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Chapter 1

Introduction

Hearing loss is one of the most common sensory disorders [1, p. 3] and presents a great
challenge for the hearing impaired, since hearing loss can have a negative impact on social
interaction, well-being, and life quality in general. In particular for children with hearing
loss, the consequences include reduced ability to learn spoken language which can influence
later education, job, and social life, if not addressed [1, p. 48]. In 2012, WHO estimated
that approximately 360 million individuals, of which 32 million are children, suffer from
disabling hearing loss making it a worldwide issue [1, p. 48]. To accommodate individuals
with hearing impairments, hearing aids are typically used to help restore normal hear-
ing. Hearing aids have historically existed for centuries in form of horn shaped devices,
but have since developed into advanced electronic devices with digital microcomputers,
capable of applying digital signal processing on sampled sound signals with the overall
objective of increasing speech intelligibility and sound quality [2, p. 18].

A typical modern hearing aid is shown in Figure 1.1 and overall consists of a mi-
crophone to pick up sound, a circuit board for electronics, a battery, a receiver for sound
reproduction, and an antenna for wireless communication [3].

Figure 1.1: An Oticon Opn behind-the-ear with receiver-in-canal hearing aid [4].
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Hearing aids face a large variety of different acoustic environments, and should ide-
ally be able to adapt automatically to all types of environments with minimum feedback
from the user, in order to provide the best user experience and listening comfort. Ex-
amples of acoustic scenes are reverberant rooms with a target speaker and a competing
speaker as illustrated in Figure 1.2. For individuals with hearing loss, reverberation and
interference, such as a competing speaker, can degrade speech intelligibility [1, p. 110].
As modern hearing aids usually have more than one microphone per device [1, p. 111],
a common approach to accommodate this issue, is to combine the microphone signals to
form a directional microphone, which to some extent is able to enhance the sound from the
target speaker direction while attenuating noise, reverberation and interference impinging
from other directions. Processing multichannel signals in order to enhance signals from
a particular spatial direction is also called beamforming, and is a type of signal process-
ing methods implemented in hearing aids, that has proven effective at increasing speech
intelligibility [1, p. 9].

Direct 
sound

Reflections 

Interference 

Figure 1.2: An example of an acoustic scene for hearing aid users. A hearing aid user is in a
reverberant room with a target speaker and a competing speaker (interference). The hearing aid
user is mostly interested in the direct sound from the target (green) and desires attenuation of
noise from reverberation (red) and interference (blue).

Many beamformers, such as the minimum pariance distortionless response (MPDR)
beamformer studied in chapter 3, require knowledge of the direction of the target speaker
i.e. the direction-of-arrival (DOA). Model-based signal processing methods can estimate
the DOA, but may fail when the signal-to-noise ratio (SNR) is too low. Unfortunately,
acoustic scenes with low SNR are situations where the hearing aid user needs the beam-
former the most. Alternatively, a data driven approach might be a possibility which, in
contrast to the model-based approach, usually does not require making model assump-
tions. Deep learning methods, such as deep neural networks (DNNs), have gained much
attention in recent years due to increased amount of training data, computational re-
sources (GPUs), accessibility in terms of high-level implementation environments (e.g.
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TensorFlow and Keras), and have proven effective at solving complicated tasks that oth-
erwise would be difficult for model-based methods [5, p. 11]. The motivation behind this
thesis is therefore to explore, if a DNN supported beamformer potentially can outperform
a traditional model-based one in situations, where the SNR is low. We therefore in this
thesis seeks to answer:

How can a DNN be applied to support an acoustic beamformer and can it potentially
outperform a model-based acoustic beamformer in terms of speech intelligibility and
sound quality in acoustic scenes with low SNR?

A technical conceptual block diagram of the envisioned DNN supported beamforming
system for hearing aids, is illustrated in Figure 1.3. Sound signals from the acoustic
environment are picked up by a front and rear microphone, converted into electrical signals,
and sampled into discrete sequences x1 and x2. Some beamformers are processed in the
frequency domain by applying a beamformer to each frequency subband [1, p. 111].
To improve robustness and performance of the beamformers in low SNR, estimating the
beamformer coefficients will in the proposed system be supported by a DNN. The outputs
of the beamformers are transformed back into the time-domain ŝ and a receiver (i.e. a
loudspeaker) reproduces the sound in the ear canal of the user.

26/05/2018 22.33HAbeamforming.html
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Figure 1.3: A simplified block diagram of the envisioned beamforming system for hearing aids
supported by a deep neural network.

1.1 Report Structure
In chapter 2, a presentation of basic acoustic theory, the head-related transfer func-

tion, and the signal model will be provided. The chapter serves as a foundation for simu-
lating acoustic scenes and later generating training data for the proposed DNN. Given the
signal model, the thesis moves on to cover well-known model-based narrow-band beam-
forming methods in chapter 3. Chapter 4 will give an introduction to well-known model-
based DOA estimation algorithms, followed by chapter 5 where the proposed DNNs will
be presented. A model-based version of Figure 1.3 will be compared with the proposed
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DNN-based system in chapter 6. The comparison will be in terms of confusion matrices
for DOA estimation and segmental SNR improvement, short-time objective intelligibility
(STOI) and perceptual evaluation of speech quality (PESQ) for beamforming performance.
Finally in chapter 7 and chapter 8, a discussion and conclusion of the work presented in
this thesis will be provided.



Chapter 2

Signal Model

The microphones of a modern hearing aid (HA) are typically placed either in-the-ear,
completely in-the-ear canal, or behind-the-ear [1, p. 4] to convert the sound pressure into
electrical signals, which can be sampled into discrete sequences and processed on an em-
bedded device. As already mentioned, one of the objectives found in state-of-the-art HA
devices, is to process the microphone signals, in order to enhance a target signal while
suppressing noise signals from the environment to improve speech intelligibility, sound
quality, and reduce listening effort. In a typical situation, the target signal is a speech
signal, that originates from a person the HA user is listening to, and may be masked with
noise. The sound waves radiated from sources in the acoustic scene, however have to obey
fundamental properties of wave propagation in space. The purpose of this chapter is there-
fore to derive a signal model that sufficiently describes the behavior of spatio-temporal
acoustic signals i.e. signals that are a function of space and time, which impinge on the
microphone array of the HA.

2.1 Overview of the Acoustic Scene
The acoustic environment, a HA user may experience, comes at a large variety and

might resemble cocktail parties where the sound waves approximately impinge from all
directions, or a quiet listening environment with one target source and one noise source
(e.g. a competing speaker). The noise sources may furthermore not necessary be speech
signals, but can also be other noise types such as ambient noise. In addition, the target
source and noise source are often placed in a reverberant room with several other objects
that can reflect the sound wave such as tables and chairs etc. creating an approximately
isotropic and diffuse sound field. For simplicity, we choose in this thesis to limit the scope
to only include acoustic environments, where the sound waves propagated from a source
may only be affected by the head and torso of the HA user, but otherwise propagates in
free-field as illustrated in Figure 2.1, where vq for all q = 1, 2, ..., Q are noise sources or
interference, s is the target source and x1 and x2 are the front and rear microphones of a



2.2. Radiation of Sound 7

02/06/2018 13.09acoustic_scene.html

Side 1 af 1about:blank

s

v1 v2

vQ

x1

x2

Figure 2.1: An example of the acoustic scene with microphones x1 and x2 placed of a left BTE
HA, target (s) and noise sources vq. It is assumed that each sound source can be modeled as a
point source. The only object affecting the sound before reaching the microphones are the head
and torso.

left behind-the-ear HA.

For convenience, it is assumed the target and noise sources can be modeled as point
sources meaning that the sound sources generate spherical waves that propagate omni-
directionally in space.

2.2 Radiation of Sound
Sound waves are spatio-temporal signals i.e. signals that are functions of space and

time. It appears that in many fields of science and engineering such as acoustics, electro-
magnetism, seismology and physics to mention a few, energy can be transfered through a
medium in terms of waves. The wave equation provides a mathematical expression that
quantifies if a function is a wave. The solution to the wave equation plays an impor-
tant role in the simulation and multi-microphone HA signal processing as it provides the
mathematical foundation of how sound waves propagates in space over time.

2.2.1 Plane waves
The human ear is able to perceive sound which are changes in the air pressure and

can be mathematically described as wave functions. Generally, wave functions have many
different forms and shapes and can range from for example simple harmonic waves to
speech signals. The wave functions are functions of space and time x(r, t) with r ∈ R3

being a spatial position in the three-dimensional space where each element of r specifies
a Cartesian coordinate and t ∈ R is the temporal variable. Under assumption that the
speed of sound c is constant, then all wave functions have to obey the wave equation which
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for the homogeneous case is given as [6, p. 8].

∇2x(r, t)− 1
c2
∂2x(r, t)
∂t2

= 0, (2.1)

which is a second-order partial differential equation where ∇2 denotes the Laplacian op-
erator. The solution to the homogeneous wave equation is the plane wave which is a wave
whose wavefront is of equal phase along the hyperplane normal to the wavefront. For the
one-dimensional case, one solution is [6, p. 11] 1

x(r, t) = s
(
t− c−1r

)
, r ∈ R, (2.2)

where s
(
t− c−1r

)
is an arbitrary wave function or a spatio-temporal signal. In context

with the acoustic scene, the wave function would be a speech signal and we can interpret
the signal x(r, t) as a delayed version of the speech signal s(t) with propagation delay c−1r.

By applying the Fourier transform on the wave equation, one will obtain the
Helmholtz equation, which can be interpreted as the wave equation in the frequency do-
main. Let k ∈ R be the wavenumber, x̃(r, ω) the Fourier transform of x(r, t) with respect
to time, then the one-dimensional case is given as [7, p. 71-72]

∇2x̃(r, ω)− k2x̃(r, ω) =
(
∇2 − k2

)
x̃(r, ω) = 0, (2.3)

It is easy to see that a solution to the one-dimensional Helmholtz equation is given as
x̃(r, ω) = s̃(ω)e−jωc−1r since the Fourier transform of (2.2) is given by

x̃(r, ω) =
∫ ∞
−∞

s
(
t− c−1r

)
e−jωtdt =

∫ ∞
−∞

s(t) ∗ δ
(
t− rc−1

)
e−jωtdt

= s̃(ω)e−jωc−1r,

(2.4)

where ∗ denotes the convolution, δ(·) is the Dirac-delta function, and δ(t − rc−1) is the
free-field acoustic impulse response and its Fourier transform G(r, ω) = e−jωc−1r is the
acoustic transfer function (ATF) between the source and microphone at r. The ATF is
of particular interest in array signal processing, since it is the free-field ATF for plane
waves. It describes how the phase of a complex baseband signal x̃(r, ω) changes linearly as
a function of frequency ω and spatial position r. For example, if r is kept fixed, then the
phase changes linearly as a function of frequency ω, meaning that the group delay of the
free-field ATF is constant. In time-domain this will be observed as an equal time-delay
for all frequencies i.e. the propagation delay does not depend on the frequency. The same
is true when keeping ω fixed while varying the spatial position r where the phase now
changes linearly as a function of r.

2.2.2 Point sources
Modeling the impinging wave as a plane wave can offer simplicity later, when model-

ing the time or phase differences between the microphones of the impinging wave. However,
1Note that Equation 2.2 is not the general solution and is only valid for the one-dimensional

case, but it shows the principle behind wave propagation.
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Figure 2.2: The free field ATF between a source s(ω) and two microphones x1 and x2.

when generating the acoustic scenes, it is desirable to adjust the power received at the
microphones according to the distance between the microphones and the source i.e. the
inverse-square law. It is seen that the current ATF G(r, ω) = e−jωc−1r does not scale the
power as a function of position r, and it is desired to include a term to the ATF that
scales the power as a function of distance r. This can be done by explicitly modeling
the source as a point sources with coordinate r and a microphone position at r0. In con-
trast to a plane wave which is a solution to the homogeneous wave equation, introducing
a point source will make the sound field inhomogeneous. Modifying the homogeneous
Helmholtz equation into the inhomogeneous Helmholtz equation with a point source as
source function, leads to Green’s function given as [6, p. 160]

G0(R) = e−jωc−1R

4πR and R = ‖r0 − r‖2 , (2.5)

and the received wave at the microphone is therefore

x̃(R,ω) = s̃(ω)e
−jωc−1R

4πR , (2.6)

of which we simplify x̃(ω) = x̃(R,ω). For a two microphone setup placed in free-field
without any object affecting the sound wave, the source signal s̃(ω) is radiated from a
point source and propagates through spaced and received at x̃1(ω) and x̃2(ω) as illustrated
in Figure 2.2.

2.3 Head-Related Transfer Function
The ATF discussed so far assumes free-field conditions with no objects reflecting

sound waves. This is of course not true for HA applications where the head and body of
the user are objects that influence the sound field. The alteration is significant for HA
applications since the HA devices are placed at the user’s ear, meaning that reflections and
diffraction caused by the head, pinnae, and torso [8, p. 20] will affect the performance of
array signal processing algorithms if not accounted for. These influences can be modeled
as being linear time-invariant (LTI) and can be considered as a finite impulse response
(FIR) system and is referred to as the head-related transfer function (HRTF) [8, p. 20].



10 Signal Model Chap. 2

02/06/2018 22.54Impinging_wave_HRTF.html

Side 1 af 1about:blank

θ

Impinging
wave

Figure 2.3: Impinging wave on head from angle θ.

When the sound wave radiated from a source impinge on the head as illustrated
in Figure 2.3, the sound will be reflected and diffracted [8, p. 20] changing the free field
the ATF discussed in previous section. The reflection and diffraction caused by the head
is depend on several factors such as shape, the distance between the head and source,
the angle of incident, and position of the microphones. We start by considering the
case where the shape of the head is generic, and the angle of incident is only from the
azimuth angle θ. The HRTF is then defined as the ratio between the sound pressure,
P

(m)
ν (Rmeas, θ, ω), measured at the ν’th ear and m’th microphone with distance Rmeas,

and the sound pressure, P0(Rmeas, ω), measured at the center of the head at the absence
of the head. P0(Rmeas, ω) is essentially the free field ATF between the loudspeaker used
to measure the HRIRs and the center of the head. The HRTF is thus given as [8, p. 20]

G(m)
ν (Rmeas, θ, ω) = P

(m)
ν (Rmeas, θ, ω)
P0(Rmeas, ω) , ν ∈ {Left,Right}, (2.7)

and to simplify, we omit ω from the function for now. A model-based HRTF can be
obtained by simulating the reflections from a spherical head model, but can otherwise also
be obtained through acoustic measurement of the head-related impulse response (HRIR)
on either an artificial head-and-torso simulator (HATS) or on human subjects. In this
thesis, the HRTF are obtained from acoustic measurements of a HATS.

2.3.1 HRTF database description
The HRIR measurements are obtained from an open-source database provided by [9].

The measurement setup in [9] makes it especially suitable for simulation of behind-the-ear
HAs, since HRIRs are available at various positions on a BTE HA. In this thesis we refer
the HRTF as the acoustic. A HA dummy is placed on a head-and-torso simulator (HATS)
by Brüel & Kjær as seen in Figure 2.4. The HA dummy only contains microphones and
is without other miscellaneous electronics [9].

The HRIR are available for both the left and right ear to allow development and
evaluation of binaural algorithms. For each side, one microphone placed in-the-ear and a
3-microphone array is behind-the-ear. Furthermore, the HRIRs are measured in various
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Figure 2.4: Dummy HA placed on a HATS [9].

acoustic environments such as an anechoic chamber, offices, and cafeterias. The HRIRs in
the anechoic chamber are available for a source-microphone distance of 0.8 m and 3 m for
near-field and far-field simulation of the HRTF, and will be used in this thesis. The HRIRs
are sampled at a sampling frequency of 48 kHz. The HRIR were measured 360 ◦ around
the head with an azimuth resolution of 5◦. The HRIR was also measured at different
elevations i.e. between -10◦ to 20◦ with a resolution of 5◦. In this thesis we will focus on
simulating the target and noise sources only from the azimuth angle. The sound waves
may therefore impinge from a discrete set of 72 possible directions. The performance of
beamformers studied in chapter 3 is affected by the array configuration such as the number
of microphones and the distance between them.

