and loading
them directly into Simulink. The interface also supplies an easy way to configure which channels that should
be autonomously controlled, and which should be controlled manually. This feature is very helpful when devel-
oping controllers to a single channel. Finally it also enables the possibility to send commands to the quadrotor
directly form Simulink. Additional information on the communication and the development of the interface
can be found in Appendix A.

Introductory 5

1.2.2 On-board Sensors

Multiple sensors can be read from the quadrotor both in raw and in processed values. An entire list can be found
in the manual for the ResearchPilot firmware [AscTec, 2009]. For the estimator developed in this thesis only
the raw gyro and acceleration measurements will be used. These will be measured with an update frequency of
100 Hz.

1.2.3 The Motion Tracking Lab (MTLab)

For measurements of the position and orientation the MTLab is used. The MTLab is a room at Aalborg Uni-
versity that is equipped with 7 cameras recording positions of small reflectors mounted on various objects. The
reflectors can be seen as the silver balls mounted on the X-3D quadrotor in Figure 1.3.

Figure 1.3: The X-3D quadrotor

The MTLab measures the position in meters with an accuracy better then 1 mm and the orientation, given as
either a 3-2-1 Euler rotation or a quaternion. More on the different orientations will be discussed in the follow-
ing chapter. Part of the development of both controllers and estimator have been conducted at UC Berkeley in
California. At UC Berkeley a similar system, called PhaseSpace, was used. The PhaseSpace system uses active
markers but is otherwise similar to the Vicon MX system and will not be discussed any further in this thesis.

A more in-depth description of the MTLab can be found in Appendix B.

Part I

Building a Model

Table of Contents

2 Modelling: An Introduction 9
2.1 Structure of the Modelling Chapters . 9
2.2 Rotating and Fixed Frames . 9
2.3 Orientation and Rotations . 10

3 Modelling of a Quadrotor 15
3.1 How do a Quadrotor Fly? . 15
3.2 Model Structure and Assumptions . 17
3.3 The On-board Controllers . 18
3.4 Forces and Accelerations . 21
3.5 Model Summery . 22

4 The Linear Quadrotor Model 24
4.1 state-space Model . 26

5 Verification of the Quadrotor Model 27
5.1 Time Derivative of the Quaternion . 27
5.2 Time Derivative of the Velocity . 29

6 Sensor Model 31
6.1 Position and Orientation . 31
6.2 Angular Velocity and Acceleration . 31

8 TABLE OF CONTENTS

Chapter 2
Modelling: An Introduction

Any mathematical kind of model is simply an approximation of the real world, describing any relevant influence
of some input signal on an output signal. In this case the model will describe how the quadrotor moves in a
6 dimensional space depending on the four control commands mentioned in the previous chapter. Throughout
the chapters a number of assumptions will be made. This will be noted and discussed to the extent it is found
relevant.

2.1 Structure of the Modelling Chapters

This introduction serves to guide the reader and to give an overview of the modelling part. Before the actual
modelling of the quadrotor initiates, are some general concepts such as the coordinate systems defined.

The first modelling chapter covers the basics a quadrotor, how is it controlled and the effect of the control
commands described from a pilots perspective. Throughout the chapter various details of the X-3D quadrotor
are included, in particular the on-board PD-controller that closes the angular rate loop and attenuates some
aerodynamic effects. The chapter concludes by defining a continuous-time model. Later the model is linearized
and put on state-space form.

In the chapter concerning the sensor modelling, a stochastic model is derived of the sensors available. The
sensors in focus are the accelerometers, gyroscopes and Vicon measurements. Together they form the basis for
estimating the states of the quadrotor.

2.2 Rotating and Fixed Frames

When dealing with flying objects it is convenient to be able to describe vectors not only in a global frame, but
also in a rotating local body frame. Any experiments made in this thesis are done in one specific room. This
room is defined to be the inertial frame from where the model will be described. The rotation of the earth is
assumed not to affect the flight of the quadrotor. The earth fixed inertial frame is from now referred to as the
earth frame. The rotating frame following the attitude of the quadrotor is denoted the body frame. For this
assumption to make sense the structure of the quadrotor is assumed to be rigid. That a body is rigid is defined

10 2.3 Orientation and Rotations

such that the distance between any two points in the structure will always remain the same no matter how the
body is positioned or oriented.

Figure 2.1 shows the two frames. To the left the earth fixed frame denoted E and to the right the body fixed
frame denoted B. When a vector is seen with respect to the earth fixed frame it will either be denoted with an e

in front of the vector or nothing at all. Likewise if the vector is seen with respect to the body frame it will be
denoted with a b.

Figure 2.1: The earth frame and body frame

The earth fixed frame is aligned with the earth with the x- and y-axis drawn perpendicular and in the horizontal
plane. The z-axis is pointing down which leaves a normal right hand coordinate system in which to describe
vectors. This axis-alignment is typically used when dealing with flying objects and is denoted North East
Down (NED). In the body frame a similar right hand coordinate system is aligned with the quadrotor as shown
in Figure 2.2.

Figure 2.2: The X-3D quadrotor in the body frame

The coordinate system is aligned such that rotor 1 is pointing in the same direction as the positive x-axis. And
the center is positioned at the same level as the landing pads. When the quadrotor is located in the center of the
test area it will be positioned in position

[
0 0 0

]ᵀ
. The position of the quadrotor is denoted P = [x, y, z]ᵀ.

The orientation of the quadrotor will be described as a parametrization of the 3 × 3 transformation matrix,
transforming vectors from the earth frame to the body frame. The parametrizations used in this thesis is either
a 3-2-1 Euler parametrization Θ =

[
φ θ ψ

]ᵀ
or the quaternion parametrization q =

[
q0 q1 q2 q3

]ᵀ
.

The angular velocity of the body frame is denoted bω and the translatory velocity bv.

2.3 Orientation and Rotations

The orientation of the quadrotor will as previously mentioned be described as a parametrization of the transfor-
mation from the earth frame to the body frame. In this thesis the quaternion parametrization is used primarily,
but also the Euler angle parametrization will be described.

Modelling: An Introduction 11

The Euler angles are widely used, since they have a very clear physical interpretation and are of minimum
dimensionality. The minimum required dimensionality for describing an orientation in 3 dimensions is 3.
However, the orientation can not be both global and non-singular with less then 4 dimensions [Bak, 2002, p.
29]. The parametrizing of the rotational matrix, using Euler angles, includes multiple trigonometric functions,
which leaves the transformation non-linear and is subject to gimbal lock.

The quaternion parametrization only involves quadratic expressions, but is still non-linear. Using the quater-
nions leaves a close to linear kinematic equations and no singularities.

In the remaining sections of this chapter the Euler angle and quaternion parametrizations will be described in
further detail.

2.3.1 Euler Angles

The Euler angle parametrization utilizes that the orientation of one cartesian coordinate system, with respect
to another, can always be described by three successive rotations. The orientation of a coordinate system can
therefore be described by the z,y,x (also called 3-2-1) right-hand rotation sequence that is required to get from
earth frame into alignment with the body frame. Other sequences can be used as well, but the 3-2-1 sequence
is commonly used when dealing with UAVs. The rotations are denoted as follows:

• Right-hand rotation about the z-axis (positive ψ)

• Right-hand rotation about the new y-axis (positive θ)

• Right-hand rotation about the new x-axis (positive φ)

Matrices describing the rotations about the three axises are defined by [Bak, 2002, p. 15] as

Cx(φ) =

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 (2.1)

Cy(θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (2.2)

Cz(ψ) =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 (2.3)

The successive rotations and the rotational matrix from earth frame to body frame is hereby defined as

bCe(Θ) = Cx(φ)Cy(θ)Cz(ψ) (2.4)

=

 cθcψ cθsψ −sθ
(−cφsψ + sφsθsψ) (cφcψ + sφsθsψ) sφcθ

(sφsψ + cφsθcψ) (−sφcψ + cφsθsψ) cφcθ

where c = cos and s = sin. Because bCe is orthonormal [Bak, 2002, p. 13] the inverse transformation can be
described at the transpose of bCe.

bC−1
e (Θ) = bCᵀ

e (Θ) (2.5)

12 2.3 Orientation and Rotations

The rotation from body to earth frame is given by

eCb(Θ) = bCᵀ
e (Θ) =

cθcψ (−cφsψ + sφsθsψ) (sφsψ + cφsθcψ)
cθsψ (cφcψ + sφsθsψ) (−sφcψ + cφsθsψ)
−sθ sφcθ cφcθ

 (2.6)

where Θ is the vector of Euler angles

2.3.2 Euler Rates

The relationship between Euler angle time derivatives (Θ̇) and the angular velocity (bω) can in a similar way
be described with a rotational matrix [Bak, 2002, p.25].

bω =

φ̇0
0

+Cx(φ)

0
θ̇

0

+Cy(θ)

0
0
ψ̇

 (2.7)

=

1 0 −sθ
0 cφ sφcθ

0 −sφ cφcθ

φ̇θ̇
ψ̇

= bHe(Θ)Θ̇

WhereCx andCy are presented in Equation 2.1 and 2.2. bHe is the transformation matrix from earth frame to
body frame. By inverting bHe the transformation matrix from body rates to the derivative of the Euler angles
are found.

eHb(Θ) = bH
−1

e (Θ) (2.8)

Where t = tan, and Θ are Euler angles. It can be shown that [Stevens and Lewis, 2003, p. 28]

Θ̇ = eHb(Θ)bω (2.9)

=

1 tθsφ tθcφ

0 cφ −sφ
0 sφ/cθ cφ/cθ

 bω
In Equation 2.9 it is seen that when θ reaches π

2 the matrix will be singular. Also given the trigonometric
functions this parametrization is not linear.

2.3.3 Quaternions

An alternative way of parametrizing the rotation matrix is by using quaternions. The quaternion has its basis in
the Euler axis/angle representation. The Euler axis/angle parametrization is a unit vector (e) orthogonal to the
plane of rotation and an angle (θ). The direction of the vector gives the direction of the rotation and the angle
the amplitude of the rotation.

Quaternions are similar but the rotation axis and angle have been combined to a single 4 dimensional vector of
unit length. Three of the dimensions describe the direction of the rotation and the last is used to scale the vector

Modelling: An Introduction 13

to have length 1. Equation 2.10 illustrates different representations of the quaternion.

q =

q0

q1

q2

q3

 = q0 + q1i+ q2j + q3k (2.10)

The conversions between the Euler axis/angle and the quaternion might help with the understanding. This is
shown in Equation 2.11 and 2.12.

q = cos(
θ

2
) + sin(

θ

2
) · e (2.11)

e =
q1..3

‖q1..3‖
θ = 2 arccos(q0) (2.12)

This definition of the quaternions ensures a unique quaternion for every value of θ in the range of±π [Stevens and Lewis, 2003,
p. 18].

Quaternions can be multiplied together using the quaternion product operation defined as in Equation 2.13 and
2.14 [Stevens and Lewis, 2003] where ∗ denotes the quaternion multiplication.

p ∗ q , Λpq (2.13)

Λp =

[
p0I − [p1..3×] p1..3

−pᵀ
1..3 p0

]
(2.14)

Quaternions are not like Euler angles caught in a gimbal lock and the parametrization of the rotational matrix
contains no trigonometric functions.

Rotations of vectors using quaternions are convenient, given the unit length. A Euclidean vector written as a
quaternion can be seen as a normal quaternion with zero scalar part as shown in Equation 2.15.

u = [0 u1..3]ᵀ (2.15)

A requirement for a valid transform is that the transformed vector also will have a zero scalar part. The most
commonly used transform is the one shown in Equation 2.16 [Bak, 1999, p. 31][Stevens and Lewis, 2003,
p.19].

v = q−1uq (2.16)

=

[
0

2q1..3(qᵀ
1..3u) + (q2

0 − q
ᵀ
1..3q1..3)u− 2q0(q1..3 × u)

]
(2.17)

This transformation can be seen as the parametrization of the rotational matrix C(q).

C(q) = 2q1..3q
ᵀ
1..3 + (q2

0 − q
ᵀ
1..3q1..3)I − 2q0[q1..3×] (2.18)

Where [q1..3×] is the cross product matrix shown in Equation 2.19.

[q1..3×] =

 0 −q3 q2

q3 0 −q1

−q2 q1 0

 (2.19)

14 2.3 Orientation and Rotations

Evaluating the rotational matrix in 2.18 results in the following rotational matrix from earth frame to body
frame bCe [Stevens and Lewis, 2003, p. 31].

bCe(q) =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (2.20)

The reverse rotation from body frame to earth frame is given as Equation 2.21.

eCb(q) = bCe(q)ᵀ =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (2.21)

2.3.4 Quaternion Kinematics

Previously the conversion from an Euler axis/angle was described in Equation 2.11. This conversion will now
be the basis for a closer look at how the quaternion is changes over time. Let the quaternion q(t) describe
the orientation at the current time and let an infinitesimal rotation be described as the unit vector ŝ and the
magnitude be given by ω̂. Then for a small time interval ∆t the rotation can be described as in Equation 2.22
using small angle approximation.

∆q(∆t) =

[
1

1
2 ω̂ŝ

]
(2.22)

As previously done with Euler angle rotations the quaternions can be combined in a similar way. Therefore
q(t+ ∆t) can be described as a quaternion multiplication of the two quaternions.

q(t+ ∆t) = q(t) ∗ [∆q(∆t)− Iq] (2.23)

Where Iq = [1 0 0 0]ᵀ is the unity quaternion.

The time derivative of the quaternion q(t) can be described as in Equation 2.24.

q̇ =
dq

dt
= lim

∆t→0

q(t) ∗ [∆q(∆t)− Iq]
∆t

(2.24)

Defining angular velocity as:

ω , lim
∆t→0

ω̂ŝ

∆t
(2.25)

and substituting ∆q(∆t) with 2.22 leaves Equation 2.26 where the time indices are ignored.

q̇ =
1
2
q ∗ ω (2.26)

Using the definition of the quaternion multiplication from 2.14 Equation 2.26 can be written in matrix form.

q̇ =
1
2

[
0 −ωᵀ

ω [ω×]

]
q =

1
2

0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 q =
1
2
Ωωq (2.27)

Where Ωω is the matrix describing the quaternion multiplication with the angular velocity vector.

