
Aalborg UniversityInstitute of Computer Siene dFredrik Bajersvej 7E DK-9220 Aalborg � Phone: +45 96 35 80 80

Group E3-101A, DAT6 projet, spring 2001.

Aalborg UniversityInstitute of Computer Siene dFredrik Bajersvej 7E DK-9220 Aalborg � Phone: +45 96 35 80 80Theme: Distributed Systems,Computer Vision and Virtual RealityTitle: An Augmented Reality Museum for thePAVE FrameworkPeriod: Feb 4th 2001 toJun 13th 2001
Projet members:Rune Elmgaard LaursenMikkel Kierkegaard StausholmHenrik Lunardi WeideSupervisors:Anders P. RavnClaus B. MadsenCopies: 10Pages: 90
Delivered: Jun 13th 2001

Abstrat:This report overs the analysis, designand implementation of an augmented re-ality (AR) museum prototype. The sys-tem is built as modules for the PAVE(Parallel Arhiteture for Visual E�ets)framework, and hene the performaneof the system sales on multiproes-sor PCs with a measured gain of 54%from 1 proessor to 2 proessors. Thesystem utilizes 3D graphis hardwarefor visualization in real time and sup-ports binding of dynami visual e�etsto 3D objets. The system runs in realtime with a minimum frame rate of 9,1frames/seond on the test mahine used.The design overs the overall system ar-hiteture, enhanements made on thePAVE framework and the desription ofsuitable algorithms to meet the require-ments for the AR museum.
Copyright 2001, Institute of Computer Siene, AAU.

Aalborg UniversitetInstitut for Datalogi dFredrik Bajersvej 7E DK-9220 Aalborg � Tlf: +45 96 35 80 80Fagomr�ade: Distribuerede systemer,Computer Vision og Virtual RealityTitel: An Augmented Reality Museum for thePAVE FrameworkPeriode: 4.feb 2000 til13.jun 2001
Projektdeltagere:Rune Elmgaard LaursenMikkel Kierkegaard StausholmHenrik Lunardi WeideProjektvejledere:Anders P. RavnClaus B. MadsenOplag: 10Antal sider: 90
Dato: 13.jun 2001

Synopsis:Denne rapport omhandler analyse, de-sign og implementation af et proto-type \augmented reality" museum. Sys-temet er bygget som moduler til PAVE(Parallel Arhiteture for Visual Ef-fets) frameworket, og ydelsen af sys-temet skalerer p�a multiproessor PC'ere.Forbedringen af ydelsen er m�alt til atv�re 54% fra 1 proessor til 2 proes-sorer. Til visualisering i reel tid ud-nytter systemet 3D gra�k hardware ogsupporterer tilknytning af dynamiske vi-suelle e�ekter til 3D objekter. Designaspekterne omhandler den overordnedesystem arkitektur, udvidelser foretagetp�a PAVE frameworket og beskrivelsen afpassende algoritmer til at im�dekommekravene til et \augmented reality" mu-seum.
Copyright 2001, Institut for Datalogi, AAU.

PrefaceThis report is the result of group E3-101A's projet work done on the DAT6semester, in the spring of 2001, at the Institute of Computer Siene at AalborgUniversity. This report desribes the analysis, design and test of a prototype ARsystem built as modules in the PAVE (Parallel Arhiteture for Visual E�ets)framework.We wish to thank: Flemming N. Larsen, Aalborg University, for showing us somebasis about 3D StudioMAX sene modelling. Peter Hounum, Preben S. Nielsenand Sven Vestergaard at AM:3D for lending us a Polhemus FASTRAK for severalritial weeks. Karin Husballe Munk, Aalborg University, for lending us a PolhemusISOTRAK. Aalborg University, DenmarkJune 13th, 2001

Rune Elmgaard Laursen Mikkel Kierkegaard Stausholm
Henrik Lunardi Weide7

Contents

1 Introdution 111.1 Motivation . 111.2 Projet Goals . 122 Related Work 153 Analysis 173.1 What is Augmented Reality? . 173.2 Typial AR systems . 183.3 Choosing the AR Museum . 203.4 The AR Museum . 203.4.1 Requirements . 223.4.2 Delimitations . 233.5 Summary . 234 Baseline 254.1 Hardware . 254.2 Software . 264.2.1 Calulation of Camera Field of View 274.2.2 Rendering Pipeline . 284.3 The PAVE framework . 304.3.1 Render Model and Data Flow 304.3.2 Modules . 314.3.3 Parallelization in PAVE . 324.3.4 PAVE Design . 344.3.5 The Generi Components 384.3.6 Graph desription Components 404.3.7 The Communiation and Synronization Components 414.3.8 Management Components 454.3.9 Exeution engine Components 474.4 Summary . 495 Design 515.1 Arhitetural Style . 515.2 PAVE Design Enhanements . 535.2.1 Optional Inputs and Outputs on Nodes 539

5.2.2 Trigger Capable Node . 545.2.3 Empty Triggering . 555.2.4 Garbage Colletion . 565.2.5 Read-Only and Writable Data 575.3 Components . 595.3.1 Data Strutures . 595.3.2 World Model Module . 615.3.3 Magneti Traker Module 615.3.4 Camera Module . 635.3.5 Distortion Corretion Module 645.3.6 Frustum Culling Module . 655.3.7 World Objet Module . 675.3.8 World Update Module . 685.3.9 Render Module . 695.3.10 Summary . 716 Experiments 736.1 Performane Saling Test . 736.1.1 Test Setup . 756.1.2 Test Results . 756.2 User Impression Test . 756.2.1 Test Setup . 756.2.2 Test Results . 756.3 Magnetial Traker Preision Test 786.3.1 Test Setup . 786.3.2 Test Results . 786.4 Test Conlusion . 807 Conlusion 818 Future Work 838.0.1 Enhaned Traking . 838.0.2 Multiple Users . 838.0.3 Hardware Aelerated Image Distortion 838.0.4 Shadows . 848.0.5 Depth of Field Blur . 84A BaseModule Speialization Example 85

1IntroductionLast semester we designed and implemented a framework, alled PAVE (Parallel Ar-hiteture for Visual E�ets), that supported parallel real time rendering of graphisin a generi fashion. The motivation was that a lot of urrent real time graphisappliations are hardoded to support partiular hardware on�gurations to maxi-mize rendering speed. Most multimedia programs o�er utilization of e.g. 2 CPUsby design, but typially not for more CPUs. Therefore, we wanted to ontributeto the real time graphis area, by developing a general model for parallel renderingthat ould be used to reate salable real time graphis appliations.As a onsequene we designed a dataow model that supports generi parallelexeution, useful for making e.g. graphis rendering performane salable overmultiple CPUs on a given mahine. The number of CPUs that an be utilized is notlimited by the dataow model and the way we have designed the parallel exeutionengine. Futhermore the dataow model was designed as a modular frameworkthat an be used by a programmer to reate di�erent kinds of real time graphisrendering appliations. The point was that a programmer should only worry aboutreating modules (plugins) aording to a template interfae. The modules anthen be used as omponents in e.g. a larger graphis rendering sheme, by pluggingthem into an dataow graph and the parallel exeution will then be taken are ofby the framework. The ideal goal was to make it easier and less error prone for aprogrammer to reate performane salable graphis software with our framework,by adhering to a small set of simple rules, and not worry about parallelization issues.1.1 MotivationNow that we have a framework for reating salable graphis appliations, we �nd itto be a natural step to reate a graphis appliation ourselves and use the frameworkas the underlying software platform. Partiularly we want to reate an appliationthat has high demands in terms of aeptable graphis rendering speed and at thesame time have a large room for potential enhanements.11

This in partiular and the fat that we have an interest in real time omputergraphis for entertainment and art, let us to look into the area of reating augmentedreality (AR) systems. In the following we will desribe our spei� goals.1.2 Projet GoalsThe goal is to design and implement a simple augmented reality (AR) system, wherea real room ats as the frame of referene to a virtual world. In order to have apotential entertaining produt as a goal, we will use the onept of a museum. Wewill all this an AR Museum. We de�ne it to be the following:� It should be possible for a spetator, to inspet a given room in the realworld, and on a omputer sreen or a head mounted display observe the roomaugmented with virtual objets in real time.� Objets in the virtual world must appear, as if they were part of the realworld and hene follow the ameras view. In essene the objetive is to blendomputer graphis with input from a amera in a suitable manner to obtainthese goals.� The virtual objets ould be artisti pitures on the walls, sulptures standingat ertain positions et. The virtual objets ould be animated in some fashionin order to give the spetator a more entertaining experiene and to furtherenhane reality.The performane goals, that we have for the AR Museum, an be summarizedin the following:� Real time presentation. Sine a spetator must be able to freely move aroundin a room and observe events, the presentation speed, also alled renderingspeed, must have a minimum aeptable lower bound.� Performane salability. The system must be able to sale over multiple pro-essors, in order to inrease rendering speed.� The system should utilize speial graphis hardware that an assist in a-elerating the graphis rendering, and ideally do it in a fashion that favoursparallel exeution.It is our intention to reate suh a system by analyzing what omponents areneessary, designing and implementing them as modules that an be run in thePAVE (Parallel Arhiteture for Visual E�ets) framework, whih is introdued inhapter 4. We will design and implement neessary generi enhanements of PAVEin order to support the reation of the AR Museum. The reason that we wish touse PAVE as the underlying arhiteture, is its inherent ability to sale on multi12

proessor PCs, and hene give the AR system better performane salability.There are two issues that we will onsider. The �rst aspet of problems is deal-ing with the arhiteture of the AR system, like dataow between omponents andwhat role eah omponent in the AR system must have. This is inuened by theway PAVE works in terms of its inherent features and underlying modular designphilosophy.The other aspet of problems are based on eah omponents role in the ARsystem, and therefore onsists of applying suitable algorithms to the omponents.Datastrutures to pass information between the various algorithms, will be ad-dressed as well.

13

2Related WorkIn the �eld of Augmented Reality, many di�erent appliation areas exist. Peopleworking with the area have di�erent fouses, some ontributes to the area by devel-oping new more robust algorithms for e.g. amera traking, others fous on visualquality et.In augmented reality systems, a main issue for ahieving aeptable results isthat registration of the users position and gaze must be relatively preise, so thataugmented objets appear in the orret position.A alibration-free AR system, using optial traking that relies on traking atleast four non-o-planar points in the �lmed image is desribed in [KV98℄.The task of making a fast and robust traking algorithm that ombines magnet-ial traking and optial traking is addressed in [SHC+96℄.The StudierStube, desribed in [SFH00℄, is an example of a multi user AR system.Its main fous is on building multi user AR environments / user interfaes. It alsoomprises a traking algorithm whih ombines optial and magnetial traking.This is desribed in [APG98℄. In StudierStube head-mounted see-through displaysare used for augmentation.Another AR system that fouses on more users doing ollaborative work, isdesribed in [Rek96℄. Here a hand-held see-through display is used to view andinterat with augmented objets.An AR system with the same appliation ontext as in our projet, buildinga museum / gallery, is desribed in [MKN96℄. Here the fous is in partiular theinteration and ommuniation between visitors, virtual guides and the experts be-hind the exhibition.Our approah to reating an AR museum di�ers in fous from the above. In our15

projet we apply magnetial traking for determining position and gaze of the user.As we have reated our AR museum, we have done it under the onditions thatthe system must be salable over multiple proessors and thereby part of the foushas been on reating a exible and robust dataow software arhiteture. We havemade our system apable of handling real time graphial e�ets on virtual objets.The handling of the graphial e�ets has been made a part of the systems dataowarhiteture, in order to make optimizations and enhane salability at a higherlevel than on partiular e�et algorithms. Lastly, we have made the arhiteturemodular in a strong sense, so that alterations and enhanements of the system arepossible and supported. The whole system runs on a single omputer and takesadvantage of multiple proessors.