2.3.2 Simulating the sound pressure at the left and right ear
In order to simulate the received sound, the HRTF must be used in combination with

free-field ATF. From previous definitions of the ATF and HRTF, obtaining the transfer
function between the source and the received signal at the microphones, must done by
cascading the transfer functions in series i.e. G0(R) and Gν(Rmeas, θ). Let R be the
distance between the sound source and center of the head, and Rmeas be the distance
between the loudspeaker used to measure the HRIR and the center of the head. The
complete ATF, ã(m)

ν , between the source and the m’th microphone of ν ’th HA is defined
as

ã(m)
ν (R, θ) = G0(R)G(m)

ν (Rmeas, θ)

= e−jωc−1R

4πR
P

(m)
ν (Rmeas, θ)
P0(Rmeas)

= e−jωc−1R

4πR
4πR

e−jωc−1Rmeas
P (m)
ν (Rmeas, θ).

(2.8)

If Rmeas = R then G0(R) = P0(Rmeas) as they are both the free-field ATF between the
source and the center of the head and (2.8) can be simplified to

ã(m)
ν (R, θ) = P (m)

ν (Rmeas, θ), if Rmeas = R. (2.9)

It is however not always possible to ensure that Rmeas = R as Rmeas is limited by the
distances the HRTFs were measured at. Using the HRTF database from [9] this limits
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Figure 2.5: The ATF including the HRTFs between a source s(ω) and two microphones x1 and
x2.

Rmeas to be Rmeas = 0.8 m or Rmeas = 3 m. In case that Rmeas 6= R, (2.9) becomes

ã(m)
ν (R, θ) = Rmeas

R

e−jωc−1R

e−jωc−1Rmeas
P (m)
ν (Rmeas, θ)

= Rmeas
R

e−jωc−1(R−Rmeas)P (m)
ν (Rmeas, θ).

(2.10)

We conclude from (2.10) that simulating the ATF between the source and microphone
array at a distance of Rmeas with Rmeas 6= R results in a gain of Rmeas

R and a linear phase-
shift of e−jωc−1(R−Rmeas) which in the time domain translates to a delay of c−1(R−Rmeas)
seconds. But since ã(m)

ν (R, θ) 6= P
(m)
ν (Rmeas, θ) if Rmeas 6= R, then this might cause

misleading results in the simulation as the reflections and diffractions of the sound waves
caused by the head, is a function of distance. One solution to avoid this issue, would be to
obtain the HRTF at all possible distances such that Rmeas = R is always true. Fortunately
according to [10], the HRTFs do not change substantially when the source to head distances
are above 1 m as the impinging wave is approximately planar. This means that the error
can be neglected when simulating source-microphone distances above 1 meter. Thus (2.9)
can be used to simulate the ATF between the source and microphone at any distance
above 1 m although the HRTFs are obtained at a source-microphone distance of 3 meters.
Simulating the received signal at two microphones placed on a left HA on the head of a
user, is illustrated in Figure 2.5.

2.4 Signal Model
The signal model, which will be used to simulate the received signals at the micro-

phones, will be derived in the frequency domain for the following reasons. The first being
that beamforming methods presented in [11, 12, 13, 14] assume that the impinging wave is
narrow-band e.g. a sinusoidal wave which can be represented through complex baseband
representation. For a sinusoidal wave, the complex baseband signal is simply the com-
plex Fourier coefficient that represents the phase and magnitude of a carrier wave with
frequency ω. Speech processing and acoustics, the impinging wave is in practice rarely
only narrow-band signal but wide-band. In order to apply the methods developed for
narrow-band signals, narrow-band decomposition of acoustic signals [13, 14] is performed
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i.e. dividing the acoustic signal into multiple complex baseband signals at different fre-
quencies.

Based on the narrow-band decomposition, G0(ω,R) will denote the free-field ATF
between the source and center of the head, and G(m)

L (ω,R, θ) is the HRTF at the left ear
HA microphones. The ATF between the source and microphones, ã(m)(ω,R, θ) is thus
given as

ã(m)
ν (ω,R, θ) = G0(ω,R)G(m)

ν (ω,Rmeas, θ), m ∈ {1, 2, ...,M}. (2.11)

It is often seen in the literature that the ATF is both amplitude and phase normalized
with respect to a reference microphone. After normalization, the ATF is referred to as
the relative transfer function (RTF). If the front microphone is chosen as the reference
microphone then the RTF is given as

d̃(m)
ν (ω,R, θ) = ã

(m)
ν (ω,R, θ)
ã

(1)
ν (ω,R, θ)

, ∀m (2.12)

and d̃(1)
ν (ω,R, θ) = 1. In a cocktail party scenario for example, the target signal s̃(ω) and

noise, denoted as ε̃(m)
ν (ω), are the main components of the acoustic scene. Using the RTF

from (2.12) the received signal x̃(m)
ν (ω) is given as

x̃(m)
ν (ω) = d̃(m)

ν (ω,R, θ) s̃(ω) + ε̃(m)
ν (ω) ∈ C, m ∈ {1, 2, ...,M}, (2.13)

with the noise sources ε̃(m)
ν (ω) being a superposition of interfering signals plus spatially

white noise.2 The vector notation of the signal model can be expressed as

x̃ν(ω) =



1

d̃
(2)
ν (ω,R, θ)

...

d̃
(M)
ν (ω,R, θ)


s̃(ω) +



ε̃
(1)
ν (ω)

ε̃
(2)
ν (ω)
...

ε̃
(M)
ν (ω)


, (2.14)

where x̃ν(ω) ∈ CM is the received signal at the ν’th HA. The indexing of R, θ in the
vector notation of the RTF are omitted for a more compact notation. Given the signal
model the next chapter will examine the acoustic scene in order to identify the parameters
d̃

(m)
ν (ω,R, θ), s̃(ω), and ε̃(m)(ω) that will be used to simulate the acoustic scene. The

noise, ε̃(m)
ν (ω), that can be observed from an acoustic scene can vary greatly. The term

noise is used slightly loosely in this thesis in the sense the term noise will cover any signal,
that is not related to the clean target signal, however a clearer definition will be given in
the next chapter.

The signal model has been derived and is given in Equation 2.14. This equation is
used to simulate the sound received at the HA microphones in all of the studied acoustic
scenes. The next chapter will cover an introduction to some of wide used beamformers.

2A formal definition of noise types will be given in chapter 3.



Chapter 3

Acoustic Beamforming

Modern HA devices often utilize more than one microphone per HA device to pick up sound
from the acoustic environment [1, p. 111]. In acoustics scenes, where the overall goal is to
enhance a speech signal of a target source, the received signal is most likely corrupted by
noise originated from either space or generated by the microphones themselves. The basic
concept of acoustic beamforming methods is therefore to create a directional microphone
by combining the microphone signals into one signal in an optimal way, and obtain a
directional microphone that is steered or focused towards a direction e.g. the target
source. This chapter serves to introduce the concept of wideband acoustic beamforming
which is a class of signal processing methods, that seeks to combine the temporal and
spatial signals.

3.1 Spatio-Temporal Signals
Digital signal processing methods such as filtering [15] or spectral analysis [15] are

often applied on temporal signals that are functions of time only. Well-known signal pro-
cessing methods used for speech enhancement for temporal signals could be the Wiener
filter that seeks the estimate a desired signal under some statistical assumptions on the
received and desired signal, and then by the means of linear filtering, obtain an optimum
estimate of the desired signal with a minimum mean squared error criterion [16].

When an array of microphones is available, this can be interpreted as adding an-
other dimension to the received signal namely a spatial dimension, where the signals in
the spatial dimension are generally correlated, if the received signal originates from space.
Beamforming methods exploits this spatial correlation and utilize, it to obtain an opti-
mum estimate of a target source signal. In many cases, methods and concepts found in
temporal signal processing can be effectively reused for spatio-temporal signal processing.
For example, the Wiener filter can be reformulated to estimate a desired signal over the
spatial-dimension instead of temporal, and is then referred to as the spatial Wiener filter
or multichannel Wiener filter [14, 17].

The HA user is typically only interested in sound reproduction of the temporal wave-
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Figure 3.1: Overview of the elements included beamformer.

form in the eardrum of the spatio-temporal signal as it carries the sound information. For
the HA devices, the spatial signal on the other hand, also reveals useful information about
the acoustic environment such as the direction-of-arrival (DOA) of the target’s source sig-
nal. Obtaining a clear interpretation of the spatial signal is yet not necessarily straight
forward. For some applications, where the array aperture is a uniform linear array (ULA)
placed in free-field, it is usually easier to see how spatial signals and its spatial frequency
analysis in the wavenumber domain [18, p. 40] are related to DOA, since the microphones
in a ULA can be seen as a discrete sampling of space. Furthermore, modeling the rela-
tion between microphones i.e. the array response for a ULA in free-field is also relatively
simple (as it is simply a propagation delay between microphones). The interpretation of
the spatial signal can, however, become tedious, when the array is no longer an ULA,
and if placed behind the ear of a HA user, where the HRTF has to be accounted for. In
order to obtain a sufficient array model, it is crucial to model the influence of e.g. the
head-shadow (which is when the direct path between the microphones and the source is
blocked by the head), reflection from the head and torso, and inter-person variations of
the head and body shape.

Instead of modeling the array response mathematically, it is usually much simpler
and accurate to simply measure the array response as a function of direction, when the
microphones are placed behind the ear. In particular (see chapter 2) the spatial correlation
between the microphones is given by the RTF-vectors.

Many beamformers utilize the RTF-vectors as they provide the necessary information
the spatial correlation between microphones, and since these are available from [9], we will
focus on beamforming methods that utilizes the RTF-vectors. In this chapter, beamform-
ers that will be discussed are primarily the Bartlett [11], Minimum power distortionless
response (MPDR) [19, p. 451], and Bayesian beamformer [17].

Before presenting the beamformers an overview block diagram of a beamforming
system is illustrated in Figure 3.1. As beamforming algorithms often are applied in the
frequency domain, we will start the discussion on analysis and synthesis of the spatio-
temporal signals. The remaining of this chapter will then be on adaptive beamforming.

3.2 Pre and post processing
Beamforming is often applied on narrow-band signals. The common approach is to

approximate the acoustic wideband signal (e.g. a noisy speech signal) into multiple narrow-



16 Acoustic Beamforming Chap. 3

band signals using the Fourier transform. In practice, the short-time Fourier transform
(STFT) is used for this purpose, where the concept is to divide the signal into l frames,
Fourier transform the signal into the frequency domain (analysis), process the beamformer
(modification), and inverse Fourier transform it into time (synthesis) [20, p. 230]. Let the
frame length be N , hop-size D, then the short-time Fourier transform (STFT) is given as
[20, p. 230]

x̃(m)
ν (k, l) = STFT{x(m)

ν (n)} =
N−1∑
n=0

w(n)x(m)
ν (n+ lD)e

−j2πkn
N , ν ∈ {Left,Right}, (3.1)

where wA(n) is a window function. Using the STFT, x̃(m)
ν (k, l) ∈ C becomes a function

of discrete frequency k and time l. After analysis and modification, the processed signal
ỹν(k, l) must be reconstructed into time domain by performing the inverse STFT. The
inverse STFT is given as [20, p. 231]

ŝ(n+ lD) = iSTFT{ỹ(k, l)}

ŝ(n+ lD) = 1
K

K−1∑
k=0

w(n)ỹ(k, l)e
j2πkn
N .

(3.2)

The window function w(n), frame length N , and hop-size D are parameters that have to
be chosen. Typically, the windows are implemented as sliding overlapping windows. It is
then important to ensure, that the selected window function has the so-called overlap-add
property, which states that perfect reconstruction of the original signal must be possible
after applying the window function [20, p. 232]. The property is∑

l

w(n− lD) = 1. (3.3)

Possible windows functions, that satisfy this perfect reconstruction property, are for exam-
ple rectangular, triangular, and Hanning windows. In this thesis, we select the square-root
Hanning window with a hop-size of L = N/2, and use the window function for both anal-
ysis and synthesis which will ensure perfect reconstruction. This choice may be motivated
by the fact that the square-root Hanning window is often used in noise reduction and
beamforming, when the target signal is speech [21, p. 50].

Signals such as speech has a time varying spectrum and its spectrum depends on the
phonemes of a word. Ideally, it is desired that the window size is selected such that the
PSD of signal in the frame can be assumed stationary. A common frame size for speech is
approximately 20-30 ms [22]. If the sampling frequency of the temporal signal is 16 kHz,
20 ms will correspond to 320 samples. For convenience, the frame size is rounded to 256
samples.

3.3 Noise in the Acoustic Scene
Here we discuss more specifically what the term noise covers in an acoustic scene.

Since a spatial dimension is added to the temporal signal, it is important to establish a
clear distinction between noise in the temporal and spatial domain. In order to avoid
confusion, a discussion on various noise types will be given in this section. Referring back



3.3. Noise in the Acoustic Scene 17

to the signal model previously introduced in chapter 2, the noise term in the signal model is
ε̃(k, l). We now assume that the noise can be decomposed into a sum of interference noise
impinging from Q directions at distance Rq. As each interference noise source radiates a
signal ṽq(k, l), which propagates in space before reaching the microphones of the HA, a
RTF-vector d̃ν(k, l, Rq, θq) is associated with each interference source. Moreover, a noise
term n(k, l) is added to model the microphone self-noise. The noise ε̃(k, l) can thus be
decomposed into

ε̃(k, l) =
Q∑
q=1

d̃ν(k, l, Rq, θq)ṽq(k, l) + n(k, l). (3.4)

A more detailed description of the noise is now provided.

3.3.1 Spatially White Noise
Noise that is said to be spatially white, is noise that is uncorrelated along the spatial

dimension, i.e. uncorrelated between microphones. This is typically noise that is generated
by the microphones themselves. This also implies that the noise does not have any spatial
origin. In that case, the spatial coherency between microphones is zero. The spatial Cross-
power spectrum density (CPSD) matrix, is a matrix which specifies the spatial correlation
at a certain frequency k. For spatially WGN, the CPSD matrix is a diagonal matrix with
equal diagonal elements σ2

n, which is the variance of the noise. The microphone self-noise
can be modeled in frequency domain as complex circular symmetric WGN and is given as

n(k) ∼ NC(0, σ2
n(k)I), (3.5)

where I is the identity matrix and Cn(k) = σ2
n(k)I is the noise CPSD matrix. If the noise

is also temporally white, then the variance, σ2
n(k), is identical for all k.

3.3.2 Spatially Coherent Noise Sources
When noise originates from space, the signals received at the microphones are gener-

ally correlated. This noise type is very common in acoustic environment as reverberation,
competing speakers, environmental noise, can be seen as coherent noise. This type of noise
will be referred to as interference. The spatial CPSD matrix for interference is

Cv(k) = E


g Q∑

q=1
d̃ν(k, l, Rq, θq)vq(k, l)

g∑
q∈V

d̃ν(k, l, Rq, θq)vq(k, l)

H
 ,

= g2
Q∑
q=1

d̃ν(k, l, Rq, θq)E [vq(k, l)vq(k, l)∗] d̃ν(k, l, Rq, θq)H ,

= g2
Q∑
q=1

σ2
q (k, l)d̃ν(k, l, Rq, θq)d̃ν(k, l, Rq, θq)H .