Chapter 3
Modelling of a Quadrotor

3.1 How do a Quadrotor Fly?

A quadrotor is equipped with four motors with each a rotor attached. When the rotor spins lift is generated.
When the quadrotor is aligned with the horizontal plane and the sum of the lift generated (Flift) is equal to the
gravitational force the quadrotor is hovering. If Flift is increased the quadrotor will start to climb, if Flift is
decreased the quadrotor will start to decent.

Movement in the horizontal plane is done by tilting the quadrotor in the desired direction. When the quadrotor
is tilted the direction of Flift is no longer aligned with the earth frame z-axis but can be dissolved in a z-
axis component and a horizontal component as seen in Figure 3.1. The horizontal component result in an
acceleration in the horizontal plane.

Figure 3.1: Flift dissolved in a z-axis component and a horizontal component

The rotors spin in opposite direction in pairs as illustrated in Figure 3.2. This is to prevent the quadrotor from
spinning around the z-axis as an effect of the counter torque generated by the spinning rotors. When the rotors
spin in opposite direction the counter torque is equalized when all rotors rotates with equal speed. It should be
noted that, in the following figures, the arrows indicate the direction of the rotation and the size is proportional
to the speed of the rotor.

16 3.1 How do a Quadrotor Fly?

1

2

3

4

Figure 3.2: Quadrotor in hover

Tilting of the quadrotor is done by altering the speed of the rotors. In the following are the effect of the inputs
roll pitch and yaw defined.

Roll is defined as a rotation around the x-axis in the body frame. This is done by increasing the speed of one
of the rotors placed along the y-axis and decreasing the speed of the opposite, while maintaining speed on the
remaining rotors. Figure 3.3 illustrates the direction of positive roll, which means that rotor 4 increases speed
while rotor 2 decreases speed. Note that the white mark indicates the front of the quadrotor.

1

2

3

4

Figure 3.3: Quadrotor performing positive roll

Pitch is defined as the rotation around the y-axis in the body frame. The rotation is done by increasing
the speed on one of the rotors placed along the x-axis and decreasing the thrust on the opposite rotor, while
maintaining speed on the remaining rotors. The positive pitch is illustrated in Figure 3.4, where rotor 1 increases
speed while rotor 3 decreases speed.

Modelling of a Quadrotor 17

1

2

3

4

Figure 3.4: Quadrotor performing positive pitch

Yaw is defined as the rotation around the z-axis in the body frame. Yaw is done by altering speed of the rotors
along the x-axis compared to the speed on the rotors along the y-axis. The resulting counter torque generated
by the rotors will no longer be zero and will result in a rotation around the z-axis. If the rotors on the y-axis are
rotating faster than the rotors on the x-axis the body will rotate clockwise (positive yaw) as illustrated in Figure
3.5.

1

2

3

4

Figure 3.5: Diagram of a quadrotor performing a positive yaw motion

3.2 Model Structure and Assumptions

The structure of the model for the quadrotor that will be derived is illustrated in Figure 3.6. The purpose of
this illustration is to give an overview of how the model is structured and how it is derived. The input vector is
defined as u =

[
uφ uθ uthrust uψ

]
containing commands for roll, pitch, thrust and yaw. The input serves

as references to the on-board heading hold controller holding the desired angular velocity in the body frame
(bω). The force generated by the rotors (Flift) is derived using the knowledge about the on-board controller
and imperial experiments. Then an expression of the acceleration in body frame (bv̇) will be derived from the
force generated by the lift. The model concludes by including the final integrations and rotations into the earth
fixed frame deriving the time derivative of the orientation (q̇) and position (Ṗ) in the earth frame. The model
will then be linearized and converted to state-space form.

18 3.3 The On-board Controllers

Figure 3.6: Illustration of the model structure for the X-3D quadrotor

In the derivation a number of assumptions are made to simplify the model. These assumptions are either based
on prior models derived for quadrotors [Bouabdallah, 2007][Friis et al., 2009] or by empirical observations.

• The quadrotor is assumed to be a rigid body. With the exeption of the roters, that both rotates and are
bendable, this is close to be true. The effect of the bending roters is assumed to very small due to the
on-board controller.

• The gyro effect due to the angular momentum of the rotors [Bouabdallah, 2007] is neglected due to the
on-board controller will compensate for this.

• The on-board angular rate controller and the motor controllers are considered fast enough to neglect both
the dynamics of the motors and the dynamic in changing the angular rate. This is further discussed and
supported in Section 3.3.

• Due to the small size of the quadrotor and the controlled environment in which it is flying, it is assumed
that external effects like wind or turbulence do not affect the quadrotor.

3.3 The On-board Controllers

The purpose of this section is to determine the relation from the input given to the quadrotor (uφ, uθ, uthrust
and uψ) to angular rate bω and the lift force Flift of the quadrotor. Both factors are depending on the on-
board controllers. The knowledge of the on-board software of the X-3D quadrotor is gathered from a research
paper about the development of the X-3D quadrotor [Gurdan et al., 2007], the manual [AscTec, 2009] and from
personal contact with the developers.

Both the angular velocity controllers and the thrust controller are located on the sensor board that handles all
sensor data, filtering, and control. The board is equipped with a 60 MHz ARM7 microprocessor and runs the
control loop with an update frequency of 1 kHz.

3.3.1 The Angular Rate Controllers

The rate controllers are structured as three independent PD-controllers. One for each axis. In each controller
a value Kstick is used as a proportional gain that controls how aggressive the quadrotor reacts on the input.
Both Kstick and the controller values (Kp and Kd) can be configured when setting up the X-3D quadrotor. The
block diagram describing the structure of the controller can be seen in Figure 3.7

From observations it is concluded that the doing normal flight (input bandwidth ∼ 0.1 Hz) the quadrotor had
no problem following the input references. To verify this the bandwidth was estimated by measuring the rise
time of the maximum roll input step. The step response can be seen in Figure 3.8.

Modelling of a Quadrotor 19

Figure 3.7: Block diagram of the PD-controller structure

8.5 8.55 8.6 8.65 8.7 8.75 8.8 8.85 8.9
−0.5

0

0.5

1

1.5

2

2.5

3

t
r

Time [s]

b ω
1

u
φ
 ⋅ K

φ
bω

1

Figure 3.8: Step response of the maximum roll input

The input was chosen to find the worst case bandwidth. It is estimated that with the maximum input, the
dynamics of the motor controllers, motors and rotors will have the maximum dampening. On Figure 3.8 the
input step is not a step over 1 sample, but more made over several samples. This is cased by the step being made
manually doing manual flight. The step corresponds to an angular velocity of 2.25 rad

s (130
o

s) and causes the
quadrotor to quickly move towards the wall. This can therefore only be done in manually flight where a pilot
is ready to recover the quadrotor. Typically a natural system like this can be estimated with a second order
behaviour. The bandwidth of a second order system can according to [Franklin et al., 2006] be approximated
as in Equation 3.1.

fbw ≈ 1.8
tr · 2π

≈ 0.29
tr

(3.1)

Given Equation 3.1 the bandwidth can be estimated.

fbw ≈ 0.29
0.14

≈ 2.07 [Hz] (3.2)

The rate controller is considered fast enough for the dynamics of the controller to be neglected in this quadrotor
model given that the model is to be used for normal flight. The steady state angular rate can according to the
manual [AscTec, 2009] be described as in Equations 3.3, 3.4 and 3.5.

bωφ =
−Kstickφ

2048
· 2π

360
· uφ = Kφuφ (3.3)

bωθ =
−Kstickθ

2048
· 2π

360
· uθ = Kθuθ (3.4)

bωψ =
−Kstickψ

2048
· 2π

360
· uψ = Kψuψ (3.5)

20 3.3 The On-board Controllers

However the values was found not to be very accurate and new values ofKφ,Kθ andKψ was determined using
the system identification toolbox in Matlab with a zero order transfer function model with a time delay.

Figure 3.9 shows how the angular velocity around the x-axis follows u · Kφ. Part of the delay is assumed to
be the communication delay in the series consisting of the transmitter, quadrotor and the Vicon system. The
short areas where the values keep constant is due to data corruption in the interface. This is further discussed
in Appendix A.

10 11 12 13 14 15 16 17 18 19 20
−3

−2

−1

0

1

2

3

Time [s]

b ω
1

bω
u ⋅ K

φ

Figure 3.9: Demonstration of how the angular velocity follows the input

3.3.2 Thrust Force Relation

The input determining thrust is proportional to the average speed of the rotors (in perfect hover) when no other
input is given. The steady-state relation between the average speed in RPM (Ωrotor) and the thrust input is
according to the X-3D developers given as Equation 3.6.

Ωrotor
uthrust

= 1.953 (3.6)

This however will only be an average, since the quadrotor changes the orientation by in pairs changing the
speed of the rotors from the average.

The lift generated by each rotor could be estimated by an aerodynamic model of the rotor, but instead it is chosen
to estimate the entire relation from thrust input the lift force. The total force Flift is estimated empirically from
the thrust input by measuring how the lift force change while stepping through the input. The experiment is
described in more detail in Appendix C.1.

The estimated relation is expressed as the 3rd order polynomial in Equation 3.7 and shown in Figure 3.10
together with the measurements. This however can only be assumed to be correct when a full battery is used.

bFlift =

 0
0

2.073 · 10−10 · u3
thrust − 1.143 · 10−6 · u2

thrust − 1.054 · 10−3 · uthrust − 0.903

 (3.7)

Modelling of a Quadrotor 21

0 1000 2000 3000 4000
−12

−10

−8

−6

−4

−2

0

u
thrust

 []

F
lif

t [N
]

Measurement
Polynomial estimation

Figure 3.10: Relation between input uthrust and Flift

3.4 Forces and Accelerations

The main force apart from Flift affecting the quadrotor is the gravitational force. The gravitational force is
always pointed down in the earth fixed frame and can be described as in Equation 3.8.

eFg = m ·

0
0
g

 (3.8)

Where g is the gravitational acceleration defined to be 9.82ms2 in Denmark.

Doing normal flight it has been observed that the quadrotor do not rise with a constant acceleration, when the
thrust is larger then the gravitational force. This is due to a phenomenon known as induced inflow. Induced
inflow is an effect affecting the force generated by a rotating rotor when it starts to move up through the air.
When the rotor starts to climb, the airflow through the rotor becomes higher and a smaller force is generated.
With a smaller force the vertical speed of the rotor becomes less and the force is once again increased. This
effect induces an equilibrium depending on the vertical velocity. Figure 3.11 illustrates this principal.

Figure 3.11: Illustration of the phenomenon known as induced inflow

The phenomenon causes the quadrotor to find an equilibrium approximately with a constant velocity. The
phenomenon of induced inflow is well researched and good approximations have been made. In this model

22 3.5 Model Summery

however it is found sufficient to use a constant feedback from the vertical velocity to estimate the force gener-
ated by the induced inflow. The constant Ii is found by imperial tests in the MTLab and found to approximately
Ii = −0.423. Further information of the experiment can be found in Appendix C.2.

bFi = Ii
bv3 (3.9)

The total force acting upon the quadrotor, using this model, can be described as in Equation 3.10.

bF = bFlift + eFg + bFi (3.10)

The rotational matrix bCe can be used to describe the gravitational force in the body frame. The rotational
matrix was previously derived in Section 2.3. Equation 3.11 describes the summed forces.

bF = bFlift +mbCe

0
0
g

+ Ii

 0
0
v3

 (3.11)

The translatory acceleration of the body frame with respect to the body frame (bv̇) is now derived. ev de-
scribes the translatory velocity of the body frame relative to the earth frame. Newtons second law states that
acceleration is force divided by mass [Newton, 1833, p. 15].

v̇ =
1
m
F (3.12)

The velocity ev is described relative to the earth frame in Equation 3.13 and the derivative in Equation 3.14.

ev = eCb
bv (3.13)

ev̇ = eCb
bv̇ + eĊb

bv (3.14)

The derivative of the direct cosine matrix can be expressed as the cross product seen in Equation 3.15
[Hughes, 1986, p.23].

eĊb
bv = eCb(bω × bv) (3.15)

Equation 3.12 and Equation 3.15 is inserted into Equation 3.14 and the expression is transformed to body frame
and simplified.

1
m
eF = eCb

bv̇ + eCb
bω × bv (3.16)

1
m
bCe

eF = bv̇ + bω × bv (3.17)

bv̇ =
1
m
bF − bω × bv (3.18)

3.5 Model Summery

The previously described rotational matrices and kinematics can be used to describe the entire relations between
the input commands

[
uφ uθ uψ uthrust

]ᵀ
and the change in position P , orientation q and velocity bv. In

Modelling of a Quadrotor 23

Equations 3.19 to 3.22 this relation is summarized.

Ṗ = eCb
bv (3.19)

q̇ =
1
2
Ωωq (3.20)

bv̇ =
1
m
bFlift +b Ce

0
0
g

+
Ii
m

 0
0
v3

− bω × bv (3.21)

bω =

Kφ · uφ
Kθ · uθ
Kψ · uψ

 (3.22)

Flift is an expression for the 3rd order polynomial that maps the thrust input to the force generated by the
rotors. Because the polynomial is highly nonlinear the thrust force will be used as input to the system, such
that the polynomial will be kept out of the model and the controller.

Chapter 4
The Linear Quadrotor Model

To use the model to tune a linear controller requires a strictly linear model. Therefore a general linearization is
done here with the purpose of describing the model as a linear state-space model. First step will be identifying
the non-linear parts and find appropriate linearization methods and operating points.