16

3AnalysisIn this hapter, we begin by desribing what augmented reality is, and what atypial augmented reality system ontains and its general requirements. Then wedesribe the hoies made in order to oneive the AR Museum as de�ned in setion1.2 and give an overview of the elements it must ontain. Finally, requirements anddelimitations for the AR Museum are given.3.1 What is Augmented Reality?Augmented reality (AR)1 desribes reality that is augmented with virtual objets.An augmented reality system presents the spetator with a omposite view of theworld, that onsists of the real sene viewed by the spetator ombined with a virtualomputer generated sene that augments the real world with additional information.In [Val01℄ the relation between augmented reality and virtual reality is de�nedas a Reality-Virtuality Continuum, shown in �gure 3.1.
Real
Environment

Virtual
Environment

Augmented
Reality (AR)

Augmented
Virtuality (AV)

Mixed Reality (MR)

Figure 3.1: Milgram's Reality-Virtuality ContinuumAugmented reality lies somewhere in between reality and virtual reality. It liesloser to reality than it is to virtual reality, the predominant pereption being thereal environment, augmented with virtual objets.1Augmented reality will in this report be denoted AR.17

Furthermore, [Val01℄ proposes a taxonomy for ategorizing mixed reality sys-tems, i.e. system that reates an environment whih is somewhere in between purereality and pure virtuality. It onsists of the three axes: Reprodution Fidelity,Extent of Presene Metaphor, and Extent of World Knowledge.Reprodution Fidelity is a measurement of the image quality of the objets thataugment reality. As it is required for AR systems to run in real time, the result ofrendering images with today's graphial hardware, is far from the photorealism, oneould wish for. This puts AR in the low end of the Reprodution Fidelity sale. Anultimate and ambitious goal would of ourse be to make the objets that augmentthe real environment indistinguishable from reality.Extent of Presene Metaphor desribes the degree of immersiveness that is felt bya spetator when looking at the displayed sene. The degree of imersiveness will, ofourse, be highly dependant of the display tehnique used in the AR system. Thereis a great di�erene in the feeling of looking around in an AR environment, andlooking at an AR environment.The Extent of World Knowledge dimension, in the mixed reality ategorizationproposed by Milgram, measures how muh information about the real world isavailable to the system. In AR systems it is imperative that aurate registrationof objets in the world an be maintained. The real and virtual parts of the worldmust be ombined so they math as a whole, as an augmented reality. For this tobe possible, the AR system typially must have information about the frames ofreferene for the real world, the amera viewing it and the spetator. The less worldknowledge needed by an AR system, the more robust and exible it is, as it an beused in hanging and di�erent settings.3.2 Typial AR systemsAlthough AR systems have many di�erent appliation ontexts with di�erent de-mands of the system, several key omponents are ommon to a typial AR system.These are desribed in the following.The main task of the AR system is to register the real sene viewed by thespetator and the orresponding virtual sene, merge the two senes orretly anddisplay the result, all this in real time. The real sene is viewed by an imagingdevie, a video amera or the human equivalent, the spetator's eyes. Likewise thevirtual sene ontaining the objets to augment the real sene, is viewed by a virtualamera, and is rendered by the omputer. These two "ameras" must be aligned, sothat the rendering of images from the virtual amera is orretly performed. Thismeans that the virtual amera must know the intrinsi (foal length, lens distortion)and extrinsi (position, orientation) parameters of the real amera. Merging of the18

two images an then be done, produing the augmented reality images to display.In �gure 3.2, an overview of a typial AR system is presented.
Real scene
being viewed

Virtual scene

Align Virtual
Camera to
Real Camera

Graphics
Rendering

Camera

Merging
Video and
Graphics

Displaying
Augmented
Images

Figure 3.2: Overview of a typial AR systemTo orretly align the two ameras, so that the virtual sene is rendered from thesame point of view as the real sene, the position and orientation of the real ameramust be traked in real time as the spetator moves around. A ommon methodfor traking, is using orientation angles and oordinates oming from a magnetialtraker. This method an be somewhat inaurate due to low resolution in thetraked orientation, limited range and disturbanes in the magneti �eld reated bythe traker. A ombination of magnetial traking and optial traking based onomputer vision algorithms, has been used to obtain higher auray. Suh hybridtraking is desribed in [SHC+96, APG98℄.As mentioned above di�erent tehniques for displaying the augmented imagesan be used, giving di�erent degrees of imersiveness. The simplest tehnique is touse a monitor for displaying the augmented reality. This is referred to as Fish Tankvirtual reality. Alternatively, see-through head-mounted displays (HMDs) an beused. HMDs ome in two forms. The equivalent of the monitor display is the videosee-through HMDs, whih ontains a amera. They projet the augmented imageon the displays, like on a monitor. With optial see-through HMDs the spetatoran atually see through, meaning only the virtual objets are displayed, the restof the display is transparent, giving the spetator a free view of reality.To onlude the overview of AR systems, we summarize the general performaneriteria of an AR system. As real time high quality visualization of the augmentedsene, in whih the spetator must be able to move around in, is imperative to an19

AR system the three following riteria are put on the system:� Frame rate of the rendered virtual images.� High visual quality rendering of the virtual objets.� Auray in registration of real and virtual images.A frame rate of minimum 10 frames per seond are onsidered aeptable for thevirtual objets in the AR sene not to appear jumpy. A low auray in registeringthe images will result in the virtual objets not being pereived as stationary. If,in the AR system, time delays our in omputing the alignment of the virtualamera, the virtual objets will lag behind the motion in the real world. To putit in short, in an AR system, speed, auray and low lateny is of the essene.High visual quality and high frame rate in the rendering of virtual objets is linkeddiretly to the Reprodution Fidelity measurement, and there is a trade-o� betweenimage quality and frame rate. The better image quality, the lower the frame rateand vie versa. Here 3D render aeleration hardware is useful, in order to speedup rendering of virtual objets without stressing the main CPU(s) too muh.3.3 Choosing the AR MuseumTo hoose an AR appliation ase, we need to �nd one where the PAVE2 arhite-ture an be exploited to its full potential in terms of parallelization. Sine PAVEwas designed with parallelization of real time graphial e�ets in mind, we �nd thatan AR appliation embodying suh e�ets should be an obvious hoie. We havetherefore hosen a museum as our ase, as this provides a possibility for experieningdynami real time e�ets, or omputer art, in a �tting environment, whih shouldgive the spetator a more immersive experiene. We also wanted a simple applia-tion, whih would not rely on interation between the spetator and the augmentedworld. A virtual museum is well justi�ed without interation, but it is of oursean area of great possibilities for enhaning the spetators experiene. Furthermorea virtual museum �lled with dynami real time art would all for a large amountof proessing power and therefore the automati salability of PAVE makes it asuitable platform. Later on, we will explain how real time graphial e�ets an betied into the AR Museum. In the following we will setup the requirements for theAR Museum.3.4 The AR MuseumThe AR Museum is seen as an arbitrary real world room with virtual objets plaedin it. The virtual objets onstitute the art in the museum and should ideally be2Introdued in hapter 4. 20

seen as existing in the room. There should be no real restritions on the virtual ob-jets. They an be stati or dynami in the sense that they hange properties suhas e.g. form or material whih will allow for e.g. pitures on the wall with dynamiontent. An interfae between dynami e�ets and suh objets should be designed,so frame data generated by algorithms onsistuting the e�ets an be linked to anobjet's properties. This ould be used for updating the material on a virtual objet.The museum should be able to be viewed from any position and orientationdesired, whih is ahieved by using a magnetial traker to determine position andgaze of the amera. We delimit the system from using optial traking, suh asusing e.g. image analysis algorithms to gain world knowledge. As a onsequenethe AR Museum will have a relatively low Extent of World Knowledge. The onlyworld knowledge the system must have apart from the amera position and gaze, isa given rooms geometry.Sine we have had no aess to see-through head-mounted displays, the museumis presented on a monitor and the real world is aptured by a standard web amera.This is also the reason why the system will be delimited from supporting multipleusers/spetators.The knowledge about the world (museum) is ontained in a struture alled theWorld Model. It holds information both about reality and virtual reality. Part ofthe reality desription inludes the piture grabbed by the amera and informationabout the ameras position and gaze. It also inludes a desription of the statigeometry of the world suh as walls, eilings, oors and possible lightsoures. Theknowledge of the virtual reality inludes desriptions of the geometry of the artobjets present in the museum and their properties suh as position and material.In the proess of onstruting the World Model, we �nd that adding support forusing a modeling tool, e.g. 3DStudio MAX, is an important feature, sine it allowseasier reation of omplex geometry.To enhane the overall performane of the AR system we have hosen to use 3Dgraphial hardware for rendering the virtual objets. For this purpose we will usethe Mirosoft Diret3D API, whih enapsulates hardware aelerated rendering of3D primitives. Furthermore we will fous on enhaning performane by detetingobjets that are not present in the ameras �eld of view. This information an beused for deativating dynami e�et algorithms, linked to ertain virtual objets,whih generates frames used exlusively by these objets.For merging the amera image of the real world with the omputer generatedimage of the virtual objets, amera alibration must be performed to ompensatefor lens distortion, for this we need a Camera alibration omponent, that deliversalibrated amera images to the World Model struture. The ameras positionand orientation read from the magnetial traker must be olleted by a Magneti21

traker omponent, that delivers the data to the World Model struture. When theinformation about the real world is known, based in amera input, position andorientation and geometry desriptions enapsulated in the World Model struture,Virtual objet lipping must be done for objets that are outside the ameras view.Finally, a Rendering omponent, that displays all the olleted information on sreenis need. See �gure 3.3 for a oneptual overview of the elements we imagine theAR Museum must ontain. The small irles denotes objets in the virtual world,suh as pitures on the walls or sulptures. The small graphs linked to eah virtualobjet, symbolizes dynami e�et algorithms, where eah e�et is tied to a givenobjets material.

Rendering

Real World

Virtual World

Virtual object
clipping

World Model

Camera
Magnetic
tracker

Camera
calibration

Dynamic Effects

Figure 3.3: AR Museum overview.Based on the above the spei� requirements for the AR Museum, that willinuene the design and hoie of algorithms for the omponents is summarizedbelow along with the delimitations we have made.3.4.1 RequirementsSpei� requirements for the AR Museum are:� One amera for �lming the real world.� Magneti traker is used to trak the position and orientation of the amera.22

� Calibration of the images grabbed by the amera.� Dynami virtual objets.� Interfaing between dynami e�ets and virtual objet properties.� Culling of virtual objets that are out of sight and dynami e�ets tied tothose objets must be deativated.� Graphi rendering must take advantage of 3D hardware.� World Model geometry an be desribed in a modeling tool.3.4.2 DelimitationsThe delimitations of the AR Museum are:� Single user system.� No interation with objets in world model.� The augmented result is seen on a standard monitor.� No optial traking.3.5 SummaryWe have desribed what augmented reality is, and listed the general requirementsfor AR systems. We have setup requirements and made delimitations for our spei�appliation ase, the AR Museum. The general requirements and spei� require-ments, will form the fous in the AR Museum design. Figure 3.3 shows how weimagine the AR Museum must work oneptually. We will in the next hapterpresent the baseline for the AR Museum, before the design is presented in hapter5.

23

4BaselineIn this hapter we desribe our baseline, onsisting of the hardware, software andprogramming tools we will use to reate the AR Museum. Following after, we give adesription of how we alulate a ameras �eld of view. After that we explain some ofthe fundamental priniples in 3D graphis rendering. Finally, we desribe the PAVEframework, whih will beome the foundation of the AR Museums arhiteturaldesign.4.1 HardwareBased on the requirements for the AR Museum, we de�ned in setion 3.4.1 onpage 22, we hoose the following hardware.� Polhemus 3SPACE FASTRAK magnetial traker� Creative Video Blaster WebCam 3 USB� PC with two 400 MHz Intel Celeron CPU's, 128 Kb ahe eah, 128 MB 66MHz RAM and a NVIDIA TNT2 3D graphis ard.In �gure 4.1 on the next page the hardware setup for the AR Museum systemis depited.The magnetial traker is onneted to the omputer via a serial port. It hasa magnetial transmitter that reates a magnetial �eld around it. The reeiveronneted to the magnetial traker measures the magnetial �eld so that its posi-tion and orientation an be determined. The reeiver is plaed on a wooden stikbehind the amera. The reason for this is that the amera generates too muh ele-tromagneti noise for the reeiver to be plaed on top of the amera. The Polhemus3SPACE FASTRAK has the following spei�ations:� Position Coverage: 76 m distane from reeiver to transmitter with spe-i�ed auray and up to 305 m with slightly redued auray.25

Receiver

Transmitter

Tracker

Camera

Computer

Wooden stick

Figure 4.1: The AR museum hardware setup.� Stati Auray: 0.08 m RMS for the x, y and z reeiver position, 0.15degrees RMS for reeiver orientation.� Resolution: 0.0005 ms/m of range and 0.25 degrees.� Lateny: 4.0 milliseonds from reeiver measurement to output.� Update Rate: 120 updates/seond.The amera used is a standard ommerially available low-prie web ameraonneted to the omputer via the USB port. Its spei�ations in our setup are:� Frame Rate: Maximum of 30 frames/seond.� Resolution: 320x240 pixels with 24bit olor depth.� Field of View: horizontal �eld of view: 43.6 degrees, vertial �eld of view:34.4 degrees.The �eld of view values have been empirially obtained, as desribed in se-tion 4.2.1 on the faing page.The spei�ations for the FASTRAK traker and the Creative amera an befound at [FAS00℄ and [Cre01℄, respetively.4.2 SoftwareThe software platform the AR Museum system will be based upon, is listed below:� The MS Windows 2000 operating system.� The DiretX 8.0a subsystem (inludes Diret3D) in Windows 2000.� The C++ programming language. 26

� The PAVE (Parallel Arhiteture for Visual E�ets) framework, introduedin setion 4.3.Now that we have presented the hardware and software, we will desribe howwe have obtained the two �eld of view angles for the amera. Following after wewill explain the basi priniples in a 3D graphis render pipeline, whih is relatedto the way the Diret3D subsystem works and hene inuenes how we design thevisualization algorithms of the virtual objets in the AR Museum. Lastly, we willintrodue the PAVE framework.4.2.1 Calulation of Camera Field of ViewTo ensure that the real amera and the virtual amera are aligned, thus �lmingthe same part of the senes, the virtual amera must have the same horizontal andvertial �eld of view as the real amera. The �eld of view (FOV) is the angle overedby the lens. It an be alulated as shown below:

Camera

Scene filmed

w

d

FOV
W

Figure 4.2: Field of view alulation.In �gure 4.2 w is the distane from the enter to the edge of the sene �lmed,d is the distane from the amera to the sene, and angle W is half the FOV. In aright-angled triangle, it holds that:tan(W) = wd (4.1)Hene, FOV an be expressed as:FOV = 2artan�wd� (4.2)27

The above equation has been used to alulate the FOV for the amera used, byusing distanes w and d obtained empirially. This method is used to alulate boththe horizontal and the vertial FOV.4.2.2 Rendering PipelineThis setion gives a brief explanation of some of the elements used for rendering3D graphis. A 3D primitive is a olletion of verties that form a single 3D en-tity. The simplest primitive is a olletion of points in a 3D oordinate system.Throughout this report we desribe 3D graphis using a left-handed artesian o-ordinate system (see �gure 4.3). Often, 3D primitives are polygons. A polygon
Y