(3.6)

We will later see that the performance of some DoA estimation methods and beamformers
depend on the noise type, as some algorithms are designed to perform better in specific
noise types.
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3.3.3 Isotropic noise field
The noise field found in acoustic environments can many times be modeled as being

isotropic such as reverberation [23]. In an isotropic noise field the interference is impinging
from all directions at equal power. Examples of noise fields that may be approximated as
isotropic are pedestrian noise, reverberation, and cocktail party scenarios where competing
speakers are present in all directions. For practical reasons we will limit ourselves to only
approximately cylindrical isotropic noise fields as the HRTF in [9] are not provided in all
elevation angles.

3.4 Linear Beamformers
After the analysis, i.e. applying the STFT to each noise microphone signal, comes

the modification, where the beamformer is applied on the noisy signal. The beamformer
is essentially just a linear combination between beamformer coefficients wm and the noisy
signal xm, and can simply be expressed as an inner product between two vectors. This
operation is then performed for each K frequency bins for a particular frame l. The output
of the beamformer is given as

ỹ(k, l) = wH(k, l)x̃(k, l). (3.7)

When determining the beamformer coefficients, the noisy CPSD matrix is often needed
and is given as Cx(k) = E[x̃(k)x̃(k)H ] and using the assumption that the target and noise
signals are uncorrelated, we can then decompose the noisy CPSD matrix into

Cx(k, l) = Cs(k, l) + Cv(k, l) + Cn(k, l), (3.8)

of which we choose to simplify Cε(k, l) = Cv(k, l) + Cn(k, l). The noisy CPSD may then
be estimated as a moving average of outer products of the noisy signal over L frames as

Ĉx(k, l) = 1
L

l∑
n=l−L−1

x̃(k, n)x̃(k, n)H . (3.9)

Determining the optimum number of frames L to estimate the CPSD over is not trivial.
The more frames the CPSD matrix is estimated over, the lower variance the estimator
has. However, in acoustic scenarios where the spatial position of either the target or in-
terference is changing location, this will affect the estimates of the noisy CPSD and have
an influence of the performance of beamformers presented later. Determining the number
of frames L is a trade-off between better noise reduction and being reactive to spatial
changes.

In the following sections, we derive the beamformer coefficients under various opti-
mality criterions. To ease the notation, we will omit the indexing of k, l, ν, Rq and the
tilde sign ∼ such that

d(θq) , d̃ν(k, l, Rq, θq), Cx , Cx(k, l), x , x̃(k, l). (3.10)

3.4.1 Bartlett Beamformer
The Bartlett beamformer [11] seeks to minimize the output noise power under the

assumption that the noise is spatially white. A constraint is added ensuring that the



3.4. Linear Beamformers 19

target signal must pass through the beamformer undistorted. The optimization problem
for estimating the beamformer coefficients is

wBart = arg min
w

wH
(
σ2I

)
w = arg min

w
σ2wHw

subject to wHd(θitrue) = 1,
(3.11)

and the solution to the optimization is [11]

w = d(θitrue)
‖d(θitrue)‖

2
2
. (3.12)

3.4.2 MPDR Beamformer
In cases where interference noise is present, the Bartlett beamformer may not reveal

a satisfactory result because of its assumptions on the noise. If noise is coherent, the
MPDR beamformer (sometimes also referred to as the minimum variance distortionless
response (MVDR) [14] or Capon beamformer [11]) can reveal better noise reduction than
the Bartlett beamformer. The optimization problem of the MPDR is to minimize the signal
power under the constraint that the target is undistorted. The optimization problem for
the MPDR beamformer is defined as [19, p. 451]

wMPDR = arg min
w

wHCxw

subject to wHd(θitrue) = 1,
(3.13)

and the closed-form solution to the optimization problem is [19, p. 451]

wMPDR = C−1
x d(θitrue)

d(θitrue)HC−1
x d(θitrue)

. (3.14)

The MPDR requires a matrix inversion, and can be numerically unstable. This would
occur in simulation or theory if only the target is present without noise i.e. Cx is not full
rank. It is evident that if the estimated DOA θ̂ 6= θitrue such that d(θ̂) 6= d(θitrue), then
the MPDR beamformer will treat the target as an interference noise source and attenuate
the target substantially.

3.4.3 Bayesian Beamformer
If the true RTF-vector is unknown, or equivalently if the DOA is unknown, using an

MPDR beamformer lead to poor performance. In [19, p. 513], it has been analysed that
a DOA mismatch for the MPDR can result in large amount of distortion on the target
signal, as the beamformer treats the target as interference and attempts to place a spatial
null at the direction of the target.

The goal of the Bayesian beamformer is to achieve robustness to DOA errors. To
achieve this, the Bayesian beamformer first estimates a posterior probability for each
direction defined in a discrete set of possible DOAs (e.g. Θ = {−175◦,−170◦, ..., 180◦})
and then form a linear combination between estimated posterior probabilities and MPDR
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beamformers steered toward directions defined in the discrete set of possible DOAs [17].
The beamformer is given as

wB =
I∑
i=1

p(θi|x(k, l − L− 1),x(k, l − L), ...,x(k, l))wMPDR(θi), (3.15)

where we can view the computation of the Bayesian beamformer as weighted sums of
MPDR beamformers. The full derivation of the Bayesian beamformer can be found in
[17]. It is assumed that the DoA is a discrete random variable belonging to a finite set of
possible DOAs. We make the assumption that the observed signals are realizations of a
random process which is circular symmetric complex WGN, and that the observations are
temporally independent. We form the likelihood function for a zero-mean complex normal
distribution [17]

f(x(k, l − L− 1), ...,x(k, l)|θi) =
l∏

j=1

1
πMdet(Cx(θi))

exp
(
x(k, j)HC−1

x (θi)x(k, j)
)
,

(3.16)

and using Bayes theorem we write the posterior probability P (θi|x(k, l−L−1), ...,x(k, l))
as

P (θi|x(k, l − L− 1), ...,x(k, l)) = P (θi)f(x(k, l − L− 1), ...,x(k, l)|θi)
I∑
j=1

P (θj)f(x(k, l − L− 1), ...,x(k, l)|θj)
.

(3.17)

We let the prior probability be uniform and be in the range [−175, 180] as no further prior
information is available.

The expression in (3.16) is hard to evaluate as an exact expression of Cx(θi) as a
function of direction θi may not be available. In this case, it is desired to reduce the
expression such that RTF-vectors are included in the expression. In order to simplify the
expression, we use the assumption that no interference is within the range of directions
defined by the discrete set Θ [17]. Under these assumptions, the likelihood function can
be approximated to [17]

f(x(k, l − L− 1), ...,x(k, l)|θi) ≈ expLγ(d(θi)HC−1
x d(θi))−1

, (3.18)

where γ is a constant which is tuned according to the SNR and set small if the SNR is
low and large if high [17]. The posterior probability can then be approximated as

P (θi|x(k, l − L− 1), ...,x(k, l)) ≈ P (θi) expLγ(d(θi)HC−1
x d(θi))−1

I∑
j=1

P (θj) expLγ(d(θj)HC−1
x d(θj))−1

. (3.19)

It is expected that the Bayesian beamformer has a degraded performance than the MPDR
using the true underlying RTF-vectors due to the optimality provided by the MPDR
beamformer. However, as the SNR increases, it is expected that the posterior probability
at the true DoA will approach 1 [17], which simplifies the Bayesian beamformer to the
MPDR beamformer. An advantage of the Bayesian beamformer is if the DOA is not
known with certainty, optimality of the MPDR beamformer cannot be guaranteed, and
the Bayesian beamformer might perform better.
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3.5 Beampattern and Beamformer Behavior
The purpose of this section is to examine the behavior of the beamformers in various

noisy environments. For this purpose, the beampattern of the beamformers is evaluated.
The beampattern provides an estimate of the noise reduction of the beamformer as a
function of direction. The beampattern is defined as [12, p. 22]

B(θ) = −10 log10

(
|wHd(θitrue)|2

|wHd(θi)|2

)
. (3.20)

The numerator and denominator are the output power of the beamformer when steered
towards the target DOA θitrue and θi respectively. The RTF-vectors are obtained from
the front and rear microphones of a left ear HA device [9], where each RTF-vector is
associated with a direction θ in the range [-175,180] with a angle resolution of 5 degrees.
The beampattern will be presented in a polar plot, where the angular axis is the azimuth
direction, the radial axis is the frequency axis linearly spaced between 0 Hz to 8 kHz, and
the color axis is the beampattern.

The Bayesian beamformer is expected to behave as the MPDR beamformer in high
SNR as argued in subsection 3.4.3. However, in low SNR where the posterior probability
approaches the prior probability [17], it is expected that the Bayesian beamformer will
perform worse than the MPDR beamformers provided that the DOA is known. In order
to emphasize the advantage of the Bayesian beamformer, DOA mismatch is included to
show that the Bayesian beamformer is robust against DOA mismatches. In this case, it is
expected that the Bayesian beamformer performs better than the other beamformers.

3.5.1 Bartlett vs. MPDR
Here we compare the beampattern of the Bartlett and MPDR beamformers given

that the DOA is known, and the beamformer is provided with the true RTF-vector. The
target source is temporally white Gaussian noise with a variance of σ2

s = 1 and is placed
at a direction of 20◦. A temporally white interference source is placed at 130◦ and we
include spatially white noise. The SNR is set to -6 dB, where the power of the interference
source and spatially white noise are set to be equal. The noisy CPSD matrix Cx is formed
by averaging the outer product of x over L frames. It is seen that the MPDR attempts
to place a spatial null at 130◦ to cancel the interference. The Bartlett beamformer does
not use information about the noisy CPSD, and therefore it is expected that it does not
attempt to place a null towards the direction of the interference.

3.5.2 MPDR vs. Bayesian beamformer
Here we consider the beampattern between the MPDR and Bayesian beamformer.

The prior probability of the Bayesian beamformer is set to be uniform and Θ =
{−175◦,−170◦, ..., 180◦}. The setup is almost identical as the previous test, but here
we the SNR = 0 dB. The target is placed at true DOA 20◦ and an interference source at
130◦. The MPDR beamformer is provided the true DOA, while the Bayesian beamformer
utilizes the estimated posterior probability. The beampattern of the MPDR and Bayesian



22 Acoustic Beamforming Chap. 3

80°

-60°

-20°

180°

40°

-140°

-80°

20°
0°

120°

160°

60°

-40°

-100°

140°

-160°

-120°

100°

6000

2000

0

4000

-20 -15 -10 -5 0 5

Probability

(a) Bartlett beampattern [dB]

80° -80°

-140°

-60°

-20°

180°

40°

20°
0°

120°

160°

-40°

-120°

-100°

60°

140°

-160°

100°

0

6000

4000

2000

-20 -15 -10 -5 0 5

Probability

(b) MPDR beampattern [dB]

Figure 3.2: Beampatterns of Bartlett and MPDR beamformers, L = 100, SNR = −6 dB, true
DOA= 20◦. The true RTF-vector is provided the beamformers. The MPDR seem to emphasize
noise reduction at the rear i.e. the direction of the interference.
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Figure 3.3: Beampatterns of MPDR and Bayesian beamformers. γ = 0.1, L = 100, SNR= 0 dB,
true DOA= 20◦. Intereference at 130◦.

beamformers are shown in Figure 3.3a and Figure 3.3b.
The comparison might not be entirely fair, as the MPDR is provided with the

true DOA and RTF-vector. This is equivalent to letting the posterior probability of the
Bayesian beamformer be equal to one at the true DOA. It however illustrates the trade-off
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Figure 3.4: Sampled and normalized Von Mises distribution with mean at 20◦.

between performance and robustness, where the MPDR beamformer seeks maximum noise
reduction, at the risk of DOA mismatch and target distortion, while the opposite is true
for the Bayesian beamformer.

3.5.3 MPDR vs. Bayesian beamformer with DOA mismatch
Here we compare the MPDR and Bayesian beamformer in a situation, where the

MPDR beamformer is exposed to DOA mismatch, and is provided a false DOA of −10◦
and true DOA of 20◦. We also demonstrate the potential performance of the Bayesian
beamformer if good estimates of the posterior probability is available. To show the poten-
tial, we artificially generate a posterior probability obtained from a sampled and afterwards
normalized Von Mises distribution as seen in Figure 3.4, .

In Figure 3.5 it is seen that the beampattern of the MPDR beamformer attempts to
steer the spatial null from interference direction 130◦ to the target direction 20◦ due to the
DOA mismatch. The result is, therefore, that the MPDR slightly distorts the target. The
Bayesian beamformer on the other hand, seem to be less affected by the DOA mismatch
as noise reduction is still primarily from behind.



24 Acoustic Beamforming Chap. 3

-160°

60°

140°

-100°

160°

120°

-140°

0°

20°

40°

180°

-20°

-60°

-80°80°

-40°

-120°

100°

6000

0

2000

4000

-20 -15 -10 -5 0 5

Probability(a) MPDR beampattern [dB]

-120°

-40°

100°

80° -80°

-60°

-20°

180°

40°

-140°

20°
0°

120°

160°

-100°

60°

140°

-160°

2000

0

6000

4000

-20 -15 -10 -5 0 5

Probability(b) Bayesian beampattern [dB]

Figure 3.5: Beampatterns of MPDR and Bayesian beamformers with DOA mismatch. γ = 0.1,
L = 100, SNR= 0 dB, true DOA= 20◦. A false DOA of−10◦ is provided to the MPDR beamformer.

It is seen that the MPDR and Bayesian beamformers are able to reduce interference
noise in contrast to the Bartlett beamformer. Since realistic acoustic environments such
as reverberant rooms contain interference, the Bartlett might not be suitable for hearing
aids. We thus choose to only implement the MPDR and Bayesian beamformer for later
for evaluations of a model-based beamformer and DNN supported beamformers.



Chapter 4

Model-based RTF Estimation

In practice the optimum performance with respect to the beamformers optimality criterion
may not be achieved in real life due to model assumptions and model parameter estimation.
In particular, the RTF-vector is a parameter needed for all the examined beamformers.
Optimum noise reduction can therefore only be achieved if the beamformers are provided
the true RTF-vectors. Therefore this chapter serves to investigate model-based methods
for estimating the DOA. We will limit our search to common methods applied in frequency
domain and only require the noisy observations x̃(k, l) as input.

4.1 DOA-based RTF Estimators
DOA estimation methods that will be covered in this section are based on the Bartlett

and MPDR beamformers and the MUSIC algorithm. Since the DOA is a direction from a
discrete set θ = {−175◦,−170◦, ..., 180◦}, the idea behind DOA-based RTF-estimation is
map the estimated DOA into a RTF-vector associated with the direction.