Since a quadrotor is usually required to be stabilized around hover this is chosen as the operating point. Equa-
tions 4.1 to 4.3 shows the values of states in the operating point.

q̄ =
[
1 0 0 0

]ᵀ
(4.1)

bv̄ =
[
0 0 0

]ᵀ
(4.2)

bω̄ =
[
0 0 0

]ᵀ
(4.3)

Most of the non-linearities of the model previously described is due to states multiplied together. This is
linearized using a 1st order Taylor approximation as illustrated in Equation 4.4.

a · b ≈ (ā+ ã)(b̄+ b̃) = āb̄+ āb̃+ ãb̄+ ãb̃ (4.4)

≈ āb̄+ āb̃+ ãb̄

Before the actual linearization the matrices used is calculated when the operating point is inserted.

eCb(q)
∣∣∣
q=q̄

= bCe(q)
∣∣∣
q=q̄

= I (4.5)

bΩω

∣∣∣
ω=ω̄

= 0 (4.6)

[bω×]
∣∣∣
ω=ω̄

= 0 (4.7)

Linearization of the position and orientation can be done very simple given the chosen method as shown in
Equations 4.8 and 4.9.

Ṗ ≈ eCb(q)
∣∣∣
q=q̄

bv + eCb(q)bv̄ = bv (4.8)

q̇ ≈ 1
2

(
bΩω

∣∣∣
ω=ω̄

q + Ωωq̄
)

=
1
2

[
0 ω1 ω2 ω3

]ᵀ
(4.9)

The Linear Quadrotor Model 25

The acceleration is divided into multiple steps treating each segment by it self. Firstly is the values of the
rotational matrix is inserted from Equation 2.20 to linearize the gravitational force.

bCe
eFg = bCe

0
0
g

m =

 2(q1q3 − q0q2)
2(q2q3 + q0q1)

q2
0 + q2

1 + q2
2 − q2

3

 g ·m (4.10)

The 1st order Taylor approximation is again used when two different states are multiplied. For the last expres-
sion it is assumed that q2

0 can be estimated to be 1 to avoid an affine expression with a bias.

bCe
eFg ≈

−2 · q2

2 · q1

1

 g ·m (4.11)

The cross product can be approximated like the position and orientation using the 1st order Taylor.

bω × bv = [bω×]bv ≈ [bω×]
∣∣∣
ω=ω̄

bv + bωbv̄ = 0 (4.12)

When the segments are put together the resulting expression is not linear but affine with the bias of the gravita-
tional force. But by redefining the input force as Fz = (Flift + g ·m) this affine relation becomes linear.

v̇ ≈ 1
m

bFlift +

−2 · q2

2 · q1

1

 g ·m+ Ii

 0
0
v3

 =

 −2g · q2

2g · q1

1
m (Flift + g ·m+ Iiv3)

 (4.13)

=

 −2g · q2

2g · q1

1
m (Fz + Iiv3)

 (4.14)

For an overview the equations 4.8, 4.9 and 4.14 are shown together in the following equations.

ẋ = bv1 (4.15)

ẏ = bv2 (4.16)

ż = bv3 (4.17)

q̇0 = 0 (4.18)

q̇1 = 1
2ωφ (4.19)

q̇2 = 1
2ωθ (4.20)

q̇3 = 1
2ωψ (4.21)

bv̇1 = −2q2 · g (4.22)
bv̇2 = 2q1 · g (4.23)
bv̇3 = 1

m (Fz + Iiv3) (4.24)

ω̇φ = Kφ · uφ (4.25)

ω̇θ = Kθ · uθ (4.26)

ω̇ψ = Kψ · uψ (4.27)

26 4.1 state-space Model

4.1 state-space Model

The typical way of describing a Multiple Input Multiple Output (MIMO) system is with the state-space repre-
sentation. This form is also required in calculating the model based controllers developed in a later chapter.

The state-space form consists of the following system:

ẋs = Axs +Bus (4.28)

(4.29)

Where xs is the state vector described in Equation 4.30 and us the input described in Equation 4.31.

xs =
[
P q vv

]ᵀ
(4.30)

us =
[
uφ uθ Fz uψ

]ᵀ
(4.31)

The system matrices are described below.

A =

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −2g 0 0 0 0

0 0 0 0 2g 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Ii
m

(4.32)

B =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
1
2
Kφ 0 0 0

0 1
2
Kθ 0 0

0 0 0 1
2
Kψ

0 0 0 0

0 0 0 0

0 0 1
m

0

(4.33)

Chapter 5
Verification of the Quadrotor Model

In the previous two chapters both the linearized and non-linear models have been derived. To evaluate how well
the two models perform it is desired to compare them with the behaviour of the real quadrotor. This will be the
main focus in this chapter.

Comparing a quadrotor model with a real quadrotor is not straight forward because the quadrotor is not a stable
system without a controller. Slight difference in the modelling of the angular velocity will very quickly turn the
quadrotor upside down and the states depending on the translatory acceleration will be flawed.

In this chapter the performance of the models is evaluated by modeling the time derivative velocity (bv̇) and
time derivative quaternion (q̇) from a state vector from real flight. The true derivative of the velocity and
quaternion is calculated from the measurements and compared with the result of the model.

In this way the state of the model will never be allowed to run away. It is in this way a 1 step prediction.
Verifying the model in this way have some limitations. It will be difficult to see much dynamic from the
modeled derivatives, but since the derivatives are mostly kinematic equations without much dynamic this is
accepted.

To record the behaviour of the real quadrotor two test flight where made. One where large input was applied to
roll and pitch input and one with a more calm flight close to the operating point. The first test flight is the basis
on which the time derivative of the quaternion is further examined and the second flight is used when the time
derivative of the velocity is examined. A more detailed description on the test flight and the full measurements
can be seen in Appendix C.3.

5.1 Time Derivative of the Quaternion

In general both the non-linear and the linear model follows the tendencies of the system well. Figure 5.1 shows
a part of the measurement with the result of the two models. There is small deviations in amplitude, but this is
estimated not to be enough to have significant effect.

The biggest difference can be seen when q̇3 is examined. Here the assumption that there is no dynamics in the
input angular velocity relation is not very accurate. This is shown in detail on Figure 5.2. The extra angular

28 5.1 Time Derivative of the Quaternion

20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

q̇ 1

Time [s]

Measured

Non−linear model

Linear model

Figure 5.1: Sample of modelled and measured q̇1

velocity is most likely caused by the angular momentum being build up as the quadrotor rotates around the
z-axis and the on-board controllers lag of compensating for this momentum. The linear model is very close to
the non-linear model, which indicated that the most dominating effects remain even after the linearization. The
overall result is considered acceptable for use in the estimator and controllers.

Verification of the Quadrotor Model 29

35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

q̇ 3

Time [s]

Measured

Non−linear model

Linear model

Figure 5.2: Sample of modelled and measured q̇3

5.2 Time Derivative of the Velocity

Figure 5.3 and 5.4 shows the measured acceleration in the body frame with the result of the models. The
measured horizontal accelerations are very close to the result of the models and both follows the dynamic very
well.

The vertical acceleration however seem to have an offset and parts where the models deviates from the measure-
ment. This offset can very well be contributed the battery. The effect of the battery being discharged over time
can be represented as the force generated by the quadrotor slowly declines as time pass. On a down pointing
z-axis this will result in a general higher value of the measured acceleration compared with the model. This is
what is indicated on Figure 5.4.

If the total measurements found in Appendix C.3 is further examined the offset can be seen to be increasing as
time passes which also indicates that the battery could be the cause. This corresponds well with the assumption
made of the force polynomial only being accurate when a fully charged battery is used.

On Figure 5.4 close to 46 and 57 seconds in the measurement, the non-linear model seems almost to go in the
opposite direction of the measurements. At these two areas the quadrotor was not in the range of the Vicon
system. The first area the quadrotor flew out of range in the y-axis and the second it was flown to close to the
ceiling. In this period the measurements are not considered valid and will not be further discussed.

Even considering the offset on the acceleration in the vertical axis it is estimated that both the linear and the
non linear model will be sufficient to use in the estimator and controllers.

30 5.2 Time Derivative of the Velocity

20 30 40 50 60 70
−3

−2

−1

0

1

2

3

4

5
v̇ 1

Time [s]

Measured
Non−linear model
Linear model

Figure 5.3: Sample of modelled and measured v̇1

25 30 35 40 45 50 55 60
−5

0

5

v̇ 3

Time [s]

Measured
Non−linear model
Linear model

Figure 5.4: Sample of modelled and measured v̇3

Chapter 6
Sensor Model

The purpose of this chapter is to present the various sensors used in the estimation and derive any scaling
needed.

6.1 Position and Orientation

For measuring the position and orientation the Vicon system in the MTLab is used. Being part of the MTLab
it is already calibrated and scaled to use SI units. To give an impression of how accurate these sensors are the
position and orientation measured and the variance recorded. The result is listed in Table 6.1.

x-axis y-axis z-axis
Variance P 4.16 · 10−7 3.28 · 10−9 2.91 · 10−7

q0 q1 q2 q3

Variance q 1.09 · 10−9 5.17 · 10−6 9.74 · 10−6 3.62 · 10−6

Table 6.1: Variance for the Vicon system

6.2 Angular Velocity and Acceleration

For measuring angular velocity and acceleration the on-board gyroscopes and accelerometers are used. The val-
ues are retrieved through the X-3D interface described in Appendix A. The data received through the interface
are raw values directly sampled from the on-board ADC. The values are, in the ResearchPilot documentation,
stated to be withing the range of 0 and 1023.

Further analysis of the actual gyro and the accelerometer shows that they both have a linear output, and the
data sheets states a conversion factor to SI units. But given the lag of detailed information on the ADC, the
conversion factors are determined using Matlab’s system identification toolbox. The results of the estimated
conversion factors are listed in Table 6.2. A comparison of the converted sensor values and the true values
(based on Vicon measurements) are shown in Figure 6.1 and 6.2 for the gyroscope and accelerometer.

32 6.2 Angular Velocity and Acceleration

1st axis 2nd axis 3rd axis

Kgyro 0.0144 0.0143 0.0127
Kacc 0.0086 0.0077 0.0111

Table 6.2: Sensor scales for the gyroscope and accelerometer

On the graf showing the on-board sensor some vertical periods are present. This is due to short communication
failures resulting in no new values are received from the quadrotor. The phenomenon is further described in
Appendix A concerning the X-3D quadrotor interface. Also on the lowest plot in Figure 6.2 the on-board
sensor measurement can be seen to always stay above approximately 4 m

s2 . This is assumed to be caused by the
saturation of the sensor. In this case the gravitational acceleration have been subtracted from the measurement
(knowing the orientation from the Vicon system) to compare with the second derivative of the position. The
accelerometer measures originally always the−9.82ms2 on the z-axis when the quadrotor is close to hover. This
indicates that the saturation of the sensor, given the measurements, is close to −14ms2 .

28.5 29 29.5 30 30.5
−5

0

5

ω
1 [r

ad
/s

ec
]

Vicon based

On−board sensor

32 33 34 35 36 37 38 39
−5

0

5

ω
2 [r

ad
/s

]

40 40.5 41 41.5 42 42.5 43 43.5 44
−5

0

5

ω
3 [r

ad
/s

]

Time [s]

Figure 6.1: Converted gyroscope measurement compared with Vicon measurement

The conversion factor is in both sensors depending on the temperature, but in this setup the quadrotor is always
used in the same room, with a constant temperature. Any changes in the conversion factor due to temperature
are therefore ignored.

As with the Vicon system the variance of the sensors have been measured as it is needed to determine the
co-variance matrix for the estimator in the next Part. The variances are listed in Table 6.3.

Sensor Model 33

6 6.5 7 7.5 8 8.5 9
−10

−5

0

5

10

A
cc

1 [m
/s

2]

Vicon based

On−board sensor

13.5 14 14.5 15 15.5 16 16.5 17 17.5 18
−10

−5

0

5

10

A
cc

2 [m
/s

2]

21.5 22 22.5 23 23.5 24 24.5 25
−10

−5

0

5

10

A
cc

3 [m
/s

2]

Time [s]

Figure 6.2: Converted accelerometer measurement compared with Vicon measurement

Variance 1st axis 2nd axis 3rd axis

Gyro 1.24 · 10−4 1.94 · 10−4 8.54 · 10−4

Accelerometer 4.60 · 10−3 2.62 · 10−3 3.54 · 10−3

Table 6.3: Variance for the gyro and accelerometer sensors

Part II

State Estimation

Table of Contents

7 State Estimation and Sensor Fusion 37
7.1 The Extended Kalman Filter . 38
7.2 The IMU-driven Estimator . 41
7.3 Fault Handling . 43
7.4 Analysis of Estimator Performance . 44

36 TABLE OF CONTENTS

Chapter 7
State Estimation and Sensor Fusion

An important step in obtaining a good flight performance for the quadrotor, is to know where it is. In other
words to have a good estimate of the state vector. This chapter describes how this estimate is made given the
system model and measurements made in flight.

One might question why an estimator is necessary when measurements are available. If perfect measurements
(no noise or uncertainty) could be made for all states an estimator would not be necessary but unfortunately
perfect measurements do not exist in the real world. Usually it is not possible to have sensors measuring all
states, and the states that are measured are corrupted by measuring noise from the sensor, or some disturbing
effects from the surrounding world. All these factors cause uncertainty in the measurements. Instead of per-
ceiving the measurements as the actual truth, they are thought of as noisy samples of the actual state. In this
way the measurements become random variables whose mean are the true state.

Several tools exist dealing with estimation problems such as this. A group of filters that are especially efficient
are the Bayes filters. Using Bayes filters it is possible to fuse the predicted state based on the previous estima-
tion, with the measurements form the sensors [Thrun et al., 2006]. This is done using Bayes theorem (shown
in Equation 7.1).

P (x|z) =
P (z|x)P (x)

P (z)
(7.1)

P (x) is typically referred to as the prior probability distribution, z the data, andP (x|z) the posterior probability
distribution.

