
Aalborg UniversityInstitute of Computer S
ien
e dFredrik Bajersvej 7E DK-9220 Aalborg � Phone: +45 96 35 80 80

Group E3-101A, DAT6 proje
t, spring 2001.

Aalborg UniversityInstitute of Computer S
ien
e dFredrik Bajersvej 7E DK-9220 Aalborg � Phone: +45 96 35 80 80Theme: Distributed Systems,Computer Vision and Virtual RealityTitle: An Augmented Reality Museum for thePAVE FrameworkPeriod: Feb 4th 2001 toJun 13th 2001
Proje
t members:Rune Elmgaard LaursenMikkel Kierkegaard StausholmHenrik Lunardi WeideSupervisors:Anders P. RavnClaus B. MadsenCopies: 10Pages: 90
Delivered: Jun 13th 2001

Abstra
t:This report
overs the analysis, designand implementation of an augmented re-ality (AR) museum prototype. The sys-tem is built as modules for the PAVE(Parallel Ar
hite
ture for Visual E�e
ts)framework, and hen
e the performan
eof the system s
ales on multipro
es-sor PCs with a measured gain of 54%from 1 pro
essor to 2 pro
essors. Thesystem utilizes 3D graphi
s hardwarefor visualization in real time and sup-ports binding of dynami
 visual e�e
tsto 3D obje
ts. The system runs in realtime with a minimum frame rate of 9,1frames/se
ond on the test ma
hine used.The design
overs the overall system ar-
hite
ture, enhan
ements made on thePAVE framework and the des
ription ofsuitable algorithms to meet the require-ments for the AR museum.
Copyright

 2001, Institute of Computer S
ien
e, AAU.

Aalborg UniversitetInstitut for Datalogi dFredrik Bajersvej 7E DK-9220 Aalborg � Tlf: +45 96 35 80 80Fagomr�ade: Distribuerede systemer,Computer Vision og Virtual RealityTitel: An Augmented Reality Museum for thePAVE FrameworkPeriode: 4.feb 2000 til13.jun 2001
Projektdeltagere:Rune Elmgaard LaursenMikkel Kierkegaard StausholmHenrik Lunardi WeideProjektvejledere:Anders P. RavnClaus B. MadsenOplag: 10Antal sider: 90
Dato: 13.jun 2001

Synopsis:Denne rapport omhandler analyse, de-sign og implementation af et proto-type \augmented reality" museum. Sys-temet er bygget som moduler til PAVE(Parallel Ar
hite
ture for Visual Ef-fe
ts) frameworket, og ydelsen af sys-temet skalerer p�a multipro
essor PC'ere.Forbedringen af ydelsen er m�alt til atv�re 54% fra 1 pro
essor til 2 pro
es-sorer. Til visualisering i reel tid ud-nytter systemet 3D gra�k hardware ogsupporterer tilknytning af dynamiske vi-suelle e�ekter til 3D objekter. Designaspekterne omhandler den overordnedesystem arkitektur, udvidelser foretagetp�a PAVE frameworket og beskrivelsen afpassende algoritmer til at im�dekommekravene til et \augmented reality" mu-seum.
Copyright

 2001, Institut for Datalogi, AAU.

PrefaceThis report is the result of group E3-101A's proje
t work done on the DAT6semester, in the spring of 2001, at the Institute of Computer S
ien
e at AalborgUniversity. This report des
ribes the analysis, design and test of a prototype ARsystem built as modules in the PAVE (Parallel Ar
hite
ture for Visual E�e
ts)framework.We wish to thank: Flemming N. Larsen, Aalborg University, for showing us somebasi
s about 3D StudioMAX s
ene modelling. Peter Hounum, Preben S. Nielsenand Sven Vestergaard at AM:3D for lending us a Polhemus FASTRAK for several
riti
al weeks. Karin Husballe Munk, Aalborg University, for lending us a PolhemusISOTRAK. Aalborg University, DenmarkJune 13th, 2001

Rune Elmgaard Laursen Mikkel Kierkegaard Stausholm
Henrik Lunardi Weide7

Contents

1 Introdu
tion 111.1 Motivation . 111.2 Proje
t Goals . 122 Related Work 153 Analysis 173.1 What is Augmented Reality? . 173.2 Typi
al AR systems . 183.3 Choosing the AR Museum . 203.4 The AR Museum . 203.4.1 Requirements . 223.4.2 Delimitations . 233.5 Summary . 234 Baseline 254.1 Hardware . 254.2 Software . 264.2.1 Cal
ulation of Camera Field of View 274.2.2 Rendering Pipeline . 284.3 The PAVE framework . 304.3.1 Render Model and Data Flow 304.3.2 Modules . 314.3.3 Parallelization in PAVE . 324.3.4 PAVE Design . 344.3.5 The Generi
 Components 384.3.6 Graph des
ription Components 404.3.7 The Communi
ation and Syn
ronization Components 414.3.8 Management Components 454.3.9 Exe
ution engine Components 474.4 Summary . 495 Design 515.1 Ar
hite
tural Style . 515.2 PAVE Design Enhan
ements . 535.2.1 Optional Inputs and Outputs on Nodes 539

5.2.2 Trigger Capable Node . 545.2.3 Empty Triggering . 555.2.4 Garbage Colle
tion . 565.2.5 Read-Only and Writable Data 575.3 Components . 595.3.1 Data Stru
tures . 595.3.2 World Model Module . 615.3.3 Magneti
 Tra
ker Module 615.3.4 Camera Module . 635.3.5 Distortion Corre
tion Module 645.3.6 Frustum Culling Module . 655.3.7 World Obje
t Module . 675.3.8 World Update Module . 685.3.9 Render Module . 695.3.10 Summary . 716 Experiments 736.1 Performan
e S
aling Test . 736.1.1 Test Setup . 756.1.2 Test Results . 756.2 User Impression Test . 756.2.1 Test Setup . 756.2.2 Test Results . 756.3 Magneti
al Tra
ker Pre
ision Test 786.3.1 Test Setup . 786.3.2 Test Results . 786.4 Test Con
lusion . 807 Con
lusion 818 Future Work 838.0.1 Enhan
ed Tra
king . 838.0.2 Multiple Users . 838.0.3 Hardware A

elerated Image Distortion 838.0.4 Shadows . 848.0.5 Depth of Field Blur . 84A BaseModule Spe
ialization Example 85

1IntroductionLast semester we designed and implemented a framework,
alled PAVE (Parallel Ar-
hite
ture for Visual E�e
ts), that supported parallel real time rendering of graphi
sin a generi
 fashion. The motivation was that a lot of
urrent real time graphi
sappli
ations are hard
oded to support parti
ular hardware
on�gurations to maxi-mize rendering speed. Most multimedia programs o�er utilization of e.g. 2 CPUsby design, but typi
ally not for more CPUs. Therefore, we wanted to
ontributeto the real time graphi
s area, by developing a general model for parallel renderingthat
ould be used to
reate s
alable real time graphi
s appli
ations.As a
onsequen
e we designed a data
ow model that supports generi
 parallelexe
ution, useful for making e.g. graphi
s rendering performan
e s
alable overmultiple CPUs on a given ma
hine. The number of CPUs that
an be utilized is notlimited by the data
ow model and the way we have designed the parallel exe
utionengine. Futhermore the data
ow model was designed as a modular frameworkthat
an be used by a programmer to
reate di�erent kinds of real time graphi
srendering appli
ations. The point was that a programmer should only worry about
reating modules (plugins) a

ording to a template interfa
e. The modules
anthen be used as
omponents in e.g. a larger graphi
s rendering s
heme, by pluggingthem into an data
ow graph and the parallel exe
ution will then be taken
are ofby the framework. The ideal goal was to make it easier and less error prone for aprogrammer to
reate performan
e s
alable graphi
s software with our framework,by adhering to a small set of simple rules, and not worry about parallelization issues.1.1 MotivationNow that we have a framework for
reating s
alable graphi
s appli
ations, we �nd itto be a natural step to
reate a graphi
s appli
ation ourselves and use the frameworkas the underlying software platform. Parti
ularly we want to
reate an appli
ationthat has high demands in terms of a

eptable graphi
s rendering speed and at thesame time have a large room for potential enhan
ements.11

This in parti
ular and the fa
t that we have an interest in real time
omputergraphi
s for entertainment and art, let us to look into the area of
reating augmentedreality (AR) systems. In the following we will des
ribe our spe
i�
 goals.1.2 Proje
t GoalsThe goal is to design and implement a simple augmented reality (AR) system, wherea real room a
ts as the frame of referen
e to a virtual world. In order to have apotential entertaining produ
t as a goal, we will use the
on
ept of a museum. Wewill
all this an AR Museum. We de�ne it to be the following:� It should be possible for a spe
tator, to inspe
t a given room in the realworld, and on a
omputer s
reen or a head mounted display observe the roomaugmented with virtual obje
ts in real time.� Obje
ts in the virtual world must appear, as if they were part of the realworld and hen
e follow the
ameras view. In essen
e the obje
tive is to blend
omputer graphi
s with input from a
amera in a suitable manner to obtainthese goals.� The virtual obje
ts
ould be artisti
 pi
tures on the walls, s
ulptures standingat
ertain positions et
. The virtual obje
ts
ould be animated in some fashionin order to give the spe
tator a more entertaining experien
e and to furtherenhan
e reality.The performan
e goals, that we have for the AR Museum,
an be summarizedin the following:� Real time presentation. Sin
e a spe
tator must be able to freely move aroundin a room and observe events, the presentation speed, also
alled renderingspeed, must have a minimum a

eptable lower bound.� Performan
e s
alability. The system must be able to s
ale over multiple pro-
essors, in order to in
rease rendering speed.� The system should utilize spe
ial graphi
s hardware that
an assist in a
-
elerating the graphi
s rendering, and ideally do it in a fashion that favoursparallel exe
ution.It is our intention to
reate su
h a system by analyzing what
omponents arene

essary, designing and implementing them as modules that
an be run in thePAVE (Parallel Ar
hite
ture for Visual E�e
ts) framework, whi
h is introdu
ed in
hapter 4. We will design and implement ne

essary generi
 enhan
ements of PAVEin order to support the
reation of the AR Museum. The reason that we wish touse PAVE as the underlying ar
hite
ture, is its inherent ability to s
ale on multi12

pro
essor PCs, and hen
e give the AR system better performan
e s
alability.There are two issues that we will
onsider. The �rst aspe
t of problems is deal-ing with the ar
hite
ture of the AR system, like data
ow between
omponents andwhat role ea
h
omponent in the AR system must have. This is in
uen
ed by theway PAVE works in terms of its inherent features and underlying modular designphilosophy.The other aspe
t of problems are based on ea
h
omponents role in the ARsystem, and therefore
onsists of applying suitable algorithms to the
omponents.Datastru
tures to pass information between the various algorithms, will be ad-dressed as well.

13

2Related WorkIn the �eld of Augmented Reality, many di�erent appli
ation areas exist. Peopleworking with the area have di�erent fo
uses, some
ontributes to the area by devel-oping new more robust algorithms for e.g.
amera tra
king, others fo
us on visualquality et
.In augmented reality systems, a main issue for a
hieving a

eptable results isthat registration of the users position and gaze must be relatively pre
ise, so thataugmented obje
ts appear in the
orre
t position.A
alibration-free AR system, using opti
al tra
king that relies on tra
king atleast four non-
o-planar points in the �lmed image is des
ribed in [KV98℄.The task of making a fast and robust tra
king algorithm that
ombines magnet-i
al tra
king and opti
al tra
king is addressed in [SHC+96℄.The StudierStube, des
ribed in [SFH00℄, is an example of a multi user AR system.Its main fo
us is on building multi user AR environments / user interfa
es. It also
omprises a tra
king algorithm whi
h
ombines opti
al and magneti
al tra
king.This is des
ribed in [APG98℄. In StudierStube head-mounted see-through displaysare used for augmentation.Another AR system that fo
uses on more users doing
ollaborative work, isdes
ribed in [Rek96℄. Here a hand-held see-through display is used to view andintera
t with augmented obje
ts.An AR system with the same appli
ation
ontext as in our proje
t, buildinga museum / gallery, is des
ribed in [MKN96℄. Here the fo
us is in parti
ular theintera
tion and
ommuni
ation between visitors, virtual guides and the experts be-hind the exhibition.Our approa
h to
reating an AR museum di�ers in fo
us from the above. In our15

proje
t we apply magneti
al tra
king for determining position and gaze of the user.As we have
reated our AR museum, we have done it under the
onditions thatthe system must be s
alable over multiple pro
essors and thereby part of the fo
ushas been on
reating a
exible and robust data
ow software ar
hite
ture. We havemade our system
apable of handling real time graphi
al e�e
ts on virtual obje
ts.The handling of the graphi
al e�e
ts has been made a part of the systems data
owar
hite
ture, in order to make optimizations and enhan
e s
alability at a higherlevel than on parti
ular e�e
t algorithms. Lastly, we have made the ar
hite
turemodular in a strong sense, so that alterations and enhan
ements of the system arepossible and supported. The whole system runs on a single
omputer and takesadvantage of multiple pro
essors.

16

3AnalysisIn this
hapter, we begin by des
ribing what augmented reality is, and what atypi
al augmented reality system
ontains and its general requirements. Then wedes
ribe the
hoi
es made in order to
on
eive the AR Museum as de�ned in se
tion1.2 and give an overview of the elements it must
ontain. Finally, requirements anddelimitations for the AR Museum are given.3.1 What is Augmented Reality?Augmented reality (AR)1 des
ribes reality that is augmented with virtual obje
ts.An augmented reality system presents the spe
tator with a
omposite view of theworld, that
onsists of the real s
ene viewed by the spe
tator
ombined with a virtual
omputer generated s
ene that augments the real world with additional information.In [Val01℄ the relation between augmented reality and virtual reality is de�nedas a Reality-Virtuality Continuum, shown in �gure 3.1.
Real
Environment

Virtual
Environment

Augmented
Reality (AR)

Augmented
Virtuality (AV)

Mixed Reality (MR)

Figure 3.1: Milgram's Reality-Virtuality ContinuumAugmented reality lies somewhere in between reality and virtual reality. It lies
loser to reality than it is to virtual reality, the predominant per
eption being thereal environment, augmented with virtual obje
ts.1Augmented reality will in this report be denoted AR.17