Z

XFigure 4.3: Left-handed artesian oordinate system.is a losed 3D �gure delineated by at least three verties. The simplest polygon isa triangle whih an be ombined to form large, omplex polygons and meshes (aolletion of polygons). To enhane the realism of omputer-generated 3D imagesa texture an be mapped onto a polygon. A texture is a bitmap whih is strethedonto the polygon by speifying what oordinates the verties maps to in the bitmap.A 3D model (one or more meshes) is desribed in model spae whih is a frameof referene that uses verties relative to the 3D model's loal origin. For visualizingthe 3D model, it must be sent through the rendering pipeline whih applies threetransformations, the world, view, and projetion transformations, to it.The �rst stage of the pipeline transforms a model's verties from their loaloordinate system to a oordinate system that is used by all the objets in a sene.The proess of reorienting the verties is alled the world transformation. This neworientation is ommonly referred to as world spae, and eah vertex in world spaeis delared using world oordinates.In the seond stage, the verties that desribe the 3D world are oriented withrespet to a amera. That is, a hosen point-of-view for the sene, and world spaeoordinates are reloated and rotated around the amera's view, turning world spae28

into amera spae. This is the view transformation.The third stage is the projetion transformation. In this part of the pipeline,objets are usually saled with relation to their distane from the viewer in order togive the illusion of depth to a sene; lose objets are made to appear larger thandistant objets, and so on. This transformation an be seen as projeting 3D oor-dinates into 2D spae. The projetion transformation an also be said to desribea viewing frustum whih is an 3D volume in whih a sene is positioned relativeto the amera. For perspetive viewing, the viewing frustum an be visualized asa pyramid (see �gure 4.4), with the amera positioned at the tip. This pyramidis interseted by a front and bak lipping plane. The volume within the pyramidbetween the front and bak lipping planes is the viewing frustum. Objets arevisible only when they are in this volume.
Back clipping plane

Front clipping plane

Viewing frustum

Figure 4.4: Viewing frustum.In the �nal part of the pipeline, any verties that will not be visible on the sreenare removed, so that it does not take up time to alulate the olors and lighting forsomething that will never be seen. This proess is alled lipping. After lipping,the remaining verties are saled aording to the window viewport and onvertedinto sreen oordinates. The resulting verties seen on the sreen when the sene isvisualized exist in sreen spae.To handle olusion of the drawn polygons a depth bu�er an be used. A depthbu�er is holding depth information for eah pixel on the sreen. Whenever a pixelis drawn, its depth value is heked against the value in the depth bu�er. If thevalue is smaller than the value in the bu�er the pixel is drawn and the new depthvalue stored in the depth bu�er, otherwise the pixel is disarded.The Mirosoft Diret3D API, whih is a drawing interfae that provides aessto 3D video-display hardware in a devie-independent manner, will be used for29

rendering the graphis used in the AR museum. It provides mehanisms for usingthe above desribed elements plus many more.4.3 The PAVE frameworkPAVE is a framework supporting parallel exeution of tasks in a generi fashion,where the tasks an be algorithms in graphis rendering. We will desribe the keyaspets of the underlying model in PAVE and desribe the design of the omponentsin PAVE that have a diret inuene on the arhitetural style and algorithmi fun-tionality of the AR Museum as it is introdued in setion 1.2 and further explainedin setion 3.4.PAVE was designed to failitate parallel rendering of visual e�ets out of therequirement that speed is important in graphis rendering, espeially for realtimepurposes. Another requirement was that it should be relatively simple for a pro-grammer to add new well-de�ned render omponents (denoted modules) to PAVEwithout having to think about parallelization issues. Hene the parallelization isdesigned to be generi and is taken are of by the underlying PAVE arhiteture.The last requirement, we had, was that an end user should be able to take themodules, made by the programmer, and onnet them together in a dataow graphto form his/her own omposition of graphial algorithms. It was very important tous that the onept of a dataow graph onsisting of render omponents, shouldboth be intuitive to a user and at the same time reet the algorithmi dataow.4.3.1 Render Model and Data FlowThe proess of rendering an be seen as, in turn, applying a number of algorithmsto the data that must be rendered. In the ontext of an AR system, the data istypially bitmap data, world model desriptions et., that is, graphial data thatis supposed to be rendered to a omputer display. The algorithms are typiallythose that generate bitmap data, world model desriptions and/or manipulate suhdata strutures. The rendering proess an be divided into subtasks, whih must beevaluated in some prede�ned order. Rendering lends itself very easily to partitioninginto subtasks, as the graphial manipulation algorithms ommonly used are designedfor one small spei� purpose, suh as a gaussian blur �lter algorithm. The taskpartitioning is impliitly given, as eah algorithm an be seen as a subtask itself,and it is the omposition of the graph by the end user that de�nes the order ofsubtasks.Task GraphThe order of the tasks desribe the ow of data. As mentioned this an be repre-sented as a task graph, as it is done in [CT95℄. We all the data owing betweenthe tasks frames. A frame an literally be any datatype, even a referene to adatatype instane. The rendering ow starts with one or more input nodes, whih30

produes input frames, that travel through a number of algorithmi tasks and endin one or more output nodes. The input and output nodes are the start and endpoints of the graph, respetively. An input node, is a node that has no predeessorsin the graph. The data it works on omes either from an external soure or residesin the node itself. An output node has no suessors, and its data is typially outputon an external devie, suh as a display.To have a meaningful graph representation, the graph must be direted, showingthe diretion in whih data ows. This leads to using a direted ayli graph, see[Cor98℄, as our task ordering representation. In �gure 4.5, an example task graphis shown.
i

oi

i o

Figure 4.5: An example of a task graph. i denotes input nodes, o denotes output nodes4.3.2 ModulesWe have denoted the tasks of the graph modules. Eah module in the graph isoneptually onsidered as a \blak box". The role of a module is to apply its al-gorithm to the input frames it reeives from its predeessors, and pass on the resultto its suessors.Furthermore, the end user should easily be able to adjust a module, so that thegraphial e�et the module represents, an appear to his liking. For that purpose,we introdued Module states. To any given time a module is in a ertain state,determined by a number of parameters, whih the end user an hange the valuesof. The deision of whih parameters that exist on a given module, is made by theprogrammer depending on the algorithm he uses in the module he is reating. Forinstane we an imagine the programmer reating a module that an take bitmapframes (images) as input, blur them with a Gaussian Blur algorithm and then out-put blurred bitmap frames. An example of a parameter on suh a module ouldbe \Blurriness", that desribes how blurry the module's Gaussian Blur algorithmshould make eah input image.The algorithm of the module manipulates the input data, given the state of themodule. The manipulated result is delivered as the output.31

We have de�ned the input/output relationship in a module as follows:� Reeive i inputs from its p predeessors, where i � p � 0. Wait until everyinput from the predeessors has arrived.� Apply the algorithm to the input, aording to the state.� Send o outputs to its s suessors, where o � s � 0. If one or more of thesuessors are busy, wait until all suessors are available to reeive.As we will explain in setion 4.3.7, this input/output de�nition is the key to thesynronization between modules in a task graph.4.3.3 Parallelization in PAVEThe parallelization in PAVE is based on two parallization methods, alled Fun-tional Parallelism and Temporal Parallelism, as disussed in [Cro97℄.Funtional Parallelism is ahieved by splitting the rendering up into smaller dis-tint funtions, whih is then applied to a sequene of data frames. If a proessoris then assigned to a funtion or a group of funtions, alled a funtional unit,and data frames are ommuniated between the funtional units, this onstitutes apipeline. When the �rst data frame, that have entered the pipeline, have reahedthe last funtional unit of the pipeline, all funtional units will be working in par-allel, hene the degree of parallelism is proportional to the number of funtionalunits and relies on repeated inputs i.e. a stream. Furthermore it is the slowestunit in the pipeline that will determine the overall speed of the rendering. Thisparallelization tehnique �ts the task graph onept in a very straightforward way.In our framework a funtional unit is a module.Temporal Parallelism omes from partitioning the rendering task in the time do-main (e.g. by frame index number). The sequene of frames to be rendered are splitinto frame sequene subsets. A frame sequene subset an onsist of one or moreframes. Eah frame in a subset is rendered onurrently, by having a repliationof the rendering unit working on eah frame. In our ase this means that a givenmodule in the graph is repliated a number of times to obtain \loal" temporal par-allelism for that given module. The temporal parallelism in PAVE is optional in theway, that a programmer an hoose to speify that a ertain module must be repli-ated a number of times if the given module is a potential bottlenek in the pipeline.Se �gure 4.6 for an illustration of Funtional Parallelism and \loal" TemporalParallelism respetively. 32

Figure 4.6: A) The default Funtional Parallelism. B) Temporal Parallelism by replia-tion. The retangle depits two idential module replia working on eah their frame.Task shedulingA task an be a module or a group of modules. The main problem of shedulingtasks, is that of assigning tasks to proessing units, in a way that optimizes theproessing. A typial parameter, one wishes to minimize is the total exeution timeof the sheduled tasks ompared to the sequential total running time, and henedividing the tasks as optimal as possible among the proessing units.In [Ull75℄, it is shown that the general problem of sheduling a set of tasks isNP-omplete, unless some task parameters are onstrained, one of these parame-ters ould be that all tasks must have the same exeution time (as it is done in[CT95℄). In the PAVE framework there is no atual knowledge of what goes oninside a module, and no stati measurement of the exeution time of modules, asthis di�ers hugely depending on the module's input, algorithm and state. As wewant to support di�erent kinds of events, suh as hanging parameters, that in turnmodi�es the state of a module over time in a dynami fashion, this auses modulesto have varying running times per frame.From these observations we hose to abstrat away the sheduling of modules,and let the Windows 2000 SMP1 kernel do the sheduling. This is done in theframework by using threads2 as the proessing units. The Windows 2000 sheduleris apable of sheduling threads between a pool of available proessors. Every timea thread is ready to be sheduled it is assigned to one of the available proessors forexeution for a given time slie. This means that when PAVE is running on e.g. adual-CPU mahine, two treads are always running onurrent, one for eah of the1Symmetrial Multi Proessing as de�ned in [Sta97℄2In abstration, a thread an be seen as a virtual proessing unit.33

two proessors. The threads are set to have the same priority, whih is the defaultpriority of the proess reating the threads. The Windows 2000 kernel utilizes around-robin sheduling poliy.In addition, test results showed us that minimizing the number of threads in anappliation under Windows 2000 did not provide any signi�ant bene�t in terms ofless overhead and better speed. Last semester, we tested the Windows 2000 shedul-ing apabilities by running a proess that reated up to 2000 threads, partitioning ajob into the same number of parts as threads, eah part having one thread runningit. It showed no signi�ant overhead in terms of ompletion time of the overall jobby going from one thread to 2000 threads. As a onsequene the default behaviourin PAVE is to assign a seperate thread of exeution to eah module in a task graph,as illustrated in �gure 4.6 where the ars shown at eah module denotes a thread.That way the sheduler in Windows 2000 takes are of all the sheduling, and mod-ules that have preedene over other modules will be evaluated �rst automatially.Modules that are independent of eah other are automatially run in parallel, anda module that has multiple parents will wait until all of its parents have delivereddata. This is possible, sine the input/output relationship in a module works as asynronization mehanism. A module is only allowed to invoke its algorithm whenall inputs are present and only allowed to deliver outputs when all its hildren areready to reeive them.4.3.4 PAVE DesignWe have introdued the key aspets and de�nitions of the render model in PAVE.Now we will desribe how the render model has been designed as an objet-orientedframework to support modular parallel graphis rendering.The PAVE design an be said to onsist of �ve major parts, eah part onsistingof a number of lasses. In the following we will introdue the �ve parts and desribetheir overall roles. After that we will go into desribing the lasses in eah part inmore detail.Management
Figure 4.7: The management lasses.34

The management part onsists of lasses that that manages the whole system.The Supervisor lass is instantiated by the main appliation that wishes to usePAVE. The Supervisor utilizes a GraphLoader to load a graph desription from atext �le. The PluginLoader is used to load the plugins used in the loaded graph.A plugin ontains a olletion of modules. The InputManager is used to triggerthe graph, and is ontrolled by the Supervisor. The Supervisor is ontrolled by themain appliation. The management lasses an be seen in �gure 4.7.Graph Desription

Figure 4.8: The graph desiption lasses.The graph desription lasses are the ones who are instantiated by the GraphLoaderwhen a graph is loaded from a text �le. Instanes of those lasses onsistute theompleteGraph desription, suh as dependenies between GraphNodes, and foreah Dependeny a number of Channels exist. The lasses are depited in �gure4.8.Communiation and Synronization

Figure 4.9: Communiation and synronization lasses.Three lasses form the data ommuniation between modules in a graph. TheNode lass ontains the input/output relationship algorithm de�ned in setion35

4.3.2. A Node instane ontains aMailBox for eah input it has. For eah modulein a graph, there is a Node instane belonging to it, and for eah Node instanethere is a GraphNode instane belonging to it. When data is ommuniated betweenmodules, a Mail ontaining the data is sent from one Node to another. The threelasses are shown in �gure 4.9Generi Components

Figure 4.10: The generi lasses.The generi omponents ontains two base lasses and a ontainer lass. Amodule programmer that wishes to ontribute new modules or new datatypes tothe framework, must inherit fromBaseModule andBaseType respetively. Theselasses de�ne the interfae for the module programmer. The BaseTypeList is autility ontainer lass used both by the ommuniation lasses and the programmerto speify module inputs and outputs. On �gure 4.10 the three lasses are shown,and possible speializations of them.Exeution EngineThe three lasses, Threader, WorkerThread and Job, works as the exeutionengine. The Threader reates WorkerThreads to exeute a graph. A Job tells aWorkerThread what nodes in the graph it must exeute. See �gure 4.11 for therelationships between these lasses.The PAVE ClassesIn �gure 4.12 a lass diagram depiting all the omponents and their relationship,in the PAVE framework, an be seen. We will now ontinue to explain eah lassin detail, starting with the generi omponent lasses.36

Figure 4.11: The lasses onsituting the exeution engine.