One particular kind of Bayes filter is the Kalman filter. The Kalman filter assumes that the state and mea-
surements are random variables with a Gaussian distribution. Not only does the filter propagate the state (the
mean of the random variable) but it also propagates the uncertainty in form of a covariance matrix. The type of
filter used to estimate the system states for the quadrotor is an EKF. Where as the normal Kalman filter only
supports linear systems and sensor models, the EKF supports nonlinear models. As shown later the filters are
very closely related. The EKF simply linearizes the models using a first order Taylor approximation.

The EKF is placed in between the sensors and the controller as shown in the control scheme in Figure 7.1.

38 7.1 The Extended Kalman Filter

Figure 7.1: Control scheme with estimator

7.1 The Extended Kalman Filter

The EKF is a very powerful and elegant tool to know when dealing with estimation. The mathematical sim-
plicity and intuitive procedure leaves the EKF as a simple way to not only estimate the state of the system but
also to merge multiple sensors and also to handle failing sensors. How all of this is done in more detail will
be revealed throughout the remainder of this chapter. This section will primarily describe the mathematical
background of the EKF which hopefully helps the understanding of why this is such a powerful tool.

To give a short overview, all the essential EKF equations are listed in Table 7.1 [Grenwal and Andrews, 2008]
and can be divided into three categories: Estimation model, prediction and update.

Estimation Model
xk = φk−1(xk−1) + wk−1, wk ∼ N (0,Qk)
zk = hk(xk) + vk, vk ∼ N (0,Rk)

Φ[1]
k−1 ≈

∂φk

∂x

∣∣∣
x=x̂+

k−1

H
[1]
k ≈

∂hk

∂x

∣∣∣
x=x̂−k

Prediction step
x̂−k = φk−1(x̂+

k−1)
P−k = Φ[1]

k−1P
+
k−1Φ

[1]ᵀ
k−1 +Qk−1

Update step

Kk = P−k H
[1]ᵀ
k

[
H

[1]
k P

−
k H

[1]ᵀ
k +Rk

]−1

x̂+
k = x̂−k +Kk(zk −H [1]

k x̂
−
k)

P+
k =

(
I −KkH

[1]
k

)
P−k

Table 7.1: Discrete EKF Equations

The notation used in Table 7.1 will be used throughout this chapter. The indices k and k−1 indicate the current
sample and the previous sample. When a matrix is denoted with an [1] it is a 1st order linear Taylor approxi-
mation of a nonlinear function. Ex. Φ[1] is a linearization of φ(x). The + and − indicate a priori or a posterior
estimate respectively. That a variable is an estimate is also indicated by the .̂ By this definition x̂−k is the priori

State Estimation and Sensor Fusion 39

estimate of the state vector at the k sample.

The basic function of both the EKF and the Kalman filter is to merge information from a prediction model
with the information from the sensors. The procedure is illustrated in Figure 7.2 and can be described by the
following three steps.

1. The current priori state (x̂−k) is predicted using the previously estimated state (x̂+
k−1) and the prediction

model.

2. The merging factor also called the Kalman gain (Kk), is calculated.

3. The priori state is updated with the sensor information (zk) using the Kalman gain

Figure 7.2: Procedure of the EKF and the Kalman filter

7.1.1 Estimation model

The most essential function of a Kalman filter is to merge the information, known from the model, with the
information obtained from the sensors. Therefore an important part of the filter is the prediction model. As the
name reveals the purpose is to predict the next state given the previous state. The normal Kalman filter uses a
linear transition matrix for the prediction where as the EKF supports a non-linear prediction model by doing
on-line linearization using the Jacobian matrix. Since the both filters are Gaussian filters both models need to
have a zero mean Gaussian noise model as shown in Equation 7.2 and 7.3.

xk = φk−1(xk−1) + wk−1 (7.2)

wk ∼ N (0,Qk) (7.3)

Also a sensor model is needed to relate the measurements to the state and likewise the noise model is required
to be Gaussian.

zk = hk(xk) + vk (7.4)

vk ∼ N (0,Rk) (7.5)

The Jacobian matrix needed for the on-line linearization is the first order partial derivatives of all states as
shown in Equations 7.6 and 7.7. The linearization of the system matrix is done with the previous a posteriori
state and the linearization of the sensor model is done using the current a priori state.

Φ[1]
k−1 ≈ ∂φk

∂x

∣∣∣
x=x̂+

k−1

(7.6)

H
[1]
k ≈ ∂hk

∂x

∣∣∣
x=x̂−k

(7.7)

40 7.1 The Extended Kalman Filter

7.1.2 Prediction

The prediction of the state is done using the nonlinear prediction model such as Equation 7.8 describes.

x̂−k = φk−1(x̂+
k−1) (7.8)

Also the estimation covariance Pk is propagated through the model. This time however, the linearized model
is to be used for the prediction. The estimation covariance indicates how reliable the estimate is. To under-
stand how this covariance is propagated through the model one can start with the definition of the estimated
covariance being the squared residual as shown in Equation 7.9.

P−k = E[x̃−k x̃
−ᵀ
k] (7.9)

Where x̃−k = x̂−k − xk is the residual between the estimate and the true state. The residual can be introduced
by subtracting xk from the linearized state prediction.

x̂−k − xk = Φ[1]
k−1x̂

+
k−1 − xk

x̃−k = Φ[1]
k−1(x̂+

k−1 − xk−1)− wk−1

= Φ[1]
k−1x̃

+
k−1 − wk−1

The actual covariance propagation can be described by multiplying with x̃−k and talking the estimated value on
both sides.

P−k = E[x̃−k x̃
−
k] = Φ[1]

k−1E[x̃+
k−1x̃

+ᵀ
k−1]Φ[1]ᵀ

k−1 + E[wk−1wk−1]

= Φ[1]
k−1P

+
k−1Φ

[1]ᵀ
k−1 +Qk−1 (7.10)

7.1.3 Update

The final step to the sensor updated estimate is a balance between the model prediction and the sensor mea-
surement. The weight called the Kalman gain is calculated on the basis of the error covariance (how good the
model prediction is) and the sensor covariance (how much the sensors are trusted) as shown in Equation 7.11.

Kk = P−k H
[1]T
k

[
H

[1]
k P

−
k H

[1]T
k +Rk

]−1

(7.11)

The derivation of the Kalman gain and the following Kalman equations are left out for simplicity but they can
be found in many textbooks concerning this subject [Grenwal and Andrews, 2008][Thrun et al., 2006].

The update of the priori state to the posteriori state is done using Equation 7.12 where the posteriori state is the
sum of the priori state and the weighted difference between the sensor measurement and the modelled sensor
measurement.

x̂+
k = x̂−k +Kk(zk −H [1]

k x̂
−
k) (7.12)

The error covariance update is like with the prediction based on the update of the state. The error covariance
update is given in Equation 7.13.

P+
k =

(
I −KkH

[1]
k

)
P−k (7.13)

State Estimation and Sensor Fusion 41

7.2 The IMU-driven Estimator

An IMU-driven estimator has previously been used with success to estimate the states of a UAV [Bisgaard, 2007][Van Der Merwe et al., 2004].
The basic idea, of using IMU-driven estimators, is to use the measured acceleration and angular velocity as the
input to the model. In the case of the quadrotor this leaves only the rigid body kinematic and dynamics. With
this simplified model it is estimated that the prediction will be more accurate than with the previously described
model that is based on the input to the quadrotor. With the IMU-driven model the errors caused by battery
discharging and slightly off input scaling will have no effect.

Given that part of the model is now changed also the state vector have to be reviewed. When dealing with
sensors it can be useful to estimate any offsets to compensate for these in the model. To the previously described
model state is therefore appended six extra states to estimate the offset of the gyroscope and accelerometer. The
state vector now contains the position (P), the translatory velocity (bv), the orientation (q), the gyro bias (ωb)
and the accelerometer bias (ab).

x =
[
P[1×3] q[1×4]

bv[1×3] ωb[1×3] ab[1×3]

]ᵀ
(7.14)

The measurements of acceleration and angular velocity is preprocessed (see Chapter 6) with a scale conver-
sion factor to convert to SI units. The input vector for the IMU-driven model includes the processed gyro
measurement (ω̄) and the processed accelerometer measurement (ā).

u =
[
ω̄[1×3] ā[1×3]

]ᵀ
(7.15)

The remaining sensors are used without any preprocessing and affects the filter through the sensor state vector.
The sensor state vector contains the measurements of the position (Pvicon) and orientation (qvicon) from the
Vicon system.

z =
[
Pvicon[1×3] qvicon[1×4]

]ᵀ
(7.16)

7.2.1 IMU-driven Model

The model used for the IMU-driven Estimator is based on the model derived in Chapter 3, but deviates in the
case of input. The IMU-driven model uses inertial sensors as input and not the control commands send to the
quadrotor. The model equations are listed in Equations 7.17 to 7.21

Ṗ = eCb
bv (7.17)

bv̇ = ā+ ab + bCe

[
0 0 g

]ᵀ
− bω × bv (7.18)

q̇ = 1
2Ωω̄q (7.19)

ω̇b = 0 (7.20)

ȧb = 0 (7.21)

The transformation matrices between earth and body frame bCe and eCb are described in Section 2.3 on page
10. ā and ω̄ is the processed measurements of the acceleration and angular velocity. The combined non-linear
continuous model is defined as ft(x).

For the IMU-driven model to be used in the EKF a few derivations are necessary. Previously described equa-
tions form the basis for the non-linear prediction model, but a linearization in form of a Jacobian matrix is still
needed.

42 7.2 The IMU-driven Estimator

7.2.2 Derivation of the Jacobian

As previously mentioned the online linearization is done using the Jacobian matrix of the system. The Jacobian
matrix consists of the partial derived states given the previous a posteriori state. This described mathematically
looks like in Equation 7.22.

Φ[1]
k−1 ≈ ∂φk

∂x

∣∣∣
x=x̂+

k−1

(7.22)

=

∂φ1,k

∂x1

∂φ1,k

∂x2
· · ·

∂φ2,k

∂x1

∂φ2,k

∂x2
· · ·

...
...

. . .

 (7.23)

The prediction model needed for the described EKF must be a discrete model. The discretization is done using
the Zero-Order-Hold (ZOH) method in a way such that the discrete prediction model can be described as in
Equation 7.24.

Φ[1]
k−1 = I + Ts ·

∂ft(x)
∂x

∣∣∣
x=x̂+

k−1

(7.24)

The sample time of the EKF is chosen to be 100 Hz (Ts = 0.01), and given the slow changes of the states it is
estimated that a ZOH discretization is sufficient. When the linearization of ft(x) is written on matrix form it
becomes more apparent where the actual linearization happens.

Ṗ

q̇
bv̇

ω̇b

ȧb

 =

0 ∂eCb

bv
∂q

eCb 0 0
0 1

2Ωω̄ 0 1
2
∂Ωω̄q
∂ωb

0

0 ∂bCeg
∂q [ω×] ∂[ω×]bv

∂ωb
I

0 0 0 0 0
0 0 0 0 0

P

q
bv

ωb

ab

+

0 0

1
2
∂Ωω̄q
∂ω̄ 0

∂[ω×]bv
∂ω̄ I

0 0
0 0

[
ω̄

ā

]
(7.25)

The partial derivatives can each be calculated as a vector of partial derivatives of the single states as done in
Equations 7.26 to 7.29.

∂eCb
bv

∂q
=

[
∂eCb

∂q0
bv ∂eCb

∂q1
bv ∂eCb

∂q2
bv ∂eCb

∂q3
bv
]

(7.26)

∂Ωω̄q

∂ω
=

[
∂Ωω̄

∂ω1
q ∂Ωω̄

∂ω2
q ∂Ωω̄

∂ω3
q
]

(7.27)

∂bCeg

∂q
=

[
∂bCe

∂q0
g ∂bCe

∂q1
g ∂bCe

∂q2
g ∂bCe

∂q3
g
]

(7.28)

∂[ω×]bv
∂ω

=
[
∂[ω×]
∂ω1

bv ∂[ω×]
∂ω2

bv ∂[ω×]
∂ω3

bv
]

(7.29)

Each of the above stated partial derivatives have been calculated using Maple and is for convenience not listed
here, but can be found in the file phi.m on the attached CD.

The remaining sensors used for the EKF already have a linear relation to the states and is given by the matrix
H used in the relation in Equation 7.30.

z = Hx (7.30)[
Pvicon

qvicon

]
=

[
I 0 0
0 I 0

]Pq
bv

State Estimation and Sensor Fusion 43

Finally for the EKF is the previously determined variance of the Vicon system used as the sensor covariance
matrixR and the model covariance matrixQ is determined by manually tuning the estimator.

7.3 Fault Handling

While testing the IMU-based EKF a few situations occurred that affected the estimated too much to be accept-
able. One situation were while using an additional sensor measuring the air pressure. The pressure sensor was
not able to be update the pressure information at the same rate as the EKF. An EKF uses every sample as a new
and equally weighted sample, which in this case gave a faulty result.

To ensure the sustainability of the EKF a small algorithm was implemented to handle variating sampling times.

Algorithm 1 Handling of variating sampling times
if zi,k == zi,k−1 then
Ri,i = 108

end if

Algorithm 1 basically states that if a sensor reading is detected to be equal to the prior, the variance for this
sensor is set sufficiently high for the EKF to ignore the sensor reading. After each sample the sensor covariance
matrixR is reset and the algorithm will have no permanent effect.

7.3.1 Flying Outside Vicon Range

Another more frequently occurring fault is the Vicon sensors failing due to the limited Vicon range. As ex-
plained in a previous chapter, the Vicon system relies on reflectors on the quadrotor to see the orientation and
position using cameras. When either the quadrotor is flying with to great of an angle or the quadrotor flies too
close to a wall the Vicon system is not capable of delivering good measurements. Whenever the quadrotor is
lost from the sight of the Vicon system the position is kept constant and the orientation is reset. In this way it is
possible to determine whenever the Vicon system fails.