Furthermore, [Val01℄ proposes a taxonomy for
ategorizing mixed reality sys-tems, i.e. system that
reates an environment whi
h is somewhere in between purereality and pure virtuality. It
onsists of the three axes: Reprodu
tion Fidelity,Extent of Presen
e Metaphor, and Extent of World Knowledge.Reprodu
tion Fidelity is a measurement of the image quality of the obje
ts thataugment reality. As it is required for AR systems to run in real time, the result ofrendering images with today's graphi
al hardware, is far from the photorealism, one
ould wish for. This puts AR in the low end of the Reprodu
tion Fidelity s
ale. Anultimate and ambitious goal would of
ourse be to make the obje
ts that augmentthe real environment indistinguishable from reality.Extent of Presen
e Metaphor des
ribes the degree of immersiveness that is felt bya spe
tator when looking at the displayed s
ene. The degree of imersiveness will, of
ourse, be highly dependant of the display te
hnique used in the AR system. Thereis a great di�eren
e in the feeling of looking around in an AR environment, andlooking at an AR environment.The Extent of World Knowledge dimension, in the mixed reality
ategorizationproposed by Milgram, measures how mu
h information about the real world isavailable to the system. In AR systems it is imperative that a

urate registrationof obje
ts in the world
an be maintained. The real and virtual parts of the worldmust be
ombined so they mat
h as a whole, as an augmented reality. For this tobe possible, the AR system typi
ally must have information about the frames ofreferen
e for the real world, the
amera viewing it and the spe
tator. The less worldknowledge needed by an AR system, the more robust and
exible it is, as it
an beused in
hanging and di�erent settings.3.2 Typi
al AR systemsAlthough AR systems have many di�erent appli
ation
ontexts with di�erent de-mands of the system, several key
omponents are
ommon to a typi
al AR system.These are des
ribed in the following.The main task of the AR system is to register the real s
ene viewed by thespe
tator and the
orresponding virtual s
ene, merge the two s
enes
orre
tly anddisplay the result, all this in real time. The real s
ene is viewed by an imagingdevi
e, a video
amera or the human equivalent, the spe
tator's eyes. Likewise thevirtual s
ene
ontaining the obje
ts to augment the real s
ene, is viewed by a virtual
amera, and is rendered by the
omputer. These two "
ameras" must be aligned, sothat the rendering of images from the virtual
amera is
orre
tly performed. Thismeans that the virtual
amera must know the intrinsi
 (fo
al length, lens distortion)and extrinsi
 (position, orientation) parameters of the real
amera. Merging of the18

two images
an then be done, produ
ing the augmented reality images to display.In �gure 3.2, an overview of a typi
al AR system is presented.
Real scene
being viewed

Virtual scene

Align Virtual
Camera to
Real Camera

Graphics
Rendering

Camera

Merging
Video and
Graphics

Displaying
Augmented
Images

Figure 3.2: Overview of a typi
al AR systemTo
orre
tly align the two
ameras, so that the virtual s
ene is rendered from thesame point of view as the real s
ene, the position and orientation of the real
ameramust be tra
ked in real time as the spe
tator moves around. A
ommon methodfor tra
king, is using orientation angles and
oordinates
oming from a magneti
altra
ker. This method
an be somewhat ina

urate due to low resolution in thetra
ked orientation, limited range and disturban
es in the magneti
 �eld
reated bythe tra
ker. A
ombination of magneti
al tra
king and opti
al tra
king based on
omputer vision algorithms, has been used to obtain higher a

ura
y. Su
h hybridtra
king is des
ribed in [SHC+96, APG98℄.As mentioned above di�erent te
hniques for displaying the augmented images
an be used, giving di�erent degrees of imersiveness. The simplest te
hnique is touse a monitor for displaying the augmented reality. This is referred to as Fish Tankvirtual reality. Alternatively, see-through head-mounted displays (HMDs)
an beused. HMDs
ome in two forms. The equivalent of the monitor display is the videosee-through HMDs, whi
h
ontains a
amera. They proje
t the augmented imageon the displays, like on a monitor. With opti
al see-through HMDs the spe
tator
an a
tually see through, meaning only the virtual obje
ts are displayed, the restof the display is transparent, giving the spe
tator a free view of reality.To
on
lude the overview of AR systems, we summarize the general performan
e
riteria of an AR system. As real time high quality visualization of the augmenteds
ene, in whi
h the spe
tator must be able to move around in, is imperative to an19

AR system the three following
riteria are put on the system:� Frame rate of the rendered virtual images.� High visual quality rendering of the virtual obje
ts.� A

ura
y in registration of real and virtual images.A frame rate of minimum 10 frames per se
ond are
onsidered a

eptable for thevirtual obje
ts in the AR s
ene not to appear jumpy. A low a

ura
y in registeringthe images will result in the virtual obje
ts not being per
eived as stationary. If,in the AR system, time delays o

ur in
omputing the alignment of the virtual
amera, the virtual obje
ts will lag behind the motion in the real world. To putit in short, in an AR system, speed, a

ura
y and low laten
y is of the essen
e.High visual quality and high frame rate in the rendering of virtual obje
ts is linkeddire
tly to the Reprodu
tion Fidelity measurement, and there is a trade-o� betweenimage quality and frame rate. The better image quality, the lower the frame rateand vi
e versa. Here 3D render a

eleration hardware is useful, in order to speedup rendering of virtual obje
ts without stressing the main CPU(s) too mu
h.3.3 Choosing the AR MuseumTo
hoose an AR appli
ation
ase, we need to �nd one where the PAVE2 ar
hite
-ture
an be exploited to its full potential in terms of parallelization. Sin
e PAVEwas designed with parallelization of real time graphi
al e�e
ts in mind, we �nd thatan AR appli
ation embodying su
h e�e
ts should be an obvious
hoi
e. We havetherefore
hosen a museum as our
ase, as this provides a possibility for experien
ingdynami
 real time e�e
ts, or
omputer art, in a �tting environment, whi
h shouldgive the spe
tator a more immersive experien
e. We also wanted a simple appli
a-tion, whi
h would not rely on intera
tion between the spe
tator and the augmentedworld. A virtual museum is well justi�ed without intera
tion, but it is of
oursean area of great possibilities for enhan
ing the spe
tators experien
e. Furthermorea virtual museum �lled with dynami
 real time art would
all for a large amountof pro
essing power and therefore the automati
 s
alability of PAVE makes it asuitable platform. Later on, we will explain how real time graphi
al e�e
ts
an betied into the AR Museum. In the following we will setup the requirements for theAR Museum.3.4 The AR MuseumThe AR Museum is seen as an arbitrary real world room with virtual obje
ts pla
edin it. The virtual obje
ts
onstitute the art in the museum and should ideally be2Introdu
ed in
hapter 4. 20

seen as existing in the room. There should be no real restri
tions on the virtual ob-je
ts. They
an be stati
 or dynami
 in the sense that they
hange properties su
has e.g. form or material whi
h will allow for e.g. pi
tures on the wall with dynami

ontent. An interfa
e between dynami
 e�e
ts and su
h obje
ts should be designed,so frame data generated by algorithms
onsistuting the e�e
ts
an be linked to anobje
t's properties. This
ould be used for updating the material on a virtual obje
t.The museum should be able to be viewed from any position and orientationdesired, whi
h is a
hieved by using a magneti
al tra
ker to determine position andgaze of the
amera. We delimit the system from using opti
al tra
king, su
h asusing e.g. image analysis algorithms to gain world knowledge. As a
onsequen
ethe AR Museum will have a relatively low Extent of World Knowledge. The onlyworld knowledge the system must have apart from the
amera position and gaze, isa given rooms geometry.Sin
e we have had no a

ess to see-through head-mounted displays, the museumis presented on a monitor and the real world is
aptured by a standard web
amera.This is also the reason why the system will be delimited from supporting multipleusers/spe
tators.The knowledge about the world (museum) is
ontained in a stru
ture
alled theWorld Model. It holds information both about reality and virtual reality. Part ofthe reality des
ription in
ludes the pi
ture grabbed by the
amera and informationabout the
ameras position and gaze. It also in
ludes a des
ription of the stati
geometry of the world su
h as walls,
eilings,
oors and possible lightsour
es. Theknowledge of the virtual reality in
ludes des
riptions of the geometry of the artobje
ts present in the museum and their properties su
h as position and material.In the pro
ess of
onstru
ting the World Model, we �nd that adding support forusing a modeling tool, e.g. 3DStudio MAX, is an important feature, sin
e it allowseasier
reation of
omplex geometry.To enhan
e the overall performan
e of the AR system we have
hosen to use 3Dgraphi
al hardware for rendering the virtual obje
ts. For this purpose we will usethe Mi
rosoft Dire
t3D API, whi
h en
apsulates hardware a

elerated rendering of3D primitives. Furthermore we will fo
us on enhan
ing performan
e by dete
tingobje
ts that are not present in the
ameras �eld of view. This information
an beused for dea
tivating dynami
 e�e
t algorithms, linked to
ertain virtual obje
ts,whi
h generates frames used ex
lusively by these obje
ts.For merging the
amera image of the real world with the
omputer generatedimage of the virtual obje
ts,
amera
alibration must be performed to
ompensatefor lens distortion, for this we need a Camera
alibration
omponent, that delivers
alibrated
amera images to the World Model stru
ture. The
ameras positionand orientation read from the magneti
al tra
ker must be
olle
ted by a Magneti
21

tra
ker
omponent, that delivers the data to the World Model stru
ture. When theinformation about the real world is known, based in
amera input, position andorientation and geometry des
riptions en
apsulated in the World Model stru
ture,Virtual obje
t
lipping must be done for obje
ts that are outside the
ameras view.Finally, a Rendering
omponent, that displays all the
olle
ted information on s
reenis need. See �gure 3.3 for a
on
eptual overview of the elements we imagine theAR Museum must
ontain. The small
ir
les denotes obje
ts in the virtual world,su
h as pi
tures on the walls or s
ulptures. The small graphs linked to ea
h virtualobje
t, symbolizes dynami
 e�e
t algorithms, where ea
h e�e
t is tied to a givenobje
ts material.

Rendering

Real World

Virtual World

Virtual object
clipping

World Model

Camera
Magnetic
tracker

Camera
calibration

Dynamic Effects

Figure 3.3: AR Museum overview.Based on the above the spe
i�
 requirements for the AR Museum, that willin
uen
e the design and
hoi
e of algorithms for the
omponents is summarizedbelow along with the delimitations we have made.3.4.1 RequirementsSpe
i�
 requirements for the AR Museum are:� One
amera for �lming the real world.� Magneti
 tra
ker is used to tra
k the position and orientation of the
amera.22

� Calibration of the images grabbed by the
amera.� Dynami
 virtual obje
ts.� Interfa
ing between dynami
 e�e
ts and virtual obje
t properties.� Culling of virtual obje
ts that are out of sight and dynami
 e�e
ts tied tothose obje
ts must be dea
tivated.� Graphi
 rendering must take advantage of 3D hardware.� World Model geometry
an be des
ribed in a modeling tool.3.4.2 DelimitationsThe delimitations of the AR Museum are:� Single user system.� No intera
tion with obje
ts in world model.� The augmented result is seen on a standard monitor.� No opti
al tra
king.3.5 SummaryWe have des
ribed what augmented reality is, and listed the general requirementsfor AR systems. We have setup requirements and made delimitations for our spe
i�
appli
ation
ase, the AR Museum. The general requirements and spe
i�
 require-ments, will form the fo
us in the AR Museum design. Figure 3.3 shows how weimagine the AR Museum must work
on
eptually. We will in the next
hapterpresent the baseline for the AR Museum, before the design is presented in
hapter5.

23

4BaselineIn this
hapter we des
ribe our baseline,
onsisting of the hardware, software andprogramming tools we will use to
reate the AR Museum. Following after, we give ades
ription of how we
al
ulate a
ameras �eld of view. After that we explain some ofthe fundamental prin
iples in 3D graphi
s rendering. Finally, we des
ribe the PAVEframework, whi
h will be
ome the foundation of the AR Museums ar
hite
turaldesign.4.1 HardwareBased on the requirements for the AR Museum, we de�ned in se
tion 3.4.1 onpage 22, we
hoose the following hardware.� Polhemus 3SPACE FASTRAK magneti
al tra
ker� Creative Video Blaster WebCam 3 USB� PC with two 400 MHz Intel Celeron CPU's, 128 Kb
a
he ea
h, 128 MB 66MHz RAM and a NVIDIA TNT2 3D graphi
s
ard.In �gure 4.1 on the next page the hardware setup for the AR Museum systemis depi
ted.The magneti
al tra
ker is
onne
ted to the
omputer via a serial port. It hasa magneti
al transmitter that
reates a magneti
al �eld around it. The re
eiver
onne
ted to the magneti
al tra
ker measures the magneti
al �eld so that its posi-tion and orientation
an be determined. The re
eiver is pla
ed on a wooden sti
kbehind the
amera. The reason for this is that the
amera generates too mu
h ele
-tromagneti
 noise for the re
eiver to be pla
ed on top of the
amera. The Polhemus3SPACE FASTRAK has the following spe
i�
ations:� Position Coverage: 76
m distan
e from re
eiver to transmitter with spe
-i�ed a

ura
y and up to 305
m with slightly redu
ed a

ura
y.25

Receiver

Transmitter

Tracker

Camera

Computer

Wooden stick

Figure 4.1: The AR museum hardware setup.� Stati
 A

ura
y: 0.08
m RMS for the x, y and z re
eiver position, 0.15degrees RMS for re
eiver orientation.� Resolution: 0.0005
ms/
m of range and 0.25 degrees.� Laten
y: 4.0 millise
onds from re
eiver measurement to output.� Update Rate: 120 updates/se
ond.The
amera used is a standard
ommer
ially available low-pri
e web
amera
onne
ted to the
omputer via the USB port. Its spe
i�
ations in our setup are:� Frame Rate: Maximum of 30 frames/se
ond.� Resolution: 320x240 pixels with 24bit
olor depth.� Field of View: horizontal �eld of view: 43.6 degrees, verti
al �eld of view:34.4 degrees.The �eld of view values have been empiri
ally obtained, as des
ribed in se
-tion 4.2.1 on the fa
ing page.The spe
i�
ations for the FASTRAK tra
ker and the Creative
amera
an befound at [FAS00℄ and [Cre01℄, respe
tively.4.2 SoftwareThe software platform the AR Museum system will be based upon, is listed below:� The MS Windows 2000 operating system.� The Dire
tX 8.0a subsystem (in
ludes Dire
t3D) in Windows 2000.� The C++ programming language. 26

� The PAVE (Parallel Ar
hite
ture for Visual E�e
ts) framework, introdu
edin se
tion 4.3.Now that we have presented the hardware and software, we will des
ribe howwe have obtained the two �eld of view angles for the
amera. Following after wewill explain the basi
 prin
iples in a 3D graphi
s render pipeline, whi
h is relatedto the way the Dire
t3D subsystem works and hen
e in
uen
es how we design thevisualization algorithms of the virtual obje
ts in the AR Museum. Lastly, we willintrodu
e the PAVE framework.4.2.1 Cal
ulation of Camera Field of ViewTo ensure that the real
amera and the virtual
amera are aligned, thus �lmingthe same part of the s
enes, the virtual
amera must have the same horizontal andverti
al �eld of view as the real
amera. The �eld of view (FOV) is the angle
overedby the lens. It
an be
al
ulated as shown below:

Camera

Scene filmed

w

d

FOV
W

Figure 4.2: Field of view
al
ulation.In �gure 4.2 w is the distan
e from the
enter to the edge of the s
ene �lmed,d is the distan
e from the
amera to the s
ene, and angle W is half the FOV. In aright-angled triangle, it holds that:tan(W) = wd (4.1)Hen
e, FOV
an be expressed as:FOV = 2ar
tan�wd� (4.2)27

The above equation has been used to
al
ulate the FOV for the
amera used, byusing distan
es w and d obtained empiri
ally. This method is used to
al
ulate boththe horizontal and the verti
al FOV.4.2.2 Rendering PipelineThis se
tion gives a brief explanation of some of the elements used for rendering3D graphi
s. A 3D primitive is a
olle
tion of verti
es that form a single 3D en-tity. The simplest primitive is a
olle
tion of points in a 3D
oordinate system.Throughout this report we des
ribe 3D graphi
s using a left-handed
artesian
o-ordinate system (see �gure 4.3). Often, 3D primitives are polygons. A polygon
Y

