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Introduction

Last semester we designed and implemented a framework, called PAVE (Parallel Ar-
chitecture for Visual Effects), that supported parallel real time rendering of graphics
in a generic fashion. The motivation was that a lot of current real time graphics
applications are hardcoded to support particular hardware configurations to maxi-
mize rendering speed. Most multimedia programs offer utilization of e.g. 2 CPUs
by design, but typically not for more CPUs. Therefore, we wanted to contribute
to the real time graphics area, by developing a general model for parallel rendering
that could be used to create scalable real time graphics applications.

As a consequence we designed a dataflow model that supports generic parallel
execution, useful for making e.g. graphics rendering performance scalable over
multiple CPUs on a given machine. The number of CPUs that can be utilized is not
limited by the dataflow model and the way we have designed the parallel execution
engine. Futhermore the dataflow model was designed as a modular framework
that can be used by a programmer to create different kinds of real time graphics
rendering applications. The point was that a programmer should only worry about
creating modules (plugins) according to a template interface. The modules can
then be used as components in e.g. a larger graphics rendering scheme, by plugging
them into an dataflow graph and the parallel execution will then be taken care of
by the framework. The ideal goal was to make it easier and less error prone for a
programmer to create performance scalable graphics software with our framework,
by adhering to a small set of simple rules, and not worry about parallelization issues.

1.1 Motivation

Now that we have a framework for creating scalable graphics applications, we find it
to be a natural step to create a graphics application ourselves and use the framework
as the underlying software platform. Particularly we want to create an application
that has high demands in terms of acceptable graphics rendering speed and at the
same time have a large room for potential enhancements.
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This in particular and the fact that we have an interest in real time computer
graphics for entertainment and art, let us to look into the area of creating augmented
reality (AR) systems. In the following we will describe our specific goals.

1.2 Project Goals

The goal is to design and implement a simple augmented reality (AR) system, where
a real room acts as the frame of reference to a virtual world. In order to have a
potential entertaining product as a goal, we will use the concept of a museum. We
will call this an AR Museum. We define it to be the following:

e It should be possible for a spectator, to inspect a given room in the real
world, and on a computer screen or a head mounted display observe the room
augmented with virtual objects in real time.

e Objects in the virtual world must appear, as if they were part of the real
world and hence follow the cameras view. In essence the objective is to blend
computer graphics with input from a camera in a suitable manner to obtain
these goals.

e The virtual objects could be artistic pictures on the walls, sculptures standing
at certain positions etc. The virtual objects could be animated in some fashion
in order to give the spectator a more entertaining experience and to further
enhance reality.

The performance goals, that we have for the AR Museum, can be summarized
in the following:

e Real time presentation. Since a spectator must be able to freely move around
in a room and observe events, the presentation speed, also called rendering
speed, must have a minimum acceptable lower bound.

e Performance scalability. The system must be able to scale over multiple pro-
cessors, in order to increase rendering speed.

e The system should utilize special graphics hardware that can assist in ac-
celerating the graphics rendering, and ideally do it in a fashion that favours
parallel execution.

It is our intention to create such a system by analyzing what components are
neccessary, designing and implementing them as modules that can be run in the
PAVE (Parallel Architecture for Visual Effects) framework, which is introduced in
chapter 4. We will design and implement neccessary generic enhancements of PAVE
in order to support the creation of the AR Museum. The reason that we wish to
use PAVE as the underlying architecture, is its inherent ability to scale on multi
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processor PCs, and hence give the AR system better performance scalability.

There are two issues that we will consider. The first aspect of problems is deal-
ing with the architecture of the AR system, like dataflow between components and
what role each component in the AR system must have. This is influenced by the
way PAVE works in terms of its inherent features and underlying modular design
philosophy.

The other aspect of problems are based on each components role in the AR
system, and therefore consists of applying suitable algorithms to the components.
Datastructures to pass information between the various algorithms, will be ad-
dressed as well.
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Related Work

In the field of Augmented Reality, many different application areas exist. People
working with the area have different focuses, some contributes to the area by devel-
oping new more robust algorithms for e.g. camera tracking, others focus on visual
quality etc.

In augmented reality systems, a main issue for achieving acceptable results is
that registration of the users position and gaze must be relatively precise, so that
augmented objects appear in the correct position.

A calibration-free AR system, using optical tracking that relies on tracking at
least four non-co-planar points in the filmed image is described in [KV98].

The task of making a fast and robust tracking algorithm that combines magnet-
ical tracking and optical tracking is addressed in [SHC*96].

The StudierStube, described in [SFHO00], is an example of a multi user AR system.
Its main focus is on building multi user AR environments / user interfaces. It also
comprises a tracking algorithm which combines optical and magnetical tracking.
This is described in [APG98]. In StudierStube head-mounted see-through displays
are used for augmentation.

Another AR system that focuses on more users doing collaborative work, is
described in [Rek96]. Here a hand-held see-through display is used to view and
interact with augmented objects.

An AR system with the same application context as in our project, building
a museum / gallery, is described in [MKNO96]. Here the focus is in particular the
interaction and communication between visitors, virtual guides and the experts be-
hind the exhibition.