To compensate for the failures a similar algorithm as Algorithm 1 is implemented to make sure the EKF ignores
the Vicon sensors whenever the measurement fails.

Algorithm 2 Handling failing Vicon measurements

if q ==
[
1 0 0 0

]ᵀ
then

R1..7,1..7 = 108

end if

Using this algorithm when ever the quadrotor is flying out of Vicon range results in an estimation based only
on the on-board sensors. Several test have been made and a satisfactory estimation performance have been
obtained.

44 7.4 Analysis of Estimator Performance

7.4 Analysis of Estimator Performance

To verify that the estimator performs as intended the quadrotor is flown manually around both within and
outside the range of the Vicon system. The Figures 7.3 and 7.4 document one of these measurements.

0 5 10 15 20 25 30 35
−3

−2

−1

0

1

2

3

Time [s]

x
[m

]

0 5 10 15 20 25 30 35
−3

−2

−1

0

1

2

3

Time [s]

y
[m

]

0 5 10 15 20 25 30 35
−3

−2

−1

0

Time [s]

z
[m

]

Quaternion measurement and estimate

sensor
estimate

sensor
estimate

sensor
estimate

Figure 7.3: A test flight with the position shown

On these figures several occasions of Vicon failures can be found. At approximately 4 and 7 sec the boundary
of the range is reached on the z-axis and the y-axis. This do, as predicted, result in short fall outs. Figures 7.5
and 7.6 shows a closer look at the fall out at 7 sec.

On these figures it can be seen that the estimator follows a continuous path when the sensor fails and the
path includes dynamics that enables the orientation and the position to still be close when the Vicon sensor is
restored.

State Estimation and Sensor Fusion 45

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Time [s]

q 0

0 5 10 15 20 25 30 35
−0.2

−0.1

0

0.1

0.2

Time [s]

q 1

0 5 10 15 20 25 30 35
−0.2

−0.1

0

0.1

0.2

Time [s]

q 2

0 5 10 15 20 25 30 35
−0.4

−0.2

0

0.2

0.4

Time [s]

q 3

sensor
estimate

sensor
estimate

sensor
estimate

sensor
estimate

Figure 7.4: A test flight with the quaternion shown

46 7.4 Analysis of Estimator Performance

7 7.5 8 8.5 9 9.5
0

0.5

1

1.5

2

2.5

3

Time [s]

y
[m

]

sensor
estimate

Figure 7.5: A position sample from the test flight

7 7.5 8 8.5 9 9.5
−0.2

−0.1

0

0.1

Time [s]

q 1

sensor
estimate

Figure 7.6: A quaternion sample from the test flight

On Figure 7.4 can also be seen other effects. When the Vicon sensors fail around 4 sec into the test flight the
q1 and q2 values continues further than intended. This is because the previously discussed gyroscope bias not
yet have been estimated. With the current settings it takes around 3 sec where the quadrotor should be steady
on the ground. If the quadrotor is flying, the time for the bias estimate to settle is longer as indicated by Figure
7.7.

Given this and the performance of other estimation tests the IMU-based estimator is considered good enough
to use in combination with the controllers.

State Estimation and Sensor Fusion 47

0 5 10 15 20 25 30 35
−0.2

−0.1

0

0.1

ω
b,

2 [r
ad

/s
]

Time [s]

Figure 7.7: Estimate of the gyro bias on the 2nd axis

Part III

Control Algorithms

Table of Contents

8 Controlling a Quadrotor 51

9 Linear Quadratic Control 53
9.1 The General LQR Algorithm . 53
9.2 Following a Fast Trajectory . 55

10 Robust H∞ Control 58
10.1 The Standard Problem . 60
10.2 Matrix Inequalities . 62
10.3 Simulation . 62

11 Evaluation of Controllers 65
11.1 Hover using Various Vicon Sampling Frequencies . 65
11.2 Step Response . 67
11.3 Following a Trajectory . 67
11.4 Hovering in Low Height . 69
11.5 Overall Evaluation . 69

50 TABLE OF CONTENTS

Chapter 8
Controlling a Quadrotor

The controller is the final step towards enabling autonomous flight. In the previous chapters details of how
the quadrotor is able to navigate depending on the input signal have been discussed. As well as how to more
accurately determine the actual state of the quadrotor depending on the measurements from the sensors. This
information will in the next few chapters be employed when developing three different controllers.

All the controllers will be feedback controllers. In other words, they will all be based on the difference between
part of the state vector and some given reference describing the desired trajectory. The basic idea of the feedback
controller is illustrated in Figure 8.1. Where r is the reference, e is the error between the current state and the
reference, K(s) is the controller, u is the input to the system, G(s) is the system and y is the output of the
system.

Figure 8.1: The classical feedback controller

The most simple form of a controller that is able to stabilize the quadrotor and have it follow a reference is
the PID controller. The PID controller developed for the quadrotor is in fact a controller consisting of 10 PID
controllers all connected in a particular way and together form controllers for the position, orientation and
velocity. The PID controller is fairly intuitive to understand, but on a more complex MIMO system as the
quadrotor the intuitive understanding becomes less transparent. The tuning of PID controller is usually done
manually for each controlled state, and this becomes difficult as the complexity of the system increases.

The PID controller is an easy way of making the quadrotor fly, but the performance is usually not as good as
with model based controllers. There have been developed a PID controller for the quadrotor which enables it
to be stabilized, but the controller is not discussed further in this thesis. It will be used only as a reference to
evaluate the performance of the other two controllers.

Another way of formulating the feedback controller is in the state-space form as illustrated in Figure 8.2.
The state-space formulation is in principle the same as the classical feedback controller, only the controller
K becomes a feedback matrix weighting the states in a particular way to generate the input. When using a

52

reference, part of the control matrix is used to feed forward the reference.

Figure 8.2: The state-space feedback controller

In calculating the feedback matrix many methods exist. The two methods that will be discussed further the
Linear Quadratic method and the H∞ method.

Chapter 9
Linear Quadratic Control

The first controller to be derived for the quadrotor is the discrete LQR. The LQR is a well known method
to obtain a simple optimal controller. The LQR is a model based controller and through out this chapter the
discrete linear models listed in Equations 9.1 and 9.2 are used as the models for the quadrotor and the reference.

xs(k + 1) = Φsxs(k) + Γsu(k) (9.1)

xr(k + 1) = Φrxr(k) (9.2)

Section 9.1 concerns the general derivation of the LQR algorithm and can be skipped. In Section 9.2 the general
LQR algorithm is appended with a reference model, allowing the quadrotor to follow a desired trajectory. The
final evaluation of the controller will be done together with the other controllers in Chapter 11.

9.1 The General LQR Algorithm

LQR is an interesting case of an optimal controller. What makes it so interesting is the quadratic cost function
shown in Equation 9.3.

J = xᵀQx+ uᵀRu (9.3)

A cost function describes the immediate cost of being in state x and talking input u. The quadratic cost function
of the LQR consists of the quadratic weightsQ andR, weighing respectively the current state and input. What
makes this quadratic cost function so interesting is the simple methods to find the minimum (in this case the
optimal) value by finding the value where the derivative reaches zero. This is basically the essential step in how
the LQR algorithms are derived. The fist step is to define a value function as in Equation 9.4.

V (x) =
∞∑
k=0

xk
ᵀQxk + ukᵀRuk (9.4)

In general, a value function is a function of the state describing the total cost going from the current state and
following a control policy either through some horizon or until an equilibrium with zero cost is obtained (infinite
horizon) [Thrun et al., 2006]. In this case the value function describes the sum the cost function through all

54 9.1 The General LQR Algorithm

samples until the desired stabilized state is reached where no input is necessary. More specific it is an expression
of the value function using the optimal control policy that is sought, called the optimal value function (Equation
9.5).

V ?(x) = min
u

∞∑
k=0

xk
ᵀQxk + ukᵀRuk (9.5)

The expression of value function can be expressed in the current cost and cost for all future samples as in
Equation 9.6. Where x0 and u0 describes the current state and the current input.

V (x) = x0
ᵀQx0 + u0

ᵀRu0 +
∞∑
k=1

xk
ᵀQxk + ukᵀRuk (9.6)

Using the control policy described in Equation 9.7, the future cost can be described by a quadratic parametriza-
tion P of the state as in Equation 9.8 [Andersen, 2009].

u = Kx (9.7)

V (x) = xᵀPx (9.8)

Combining 9.8 and 9.6 yields an expression of the value function depending only on the current state, the
current input and the next state. Including the model the expression can be simplified to only depend on the
current state and input as shown in Equation 9.9. The indices 0 and 1 denotes the current and next state/input
respectively.

V (x) = x0
ᵀQx0 + u0

ᵀRu0 + x1
ᵀP1x1

V (x) = xᵀQx+ uᵀRu+ (Φx+ Γu)ᵀP1(Φx+ Γu) (9.9)

The optimal value function can be described, as previously mentioned, as the smallest possible value function
hence where the partial derivative with regards to the input is zero (given the quadratic structure). The partial
derivative is calculated in Equation 9.10 and the optimal input given as the structure from 9.7 in Equation 9.11.

∂V (x)
∂u

= 0 (9.10)

2Ru+ 2ΓᵀP1(Φx+ Γu) = 0

Ru+ ΓᵀP1Γu = −ΓᵀP1Φx

u = − [R+ ΓᵀP1Γ]−1 ΓᵀP1Φx (9.11)

To derive final expression of the optimal value function in Equation 9.13 and the feedback matrix in Equation
9.12 are combined with 9.9. The optimal parametrization P can be expressed as in Equation 9.14.

K = − [R+ ΓᵀP1Γ]−1 ΓᵀP1Φ (9.12)

V ?(x) = xᵀQx+ (Kx)ᵀR(Kx) + (Φx+ ΓKx)ᵀP1(Φx+ ΓKx) (9.13)

P0 = Q+KᵀRK + (Φ + ΓK)ᵀP1(Φ + ΓK) (9.14)

The actual values of P andK can be found by simply iterating from a guessed P until the feedback matrix do
no longer change significantly as illustrated in Algorithm 3.

Linear Quadratic Control 55

Algorithm 3 Iterates towards a feedback matrixK
P = Q

K ′ = 0
while ‖K −K ′‖ > 10−5 do
K ′ = K

K = − [R+ ΓᵀP1Γ]−1 ΓᵀP1Φ
P = Q+KᵀRK + (Φ + ΓK)ᵀP (Φ + ΓK)

end while

9.2 Following a Fast Trajectory

Throughout this section the model for the quadrotor is appended with a model of a reference in a way such
that an expression for the error between the reference state and the quadrotor state becomes apparent. For this
combined models a new weight matrix is derived such that the general LQR algorithm can be used to calculate
matricesKs andKr illustrated in 9.1. Figure 9.1 also illustrates how the matrices from the LQR are connected
with the quadrotor and the EKF.

Figure 9.1: Overview of how the feedback matrices, derived through LQR, is connected

Additionally to the models described in Equations 9.1 and 9.2 is the output of the models now described. The
matrices Hs and Hr describes the part of the system state that is to follow the reference and the reference
respectable.

yr(k) = Hsxs(k)

r(k) = Hrxr(k)

Even though the quadrotor have 6 Degrees of Freedom (DoF) the 4 inputs limits the controllable DoF to 4. The
states chosen to control is the position (x, y and z) and the orientation around the z-axis (q3). This yields the
followingHs matrix.

Hs =

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

 (9.15)

The state of the reference (xr) is appended to the system state (xs) to make a combined prediction model as
done in Equation 9.16. [

xs(k + 1)
xr(k + 1)

]
=

[
Φs 0
0 Φr

][
xs(k)
xr(k)

]
+

[
Γs
0

]
u(k) (9.16)

56 9.2 Following a Fast Trajectory

The error (e) is defined as the difference between the output of the models. In the combined model, this can be
described as a single matrixH as done in Equation 9.17.

e(k) = Hrxr −Hsxs =
[
−Hs Hr

] [xs(k)
xr(k)

]
= Hx(k) (9.17)

The cost function can now be redefined to be a quadratic weighting of the error and the input as described in
Equation 9.18.

J = eᵀQee+ uᵀRu (9.18)

Combining 9.17 and 9.18 yields a cost function with a similar structure as the default LQR algorithm.

J = (Hx)ᵀQeHx+ uᵀRu

= xᵀ(HᵀQeH)x+ uᵀRu (9.19)

From Equation 9.19 can a new expression for the weight matrix easily be isolated as shown in Equation 9.20.

Q = HᵀQeH =

[
−Hs

Hr

]
Qe

[
−Hs Hr

]
(9.20)

Using the LQR algorithm described in Section 9.1 a combined feedback matrix K can be calculated. The
matrix will be a combination of the matricesKr andKs as shown in Equation 9.21.

u =
[
Ks Kr

] [xs
xr

]
= Ksxs +Krxr (9.21)

The feedback matrices will interact with the quadrotor as previously shown on Figure 9.1, but can also be
described with the linear models as in Figure 9.2.

Figure 9.2: Structure of the feedback matrices with the linear models

9.2.1 The Reference Model

The quadrotor is desired to be able to follow a trajectory and not only stay at one point. Therefore the reference
is initially modelled as constantly moving reference with a constant velocity, as described in Equation 9.22.

r(k)− r(k − 1) = r(k − 1)− r(k − 2) (9.22)

Linear Quadratic Control 57

This expression can easily be rearranged to become a discrete state-space model.

r(k) = 2r(k − 1)− r(k − 2)

r(k + 1) = 2r(k)− r(k − 1)

(9.23)

By defining the reference state as in Equation 9.24 the state-space model can be described as in Equation 9.25.

xr(k) =

[
r(k)

r(k − 1)

]
(9.24)

xr(k + 1) =

[
2I −I
I 0

]
xr(k) (9.25)

Where the reference can be described as in Equation 9.26.

r(k) = Hrxr =
[
I 0

]
xr (9.26)

In practise the reference used must be the state of the reference (xr), so the previous sample must be included.
Because the sample rate is much faster then the changes in the reference it is chosen to filter the previous state
to avoid the otherwise noisy residual.