4.1.1 Beamscan Algorithms
The basic concept of beamscanning methods is to make a beamformer, and sweep the

beamformer through all possible directions [19, p. 1142]. For each direction, an estimate
Ê(θi, k) of the power received from direction θi and frequency bin k is made. For ease
of notation, we omit the frequency bin index k. When an estimate of the output power
is obtained for all directions, the direction with the highest power, is selected to be the
estimated DOA [19, p. 1140]. We can formulate the optimization problem by

i? = arg max
i∈{1,2,...,I}

Ê(θi), (4.1)

and the DOA-index i? can then afterwards be mapped into a DOA in degrees. The
output ỹ(k, l) of the beamformer is obtained by a linear combination of the beamformer
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coefficients w(θi) steered towards θi and the noisy signal x and is given as 1

y = w(θi)Hx, (4.2)

and the expected output power of the beamformer is

E(θi) = E[yy∗|θi] = w(θi)HE[xxH ]w(θi) = w(θi)HCxw(θi), (4.3)

where the beamformer coefficients can be obtained using either the closed-form solution
for the Bartlett or MPDR beamformer. The Bartlett beamformer is given by wBart =
d(θi) ‖d(θi)‖−2

2 and inserting this into (4.3), leads to an estimate of the Bartlett pseudo-
spectrum given as [11]

ÊBart(θi) = d(θi)HĈxd(θi)
‖ d(θi) ‖42

, (4.4)

for all i. The MPDR beamformer has a beamformer coefficient vector given by wMPDR =
Ĉ−1
x d(θi)(d(θi)HĈ

−1
x d(θi))−1, and similarly the MPDR psuedo-spectrum can be found as

[11]

ÊMPDR(θi) = 1
d(θi)HĈ

−1
x d(θi)

for all i. (4.5)

4.1.2 MUSIC Algorithm
The MUltiple SIgnal Classification (MUSIC) algorithm is a subspace-based method

and is a well-known method for estimating the DOA given its pseudo-spectrum [11]. The
MUSIC algorithm exploits orthogonality between the eigenvectors from the signal and
noise CPSD matrices. As both the target CPSD matrixCs and the noiseCn are Hermitian
matrices, all eigenvectors found in an eigenvalue decomposition (EVD) of the matrices are
orthogonal. The MUSIC algorithm can be extended to estimate the DOA for multiple
sources, but for our purpose we will assume that only a single source, namely the target,
is of interest. In that case, the target CPSD matrix is Cs = σ2

sd(θitrue)d(θitrue)H and
rank(Cs) = 1 as the space spanned by Cs is defined by d(θitrue). Let Qs be a matrix
whose column vectors are eigenvectors of Cs and let Λs be a diagonal matrix whose
diagonal elements are eigenvalues λs,m, m = 1, 2, ...,M of Cs then

Cs = QsΛsQH
s ∈ CM×M . (4.6)

Furthermore, Λs contains exactly one non-zero eigenvalue thus its remaining M −1 eigen-
values are zero. The MUSIC algorithm exploit the property that there areM−1 eigenval-
ues of Cs that are zero, and if we define q0,m for m = 1, ...,M − 1 to be the eigenvectors
associated with the zero-eigenvalues, then

Csq0,m = 0, m = 1, ...,M − 1. (4.7)

1We choose to omit the frequency and frame index such that x , x̃(k, l) and y , ỹ(k, l).
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Figure 4.1: Space spanned by the signal subspace and null space.

Hence the set Q = {q0,1, ...,q0,M−1} forms a basis of the null-space of Cs. Equivalently, if
we form a matrix Q0 = [q0,1, ...,q0,M−1], then the space spanned by its column vectors is
in the null-space of the matrix Cs. It then follows that null(Cs) = range(Q0) from which
it is evident that vectors in range(Cs) and vectors in range(Q0) must be orthogonal, as
illustrated in Figure 4.1. This leads to

QH
0 d(θitrue) = 0,

d(θitrue)HQ0QH
0 d(θitrue) = 0,

(4.8)

and the MUSIC pseudo-spectrum is defined as [13, p. 202]

EMUSIC(θi) = 1
d(θi)HQ0QH

0 d(θi)
, (4.9)

and EMUSIC(θi) = ∞ if i = itrue. Therefore, the angle resulting in the largest peak in
the MUSIC pseudo-spectrum, is the estimate of the DOA. In practice, the basis Q is not
known in advance, and an estimate of the basis is needed. If the noise is spatially white
with variance σ2

n then its CPSD matrix, Cn, is a scalar matrix given as Cn = σ2
nI.2 Given

that the target and noise are uncorrelated, then the EVD of the noisy CPSD, Cx, is

Cx = QsΛsQH
s + QnΛnQH

n , (4.10)

Further reduction reveals

Cx = Qx(Λs + σ2
nI︸ ︷︷ ︸

Λx

)QH
x , (4.11)

2A scalar matrix is a diagonal matrix where its diagonal elements are equal.



28 Model-based RTF Estimation Chap. 4

with

Λx =



σ2
s + σ2

n 0 · · · 0

0 σ2
n · · · 0

...
... . . . ...

0 0 · · · σ2
n


, (4.12)

where the diagonal elements are eigenvalues λx,m = Λ(m,m)
x and λx,1 ≥ λx,2 = ... = λx,M .

The eigenvector associated with the eigenvalue σ2
s+σ2

v is therefore an eigenvector belonging
to the signal subspace while the remaining M − 1 belongs to the null space. The estimate
of the basis vectors of the null space is therefore

q̂0,i−1 = qx,i, i = 2, ...,M, (4.13)

and Q̂0 = [q̂0,1, ..., q̂0,M−1]T . It follows that the estimate of the DOA using the MUSIC
pseudo-spectrum is

i? = arg max
i∈{1,2,...,I}

1
d(θi)HQ̂0Q̂

H

0 d(θi)
. (4.14)

The partial disadvantage of the MUSIC algorithm is that assumptions of the noise are
made, namely that the noise is spatially white. The MUSIC algorithm will perform poorly
when coherent noise is present. To show this, we later test the MUSIC algorithm in spa-
tially coherent noise by including an approximately isotropic noise field in the evaluation.
The noise CPSD is

Cε =
Q∑
q=1

σ2
v,qdv(θq)dHv (θq) + σ2

nI, (4.15)

whereCε is used to specify that the noise consists of both spatially white noise and coherent
noise. When spatially coherent noise is present, it is not possible to entirely separate the
noise subspace from the signal subspace using the EVD, thus the eigenvectors associating
with the M − 1 smallest eigenvalues do to not span the signal subspace, meaning that
the performance of the MUSIC algorithm will decrease. One could then treat interference
noise sources as a desired signal, but this approach however requires an estimate of the
number of sources in the acoustic scene.

4.2 Wideband Estimation of the DOA
The beamscans and MUSIC-pseudospectrum provide an estimate of the DOA for each

frequency bin θ̂(k). In practice, there is only one true DOA under assumption that a single
target is present, which radiates sound at all frequencies. A naive approach is to select an
arbitrary frequency bin and use the beamscan or MUSIC algorithm to estimate the DOA.
This might work when the SNR is high and under assumption that the target signal is
temporally white but otherwise not. Instead, we will here discuss possible approaches to
make an wideband extension to the narrow-band beamscan and MUSIC algorithms.
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4.2.1 Peak-picking over frequency bins
We start by proposing a simple method, which is to peak-pick the DOA across fre-

quency bins and can mathematically be described as

i?, k? = arg max
i,k∈{1,2,...,I}

Êψ(θi, k), ψ ∈ {Bart,MPDR,MUSIC} (4.16)

where i and k are the DOA-index and frequency bin-index respectively and the estimated
DOA is θi? . This approach however may however perform poorly, if noise is not temporally
white. For example if the SNR is particularly low at a certain frequency range e.g. 10 Hz
to 200 Hz, and the target signal is speech a peak-based approach will most likely pick a
DOA to be towards an interference source.

4.2.2 Averaging logarithmic posterior probabilities over frequency
bins

The second method we propose is similar to the concept of the Bayesian beamformer.
Here we choose to interpret the pseudo-spectrums provided by the beamscan and MUSIC
algorithm as estimates of the posterior probability of the DOA. Since we have K frequency
bins, each frequency bin will then be associated with an estimated posterior probability
distributions. Since the DOA is identical across frequency bins, the concept is to estimate
the most likely observation, i.e. the most likely DOA to occur, given K probability dis-
tributions. The method presented here is not to be confused with maximum likelihood
estimation.

The estimated power Ê(θ, k) is desired to be interpreted as a posterior probabil-
ity of the DOA. In order to do so, the softmax function is used to map the power to a
probability-like sequence such that [5, p. 184]

P
(k)
ψ (θ̂i) = eEψ(θi,k)

I∑
j=1

eEψ(θj ,k)
and

I∑
i=1

P
(k)
ψ (θ̂i) = 1, ψ ∈ {Bart,MPDR,MUSIC}, (4.17)

In case where we use the MPDR pseudospectrum, it is seen that P (k)
ψ (θ̂i) reduces to an

expression that is almost identical to the posterior probability estimated by the Bayesian
beamformer found in subsection 3.4.3, given that the prior probability is uniform in the
whole range of θi. The exact difference lays in (Lγ), where this constant is normalized i.e.
set to Lγ = 1. We then choose to model the posterior probability distribution for each
frequency bin as a multinoulli distribution. The true DOA-vector over K frequency bins
is then given as

t
(k)
i =

{
1, if i = itrue

0, otherwise
, i = 1, 2, ..., I, k = 1, 2, ...,K, (4.18)
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where itrue is unknown and must be estimated. Moreover, t is a unit indicator vector and
is 1 at the true DOA-index. The likelihood function is then given as [24, p. 209]

fψ(t(1), t(2), ..., t(K)|P (1)
ψ (θ), P (2)

ψ (θ), ..., P (K)
ψ (θ)) =

K∏
k=1

I∏
i=1

P
(k)
ψ (θi)t

(k)
i , ∀ψ. (4.19)

and since the DOA is identical across frequency bins, this leads to

fψ(t|P (1)
ψ (θ), P (2)

ψ (θ), ..., P (K)
ψ (θ)) =

K∏
k=1

I∏
i=1

P
(k)
ψ (θi)ti . (4.20)

We now make an estimate of the most likely t to be observed under the constraint, that
the norm of t must be equal 1 and that all elements except for one must be zero. The
optimization problem is given as

j?ψ = arg max
j∈{1,2,...,I}

K∏
k=1

I∏
i=1

P
(k)
ψ (θi)tj

subject to:
‖t‖2 = 1,
tj = 1,

(4.21)

and for numerical convenience, we use the natural logarithmic function to avoid rounding
error from the product, which furthermore will not change the argument as the logarithm
is a monotonous increasing function. Utilizing the natural logarithm reveals

ln
(

K∏
k=1

I∏
i=1

P
(k)
ψ (θi)tj

)
=

K∑
k=1

I∑
i=1

tj lnP (k)
ψ (θi), (4.22)

and the optimization problem becomes

j?ψ = arg max
j∈{1,2,...,I}

K∑
k=1

I∑
i=1

tj lnP (k)
ψ (θi)

subject to:
‖t‖2 = 1,
tj = 1,

(4.23)

which can be hard to solve analytically on this form. However, the constraints can actually
be included into the optimization problem fairly simple by redefining the optimization
problem slightly. Since the second constraint is tj = 1 and the first ‖t‖2 = 1, this
essentially means that ti = 0 for i 6= j. This results in

(
tj lnP (k)

ψ (θi) = 0
)
if i 6= j and

therefore the optimization problem can be reduced to

j?ψ = arg max
j∈{1,2,...,I}

K∑
k=1

lnP (k)
ψ (θj), (4.24)

and the optimum solution can be found by searching though all j and select the one that
maximizes the objective function. In practice, we will omit the division by K as it does not
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affect the estimate. In order obtain the RTF-vectors from the estimated DOA index j?, we
assume that a database of RTF-vectors is provided such that D = (d(θ1),d(θ2), ...,d(θI))
is an ordered tuple with the RTF-vectors for all I = 72 directions equidistantly spaced with
a resolution of 5◦. The estimated RTF-vector is then the j?’th element of the database
i.e. d̂ = D(j?).

4.3 Evaluation of Model-Based Methods
In this section an evaluation on the performance of the DOA-based RTF estimators

in different noise fields will be provided. We will in this performance evaluation define
the target, interference, and noise signals to be temporally white (for convenience and
generality) and their spatial position will remain fixed. Instead of explicitly simulate N
observation of the received noisy signal, we instead directly obtain a noisy CPSD matrix
Cx from the target CPSD Cs and noise Cε. For evaluation, we use the front and rear
microphones of the left hearing aid devices to obtain the RTF-vectors.

The target signal is temporally WGN with variance σ2
s(k) and is impinging from

direction θitrue and has the CPSD matrix

Cs(k) = σ2
s(k)ds(θtrue, k)ds(θtrue, k). (4.25)

The spatially white noise that will be included is circular symmetric complex WGN of
which the CPSD is

Cn(k) = σ2
n(k)I. (4.26)

For interference, Cv(k), the CPSD matrix is formed by

Cv(k) =
Q∑
q=1

σ2
v(k)dv(θq, k)dHv (θq, k), (4.27)

where Q = 72 i.e. the interference is impinging from all 72 possible directions in order to
approximately an isotropic noise field. The variance from the interference noise sources
to also set to be temporally white. We first evaluate the performance on only spatially
white noise i.e. Cε = Cn(k) and afterwards evaluate on interference plus spatially white
noise Cε = Cv(k) + Cn(k). In order to simulate the received signal at a specific SNR we
set σ2

s = 1 and determine σ2
v and σ2

n so that

σ2
ζ (k) = 10

SNR
10 , ζ ∈ {n, v}. (4.28)

where we define3

SNR = σ2
s(k)

σ2
v(k) + σ2

n(k) . (4.29)

To control the ratio between interference and spatially white noise, a scaling factor g is
used such that

Cx(k) = Cs(k) + gCv(k) + (1− g)Cn(k). (4.30)
3Be aware that the SNR, in this case, may is also referred as the signal to-noise-plus-interference

ratio (SINR).
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Figure 4.2: Posterior probabilities as a function of frequency and angle. Spatially white noise
only and SNR is 6 dB. The estimated DOAs are θ̂Bart = −10◦, θ̂MP DR = 20◦, θ̂MUSIC = 20◦.

We use g = 0 in the first test and g = 0.5 in the second.
Initial tests of the wideband DOA estimation over frequency bins reveal that the peak-

picking method performs very poorly compared to averaging the posterior probabilities
over frequency bins at low SNR. Therefore, we choose to not include it in the evaluation.

4.3.1 DOA estimation performance in spatially white noise
In the first test, θtrue = 20◦, g = 0 and SNR = 6 dB and we use (4.17) to compute

posterior probabilities for each frequency bin. The posterior probability is shown in a
polar plot in Figure 4.2, where the radial axis is the frequency axis in the range 0 Hz
to 8 kHz. The number of frequency bins is 129 without the mirrored response of the
negative frequency. It is seen from the polar plots, that the posterior probability of
the Bartlett beamformer provides the least accurate estimates in terms of providing a
significant peak at the true DOA at θtrue = 20◦ compared to the other methods. The
MPDR beamformer provides a decent posterior probability, with most of the estimated
posterior probabilities peaking at θtrue = 20◦. The MUSIC algorithm outperforms both
the Bartlett and MPDR beamformers, which is also expected since the noise is spatially
white. The DOA is then estimated using (4.24). The estimated DOAs are θ̂Bart = −60◦,
θ̂MPDR = 20◦, θ̂MUSIC = 20◦.

4.3.2 DOA estimation performance in spatially coherent noise
In the next test, we include spatially coherent noise by simulating an approximately

isotropic noise field. The SNR is 0 dB and g = 0.5, meaning that interference is weighted as
much as spatially white noise. The true DOA is as the same as previous test i.e. θtrue = 20◦
and the polar plot of the posterior probability is shown in Figure 4.3. The joint estimates
of the DOAs are θ̂Bart = −10◦, θ̂MPDR = 5◦, and θ̂MUSIC = 60◦. From Figure 4.3 it seems
that the posterior probability of all methods have less prominent peaks toward the true
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Figure 4.3: Posterior probabilities as a function of frequency and angle. The SNR is 0 dB and
g = 0.5. The estimated DOAs are θ̂Bart = −10◦, θ̂MP DR = 5◦, θ̂MUSIC = 60◦.

DOA. In order to determine the robustness and performance, we now choose to simulate
at different SNRs between 20 dB to -6 dB with the same target and noise settings. The
estimated DOA as a function of SNR is shown in Figure 4.4.
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Figure 4.4: Estimated DOA as a function of SNR. The noise field is approximately isotropic,
g = 0.5 and the true DOA is 20◦.