Z

XFigure 4.3: Left-handed
artesian
oordinate system.is a
losed 3D �gure delineated by at least three verti
es. The simplest polygon isa triangle whi
h
an be
ombined to form large,
omplex polygons and meshes (a
olle
tion of polygons). To enhan
e the realism of
omputer-generated 3D imagesa texture
an be mapped onto a polygon. A texture is a bitmap whi
h is stre
thedonto the polygon by spe
ifying what
oordinates the verti
es maps to in the bitmap.A 3D model (one or more meshes) is des
ribed in model spa
e whi
h is a frameof referen
e that uses verti
es relative to the 3D model's lo
al origin. For visualizingthe 3D model, it must be sent through the rendering pipeline whi
h applies threetransformations, the world, view, and proje
tion transformations, to it.The �rst stage of the pipeline transforms a model's verti
es from their lo
al
oordinate system to a
oordinate system that is used by all the obje
ts in a s
ene.The pro
ess of reorienting the verti
es is
alled the world transformation. This neworientation is
ommonly referred to as world spa
e, and ea
h vertex in world spa
eis de
lared using world
oordinates.In the se
ond stage, the verti
es that des
ribe the 3D world are oriented withrespe
t to a
amera. That is, a
hosen point-of-view for the s
ene, and world spa
e
oordinates are relo
ated and rotated around the
amera's view, turning world spa
e28

into
amera spa
e. This is the view transformation.The third stage is the proje
tion transformation. In this part of the pipeline,obje
ts are usually s
aled with relation to their distan
e from the viewer in order togive the illusion of depth to a s
ene;
lose obje
ts are made to appear larger thandistant obje
ts, and so on. This transformation
an be seen as proje
ting 3D
oor-dinates into 2D spa
e. The proje
tion transformation
an also be said to des
ribea viewing frustum whi
h is an 3D volume in whi
h a s
ene is positioned relativeto the
amera. For perspe
tive viewing, the viewing frustum
an be visualized asa pyramid (see �gure 4.4), with the
amera positioned at the tip. This pyramidis interse
ted by a front and ba
k
lipping plane. The volume within the pyramidbetween the front and ba
k
lipping planes is the viewing frustum. Obje
ts arevisible only when they are in this volume.
Back clipping plane

Front clipping plane

Viewing frustum

Figure 4.4: Viewing frustum.In the �nal part of the pipeline, any verti
es that will not be visible on the s
reenare removed, so that it does not take up time to
al
ulate the
olors and lighting forsomething that will never be seen. This pro
ess is
alled
lipping. After
lipping,the remaining verti
es are s
aled a

ording to the window viewport and
onvertedinto s
reen
oordinates. The resulting verti
es seen on the s
reen when the s
ene isvisualized exist in s
reen spa
e.To handle o

lusion of the drawn polygons a depth bu�er
an be used. A depthbu�er is holding depth information for ea
h pixel on the s
reen. Whenever a pixelis drawn, its depth value is
he
ked against the value in the depth bu�er. If thevalue is smaller than the value in the bu�er the pixel is drawn and the new depthvalue stored in the depth bu�er, otherwise the pixel is dis
arded.The Mi
rosoft Dire
t3D API, whi
h is a drawing interfa
e that provides a

essto 3D video-display hardware in a devi
e-independent manner, will be used for29

rendering the graphi
s used in the AR museum. It provides me
hanisms for usingthe above des
ribed elements plus many more.4.3 The PAVE frameworkPAVE is a framework supporting parallel exe
ution of tasks in a generi
 fashion,where the tasks
an be algorithms in graphi
s rendering. We will des
ribe the keyaspe
ts of the underlying model in PAVE and des
ribe the design of the
omponentsin PAVE that have a dire
t in
uen
e on the ar
hite
tural style and algorithmi
 fun
-tionality of the AR Museum as it is introdu
ed in se
tion 1.2 and further explainedin se
tion 3.4.PAVE was designed to fa
ilitate parallel rendering of visual e�e
ts out of therequirement that speed is important in graphi
s rendering, espe
ially for realtimepurposes. Another requirement was that it should be relatively simple for a pro-grammer to add new well-de�ned render
omponents (denoted modules) to PAVEwithout having to think about parallelization issues. Hen
e the parallelization isdesigned to be generi
 and is taken
are of by the underlying PAVE ar
hite
ture.The last requirement, we had, was that an end user should be able to take themodules, made by the programmer, and
onne
t them together in a data
ow graphto form his/her own
omposition of graphi
al algorithms. It was very important tous that the
on
ept of a data
ow graph
onsisting of render
omponents, shouldboth be intuitive to a user and at the same time re
e
t the algorithmi
 data
ow.4.3.1 Render Model and Data FlowThe pro
ess of rendering
an be seen as, in turn, applying a number of algorithmsto the data that must be rendered. In the
ontext of an AR system, the data istypi
ally bitmap data, world model des
riptions et
., that is, graphi
al data thatis supposed to be rendered to a
omputer display. The algorithms are typi
allythose that generate bitmap data, world model des
riptions and/or manipulate su
hdata stru
tures. The rendering pro
ess
an be divided into subtasks, whi
h must beevaluated in some prede�ned order. Rendering lends itself very easily to partitioninginto subtasks, as the graphi
al manipulation algorithms
ommonly used are designedfor one small spe
i�
 purpose, su
h as a gaussian blur �lter algorithm. The taskpartitioning is impli
itly given, as ea
h algorithm
an be seen as a subtask itself,and it is the
omposition of the graph by the end user that de�nes the order ofsubtasks.Task GraphThe order of the tasks des
ribe the
ow of data. As mentioned this
an be repre-sented as a task graph, as it is done in [CT95℄. We
all the data
owing betweenthe tasks frames. A frame
an literally be any datatype, even a referen
e to adatatype instan
e. The rendering
ow starts with one or more input nodes, whi
h30

produ
es input frames, that travel through a number of algorithmi
 tasks and endin one or more output nodes. The input and output nodes are the start and endpoints of the graph, respe
tively. An input node, is a node that has no prede
essorsin the graph. The data it works on
omes either from an external sour
e or residesin the node itself. An output node has no su

essors, and its data is typi
ally outputon an external devi
e, su
h as a display.To have a meaningful graph representation, the graph must be dire
ted, showingthe dire
tion in whi
h data
ows. This leads to using a dire
ted a
y
li
 graph, see[Cor98℄, as our task ordering representation. In �gure 4.5, an example task graphis shown.
i

oi

i o

Figure 4.5: An example of a task graph. i denotes input nodes, o denotes output nodes4.3.2 ModulesWe have denoted the tasks of the graph modules. Ea
h module in the graph is
on
eptually
onsidered as a \bla
k box". The role of a module is to apply its al-gorithm to the input frames it re
eives from its prede
essors, and pass on the resultto its su

essors.Furthermore, the end user should easily be able to adjust a module, so that thegraphi
al e�e
t the module represents,
an appear to his liking. For that purpose,we introdu
ed Module states. To any given time a module is in a
ertain state,determined by a number of parameters, whi
h the end user
an
hange the valuesof. The de
ision of whi
h parameters that exist on a given module, is made by theprogrammer depending on the algorithm he uses in the module he is
reating. Forinstan
e we
an imagine the programmer
reating a module that
an take bitmapframes (images) as input, blur them with a Gaussian Blur algorithm and then out-put blurred bitmap frames. An example of a parameter on su
h a module
ouldbe \Blurriness", that des
ribes how blurry the module's Gaussian Blur algorithmshould make ea
h input image.The algorithm of the module manipulates the input data, given the state of themodule. The manipulated result is delivered as the output.31

We have de�ned the input/output relationship in a module as follows:� Re
eive i inputs from its p prede
essors, where i � p � 0. Wait until everyinput from the prede
essors has arrived.� Apply the algorithm to the input, a

ording to the state.� Send o outputs to its s su

essors, where o � s � 0. If one or more of thesu

essors are busy, wait until all su

essors are available to re
eive.As we will explain in se
tion 4.3.7, this input/output de�nition is the key to thesyn
ronization between modules in a task graph.4.3.3 Parallelization in PAVEThe parallelization in PAVE is based on two parallization methods,
alled Fun
-tional Parallelism and Temporal Parallelism, as dis
ussed in [Cro97℄.Fun
tional Parallelism is a
hieved by splitting the rendering up into smaller dis-tin
t fun
tions, whi
h is then applied to a sequen
e of data frames. If a pro
essoris then assigned to a fun
tion or a group of fun
tions,
alled a fun
tional unit,and data frames are
ommuni
ated between the fun
tional units, this
onstitutes apipeline. When the �rst data frame, that have entered the pipeline, have rea
hedthe last fun
tional unit of the pipeline, all fun
tional units will be working in par-allel, hen
e the degree of parallelism is proportional to the number of fun
tionalunits and relies on repeated inputs i.e. a stream. Furthermore it is the slowestunit in the pipeline that will determine the overall speed of the rendering. Thisparallelization te
hnique �ts the task graph
on
ept in a very straightforward way.In our framework a fun
tional unit is a module.Temporal Parallelism
omes from partitioning the rendering task in the time do-main (e.g. by frame index number). The sequen
e of frames to be rendered are splitinto frame sequen
e subsets. A frame sequen
e subset
an
onsist of one or moreframes. Ea
h frame in a subset is rendered
on
urrently, by having a repli
ationof the rendering unit working on ea
h frame. In our
ase this means that a givenmodule in the graph is repli
ated a number of times to obtain \lo
al" temporal par-allelism for that given module. The temporal parallelism in PAVE is optional in theway, that a programmer
an
hoose to spe
ify that a
ertain module must be repli-
ated a number of times if the given module is a potential bottlene
k in the pipeline.Se �gure 4.6 for an illustration of Fun
tional Parallelism and \lo
al" TemporalParallelism respe
tively. 32

Figure 4.6: A) The default Fun
tional Parallelism. B) Temporal Parallelism by repli
a-tion. The re
tangle depi
ts two identi
al module repli
a working on ea
h their frame.Task s
hedulingA task
an be a module or a group of modules. The main problem of s
hedulingtasks, is that of assigning tasks to pro
essing units, in a way that optimizes thepro
essing. A typi
al parameter, one wishes to minimize is the total exe
ution timeof the s
heduled tasks
ompared to the sequential total running time, and hen
edividing the tasks as optimal as possible among the pro
essing units.In [Ull75℄, it is shown that the general problem of s
heduling a set of tasks isNP-
omplete, unless some task parameters are
onstrained, one of these parame-ters
ould be that all tasks must have the same exe
ution time (as it is done in[CT95℄). In the PAVE framework there is no a
tual knowledge of what goes oninside a module, and no stati
 measurement of the exe
ution time of modules, asthis di�ers hugely depending on the module's input, algorithm and state. As wewant to support di�erent kinds of events, su
h as
hanging parameters, that in turnmodi�es the state of a module over time in a dynami
 fashion, this
auses modulesto have varying running times per frame.From these observations we
hose to abstra
t away the s
heduling of modules,and let the Windows 2000 SMP1 kernel do the s
heduling. This is done in theframework by using threads2 as the pro
essing units. The Windows 2000 s
heduleris
apable of s
heduling threads between a pool of available pro
essors. Every timea thread is ready to be s
heduled it is assigned to one of the available pro
essors forexe
ution for a given time sli
e. This means that when PAVE is running on e.g. adual-CPU ma
hine, two treads are always running
on
urrent, one for ea
h of the1Symmetri
al Multi Pro
essing as de�ned in [Sta97℄2In abstra
tion, a thread
an be seen as a virtual pro
essing unit.33

two pro
essors. The threads are set to have the same priority, whi
h is the defaultpriority of the pro
ess
reating the threads. The Windows 2000 kernel utilizes around-robin s
heduling poli
y.In addition, test results showed us that minimizing the number of threads in anappli
ation under Windows 2000 did not provide any signi�
ant bene�t in terms ofless overhead and better speed. Last semester, we tested the Windows 2000 s
hedul-ing
apabilities by running a pro
ess that
reated up to 2000 threads, partitioning ajob into the same number of parts as threads, ea
h part having one thread runningit. It showed no signi�
ant overhead in terms of
ompletion time of the overall jobby going from one thread to 2000 threads. As a
onsequen
e the default behaviourin PAVE is to assign a seperate thread of exe
ution to ea
h module in a task graph,as illustrated in �gure 4.6 where the ar
s shown at ea
h module denotes a thread.That way the s
heduler in Windows 2000 takes
are of all the s
heduling, and mod-ules that have pre
eden
e over other modules will be evaluated �rst automati
ally.Modules that are independent of ea
h other are automati
ally run in parallel, anda module that has multiple parents will wait until all of its parents have delivereddata. This is possible, sin
e the input/output relationship in a module works as asyn
ronization me
hanism. A module is only allowed to invoke its algorithm whenall inputs are present and only allowed to deliver outputs when all its
hildren areready to re
eive them.4.3.4 PAVE DesignWe have introdu
ed the key aspe
ts and de�nitions of the render model in PAVE.Now we will des
ribe how the render model has been designed as an obje
t-orientedframework to support modular parallel graphi
s rendering.The PAVE design
an be said to
onsist of �ve major parts, ea
h part
onsistingof a number of
lasses. In the following we will introdu
e the �ve parts and des
ribetheir overall roles. After that we will go into des
ribing the
lasses in ea
h part inmore detail.Management
Figure 4.7: The management
lasses.34

The management part
onsists of
lasses that that manages the whole system.The Supervisor
lass is instantiated by the main appli
ation that wishes to usePAVE. The Supervisor utilizes a GraphLoader to load a graph des
ription from atext �le. The PluginLoader is used to load the plugins used in the loaded graph.A plugin
ontains a
olle
tion of modules. The InputManager is used to triggerthe graph, and is
ontrolled by the Supervisor. The Supervisor is
ontrolled by themain appli
ation. The management
lasses
an be seen in �gure 4.7.Graph Des
ription

Figure 4.8: The graph des
iption
lasses.The graph des
ription
lasses are the ones who are instantiated by the GraphLoaderwhen a graph is loaded from a text �le. Instan
es of those
lasses
onsistute the
ompleteGraph des
ription, su
h as dependen
ies between GraphNodes, and forea
h Dependen
y a number of Channels exist. The
lasses are depi
ted in �gure4.8.Communi
ation and Syn
ronization

Figure 4.9: Communi
ation and syn
ronization
lasses.Three
lasses form the data
ommuni
ation between modules in a graph. TheNode
lass
ontains the input/output relationship algorithm de�ned in se
tion35

4.3.2. A Node instan
e
ontains aMailBox for ea
h input it has. For ea
h modulein a graph, there is a Node instan
e belonging to it, and for ea
h Node instan
ethere is a GraphNode instan
e belonging to it. When data is
ommuni
ated betweenmodules, a Mail
ontaining the data is sent from one Node to another. The three
lasses are shown in �gure 4.9Generi
 Components

Figure 4.10: The generi

lasses.The generi

omponents
ontains two base
lasses and a
ontainer
lass. Amodule programmer that wishes to
ontribute new modules or new datatypes tothe framework, must inherit fromBaseModule andBaseType respe
tively. These
lasses de�ne the interfa
e for the module programmer. The BaseTypeList is autility
ontainer
lass used both by the
ommuni
ation
lasses and the programmerto spe
ify module inputs and outputs. On �gure 4.10 the three
lasses are shown,and possible spe
ializations of them.Exe
ution EngineThe three
lasses, Threader, WorkerThread and Job, works as the exe
utionengine. The Threader
reates WorkerThreads to exe
ute a graph. A Job tells aWorkerThread what nodes in the graph it must exe
ute. See �gure 4.11 for therelationships between these
lasses.The PAVE ClassesIn �gure 4.12 a
lass diagram depi
ting all the
omponents and their relationship,in the PAVE framework,
an be seen. We will now
ontinue to explain ea
h
lassin detail, starting with the generi

omponent
lasses.36

Figure 4.11: The
lasses
onsituting the exe
ution engine.

