AAU Studenterprojekter - besøg Aalborg Universitets studenterprojektportal
A master thesis from Aalborg University

Analytisk perturbationsteori for matricer

[Analytic perturbation theory for matrices]

Forfatter(e)

Semester

4. semester

Uddannelse

Udgivelsesår

2009

Afleveret

2009-12-11

Antal sider

49 pages

Abstract

Given a linear operator in a finite-dimensional complex vectorspace. It is of interest to know how the eigenvalues change with the operator, when the operator depends on a parameter analytically. To answer this question the resultant of the operator is studied in detail. Various properties of the resolvent are stated and proved and these are used to investigate the singularities of the resolvent. Also the partial fraction decomposition of the resolvent has been derived. To this end a number of tools from complex analysis proves useful and some of them are discussed and proved. Since the characteristic equation of the operator, in this finite-dimensional setting, is given by a polynomial equation in two variables, a selection of results on polynomials are stated and proved, so that the characteristic equation can be examined. Algebraic functions are introduced in order to state and prove the main theorem about the behaviour of the eigenvalues. The concept of a norm is used to define the norm of an operator, which is the basic tool in the estimates of the following sections on the resolvent. Finally a number of examples are given to illustrate the theory.

Dokumenter


Kolofon: Denne side er en del af AAU Studenterprojekter — Aalborg Universitets studenterprojektportal. Her kan du finde og downloade offentligt tilgængelige kandidatspecialer og masterprojekter fra hele universitetet fra 2008 og frem. Studenterprojekter fra før 2008 kan findes i trykt form på Aalborg Universitetsbibliotek.

Har du spørgsmål til AAU Studenterprojekter eller Aalborg Universitets forskningsregistrering, formidling og analyse, er du altid velkommen til at kontakte VBN-teamet. Du kan også læse mere i AAU Studenterprojekter FAQ.