Among all investigated methods, the Bartlett has the worst DOA estimation perfor-
mance in approximately isotropic noise fields. The MUSIC algorithm outperforms both
the Bartlett and MPDR beamformer when the noise is spatially white, but has a poor
performance when noise field is approximately isotropic. Based on Figure 4.4 it seems
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that the MPDR method provides the best performance in isotropic noise fields.
Because of the noise fields in real acoustic environment can be modeled as being ap-

proximately isotropic (such as reverberation) [23], we choose to use the MPDR beamscan
method as baseline for model-based DOA estimation.



Chapter 5

Deep Learning-based RTF
Estimation

The model-based methods examined in chapter 4 reveal decent performance under ideal
conditions when assumptions made in their derivation are met or when the SNR is high.
An example is the MUSIC algorithm studied in subsection 4.1.2. The MUSIC algorithm
shows great performance under specific conditions i.e. when certain assumptions about the
noise could be made, namely that the noise is spatially white. However, as soon as these
conditions are not met as for example in realistic acoustic scenes, the performance of the
MUSIC algorithm decreases significantly as the noise cannot be assumed spatially white.
Other limitations of model-based methods are that they may not exploit all information
and structures that can be found in the data and including them in the model-based
methods but this will eventually result in an increased complexity.

Methods used to search for structures and dependencies found in data without relying
on a complicated mathematical model, can often be found in machine learning as the
general principle in machine learning is to teach a machine to recognize hidden patterns
in the data generated by the unknown process. This way, one can avoid making poor
assumptions that might eventually turn out to be invalid. Indeed, some methods make
fewer assumptions than others and can turn out to be very robust in most scenarios. While
this is true, the trade-off of robust methods is the cost of performance compared to when
certain assumptions and conditions can be made in which methods such as MUSIC easily
can outperform methods such as the MPDR beamscan.

Deep learning methods [5], have recently gained much attention due to increased
accessibility, computational power, and big data. Furthermore, deep learning methods
such as feedforward deep neural networks and convolutional neural networks (CNN) are
becoming popular tools in many scientific communities as they sometime can outperform
conventional methods significantly. The performance of deep learning methods is, however,
bounded by the data used during training. In order to achieve a satisfactory performance,
it is important to ensure that the network has obtained a good generalization of the data
such that, when unseen data is presented, the network is still able to maintain a decent
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performance. One of the reasons to use deep learning in acoustic beamforming is that
potentially invalid assumptions can be avoided and the machine can effectively exploit
structures found in the data.

This chapter is organized by first presenting an overview of current research related
to multichannel speech processing using deep learning. Afterwards, this chapter will give
a presentation of the proposed neural network.

5.1 Deep Learning in Acoustic Beamforming
Research in acoustic beamforming using deep learning has in the past few years gained

much interest. Much of the interest is gained from the automatic speech recognition (ASR)
research communities such as [25, 26, 27, 28, 29, 30, 31, 32] where the primary goal is to
obtain better machine speech recognition performance in situations where more than one
microphone is available. A natural choice is therefore to combine acoustic beamforming
and deep learning where acoustic beamforming is a well-studied field and deep learning
being a well-established method in ASR. We can roughly divide the research areas in
acoustic beamforming combined with deep learning into following:

1. End-to-end multichannel ASR systems.

2. Approaches which estimate beamformer coefficients directly.

3. Approaches which estimate the parameters for beamformers.

with each group having their own advantages.

5.1.1 End-to-end multichannel ASR systems
Instead of explicitly using a linear beamformer to enhance the target signal re-

searchers in group 1 such as [32] are designing neural networks that directly minimizes
performance measures such as the word error rate (WER). This way the performance is
not limited by a linear beamformer as for the other groups, as the neural networks may
form outputs from non-linear combinations of the input data. The issue is however that it
is hard to control the behavior of a network and if the target signal is desired undistorted
at the reference microphone, this cannot be guaranteed with these networks.

5.1.2 Approaches which estimate beamformer coefficients directly
In group 2 e.g. [26, 27], the overall objective is to let a neural network estimate the

beamformer coefficients. This approach, however, seems to be somewhat strange if the
objective of the neural network is to estimate the coefficients for a linear beamformer as
presented in for example [26] and [27]. If, for example, the objective is solely dedicated
to predict the beamformer coefficient for a Bartlett beamformer, for example, then an
equivalent network estimation the RTF-vector should be able to perform just as well.
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Nonetheless, making a neural network solely for estimating the beamformer coeffi-
cient of a conventional beamformer might not be a good approach. For example, it can
be shown that the MPDR beamformer is best beamformer among all linear beamformers
that minimizes the noise power, while keeping the target distortionless because of its op-
timality criterion. The optimization problem of the MPDR beamformer, moreover, has
a closed-form solution (see section 3.4). As Cx is guaranteed to be positive-semidefinite,
the objective function is convex with linear constraints. A minimizer to the optimization
problem is therefore also guaranteed to be the global minimizer. Thus rather than design-
ing a network estimating the beamformer coefficients, one can instead create a network
parameter estimating d to the MPDR or Bayesian beamformer. This way, one will both
be able to obtain the desired beamformer coefficients while achieving important insights
such as the direction of the target which might be useful for other subsystems on a hearing
aid.

5.1.3 Approaches which estimate the parameters for beamformers
Finally, researchers in group 3 are in some sense more faithful to conventional beam-

forming methods as their approach is to limit the task of the neural network to only cover
parameter estimation such as d and noise CPSD matrices Cε. By limiting the neural
network to only solving subproblems one might be able to obtain a more specialized neu-
ral networks which could result in a increased performance [33]. Some work related to
beamformer parameter estimation using deep learning research are [25, 29, 34, 35]

In [28] they propose a method to estimate the time-frequency masks to determine
whether a time-frequency bin is dominated by target speech or interference plus noise.
Here they make two networks, where to estimates the time-frequency mask for the target
and another for the noise. These masks are later used to estimate the CPSD matrices of
the target and noise. For training, they use an ideal binary mask (IBM) with a threshold
for target speech, thrs(k), and noise, thrε(k), to mark which time-frequency bin that are
dominated by either speech or noise. The IBM is defined as

IBMε(k, l) =

1, if ‖d(θtrue)s(k,l)‖
‖ε(k,l)‖ < 10thrε(k)

0, otherwise ,
(5.1)

and a similar IBM is defined for the target speech such that

IBMs(k, l) =

1, if ‖d(θtrue)s(k,l)‖
‖ε(k,l)‖ > 10thrs(k)

0, otherwise ,
(5.2)

where thrε(k) 6= thrs(k) and is chosen to limit the false rate [28]. For example, one can let
thrs(k) be very large, and the network will classify a time-frequency bin to be dominated
by target speech, when the SNR is sufficiently high. Equivalently, thrε(k) can be chosen to
be very small, meaning that time-frequency bins will only be classified as noise dominant
when the SNR is sufficiently low. The target and noise CPSD are then estimated as [28]

Cψ(k, l) =
l∑

m=1
Mψ(k,m)x(k,m)xH(k,m), ψ ∈ {s, ε}. (5.3)
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The estimate of the noise CPSD Cε can then be used to estimate the beamformer coeffi-
cients of an MVDR beamformer [29]

wMVDR = C−1
ε d

dHC−1
ε d

= C−1
x Csi

trace
(
C−1
x Cs

) , (5.4)

where i is an unit vector with 1 at the reference microphone index. The first equality
uses the RTF vectors, and thus requires that one must estimate these. Otherwise, one
may use the second equality. This approach is, however, hard to guarantee that the
target will remain undistorted as it requires a very good estimate of the target CPSD Cs.
Furthermore, this approach does not ensure that the target CPSD is rank(Cs) = 1 as the
space spanned by the target vectors are defined by RTF-vector. If these requirements are
not met then the MPDR beamformer may distort the target.

Other researchers attempt to estimate the RTF-vector have been proposed in [30, 35,
36]. The authors in these articles are focused on using deep learning to obtain an estimate
of a discrete set of possible DOAs. Although they are not explicitly estimating the RTF-
vector, their methods can easily be extended to estimating the RTF-vector if a database of
RTF-vectors associated with each DOA is available. In [30, 36] they seek to estimate the
DOA based on an eigenvalue decomposition (EVD) of the noisy CPSD matrices estimates.
Their approach is very similar to the concept of MUSIC but instead of forming the MUSIC-
pseudospectrum (see chapter 4), they design a neural network whose inputs are the noise
eigenvectors used in the MUSIC algorithm. Their issues remain the same as for the MUSIC
algorithm. First, they must perform some preprocessing which determines the number of
sound sources in the acoustic scene. Secondly, their method might perform less well in
reverberant rooms and in realistic acoustic scenes due to coherent noise sources, if their
preprocessing in determining the number of target sources is poor.

Finally, in [35] they seek to estimate the DOA based on the phase of the STFT
coefficients across frequency bins. The STFT coefficients of the received signal x(m)(k, l)
can be written into the following form with magnitude Am(k, l) and phase φm(k, l) for the
m’th microphone [35]

x(m)(k, l) = Am(k, l)ejφm(k,l). (5.5)

The magnitude part Am(k, l) is then ignored (similarly to the phase transform (PHAT)
method [13, p. 192]), and the network is trained on the input feature φm(k, l) to classify
the DOA from a discrete set of possible DOAs.

There are two potential drawbacks with their approach. First, they choose to ig-
nore the magnitude part which contains the magnitude response of the RTF and since
the magnitude response is different between DOA and microphones when mounted on a
head. Secondly, they limit their network to only predict the DOA on one frame and under
the assumption that the target’s spatial position does not change, using multiple frames
for estimating the DOA will provide a better performance. The trade-off is however that
using more frames might lead to the network being slow reacting to changes if the target
is changing spatial position.

Inspired by the work of [35], the objective of the proposed DNN is to estimate the
RTF-vectors. The proposed network will, in contrast to [35], seek to utilize 1) the mag-
nitude part of the observed signals x and 2) more than one frame to estimate the RTF-
vector. Related to this, there will be two approaches to estimate the RTF-vectors. The
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first approach is to estimate the DOA based on a classification problem with a finite set
of possible DOAs i.e. (Θ ∈ {−175◦,−170◦, ..., 180◦}). This network will be referred to
as DNN-DOA. Afterwards, the corresponding RTF-vector associated with the estimated
DOA, will be selected from a database of RTF-vectors and the network will be referred to
as DNN-RTF.

5.2 Proposed DNN Architecture
In this section an overview and discussion of the proposed DNNs input, output and

the overall structure is provided.

5.2.1 Input of the Network
The choice of input feature is partly inspired by [35]. It is believed that better

performance can be achieved if more past information and the magnitude of the STFT
coefficients are provided the network under assumption that the spatial position of the
target is only slowly time varying. A simple extension to the network in [35] is to feed the
past L frames into the network. This, however, results in an increased input dimension. An
alternative input, which will be used, are the noisy CPSD matricesCx. As the noisy CPSD
matrices are time averages of the outer product of the observed signal in the frequency
domain, the CPSD matrices contains past information. One can also interpret the noisy
CPSD matrices as a form of smoothing of the STFT-coefficients since the diagonal elements
of the estimated CPSD are smoothed power spectrums of the observed signal at each
microphone.

Another advantage is to also utilize the magnitude part. However, instead of feeding
the network, the complex numbers in polar form i.e. magnitude and phase, we choose to
feed the network rectangular form i.e. real and imaginary values resulting in low amount
of preprocessing.

5.2.2 Input normalization
The magnitude of the CPSD matrices might vary depending on the gain applied to

the microphone signals (e.g. amplifier in a hearing aid). Thus in order to increase the
robustness, the CPSD matrices are normalized with respect to the average input power
between microphones. We can do this by averaging the trace of the CPSD matrices across
frequency bins such that the normalized CPSD matrices are

Ĉx(k, l)← Ĉx(k, l)
1
K

K∑
k=1

tr
(
Ĉx(k, l)

) . (5.6)

The exact derivation is shown in Appendix C. We can now formulate the input to the
proposed DNNs. Let M be the number of microphones and B(k, l) be a block matrix
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given as

B(k, l) =


Re{Ĉ(1,1)

x (k, l)} Im{Ĉ(1,1)
x (k, l)} · · · Re{Ĉ(1,M)

x (k, l)} Im{Ĉ(1,M)
x (k, l)}

...
... . . . ...

...

Re{Ĉ(M,1)
x (k, l)} Im{Ĉ(M,1)

x (k, l)} · · · Re{Ĉ(M,M)
x (k, l)} Im{Ĉ(M,M)

x (k, l)}

 ,
(5.7)

where B(k, l) ∈ RM×2M then the input matrix to the neural network is structured as
follows

Cx(l) =



B(1, l)

B(2, l)
...

B(K, l)


, (5.8)

where Cx(l) ∈ RKM×2M .

5.2.3 Output of the Network
The DNN architecture between DNN-DOA and DNN-RTF will be almost identi-

cal with the only difference being at the output layer. For DNN-DOA the desired
outputs are posterior probabilities of a discrete set of possible DOAs. The set is
Θ = {−175,−170, ..., 180} with I = 72 elements and θ ∈ Θ. The notation θi will be
used to refer to the DOA from i’th element in the set Θ i.e. θ1 = −175. The posterior
probabilities estimated by the DNN-DOA will be denoted as P̂ (θi|Cx,A) where A is the
set of all parameters of the neural network. A natural choice to obtain an estimate of the
DOA is to use a maximum a posterior (MAP) estimate given the network output i.e.

î = arg max
i∈{1,2,...,I}

P̂ (θi|Cx,A) (5.9)

where î is the estimated DOA index which can used to obtain a RTF-vector from a look-
up table e.g. D = (d(θ1),d(θ2), ...,d(θI)) with the RTF-vector being d̂ = D(̂i). In order
to ensure that the output of the neural network can be interpreted as a probability the
activation function at the output layer is selected to be the softmax function as it maps
the output to a value between [0,1] while ensuring that the sum of all outputs equals one.

For the DNN-RTF, the network must directly map the input into an RTF-vector d̂
at the output layer. The activation function at the output layer in this case is a linear
function. Since the output of the network is real valued the output must be reconstructed
into a complex RTF-vector again. The output of the network will be trained to output all
the M ·K values of the real part of the estimated RTF-vector followed by another M ·K
values of the imaginary part.
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Figure 5.1: The architecture of the proposed DNN-DOA.

5.2.4 Structure of Neural Network
The design of the proposed DNNs is based on an iterative process with trial and error,

until a satisfactory result is obtained. However, the starting point of the DNN architecture
was the structure of the DNN proposed by [35] thus the overall structure of neural network
is very similar to the one proposed in [35]. The first three layers of the neural network
are convolutional layers followed by three feedforward networks. The architecture of the
DNN-DOA is shown in Figure 5.1.

Equivalently, the DNN architecture for the DNN-RTF is shown in Figure 5.2. We
would like to stress out, that the primary difference between DNN-DOA and DNN-RTF is
that DNN-DOA estimates the DOA of the target of a discrete set and maps the estimated
DOA to RTF-vectors with a database of RTF-vectors associated with each direction. The
DNN-RTF instead estimates the RTF-vectors without relying on a database of predefined
RTF-vectors. By using a convolutional network, the DNN can search for local structures
that might occur in the data. A convolutional layer as input also contains relatively low
amount of parameters compared to a fully connected layer because of parameter sharing
[5, p. 335].

For the DNN-DOA the convolutional layer is followed by three fully connected layers
and an output layer with 72 units where each output gives an estimate of the posterior
probability of the target direction. The DNN-RTF outputsM ·K units, where each output
is an estimate of the real or imaginary part of the RTF-vectors. An overview of the network
is given in Table 5.1.
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Figure 5.2: The architecture of the proposed DNN-RTF.