Figure 4.12: Class diagram illustrating relationships between
omponents in the PAVEframework.
37

4.3.5 The Generi
 ComponentsHere we will des
ribe the generi

omponent
lasses in more detail.BaseTypeBaseType is the super
lass for all data types that are passed between modules in agraph. When a new type is made by the programmer, the BaseType is spe
ializedand the ne

essary attributes and methods are added. The framework does not needto know the interfa
e for derived types sin
e it only passes them between modulesand does not intera
t with their methods or data. It does however need to be ableto get an id for a derived type so it
an
he
k if modules
an re
eive that type. It isthe programmer's responsibility to ensure that ea
h new type
reated is assigned aunique type id. On derived types a
lone interfa
e method has to be implementedso the framework
an dupli
ate types generi
ally by
alling the
lone method. TheBaseType has a FrameIndex and a TimeStamp as attributes, whi
h are usedwhen instan
es of BaseType spe
ializations (frames) are passed between modules.Modules re
eiving frames
an use this information to determine the
urrent frameindex and the time for that parti
ular frame index.BaseTypeListCan
ontain a list of BaseType spe
ializations. This is a
ontainer
lass used in the
ommuni
ation between modules, and used by the module programmer to de
lareand utilize inputs and outputs.BaseModuleThe BaseModule is the super
lass for all modules that
an be inserted in a graph inthe framework. It is inherited for ea
h new module, a programmer wishes to write.This
lass de�nes the template, that is the interfa
e, for all modules. For writinga BaseModule spe
ialization, de�ning the modules fun
tionality and exposing in-formation about its input/output interfa
e and unique type id to the framework,is ne
essary. The
onstru
tor of the derived module must spe
ify type informationfor the following:� Unique type id� Inputs - The number of inputs and the type of ea
h.� Outputs - The number of outputs and the type of ea
h.� Parameters - The number of parameters and the type of ea
h.Spe
ifying inputs, outputs and parameters, is done by adding empty BaseTypespe
ializations to prede�ned lists (BaseTypeList
ontainers) for inputs, outputs andparameters, respe
tively. The unique type id is spe
i�ed by setting an internal base38

string attribute. The type id of the BaseType spe
ializations added are used fortype
he
king in the framework. The order in whi
h BaseType spe
ializations areadded to the lists de�nes the numbering of ea
h input/output/parameter elementexposed to the framework. For instan
e if a BaseType representing a bitmap frametype is added �rst to the input list then that frame input will be seen as inputnumber one of type bitmap frame on the module. The values of the spe
ializedBaseTypes added to the parameter list de�nes the module's initial state.In addition to implementing the
onstru
tor, two interfa
e methods must beimplemented in the spe
ialization:� Init� A
tionInit is implemented when the programmer wishes to de�ne initialization for amodule after the
onstru
tor has been
alled, but before exe
uting the module algo-rithm for the �rst time. The A
tion method is implemented to spe
ify the module'sfun
tionality. The A
tion method in a BaseModule spe
ialization
ontains the mod-ule's algorithm, that is
alled for ea
h frame index. When the A
tion method is
alled, input and parameter BaseTypeLists are passed to it and when �nished, itmust return an output BaseTypeList. For instan
e, if the programmer wants to
reate a blur module, the A
tion method will
ontain e.g. a Gaussian Blur �lteralgorithm. The algorithm manipulates a bitmap frame delivered at input numberone and puts the resulting bitmap frame into an output list and returns it, for ea
hframe index.The three above mentioned base
lasses form the fundamentals when it
omesto
reating new render modules for PAVE and
reating datatypes that su
h newmodules might need. It is a
tually the only things that a module programmer needsto be
on
erned with. In appendix A, a small example of how a BaseModule spe-
ialization is implemented, is shown.Until now we have o

asionally talked about modules as being the nodes in agraph, although this is
on
eptually true, we needed some kind of abstra
tion froma module and a node in a graph. We de
ided to seperate the
ommuni
ation aspe
tsof a module and the internal algorithm of the module. The internal algorithm part is
ontained in a BaseModule spe
ialization as mentioned above. In addition we haveseperated the
ommuni
ation aspe
ts and graph integrity properties also. As a
onsequen
e we have two additional
lasses, ea
h with their distin
t roles. They are
alled Node and GraphNode. A Node
ontains a BaseModule spe
ialization instan
eand takes
are of the
ommuni
ation and syn
ronization between its module andother Nodes. The GraphNode represents a vertex in a graph, and it
ontains areferen
e to a Node instan
e and information su
h as dependen
ies between theverti
es. See �gure 4.13 for an illustration of the run-time relationship between a39

GraphNode instan
e, Node instan
e and its BaseModule instan
e. The asso
iationsbetween the instan
es are made at initialization and build time of the graph. TheWorkerThread shown is
reated by the Threader
omponent and enters througha ThreadEntry method in Node. GraphNode, Node, WorkerThread and Threaderalong with the other
omponents will be explained below.

Figure 4.13: Run-time relationship between GraphNode, Node and BaseModule instan
es.Inputs and outputs are not shown.
4.3.6 Graph des
ription ComponentsHere we will des
ribe the graph des
ription
omponent
lasses in detail.GraphNodeA GraphNode is a vertex in a graph. It holds a Node and lists of Dependen
iesto other GraphNodes. The GraphNode has methods for building the
onne
tionsin the graph, and for
he
king its
onsisten
y, i.e. that all nodes are
onne
tedproperly. The GraphNode
an add and remove Channels to another GraphNode.When a Channel is added, it is
he
ked if the sour
e and destination MailBoxes, onthe sour
e GraphNode's Node and the destination GraphNode's Node respe
tively,holds data of the same BaseType spe
ialization by inspe
ting the type id. Oth-erwise, a Channel
annot be
reated. If a Channel is added, and no Dependen
yexists to the destination GraphNode, a Dependen
y is
reated and the Channel isadded to it. Likewise, if all Channels in a Dependen
y are removed, the emptyDependen
y is removed.The GraphNode has a method for returning its dependen
ies to the Node in-stan
e it gets at
reation time (from the GraphLoader), so the Node
an send mailsto the right re
ipients. 40

Dependen
yA Dependen
y des
ribes a dependen
y
onne
tion to a GraphNode. In other words,it is an edge in the graph of GraphNodes. A Dependen
y holds a referen
e toa GraphNode, to whi
h the dependen
y exists, and a list of Channels, betweenthe GraphNode that holds the Dependen
y (sour
e) and the one referen
ed in theDependen
y (destination). When a Dependen
y holds several Channels, it meansthat several outputs are sent to di�erent (input) MailBoxes on the re
eiving Nodein the destination GraphNode.ChannelA Channel des
ribes a
onne
tion between an output and an input of two nodes.It holds two numbers, sour
e and destination, whi
h are the index number of aMailBox on ea
h node, respe
tively.GraphThis
lass represents and
ontains a graph with
onne
ted GraphNodes. It hasmethods to build and modify the graph,
he
k its integrity su
h as dete
ting
y-
les, �nd paths from one graph to another, add and remove dependen
ies betweenGraphNodes.The Graph
onsists of a list of GraphNodes. An example graph is shown in�gure 4.14.
GraphNode 4

GraphNode 1

GraphNode 2 GraphNode 3

1 2

2

2

1

1

1
1

1

2

Figure 4.14: An example graph. The numbers on the ar
s denote input and output indexnumbers, respe
tively.The
ontents of the GraphNodes it
ontains, are shown in �gure 4.15.4.3.7 The Communi
ation and Syn
ronization ComponentsHere we will des
ribe the
ommuni
ation and syn
ronization
omponent
lasses indetail. 41

Node 1

1,1

GraphNode 1

Channels

Dependencies

GraphNode2

2,2

Channels

GraphNode3

Dependencies Node 4

GraphNode 4

1,2

GraphNode 3

Channels

Dependencies Node 3

GraphNode 4

2,1

GraphNode 2

Channels

Dependencies

GraphNode3

1,1

Channels

GraphNode4

Node 2

NULL

Figure 4.15: The
ontents of the four GraphNodes in �gure 4.14.NodeThis
lass is perhaps the most
entral
omponent in PAVE's render
ore, as it
ontains the syn
ronization between modules. It en
apsulates an instan
e (moreinstan
es if repli
ation is present, see 4.3.3) of a BaseModule spe
ialization. It
on-trols all the input and output to/from its en
apsulated module, it
ontains the in-put/output relationship syn
ronization algorithm presented in 4.3.2. The algorithmis situated in a ThreadEntry method that is
alled by an asso
iated WorkerThread.The Node holds a MailBox for ea
h input the module has. When the module isexe
uted the Node retrieves a Mail from ea
h MailBox and inserts these into themodule's input list. When the module has
ompleted its pro
essing of the inputdata, it returns an output list to the Node whi
h then asks its parent GraphN-ode, what mailboxes to send the output to. If more than one Channel exists foran output, that data for that output must be
loned for every Channel to preventsu

eeding modules in the graph from writing in the same data
on
urrently.The realization of temporal parallelism in the framework is handled in the Nodeby repli
ation of modules i.e. several instan
es of the same type of module. Allinstan
es of modules inside a Node are put in a ready queue and when a Work-erThread wants to exe
ute a module, it enters the Node and takes the �rst mod-ule o� the ready queue and exe
utes its a
tion method through the ThreadEntrymethod. After exe
ution the WorkerThread puts the module ba
k at the end of theready queue. This way a number of WorkerThreads
an be assigned to a Node for42

exe
uting ea
h of the repli
ated modules (see �gure 4.16).

Figure 4.16: Illustration of a ready queue inside a Node.When a Node holds repli
ated modules it is ne

essary to have a me
hanism inThreadEntry for syn
ronizing modules so they pass on their outputs in the sameorder as inputs are re
eived on the Node. This me
hanism was inspired by to-ken ring networks. The modules
an be seen as nodes in a token ring and onlythe module who has the token is allowed to send its output. The �rst modulethat retrieves input from the mailboxes also re
eives the token. When it has sentits output it sends the token to the module that retrieved input after it, and so forth.In the following the ThreadEntry method for exe
uting a Node's module(s) isdes
ribed in obje
t oriented pseudo
ode:ThreadEntry method (for WorkerThreads):{ InputList = empty BaseTypeList;BaseModule = ReadyQueue.GetModule();EnterCriti
alSe
tion;// get mail tuplefor ea
h MailBox{ BaseType = MailBox.GetBaseType();InputList.AddBaseType(BaseType);}ExitCriti
alSe
tion;TimeStamp = InputList.GetTimeStamp(); 43

ParameterList = GetParameterList(TimeStamp);OutputList = BaseModule.A
tion(InputList, ParameterList);WaitForToken;for ea
h BaseType in OutputList{ BaseType.SetTimeStamp(TimeStamp);MailBox = GraphNode.GetNextOutputMailBox();MailBox.PostMail(BaseType);}if (an OutputList was returned from the module's A
tion method)delete OutputList;delete InputList;SendTokenToNextModule;} It should be noted that the
riti
al se
tion is ne
essary for ensuring that repli-
ated modules does not re
eive mails with the same timestamp. All mails with thesame time stamp must be retrieved by the same module.MailBoxThe MailBox is used by a Node for sending data between modules and holds aFIFO list of elements of type Mail. A MailBox is
reated in Node for ea
h input itsmodule has spe
i�ed. At
reation time, it is possible to spe
ify how many elementsthe MailBox should be able to hold. After it has been
reated the size remains�xed. Methods for posting and retrieving mails from the MailBox are blo
king inthe following sense:� If a
lient
all tries to retrieve a mail from the MailBox and it is empty, the
all blo
ks until a mail arrives.� If a
lient
all tries to post a mail to the MailBox and it is full, the
all blo
ksuntil a mail has been retrieved by another
all (from another thread).All a

ess is prote
ted by mutexes.MailA
ontainer for BaseTypes, used for pa
kaging frames between Nodes. It
ontainsthe following:� BaseTypeList of BaseType spe
ialization elements.� Time stamp� Frame indexThe BaseTypeList allows that user de�ned types
an be sent via Mails.44

4.3.8 Management ComponentsHere the management
omponent
lasses are des
ribed in detail.SupervisorThe Supervisor a
ts as the main book keeping
omponent in the framework. Itis the
omponent that glues the Graph, InputManager and Threader
omponentstogether and manages them. In addition the Supervisor holds the PluginLoader.The Supervisor is also intended as the interfa
e between the main appli
ation andthe rest of the framework.The Supervisor manages a Graph instan
e by asso
iating it to an InputManagerand a Threader, giving a 3-tuple as follows:(Graph, InputManager, Threader).The overall roles that the Supervisor has are the following:1. Loading a Graph using the GraphLoader by giving it a graph des
ription �leand a referen
e to the PluginLoader.2. Creating a Threader and InputManager and asso
iate the Graph to them,
re-ating a 3-tuple. For ea
h GraphNode, it
reates a Job to whi
h it adds a Nodereferen
e (
oming from GraphNode). The Threader
reates a WorkerThreadfor ea
h Job. Referen
es to input Nodes are added to the InputManager.3. Starting, stopping or pausing the input frame
ow to a Graph through theInputManager instan
e.4. Through the Threader instan
e
ontrolling how many WorkerThreads are as-signed to ea
h Job (multiple WorkerThreads for one Job if Module repli
ationsare present in one or more Nodes in a Job). Starting, stopping or if the Graphis to be deleted terminating exe
ution of the nodes.5. Deleting a Graph and its asso
iated InputManager and Threader. Upon dele-tion of a Graph, the Supervisor stops the InputManager, so that input Nodesstop
reating frames. After that the Supervisor posts "Shutdown" mails toall Nodes in the Threader's job list, telling them not to wait for input mailsany more. That way the Supervisor
an delete the Threader safely, sin
e ea
hWorkerThread will no longer blo
k in the ThreadEntry fun
tion in Node.See �gure 4.17 for the data stru
tures the Supervisor
ontains. The GraphLoaderinstan
e is temporary, in the sense that every time a new Graph is loaded a newGraphLoader is
reated and old instan
es are dis
arded. The PluginLoader instan
e
ontains all the loaded plugins and instantiated BaseModule spe
ializations duringthe whole life of the Supervisor. The number of elements in the 3-tuple list, denotesthe number of Graph instan
es at any given time.45

Graph n

PluginLoader

InputManager 1

Threader n

InputManager n

List of 3-Tuples

Graph 1

Threader 1

Supervisor

GraphLoader

Figure 4.17: Illustration of the data stru
tures in a Supervisor.PluginLoaderThe PluginLoader is used for loading a group of modules,
alled a plugin, intothe framework. For
reating a plugin, it is needed to derive the BaseModule
lassand implement a number of methods (see de�nition of BaseModule). One or morederived BaseModules are
ompiled to a DLL3 �le whi
h the PluginLoader
an loadat run time. On
e the plugin is loaded, the PluginLoader
an return instan
es ofthe BaseModule spe
ializations existing in the plugin. Whi
h spe
ialization thatshould be instantiated is spe
i�ed by the
alling GraphLoader by giving a type idname to PluginLoader.GraphLoaderLoads a graph des
ription from a text �le, instantiates a Graph and
reates GraphN-odes and in turn adds a Node to ea
h GraphNode. The des
ription �le in
ludes thefollowing information:� Whi
h plugins are used.� Whi
h modules are used (by type id) and what their instan
e name shouldbe.� How the module instan
es are
onne
ted (the Graph des
ription).� Whi
h modules instan
es are repli
ated.The GraphLoader is responsible for building up a Graph upon parsing the s
ript.This
an be des
ribed in the following steps:3A DLL (Dynami
 Link Library) is a library of fun
tions that uses dynami
 linking. Thisallows an exe
utable to in
lude only the information needed at run time to lo
ate the exe
utable
ode for a DLL fun
tion. 46