A similar model is calculated using a constant position model (xr(k) = r(k)) to compare the effect of the
models.

Chapter 10
Robust H∞ Control

The second type of controller to be derived is the robust H∞ controller. H∞ control is based on minimizing a
performance channel, in this case, including a disturbance in the form of a reference and sensor noise.

The structure of the system and the controller are illustrated in Figure 10.1.

Figure 10.1: The basic configuration for the Robust H∞ controller

The disturbances can be seen as the reference (wr) and the sensor noise (wn). The frequency content is
described using the wights Wr(s) and Wn(s). Wr(s) has a low-pass characteristic and Wn(s) has a high-pass
characteristic.
The method chosen to derive the controller can be described in three steps:

1. Convert setup to standard 2 × 2 block form

2. Calculating the Matrix Inequality describing the H∞ solution

3. Use a Linear Matrix Inequality (LMI) solver to derive the feed forward and feedback matrices

The standard 2 × 2 block form, also known as the standard problem in robust control theory, is a form that
encapsulates the entire system as a linear system with two inputs and to outputs as illustrated in Figure 10.2.

The channel from w to z is called the performance channel, and the purpose of deriving a controller is to
minimize this channel. The general input to the system is u and the measurable output is y. The challenge of
deriving the standard problem is to incorporate the disturbances and to define the performance channel.

In this computation of the controller, a particular type of solution have been selected. A solution the requires
solving a LMI. The steps to do this involves setting up one LMI containing all requirements and solving it

Robust H∞ Control 59

Figure 10.2: The standard problem

using a LMI solver. These last two steps are very general and will only be described shortly.

60 10.1 The Standard Problem

10.1 The Standard Problem

The standard problem is a way to formulate a more complex system on a standardized form with only a few
input and output. When it is written on state-space form it can be described with 8 matrices with the correlation
shown in Equation 10.1. The top row is the state propagation and the remaining are the correlation of the
general input/output and the performance channel.ẋz

y

 =

A B1 B2

C1 D11 D12

C2 D21 0

xw
u

 (10.1)

The state-space formulation is shown on a block diagram form in Figure 10.3.

Figure 10.3: The structure of the standard problem

The normal states space formulation can be recognized as the matrices A, B1 and C1. The colors symbolizes
the function of the matrices. red indicates a feedback matrix, blue an input matrix, green, an output matrix and
purple a feed forward matrix.

The weights shown on Figure 10.1 are implemented as state-space filters with each their own matrices propa-
gation, input and output matrices. To include all variables are the input redefined as the following, where xs
is the states of the system, xr the low-pass weighted reference state, xn the high-pass weighted sensor noise
state, wr the reference and wn the sensor noise.

x =

xsxr
xn

 w =

[
wr

wn

]
(10.2)

With this definition the matricesA,B1 andB2 can be redefined as in Equation 10.3

A =

As 0 0
0 Ar 0
0 0 An

 B1 =

 0 0
Br 0
0 Bn

 B2 =

Bs

0
0

 (10.3)

The performance channel is based on the residual of the state and the reference as shown in Figure 10.1 and
can be described as the output of the system subtracted from the filtered reference (Crxr −C′

sxs) as shown in

Robust H∞ Control 61

Equation 10.5. The matrixC′
s is a sub-matrix ofCs, but only describing the outputs that is used as a reference

as illustrated in Equation 10.4.

C′
s =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0

 (10.4)

A requirement of the general H∞-solution is for theD12 matrix to have full column rank
[Toeffner-Clausen et al., 2001]. This is done by adding a factor ε. This also serves as a precaution to limit the
input since the εu will be part of the performance channel.

C1 =

[
−C′

s Cr 0
0 0 0

]
D11 =

[
0 0
0 0

]
D12 =

[
0
ε

]
(10.5)

The out is described at the measurable system output added with the high pass filtered sensor noise (Csxs +
Cnxs +Dnwn) as described in Equation 10.6.

C2 =
[
Cs 0 Cn

]
D21 =

[
0 Dn

]
(10.6)

10.1.1 Weights as filters

The weights are as previously mentioned implemented as filters. The types of filters chosen are to be first order
high-pass and low-pass filters with the structure shown in Equation 10.7 where a denotes a pole, b a zero and k
a scalar gain.

Wr =
y(s)
u(s)

=
k

s+ a
Wn =

y(s)
u(s)

=
k(s+ b)
s+ a

(10.7)

The transfer functions are converted to state-space form like in the following example:

y(s)
u(s)

=
k

s+ a

y(s)(s+ a) = k · u(s)

ẏ + a · y = k · u

ẏ = −a · y + k · u

When x is defined to x = y the following standard state-space matrices can be used.

A = −a B = k C = 1 D = 0 (10.8)

For the high-pass case with both a pole and a zero the model can be described with the state-space model in
Equation 10.9.

A = −a B = b− a C = 1 D = k (10.9)

The weight for the reference consists of several low-pass filters since every state of the reference is weighted.
The state-space weight for the reference is listed in Equation 10.10.

Ar = −

a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

 Br =

k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

 Cr =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (10.10)

62 10.2 Matrix Inequalities

Similar do the state-space noise wight consist of diagonal matrices containing the values from Equation 10.9.

10.2 Matrix Inequalities

Given a standard state-space system G(s) given as

ẋ = Ax+Bw

z = Cx+Dw

the nominal H∞ condition ‖G(s)‖∞ < γ is, according to [Stoustrup, 2010], satisfied if and only if there exists
a vectorX = X∗ > 0 such that

A∗X +XA+C∗C − (XB +C∗D)(D∗D − γ2I)−1(B∗X +D∗C) < 0 (10.11)

This inequality can be transfered to robust control theory as done in [Stoustrup, 2010] and yield the following
LMI F11 F12 F13

F ᵀ
12 −R1 0
F ᵀ

13 0 −I

 < 0 (10.12)

Where the matrices F11, F12, F13 andR1 is described as in Equations 10.13 to 10.16.

R1 = I −Dᵀ
11D11 (10.13)

F11 = Y Aᵀ +AY +W ᵀB2
ᵀ +B2W (10.14)

F12 = B1 + Y C1
ᵀD11 +W ᵀD12

ᵀD11 (10.15)

F13 = Y C1
ᵀ +W ᵀD12

ᵀ (10.16)

One feedback matrix (including reference and noise feedback) can be calculated as in Equation 10.17

F = WY −1 (10.17)

10.3 Simulation

To verify that the controller is able to stabilize the quadrotor the controller is tested with the nonlinear model.
In Figure 10.4 is the simulation of a step on each axis shown. Since a step in the yaw reference would bring the
quadrotor permanently out of the operating point this is disregarded.

All simulations show satisfying results, with a performance on the x and y-axis that indicates a bandwidth
of approximately 0.2 Hz. This controller is on purpose tuned this slow to have as low a feedback matrix as
possible. This H∞ controller have been tested on the quadrotor in real flight with an adverse result. The
controller was not capable of stabilizing the quadrotor in hover.

The feed forward and feedback controller matrices was investigated to find the cause of this result. The feedback
matrix was compared with the one of the LQR and the feedback matrix of the H∞ controller was significantly
higher.

Robust H∞ Control 63

68 70 72 74 76 78

−0.5

0

0.5

x
[m

]

28 30 32 34 36 38

−0.5

0

0.5

y
[m

]

48 50 52 54 56 58

−2

−1.5

−1

−0.5

z
[m

]

Time [s]

Reference
Simulation

Figure 10.4: Simulation of step response of H∞ controller

−1000 −900 −800 −700 −600 −500 −400 −300 −200 −100 0 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 10.5: Pole/zero map of the closed loop transfer function from reference to position on the
y-axis

If the closed loop system poles are analysed an indication for this behaviour can be found. In Figure 10.5 is
shown a pole/zero map for the closed loop transfer function from reference to position on the y-axis.

The pole/zero map indicates that the controller dampens much of the effect of the original poles in zero (from
the integrators), and only one pole remains to have a dominating effect. The actual movement of the poles,
depending on the parameters that can be adjusted for the H∞ controller, is very difficult to predict. But in the
case that all the other poles remains dampened by the controller and the pole original is moved from zero and
is following the normal root-locus behaviour the increasing feedback will cause the pole to further increase
the bandwidth. If the normal root-locus is followed by all poles and the zeros are not further moved (not very
likely), this system is not able to become unstable as further feedback gain is increased.

64 10.3 Simulation

The reason why this controller becomes unstable in the real system, is most likely that some dynamics are
absent in the current model. One place where a dampening have been identified, but not modelled was in
Section 3.3 on page 18 where the on-board controller was discussed. The choice of not modelling the dynamics
of the controller, motor controller and aerodynamic effect can very well be the cause of the H∞ controller not
being able to stabilize the real quadrotor. The performance of the H∞ controller is not investigated further, and
only the LQR and PID will be evaluated doing real flight in the following chapter.

Chapter 11
Evaluation of Controllers

The developed controllers are tested under various conditions in real flight to evaluate the performance and to
identify areas that may be improved. Firstly in Section 11.1 are the controllers tested in hover using various
sampling frequencies for the Vicon measurements. This is done to partly evaluate the controller in hover, but
also to determine how well the estimator and the controller collaborate. Section 11.2 demonstrates the step
response of the closed loop system. In Section 11.3 are the controllers tested with various types of trajec-
tories. In this section it is illustrated how the various structure of the controller affects the performance. In
Section 11.4 shortly discusses how the quadrotor would perform doing take-off and landing operations. A short
demonstration of hovering in low hight shows how well the quadrotor can be controlled.

The main tests are documented on video, and can be found on the CD in the folder Videos.

11.1 Hover using Various Vicon Sampling Frequencies

To evaluate the performance of the estimator combined with the controllers and to estimate whether a 100
Hz sampling frequency on the Vicon system is a requirement, three different sampling frequencies was tested
doing hover with the developed LQR with a constant position reference model. The reference was locked to
the position

[
0 0 −1

]
doing the entire flight. Figure 11.1 shows the x-position doing an autonomous flight

of 20 seconds.

30 35 40 45 50
−0.6

−0.4

−0.2

0

0.2

0.4

Time [s]

x−
po

si
tio

n
[m

]

1 Hz

10 Hz

100 Hz

Figure 11.1: Hovering with Vicon sample frequencies of 1 Hz, 10 Hz and 100 Hz

66 11.1 Hover using Various Vicon Sampling Frequencies

The x-position shown is the result of the estimator, in other words the state that is used by the controller. From
the figure a clear difference can be seen in using 1 Hz and 10 Hz sampling frequency. This difference is also
illustrated on Figure 11.2, where the figure is shown as if it was seen from the ceiling of the MTLab.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

y−position [m]

x−
po

si
tio

n
[m

]

1 Hz

10 Hz

100 Hz

Figure 11.2: Hovering with Vicon sample frequencies of 1 Hz, 10 Hz and 100 Hz

The very low sampling frequency allows the estimator to drift from the actual state, and this is believed to be
the cause for this inaccurate flight when only using 1 Hz Vicon measurements. Figure 11.3 shows the estimate
and measurements time correlated to better illustrate this belief. In almost every sample, the estimate is shown
to be far from the true state, where the furthest is more the 20 cm. This is believed to be an effect of the
accelerometers and gyroscopes being scaled with a little error and that the estimator continuously is correcting
the acceleration and gyro bias. When using this low of a sampling frequency the update will be unreliable,
since the movements of the quadrotor are fast compared to the sampling frequency.

30 32 34 36 38 40 42 44 46 48 50
−0.6

−0.4

−0.2

0

0.2

0.4

Time [s]

x−
po

si
tio

n
[m

]

1 Hz estimate

1 Hz measurement

Figure 11.3: Hovering with Vicon sample frequency of 1 Hz. Figure shows how estimates drifts
between samples

Also on the Figure 11.2 the accuracy of the controller using 10 Hz and 100 Hz Vicon update frequencies can be
seen to be approximately similar. From this it can be concluded that a 100 Hz update frequency is not necessary
when using an observer. What sampling frequency that would be enough is not further investigated, but a 10
Hz sampling frequency is used for the remaining flight tests.

Evaluation of Controllers 67

11.2 Step Response

On Figure 11.4 are 3 step responses shown, one for each controlled axis. Both a simulation done with the
nonlinear model, and an actual measurements are shown. The x and y-axis control indicate a bandwidth of
approximately 0.2 Hz. With the LQR this can be done much faster, but an increasing feedback of the orientation
makes the orientation of the quadrotor slightly oscillate. This is not further analyzed, but it is assumed that a
better dynamics model would help the problem.

68 70 72 74 76 78

−0.5

0

0.5

x
[m

]

28 30 32 34 36 38

−0.5

0

0.5

y
[m

]

48 50 52 54 56 58

−2

−1.5

−1

−0.5

z
[m

]

Time [s]

Reference
Simulation
Measurement

Figure 11.4: Simulation and measurement of step response of LQR controller

11.3 Following a Trajectory

The controllers are tested when following trajectories. The controllers tested are the PID controller, the LQR
with a constant position reference and the LQR with a constant velocity reference. All controllers have been
tuned to be general applicable, but not in particular to this test scenario. In Figure 11.5 is the first test trajectory
shown. The reference is moved clockwise around in a continuous square of 0.75m × 0.75m with a period time
of 20 sec. The trajectories of the controllers shown is the mean of 5 complete round-trips.

All paths of the controllers can be seen to be outside the square. This is believed to an effect of the not so
tight tuning of the controller. When the controllers are turned more tight the error becomes less, but the general
flight more unstable. The PID and the LQR with constant position reference model can be seen to have a similar
flight pattern. They both cut the corners a bit, and this effect is caused by a short lag in time. This is illustrated
in Figure 11.6.