Table 5.1: Table of network architecture

Type Units/feat. maps Kernel Act. function # parameters

Layer 1 Conv. 64 2× 2 ReLU 320

Layer 2 Conv. 64 2× 2 ReLU 16,448

Layer 3 Conv 16 2× 2 ReLU 4,112

Layer 4 FC. 512 - ReLU 2,089,472

Layer 5 FC. 512 - ReLU 262,656

Layer 6 FC. 512 - ReLU 262,656

Layer 7 FC. 72/258 - Softmax/Linear 36,864/132,354

5.3 Training and Testing the Network
Training the neural network is one of the most crucial tasks when developing neural

networks. It is eventually desired to train the neural network, such that the network is able
to recognize the appropriate patterns in the data and obtain a good generalization. The
generalization of the network is closely related to the training data and network capacity.
Too little training data and the network might eventually not be able to recognize the
pattern in the data. However, variety in the data is also important, to avoid overfitting
and maintain the performance when unseen data is presented. In this section we will
discuss how the datasets are generated and how the network is trained in order to obtain
good generalization.
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5.3.1 Overivew of the training and test datasets
Recall that estimates of noisy CPSD matrices are used as input to the DNNs (see

(5.8)). Furthermore, recall that the noisy CPSD matrices are estimated based on a number
of past L noisy frames (see (3.9)). This number of frames is crucial as this will affect the
behavior in situations where the DOA is changing. The trade-off as previously discussed
was that a CPSD matrix estimated over few frames is capable of tracking fast changes of
the DOA at the cost of having an estimation error with a higher variance compared to a
CPSD estimates with a large number of frames but at the cost of being slow reacting to
changes in the DOA. Because of this, the DNN-DOA and DNN-RTF are trained on CPSD
formed over various number of past noisy frames.

For training purposes the true DOA is fixed and the tracking capabilities of the DNN-
DOA and DNN-RTF will be verified in a separate test. To generate the training and test
data, the following signal model is used:

x̃(k, l) = d̃ (Rs, θs) s̃(k, l) + g
Q∑
q=1

d̃ (Rq, θq) ṽq(k, l), (5.10)

where the parameters are defined in chapter 2. When generating the data, parameters
that will be randomized are Rs, θs, Rq, θq, ṽq, s̃, g,Q. These parameters will however by
randomized differently depending on the noise field and SNR. The RTF-vectors are ob-
tained from HRTFs of the front and rear microphones on the left hearing aid placed on a
dummy head [9].

The target source, s̃, is always speech and is obtained from the TIMIT database [37].
The TIMIT database consists of recorded sentences from human subjects. The recordings
are concatenated into a single recording for each subject which afterwards is normalized
with respect to the peak value. The speech absent frames are then sorted out with a
short-time energy voice activity detector [38] to only include speech present frames.

Possible interferences that are used to create the noise field in the acoustic scene are
speech/babble (BBL), speech shaped noise (SSN), buses (BUS), cafeterias (CAF), pedes-
trian (PED), and streets (STR). The babble noise is obtained from the TIMIT database
and processed like for the target speech, while the BUS, CAF, PED, and STR noises are
obtained from the CHiME3 challenge database [39]. Finally, the speech shaped noise is
artificially generated by filtering WGN with the impulse response of an all-pole model of
the speech. A 12’th-order all-pole model is estimated by concatenating 100 speech record-
ings from the TIMIT database and then use the Yule-Walker equations to obtain the filter
coefficients as described in [33, 40].

5.3.2 Generating acoustic scenes with isotropic Noise Field
We generate acoustic scenes where the noise field is approximately isotropic, as the

noise field in many realistic acoustic scenes may be approximately isotropic such as re-
verberation from a room and competing speakers in a cocktail party. Since the HRTF
database is limited to HRTFs measured at 72 different azimuth angles on a circle at a
distance of 3 meters, the isotropic noise field is approximated to include 72 uncorrelated
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noise sources placed on a circle such that exactly all HRTF are used to generate the ap-
proximated isotropic noise field.

In this acoustic setup, all Q = 72 noise sources, ṽq(k, l) for q = 1, ..., Q, are placed
at a distance of Rq = 3 meters from the center of the head, where θq = 5q − 180◦ for
q = 1, ..., Q is the direction of the q’th noise source.1 In order to control the SNR the
variable gain of the noise sources g is introduced. The SNR is randomized with uniform
distribution in the range -6 dB to 10 dB.

5.3.3 Randomly placed noise sources
Realistic acoustic scenes may also be anisotropic, for example when a single competing

speaker is present. Here we generate acoustic scenes whose noise field is anisotropic. First,
we randomize the number of noise sources Q to a value between 1 and 40 with a uniform
distribution. After selecting the number of noise sources, the distance and azimuth angle
of both the target and noise sources are randomized with a uniform distribution U(·, ·)
such that

Rs ∼ U(0.5, 1), Rq ∼ U(1, 4), θs ∼ U(−90◦, 90◦), θq ∼ U(−180◦, 180◦). (5.11)

The distance between the noise sources and the head has an upper bound of 4 meters
to ensure that the noise signal will not become too attenuated when placed far away,
making it redundant in the simulation. Since the azimuth angle of the HRTF is limited
to a resolution of 5 degrees, θs and θq are rounded to the nearest available azimuth angle.
Again, the gain g is adjusted to the desired SNR between -6 dB and 10 dB. There is
however a drawback by adjusting the SNR with this approach. When for example 1 noise
source is present and the SNR is -6 dB the noise source will be louder than the target
speech. In an acoustic scene, this is equivalent to physically place the noise source at a
closer distance to head than the target source.

5.3.4 The generated data set
In the developed system we will be using two microphones i.e. M = 2. A table

of the generated training set with specified noise type and field is given in Table 5.2. It
is seen that babble noise and speech shaped noise occurs more often in the training set
compared to other noise types. We hypothesize that the target will primarily be speech,
and a common acoustic scene where the hearing aid user will benefit from a beamformer
are cocktail parties and restaurant environments [1, p. 122]. We choose to model the noise
in such acoustic scenes as babble and speech shaped noise and include larger number of
these acoustic scenes in the training and test set. In Table 5.2 a overview of the training
set is provided.

1Frontal is when the azimuth angle is 0◦, left is positive and right is negative angles.
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BBL BUS CAF PED SSN STR

Isotropic

T:200 ms 50000 10000 10000 10000 50000 10000

T:500 ms 50000 10000 10000 10000 50000 10000

T:1000 ms 0 0 0 0 20000 0

Anisotropic

T:200 ms 20000 10000 10000 10000 50000 10000

T:500 ms 20000 10000 10000 10000 20000 10000

T:1000 ms 20000 0 0 0 0 0

Table 5.2: Number of generated acoustics scenes in various noise types and noise fields. "T" refers
to the number of past frames the CPSD was formed over (in seconds, where 200 ms = 25 frames).
For example T:200 ms means that the CPSD matrices were estimated over 25 past frames. There
are in total 510,000 examples of acoustic scenes and the total amount of training hours is 55.55
hours.

Out of the 510,000 examples, 10 percent are reserved to the validation set which is
not used for training but to evaluate if the network is over-fitting on the fly. For the test
set, we generate 51,000 examples with the same distribution of noise type, time, and noise
fields. It is important that the network is tested on unseen data, and therefore the we use
unseen speech signals from the TIMIT database and unseen noise (but same noise type)
from the CHiME3 database. To avoid that the network becomes biased, training data is
shuffled each time a training epoch is completed.

The network parameters are determined through an optimization problem. For the
DNN-DOA we use cross-entropy and for the DNN-RTF we use mean-squared error as
objective functions. A detailed explanation of network optimization is provided in Ap-
pendix A. The selected iterative solver is the Adam optimizer [41] with a learning rate
of 0.001. The minibatch size is 50 examples and we ran the training set for 20 epochs.
Dropout and regularization were not added to the network as experiments indicated that
they were not needed.



Chapter 6

Evaluation and Experimental
Results

This chapter serves to evaluate the performance of the proposed DNN supported beam-
formers and DOA estimators, and compare them with model-based equivalences, to exam-
ine if a DNN-based approach is able to outperform a model-based in low SNR. In section 6.1
a comparison between the proposed DNN for DOA estimation (DNN-DOA) and a model-
based MPDR beamscan method (MPDR-DOA) will be provided. The comparison will be
in terms of confusion matrices and mean-absolute error (MAE) as a function of SNR.

Afterwards, in section 6.2, the performance of the proposed DNN supported beam-
formers will be compared with a model-based Bayesian beamformer (Bayes-Model) in
terms of Extended Short-Time Objective Intelligibility (ESTOI), Perceptual Evaluation
Speech Quality (PESQ), and segmental SNR (segSNR). The proposed DNN supported
beamformers are: 1) a Bayesian beamformer, where posterior probabilities are estimated
with the DNN-DOA (Bayes-DNN-DOA), 2) an MPDR beamformer where the DOA is es-
timated with the DNN-DOA (MPDR-DNN-DOA), and 3) an MPDR beamformer where
the RTF-vectors are estimated by a DNN (MPDR-DNN-RTF).

The performance of the DOA estimation and beamformer algorithms are evaluated
in simulated acoustic scenes where the front and rear microphones of a left hearing aid,
device mounted on a dummy head [9], is used. The number of parameters that can be
adjusted in an acoustic scene, such as type of noise field and noise type, is large, and for
convenience some of the parameters will be fixed when generating the acoustic scenes.
Among the variable parameters that must be considered, are:

1. Noise field
The noise field can either be anisotropic or isotropic. Anisotropic noise field can
easily be implemented and synthesized, but might be less suitable for evaluation
and comparison as we must further consider a) the number of noise sources, b)the
spatial distribution of the noise sources, and c) the power of each noise source. Sim-
ulating an approximately isotropic noise field can, however, be more convenient as
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the number of noise sources is fixed (72 sources in this case), the spatial distribution
of noise sources is uniform, and the power radiated from each noise source is equal.

2. Noise type
The noise type may also range from being speech shaped noise, bus noise, cafeterias,
babble noise, street noise, and pedestrian to mention a few. Speech shaped noise
is however artificially generated and does not occur in real acoustic environments.
Natural acoustic scenes where the hearing user will benefit from a beamformer, can
be a noisy environment such a cocktail party or a restaurant [1, p. 122] for which
reason, we choose the noise type of the acoustic scene to be babble noise. The
babble noise received at the microphones is formed as a superposition of speech im-
pinging uniformly from all 72 directions. The speech signals are recordings from the
TIMIT database, but were not included in the training of the DNNs. Furthermore,
an isotropic model serves as a reasonable model natural noise sources e.g. long-term
reverberation [23].

3. SNR
For the SNR dimension, since one of the motivations behind this project is to de-
velop a DNN supported acoustic beamformer able to outperform a model-based
beamformer in low SNRs, the proposed and baseline beamformers are tested under
a variety of different low SNRs.

4. Target direction
The target direction will play a role in DOA estimation and beamforming perfor-
mance. For example, the power received from a source of which the direct path
is blocked by the head, might be lower than if the target source were placed at a
direction where the head is not blocking the sound. Therefore, the performance of
DOA estimation and beamforming must be conducted at different target directions.

6.1 DOA Estimation
Here we compare the MPDR-DOA and the DNN-DOA algorithms. Both algorithms

output estimated posterior probabilities of the DOA, and the estimated DOA for both
algorithms is selected to be the direction with the largest posterior probability. The
systems are tested in artificially generated acoustic scenes and the settings are

Noise Field Noise Type SNR Target direction

Isotropic Babble 0, -6, -12 dB -175◦, -170◦, ..., 180◦

Table 6.1: The configuration of the acoustic scenes for testing the DOA estimation of MPDR-
DOA and DNN-DOA. The MPDR-DOA and DNN-DOA are tested for 0 dB, and -6 dB and -12
dB SNR. Results for -6 dB and -12 dB SNR are given in Appendix B
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Figure 6.1: Confusion matrix for MPDR-DOA at 0 dB SNR. 1000 realization of acoustic scenes
with different target talkers, different noise waveforms, are generated and tested for each column.

Furthermore, each CPSD matrix is estimated over L = 25 frames and estimated with
(3.9). For DOA estimation, the results are presented in forms of confusion matrices seen in
Figure 6.1 for the MPDR-DOA and Figure 6.2 for the DNN-DOA for an SNR of 0 dB for
isotropic babble noise. The confusion matrices show the estimated DOA versus the true
DOA, where the column k for angle θk in the confusion matrix, indicates the distribution
of estimated DOA in the range -175 to 180 degrees for angle θk. A red diagonal line in the
confusion matrix implies, that the majority of estimated DOA are correct. It is seen that
the diagonal line for the DNN-DOA is more prominent than the MPDR-DOA, meaning
that the DNN-DOA is more robust than the MPDR-DOA at estimating the DOA at 0
dB SNR. This was also expected as the DNN-DOA, has been trained on similar acoustic
scenes, where the noise field is approximately isotropic and with babble noise.

The mean-absolute error (MAE) is shown in Figure 6.3. The MAE can be computed
by averaging the absolute error between the estimated and true DOA. It is seen that the
MPDR-DOA has a low MAE at approximately -100 to -70 degrees and equivalently around
70 to 120 degrees, but is otherwise high. At 70 to 120 degrees, the target is closest to the
microphones and the power received might be slightly higher compared to other directions,
which may explain the low MAE. The increased performance at -100 to -70 degrees may
not appear obvious, as target is blocked by the head. The low MAE might however be
explained by diffraction caused by the head [2, p. 201] [42]. The DNN-DOA is seen to
have a lower MAE on average, than the MPDR-DOA indicating a better performance at
0 dB SNR. Results for -6 dB and -12 dB SNR are shown in Appendix B. The comparison
concludes that the DNN-DOA is more robust at estimating the DOA at 0 dB, -6 dB and
-12 dB SNR.
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Figure 6.2: Confusion matrix for DNN-DOA at 0 dB SNR. 1000 realization of acoustic scenes
with different target talkers, different noise waveforms, are generated and tested for each column.
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Figure 6.3: Mean absolute error for isotropic babble noise with an SNR of 0 dB at the reference
microphones.

6.2 Beamformer Performance
In this section, the proposed and baseline beamformers are compared in terms of

ESTOI, PESQ, and segSNR scores. For reference, the unprocessed noisy observations and
an ideal MPDR beamformer with the true DOA, are included. The ESTOI, PESQ, and
segSNR are computed as a function of SNR and for target directions -90, 0, 90, and 180
degrees. The acoustic scene settings are:
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Noise Field Noise Type SNR Target direction

Isotropic Babble 6,4,2,...,-12 dB -90◦, 0◦, 90◦, 180◦

Table 6.2: The configuration of the acoustic scenes for evaluating the performance of the proposed
beamformers.

6.2.1 Speech intelligibility
Here we evaluate the speech intelligibility predicted by ESTOI [43] of the output of

the beamformers. The details of ESTOI will not be covered in this thesis, but can be
found in [43, 44]. The input to the predictor are the clean target signal, and the output of
the beamformer. The score of ESTOI is between -1 and 1, where a higher score indicates
high speech intelligibility. The ESTOI scores for SNRs between -12 dB and 6 dB for a
target direction of 0◦ is shown in Figure 6.4a and the improvement in Figure 6.4b. The
ESTOI scores for target directions -90, 90 and 180 are shown in Appendix B.
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Figure 6.4: Speech intelligibility estimated with ESTOI. The SI for each SNR is averaged over
20 runs.