� Calls PluginLoader to load plugins.� Asks PluginLoader for instan
es of modules by type id and give ea
h instan
ea name, a

ording to the s
ript.� Create a Node for ea
h module instan
e and assign the instan
e to the Node.� Creates GraphNodes and assigns Nodes.� Creates a Graph and adds the GraphNodes.� Adds Channels between GraphNodes, while
he
king for type
ompatibilitybetween inputs and outputs.InputManagerThe InputManger is responsible for starting and stopping input to a graph. Itsfun
tionality
ould be
ompared to the fun
tionality of a CD player whi
h
an play,stop, pause and set the play position of a song. For starting the
ow in the graph itis ne
essary to tell the input nodes to generate their outputs sin
e they do not haveany inputs themselves to trigger them. This is a
hieved by assigning one MailBoxto ea
h input Node in a Graph, so they internally
an a
t as normal Nodes. TheInputManager's job is then to send a timestamped \trigger"
ommand to ea
h inputNode, that tells them to generate output. The Graph
an be seen as a pipeline,whi
h means that \trigger"
ommands are the me
hanisms that insures that thepipeline is fed whenever the input Nodes are ready to produ
e output. The \playposition" is determined by the timestamp
ontained in the mail and stopping thepresentation means that the InputManager stops sending \trigger"
ommands.The InputManager has a list of input Nodes, assigned by the Supervisor byinspe
ting what Nodes that does not have any frame input. A separate thread inthe InputManager goes though the list of Nodes posting \trigger"
ommand mails totheir mailboxes in the same manner as a Node posts its modules output to anotherNode. Figure 4.18 on the following page illustrates this me
hanism, where ea
hinput Node
ontain a module that streams frames from e.g. a video
amera. Thetwo frame streams are then delivered to a Node (having two MailBoxes)
ontaininga blending module (having two inputs and one output) that blends the input framestogether and outputs the result as one frame
onsisting of a
omposition of the twoinputs.4.3.9 Exe
ution engine ComponentsThe exe
ution engine
omponent
lasses are in the following des
ribed in detail.47

Movie 2
(Input)

Movie 1
(Input)

InputManager

Blend

Trigger command mailTrigger command mail

Trigger thread

Figure 4.18: An InputManager sends \trigger"
ommands to two input Nodes.ThreaderThe Theader
reates and handles all the WorkerThreads
reated when a graph isrunning. It has a list of
reated WorkerThreads, ea
h WorkerThread has a referen
eto a Job. A Job
an
ontain one or more Node referen
es. If a module repli
ation(temporal parallelism) is present, more threads are assigned to the same Job. TheThreader
ontrols starting, suspending and stopping of WorkerThreads on behalfof the Supervisor.WorkerThreadAWorkerThread is a thread of exe
ution that is assigned to a Job (by the Threader).The WorkerThread repeatedly exe
utes its Job, by asking it whi
h Node to exe
ute,until it is expli
itly stopped. Several WorkerThreads
an be assigned to the sameJob whi
h is ne

essary when a Node holds repli
ated modules.JobA Job is a task des
ription for one or more WorkerThreads. The Job
onsists of alist of Nodes that must be exe
uted. This way a WorkerThread
an exe
ute severalNodes. This implies that the list must be ordered by pre
eden
e so deadlo
k doesnot o

ur, in the
ase of more than one Node in the list4. The default behaviour issimply to assign one Node to a Job's list. We de
ided on this approa
h from theobservations made in se
tion 4.3.3. As a servi
e the Job has a method, that ea
htime it is
alled by a WorkerThread, tells what Node in the list must be exe
uted.This method is prote
ted by a mutex.4The Supervisor is responsible for ordering Nodes in a job's list by inspe
ting the dependen
iesin the Graph. 48

4.4 SummaryThis
on
ludes the baseline for our AR Museum. We have listed the hardwarewe will use, the software, programming tools, explained how we
al
ulate �eld ofview for a
amera and the fundamentals in 3D graphi
s rendering. Finally, we havedes
ribed the most important aspe
ts of the PAVE framework. As mentioned inse
tion 1.2 it is our goal to design the AR Museum so that it runs on top of PAVEin order to make the system s
ale on multipro
essor PC's. This
onsists of
reatingspe
ializations of the BaseModule
lass and
onne
t instan
es of those modules ina graph in a manner that
orresponds to the
on
eptual view of the AR Museumas shown in �gure 3.3 on page 22 along with the requirements in se
tion 3.4.1 onpage 22. The spe
i�
s about the design of the graph and the modules along withsome ne
essary enhan
ements of PAVE, are presented in the next
hapter.

49

5DesignIn this
hapter, we des
ribe the ar
hite
tural style of our AR museum. It is designedas modules in a graph for the PAVE framework. Ea
h of the modules and theirfun
tionality will be des
ribed and enhan
ements made to PAVE to fa
ilitate thedesign issues will be des
ribed.5.1 Ar
hite
tural StyleBased on the requirements of the AR museum in se
tion 3.4.1 on page 22, we de-s
ribe whi
h algorithmi

omponents, denoted modules in PAVE, are needed tobuild our AR museum. We des
ribe the way in whi
h the modules are
onne
ted,that is, as an AR museum graph in PAVE. The role of ea
h of these modules arebrie
y des
ribed. In se
tion 5.3 the design of ea
h module and their algorithmi

ontent is des
ribed.In �gure 5.1 on the following page the graph
onstituting the AR museum is de-pi
ted. Ea
h box
ontains a module. Ar
s in the �gure represent frame data outputfrom a module passed on as input to su

essive modules. The small boxes are mod-ules
onne
ted to form subgraphs
onstituting the dynami
 e�e
ts that produ
e theworks of art outputted to the world obje
t modules. A subgraph is typi
ally variousbitmap e�e
t modules
ombined. A subgraph exists for ea
h world obje
t whereit is desired to have some kind of
hanging material over time. The dotted ar
sbetween the frustum
ulling module and the subgraphs, symbolizes that the datasent is a form of triggering that
auses re
eiving modules to run. This triggeringme
hanism is des
ribed in se
tions 5.2.2 on page 54 and 5.2.3 on page 55.Three input modules are needed in the AR museum graph, one for grabbingframes from the
amera �lming the real world, one that registers the position andorientation of the
amera, obtained by the magneti
 tra
ker and a module that holdsinformation about the real and virtual world. These modules are denoted
amera51

Figure 5.1: The AR museum graph.module, magneti
 tra
ker module and world model module, respe
tively. The worldmodel module and the magneti
 tra
ker module are
onne
ted to the frustum
ullingmodule. The task of this module is to de
ide whi
h of the world obje
t modules,to whi
h it is
onne
ted to through subgraphs, holds WorldObje
ts that are vis-ible. Only these subgraphs must be triggered to run. The frames grabbed fromthe
amera needs to be
orre
ted for the lens distortion that o

urs in the
amera.This is done in the distortion
orre
tion module. The undistorted image of the realworld is passed on to a world obje
t module, whi
h
reates a des
ription of a vir-tual world obje
t. It is thus treated like the virtual world obje
ts that has input(e.g. bitmap textures) from subgraphs. These subgraphs are triggered to run bythe frustum
ulling module. All world obje
t modules are
onne
ted to the worldupdate module. The task of this module is to update the WorldModel a

ordingto its WorldObje
t inputs. The WorldModel and WorldObje
t data stru
ture isdes
ribed in se
tion 5.3.1 on page 59. The world update module re
eives a World-Model referen
e and outputs an updated WorldModel to the render module. Therole of the render module is to render the WorldModel that it gets as input, so theresulting rendered image
an be displayed on a monitor.The graph design des
ribed above, gives rise to some enhan
ements to the ex-isting PAVE framework. Firstly, the frustum
ulling module must give output to avariable number of subgraphs and the world update module must take input fromthe same variable number of world obje
t modules
onne
ted to those subgraphs.This gives a need for allowing an optional number of inputs and outputs on mod-52

ules, where the number of outputs and inputs are not known at module
reationtime, but �rst when the graph is being built.Another issue in the design of the graph is that the frustum
ulling module isresponsible for triggering the subgraphs
onne
ted to it. The triggering of inputmodules is a task in PAVE whi
h originally was the ex
lusive responsibility of theInputManager (see se
tion 4.3.8 on page 47). Triggering in some form should alsobe possible for a Node. Furthermore, subgraphs
an be ina
tive, implying that nopro
essing by their modules is done. This is the
ase e.g. when the frustum
ullingmodule dete
ts that a WorldObje
t is not in the �eld of view, hen
e its subgraphsdoes not need to be
omputed. The triggering me
hanism must be enhan
ed so thatinput modules to a
ertain subgraph
onne
ted to a world obje
t module
an be setto be ina
tive in some way, so that modules in a given subgraph are not exe
uted,when it is not needed.These PAVE enhan
ements among other general robustness enhan
ements, aredes
ribed in the following se
tion.5.2 PAVE Design Enhan
ementsThe aforementioned design observations give rise to a
olle
tion of design enhan
e-ments of PAVE that are desirable in order for the system as a whole to be both
exible, robust and servi
e the need for performan
e optimization at a higher levelthan internal module algorithms. We start by des
ribing the me
hanism needed tosupport optional inputs and outputs on a module. Next we des
ribe the triggeringand how this
an be used to dea
tivate subgraphs. These aspe
ts
an be
atego-rized as making graph building more
exible and serving to performan
e optimizegraph exe
ution in general, respe
tively. Finally we des
ribe the aspe
ts for makinggraph exe
ution more robust, whi
h involves designing a poli
y for general garbage
olle
tion of data and
ontrolling what data is read-only and what is writable.5.2.1 Optional Inputs and Outputs on NodesOriginally it was ne
essary for a BaseModule spe
ialization to spe
ify exa
tly howmany inputs and outputs (and their type) it needs in order to be able to fun
tion(see 4.3.5). Clearly this imposes a limitation, sin
e it is ne
essary to write a newmodule, e.g. a frustum
ulling module, ea
h time the number of world obje
ts inthe virtual world
hanges and hen
e the number of world obje
t modules in the ARMuseum graph. The reason for this is that the frustum
ulling module and worldupdate module would have
hanged their number of outputs and inputs, respe
tively.It would be possible to set an upper limit on how many obje
ts in the world modelthat
ould be manipulated by subgraphs, regardless of how many a
tually existingin the virtual world. But su
h a limitation seems rather un
exible and possibly53

serves to add more
omplexity in the AR museum graph. Therefore the need for arule that allows a given module to have an optional number of inputs and outputsseems apparent.We have de
ided to make the rule simple and so that it does not
on
i
t withthe original design of PAVE. The modi�
ation
ontains the following:� When a module has spe
i�ed its \stati
" input and output types, in its
on-stru
tor (see se
tion 4.3.5 on page 38), in the
onventional way, it should bepossible to tell the framework that it
an have n optional inputs and/or out-puts of some type following after the stati
ally de�ned ones. If the modulehas spe
i�ed j \stati
" inputs, minimum j
onne
tions must be made to it,and j + n
onne
tions are possible, where n � 0. The same goes for optionaloutputs.� When the module is inserted into a graph, the
onditions for inputs andoutputs must hold in the same way as originally designed.� When
onne
tions are made to the optional inputs, additional MailBoxes onNode must be made at
onne
tion time.As a simple example, a module spe
i�es that it has optional inputs only. If i
onne
tions are made to a seperate input number in the module, the frameworkautomati
ally adds i Channels to the asso
iated GraphNode as before, but in ad-dition i MailBoxes in the asso
iated Node must be added. The di�eren
e is thatthe module spe
i�es that it
an have optional inputs, but does not know in advan
ehow many. So the framework must
he
k how many Channels are made at graphbuild time to the module, and add MailBoxes to the asso
iated Node as needed.That means that when the Supervisor (see se
tion 4.3.8 on page 45) has loaded agraph from a des
ription �le, it will go through every GraphNode, inspe
ting thenumber of Channels added to ea
h GraphNode. For ea
h GraphNode, update theasso
iated Node's number of MailBoxes.5.2.2 Trigger Capable NodeIn order for a Node to be able to gain
ontrol over
ertain input Nodes, it is ne

es-sary to be able to
onne
t it to these input Nodes. Originally it was not possible to
onne
t a Node to an input Node, sin
e an input Node
ontains a module with noframe input. The assumption was that sin
e no frame input is desired, the rule wasthat the input Node simply needed to be triggered by the InputManager (see 4.3.8on page 47). So we need to modify the rule for the spe
ial
ase where a Node is
onne
ted to an input Node, when the Supervisor inspe
ts what Nodes that mustbe asso
iated with the InputManager.We des
ribe the modi�ed rule in the following way:54

� If a Node has 0 inputs (its module has no frame inputs), it is
onsidered aninput Node.� If an input Node has a
hannel
onne
ted to it, it must not be asso
iated to theInputManager. Otherwise, the Node must be asso
iated to the InputManager.Now a Node
an be triggered by either the InputManager as before, or be trig-gered by another Node.5.2.3 Empty TriggeringThe idea of a Node being able to send \trigger"
ommands to another Node be
omesuseful when we need to be able to dea
tivate subgraphs. We do this by generalizingthe fun
tionality from sending \trigger"
ommands, to be able to send any typeof
ommand. The de
ision of what type of
ommand a Node will send to anotherNode, is pla
ed in a module's a
tion method belonging to the sending Node. Thatway a module programmer
an
reate a module that
an send
ommands of anytype, but if the re
eiving Node would have to rea
t on the
ommand, the Node'sThreadEntry method must be modi�ed to pro
ess a given
ommand. Otherwiseonly the module in the re
eiving Node
an pro
ess the
ommand.To be able to dea
tivate given subgraphs at given times during rendering, weadd a few extra
onditions in the Node's ThreadEntry method. It it des
ribed inthe following:1. Che
k to see whether the frame re
eived at the �rst input is of the Commandtype (by inspe
ting the type id), and if that is the
ase, see 2. If not, see 4.2. If the re
eived
ommand is a normal \trigger"
ommand (by inspe
ting the
ommand type's string attribute), see 4. If not, see 3.3. Che
k to see if the
ommand is a so
alled \empty trigger". If that is the
ase,the a
tion method of the Node's module is not
alled and hen
e no exe
utionof the module for the given frame index. In addition send \empty trigger"
ommands on all outputs.4. The module's a
tion method is exe
uted exa
tly as originally intended, andoutput returned from the a
tion method
all is delivered on all outputs.Another approa
h is that a Node
ould
hoose not the send any \trigger"
om-mands for given frame indexes,
ausing
ow to stop
ompletely in the subgraphs.Unfortunately, this would stop all dependent su

eeding nodes, sin
e a Node waitsuntil input has arrived on all input MailBoxes and hen
e blo
k the whole graph. Itwould be possible to make a rule on the Node's ThreadEntry method, where
ertaininput numbers
ould be optional, but the idea seem to
ompli
ate matters in fartoo many
ases. Sending an \empty trigger" also insures that frame index order isnot
orrupted when subgraphs are made a
tive/ina
tive.55