The LQR with the constant velocity model can be seen to follow the reference not only in position, but also in

68 11.3 Following a Trajectory

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x−
po

si
tio

n
[m

]

y−position [m]

Reference

LQR vel model

LQR vel model simulation

LQR pos model

LQR pos model simulation

PID

Figure 11.5: Tracking a square reference in x and y-axis with different controllers

25 30 35 40 45 50 55 60
−1

−0.5

0

0.5

1

x−
po

si
tio

n
[m

]

Time [s]

Reference

LQR vel model

LQR pos model

PID

Figure 11.6: Tracking a square reference in x and y-axis with different controllers

velocity. This however results in a overshoot at every corner when the reference suddenly changes direction.
The controller however quickly compensates.

A similar trajectory in the y/z-plane is tested as shown in Figure 11.7. Because of the much more direct control
the reference hight can be seen to be followed much closer then the y-reference.

However there is still an overshoot from all controllers. It can also be seen more easily how the quadrotor
cuts corners with the PID and LQR with the constant position model. The lower right corner is very close to be
outside Vicon range which caused the quadrotor to loose position and orientation very shortly when descending.

Evaluation of Controllers 69

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

y−position [m]

z−
po

si
tio

n
[m

]

Reference

LQR vel model

LQR pos model

PID

Figure 11.7: Tracking a rectangular reference in z and y-axis with different controllers

11.4 Hovering in Low Height

To demonstrate how the quadrotor behaves in doing landing and take-off a short flight was made in low height.
The reference was locked in the center off the room with a height of 2 cm. Figure 11.8 illustrates how the
quadrotor moved in the x/y-plane and how the quadrotor was able to hover very close the reference.

15 20 25 30

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

y−position [m]

z−
po

si
tio

n
[m

]

−0.15 −0.1 −0.05 0 0.05 0.1
−0.1

−0.05

0

0.05

0.1

y−position [m]

x−
po

si
tio

n
[m

]

Reference

Estimate

Reference

Estimate

Figure 11.8: Hovering with a hight reference of 2 cm

When the quadrotor hovers this close to the ground, it is affected by the ground effect. The ground effect is the
effect of the rotors pushing down the air faster then the air can be transfered away. This is commonly referred
to as a high pressure cushion. The cushion gives more lift to the quadrotor, but leaves it more unstable in the
x/y-plane.

11.5 Overall Evaluation

The controllers are all able to stabilize the quadrotor, but in following moving trajectories the LQR with a
constant velocity model clearly stands out being able to match the position time correlated with the reference.

70 11.5 Overall Evaluation

The overshoot on the test trajectories could, to some extent, be avoided if the test was done with trajectories
that were feasible for the quadrotor.
When the quadrotor was flown with a disturbance from the ground effect the LQR seemed capable of keeping
the quadrotor stabilized.

Part IV

Epilogue

72

Table of Contents

12 Conclusion 75
12.1 Future Work . 76

Bibliography 78

74 TABLE OF CONTENTS

Chapter 12
Conclusion

In the first part of this thesis was a general introduction to quadrotors given. How they are able to fly and
navigate. The 6 DoF was described mathematically so a prediction of the behaviour could be made depending
on the input.
The mathematical model was used to estimate the state of the quadrotor, even when some sensors was failing,
and to be the basis for the model based controllers. This chapter will shortly summarize the most important
conclusion from the thesis, compare these with the original objective and discuss what future improvement can
be made.

The model derived for the X-3D quadrotor encapsulates most of the behaviours of the quadrotor, but in using
the model for the model based controllers it was found that the dynamic description was not sufficient. It is
estimated that the assumption made regarding the on-board controller being fast enough to ignore the dynamics
do not hold. The transfer function including the effects of the on-board controller, the motor controller and
the aerodynamics must be modelled. Also models was derived for the on-board sensors, and these were found
satisfactory.

The on-board sensors was used for the IMU-based estimator. The result of the estimator being driven by the
IMU gave good results. The EKF turned out be an elegant way of handling sensor failures. The quadrotor is
capable of flying without the position and orientation sensor for a short while (∼ 1 second) and use various
asynchrony sampling frequencies for the sensors. It was however, observed that it becomes very difficult to
estimates the constantly changing on-board sensor bias with a update frequency of the position sensor as low
as 1 Hz. This resulted in an estimate that drifted much between the measurements.

Two model based controllers was derived for the quadrotor, a LQR with both a constant position and constant
velocity reference model and a robustH∞-controller. The LQR stabilized the quadrotor without problems. The
measurements done with the LQR controllers shows similar results both in real flight and in simulations. When
using a reference model that modelled constant velocity the quadrotor was capable of following a reference
with less lag given the feed forward of the velocity of the reference. This concludes that a fast trajectory can
be followed, as long as the quadrotor and the controller allows the necessary velocity. Both controllers flies
well as long as the state is kept close to the operating point. If further navigation is needed when flying in
high velocity it might become necessary to change the time invariant LQR to a time varying on-line linearizing
LQR to be able to move outside the chosen operating point. If only few of the states are changed alternative
control strategies can be considered such as gain scheduling or Linear Parameter Varying (LPV) control. As

76 12.1 Future Work

the frequency of the reference increases a small prediction horizon might contribute to keeping the quadrotor
stabilized.

The H∞ controller derived showed good results in the simulation, but failed to work in real flight. It have been
reasoned that the main factor of the effect shown in real flight is based in the missing poles in the model. H∞
was in general found to be an simple way of incorporating specific types of structure or performance channels,
but the calculation is more time consuming then a quadratic minimization.

In general the quadrotor platform combined with the MTLab was found to be a good combination to try out
control strategies. Features such as stabilized autonomous landing and take-off should be no problem to perform
with the quadrotor as it is able to hover stable in a hight of 2 cm. However before actual fast trajectories can
be tested, a larger Vicon range is needed. The range at the given time is limited to 1m × 1m × 2m which is to
limited. Through test and simulation it have been shown that it is possible to obtain robust flight, even when
sensors shortly fail, and be able to follow a desired fast moving trajectory with a minimum of lag in time.

12.1 Future Work

The quadrotor is an interesting platform and will most likely soon become a more commonly sight in peoples
everyday life. But before this happens some issues are still to be takes care of. First of all the X-3D quadrotor
used in this thesis was only equipped with an on-board accelerometer and a gyroscope. If a quadrotor is to be
used outside a Vicon system sensors such as magnetometers and GPS must be used. To further stabilize the
quadrotor laser range finders or sonars can be considered to find fixed distances to surrounding objects.

Especially the estimation problem becomes a challenge with flying quadrotors outside the Vicon MX system.
If the quadrotor intend to base the orientation on the magnetometer it becomes subject to much magnetically
interference when flying indoor or close to objects with electrical signals. This and other estimation challenges
needs further to be addressed.

When quadrotors are flying freely subjects as object avoidance and fault detection also becomes increasingly
important. These as well as many other application specific areas are already now being researched for future
use.

The quadrotor has great potential as an autonomous drone in the future, the stable and relatively harmless
platform allows it to fly places where people is present and do task such as video surveillance or industrial
inspection.

Bibliography

[Andersen, 2009] Andersen, P. (2009). Optimal control. internet (pdf).

[AscTec, 2009] AscTec (2009). ResearchPilot Manual. http://asctec.de/downloads/

researchpilot_manual.pdf.

[Bak, 1999] Bak, T. (1999). Spacecraft Attitude Determination - a Magnetometer Approach. PhD thesis,
Aalborg University.

[Bak, 2002] Bak, T. (2002). Lecture Notes - Modeling of Mechanical Systems. AAU, 1 edition.

[Bisgaard, 2007] Bisgaard, M. (2007). Modeling,Estimation,and Control of a Helicopter Slung Load System.
PhD thesis, Aalborg University.

[Bouabdallah, 2007] Bouabdallah, S. (2007). Design and control of quadrotors with application to autonomous
flying. Master’s thesis, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE.

[Franklin et al., 2006] Franklin, G. F., Powell, J. D., and Emami-Naeini, A. (2006). Feedback Control of
Dynamic Systems. Prentice Hall, 5 edition.

[Friis et al., 2009] Friis, J., Nielsen, E., Andersen, R., Boending, J., Jochumsen, A., and Friis, A. (2009).
Autonomous landing on a moving platform. Technical report, Aalborg University.

[Grenwal and Andrews, 2008] Grenwal, M. S. and Andrews, A. P. (2008). Kalman Filtering, Theory and
Practice Using MATLAB. Wiley, third edition. ISBN-13: 978-0-470-17366-4.

[Gurdan et al., 2007] Gurdan, D., Stumpf, J., Achtelik, M., Klaus-Michael, Doth, Hirzinger, G., and Rus, D.
(2007). Energy-efficient autonomous four-rotor flying robot. IEEE.

[Hughes, 1986] Hughes, P. C. (1986). Space Attitude Dynamics. Wiley.

[MIT, 2010] MIT (2010). Uav swarm health management project. http://vertol.mit.edu.

[Newton, 1833] Newton, I. (1833). Philosophiae naturalis principia mathematica. G. Brookman, 1 edition.

[STARMAC, 2010] STARMAC (2010). http://hybrid.eecs.berkeley.edu/starmac.

[Stevens and Lewis, 2003] Stevens, B. L. and Lewis, F. L. (2003). Aircraft Control and Simulation. Wiley, 2
edition.

[Stoustrup, 2010] Stoustrup, J. (2010). Robust lecture slides. http://www.control.aau.dk/

~jakob/courses/robust/robust5.pdf.

http://asctec.de/downloads/researchpilot_manual.pdf
http://asctec.de/downloads/researchpilot_manual.pdf
http://vertol.mit.edu
http://hybrid.eecs.berkeley.edu/starmac
http://www.control.aau.dk/~jakob/courses/robust/robust5.pdf
http://www.control.aau.dk/~jakob/courses/robust/robust5.pdf

78 BIBLIOGRAPHY

[Thrun et al., 2006] Thrun, S., Burgard, W., and Fox, D. (2006). Probabilistic Robotics. The MIT Press.
ISBN-13: 978-0-262-20162-9.

[Toeffner-Clausen et al., 2001] Toeffner-Clausen, S., Andersen, P., and Stoustrup, J. (2001). Robust control.
internet (pdf).

[Valavanis, 2007] Valavanis, K. P. (2007). Advances in Unmanned Aerial Vehicles, volume 33 of Intelligent
Systems, Control and Automation: Science and Engineering. Springer. ISBN: 978-1-4020-6113-4.

[Van Der Merwe et al., 2004] Van Der Merwe, R., Wan, E., and Julier, S. (2004). Sigma-point Kalman filters
for nonlinear estimation and sensor-fusion: Applications to integrated navigation. In Proceedings of the
AIAA Guidance, Navigation & Control Conference. Citeseer.

Part V

Appendices

80

Table of Contents

A The X-3D Interface 83
A.1 Classes . 83
A.2 Procedure . 85
A.3 Evaluation . 85

B Motion Tracking Lab (MTLab) 86
B.1 Simulink Block . 86

C Measurements Journals 88
C.1 Polynomial Relation of utrust and the force Flift . 88
C.2 Determination of Induced Inflow Constant . 90
C.3 Model Verification . 92

D CD Contents 95

82 TABLE OF CONTENTS

Appendix A
The X-3D Interface

The X-3D quadrotor from Ascending Technologies that have been used in all practical experiments was modi-
fied with the ResearchPilot firmware developed by Ascending Technologies. This enables serial communication
with the sensor board handling the on-board control of the quadrotor. This communication was used to read
some of the on-board sensors so the information could be used in the high-level control. The quadrotor was
further equipped with a X-bee serial module enabling wireless serial communication. Unfortunately Ascend-
ing Technology only supplies the firmware enabling the communication and a short description of the protocol.
They do not supply any implemented software to handle the communication on the control PC.

To be able to use the on-board sensors as part of the estimation a interface have been developed and further
implemented as a Matlab/Simulink block. The purpose of this appendix is to shortly describes the main classes
and the flow of the interfaces so if others intend to modify the interface this would ease their task.

The actual communication protocol can be found in the documentation of the ResearchPilot [AscTec, 2009]
and is not discussed further in this appendix expect when it is relevant to the development of the interface.

A.1 Classes

The main classes used in this interface are the following: Message, SerialSocket and Serial. Serial
is the operating system specific way of sending and receiving bytes on a serial line. SerialSocket is a
wrapper for the serial communication, allowing complete messages to be send and received with one command.
The class Message is the container of data that is used doing transitions.

A.1.1 Message

The class Message is parent to several sub-classes as illustrated in Figure A.1. The main class includes basic
functions such as reading the data and length as well as getting the type of the class. The sub classes represent
the three kinds of transfers used from the protocol. ConfigMsg is the configuration message determining
what data that will be send from the quadrotor. CommandMsg is the command send from Matlab/Simulink
to the quadrotor with control commands. DataMsg is the message from the quadrotor to Matlab/Simulink
containing the measurements of the local sensors.

84 A.1 Classes

Figure A.1: The Message class

A.1.2 SerialSocket

The SerialSocket class is the only access to the serial port, therefore this class also contains the only
instance of the Serial object. When no new messages are received the SerialSocket contains an instance
of the old message and this is returned. Newly received data is stored in a buffer containing all data from the
previous received message and forward. Before a message is returned it is tested whether the CRC matches to
make sure no data corruption has occurred.

Figure A.2: The SerialSocket class

The class diagram for the SerialSocket is illustrated in Figure A.2

A.1.3 Serial

As previously mentioned the Serial class contains all the information necessary to communicate with the
serial connection on the specific operating system. Currently the class only supports the Linux operating sys-
tem, but would be easy to implement support for others such as Windows or Mac OS X. The class diagram is
illustrated in Figure A.3.

The X-3D Interface 85

Figure A.3: The Serial class

A.2 Procedure

The procedure for communicating with the quadrotor is illustrated in the flow chart in Figure A.4. Initially the
structure of the data message configured by choosing the sensors that is to be read. For the experiments done
the following sensors have been read.

