Author(s)
Term
4. term
Education
Publication year
2018
Submitted on
2018-06-07
Pages
80 pages
Abstract
Modern hearing aids often have more than one microphone available for each device. It has been shown that substantial gains in speech intelligibility can to obtained by applying multichannel signal processing methods (e.g. beamformers) to noisy observations in noisy environments such as cocktail parties or restaurant-like environments. Model-based signal processing methods might, however, perform less well in acoustic environments where the SNR is low as the unknown parameters needed for the beamformers are harder to estimate. The motivation behind the work presented in this thesis, is thus to explore the possibility of applying a deep neural network (DNN) to support an acoustic beamformer as an alternative to the model-based methods. The DNN will in this thesis specifically estimate the direction-of-arrival (DOA) and the relative transfer function (RTF) vector needed for the examined beamformers. We have proposed three types of DNN supported beamformers in this thesis: 1) A minimum power distortionless response (MPDR) beamformer supported by a DNN for DOA estimation, 2) an MPDR beamformer supported by a DNN estimating RTF-vectors, and 3) a Bayesian beamformer where the posterior probabilities are estimated by a DNN. The experimental results show that the DNN-supported beamformers are able to outperform a model-based Bayesian beamformer in acoustic scenes with isotropic babble noise in terms of ESTOI, PESQ, and segSNR scores.
Keywords
Beamforming ; Machine Learning ; Deep Learning ; DNN ; Deep neural network ; Hearing aids ; MVDR ; signal processing ; statistical signal processing ; random processes ; RTF ; Bayesian beamformer ; Speech enhancement ; Noise reduction ; Array ; Microphone array ; DOA ; ESTOI ; PESQ ; acoustics ; HRTF ; maximum likelihood ; cross-entropy ; fourier transformation
Documents
Colophon: This page is part of the AAU Student Projects portal, which is run by Aalborg University. Here, you can find and download publicly available bachelor's theses and master's projects from across the university dating from 2008 onwards. Student projects from before 2008 are available in printed form at Aalborg University Library.
If you have any questions about AAU Student Projects or the research registration, dissemination and analysis at Aalborg University, please feel free to contact the VBN team. You can also find more information in the AAU Student Projects FAQs.