Figure 4.12: Class diagram illustrating relationships between omponents in the PAVEframework.
37

4.3.5 The Generi ComponentsHere we will desribe the generi omponent lasses in more detail.BaseTypeBaseType is the super lass for all data types that are passed between modules in agraph. When a new type is made by the programmer, the BaseType is speializedand the neessary attributes and methods are added. The framework does not needto know the interfae for derived types sine it only passes them between modulesand does not interat with their methods or data. It does however need to be ableto get an id for a derived type so it an hek if modules an reeive that type. It isthe programmer's responsibility to ensure that eah new type reated is assigned aunique type id. On derived types a lone interfae method has to be implementedso the framework an dupliate types generially by alling the lone method. TheBaseType has a FrameIndex and a TimeStamp as attributes, whih are usedwhen instanes of BaseType speializations (frames) are passed between modules.Modules reeiving frames an use this information to determine the urrent frameindex and the time for that partiular frame index.BaseTypeListCan ontain a list of BaseType speializations. This is a ontainer lass used in theommuniation between modules, and used by the module programmer to delareand utilize inputs and outputs.BaseModuleThe BaseModule is the super lass for all modules that an be inserted in a graph inthe framework. It is inherited for eah new module, a programmer wishes to write.This lass de�nes the template, that is the interfae, for all modules. For writinga BaseModule speialization, de�ning the modules funtionality and exposing in-formation about its input/output interfae and unique type id to the framework,is neessary. The onstrutor of the derived module must speify type informationfor the following:� Unique type id� Inputs - The number of inputs and the type of eah.� Outputs - The number of outputs and the type of eah.� Parameters - The number of parameters and the type of eah.Speifying inputs, outputs and parameters, is done by adding empty BaseTypespeializations to prede�ned lists (BaseTypeList ontainers) for inputs, outputs andparameters, respetively. The unique type id is spei�ed by setting an internal base38

string attribute. The type id of the BaseType speializations added are used fortype heking in the framework. The order in whih BaseType speializations areadded to the lists de�nes the numbering of eah input/output/parameter elementexposed to the framework. For instane if a BaseType representing a bitmap frametype is added �rst to the input list then that frame input will be seen as inputnumber one of type bitmap frame on the module. The values of the speializedBaseTypes added to the parameter list de�nes the module's initial state.In addition to implementing the onstrutor, two interfae methods must beimplemented in the speialization:� Init� AtionInit is implemented when the programmer wishes to de�ne initialization for amodule after the onstrutor has been alled, but before exeuting the module algo-rithm for the �rst time. The Ation method is implemented to speify the module'sfuntionality. The Ation method in a BaseModule speialization ontains the mod-ule's algorithm, that is alled for eah frame index. When the Ation method isalled, input and parameter BaseTypeLists are passed to it and when �nished, itmust return an output BaseTypeList. For instane, if the programmer wants toreate a blur module, the Ation method will ontain e.g. a Gaussian Blur �lteralgorithm. The algorithm manipulates a bitmap frame delivered at input numberone and puts the resulting bitmap frame into an output list and returns it, for eahframe index.The three above mentioned base lasses form the fundamentals when it omesto reating new render modules for PAVE and reating datatypes that suh newmodules might need. It is atually the only things that a module programmer needsto be onerned with. In appendix A, a small example of how a BaseModule spe-ialization is implemented, is shown.Until now we have oasionally talked about modules as being the nodes in agraph, although this is oneptually true, we needed some kind of abstration froma module and a node in a graph. We deided to seperate the ommuniation aspetsof a module and the internal algorithm of the module. The internal algorithm part isontained in a BaseModule speialization as mentioned above. In addition we haveseperated the ommuniation aspets and graph integrity properties also. As aonsequene we have two additional lasses, eah with their distint roles. They arealled Node and GraphNode. A Node ontains a BaseModule speialization instaneand takes are of the ommuniation and synronization between its module andother Nodes. The GraphNode represents a vertex in a graph, and it ontains areferene to a Node instane and information suh as dependenies between theverties. See �gure 4.13 for an illustration of the run-time relationship between a39

GraphNode instane, Node instane and its BaseModule instane. The assoiationsbetween the instanes are made at initialization and build time of the graph. TheWorkerThread shown is reated by the Threader omponent and enters througha ThreadEntry method in Node. GraphNode, Node, WorkerThread and Threaderalong with the other omponents will be explained below.

Figure 4.13: Run-time relationship between GraphNode, Node and BaseModule instanes.Inputs and outputs are not shown.
4.3.6 Graph desription ComponentsHere we will desribe the graph desription omponent lasses in detail.GraphNodeA GraphNode is a vertex in a graph. It holds a Node and lists of Dependeniesto other GraphNodes. The GraphNode has methods for building the onnetionsin the graph, and for heking its onsisteny, i.e. that all nodes are onnetedproperly. The GraphNode an add and remove Channels to another GraphNode.When a Channel is added, it is heked if the soure and destination MailBoxes, onthe soure GraphNode's Node and the destination GraphNode's Node respetively,holds data of the same BaseType speialization by inspeting the type id. Oth-erwise, a Channel annot be reated. If a Channel is added, and no Dependenyexists to the destination GraphNode, a Dependeny is reated and the Channel isadded to it. Likewise, if all Channels in a Dependeny are removed, the emptyDependeny is removed.The GraphNode has a method for returning its dependenies to the Node in-stane it gets at reation time (from the GraphLoader), so the Node an send mailsto the right reipients. 40

DependenyA Dependeny desribes a dependeny onnetion to a GraphNode. In other words,it is an edge in the graph of GraphNodes. A Dependeny holds a referene toa GraphNode, to whih the dependeny exists, and a list of Channels, betweenthe GraphNode that holds the Dependeny (soure) and the one referened in theDependeny (destination). When a Dependeny holds several Channels, it meansthat several outputs are sent to di�erent (input) MailBoxes on the reeiving Nodein the destination GraphNode.ChannelA Channel desribes a onnetion between an output and an input of two nodes.It holds two numbers, soure and destination, whih are the index number of aMailBox on eah node, respetively.GraphThis lass represents and ontains a graph with onneted GraphNodes. It hasmethods to build and modify the graph, hek its integrity suh as deteting y-les, �nd paths from one graph to another, add and remove dependenies betweenGraphNodes.The Graph onsists of a list of GraphNodes. An example graph is shown in�gure 4.14.
GraphNode 4

GraphNode 1

GraphNode 2 GraphNode 3

1 2

2

2

1

1

1
1

1

2

Figure 4.14: An example graph. The numbers on the ars denote input and output indexnumbers, respetively.The ontents of the GraphNodes it ontains, are shown in �gure 4.15.4.3.7 The Communiation and Synronization ComponentsHere we will desribe the ommuniation and synronization omponent lasses indetail. 41

Node 1

1,1

GraphNode 1

Channels

Dependencies

GraphNode2

2,2

Channels

GraphNode3

Dependencies Node 4

GraphNode 4

1,2

GraphNode 3

Channels

Dependencies Node 3

GraphNode 4

2,1

GraphNode 2

Channels

Dependencies

GraphNode3

1,1

Channels

GraphNode4

Node 2

NULL

Figure 4.15: The ontents of the four GraphNodes in �gure 4.14.NodeThis lass is perhaps the most entral omponent in PAVE's render ore, as itontains the synronization between modules. It enapsulates an instane (moreinstanes if repliation is present, see 4.3.3) of a BaseModule speialization. It on-trols all the input and output to/from its enapsulated module, it ontains the in-put/output relationship synronization algorithm presented in 4.3.2. The algorithmis situated in a ThreadEntry method that is alled by an assoiated WorkerThread.The Node holds a MailBox for eah input the module has. When the module isexeuted the Node retrieves a Mail from eah MailBox and inserts these into themodule's input list. When the module has ompleted its proessing of the inputdata, it returns an output list to the Node whih then asks its parent GraphN-ode, what mailboxes to send the output to. If more than one Channel exists foran output, that data for that output must be loned for every Channel to preventsueeding modules in the graph from writing in the same data onurrently.The realization of temporal parallelism in the framework is handled in the Nodeby repliation of modules i.e. several instanes of the same type of module. Allinstanes of modules inside a Node are put in a ready queue and when a Work-erThread wants to exeute a module, it enters the Node and takes the �rst mod-ule o� the ready queue and exeutes its ation method through the ThreadEntrymethod. After exeution the WorkerThread puts the module bak at the end of theready queue. This way a number of WorkerThreads an be assigned to a Node for42

exeuting eah of the repliated modules (see �gure 4.16).

Figure 4.16: Illustration of a ready queue inside a Node.When a Node holds repliated modules it is neessary to have a mehanism inThreadEntry for synronizing modules so they pass on their outputs in the sameorder as inputs are reeived on the Node. This mehanism was inspired by to-ken ring networks. The modules an be seen as nodes in a token ring and onlythe module who has the token is allowed to send its output. The �rst modulethat retrieves input from the mailboxes also reeives the token. When it has sentits output it sends the token to the module that retrieved input after it, and so forth.In the following the ThreadEntry method for exeuting a Node's module(s) isdesribed in objet oriented pseudo ode:ThreadEntry method (for WorkerThreads):{ InputList = empty BaseTypeList;BaseModule = ReadyQueue.GetModule();EnterCritialSetion;// get mail tuplefor eah MailBox{ BaseType = MailBox.GetBaseType();InputList.AddBaseType(BaseType);}ExitCritialSetion;TimeStamp = InputList.GetTimeStamp(); 43

ParameterList = GetParameterList(TimeStamp);OutputList = BaseModule.Ation(InputList, ParameterList);WaitForToken;for eah BaseType in OutputList{ BaseType.SetTimeStamp(TimeStamp);MailBox = GraphNode.GetNextOutputMailBox();MailBox.PostMail(BaseType);}if (an OutputList was returned from the module's Ation method)delete OutputList;delete InputList;SendTokenToNextModule;} It should be noted that the ritial setion is neessary for ensuring that repli-ated modules does not reeive mails with the same timestamp. All mails with thesame time stamp must be retrieved by the same module.MailBoxThe MailBox is used by a Node for sending data between modules and holds aFIFO list of elements of type Mail. A MailBox is reated in Node for eah input itsmodule has spei�ed. At reation time, it is possible to speify how many elementsthe MailBox should be able to hold. After it has been reated the size remains�xed. Methods for posting and retrieving mails from the MailBox are bloking inthe following sense:� If a lient all tries to retrieve a mail from the MailBox and it is empty, theall bloks until a mail arrives.� If a lient all tries to post a mail to the MailBox and it is full, the all bloksuntil a mail has been retrieved by another all (from another thread).All aess is proteted by mutexes.MailA ontainer for BaseTypes, used for pakaging frames between Nodes. It ontainsthe following:� BaseTypeList of BaseType speialization elements.� Time stamp� Frame indexThe BaseTypeList allows that user de�ned types an be sent via Mails.44

4.3.8 Management ComponentsHere the management omponent lasses are desribed in detail.SupervisorThe Supervisor ats as the main book keeping omponent in the framework. Itis the omponent that glues the Graph, InputManager and Threader omponentstogether and manages them. In addition the Supervisor holds the PluginLoader.The Supervisor is also intended as the interfae between the main appliation andthe rest of the framework.The Supervisor manages a Graph instane by assoiating it to an InputManagerand a Threader, giving a 3-tuple as follows:(Graph, InputManager, Threader).The overall roles that the Supervisor has are the following:1. Loading a Graph using the GraphLoader by giving it a graph desription �leand a referene to the PluginLoader.2. Creating a Threader and InputManager and assoiate the Graph to them, re-ating a 3-tuple. For eah GraphNode, it reates a Job to whih it adds a Nodereferene (oming from GraphNode). The Threader reates a WorkerThreadfor eah Job. Referenes to input Nodes are added to the InputManager.3. Starting, stopping or pausing the input frame ow to a Graph through theInputManager instane.4. Through the Threader instane ontrolling how many WorkerThreads are as-signed to eah Job (multiple WorkerThreads for one Job if Module repliationsare present in one or more Nodes in a Job). Starting, stopping or if the Graphis to be deleted terminating exeution of the nodes.5. Deleting a Graph and its assoiated InputManager and Threader. Upon dele-tion of a Graph, the Supervisor stops the InputManager, so that input Nodesstop reating frames. After that the Supervisor posts "Shutdown" mails toall Nodes in the Threader's job list, telling them not to wait for input mailsany more. That way the Supervisor an delete the Threader safely, sine eahWorkerThread will no longer blok in the ThreadEntry funtion in Node.See �gure 4.17 for the data strutures the Supervisor ontains. The GraphLoaderinstane is temporary, in the sense that every time a new Graph is loaded a newGraphLoader is reated and old instanes are disarded. The PluginLoader instaneontains all the loaded plugins and instantiated BaseModule speializations duringthe whole life of the Supervisor. The number of elements in the 3-tuple list, denotesthe number of Graph instanes at any given time.45

Graph n

PluginLoader

InputManager 1

Threader n

InputManager n

List of 3-Tuples

Graph 1

Threader 1

Supervisor

GraphLoader

Figure 4.17: Illustration of the data strutures in a Supervisor.PluginLoaderThe PluginLoader is used for loading a group of modules, alled a plugin, intothe framework. For reating a plugin, it is needed to derive the BaseModule lassand implement a number of methods (see de�nition of BaseModule). One or morederived BaseModules are ompiled to a DLL3 �le whih the PluginLoader an loadat run time. One the plugin is loaded, the PluginLoader an return instanes ofthe BaseModule speializations existing in the plugin. Whih speialization thatshould be instantiated is spei�ed by the alling GraphLoader by giving a type idname to PluginLoader.GraphLoaderLoads a graph desription from a text �le, instantiates a Graph and reates GraphN-odes and in turn adds a Node to eah GraphNode. The desription �le inludes thefollowing information:� Whih plugins are used.� Whih modules are used (by type id) and what their instane name shouldbe.� How the module instanes are onneted (the Graph desription).� Whih modules instanes are repliated.The GraphLoader is responsible for building up a Graph upon parsing the sript.This an be desribed in the following steps:3A DLL (Dynami Link Library) is a library of funtions that uses dynami linking. Thisallows an exeutable to inlude only the information needed at run time to loate the exeutableode for a DLL funtion. 46