5.2.4 Garbage Colle
tionWhen modules are sending data in a graph, they are sending referen
es to data. Amodule that sends a result, to another module, typi
ally
reates the data and sendsa referen
e to that data as output. So in that
ase the
reating module owns thedata by default. But
ases also exist where a module merely forwards data that itgot from some other module. In su
h a
ase the ownership belongs to some othermodule.The problem is that a given module re
eiving data does not know to whom thedata belongs. And sin
e data that is not being used anymore must be deleted insome fashion, some me
hanism in e.g. a module must take the initiative to deletethat data. This gives another problem sin
e a given module does not know whetheranother module also has a referen
e to the data, and hen
e
annot safely deletedata. In fa
t it is impossible for a module to determine whether it is safe to deletedata or not, sin
e modules
an be
onne
ted in many di�erent ways, and a moduledoes not know the topology of the graph it is inserted in and does not know any-thing about other modules. The only thing a module knows for sure is what inputdata types it
an re
eive and what output data types it delivers, and whether theseonly
an be read from or are writable (see 5.2.5 on the fa
ing page). Therefore thealgorithm in the a
tion method of a module
an not determine who owns the datait gets and whether that data is referen
ed in some other module in the graph.The only thing a module knows about the data it sends along is whether it wantsto keep the data for future
al
ulations or not. If it wants to keep the data, it alsohas the responsibility of deleting it eventually, and hen
e other modules must notdelete it.From this observation it is quite
lear that some rule regarding the integrityof the data being sent between modules, should be at hand. It is also ne

essarythat the me
hanism itself is not part of any module algorithm, sin
e a module onlyknows what it
reates, wants to keep and what it does not want to keep. Anotherreason is that a module programmer's role should not be further
ompli
ated, asstressed in our original goals for the PAVE design.For this me
hanism we have de
ided to add referen
e
ounting with garbage
ol-le
tion on the BaseType
lass, so that all spe
ializations of BaseType, e.g. World-Model, WorldObje
t, FrameBu�er et
., have referen
e
ounting.This is done by adding an integer attribute as a
ounter in the BaseType base-
lass. In addition we add two methods to the BaseType base
lass
alled AddRefand ReleaseRef. These two methods are de
ribed below:� AddRef. In
rements the referen
e
ounter attribute by one.56

� ReleaseRef. De
reases the referen
e
ounter attribute by one. If the
ounterhas rea
hed zero, this BaseType instan
e deletes itself.The two above methods are en
apsulated in a
riti
al region, prote
ted by amutex. When a BaseType spe
ialization is instatiated, its initial referen
e
ount isone, meaning that the
reator owns the BaseType instan
e initially. It is ne

essaryto hold a referen
e variable to the
reated BaseType instan
e in order to e.g. giveup ownership (by
alling the ReleaseRef method) of the referen
e to the instan
e. Ife.g. a module is re
eiving a referen
e to a BaseType instan
e and it wants to keepthat instan
e for future
al
ulations, it
alls the AddRef method on the instan
e.If a module algorithm in the a
tion method
reates a new BaseType instan
e forea
h frame index, that it wants to deliver as a result on one of its outputs, it addsthe referen
e to the output list (whi
h is a BaseTypeList) and gives up its ownownership by de
reasing the referen
e
ount. That is unless it wants to keep theresult for future
al
ulations.When a BaseType instan
e is added to a BaseTypeList, the referen
e
ount isin
reased by one, and when a BaseTypeList is deleted all its elements (BaseTypes)have their referen
e
ount de
reased. In se
tion 4.3.7 on page 42, the pseudo
odefor the original ThreadEntry method
an be seen. It
an be seen that the lo
alvariable
alled InputList (whi
h is a BaseTypeList) is assigned a number of Base-Types from ea
h input MailBox and given to the module's a
tion method. TheInputList is deleted when thread exe
ution returns from ThreadEntry. This meansthat if a module has not obtained ownership to one or more of the in
oming inputBaseTypes they are deleted if no other modules has ownership to them.This approa
h to garbage
olle
tion and referen
e
ounting is similar to e.g.Mi
rosoft's Component Obje
t Model (COM) and was inspired from that model.5.2.5 Read-Only and Writable DataTo ensure that modules do not write in data they are not supposed to, and to avoidmaking super
uous
opies of data, we introdu
e read-only data, and writable data.When a module's input and output is de
lared, it must be stated if it is read-onlyor writable. To support read-only and writable data, a permission attribute is puton the BaseType, denoting if the data is read-only or writable.The BaseTypes
ontained in a module's input BaseTypeList and the BaseTypesit generates as output must all have the permission attribute set. With the permis-sion attribute set, the following semanti
s is used for sending data between modules.For all Channels it holds:� R ! R: If the re
eiving module has spe
i�ed its input data as read-only, itwill not write in it, and a referen
e to the original data
an be sent.57

� W ! R: As above.� R !W: If the re
eiving module has spe
i�ed its input data as writable, andthe data outputted is readable, a referen
e to a
lone of the data is
reatedand sent.� W ! W: If both the re
eiving module and the sending module has spe
i�edthe data as writable, two
ases exist:{ If the Channel in question is the last one stemming from the given output,and no Channels from the output sends to a read-only destination, thena referen
e to the original data is sent, as no other modules will a

essthe original data.{ Otherwise a referen
e to a
lone of the output data is sent.It should be noted that when sending output from a module, all
lones of data aremade before the original referen
e may be sent. This avoids that data is
loned,while residing in another module. A
lone is always writable and its referen
e
ountis set to one.In �gure 5.2, an example graph
ontaining all di�erent
ases of R/W seman-ti
s is depi
ted. With the R/W semanti
s introdu
ed, modules
an be
onne
ted
R

R

R R

W

W

W

W

W

W

WR

Reference to clone

Original Reference

Original Reference

Original Reference

Original Reference

Reference to clone

Reference to clone

Figure 5.2: Graph extra
t
ontaining all di�erent R/W data semanti

ases.in di�erent ways, without expli
itly stating for ea
h possible graph built, whethermodule outputs should be sent as referen
es or referen
es to
lones.58

5.3 ComponentsHere, we will des
ribe the ne
essary PAVE data stru
tures and modules (see �g-ure 5.1 on page 52), what algorithms ea
h module must
ontain and how thosealgorithms work.5.3.1 Data Stru
turesIn this se
tion we des
ribe the PAVE data types used by the AR museum modules.All the types are spe
ializations from BaseType (see se
tion 4.3.5 on page 38) anddes
ribed in the following.WorldObje
tThe WorldObje
t is a data type whi
h en
apsulates information about a real-worldor virtual obje
t present in the world. The WorldObje
t
onsist of the followingelements:� Name:A unique string identi�er.� Mesh:List of polygons des
ribing the geometry of the WorldObje
t.� Texture:A bitmap image whi
h is mapped onto the surfa
e of the WorldObje
t.� Bounding box:An axis aligned minimal en
losing box that
overs the geometry of the Worl-dObje
t in all 3 dimensions. This will be used for visibility testing (see se
tion5.3.6).� State:The state string
an either be "stati
" or "dynami
". See se
tion 5.3.8 for ades
ription of how the state string is used.� Visible attribute:Determines whether the WorldObje
t is visible or not.WorldModelThe WorldModel is a data type whi
h holds information about the real and thevirtual world. In parti
ular it is used for holding des
riptions of geometry and fromwhat position and orientation the world is viewed. The WorldModel
onsist of thefollowing elements: 59

� List of WorldObje
ts des
ribing real-world obje
ts:Used for des
ribing obje
ts su
h as walls,
oors,
eilings and other stati
 real-world obje
ts. Its usage is des
ribed in se
tion 5.3.9.� List of WorldObje
ts des
ribing virtual obje
ts:Used for des
ribing all the virtual obje
ts in the world.� List of lightsour
e des
riptions:Used for simulating real-world lighting on the virtual obje
ts.� View transformation matrix:Represents the position and orientation of the
amera viewing the world.� Proje
tion transformation matrix:Represents the viewing frustum in whi
h the world is visible.FrameBu�erThe FrameBu�er is a type whi
h en
apsulates a representation of a bitmap image.It has a bu�er holding the raw pixels in the image and des
riptions of pixelformatand resolution.MatrixThe Matrix type is a representation of an arbitrarily sized matrix.StringThe String type en
apsulates an arbitrarily sized string.FloatThe Float type en
apsulates a single pre
ision
oating point value.CommandThe Command type is used for sending
ommands to Nodes in a PAVE graph. Twotypes of
ommands will be used in the PAVE museum graph:� Triggers (see se
tion 4.3.8 on page 47).� Empty triggers (see se
tion 5.2.3 on page 55).In the following se
tions we des
ribe the modules
onstituting the AR museumgraph. 60

5.3.2 World Model Module� Inputs:{ none� Outputs:{ WorldModel (read-only)� Parameters:{ String: name of world model �le
World Model
Module

Figure 5.3: World model moduleThe world model module is responsible for loading and initializing the World-Model. Based on the �lename given in its parameters it loads a geometry des
riptionof the world from disk. The geometry is spe
i�ed in a Mi
rosoft X �le whi
h is atemplate-driven format that enables storage of meshes, textures, animations, anduser-de�nable obje
ts [msd01℄. After the geometry is loaded the WorldModel stru
-ture is instantiated and the geometry is inserted into it. For ea
h mesh in the X �lea WorldObje
t is
reated and inserted into the WorldModel. For ea
h WorldObje
ta bounding box is
omputed and stored in the WorldObje
t.Furthermore a ba
kground WorldObje
t is
reated and inserted into the World-Model. The ba
kground WorldObje
t represents the
urrent image of the real worldwhi
h is grabbed by the
amera. It is simply a re
tangular mesh with the
urrentreal-world image mapped onto it as a texture. See se
tion 5.3.9 on page 69 fordes
ripition of how the ba
kground WorldObje
t is used when visualizing the ARmuseum.The world model module outputs a read-only WorldModel data stru
ture ea
h timeits a
tion method is
alled and it keeps a referen
e to the WorldModel itself sothe WorldModel will not be deleted by the automati
 garbage
olle
tion (see se
-tion 5.2.4 on page 56).5.3.3 Magneti
 Tra
ker Module� Inputs: 61

{ None� Outputs:{ Matrix: 4x4 view transformation matrix. (writable)� Parameters:{ Matrix: transmitter translation ve
tor relative to world model origin.{ Matrix: re
eiver translation ve
tor relative to
amera.
Magnetic
Tracker
ModuleFigure 5.4: Magneti
 tra
ker moduleThe task of the magneti
 tra
ker module is to read the position and orientationof the magneti
al re
eiver, that registers the
amera's extrinsi
 parameters.When the module is initiated, the position of the magneti
al transmitter must beknown. The transmitter translation ve
tor Vt, re
eived in the parameters, des
ribesthe translation from the origin in world spa
e to the transmitter (see �gure 5.5).

Transmitter

World spaceFigure 5.5: Transmitter translation ve
torAs the magneti
al re
eiver is highly sensitive, we
an not pla
e it on top of the
amera, as the
amera
orrupts the magneti
al �eld. As des
ribed in se
tion 4.1on page 25, the magneti
al re
eiver is pla
ed behind the
amera on a wooden sti
kto avoid
orruption of the position and orientation measurements (see �gure 5.6on the next page). The re
eiver translation ve
tor Vr, re
eived in the parameters,des
ribes the translation from the re
eiver devi
e to the
amera lens.When the a
tion method is run a rotation matrix Mrot and a re
eiver positionve
tor Vpos is obtained from the orientation and position measured. Sin
e the re-
eiver translation must be done in the
amera's lo
al
oordinate system, the re
eivertranslation ve
tor Vr is multiplied by the transposed rotation matrix:62

ReceiverCameraFigure 5.6: Re
eiver translation ve
torVrl = Vr �MrotThe total translation ve
tor Vtotal is then des
ribed by:Vtotal = Vpos + Vrl + VtFrom Vtotal a 4x4 translation matrix Mtran is
reated. The view transformationmatrix Mview is
omputed by multiplying Mtran by Mrot and is sent as output.5.3.4 Camera Module� Inputs:{ None� Outputs:{ FrameBu�er (writable)� Parameters:{ None
Camera
Module

Figure 5.7: Camera module.The task of the
amera module is to grab frames of the reality �lmed by a
amera. It has no input and delivers a FrameBu�er
ontaining the grabbed imageas output. To grab the frames, fun
tionality in Mi
rosoft's Dire
tShow API wasused. When the a
tion method is
alled, the
urrent image grabbed is outputtedas a FrameBu�er. 63

5.3.5 Distortion Corre
tion Module� Inputs:{ FrameBu�er (read-only)� Outputs:{ FrameBu�er (writable)� Parameters:{ 4 Floats: distortion
oeÆ
ients
Distortion
Correction
ModuleFigure 5.8: Distortion
orre
tion moduleThe task of the Distortion Corre
tion module is to
ompensate for the distortionthat o

urs in the image grabbed by the web
amera.Distortion is an opti
al error in the
amera lens that
auses a displa
ement ofpixels at di�erent points in the image. The pixels in the image are mispla
ed rela-tive to the
enter of the �eld, hen
e it is
alled radial distortion.Radial distortion
omes in two forms: pin
ushion distortion (positive) and barreldistortion (negative). The two forms of distortion is depi
ted in �gure 5.9.