It is seen that all DNN supported beamformers achieve a higher ESTOI score than the
unprocessed noisy signal for all SNRs. In high SNRs (-2 to 6 dB), the Bayes-DNN-DOA
and MPDR-DNN-DOA have almost identical ESTOI score to the ideal MPDR beam-
former. The similar performance between the Bayes-DNN-DOA and MPDR-DNN-DOA
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is expected as the posterior probability in high SNR estimated by the DNN-DOA, most
likely will be close to 1 at the true DOA. The MPDR-DNN-RTF beamformer does not
obtain a high ESTOI score compared to other DNN supported beamformers. This is pos-
sible due to the fact that the DNN-RTF algorithm has to estimate the RTF-vector instead
estimating the DOA from a discrete set of directions. The model-based Bayesian beam-
former, Bayes-Model, seems to have a poor performance. The poor performance might be
due to poor estimates of the posterior probabilities. Furthermore, in order to estimate the
model-based posterior probability, the parameters γ has to be tuned. According to [17],
γ is a function of SNR, and should be small at low SNR and large at high SNR for good
performance. However, since the SNR is unknown by the beamformers in our particular
application, γ had to be set to a fixed scalar, that remained identical for all SNRs. This
resulted in poor ESTOI scores at high SNRs as seen in Figure 6.4.

6.2.2 Perceptual Evaluation of Speech Quality
Here we compare the PESQ score between the beamformers at different SNRs. PESQ

is a standardized method to predict the perceived speech quality from subjects [45] [46,
p. 13], and will be used as a black box for evaluation. The inputs of PESQ are the clean
speech signal and the degraded speech signal and the PESQ algorithm returns a score
between -0.5 and 4.5, where a high score means high predicted speech quality [45]. For
this case the degraded signal is the output of the beamformer. The PESQ score of the
beamformer output will then be compared to PESQ scores of the noisy signal. The PESQ
score as a function of SNR with a target source located at 0 degrees (i.e. frontal) is shown
in Figure 6.5.
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Figure 6.5: PESQ score. The PESQ score for each SNR is averaged over 20 runs.

It is seen that the PESQ score for the ideal MPDR, Bayes-DNN-DOA, and MPDR-
DNN-DOA are close to being identical for all tested SNR’s between -6 db to 6 dB. The
MPDR-DNN-RTF and Bayes-Model score a lower PESQ score than the other DNN sup-
ported methods until -2 dB, where all methods scores equally. From this evaluation, it is
hard to determine which method has the best performance.

6.2.3 Segmental SNR
Segmental SNR (segSNR) is a simple method to evaluate the speech quality and is

similar to computing the SNR, except that the signal is segmented into smaller frames of
N samples, and the SNR is computed and averaged over all frames [46, p. 9]. The segSNR
is given as [46, p. 9]

SNRseg = 1
M

M∑
m=1

10 log10

Nm+N−1∑
n=Nm

s(n)2

Nm+N−1∑
n=Nm

[s(n)− ŝ(n)]2
(6.1)

The segSNRs are computed after beamforming and are plotted in Figure 6.6 with the
target direction at 0◦. The remaining results for −90◦, 90◦, and 180◦ are provided in
Appendix B.
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Figure 6.6: Segmental SNR. The segmental SNR for each SNR is averaged over 20 runs.

The Bayes-DNN-DOA and MPDR-DNN-DOA appears to offer similar performance
in SNR’s above -2 dB. However it is then seen, that below -2 dB Bayes-DNN-DOA re-
turns a higher segSNR score than the MPDR-DNN-DOA. The MDPDR-DNN-DOA and
Bayes-Model have degraded performances in segSNR compared the Bayes-DNN-DOA and
MPDR-DNN-DOA with Bayes-Model performing the worst.

It can be concluded from the results, that the MPDR-DNN-RTF and Bayes-Model
perform the worst among all tested beamformers in terms of ESTOI, PESQ, and segSNR
scores. The MPDR-DNN-DOA and Bayes-DNN-DOA share similar performance at high
SNR, but it seems that the Bayes-DNN-DOA is slightly more robust at low SNRs.



Chapter 7

Discussion

In this chapter, we will discuss the results found in chapter 6. Moreover, we will examine
the possible limitations and issues, that might appear when the DNN-based methods are
implemented on a hearing aid in real life i.e. outside simulation.

7.1 DOA Estimation
The DOA estimation performance of the MPDR-DOA and DNN-DOA was compared

in an approximately isotropic noise field with babble noise at SNRs of 0 dB, -6 dB, and
-12 dB. The results, given in form of confusion matrices, suggest that the DNN-DOA
algorithm on average is more accurate at estimating the DOA than the MPDR-DOA.
One explanation is, that the DNN is able to recognize features in the observed data, that
also appeared during training. Yet in acoustic scenes where the SNR is high, it has been
observed that the MPDR-DOA and DNN-DOA approach the same performance. From
the confusion matrices and the mean absolute error, we conclude the DNN-DOA is able
to outperform the model-based MPDR-DOA in the studied acoustic scenes in low SNRs.

7.2 Beamformer performance
From the beamformer evaluation in section 6.2, it is evident that the MPDR-DNN-

DOA and Bayes-DNN-DOA outperform Bayes-Model and MPDR-DNN-DOA in isotropic
noise fields with babble noise. The performance of the MPDR-DNN-DOA and Bayes-
DNN-DOA are almost identical to the ideal MPDR (i.e. known DOA) in high SNRs, as
the posterior probabilities estimated by the DNN-DOA return a probability close to 1 at
the true the DOA as we observed during experiments. It moreover appears that the Bayes-
DNN-DOA offers slightly higher robustness in low SNR compared to MPDR-DNN-DOA,
which might be due to the fact, that the Bayes-DNN-DOA is able to utilize the posterior
probability estimated by DNN-DOA to weighting the beamformer coefficients.

Among the proposed DNN supported beamformers (i.e. MPDR-DNN-DOA, Bayes-
DNN-DOA, and MPDR-DNN-RTF), the MPDR-DNN-RTF beamformer performs the
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worst. In contrast to the other beamformers, the DNN-RTF has to estimate the RTF-
vector directly from the noisy CPSD matrices Cx. A potential advantage of this, is that
the DNN-RTF is not bounded by selecting a predefined RTF-vector associated with a
direction from a discrete set. However, this also means that the DNN-RTF has a higher
degree of freedom, which may result in a DNN which may be more difficult to train.
The objective functions are also different, meaning that the solution space of DNN-RTF
might contain more local minimas and thus be more prone to obtain a poor optimum
during training. However, successfully training the DNN-RTF may potentially result in
a DNN, that is still able to estimate the RTF-vector, when an RTF-vector from an un-
seen direction is presented in contrast to the DNN-DOA. A more fair comparison between
DNN-DOA-based beamformers and the MPDR-DNN-RTF beamformer would be in envi-
ronments where the DOA is from a direction unknown to the DNN-DOA.

The Bayes-Model beamformer has the worst performance of all the examined beam-
formers. The poor performance is at least partly due to poor estimates of the posterior
probabilities of the DOA, as the only difference between the Bayes-Model and Bayes-DNN-
DOA is their method to estimate the posterior probabilities. Other aspects of Bayes-Model
that contribute to the poor performance, are its tuning of the parameter γ. In principle,
the γ parameter is a function a SNR. The SNR is, however, unknown for the beamformers
in our application, and our simulation experiments suggest that determining a fixed γ that
performs good for a large range of SNRs is difficult. In the evaluation, the γ parameter
is set to be small (i.e. γ = 1) as the lowest SNR is -12 dB, which in return gives a poor
performance at higher SNR such as 6 dB. Moreover, in principle, γ might be a function
of frequency for noise and target signals which are not temporally white. This is due to
the fact, that if the target signal is speech, then it is expected that the SNR at e.g. 800
Hz in general is higher than the SNR at 100 Hz, where ambient noise might dominate
in the acoustic scene. These difficulties are hard to take into account, if additional prior
information is not provided to the posterior probability estimates of Bayes-Model.

7.3 Challenges Faced in Real World Implementation
In the performance evaluation, the noise field is approximately isotropic, but in real

acoustic scenarios, the noise field may also be anisotropic. An example of such a situation
is an acoustic scene with a target speaker and a single competing speaker. In this case,
if the SNR is high such that the target speaker is "louder" than the competing speaker,
the DNN will not have any issues in estimating the true DOA or RTF-vector. However,
as the SNR decreases until the competing speaker becomes louder, the DNN will estimate
the DOA to be towards the competing speaker, and as a consequence, the beamformer
will distort the true target speaker. If the DNN should be robust against such cases, the
DNN requires additional prior information about the target’s position.

Other aspects that most likely occurs in a real world acoustic scene is changes in the
direction of the target and changes in the spatial coherence of the noise. In the evaluation,
the direction of the target speaker is fixed and the spatial coherence of the noise is identical
for all time frames. If these parameters changes over time, the DNN-based method may
perform less well. We previously discussed in chapter 5 that the performance of DNN-
based method will depend the number of frames the noisy CPSD matrices are formed
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over. The trade-off is that the fewer frames that are used to estimate the CPSD matrices,
the faster the DNN-based method will be at adjusting to changes at the cost of possible
worse steady-state performance.

7.4 Limitation of the HRTF database
The RTF-vectors used to simulate the received signal at the HA microphones are

obtained from a hearing aid mounted on a dummy head. We have assumed in the signal
model, that the HRTFs are not a function of distance. Unfortunately, this may be a
potential problem, when simulating the propagation of sound waves from a distance below
1 meter, where the HRTFs differ substantially with distance [10]. As the DNN is trained
on RTF-vectors obtained from HRTFs measured at a distance of 3 m from the head, we
expect that the DNN will perform worse in acoustic scenes where the target is at distances
below 1 meter. HRTFs measured at a distance below 0.8 m were however not available in
the database of HRTFs.

Another issue is that the elevation angle is not included in the training of the DNN,
which eventually also will cause a decrease in performance. Furthermore, differences in
the shape of the head and torso between person, and the placement of HA behond the
ear of the user will certainly also influence, the performance of the DNN-based method.
These are some of the hypothesized challenges related to the HRTF the DNN might face,
and further experiments are needed for verification.



Chapter 8

Conclusion

We have in this thesis explored the possible of applying a DNN to support acoustic beam-
formers for a hearing aids. Specifically, the goal of this thesis was first and foremost to
seek the answer to the following question:

How can a DNN be applied to support an acoustic beamformer and can it potentially
outperform a model-based acoustic beamformer in terms of speech intelligibility and
sound quality in acoustic scenes with low SNR?

To answer this question, we proposed three DNN supported acoustic beamformers, namely
an:

• MPDR beamformer supported by a DNN estimating the DOA (MPDR-DNN-DOA).

• MPDR beamformer supported by a DNN estimating the RTF-vector (MPDR-DNN-
RTF).

• Bayesian beamformer with the posterior probabilities estimated by a DNN (Bayes-
DNN-DOA).

We then compared the performance of the proposed DNN-supported beamformers with
a Bayesian beamformer with a model-based estimate of the posterior probabilities of the
DOA (Bayes-Model). From the results presented in chapter 6, it is evident that the DNN-
supported acoustic beamformers outperform the Bayes-Model in terms of ESTOI, PESQ,
and segSNR scores in the studied acoustic scenes. Of the three proposed DNN-supported
acoustic beamformers, the MPDR-DNN-DOA and Bayes-DNN-DOA performed similarly
with Bayes-DNN-DOA being slightly more robust at low SNRs.

The MPDR-DNN-RTF performed worse than the MPDR-DNN-DOA and Bayes-
DNN-DOA, but this is possibly due to the fact that the MPDR-DNN-RTF had to esti-
mate the RTF-vector from a continuous solution set in contrast to MPDR-DNN-DOA and
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Bayes-DNN-DOA which selected their solutions from a discrete set. The hypothesized
potential of the MPDR-DNN-RTF is that, it might outperform the other DNN-supported
beamformers when the DOA is not from a predefined discrete set of directions, which is
generally the case in real life.

From the results, we can thus concludes that the proposed DNN-supported beam-
formers are able to outperform a model-based acoustic beamformer in terms of predicted
speech intelligibility and predicted sound quality in low SNR.



Chapter 9

Future Work

We have in this thesis assumed that no additional prior information about the DOA of
the target is available. However, in practice, prior information can possible be obtained
by making an acoustic scene analysis in order to classify the type of acoustic environment
e.g. a cocktail party or car cabin noise. Then based on the classified acoustic scene, it
might be possible to apply a prior probability to the direction of the target. Related to
this, it might be reasonable to design a DNN, which task is solely to classify the type of
acoustic environment based on the spatial coherence found in the noisy CPSD matrix for
instance.

It is inevitably required to evaluate the performance of the DNN-supported beam-
formers in real acoustic scenes for example in reverberant rooms in order to verify that
the DNNs are able to generalize to real acoustic environments. Furthermore, the proposed
beamformers must be able to be implemented on a hearing aid. It is then necessary to
further consider the amount of parameters in the DNN and the execution time as hearing
aids have limited resources. In case that, the DNNs seem to perform poorly in real acous-
tic environments, one possible way to improve the generalization of the DNN, is to include
a wider range of RTF-vectors obtained from multiple HRIR measurements. Furthermore,
generally performance may be increased by extending the training set to include more
representative noise fields and noise types.
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Appendix A

Network Optimization

The network parameters A are obtained by solving an optimization problem, which, how-
ever, tend to be non-convex [5, p. 282] meaning a global minimizer cannot be guaranteed
if a minima is found. Additionally the solution space of the objective function might be
highly non-linear with many local minimas in the solution space [5, p. 284]. Often, the ob-
jective function includes an expectation operator such as the mean squared error (MSE).
The issue with the expectation operator is that it requires a statistical model of random
variables which is not available. It is, fortunately, possible to approximate the expectation
given the data from the dataset.

Iterative solvers
Related to non-convex optimization, is that no closed-form solution exists that can

be used to determine the network parameters. Therefore, the common approach is to
use an iterative solver to update the network parameters. Let an be the current n’th
approximation of the optimum solution, ηn is the step size or learning rate, and δn is the
step direction, then an iterative solver has the form

an+1 = an + ηnδn. (A.1)

The learning rate is usually chosen at the beginning of the optimization while δn is deter-
mined on the fly. One of the most simple and widely used step direction is the negative
gradient. As the gradient provides a direction of the steepest ascent, the negative gradient
points towards the steepest descent. If δn is a realization of a random variable, then the
method of steepest decent is referred to as stochastic steepest descent as the estimates of
the gradient will fluctuate which will occur if minibatches are used.1 The learning
rate ηn might be set according to the batch size, where a small learning rate should be
selected if the batch sizes is small [5, p. 279]. For practical implementation, the back-

1Minibatches refer to a smaller subset of the full training set, used to compute the gradient for
one iteration.
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propagation algorithm is an efficient algorithm to obtain the partial derivatives of the
objective function with respect to some parameters in the neural network [5, p. 204].