� Calls PluginLoader to load plugins.� Asks PluginLoader for instanes of modules by type id and give eah instanea name, aording to the sript.� Create a Node for eah module instane and assign the instane to the Node.� Creates GraphNodes and assigns Nodes.� Creates a Graph and adds the GraphNodes.� Adds Channels between GraphNodes, while heking for type ompatibilitybetween inputs and outputs.InputManagerThe InputManger is responsible for starting and stopping input to a graph. Itsfuntionality ould be ompared to the funtionality of a CD player whih an play,stop, pause and set the play position of a song. For starting the ow in the graph itis neessary to tell the input nodes to generate their outputs sine they do not haveany inputs themselves to trigger them. This is ahieved by assigning one MailBoxto eah input Node in a Graph, so they internally an at as normal Nodes. TheInputManager's job is then to send a timestamped \trigger" ommand to eah inputNode, that tells them to generate output. The Graph an be seen as a pipeline,whih means that \trigger" ommands are the mehanisms that insures that thepipeline is fed whenever the input Nodes are ready to produe output. The \playposition" is determined by the timestamp ontained in the mail and stopping thepresentation means that the InputManager stops sending \trigger" ommands.The InputManager has a list of input Nodes, assigned by the Supervisor byinspeting what Nodes that does not have any frame input. A separate thread inthe InputManager goes though the list of Nodes posting \trigger" ommand mails totheir mailboxes in the same manner as a Node posts its modules output to anotherNode. Figure 4.18 on the following page illustrates this mehanism, where eahinput Node ontain a module that streams frames from e.g. a video amera. Thetwo frame streams are then delivered to a Node (having two MailBoxes) ontaininga blending module (having two inputs and one output) that blends the input framestogether and outputs the result as one frame onsisting of a omposition of the twoinputs.4.3.9 Exeution engine ComponentsThe exeution engine omponent lasses are in the following desribed in detail.47

Movie 2
(Input)

Movie 1
(Input)

InputManager

Blend

Trigger command mailTrigger command mail

Trigger thread

Figure 4.18: An InputManager sends \trigger" ommands to two input Nodes.ThreaderThe Theader reates and handles all the WorkerThreads reated when a graph isrunning. It has a list of reated WorkerThreads, eah WorkerThread has a refereneto a Job. A Job an ontain one or more Node referenes. If a module repliation(temporal parallelism) is present, more threads are assigned to the same Job. TheThreader ontrols starting, suspending and stopping of WorkerThreads on behalfof the Supervisor.WorkerThreadAWorkerThread is a thread of exeution that is assigned to a Job (by the Threader).The WorkerThread repeatedly exeutes its Job, by asking it whih Node to exeute,until it is expliitly stopped. Several WorkerThreads an be assigned to the sameJob whih is neessary when a Node holds repliated modules.JobA Job is a task desription for one or more WorkerThreads. The Job onsists of alist of Nodes that must be exeuted. This way a WorkerThread an exeute severalNodes. This implies that the list must be ordered by preedene so deadlok doesnot our, in the ase of more than one Node in the list4. The default behaviour issimply to assign one Node to a Job's list. We deided on this approah from theobservations made in setion 4.3.3. As a servie the Job has a method, that eahtime it is alled by a WorkerThread, tells what Node in the list must be exeuted.This method is proteted by a mutex.4The Supervisor is responsible for ordering Nodes in a job's list by inspeting the dependeniesin the Graph. 48

4.4 SummaryThis onludes the baseline for our AR Museum. We have listed the hardwarewe will use, the software, programming tools, explained how we alulate �eld ofview for a amera and the fundamentals in 3D graphis rendering. Finally, we havedesribed the most important aspets of the PAVE framework. As mentioned insetion 1.2 it is our goal to design the AR Museum so that it runs on top of PAVEin order to make the system sale on multiproessor PC's. This onsists of reatingspeializations of the BaseModule lass and onnet instanes of those modules ina graph in a manner that orresponds to the oneptual view of the AR Museumas shown in �gure 3.3 on page 22 along with the requirements in setion 3.4.1 onpage 22. The spei�s about the design of the graph and the modules along withsome neessary enhanements of PAVE, are presented in the next hapter.

49

5DesignIn this hapter, we desribe the arhitetural style of our AR museum. It is designedas modules in a graph for the PAVE framework. Eah of the modules and theirfuntionality will be desribed and enhanements made to PAVE to failitate thedesign issues will be desribed.5.1 Arhitetural StyleBased on the requirements of the AR museum in setion 3.4.1 on page 22, we de-sribe whih algorithmi omponents, denoted modules in PAVE, are needed tobuild our AR museum. We desribe the way in whih the modules are onneted,that is, as an AR museum graph in PAVE. The role of eah of these modules arebriey desribed. In setion 5.3 the design of eah module and their algorithmiontent is desribed.In �gure 5.1 on the following page the graph onstituting the AR museum is de-pited. Eah box ontains a module. Ars in the �gure represent frame data outputfrom a module passed on as input to suessive modules. The small boxes are mod-ules onneted to form subgraphs onstituting the dynami e�ets that produe theworks of art outputted to the world objet modules. A subgraph is typially variousbitmap e�et modules ombined. A subgraph exists for eah world objet whereit is desired to have some kind of hanging material over time. The dotted arsbetween the frustum ulling module and the subgraphs, symbolizes that the datasent is a form of triggering that auses reeiving modules to run. This triggeringmehanism is desribed in setions 5.2.2 on page 54 and 5.2.3 on page 55.Three input modules are needed in the AR museum graph, one for grabbingframes from the amera �lming the real world, one that registers the position andorientation of the amera, obtained by the magneti traker and a module that holdsinformation about the real and virtual world. These modules are denoted amera51

Figure 5.1: The AR museum graph.module, magneti traker module and world model module, respetively. The worldmodel module and the magneti traker module are onneted to the frustum ullingmodule. The task of this module is to deide whih of the world objet modules,to whih it is onneted to through subgraphs, holds WorldObjets that are vis-ible. Only these subgraphs must be triggered to run. The frames grabbed fromthe amera needs to be orreted for the lens distortion that ours in the amera.This is done in the distortion orretion module. The undistorted image of the realworld is passed on to a world objet module, whih reates a desription of a vir-tual world objet. It is thus treated like the virtual world objets that has input(e.g. bitmap textures) from subgraphs. These subgraphs are triggered to run bythe frustum ulling module. All world objet modules are onneted to the worldupdate module. The task of this module is to update the WorldModel aordingto its WorldObjet inputs. The WorldModel and WorldObjet data struture isdesribed in setion 5.3.1 on page 59. The world update module reeives a World-Model referene and outputs an updated WorldModel to the render module. Therole of the render module is to render the WorldModel that it gets as input, so theresulting rendered image an be displayed on a monitor.The graph design desribed above, gives rise to some enhanements to the ex-isting PAVE framework. Firstly, the frustum ulling module must give output to avariable number of subgraphs and the world update module must take input fromthe same variable number of world objet modules onneted to those subgraphs.This gives a need for allowing an optional number of inputs and outputs on mod-52

ules, where the number of outputs and inputs are not known at module reationtime, but �rst when the graph is being built.Another issue in the design of the graph is that the frustum ulling module isresponsible for triggering the subgraphs onneted to it. The triggering of inputmodules is a task in PAVE whih originally was the exlusive responsibility of theInputManager (see setion 4.3.8 on page 47). Triggering in some form should alsobe possible for a Node. Furthermore, subgraphs an be inative, implying that noproessing by their modules is done. This is the ase e.g. when the frustum ullingmodule detets that a WorldObjet is not in the �eld of view, hene its subgraphsdoes not need to be omputed. The triggering mehanism must be enhaned so thatinput modules to a ertain subgraph onneted to a world objet module an be setto be inative in some way, so that modules in a given subgraph are not exeuted,when it is not needed.These PAVE enhanements among other general robustness enhanements, aredesribed in the following setion.5.2 PAVE Design EnhanementsThe aforementioned design observations give rise to a olletion of design enhane-ments of PAVE that are desirable in order for the system as a whole to be bothexible, robust and servie the need for performane optimization at a higher levelthan internal module algorithms. We start by desribing the mehanism needed tosupport optional inputs and outputs on a module. Next we desribe the triggeringand how this an be used to deativate subgraphs. These aspets an be atego-rized as making graph building more exible and serving to performane optimizegraph exeution in general, respetively. Finally we desribe the aspets for makinggraph exeution more robust, whih involves designing a poliy for general garbageolletion of data and ontrolling what data is read-only and what is writable.5.2.1 Optional Inputs and Outputs on NodesOriginally it was neessary for a BaseModule speialization to speify exatly howmany inputs and outputs (and their type) it needs in order to be able to funtion(see 4.3.5). Clearly this imposes a limitation, sine it is neessary to write a newmodule, e.g. a frustum ulling module, eah time the number of world objets inthe virtual world hanges and hene the number of world objet modules in the ARMuseum graph. The reason for this is that the frustum ulling module and worldupdate module would have hanged their number of outputs and inputs, respetively.It would be possible to set an upper limit on how many objets in the world modelthat ould be manipulated by subgraphs, regardless of how many atually existingin the virtual world. But suh a limitation seems rather unexible and possibly53

serves to add more omplexity in the AR museum graph. Therefore the need for arule that allows a given module to have an optional number of inputs and outputsseems apparent.We have deided to make the rule simple and so that it does not onit withthe original design of PAVE. The modi�ation ontains the following:� When a module has spei�ed its \stati" input and output types, in its on-strutor (see setion 4.3.5 on page 38), in the onventional way, it should bepossible to tell the framework that it an have n optional inputs and/or out-puts of some type following after the statially de�ned ones. If the modulehas spei�ed j \stati" inputs, minimum j onnetions must be made to it,and j + n onnetions are possible, where n � 0. The same goes for optionaloutputs.� When the module is inserted into a graph, the onditions for inputs andoutputs must hold in the same way as originally designed.� When onnetions are made to the optional inputs, additional MailBoxes onNode must be made at onnetion time.As a simple example, a module spei�es that it has optional inputs only. If ionnetions are made to a seperate input number in the module, the frameworkautomatially adds i Channels to the assoiated GraphNode as before, but in ad-dition i MailBoxes in the assoiated Node must be added. The di�erene is thatthe module spei�es that it an have optional inputs, but does not know in advanehow many. So the framework must hek how many Channels are made at graphbuild time to the module, and add MailBoxes to the assoiated Node as needed.That means that when the Supervisor (see setion 4.3.8 on page 45) has loaded agraph from a desription �le, it will go through every GraphNode, inspeting thenumber of Channels added to eah GraphNode. For eah GraphNode, update theassoiated Node's number of MailBoxes.5.2.2 Trigger Capable NodeIn order for a Node to be able to gain ontrol over ertain input Nodes, it is nees-sary to be able to onnet it to these input Nodes. Originally it was not possible toonnet a Node to an input Node, sine an input Node ontains a module with noframe input. The assumption was that sine no frame input is desired, the rule wasthat the input Node simply needed to be triggered by the InputManager (see 4.3.8on page 47). So we need to modify the rule for the speial ase where a Node isonneted to an input Node, when the Supervisor inspets what Nodes that mustbe assoiated with the InputManager.We desribe the modi�ed rule in the following way:54

� If a Node has 0 inputs (its module has no frame inputs), it is onsidered aninput Node.� If an input Node has a hannel onneted to it, it must not be assoiated to theInputManager. Otherwise, the Node must be assoiated to the InputManager.Now a Node an be triggered by either the InputManager as before, or be trig-gered by another Node.5.2.3 Empty TriggeringThe idea of a Node being able to send \trigger" ommands to another Node beomesuseful when we need to be able to deativate subgraphs. We do this by generalizingthe funtionality from sending \trigger" ommands, to be able to send any typeof ommand. The deision of what type of ommand a Node will send to anotherNode, is plaed in a module's ation method belonging to the sending Node. Thatway a module programmer an reate a module that an send ommands of anytype, but if the reeiving Node would have to reat on the ommand, the Node'sThreadEntry method must be modi�ed to proess a given ommand. Otherwiseonly the module in the reeiving Node an proess the ommand.To be able to deativate given subgraphs at given times during rendering, weadd a few extra onditions in the Node's ThreadEntry method. It it desribed inthe following:1. Chek to see whether the frame reeived at the �rst input is of the Commandtype (by inspeting the type id), and if that is the ase, see 2. If not, see 4.2. If the reeived ommand is a normal \trigger" ommand (by inspeting theommand type's string attribute), see 4. If not, see 3.3. Chek to see if the ommand is a so alled \empty trigger". If that is the ase,the ation method of the Node's module is not alled and hene no exeutionof the module for the given frame index. In addition send \empty trigger"ommands on all outputs.4. The module's ation method is exeuted exatly as originally intended, andoutput returned from the ation method all is delivered on all outputs.Another approah is that a Node ould hoose not the send any \trigger" om-mands for given frame indexes, ausing ow to stop ompletely in the subgraphs.Unfortunately, this would stop all dependent sueeding nodes, sine a Node waitsuntil input has arrived on all input MailBoxes and hene blok the whole graph. Itwould be possible to make a rule on the Node's ThreadEntry method, where ertaininput numbers ould be optional, but the idea seem to ompliate matters in fartoo many ases. Sending an \empty trigger" also insures that frame index order isnot orrupted when subgraphs are made ative/inative.55