Figure 5.9: The result of pin
ushion distortion(left), non-distorted image (middle) andbarrel distortion(right)The distortion of pixels is not linearly
orrelated to the distan
e to the
enterof the image. At small distan
es to the
enter of the image there will be very little64

displa
ement and in the edges of the image displa
ement of pixels will be very large.This
an be approximated by the following equation:rsr
 = rdest(ardest3 + brdest2 +
rdest + d) (5.1)rdest denotes the distan
e from the pixel to the
enter of the image, in the distortedimage and rsr
 denotes the
orresponding distan
e in the distortion
orre
ted image.The a, b and

oeÆ
ients is a measurement of the distortion in the image.The parameter d des
ribes the linear s
aling of the image. Using d = 1, anda = b =
 = 0 leaves the image as it is. If the distortion
orre
ted image must havethe same size as the original image, it must hold that:a+ b +
+ d = 1 (5.2)The above equations were taken from [Der99℄.The di�eren
e between the a
tual (distorted image) and the "real" predi
ted(non-distorted image), as it would look taken by an ideal pinhole
amera,
anbe
ountera
ted by displa
ing ea
h point in the image along the dire
tion ve
torspanned by the
enter point of the image and the distorted point, as shown in theabove equation.For ea
h pixel index in the destination image, the distortion
orre
tion module
al
ulates whi
h pixel index in the sour
e image it must
ontain, and saves this ina lookup table.This table is used in the a
tion method to
orre
t pixel positions in every framethe distortion
orre
tion module re
eives. The distortion
oeÆ
ients used have beenobtained empiri
ally by �lming a
he
kerboard, and adjusting them to get an undis-torted image.5.3.6 Frustum Culling Module� Inputs:{ WorldModel (read-only){ Matrix: 4x4 view transformation matrix. (read-only)� Outputs:{ WorldModel (writable){ Multiple triggers/empty triggers (writable)� Parameters:{ String: list of obje
t names that needs to be
he
ked for visibility.65

Frustrum
Culling
Module

..........21 n+1Figure 5.10: Frustum
ulling module{ Float: horizontal �eld of view.{ Float: verti
al �eld of view.The task of the frustum
ulling module is to determine whi
h of the WorldOb-je
ts are visible and make sure that only subgraphs that produ
e frames for visibleobje
ts are exe
uted. This allows for more virtual obje
ts in the world that useframes generated by subgraphs, sin
e all the virtual obje
ts are rarely visible at thesame time and hen
e not all of the subgraphs needs to be exe
uted. In terms ofrendering speed this
an provide for a signi�
ant speedup.Ea
h of the module's optional outputs (see se
tion 5.2.1 on page 53) is dedi
atedto a separate subgraph, whi
h the frustum
ulling module
an either a
tivate ordea
tivate by sending a trigger mail or an empty trigger mail respe
tively (see se
-tion 5.2.3 on page 55). So all input nodes in a given subgraph must be
onne
ted tothe same output on the frustum
ulling module. Furthermore there may not existany dependen
ies between any of the subgraphs, sin
e it
ould result in unpredi
tedresults when a module in an a
tive subgraph expe
ts valid data from a module inan ina
tive subgraph. See �gure 5.11 for an illustration of subgraphs
onne
ted
orre
tly to the frustum
ulling module.
Frustum
Culling
Module

Figure 5.11: Illustration of three subgraphs
onne
ted to ea
h their output on the frustum
ulling module. The dotted lines represents trigger/empty trigger mails being sent to inputnodes.When the a
tion method is
alled it must determine whi
h of the optional outputsto send triggers/empty triggers to. For this two things must be known. Firstly, itmust be known what output is linked to what WorldObje
t. This is a
hieved by66

giving the frustum
ulling module a string parameter
ontaining the names of theWorldModel obje
ts that needs to be
he
ked for visibility. Names are listed in thestring in the order whi
h
orrespond to the numbering of the multiple outputs. Iffor instan
e the string is "obje
t1, obje
t2", a trigger will be sent on �rst of theoptional outputs if obje
t1 is visible. If obje
t1 is not visible an empty trigger willbe sent on the �rst of the optional outputs. This will be true for all the obje
tname/output pairs.Se
ondly, the a
tual visibility test must be performed for ea
h WorldObje
t. Forthis to be a
hieved the view matrix and the proje
tion matrix (see se
tion 4.2.2 onpage 28) must be known. The view matrix is re
eived on the se
ond input and theproje
tion matrix is generated based on the verti
al FOV and the horizontal FOVre
eived in the parameters and stati
al values for front and ba
k
lipping planes.These values are set to span the entire world model. Alternately, they
ould bedetermined by the nearest and farthest away visible geometry.The proje
tion matrix represents the viewing frustum (see �gure 4.4 on page 29)and the view matrix represents the the
amera's position and orientation. Whenthese two matri
es are multiplied, the resulting matrix represents a transformedviewing frustum that is the volume in whi
h obje
ts are visible to the
amera. Thesix planes front, ba
k, left, right, top and bottom whi
h
onstitutes the viewingfrustum are extra
ted from the multiplied matrix.The visibility test
he
ks if an obje
t lies inside or outside of the transformed view-ing frustum. For a single point this is done by
he
king for ea
h of the six planesplanes if the point lies in the halfspa
e not
ontaining the frustum. If for one ormore of the planes this is true, the point
an be
lassi�ed invisible. This
he
k
anbe very expensive if the WorldObje
t's mesh
onsists of many polygons, sin
e the
he
k needs to be done for ea
h vertex in all the polygons. Therefore the Worl-dObje
t's bounding box is used instead sin
e it only requires to test if the box isinside the viewing frustum. If it is inside, the WorldObje
t is marked visible. Thisensures that if the bounding box is invisible then the mesh is also invisible. Though,in some
ases the bounding box
an be visible but the mesh invisible, this is still ahighly preferable method performan
e-wise.After the visibility test has been performed for ea
h WorldObje
t in the World-Model, a
lone of the WorldModel is made and the view matrix and the proje
tionmatrix are stored in it. Instead of forwarding the WorldModel re
eived on the in-put, the
lone is made to ensure that the new view and proje
tion matri
es storedfor next frame do not overwrite the
urrent ones before they have been used forrendering.5.3.7 World Obje
t Module� Inputs: 67

{ FrameBu�er (read-only)� Outputs:{ WorldObje
t (writable)� Parameters:{ String: WorldObje
t name{ String: WorldObje
t state, "dynami
" or "stati
"
World Object
Module

Figure 5.12: World obje
t moduleThe task of the world obje
t module is to
reate a WorldObje
t based on itsinput and parameters. The WorldObje
t is representing a virtual obje
t, in theWorldModel, whi
h needs to be
reated or modi�ed in some way. When the a
tionmethod is
alled the module names the WorldObje
t and sets its state as spe
i�edin its parameters and assigns it a texture whi
h is present in the FrameBu�er itre
eives in its input.5.3.8 World Update Module� Inputs:{ WorldModel (read-only){ Multiple WorldObje
ts/EmptyTriggers (read-only)� Outputs:{ World Model (read-only).� Parameters:{ noneThe world update module is responsible for updating the WorldModel based onthe WorldObje
ts re
eived in its inputs. The se
ond input on this module is amultiple type whi
h allows an arbitrary number of modules to be
onne
ted to it.These modules must output either a WorldObje
t or an empty trigger. When the68

World Update
Module

..........2 n+11

Figure 5.13: World update modulea
tion method is
alled all empty triggers are ignored while all the WorldObje
tsare
olle
ted in a list and pro
essed. This involves
he
king ea
h WorldObje
t if itexist in the WorldModel and if its state is set to dynami
. If this is the
ase theWorldObje
ts's FrameBu�er is read and uploaded to the texture memory on thedisplay adapter. This will overwrite the texture memory assigned to WorldObje
t'stexture so that next time it is drawn the
ontents of the framebu�er is mappedonto the surfa
e of WorldObje
t. Note that the world update module is designedonly to update textures on the virtual obje
ts, but it is easily extendable to sup-port adding new WorldObje
ts to the WorldModel or updating other properties onexisting WorldObje
ts.5.3.9 Render Module� Inputs:{ WorldModel (read-only)� Outputs:{ none� Parameters:{ none
Render
ModuleFigure 5.14: Render moduleThe render module is responsible for visualizing the visible obje
ts in the world.When the module is initialized it setups the Dire
t3D rendering pipeline and
reatesa window in whi
h the rendered image will be displayed.When the a
tion method is
alled the render module examines the WorldModel69

re
eived on the input to render the �nal image. Two requirements exist for therendering:� Requirement 1: Virtual obje
t must be rendered overlayed onto the image ofthe real world� Requirement 2: O

lusion between virtual obje
ts and real-world geometrymust be handledRequirement 1 is a
hieved by �rst rendering the ba
kground WorldObje
t (seese
tion 5.3.2). The ba
kground WorldObje
t is a re
tangular mesh with the imageof the real world mapped onto it. It
an be seen as a plane always positioned per-pendi
ularly to the
amera view dire
tion. Therefore it should not be transformedby the view and proje
tion matri
es in the WorldModel. Instead it is proje
ted di-re
tly into s
reen spa
e using an orthogonal proje
tion so it
overs the entire renderwindow. Sin
e the ba
kground WorldObje
t does not
ontain any depth informa-tion the depth bu�er is disabled while rendering it.Next, the virtual obje
ts must be rendered, but for a
hieving requirement 2, somedepth information about the real world is needed. An example of this
ould be aroom with pillars in and virtual pi
tures on the walls. It is likely that in some po-sitions a virtual pi
ture is o

luded by a pillar, and in this situation it is ne
essaryto know depth information about the pillar. Sin
e all depth information rely onthe provided des
riptions of geometry , des
riptions of the real-world obje
ts that
an o

lude virtual obje
ts are needed. When rendering the real-world geometrydes
riptions they should not be rendered to the
olor bu�er sin
e they are alreadypresent in the image of the real world. Instead we disable writes to the
olor bu�erand enable writes to the depth bu�er so only their depth information is presentin the s
ene. Afterwards when rendering the virtual obje
ts, writes to the
olorbu�er are enabled and the visibility of the virtual obje
ts will depend on the depthinformation present in the depth bu�er.The view and proje
tion matri
es in the WorldModel are used to transform boththe real-world obje
ts and the virtual obje
ts so they appear
orre
tly a

ording tothe
amera position and orientation. Lighting is enabled only when rendering thevirtual obje
ts. Information about the lightsour
es are obtained in the WorldModeland used for rendering the virtual obje
ts so their appear illuminated by the real-world lightsour
es. The lightsour
es in the WorldModel should of
ourse be pla
edat positions that
orrespond to where lightsour
es are positioned in the real world.The render steps involved in rendering the
omplete s
ene is listed
ronologi
allybelow. For des
ription of render spe
i�
 terms see se
tion 4.2.2.� Clear depth bu�er.� Disable depth bu�er. 70

� Disable lighting.� Set view transformation to the identity matrix.� Set proje
tion transformation to orthogonal proje
tion.� Render ba
kground WorldObje
t.� Enable depth bu�er.� Disable writes to
olor bu�er.� Set view transformation to view matrix in WorldModel.� Set proje
tion transformation to proje
tion matrix in WorldModel.� Render WorldObje
ts that represent real-world obje
ts.� Enable writes to
olor bu�er.� Enable lighting.� Render WorldObje
ts that represent virtual obje
ts.5.3.10 SummaryThis
hapter has des
ribed the overall design the AR museum by identifying what
omponents was needed to realize the AR museum using the PAVE framework.This resulted in designing enhan
ements to PAVE and designing the fun
tionalityof ea
h
omponent. This design has resulted in a implementation of a prototype ofthe AR museum whi
h will be subje
t to experiments in the following
hapter.

71

6ExperimentsIn this
hapter, we perform three types of tests to our AR museum. The perfor-man
e test will determine the s
alability of the AR system by
omparing framerates when running the system on a single and a dual pro
essor ma
hine. The userimpression test is less
on
rete. It is based on examining s
reenshots of the run-ning system to see how well the augmented obje
ts blend in with reality. In somes
reenshots a displa
ement error of the virtual obje
ts
an be seen and therefore atest was
onstru
ted that determines the pre
ision of the magneti
al tra
ker.The world model used for the performan
e test and the user impression test
ontainsfour virtual obje
ts. Three pi
tures pla
ed on the walls in the room and a teapotpla
ed on a table. The PAVE AR museum graph used for these tests is depi
tedin �gure 6.1 on the following page. It
ontains three subgraphs whi
h are linkedto the virtual pi
tures on the walls and therefore the textures on these pi
tures arethe result of frame output from these subgraphs. The �rst subgraph
ontains animage loader module whi
h simply loads a bitmap image from disk when initial-ized and outputs this image1 ea
h time it is
alled. The se
ond subgraph
ontainsa plasma module whi
h generates a swirling
olor pattern based on trigonometri
fun
tions. The third subgraph
ontains a
ir
le
ower module whi
h generates amoving "
ower like" pattern. Two of the virtual pi
tures are pla
ed in positionswhere real pi
tures exist in the room. This allows for observing if the virtual pi
-tures are situated at their
orre
t positions.All tests were performed on a Dual Celeron 400 MHz with 128 Kb
a
he, 128Mb 66 MHz ram and a NVIDIA TNT2 graphi
s
ard.6.1 Performan
e S
aling TestThis test measures the s
alability of the AR system by
omparing frame rates whenrunning the system on a single and a dual pro
essor ma
hine. Multipro
essor sup-1We have used the famous painting
alled "Skriget" by Edvard Mun
h.73

Figure 6.1: PAVE AR museum test graph.
74

port was disabled in Windows 2000 for the single pro
essor frame rate measurement.6.1.1 Test SetupThe PAVE graph depi
ted in �gure 6.1 on the pre
eding page was exe
uted in thePAVE framework. The frame rates measured are average frame rates obtained byrunning the the AR museum graph for several minutes using arbitrary
amera-positions and orientations.6.1.2 Test ResultsThe measured frame rates are listed in table 6.1. We
onsider the 54.2 per
entagegain in frame rate a satisfa
tory result.Fps on 1 CPU Fps on 2 CPUs gain in %5,9 9,1 54,2Table 6.1: Performan
e s
aling result table.6.2 User Impression TestThis test is based on examining s
reenshots of the running system to see how wellthe augmented obje
ts blend in with reality.6.2.1 Test SetupThe PAVE graph depi
ted in �gure 6.1 on the pre
eding page was exe
uted in thePAVE framework. S
reenshots were taken while the system was running.6.2.2 Test ResultsIn �gure 6.2 s
reenshots of the augmented obje
ts
an be seen. How well the virtualobje
ts blend in with the real world di�ers in the s
reenshots. It turned out that itwas highly dependent on
amera position and orientation. Furthermore it is mostnoti
eable on the s
reenshots
ontaining the virtual pi
tures sin
e the virtual edgesdo not allign the real-world edges. The virtual teapot, on the other hand, blends inquite well.In �gure 6.3 three lo
ations in the room
an be seen with and without virtualobje
ts.In �gure 6.4 on page 78 an example of gross displa
ement of the virtual obje
tis seen. For this s
reenshot the
amera was rolled 180 degrees whi
h resulted in a75

(a) Virtual pi
ture with dynami
 texture. (b) Virtual pi
ture with stati
 texture.

(
) Virtual teapot. (d) Virtual teapot.Figure 6.2: S
reenshots of virtual obje
ts blended with a real world image.
76

(a) First lo
ation without augmentedobje
t. (b) First lo
ation with augmented ob-je
t.

(
) Se
ond lo
ation without aug-mented obje
t. (d) Se
ond lo
ation with augmentedobje
t.

(e) Third lo
ation without augmentedobje
t. (f) Third lo
ation with augmented ob-je
t.Figure 6.3: S
reenshots of three lo
ations with and without virtual obje
ts.77

displa
ement of the virtual pi
ture. The displa
ements in the x and y dire
tions areapproximately 18 and 12
entimetres respe
tively.