• The gyroscopes (3 axis)

• The accelerometer (3 axis)

• The pressure sensor

• The manual transmitter commands

The configuration is send as a ConfigMsg using the SerialSocket. This is done in the initialization of
the Simulink simulation. For every sample the control commands from the Simulink send to the quadrotor as a
CommandMsg and the sensor measurements are received as a DataMsg.

Figure A.4: The flow of the X-3D interface

A.3 Evaluation

The interface have proven stable under both long and short flight. Even though the bandwidth should support
the amount of data transfered, the rate of sending commands had to be slowed down to 33 Hz to avoid breaks
in the received sensor measurements. Because 33 Hz is still very fast compared to the desired flight trajectory
it is estimated that this will have no affect on the final result.

Some times the receiving rate of 100 Hz of the sensor measurements is not kept by the quadrotor and two or
three following samples end up being identical. When this was further analyzed it turned out to be minor data
errors causing the SerialSocket to discard the messages.

Appendix B
Motion Tracking Lab (MTLab)

The MTLab was developed for testing real-time flight of small autonomous helicopters. Original it consists of
both the Vicon MX system and a remote controller both linked to Matlab/Simulink. For the experiments done
in this thesis however only the Vicon MX system is used in combination with the X-3D interface.

The MTLab is a 5x6 m room with 7 cameras mounted on the walls and connected through gigabit network to
the Vicon MX system. The cameras record the position of reflectors mounted on the object. These reflectors
reflect the infrared light send out by the cameras. In the ViconIQ software an object is defined on the basis
of the position of the reflectors. The position and orientation of this object is then send out on the ordinary
network, when a connection is made form a client computer running Matlab/Simulink. The Vicon MX system
is currently capable of sending this information with an update rate of 100 Hz.

B.1 Simulink Block

Figure B.1: The MTLab Vicon Simulink block

The Vicon Simulink block supplied by the MTLab outputs position, the orientation in a 3-2-1 Euler rotation,
the orientation in a quaternion and the orientation in the direct cosine matrix (earth to body rotation). In this
project only the position, the Euler rotation and the quaternions will be used. In Table B.1 is the boundaries
and units listed.

Both the Euler rotation and the quaternions are calculated from the Direct Cosine Matrix in the Simulink
interface.

Motion Tracking Lab (MTLab) 87

Data symbols Unit Boundary

Position [x] m ±1.5
[y] m ±1.5
[z] m 0..2

Orientation (Euler) [φ θ ψ] rad ±π
Orientation (quaternion) [q0 q1 q2 q3] - −1..1

Table B.1: Data units and boundaries

Appendix C
Measurements Journals

C.1 Polynomial Relation of utrust and the force Flift

The objective of this measurement journal is to find a polynomial relation from the collective input uthrust
from the transmitter to the thrust force acting on the quadrotor in near hover flight. To find this, the quadrotor
is attached to a box that is more heavy than the quadrotor can lift. Measurements of changes in the weight are
then recorded while the input is increasing. The amount of weight loss is proportional to the force induced as
long as the acceleration is kept constant. This originates from Newtons second law.

F = m · a (C.1)

Where
F is the force [N]
m is the mass [kg]
a is the acceleration [m/s2]

C.1.1 Procedure

The procedure for the experiment is as follows.

1. MTLab is powered on (Vicon information must be available).

2. A control PC is started with Matlab/Simulink.

3. The X-3D quadrotor is equipped with a newly charged battery and attached to a box with a bigger mass
than the quadrotor is capable of lifting.

4. The quadrotor and box is then placed on a scale on a elevated (0.75 m) platform as shown in Figure C.1.
The rotors needs to be free from the platform to avoid any ground effect.

5. The test signal for thrust is applied while the scale is read off and recorded.

6. When the test signal is done, the motors are returning to idle and the experiment is done.

Measurements Journals 89

ON 2000 gOFF

BOX

h = 0.75m

Bin

Figure C.1: The set-up used in the thrust test

The scale used is a Rådvad Elevtronic IS075 kitchen scale measuring at a resolution of 1 gram.

C.1.2 Results

The thrust force can then be expressed as in Equation C.2

Ft = ∆m ∗ g (C.2)

Were: Ft is the thrust force [N]
∆m is the change in mass [kg]
g is the gravitational acceleration [m/s2]

The results of the measurements can be seen in Table C.1.

Measurement 1 Measurement 2
Initial weight [kg] 2.0040 2.0050

RC input m [kg] ∆m [kg] m [kg] ∆m [kg]
0 1.9060 0.0980 1.9040 0.1010

500 1.8460 0.1580 1.8490 0.1560
1000 1.6950 0.3090 1.7030 0.3020
1500 1.5440 0.4600 1.5400 0.4650
2000 1.3780 0.6260 1.3800 0.6250
2500 1.2400 0.7640 1.2300 0.7750
3000 1.1100 0.8940 1.1100 0.8950
3500 1.0100 0.9940 1.0000 1.0050
4000 0.9800 1.0240 0.9700 1.0350

Table C.1: The results of the force measurement, where the initial weight is the total mass of the
quadrotor and the box. ∆m is the total mass minus the measured mass at a given input. m is the
mass measured by the scale

90 C.2 Determination of Induced Inflow Constant

The calculated force of each input step is shown on Figure C.2 as a continuous graph. To estimate the graph as
a polynomial the least squares problem for the following equation is minimised.

a3x
3 + a2x

2 + a1x+ a0 = f(x) (C.3)

Where f(x) is the result of one measurements and a0 - a3 is parameters to a 3rd order polynomial. Figure C.2
also shows the 3rd order polynomial that is fitted to the measured graph. The polynomial can be described by
the parameters a3 = 2.07 · 10−10, a2 = −1.43 · 10−6, a1 = −1.05 · 10−3, and a0 = −0.90.

0 1000 2000 3000 4000
−12

−10

−8

−6

−4

−2

0

u
thrust

 []

F
lif

t [N
]

Measurement
Polynomial estimation

Figure C.2: The measured results plotted together with the Flift

C.2 Determination of Induced Inflow Constant

The objective of this test is to determine the constant that approximates the best mathematical description of
the vertical behaviour of the quadrotor. Doing manually flight it has been observed that the quadrotor do not
continue to accelerate when a constant input (more than hover) is applied. A more precise description would
be that the quadrotor finds a constant vertical velocity with a constant input. With this observation in mind a
constant is to be found that results in a constant velocity at a constant input.

The formulation of the total force can be described as in Equation C.4 following the derivation in Section 3.4
in the main thesis.

bF = bFlift +mbCe

0
0
g

+ Ii

 0
0
v3

 (C.4)

The induced inflow constant is found doing steps on the vertical axis. Therefore the quadrotor is assumed
parallel with the horizontal plane. This eliminates forces on the x- and y-axis. When a constant velocity is
obtained the acceleration must be zero. Therefore the total force must also be zero.

0 = Flift +mg + Iiv3 (C.5)

Under these circumstances the induced inflow constant (Ii) can be derived knowing the input force and the
velocity.

Ii =
−(Flift +mg)

v3
(C.6)

Measurements Journals 91

C.2.1 Procedure

Measurements of the input force and the velocity under the previous described conditions are done in the
following way:

1. MTLab is powered on

2. The control PC is started with Matlab Simulink and the x3d_interface.mdl model is opened

3. The quadrotor flown near hover in the center of the room

4. From hover multiple steps on the thrust input is made resulting in the quadrotor slowly moving upward

5. All steps are logged and saved

The input force is calculated using the polynomial approximation derived in Appendix C.1.

Flift = f(uthrust) (C.7)

C.2.2 Results

A measurement of the vertical steps can be seen in Figure C.3.

10 15 20 25 30 35 40 45 50 55 60
−1

−0.5

0

0.5

1
Vertical velocity and force

V
er

tic
al

 fo
rc

e
[N

]

10 15 20 25 30 35 40 45 50 55 60

−1

−0.5

0

0.5

1

Time [s]

V
el

oc
ity

 [m
/s

]

Figure C.3: Thrust steps and vertical velocity

In total 7 measurements have been made. The input force, estimated velocity and the calculated Ii is listed in
Table C.2.

The induced inflow constant used in the model is the mean of the calculated values.

Īi = −0.423 σ2 = 0.004 (C.8)

92 C.3 Model Verification

Flift [N] v3 [ms] Ii

-0.450 -1.20 -0.375
-0.439 -1.12 -0.392
-0.490 -1.15 -0.426
-0.294 -0.92 -0.320
-0.180 -0.36 -0.500
-0.210 -0.44 -0.477
-0.330 -0.70 -0.471

Table C.2: Result of measurements

C.3 Model Verification

The model verification is made from two measurements. One where large amplitude input signals on roll and
pitch is used and one where only small input signals are used. In recording the orientation and velocity the
developed EKF is used to minimize noise.

In both measurements the time derivatives are calculated using the Matlab command diff. The model output
is calculated using the equations listed in the end of the Chapters 3 and 4. The result of the entire q̇ measurement
is shown in Figure C.4. And the result of the entire bv̇ measurement is shown in Figure C.5.

Measurements Journals 93

0 10 20 30 40 50 60 70
−0.4

−0.2

0

0.2

0.4

0.6

q̇ 0

0 10 20 30 40 50 60 70
−2

−1

0

1

2

q̇ 1

0 10 20 30 40 50 60 70
−1

−0.5

0

0.5

1

q̇ 2

0 10 20 30 40 50 60 70
−2

−1

0

1

q̇ 3

Time [s]

Measured
Non−linear model
Linear model

Figure C.4: Modelled and measured q̇

94 C.3 Model Verification

10 20 30 40 50 60 70
−4

−2

0

2

4

6

v̇
1

10 20 30 40 50 60 70
−5

0

5

v̇
2

10 20 30 40 50 60 70
−5

0

5

v̇
3

Time [s]

Measured
Non−linear model
Linear model

Figure C.5: Modelled and measured v̇

Appendix D
CD Contents

The CD attached to the report contains relevant information, Matlab scripts, videos and measurements results.
Following is a description of the folders on the CD and their content.

x3d Contains all Matlab files and measurement results used throughout the project

Report A pdf version of the report

Videos Videos of the hover, step and square test made

Pictures Pictures of the quadrotor flying outdoor

Nomenclature

φ Nonlinear progression model

Φ[1]
k First order Taylor approximation

Θ Euler angle parameterization

A System matrix continuous time

B Input matrix continuous time

C Output matrix continuous time

D Feed forward matrix continuous time

F Total force affecting the quad rotor in body frame

H Output matrix discrete time

Hr Reference model output matrix discrete time

Kr Reference compensation (LQR)

Ks Feedback matrix that minimises the performance function (LQR)

Kacc Scaling of raw accelerometer measurements to m
sec2

Kgyro Scaling of raw gyro measurement to rad
sec

Nr Reference compensation (H∞)

Ns Feedback matrix that minimises the performance function (H∞)

P Position in earth frame

Q Weight matrix of the states

q Quaternion parameterization

q0, q1, q2, q3 Quaternion parameterization

R Weight matrix of the inputs

u Input vector

CD Contents 97

xr Reference state vector

xs Quadrotor state vector

y Output vector

Γ Input matrix discrete time

x̂+ A posterior estimate

x̂− A priori estimate

J LQR cost function

Ωrotor Angular velocity of rotors

Φ System matrix discrete time

φ, θ, ψ Euler angle parameterization

bCe Direct cosine transformation from earth to body frame

bFg Gravitational force acting on the body

bFi Force generated by the induced inflow

bFlift Force generated by the rotors

bHe Transformation of rates and angles from earth to body frame

eCb Direct cosine transformation from body to earth frame

eHb Transformation of rates and angles from body to earth frame

g Gravitational acceleration

Ii Induced inflow coefficient

m Mass of quad rotor

P (x) A priori probability

P (z) Probability of z

Pk Estimate covariance matrix

Qk Model covariance matrix

Rk Sensor covariance matrix

uω Vector containing Sφ, Sθ, Sψ

uφ Roll input to the on-board controller

uψ Yaw input to the on-board controller

uθ Pitch input to the on-board controller

uthrust Collective input to the on-board controller

x, y, z Position in earth frame

98

bω Body rates

bv Translatory velocity in body frame

eω Euler rates

ev Translatory velocity of body frame in earth frame

	Introductory
	Focus of the thesis
	The X-3D Quadrotor Test Environment

	I Building a Model
	Modelling: An Introduction
	Structure of the Modelling Chapters
	Rotating and Fixed Frames
	Orientation and Rotations

	Modelling of a Quadrotor
	How do a Quadrotor Fly?
	Model Structure and Assumptions
	The On-board Controllers
	Forces and Accelerations
	Model Summery

	The Linear Quadrotor Model
	state-space Model

	Verification of the Quadrotor Model
	Time Derivative of the Quaternion
	Time Derivative of the Velocity

	Sensor Model
	Position and Orientation
	Angular Velocity and Acceleration

	II State Estimation
	State Estimation and Sensor Fusion
	The Extended Kalman Filter
	The IMU-driven Estimator
	Fault Handling
	Analysis of Estimator Performance

	III Control Algorithms
	Controlling a Quadrotor
	Linear Quadratic Control
	The General LQR Algorithm
	Following a Fast Trajectory

	Robust H Control
	The Standard Problem
	Matrix Inequalities
	Simulation

	Evaluation of Controllers
	Hover using Various Vicon Sampling Frequencies
	Step Response
	Following a Trajectory
	Hovering in Low Height
	Overall Evaluation

	IV Epilogue
	Conclusion
	Future Work

	Bibliography

	V Appendices
	The X-3D Interface
	Classes
	Procedure
	Evaluation

	Motion Tracking Lab (MTLab)
	Simulink Block

	Measurements Journals
	Polynomial Relation of utrust and the force Flift
	Determination of Induced Inflow Constant
	Model Verification

	CD Contents