5.2.4 Garbage ColletionWhen modules are sending data in a graph, they are sending referenes to data. Amodule that sends a result, to another module, typially reates the data and sendsa referene to that data as output. So in that ase the reating module owns thedata by default. But ases also exist where a module merely forwards data that itgot from some other module. In suh a ase the ownership belongs to some othermodule.The problem is that a given module reeiving data does not know to whom thedata belongs. And sine data that is not being used anymore must be deleted insome fashion, some mehanism in e.g. a module must take the initiative to deletethat data. This gives another problem sine a given module does not know whetheranother module also has a referene to the data, and hene annot safely deletedata. In fat it is impossible for a module to determine whether it is safe to deletedata or not, sine modules an be onneted in many di�erent ways, and a moduledoes not know the topology of the graph it is inserted in and does not know any-thing about other modules. The only thing a module knows for sure is what inputdata types it an reeive and what output data types it delivers, and whether theseonly an be read from or are writable (see 5.2.5 on the faing page). Therefore thealgorithm in the ation method of a module an not determine who owns the datait gets and whether that data is referened in some other module in the graph.The only thing a module knows about the data it sends along is whether it wantsto keep the data for future alulations or not. If it wants to keep the data, it alsohas the responsibility of deleting it eventually, and hene other modules must notdelete it.From this observation it is quite lear that some rule regarding the integrityof the data being sent between modules, should be at hand. It is also neessarythat the mehanism itself is not part of any module algorithm, sine a module onlyknows what it reates, wants to keep and what it does not want to keep. Anotherreason is that a module programmer's role should not be further ompliated, asstressed in our original goals for the PAVE design.For this mehanism we have deided to add referene ounting with garbage ol-letion on the BaseType lass, so that all speializations of BaseType, e.g. World-Model, WorldObjet, FrameBu�er et., have referene ounting.This is done by adding an integer attribute as a ounter in the BaseType base-lass. In addition we add two methods to the BaseType base lass alled AddRefand ReleaseRef. These two methods are deribed below:� AddRef. Inrements the referene ounter attribute by one.56

� ReleaseRef. Dereases the referene ounter attribute by one. If the ounterhas reahed zero, this BaseType instane deletes itself.The two above methods are enapsulated in a ritial region, proteted by amutex. When a BaseType speialization is instatiated, its initial referene ount isone, meaning that the reator owns the BaseType instane initially. It is neessaryto hold a referene variable to the reated BaseType instane in order to e.g. giveup ownership (by alling the ReleaseRef method) of the referene to the instane. Ife.g. a module is reeiving a referene to a BaseType instane and it wants to keepthat instane for future alulations, it alls the AddRef method on the instane.If a module algorithm in the ation method reates a new BaseType instane foreah frame index, that it wants to deliver as a result on one of its outputs, it addsthe referene to the output list (whih is a BaseTypeList) and gives up its ownownership by dereasing the referene ount. That is unless it wants to keep theresult for future alulations.When a BaseType instane is added to a BaseTypeList, the referene ount isinreased by one, and when a BaseTypeList is deleted all its elements (BaseTypes)have their referene ount dereased. In setion 4.3.7 on page 42, the pseudo odefor the original ThreadEntry method an be seen. It an be seen that the loalvariable alled InputList (whih is a BaseTypeList) is assigned a number of Base-Types from eah input MailBox and given to the module's ation method. TheInputList is deleted when thread exeution returns from ThreadEntry. This meansthat if a module has not obtained ownership to one or more of the inoming inputBaseTypes they are deleted if no other modules has ownership to them.This approah to garbage olletion and referene ounting is similar to e.g.Mirosoft's Component Objet Model (COM) and was inspired from that model.5.2.5 Read-Only and Writable DataTo ensure that modules do not write in data they are not supposed to, and to avoidmaking superuous opies of data, we introdue read-only data, and writable data.When a module's input and output is delared, it must be stated if it is read-onlyor writable. To support read-only and writable data, a permission attribute is puton the BaseType, denoting if the data is read-only or writable.The BaseTypes ontained in a module's input BaseTypeList and the BaseTypesit generates as output must all have the permission attribute set. With the permis-sion attribute set, the following semantis is used for sending data between modules.For all Channels it holds:� R ! R: If the reeiving module has spei�ed its input data as read-only, itwill not write in it, and a referene to the original data an be sent.57

� W ! R: As above.� R !W: If the reeiving module has spei�ed its input data as writable, andthe data outputted is readable, a referene to a lone of the data is reatedand sent.� W ! W: If both the reeiving module and the sending module has spei�edthe data as writable, two ases exist:{ If the Channel in question is the last one stemming from the given output,and no Channels from the output sends to a read-only destination, thena referene to the original data is sent, as no other modules will aessthe original data.{ Otherwise a referene to a lone of the output data is sent.It should be noted that when sending output from a module, all lones of data aremade before the original referene may be sent. This avoids that data is loned,while residing in another module. A lone is always writable and its referene ountis set to one.In �gure 5.2, an example graph ontaining all di�erent ases of R/W seman-tis is depited. With the R/W semantis introdued, modules an be onneted
R

R

R R

W

W

W

W

W

W

WR

Reference to clone

Original Reference

Original Reference

Original Reference

Original Reference

Reference to clone

Reference to clone

Figure 5.2: Graph extrat ontaining all di�erent R/W data semanti ases.in di�erent ways, without expliitly stating for eah possible graph built, whethermodule outputs should be sent as referenes or referenes to lones.58

5.3 ComponentsHere, we will desribe the neessary PAVE data strutures and modules (see �g-ure 5.1 on page 52), what algorithms eah module must ontain and how thosealgorithms work.5.3.1 Data StruturesIn this setion we desribe the PAVE data types used by the AR museum modules.All the types are speializations from BaseType (see setion 4.3.5 on page 38) anddesribed in the following.WorldObjetThe WorldObjet is a data type whih enapsulates information about a real-worldor virtual objet present in the world. The WorldObjet onsist of the followingelements:� Name:A unique string identi�er.� Mesh:List of polygons desribing the geometry of the WorldObjet.� Texture:A bitmap image whih is mapped onto the surfae of the WorldObjet.� Bounding box:An axis aligned minimal enlosing box that overs the geometry of the Worl-dObjet in all 3 dimensions. This will be used for visibility testing (see setion5.3.6).� State:The state string an either be "stati" or "dynami". See setion 5.3.8 for adesription of how the state string is used.� Visible attribute:Determines whether the WorldObjet is visible or not.WorldModelThe WorldModel is a data type whih holds information about the real and thevirtual world. In partiular it is used for holding desriptions of geometry and fromwhat position and orientation the world is viewed. The WorldModel onsist of thefollowing elements: 59

� List of WorldObjets desribing real-world objets:Used for desribing objets suh as walls, oors, eilings and other stati real-world objets. Its usage is desribed in setion 5.3.9.� List of WorldObjets desribing virtual objets:Used for desribing all the virtual objets in the world.� List of lightsoure desriptions:Used for simulating real-world lighting on the virtual objets.� View transformation matrix:Represents the position and orientation of the amera viewing the world.� Projetion transformation matrix:Represents the viewing frustum in whih the world is visible.FrameBu�erThe FrameBu�er is a type whih enapsulates a representation of a bitmap image.It has a bu�er holding the raw pixels in the image and desriptions of pixelformatand resolution.MatrixThe Matrix type is a representation of an arbitrarily sized matrix.StringThe String type enapsulates an arbitrarily sized string.FloatThe Float type enapsulates a single preision oating point value.CommandThe Command type is used for sending ommands to Nodes in a PAVE graph. Twotypes of ommands will be used in the PAVE museum graph:� Triggers (see setion 4.3.8 on page 47).� Empty triggers (see setion 5.2.3 on page 55).In the following setions we desribe the modules onstituting the AR museumgraph. 60

5.3.2 World Model Module� Inputs:{ none� Outputs:{ WorldModel (read-only)� Parameters:{ String: name of world model �le
World Model
Module

Figure 5.3: World model moduleThe world model module is responsible for loading and initializing the World-Model. Based on the �lename given in its parameters it loads a geometry desriptionof the world from disk. The geometry is spei�ed in a Mirosoft X �le whih is atemplate-driven format that enables storage of meshes, textures, animations, anduser-de�nable objets [msd01℄. After the geometry is loaded the WorldModel stru-ture is instantiated and the geometry is inserted into it. For eah mesh in the X �lea WorldObjet is reated and inserted into the WorldModel. For eah WorldObjeta bounding box is omputed and stored in the WorldObjet.Furthermore a bakground WorldObjet is reated and inserted into the World-Model. The bakground WorldObjet represents the urrent image of the real worldwhih is grabbed by the amera. It is simply a retangular mesh with the urrentreal-world image mapped onto it as a texture. See setion 5.3.9 on page 69 fordesripition of how the bakground WorldObjet is used when visualizing the ARmuseum.The world model module outputs a read-only WorldModel data struture eah timeits ation method is alled and it keeps a referene to the WorldModel itself sothe WorldModel will not be deleted by the automati garbage olletion (see se-tion 5.2.4 on page 56).5.3.3 Magneti Traker Module� Inputs: 61

{ None� Outputs:{ Matrix: 4x4 view transformation matrix. (writable)� Parameters:{ Matrix: transmitter translation vetor relative to world model origin.{ Matrix: reeiver translation vetor relative to amera.
Magnetic
Tracker
ModuleFigure 5.4: Magneti traker moduleThe task of the magneti traker module is to read the position and orientationof the magnetial reeiver, that registers the amera's extrinsi parameters.When the module is initiated, the position of the magnetial transmitter must beknown. The transmitter translation vetor Vt, reeived in the parameters, desribesthe translation from the origin in world spae to the transmitter (see �gure 5.5).

Transmitter

World spaceFigure 5.5: Transmitter translation vetorAs the magnetial reeiver is highly sensitive, we an not plae it on top of theamera, as the amera orrupts the magnetial �eld. As desribed in setion 4.1on page 25, the magnetial reeiver is plaed behind the amera on a wooden stikto avoid orruption of the position and orientation measurements (see �gure 5.6on the next page). The reeiver translation vetor Vr, reeived in the parameters,desribes the translation from the reeiver devie to the amera lens.When the ation method is run a rotation matrix Mrot and a reeiver positionvetor Vpos is obtained from the orientation and position measured. Sine the re-eiver translation must be done in the amera's loal oordinate system, the reeivertranslation vetor Vr is multiplied by the transposed rotation matrix:62

ReceiverCameraFigure 5.6: Reeiver translation vetorVrl = Vr �MrotThe total translation vetor Vtotal is then desribed by:Vtotal = Vpos + Vrl + VtFrom Vtotal a 4x4 translation matrix Mtran is reated. The view transformationmatrix Mview is omputed by multiplying Mtran by Mrot and is sent as output.5.3.4 Camera Module� Inputs:{ None� Outputs:{ FrameBu�er (writable)� Parameters:{ None
Camera
Module

Figure 5.7: Camera module.The task of the amera module is to grab frames of the reality �lmed by aamera. It has no input and delivers a FrameBu�er ontaining the grabbed imageas output. To grab the frames, funtionality in Mirosoft's DiretShow API wasused. When the ation method is alled, the urrent image grabbed is outputtedas a FrameBu�er. 63

5.3.5 Distortion Corretion Module� Inputs:{ FrameBu�er (read-only)� Outputs:{ FrameBu�er (writable)� Parameters:{ 4 Floats: distortion oeÆients
Distortion
Correction
ModuleFigure 5.8: Distortion orretion moduleThe task of the Distortion Corretion module is to ompensate for the distortionthat ours in the image grabbed by the web amera.Distortion is an optial error in the amera lens that auses a displaement ofpixels at di�erent points in the image. The pixels in the image are misplaed rela-tive to the enter of the �eld, hene it is alled radial distortion.Radial distortion omes in two forms: pinushion distortion (positive) and barreldistortion (negative). The two forms of distortion is depited in �gure 5.9.