Figure 6.4: S
reenshot showing the displa
ement of a virtual pi
ture.6.3 Magneti
al Tra
ker Pre
ision TestGiven the displa
ement of virtual obje
ts experien
ed in the user impression test,we wish to test whether the displa
ement
an be put down to the ina

ura
y in themagneti
al tra
ker measurements.6.3.1 Test SetupWe wish to
ompare position and orientation measured by the magneti
al tra
ker,with the position and orientation that should be obtained. We have marked angles
overing 180 degrees rotation about the y-axis, in the xz-halfplane with 15 degreesbetween them. The magneti
al re
eiver is put on a sti
k, whi
h is pla
ed from thetransmitter to the 13 marked points. Ea
h of the 13 angles (0 to 180 degrees), andthe
orresponding x and z position is measured 10 times, and an average angle andposition is
omputed, to
ountera
t ina

ura
y in the test setup itself. In �gure 6.5on the next page, the tra
ker pre
ision test setup is depi
ted.6.3.2 Test ResultsIn table 6.2 on page 80 the results of the magneti
al tra
ker test are listed. Angleerrors are measured in degrees and position errors are measured in
entimeters. Ifwe look at the average, min and max values for angle and position errors, we
ansee that position errors are less than angle errors. Be
ause of the fa
t that positionerrors do not impa
t the quality of AR as mu
h as angle errors does, we only ex-amine the angle errors further. To estimate how mu
h impa
t the angle errors have78

Receiver

Transmitter

60º

Figure 6.5: Tra
ker pre
ision test setup.on displa
ement of the virtual obje
ts, a simple
ase depi
ted in �gure 6.6 is used.This �gure shows a
amera looking at a wall from a distan
e d. The dotted linerepresents the measured erroneous looking dire
tion of the
amera. This results ina point being displa
ed by the distan
e x on the wall.If we return to �gure 6.4 on the fa
ing page showing gross displa
ement of avirtual pi
ture on a wall and use the information that the
amera was pla
ed ap-proximately 2 meters from the wall, the displa
ement x
an be
al
ulated for theaverage, min and max angles errors. This gives 11.9, 1.0 and 23.5
entimeters re-spe
tively. The displa
ements observed in the s
reenshot were 18 and 12
entimetersrespe
tively, so this lies within the value for the max angle error. From this, we
on
luded that the angle error introdu
ed in the measurements of the magneti
altra
ker's orientation is signi�
ant enough to
ause the displa
ement of the virtualobje
ts. These errors are most likely due to the magneti
al tra
ker's sensibility tometal and other magneti
 �elds in the environment.
a

d

x

Figure 6.6: Displa
ement due to angular error.79

Angle Angle err. X pos. err. Z pos. err.0 0,3 0,9 0,015 1,6 1,5 0,630 2,0 1,5 1,045 2,4 1,3 1,260 2,3 0,8 1,075 2,5 0,4 1,390 3,1 0,2 1,6105 3,8 0,0 1,3120 4,3 0,5 1,0135 4,9 0,6 0,7150 5,4 1,2 0,7175 6,7 2,3 0,1180 5,3 0,7 0,3Average 3,4 0,9 0,8Min 0,3 0,0 0,0Max 6,7 2,3 1,6Table 6.2: Tra
ker pre
ision result table.6.4 Test Con
lusionThe tests performed on the AR museum system shows that the system s
ales well.In terms of the visual quality, the main reason for the less than perfe
t aligmentof the virtual obje
ts,
an be put down to the magneti
al tra
ker, as mentioned inthe pre
ision tests. Regarding the requirement, that the minimum a

eptable framerate being 10 frames/se
ond, in an AR system, this is barely satis�ed. Our systema
hieved a frame rate of 9.1 frames/se
ond on the 2 pro
essor test ma
hine with aTNT2 graphi

ard and hen
e is a little bit slower than the a

eptable frame rate.The dual Celeron ma
hine is a rather slow ma
hine,
ompared to even
ontemporarysingle pro
essor ma
hines, and therefore we do not see this as a problem. We testedthe AR Museum on a 500 Mhz Pentium-III single pro
essor ma
hine with a GeFor
e256
ard, where the system ran with a frame rate of 20 frames/se
ond, whi
h gavesatisfa
tory visual results.

80

7ConclusionIn this
hapter we will
on
lude upon our goals and requirements set in
hapters 1and 3.We have designed an Augmented Reality Museum ar
hite
ture, that allows auser to inspe
t a room augmented with virtual obje
ts
onstituting the art in themuseum. The museum is des
ribed by a world model holding information about thereal world and the virtual obje
ts residing in it. The world model
an be
reated byusing a modelling tool so that
omplex environments
an be
reated. The virtualobje
ts
an be dynami
 and thereby giving the user a more immersive experien
e.The design has been modularized and des
ribed by modules
onne
ted in a graphin the PAVE framework. The inherent
apability of PAVE to exe
ute modules inparallel ensures that the AR system will s
ale over multiple pro
essors.The PAVE framework allows
reation of visual e�e
ts by building subgraphs
onne
ting e�e
t modules. An interfa
e has been designed that
an link these sub-graphs to virtual obje
ts. This allows for easy integration of visual e�e
ts into theAR environment.Sin
e the visual e�e
ts
an be very time
onsuming we have designed a me
ha-nism that determines whether virtual obje
ts are visible or not, and on that basis
ontrol whether e�e
t subgraphs should be a
tive or ina
tive.The AR museum's fun
tionalty has been analysed to identify areas in the PAVEframework that needed new features and enhan
ements. This in
ludes garbage
ol-le
tion, read-only and write semanti
s for datatypes, optional inputs and outputson modules and the triggering/empty triggering me
hanism. The optional inputsand outputs me
hanism on modules has greatly improved the
exibility in PAVEand as a
onsequen
e also made the AR Museum more
exible. The garbage
ol-le
tion me
hanism manages memory allo
ation eÆ
iently and makes PAVE morerobust to
hanging
on�gurations of graphs. The triggering me
hanism enhan
es81

performan
e by redu
ing the exe
ution of subgraphs to only when it is ne
essary.The read-only and write semanti
s helps redu
ing
loning of data, and in
reasesoverall eÆ
ien
y of the system.As part of realizing the AR museum, the intrinsi
 and extrinsi
 parameters aredetermined for the
amera, whi
h allows
alibration of the
amera image and align-ment of the virtual and the real
amera. The visualization has been made to takeadvantage of 3D a

eleration hardware for better performan
e.A prototype of the AR museum has been implemented and tested. It proved tos
ale well on a dual pro
essor ma
hine and maintain a stable a

eptable framerate.The visual quality is quite good and the dynami
 e�e
ts adds to the user expe-rien
e. Regarding the registration of
amera positions and orientation, our testsshowed that the magneti
 tra
ker
an be somewhat ina

urate, esspe
ially whenit
omes to measuring orientation angles. This
aused virtual obje
ts to be moreor less displa
ed, where some displa
ements where gross. The
on
lusion from thisis, that more pre
ise tra
king equipment that is less sensitive to ele
tromagneti
alnoise, is a ne

essity to obtain better results.In general the system satis�es our goals and has proven to be quite robust, fairlyfast and stable. The
on
ept of art on obje
ts has shown to work quite well visually.

82

8Future WorkIn this se
tion we brie
y des
ribe possible future dire
tions that
an be taken toexpand on our proje
t.8.0.1 Enhan
ed Tra
kingSin
e the magneti
al tra
king proved to be a somewhat impre
ise method of regis-tering the position and gaze of the
amera, additional tra
king methods would berequired to rea
h an a

eptable user immersiveness. A of way a
hieving this
ouldbe to examine ways of doing hybrid tra
king by e.g. designing an opti
al tra
king
omponent.8.0.2 Multiple UsersIf the AR museum were to be experien
ed by using head-mounted displays, it wouldbe desriable to allow multiple users at the same time. This would require modifyingthe museum graph and most likely the fun
tionality of the
omponents too. Forinstan
e, it should be investigated how the
ontrol of a
tivating/dea
tivating thee�e
t subgraphs will
hange when
onsidering multiple users �eld of view.8.0.3 Hardware A

elerated Image DistortionWe have
hosen to
alibrate the
amera image in software. It would be possible todo this by taking advantage of graphi
s hardware by mapping the
amera imageonto a distorted mesh. This would not give a per-pixel a

ura
y and therefore itmight be of interest to investigate a way of subdividing the mesh in areas where theimage distortion is most pronoun
ed. Another possibility
ould be to render thevirtual obje
ts into a texture and distort this in the above mentioned way insteadof distorting the
amera image. 83

8.0.4 ShadowsMaking virtual obje
ts
ast shadows on ea
h other and on real-world obje
ts wouldbe a obvious way of enhan
ing the user immersiveness. With the world knowledgeand the rendering approa
h we have
hosen it is possible to generate hardwarea

elerated shadows on modelled real-world obje
ts.8.0.5 Depth of Field BlurA way of making the rendered obje
ts blend better in with the real-world image
ould be to simulate a depth of �eld e�e
t on the rendered image. The depth of�eld e�e
t is due to di�erent parts of an image being in fo
us and others not. Therendered image would need to be blurred in areas where the real-world image isout of fo
us. Realtime depth of �eld blur e�e
ts are possible on todays
onsumergraphi
s hardware [nvd01℄.

84

ABaseModule
Specialization

ExampleThis example shows how a module is implemented for PAVE framework, the moduleshown is a real module
alled BlendModule, we implemented last semester. TheBlendModule takes two bitmap images, of FrameBu�er type1, as input. Its A
tionmethod blends two images by some fa
tor spe
i�ed by an integer Value parame-ter. It delivers a resulting bitmap image (of FrameBu�er type) that
ontains a
omposite of the two inputs. Below is a C++
ode example of the BlendModuleimplementation, the blend algorithm resides in the a
tion method.The sour
e
ode shown, is for a plugin pa
kage, we have
alled StandardModules,that
ontains several other modules, but only the
ode for BlendModule is shown.The
ode for registering the BlendModule into the plugin DLL-�le representing theStandardModules plugin pa
kage is also shown.StandardModules.h:#ifndef __StandardModules__#define __StandardModules__#in
lude "Types.h"#in
lude "Base.h"..........//---------------------------//// Blend module (de
laration)//---------------------------//1A spe
ialization of BaseType that
ontains a bitmap image bu�er.85

lass BlendModule : publi
 BaseModule{publi
:BlendModule(); // Constru
tor.~BlendModule(); // Destru
tor.virtual void init(BaseTypeList* stati
Params); // Intialization method.BaseTypeList* a
tion(BaseTypeList* inputs, BaseTypeList* params); // A
tion method.private:unsigned int m_imgSize;};..........#endifStandardModules.
pp:#in
lude "StandardModules.h"..........//---------------------------//// Blend module - begin//---------------------------//BlendModule::BlendModule() // Constru
tor{ this->setTypeID("BlendModule");m_inputs->addBaseType(new FrameBuffer()); // De
lare a FrameBuffer as input number one.m_inputs->addBaseType(new FrameBuffer()); // De
lare a FrameBuffer as input number two.m_params->addBaseType(new Value()); // De
lare a Value as parameter one.m_outputs->addBaseType(new FrameBuffer()); // De
lare a FrameBuffer as output number one.m_imgSize = 256*256*4; // Fixed size of the images}BlendModule::~BlendModule() // Destru
tor{ // does not own anything that needs to be deleted.};void BlendModule::init(BaseTypeList* stati
Params){ // no initialization is ne
essary.}BaseTypeList* BlendModule::a
tion(BaseTypeList* inputs, BaseTypeList* params){ FrameBuffer* image1 = (FrameBuffer*) inputs->getBaseType(0);FrameBuffer* image2 = (FrameBuffer*) inputs->getBaseType(1);//
reate a result FrameBuffer to send along.86

FrameBuffer* resultImage = new FrameBuffer(256, 256, 4);unsigned
har* drawbuf = resultImage->getPtr();unsigned
har* rgb_pi
1 = image1->getPtr();unsigned
har* rgb_pi
2 = image2->getPtr();Value* v = (Value*) params->getBaseType(0);unsigned int step = v->getValue();unsigned int invstep = 255 - step;unsigned int imgSize = m_imgSize;// Intel x86 assembler version of a blending algorithm.__asm{ mov edi, drawbufde
 edimov esi, rgb_pi
1mov ebx, rgb_pi
2mov e
x, imgSizeinnerloop:mov edx, [esi℄and edx, 0x000000FFimul edx, stepin
 esishr edx, 8mov eax, [ebx℄and eax, 0x000000FFimul eax, invstepin
 ebxshr eax, 8in
 ediadd eax, edx //eax = (
olor1*step)/256 + (
olor2*(255-step))/256mov [edi℄, alde
 e
xjnz innerloop}// Create an outputlist
ontainerBaseTypeList* output = new BaseTypeList();// Add the result image to the outputlistoutput->addBaseType(resultImage);// Release the referen
e to the result.// Added after the enhan
ements of PAVE were implemented.resultImage->releaseRef();return output; // return the output list to parent Node.}//---------------------------//// Blend module - end 87

//---------------------------//...........//---------------------------//// Export module(s) here//---------------------------//__de
lspe
(dllexport) BaseModule* moduleQueryFun
(int moduleNr){ swit
h(moduleNr){
ase 0:return (BaseModule*) new BlendModule();
ase 1:return (BaseModule*) new ..default:return NULL;}}//---------------------------////---------------------------//The idea of exporting modules, is that an appli
ation
an load the plugin DLL�le at run time. When loaded it
an
all one single generi
 fa
tory fun
tion (mod-uleQueryFun
) in the plugin and on behalf of the parameter given, the fun
tionreturns the desired module instan
e.

88

Bibliography

[APG98℄ T. Auer, A. Pinz, and M. Gervautz. Tra
king in a multi-user augmentedreality system. In Pro
eedings of the IASTED International Conferen
eComputer Graphi
s and Imaging 1998, pages 249{252, 1998.[Cor98℄ T. H. Cormen. Introdu
tion to Algorithms, page 89. MIT Press, 1998.[Cre01℄ Creative Video Blaster WebCam 3 USB Manual, 2001.http://www.europe.
reative.
om/support/manuals/.[Cro97℄ Thomas W. Crokett. An introdu
tion to parallel rendering. 1997.[CT95℄ Mi
hel Cosnard and Dennis Trystram. Parallel Algorithms and Ar
hi-te
tures. International Thompson Computer Press, 1995.[Der99℄ Helmut Ders
h. Corre
ting barrel distortion, 1999. http://www.fh-furtwangen.de/ ders
h/barrel/barrel.html.[FAS00℄ Fastrak spe
i�
ations, 2000. http://www.polhemus.
om/ftrakds.htm.[KV98℄ Kiriakos N. Kutulakos and James R. Vallino. Calibration-Free Aug-mented Reality. IEEE Transa
tions on Visualization and ComputerGraphi
s, 4(1):1{20, January 1998.[MKN96℄ K. Mase, R. Kadobayashi, and R. Nakatsu. Meta-museum: A supportiveaugmented reality environment for knowledge sharing. In Pro
eedings ofInternational Conferen
e on Virtual Systems and Multimedia '96, pages107 { 110, 1996.[msd01℄ Mi
rosoft online developer
enter, 2001.http://msdn.mi
rosoft.
om/dire
tx.[nvd01℄ Nvidia developer relations site!, 2001.http://partners.nvidia.
om/developer.[Rek96℄ J. Rekimoto. Transvision: A hand-held augmented reality system for
ollaborative design. In Pro
eedings of Virtual Systems and Multimedia(VSMM) '96, 1996. 89

[SFH00℄ D. S
hmalstieg, A. Fuhrmann, and G. Hesina. Bridging multiple userinterfa
e dimensions with augmented reality. In Pro
eedings of ISAR2000, pages 249{252, 2000.[SHC+96℄ Andrei State, Gentaro Hirota, David T. Chen, Bill Garrett, and MarkLivingston. Superior augmented reality registration by integrating land-mark tra
king and magneti
 tra
king. In Holly Rushmeier, editor, SIG-GRAPH 96 Conferen
e Pro
eedings, Annual Conferen
e Series, pages429{438. ACM SIGGRAPH, Addison Wesley, August 1996. held in NewOrleans, Louisiana, 04-09 August 1996.[Sta97℄ William Stallings. Operating Systems. Alan Apt, 1997.[Ull75℄ J. D. Ullman. NP -
omplete s
heduling problems. Journal of Computerand System S
ien
es, 10(3):384{393, June 1975.[Val01℄ Jim Vallino. Introdu
tion to Augmented Reality. PhD thesis, Departmentof Computer S
ien
e, Ro
hester Institute of Te
hnology, 2001. Chapter1, http://www.
s.rit.edu/ jrv/resear
h/ar/introdu
tion.html.

90