Cross-entropy as objective function for classification
In this section we will discuss how the network parameters can be obtained through

a maximum likelihood approach using the cross-entropy error function for multiclass clas-
sification [24, p. 209]. As previously discussed the output of the classification network can
be interpreted as posterior probabilities if the output activation function is chosen to be
a softmax function which is given as [5, p. 184]

fi(z) = ezi
I∑
j=1

ezj
and

I∑
i=1

fi(z) = 1, (A.2)

where fi(z) is the output of the softmax activation function of the i’th unit in the layer
and I is the number of units in the layer. The outputs of the neural network are estimated
posterior probabilities P̂ (θi|Cx,A) from a true unknown probability distribution which
will be referred to as P (θi|Cx). For a more convenient notation, let ti = P (θi|Cx) and
t ∈ RI will be referred to as the target vector. We define

ti = P (θi|Cx) =
{

1, if i = itrue

0, otherwise
, i = 1, 2, ..., I, (A.3)

with I = 72. To obtain a maximum likelihood estimate of the network parameters, a
likelihood function is needed. If the batch size for training consists of 1 example then the
likelihood function is f(t|Cx,A). Since the estimates of the posterior probabilities of the
network is discrete with I possible outcomes, the multinoulli distribution is used to model
the likelihood function such that

f(t|Cx,A) =
I∏
i=1

P̂ (θi|Cx,A)ti (A.4)

and for batch sizes with N examples, then the likelihood function is given as [24, p. 209]

f(t(1), t(2), ..., t(N)|C(1)
x ,C(2)

x , ...,C(N)
x ,A) =

N∏
n=1

I∏
i=1

P̂ (θi|C(n)
x ,A)t

(n)
i . (A.5)

To obtain the maximum likelihood estimate, the likelihood function is maximized i.e.

A? = arg max
A

f(t(1), t(2), ..., t(N)|C(1)
x ,C(2)

x , ...,C(N)
x ,A). (A.6)

We then use the logarithmic function to obtain the log-likelihood function for mathematical
and numerical convenience, and as the logarithm is a monotonically increasing function,
the argument does not change and the solution remains identical. Furthermore, we turn
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the maximization problem into a minimization problem by minimizing the negative log-
likelihood function which leads to

A? = arg min
A

− ln f(t(1), t(2), ..., t(N)|C(1)
x ,C(2)

x , ...,C(N)
x ,A), (A.7)

and

− ln
(

N∏
n=1

I∏
i=1

P̂ (θi|C(n)
x ,A)t

(n)
i

)
= −

N∑
n=1

I∑
i=1

t
(n)
i ln P̂ (θi|C(n)

x ,A), (A.8)

which is also called the cross-entropy error function for multiclass classification [24, p.
209]. We then substitute (A.8) into (A.7) which leads to the optimization problem

A? = arg min
A

−
N∑
n=1

I∑
i=1

t
(n)
i ln P̂ (θi|C(n)

x ,A), (A.9)

meaning that the maximum likelihood estimate of the network parameters can be found
by minimizing the cross-entropy between the estimated posterior probability and the ex-
pected target probability distribution.

An alternative way to interpret the optimization problem, is that the Kullback-Leibler
(KL) divergence is minimized. The KL divergence is a method to measure the dissimi-
larities between two probability distributions, namely an observed P̂ (θi|Cx,A) and an
expected probability distribution P (θi|Cx) [5, p. 74]. For discrete probability distribu-
tions the KL divergence is given as [47, p. 322]

D{P ‖ P̂} =
I∑
i=1

P (θi|Cx) ln
(

P (θi|Cx)
P̂ (θi|Cx,A)

)

= −
I∑
i=1

P (θi|Cx) ln P̂ (θi|Cx,A) +
I∑
i=1

P (θi|Cx) lnP (θi|Cx)

= H{P ‖ P̂}+H{P},

(A.10)

where H{P ‖ P̂} is the cross-entropy between P and P̂ and H{P} is the entropy of P .
The objective is to minimize the KL divergence in an expected sense such that

A? = arg min
A

− E
[
I∑
i=1

P (θi|Cx) ln P̂ (θi|Cx,A)−
I∑
i=1

P (θi|Cx) lnP (θi|Cx)
]
, (A.11)

and since the last term is not a function of the network parameters A then this can be
omitted in the optimization leading to

A? = arg min
A

− E
[
I∑
i=1

P (θi|Cx) ln P̂ (θi|Cx,A)
]
. (A.12)

Since the expectation cannot be exactly evaluated, it is approximated by the data in the
minibathces such that

A? = arg min
A

−
N∑
n=1

I∑
i=1

P (θ(n)
i |C

(n)
x ) ln P̂ (θ(n)

i |C
(n)
x ,A), (A.13)
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which is equivalent to (A.9).
As mentioned in the beginning of this section, the optimization problem is solved by

an iterative solver. Each time the iterative solver is updated, a new minibatch of data
is used to compute the gradient, and thus, in practice, one will never obtain an exact
maximum likelihood estimate the of network parameters except for when the data in the
batches are exactly identical with all previous batches.

MMSE estimator of network parameters
A well-known type of estimator in statistical signal processing is an estimator that

minimizes the mean squared error between the true parameter and the estimated param-
eter and is referred to as the minimum mean squared error (MMSE) estimator. For the
regression network, the network parameters A are updated such that the MSE between
the estimated RTF-vector and true RTF-vector is minimized. The optimization problem
is given as

A? = arg min
A

E
[∥∥∥d(θ)− d̂(Cx,A)

∥∥∥2

2

]
. (A.14)

The expectation is then approximated which leads to

A? = arg min
A

1
N

N∑
n=1

∥∥∥d(θ(n))− d̂(C(n)
x ,A)

∥∥∥2

2
. (A.15)

where N is the size of the minibatch. Finally, the activation function of the output layer
for the regression network is linear i.e. fi(z) = zi.



Appendix B

Additional Results

Here we provide the remaining results from the DOA estimation and beamformer perfor-
mance evaluations.

B.1 DoA estimation
The acoustic scene settings for the DOA estimation comparison is seen in Table B.1.

Noise Field Noise Type SNR Target direction

Isotropic Babble 0, -6, -12 dB -175◦, -170◦, ..., 180◦

Table B.1: The configuration of the acoustic scenes for testing the DOA estimation of MPDR-
DOA and DNN-DOA.

Here, we only provide the results for the SNRs -6 dB and -12 dB as 0 dB is already
shown and discussed in chapter 6. The confusion matrix for SNRs of -6 dB for the MPDR-
DOA is shown in Figure B.1 and in Figure B.2 for the DNN-DOA. The MAE as a function
of true DOA direction is shown in Figure B.3. It is seen from Figure B.1, that the the
MPDR-DOA seems biased towards estimating the DOA to be approximate 100 degrees,
70 degrees, and -80 degrees when noise is isotropic babble noise and the SNR is -6 dB.
Comparing the confusion matrices in Figure B.1 and in Figure B.2, it seems to be the
case that the DNN-DOA is more robust at estimating the DOA. This is also verified in
Figure B.3 where the the MAE on average is lower for the DNN-DOA. The MAE for
MPDR-DOA, however, seem to be lower approximately in the range [75, 150] degrees.
The lower MAE might although be explained by biased estimates by the MPDR-DOA at
this range.
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Figure B.1: Confusion matrix for MPDR-DOA at -6 dB SNR. 1000 realization of acoustic scenes
with different target talkers, different noise waveforms, are generated and tested for each column.
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Figure B.2: Confusion matrix for DNN-DOA at -6 dB SNR. 1000 realization of acoustic scenes
with different target talkers, different noise waveforms, are generated and tested for each column.
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Figure B.3: Mean absolute error for isotropic babble noise with an SNR of -6 dB at the reference
microphones.

The confusion matrices for -12 dB SNR is shown in Figure B.4 and Figure B.5.
Again, it seems to be the case, that the MPDR-DOA makes biased estimates of the DOA,
although at -12 dB SNR isotropic babble noise, the majority of the DOA estimates are at
-175 degrees. The DNN-DOA at -12 dB SNR is also biased at estimating the DOA to be
approximately in the range [−90, 90]. This can also be seen in the MAE as a function of
direction in Figure B.6, where the MAE is lowest close to 0 degree for the DNN-DOA and
-175 degrees for the MPDR-DOA.
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Figure B.4: Confusion matrix for MPDR-DOA at -12 dB SNR. 1000 realization of acoustic scenes
with different target talkers, different noise waveforms, are generated and tested for each column.
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Figure B.5: Confusion matrix for DNN-DOA at -12 dB SNR. 1000 realization of acoustic scenes
with different target talkers, different noise waveforms, are generated and tested for each column.
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Figure B.6: Mean absolute error for isotropic babble noise with an SNR of -12 dB at the reference
microphones.

B.2 Beamformer Performance
In this section, the remaining results for the beamformer evaluation are shown for

DOAs of -90, 90, and 180 degrees. The setting of the acoustic scenes is shown in Table B.2

Noise Field Noise Type SNR Target direction

Isotropic Babble 6,4,2,...,-12 dB -90◦, 0◦, 90◦, 180◦

Table B.2: The configuration of the acoustic scenes for evaluating the performance of the proposed
beamformers.

The ESTOI scores are shown in Figure B.7 as a function of SNR in isotropic bab-
ble noise for -90, 0, 90, and 180 degrees. It is seen that the MPDR-DNN-DOA and
Bayes-DNN-DOA have similar performance. It however seems that MPDR-DNN-DOA
and Bayes-DNN-DOA have much degraded ESTOI score at 180 degrees in very low SNR.
In high SNR, the MPDR-DNN-RTF has the lowest ESTOI score among all DNN-based
methods. At very low SNR the MPDR-DNN-RTF perform similar to the MPDR-DNN-
DOA and Bayes-DNN-DOA. The Bayes-Model has the worst performance in high SNR,
but gives an ESTOI score close to the noisy in very low SNRs.
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Figure B.7: Speech intelligibility estimated with ESTOI. The SI for each SNR is averaged over
20 runs.
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B.2.1Perceptual Evaluation of Speech Quality
The PESQ score for -90, 0, 90, and 180 degrees are shown in Figure B.8 in isotropic

babble noise. Noteworthy, is that the Bayes-Model seem to score a much higher PESQ
score, at -90 and 90 degrees, than all examined methods including the ideal MPDR where
the DOA is known, but otherwise poorly at 0 and 180 degrees. This exact reason to
the high PESQ score is unfortunately unknown. Otherwise, the MPDR-DNN-DOA and
Bayes-DNN-DOA again seem to have similar PESQ scores in isotropic babble noise. The
MPDR-DNN-RTF performs less well in high SNRs than the MPDR-DNN-DOA and Bayes-
DNN-DOA, but approaches the same PESQ score in low SNRs.



76 Additional Results Chap. B

−6 −4 −2 0 2 4 61

1.1

1.2

1.3

1.4

1.5

1.6

1.7

SNR [dB]

PE
SQ

Sc
or

e

(a) DOA = −90◦.

−6 −4 −2 0 2 4 6
SNR [dB]

(b) DOA = 0◦.

−6 −4 −2 0 2 4 61

1.1

1.2

1.3

1.4

1.5

1.6

1.7

SNR [dB]

PE
SQ

Sc
or

e

(c) DOA = 90◦.

−6 −4 −2 0 2 4 6
SNR [dB]

(d) DOA = 180◦.

Figure B.8: PESQ score. The PESQ score for each SNR is averaged over 20 runs.
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B.2.2Segmental SNR
The segSNR scores for -90, 0, 90, and 180 degrees as a function of SNR are shown in

Figure B.9. It is again, observed that the MPDR-DNN-DOA and Bayes-DNN-DOA have
similar performance in high SNR, however, it appears that the Bayes-DNN-DOA has a
higher segSNR score than the MPDR-DNN-DOA at low SNRs. It appears that the Bayes-
DNN-DOA is able to score a high segSNR score than the ideal MPDR at -90 and 90 degrees
at low SNRs in isotropic babble noise, and equivalently Bayes-Model that obtains a higher
segSNR at high SNR at -90 and 90 degrees. The exact reason remains unknown but one
must consider that minimizing the objective function of the MPDR beamformers, does
not necessary translate directly to optimum segSNR performance. The MPDR-DNN-RTF
also shows worse performance compared to the other DNN-based approaches.



78 Additional Results Chap. B

−12−10−8 −6 −4 −2 0 2 4 6
−18
−16
−14
−12
−10
−8
−6
−4
−2

0
2
4
6

SNR [dB]

Se
gm

en
ta

lS
N

R
af

te
r

be
am

fo
rm

in
g

[d
B]

(a) DOA = −90◦.

−12−10−8 −6 −4 −2 0 2 4 6
SNR [dB]

(b) DOA = 0◦.

−12−10−8 −6 −4 −2 0 2 4 6
−18
−16
−14
−12
−10
−8
−6
−4
−2

0
2
4
6

SNR [dB]

Se
gm

en
ta

lS
N

R
af

te
r

be
am

fo
rm

in
g

[d
B]

(c) DOA = 90◦.

−12−10−8 −6 −4 −2 0 2 4 6
SNR [dB]

(d) DOA = 180◦.

Figure B.9: Segmental SNR. The segmental SNR for each SNR is averaged over 20 runs.
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Input normalization

Here we derive the input normalization that is applied to the noisy CPSD matrices before
being fed into the DNNs. The average power over all microphones is

Px =
M∑
m=1

P (m)
x =

M∑
m=1

N∑
n=1

x2
m(n), (C.1)

where xm(n) is the time domain noisy signal of the m’th and N is the total number of
samples observed. Using Parseval’s theorem, the Fourier transformed microphone signal
is Xm(k) with K = N frequency bins. We then have

Px = 1
K

K∑
k=1

M∑
m=1
|Xq(k)|2. (C.2)

Since we are processing the signal frame by frame, the average received power over all
frames is

P̄x = 1
L

L∑
l=1

Px(l) = 1
L

L∑
l=1

M∑
m=1

(
1
K

K∑
k=1
|Xm(k, l)|2

)
= 1
LK

K∑
k=1

L∑
l=1

M∑
m=1
|Xm(k, l)|2. (C.3)

We recall that the CPSD matrices are estimated by

Ĉx(k, l) = 1
L

L∑
l=1

X(k, l)XH(k, l), (C.4)

thus the diagonal elements of the CPSD matrices are

Ĉ(m,m)
x (k, L) = 1

L

L∑
l=1
|Xm(k, l)|2, (C.5)

and computing the trace of the CPSD matrices reveals

tr
(
Ĉx(k, L)

)
= 1
L

L∑
l=1

M∑
m=1
|Xm(k, l)|2. (C.6)
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Taking the average trace across all frequency bins gives

1
K

K∑
k=1

tr
(
Ĉx(k, L)

)
= 1
LK

K∑
k=1

L∑
l=1

M∑
m=1
|Xm(k, l)|2, (C.7)

thereby showing that the average power received at all microphones is

Px(L) = 1
K

K∑
k=1

tr
(
Ĉx(k, L),

)
(C.8)

and the normalized CPSD matrices are therefore,

Ĉx(k, L)← Ĉx(k, L)
1
K

K∑
k=1

tr
(
Ĉx(k, L)

) . (C.9)
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SPEECH ENHANCEMENT WITH DNN SUPPORTED ACOUSTIC BEAMFORMING

     Modern hearing aids often have more than one microphone available for

each device. It has been shown that substantial gains in speech intelligibility

can to obtained by applying multichannel signal processing methods (e.g.

beamformers) to noisy observations in noisy environments such as cocktail

parties or restaurant-like environments. Model-based signal processing

methods might, however, perform less well in acoustic environments where

the SNR is low as the unknown parameters needed for the beamformers are

harder to estimate. The motivation behind the work presented in this thesis,

is thus to explore the possibility of applying a deep neural network (DNN) to

support an acoustic beamformer as an alternative to the model-based

methods. The DNN will in this thesis specifically estimate the direction-of-

arrival (DOA) and the relative transfer function (RTF) vector needed for the

examined beamformers.  

     We have proposed three types of DNN supported beamformers in this

thesis: 1) A minimum power distortionless response (MPDR) beamformer

supported by a DNN for DOA estimation, 2) an MPDR beamformer supported

by a DNN estimating RTF-vectors, and 3) a Bayesian beamformer where the

posterior probabilities are estimated by a DNN. The experimental results

show that the DNN-supported beamformers are able to outperform a model-

based Bayesian beamformer in acoustic scenes with isotropic babble noise in

terms of ESTOI, PESQ, and segSNR scores.  
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