Figure 5.9: The result of pinushion distortion(left), non-distorted image (middle) andbarrel distortion(right)The distortion of pixels is not linearly orrelated to the distane to the enterof the image. At small distanes to the enter of the image there will be very little64

displaement and in the edges of the image displaement of pixels will be very large.This an be approximated by the following equation:rsr = rdest(ardest3 + brdest2 + rdest + d) (5.1)rdest denotes the distane from the pixel to the enter of the image, in the distortedimage and rsr denotes the orresponding distane in the distortion orreted image.The a, b and oeÆients is a measurement of the distortion in the image.The parameter d desribes the linear saling of the image. Using d = 1, anda = b = = 0 leaves the image as it is. If the distortion orreted image must havethe same size as the original image, it must hold that:a+ b + + d = 1 (5.2)The above equations were taken from [Der99℄.The di�erene between the atual (distorted image) and the "real" predited(non-distorted image), as it would look taken by an ideal pinhole amera, anbe ounterated by displaing eah point in the image along the diretion vetorspanned by the enter point of the image and the distorted point, as shown in theabove equation.For eah pixel index in the destination image, the distortion orretion modulealulates whih pixel index in the soure image it must ontain, and saves this ina lookup table.This table is used in the ation method to orret pixel positions in every framethe distortion orretion module reeives. The distortion oeÆients used have beenobtained empirially by �lming a hekerboard, and adjusting them to get an undis-torted image.5.3.6 Frustum Culling Module� Inputs:{ WorldModel (read-only){ Matrix: 4x4 view transformation matrix. (read-only)� Outputs:{ WorldModel (writable){ Multiple triggers/empty triggers (writable)� Parameters:{ String: list of objet names that needs to be heked for visibility.65

Frustrum
Culling
Module

..........21 n+1Figure 5.10: Frustum ulling module{ Float: horizontal �eld of view.{ Float: vertial �eld of view.The task of the frustum ulling module is to determine whih of the WorldOb-jets are visible and make sure that only subgraphs that produe frames for visibleobjets are exeuted. This allows for more virtual objets in the world that useframes generated by subgraphs, sine all the virtual objets are rarely visible at thesame time and hene not all of the subgraphs needs to be exeuted. In terms ofrendering speed this an provide for a signi�ant speedup.Eah of the module's optional outputs (see setion 5.2.1 on page 53) is dediatedto a separate subgraph, whih the frustum ulling module an either ativate ordeativate by sending a trigger mail or an empty trigger mail respetively (see se-tion 5.2.3 on page 55). So all input nodes in a given subgraph must be onneted tothe same output on the frustum ulling module. Furthermore there may not existany dependenies between any of the subgraphs, sine it ould result in unpreditedresults when a module in an ative subgraph expets valid data from a module inan inative subgraph. See �gure 5.11 for an illustration of subgraphs onnetedorretly to the frustum ulling module.
Frustum
Culling
Module

Figure 5.11: Illustration of three subgraphs onneted to eah their output on the frustumulling module. The dotted lines represents trigger/empty trigger mails being sent to inputnodes.When the ation method is alled it must determine whih of the optional outputsto send triggers/empty triggers to. For this two things must be known. Firstly, itmust be known what output is linked to what WorldObjet. This is ahieved by66

giving the frustum ulling module a string parameter ontaining the names of theWorldModel objets that needs to be heked for visibility. Names are listed in thestring in the order whih orrespond to the numbering of the multiple outputs. Iffor instane the string is "objet1, objet2", a trigger will be sent on �rst of theoptional outputs if objet1 is visible. If objet1 is not visible an empty trigger willbe sent on the �rst of the optional outputs. This will be true for all the objetname/output pairs.Seondly, the atual visibility test must be performed for eah WorldObjet. Forthis to be ahieved the view matrix and the projetion matrix (see setion 4.2.2 onpage 28) must be known. The view matrix is reeived on the seond input and theprojetion matrix is generated based on the vertial FOV and the horizontal FOVreeived in the parameters and statial values for front and bak lipping planes.These values are set to span the entire world model. Alternately, they ould bedetermined by the nearest and farthest away visible geometry.The projetion matrix represents the viewing frustum (see �gure 4.4 on page 29)and the view matrix represents the the amera's position and orientation. Whenthese two matries are multiplied, the resulting matrix represents a transformedviewing frustum that is the volume in whih objets are visible to the amera. Thesix planes front, bak, left, right, top and bottom whih onstitutes the viewingfrustum are extrated from the multiplied matrix.The visibility test heks if an objet lies inside or outside of the transformed view-ing frustum. For a single point this is done by heking for eah of the six planesplanes if the point lies in the halfspae not ontaining the frustum. If for one ormore of the planes this is true, the point an be lassi�ed invisible. This hek anbe very expensive if the WorldObjet's mesh onsists of many polygons, sine thehek needs to be done for eah vertex in all the polygons. Therefore the Worl-dObjet's bounding box is used instead sine it only requires to test if the box isinside the viewing frustum. If it is inside, the WorldObjet is marked visible. Thisensures that if the bounding box is invisible then the mesh is also invisible. Though,in some ases the bounding box an be visible but the mesh invisible, this is still ahighly preferable method performane-wise.After the visibility test has been performed for eah WorldObjet in the World-Model, a lone of the WorldModel is made and the view matrix and the projetionmatrix are stored in it. Instead of forwarding the WorldModel reeived on the in-put, the lone is made to ensure that the new view and projetion matries storedfor next frame do not overwrite the urrent ones before they have been used forrendering.5.3.7 World Objet Module� Inputs: 67

{ FrameBu�er (read-only)� Outputs:{ WorldObjet (writable)� Parameters:{ String: WorldObjet name{ String: WorldObjet state, "dynami" or "stati"
World Object
Module

Figure 5.12: World objet moduleThe task of the world objet module is to reate a WorldObjet based on itsinput and parameters. The WorldObjet is representing a virtual objet, in theWorldModel, whih needs to be reated or modi�ed in some way. When the ationmethod is alled the module names the WorldObjet and sets its state as spei�edin its parameters and assigns it a texture whih is present in the FrameBu�er itreeives in its input.5.3.8 World Update Module� Inputs:{ WorldModel (read-only){ Multiple WorldObjets/EmptyTriggers (read-only)� Outputs:{ World Model (read-only).� Parameters:{ noneThe world update module is responsible for updating the WorldModel based onthe WorldObjets reeived in its inputs. The seond input on this module is amultiple type whih allows an arbitrary number of modules to be onneted to it.These modules must output either a WorldObjet or an empty trigger. When the68

World Update
Module

..........2 n+11

Figure 5.13: World update moduleation method is alled all empty triggers are ignored while all the WorldObjetsare olleted in a list and proessed. This involves heking eah WorldObjet if itexist in the WorldModel and if its state is set to dynami. If this is the ase theWorldObjets's FrameBu�er is read and uploaded to the texture memory on thedisplay adapter. This will overwrite the texture memory assigned to WorldObjet'stexture so that next time it is drawn the ontents of the framebu�er is mappedonto the surfae of WorldObjet. Note that the world update module is designedonly to update textures on the virtual objets, but it is easily extendable to sup-port adding new WorldObjets to the WorldModel or updating other properties onexisting WorldObjets.5.3.9 Render Module� Inputs:{ WorldModel (read-only)� Outputs:{ none� Parameters:{ none
Render
ModuleFigure 5.14: Render moduleThe render module is responsible for visualizing the visible objets in the world.When the module is initialized it setups the Diret3D rendering pipeline and reatesa window in whih the rendered image will be displayed.When the ation method is alled the render module examines the WorldModel69

reeived on the input to render the �nal image. Two requirements exist for therendering:� Requirement 1: Virtual objet must be rendered overlayed onto the image ofthe real world� Requirement 2: Olusion between virtual objets and real-world geometrymust be handledRequirement 1 is ahieved by �rst rendering the bakground WorldObjet (seesetion 5.3.2). The bakground WorldObjet is a retangular mesh with the imageof the real world mapped onto it. It an be seen as a plane always positioned per-pendiularly to the amera view diretion. Therefore it should not be transformedby the view and projetion matries in the WorldModel. Instead it is projeted di-retly into sreen spae using an orthogonal projetion so it overs the entire renderwindow. Sine the bakground WorldObjet does not ontain any depth informa-tion the depth bu�er is disabled while rendering it.Next, the virtual objets must be rendered, but for ahieving requirement 2, somedepth information about the real world is needed. An example of this ould be aroom with pillars in and virtual pitures on the walls. It is likely that in some po-sitions a virtual piture is oluded by a pillar, and in this situation it is neessaryto know depth information about the pillar. Sine all depth information rely onthe provided desriptions of geometry , desriptions of the real-world objets thatan olude virtual objets are needed. When rendering the real-world geometrydesriptions they should not be rendered to the olor bu�er sine they are alreadypresent in the image of the real world. Instead we disable writes to the olor bu�erand enable writes to the depth bu�er so only their depth information is presentin the sene. Afterwards when rendering the virtual objets, writes to the olorbu�er are enabled and the visibility of the virtual objets will depend on the depthinformation present in the depth bu�er.The view and projetion matries in the WorldModel are used to transform boththe real-world objets and the virtual objets so they appear orretly aording tothe amera position and orientation. Lighting is enabled only when rendering thevirtual objets. Information about the lightsoures are obtained in the WorldModeland used for rendering the virtual objets so their appear illuminated by the real-world lightsoures. The lightsoures in the WorldModel should of ourse be plaedat positions that orrespond to where lightsoures are positioned in the real world.The render steps involved in rendering the omplete sene is listed ronologiallybelow. For desription of render spei� terms see setion 4.2.2.� Clear depth bu�er.� Disable depth bu�er. 70

� Disable lighting.� Set view transformation to the identity matrix.� Set projetion transformation to orthogonal projetion.� Render bakground WorldObjet.� Enable depth bu�er.� Disable writes to olor bu�er.� Set view transformation to view matrix in WorldModel.� Set projetion transformation to projetion matrix in WorldModel.� Render WorldObjets that represent real-world objets.� Enable writes to olor bu�er.� Enable lighting.� Render WorldObjets that represent virtual objets.5.3.10 SummaryThis hapter has desribed the overall design the AR museum by identifying whatomponents was needed to realize the AR museum using the PAVE framework.This resulted in designing enhanements to PAVE and designing the funtionalityof eah omponent. This design has resulted in a implementation of a prototype ofthe AR museum whih will be subjet to experiments in the following hapter.

71

6ExperimentsIn this hapter, we perform three types of tests to our AR museum. The perfor-mane test will determine the salability of the AR system by omparing framerates when running the system on a single and a dual proessor mahine. The userimpression test is less onrete. It is based on examining sreenshots of the run-ning system to see how well the augmented objets blend in with reality. In somesreenshots a displaement error of the virtual objets an be seen and therefore atest was onstruted that determines the preision of the magnetial traker.The world model used for the performane test and the user impression test ontainsfour virtual objets. Three pitures plaed on the walls in the room and a teapotplaed on a table. The PAVE AR museum graph used for these tests is depitedin �gure 6.1 on the following page. It ontains three subgraphs whih are linkedto the virtual pitures on the walls and therefore the textures on these pitures arethe result of frame output from these subgraphs. The �rst subgraph ontains animage loader module whih simply loads a bitmap image from disk when initial-ized and outputs this image1 eah time it is alled. The seond subgraph ontainsa plasma module whih generates a swirling olor pattern based on trigonometrifuntions. The third subgraph ontains a irle ower module whih generates amoving "ower like" pattern. Two of the virtual pitures are plaed in positionswhere real pitures exist in the room. This allows for observing if the virtual pi-tures are situated at their orret positions.All tests were performed on a Dual Celeron 400 MHz with 128 Kb ahe, 128Mb 66 MHz ram and a NVIDIA TNT2 graphis ard.6.1 Performane Saling TestThis test measures the salability of the AR system by omparing frame rates whenrunning the system on a single and a dual proessor mahine. Multiproessor sup-1We have used the famous painting alled "Skriget" by Edvard Munh.73

Figure 6.1: PAVE AR museum test graph.
74

port was disabled in Windows 2000 for the single proessor frame rate measurement.6.1.1 Test SetupThe PAVE graph depited in �gure 6.1 on the preeding page was exeuted in thePAVE framework. The frame rates measured are average frame rates obtained byrunning the the AR museum graph for several minutes using arbitrary amera-positions and orientations.6.1.2 Test ResultsThe measured frame rates are listed in table 6.1. We onsider the 54.2 perentagegain in frame rate a satisfatory result.Fps on 1 CPU Fps on 2 CPUs gain in %5,9 9,1 54,2Table 6.1: Performane saling result table.6.2 User Impression TestThis test is based on examining sreenshots of the running system to see how wellthe augmented objets blend in with reality.6.2.1 Test SetupThe PAVE graph depited in �gure 6.1 on the preeding page was exeuted in thePAVE framework. Sreenshots were taken while the system was running.6.2.2 Test ResultsIn �gure 6.2 sreenshots of the augmented objets an be seen. How well the virtualobjets blend in with the real world di�ers in the sreenshots. It turned out that itwas highly dependent on amera position and orientation. Furthermore it is mostnotieable on the sreenshots ontaining the virtual pitures sine the virtual edgesdo not allign the real-world edges. The virtual teapot, on the other hand, blends inquite well.In �gure 6.3 three loations in the room an be seen with and without virtualobjets.In �gure 6.4 on page 78 an example of gross displaement of the virtual objetis seen. For this sreenshot the amera was rolled 180 degrees whih resulted in a75

(a) Virtual piture with dynami texture. (b) Virtual piture with stati texture.

() Virtual teapot. (d) Virtual teapot.Figure 6.2: Sreenshots of virtual objets blended with a real world image.
76

(a) First loation without augmentedobjet. (b) First loation with augmented ob-jet.

() Seond loation without aug-mented objet. (d) Seond loation with augmentedobjet.

(e) Third loation without augmentedobjet. (f) Third loation with augmented ob-jet.Figure 6.3: Sreenshots of three loations with and without virtual objets.77

displaement of the virtual piture. The displaements in the x and y diretions areapproximately 18 and 12 entimetres respetively.

Figure 6.4: Sreenshot showing the displaement of a virtual piture.6.3 Magnetial Traker Preision TestGiven the displaement of virtual objets experiened in the user impression test,we wish to test whether the displaement an be put down to the inauray in themagnetial traker measurements.6.3.1 Test SetupWe wish to ompare position and orientation measured by the magnetial traker,with the position and orientation that should be obtained. We have marked anglesovering 180 degrees rotation about the y-axis, in the xz-halfplane with 15 degreesbetween them. The magnetial reeiver is put on a stik, whih is plaed from thetransmitter to the 13 marked points. Eah of the 13 angles (0 to 180 degrees), andthe orresponding x and z position is measured 10 times, and an average angle andposition is omputed, to ounterat inauray in the test setup itself. In �gure 6.5on the next page, the traker preision test setup is depited.6.3.2 Test ResultsIn table 6.2 on page 80 the results of the magnetial traker test are listed. Angleerrors are measured in degrees and position errors are measured in entimeters. Ifwe look at the average, min and max values for angle and position errors, we ansee that position errors are less than angle errors. Beause of the fat that positionerrors do not impat the quality of AR as muh as angle errors does, we only ex-amine the angle errors further. To estimate how muh impat the angle errors have78

Receiver

Transmitter

60º

Figure 6.5: Traker preision test setup.on displaement of the virtual objets, a simple ase depited in �gure 6.6 is used.This �gure shows a amera looking at a wall from a distane d. The dotted linerepresents the measured erroneous looking diretion of the amera. This results ina point being displaed by the distane x on the wall.If we return to �gure 6.4 on the faing page showing gross displaement of avirtual piture on a wall and use the information that the amera was plaed ap-proximately 2 meters from the wall, the displaement x an be alulated for theaverage, min and max angles errors. This gives 11.9, 1.0 and 23.5 entimeters re-spetively. The displaements observed in the sreenshot were 18 and 12 entimetersrespetively, so this lies within the value for the max angle error. From this, weonluded that the angle error introdued in the measurements of the magnetialtraker's orientation is signi�ant enough to ause the displaement of the virtualobjets. These errors are most likely due to the magnetial traker's sensibility tometal and other magneti �elds in the environment.
a

d

x

Figure 6.6: Displaement due to angular error.79

Angle Angle err. X pos. err. Z pos. err.0 0,3 0,9 0,015 1,6 1,5 0,630 2,0 1,5 1,045 2,4 1,3 1,260 2,3 0,8 1,075 2,5 0,4 1,390 3,1 0,2 1,6105 3,8 0,0 1,3120 4,3 0,5 1,0135 4,9 0,6 0,7150 5,4 1,2 0,7175 6,7 2,3 0,1180 5,3 0,7 0,3Average 3,4 0,9 0,8Min 0,3 0,0 0,0Max 6,7 2,3 1,6Table 6.2: Traker preision result table.6.4 Test ConlusionThe tests performed on the AR museum system shows that the system sales well.In terms of the visual quality, the main reason for the less than perfet aligmentof the virtual objets, an be put down to the magnetial traker, as mentioned inthe preision tests. Regarding the requirement, that the minimum aeptable framerate being 10 frames/seond, in an AR system, this is barely satis�ed. Our systemahieved a frame rate of 9.1 frames/seond on the 2 proessor test mahine with aTNT2 graphi ard and hene is a little bit slower than the aeptable frame rate.The dual Celeron mahine is a rather slow mahine, ompared to even ontemporarysingle proessor mahines, and therefore we do not see this as a problem. We testedthe AR Museum on a 500 Mhz Pentium-III single proessor mahine with a GeFore256 ard, where the system ran with a frame rate of 20 frames/seond, whih gavesatisfatory visual results.

80

7ConclusionIn this hapter we will onlude upon our goals and requirements set in hapters 1and 3.We have designed an Augmented Reality Museum arhiteture, that allows auser to inspet a room augmented with virtual objets onstituting the art in themuseum. The museum is desribed by a world model holding information about thereal world and the virtual objets residing in it. The world model an be reated byusing a modelling tool so that omplex environments an be reated. The virtualobjets an be dynami and thereby giving the user a more immersive experiene.The design has been modularized and desribed by modules onneted in a graphin the PAVE framework. The inherent apability of PAVE to exeute modules inparallel ensures that the AR system will sale over multiple proessors.The PAVE framework allows reation of visual e�ets by building subgraphsonneting e�et modules. An interfae has been designed that an link these sub-graphs to virtual objets. This allows for easy integration of visual e�ets into theAR environment.Sine the visual e�ets an be very time onsuming we have designed a meha-nism that determines whether virtual objets are visible or not, and on that basisontrol whether e�et subgraphs should be ative or inative.The AR museum's funtionalty has been analysed to identify areas in the PAVEframework that needed new features and enhanements. This inludes garbage ol-letion, read-only and write semantis for datatypes, optional inputs and outputson modules and the triggering/empty triggering mehanism. The optional inputsand outputs mehanism on modules has greatly improved the exibility in PAVEand as a onsequene also made the AR Museum more exible. The garbage ol-letion mehanism manages memory alloation eÆiently and makes PAVE morerobust to hanging on�gurations of graphs. The triggering mehanism enhanes81

performane by reduing the exeution of subgraphs to only when it is neessary.The read-only and write semantis helps reduing loning of data, and inreasesoverall eÆieny of the system.As part of realizing the AR museum, the intrinsi and extrinsi parameters aredetermined for the amera, whih allows alibration of the amera image and align-ment of the virtual and the real amera. The visualization has been made to takeadvantage of 3D aeleration hardware for better performane.A prototype of the AR museum has been implemented and tested. It proved tosale well on a dual proessor mahine and maintain a stable aeptable framerate.The visual quality is quite good and the dynami e�ets adds to the user expe-riene. Regarding the registration of amera positions and orientation, our testsshowed that the magneti traker an be somewhat inaurate, esspeially whenit omes to measuring orientation angles. This aused virtual objets to be moreor less displaed, where some displaements where gross. The onlusion from thisis, that more preise traking equipment that is less sensitive to eletromagnetialnoise, is a neessity to obtain better results.In general the system satis�es our goals and has proven to be quite robust, fairlyfast and stable. The onept of art on objets has shown to work quite well visually.

82

8Future WorkIn this setion we briey desribe possible future diretions that an be taken toexpand on our projet.8.0.1 Enhaned TrakingSine the magnetial traking proved to be a somewhat impreise method of regis-tering the position and gaze of the amera, additional traking methods would berequired to reah an aeptable user immersiveness. A of way ahieving this ouldbe to examine ways of doing hybrid traking by e.g. designing an optial trakingomponent.8.0.2 Multiple UsersIf the AR museum were to be experiened by using head-mounted displays, it wouldbe desriable to allow multiple users at the same time. This would require modifyingthe museum graph and most likely the funtionality of the omponents too. Forinstane, it should be investigated how the ontrol of ativating/deativating thee�et subgraphs will hange when onsidering multiple users �eld of view.8.0.3 Hardware Aelerated Image DistortionWe have hosen to alibrate the amera image in software. It would be possible todo this by taking advantage of graphis hardware by mapping the amera imageonto a distorted mesh. This would not give a per-pixel auray and therefore itmight be of interest to investigate a way of subdividing the mesh in areas where theimage distortion is most pronouned. Another possibility ould be to render thevirtual objets into a texture and distort this in the above mentioned way insteadof distorting the amera image. 83

8.0.4 ShadowsMaking virtual objets ast shadows on eah other and on real-world objets wouldbe a obvious way of enhaning the user immersiveness. With the world knowledgeand the rendering approah we have hosen it is possible to generate hardwareaelerated shadows on modelled real-world objets.8.0.5 Depth of Field BlurA way of making the rendered objets blend better in with the real-world imageould be to simulate a depth of �eld e�et on the rendered image. The depth of�eld e�et is due to di�erent parts of an image being in fous and others not. Therendered image would need to be blurred in areas where the real-world image isout of fous. Realtime depth of �eld blur e�ets are possible on todays onsumergraphis hardware [nvd01℄.

84

ABaseModule
Specialization

ExampleThis example shows how a module is implemented for PAVE framework, the moduleshown is a real module alled BlendModule, we implemented last semester. TheBlendModule takes two bitmap images, of FrameBu�er type1, as input. Its Ationmethod blends two images by some fator spei�ed by an integer Value parame-ter. It delivers a resulting bitmap image (of FrameBu�er type) that ontains aomposite of the two inputs. Below is a C++ ode example of the BlendModuleimplementation, the blend algorithm resides in the ation method.The soure ode shown, is for a plugin pakage, we have alled StandardModules,that ontains several other modules, but only the ode for BlendModule is shown.The ode for registering the BlendModule into the plugin DLL-�le representing theStandardModules plugin pakage is also shown.StandardModules.h:#ifndef __StandardModules__#define __StandardModules__#inlude "Types.h"#inlude "Base.h"..........//---------------------------//// Blend module (delaration)//---------------------------//1A speialization of BaseType that ontains a bitmap image bu�er.85

lass BlendModule : publi BaseModule{publi:BlendModule(); // Construtor.~BlendModule(); // Destrutor.virtual void init(BaseTypeList* statiParams); // Intialization method.BaseTypeList* ation(BaseTypeList* inputs, BaseTypeList* params); // Ation method.private:unsigned int m_imgSize;};..........#endifStandardModules.pp:#inlude "StandardModules.h"..........//---------------------------//// Blend module - begin//---------------------------//BlendModule::BlendModule() // Construtor{ this->setTypeID("BlendModule");m_inputs->addBaseType(new FrameBuffer()); // Delare a FrameBuffer as input number one.m_inputs->addBaseType(new FrameBuffer()); // Delare a FrameBuffer as input number two.m_params->addBaseType(new Value()); // Delare a Value as parameter one.m_outputs->addBaseType(new FrameBuffer()); // Delare a FrameBuffer as output number one.m_imgSize = 256*256*4; // Fixed size of the images}BlendModule::~BlendModule() // Destrutor{ // does not own anything that needs to be deleted.};void BlendModule::init(BaseTypeList* statiParams){ // no initialization is neessary.}BaseTypeList* BlendModule::ation(BaseTypeList* inputs, BaseTypeList* params){ FrameBuffer* image1 = (FrameBuffer*) inputs->getBaseType(0);FrameBuffer* image2 = (FrameBuffer*) inputs->getBaseType(1);// reate a result FrameBuffer to send along.86

FrameBuffer* resultImage = new FrameBuffer(256, 256, 4);unsigned har* drawbuf = resultImage->getPtr();unsigned har* rgb_pi1 = image1->getPtr();unsigned har* rgb_pi2 = image2->getPtr();Value* v = (Value*) params->getBaseType(0);unsigned int step = v->getValue();unsigned int invstep = 255 - step;unsigned int imgSize = m_imgSize;// Intel x86 assembler version of a blending algorithm.__asm{ mov edi, drawbufde edimov esi, rgb_pi1mov ebx, rgb_pi2mov ex, imgSizeinnerloop:mov edx, [esi℄and edx, 0x000000FFimul edx, stepin esishr edx, 8mov eax, [ebx℄and eax, 0x000000FFimul eax, invstepin ebxshr eax, 8in ediadd eax, edx //eax = (olor1*step)/256 + (olor2*(255-step))/256mov [edi℄, alde exjnz innerloop}// Create an outputlist ontainerBaseTypeList* output = new BaseTypeList();// Add the result image to the outputlistoutput->addBaseType(resultImage);// Release the referene to the result.// Added after the enhanements of PAVE were implemented.resultImage->releaseRef();return output; // return the output list to parent Node.}//---------------------------//// Blend module - end 87

//---------------------------//...........//---------------------------//// Export module(s) here//---------------------------//__delspe(dllexport) BaseModule* moduleQueryFun(int moduleNr){ swith(moduleNr){ase 0:return (BaseModule*) new BlendModule();ase 1:return (BaseModule*) new ..default:return NULL;}}//---------------------------////---------------------------//The idea of exporting modules, is that an appliation an load the plugin DLL�le at run time. When loaded it an all one single generi fatory funtion (mod-uleQueryFun) in the plugin and on behalf of the parameter given, the funtionreturns the desired module instane.

88

Bibliography

[APG98℄ T. Auer, A. Pinz, and M. Gervautz. Traking in a multi-user augmentedreality system. In Proeedings of the IASTED International ConfereneComputer Graphis and Imaging 1998, pages 249{252, 1998.[Cor98℄ T. H. Cormen. Introdution to Algorithms, page 89. MIT Press, 1998.[Cre01℄ Creative Video Blaster WebCam 3 USB Manual, 2001.http://www.europe.reative.om/support/manuals/.[Cro97℄ Thomas W. Crokett. An introdution to parallel rendering. 1997.[CT95℄ Mihel Cosnard and Dennis Trystram. Parallel Algorithms and Arhi-tetures. International Thompson Computer Press, 1995.[Der99℄ Helmut Dersh. Correting barrel distortion, 1999. http://www.fh-furtwangen.de/ dersh/barrel/barrel.html.[FAS00℄ Fastrak spei�ations, 2000. http://www.polhemus.om/ftrakds.htm.[KV98℄ Kiriakos N. Kutulakos and James R. Vallino. Calibration-Free Aug-mented Reality. IEEE Transations on Visualization and ComputerGraphis, 4(1):1{20, January 1998.[MKN96℄ K. Mase, R. Kadobayashi, and R. Nakatsu. Meta-museum: A supportiveaugmented reality environment for knowledge sharing. In Proeedings ofInternational Conferene on Virtual Systems and Multimedia '96, pages107 { 110, 1996.[msd01℄ Mirosoft online developer enter, 2001.http://msdn.mirosoft.om/diretx.[nvd01℄ Nvidia developer relations site!, 2001.http://partners.nvidia.om/developer.[Rek96℄ J. Rekimoto. Transvision: A hand-held augmented reality system forollaborative design. In Proeedings of Virtual Systems and Multimedia(VSMM) '96, 1996. 89

[SFH00℄ D. Shmalstieg, A. Fuhrmann, and G. Hesina. Bridging multiple userinterfae dimensions with augmented reality. In Proeedings of ISAR2000, pages 249{252, 2000.[SHC+96℄ Andrei State, Gentaro Hirota, David T. Chen, Bill Garrett, and MarkLivingston. Superior augmented reality registration by integrating land-mark traking and magneti traking. In Holly Rushmeier, editor, SIG-GRAPH 96 Conferene Proeedings, Annual Conferene Series, pages429{438. ACM SIGGRAPH, Addison Wesley, August 1996. held in NewOrleans, Louisiana, 04-09 August 1996.[Sta97℄ William Stallings. Operating Systems. Alan Apt, 1997.[Ull75℄ J. D. Ullman. NP -omplete sheduling problems. Journal of Computerand System Sienes, 10(3):384{393, June 1975.[Val01℄ Jim Vallino. Introdution to Augmented Reality. PhD thesis, Departmentof Computer Siene, Rohester Institute of Tehnology, 2001. Chapter1, http://www.s.rit.edu/ jrv/researh/ar/introdution.html.

90