Our approach to creating an AR museum differs in focus from the above. In our
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project we apply magnetical tracking for determining position and gaze of the user.
As we have created our AR museum, we have done it under the conditions that
the system must be scalable over multiple processors and thereby part of the focus
has been on creating a flexible and robust dataflow software architecture. We have
made our system capable of handling real time graphical effects on virtual objects.
The handling of the graphical effects has been made a part of the systems dataflow
architecture, in order to make optimizations and enhance scalability at a higher
level than on particular effect algorithms. Lastly, we have made the architecture
modular in a strong sense, so that alterations and enhancements of the system are
possible and supported. The whole system runs on a single computer and takes
advantage of multiple processors.
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Analysis

In this chapter, we begin by describing what augmented reality is, and what a
typical augmented reality system contains and its general requirements. Then we
describe the choices made in order to conceive the AR Museum as defined in section
1.2 and give an overview of the elements it must contain. Finally, requirements and
delimitations for the AR, Museum are given.

3.1 What is Augmented Reality?

Augmented reality (AR)! describes reality that is augmented with virtual objects.
An augmented reality system presents the spectator with a composite view of the
world, that consists of the real scene viewed by the spectator combined with a virtual
computer generated scene that augments the real world with additional information.

In [Val01] the relation between augmented reality and virtual reality is defined
as a Reality-Virtuality Continuum, shown in figure 3.1.

Mixed Reality (MR)
%
Real Augmented Augmented Virtual
Environment Reality (AR) Virtuality (AV) Environment

Figure 3.1: Milgram’s Reality- Virtuality Continuum

Augmented reality lies somewhere in between reality and virtual reality. It lies
closer to reality than it is to virtual reality, the predominant perception being the
real environment, augmented with virtual objects.

! Augmented reality will in this report be denoted AR.
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Furthermore, [Val01] proposes a taxonomy for categorizing mixed reality sys-
tems, i.e. system that creates an environment which is somewhere in between pure
reality and pure virtuality. It consists of the three axes: Reproduction Fidelity,
Extent of Presence Metaphor, and Extent of World Knowledge.

Reproduction Fidelity is a measurement of the image quality of the objects that
augment reality. As it is required for AR systems to run in real time, the result of
rendering images with today’s graphical hardware, is far from the photorealism, one
could wish for. This puts AR in the low end of the Reproduction Fidelity scale. An
ultimate and ambitious goal would of course be to make the objects that augment
the real environment indistinguishable from reality.

Extent of Presence Metaphor describes the degree of immersiveness that is felt by
a spectator when looking at the displayed scene. The degree of imersiveness will, of
course, be highly dependant of the display technique used in the AR system. There
is a great difference in the feeling of looking around in an AR environment, and
looking at an AR environment.

The Extent of World Knowledge dimension, in the mixed reality categorization
proposed by Milgram, measures how much information about the real world is
available to the system. In AR systems it is imperative that accurate registration
of objects in the world can be maintained. The real and virtual parts of the world
must be combined so they match as a whole, as an augmented reality. For this to
be possible, the AR system typically must have information about the frames of
reference for the real world, the camera viewing it and the spectator. The less world
knowledge needed by an AR system, the more robust and flexible it is, as it can be
used in changing and different settings.

3.2 Typical AR systems

Although AR systems have many different application contexts with different de-
mands of the system, several key components are common to a typical AR system.
These are described in the following.

The main task of the AR system is to register the real scene viewed by the
spectator and the corresponding virtual scene, merge the two scenes correctly and
display the result, all this in real time. The real scene is viewed by an imaging
device, a video camera or the human equivalent, the spectator’s eyes. Likewise the
virtual scene containing the objects to augment the real scene, is viewed by a virtual
camera, and is rendered by the computer. These two ”cameras” must be aligned, so
that the rendering of images from the virtual camera is correctly performed. This
means that the virtual camera must know the intrinsic (focal length, lens distortion)
and extrinsic (position, orientation) parameters of the real camera. Merging of the
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two images can then be done, producing the augmented reality images to display.
In figure 3.2, an overview of a typical AR system is presented.

Camera
o= |

Real scene
being viewed

Align Virtual Merging
Camera to Video and
Real Camera Graphics

Displaying
Augmented
Images

Graphics
Rendering

Figure 3.2: Overview of a typical AR system

To correctly align the two cameras, so that the virtual scene is rendered from the
same point of view as the real scene, the position and orientation of the real camera
must be tracked in real time as the spectator moves around. A common method
for tracking, is using orientation angles and coordinates coming from a magnetical
tracker. This method can be somewhat inaccurate due to low resolution in the
tracked orientation, limited range and disturbances in the magnetic field created by
the tracker. A combination of magnetical tracking and optical tracking based on

computer vision algorithms, has been used to obtain higher accuracy. Such hybrid
tracking is described in [SHC*96, APG9S].

As mentioned above different techniques for displaying the augmented images
can be used, giving different degrees of imersiveness. The simplest technique is to
use a monitor for displaying the augmented reality. This is referred to as Fish Tank
virtual reality. Alternatively, see-through head-mounted displays (HMDs) can be
used. HMDs come in two forms. The equivalent of the monitor display is the video
see-through HMDs, which contains a camera. They project the augmented image
on the displays, like on a monitor. With optical see-through HMDs the spectator
can actually see through, meaning only the virtual objects are displayed, the rest
of the display is transparent, giving the spectator a free view of reality.

To conclude the overview of AR systems, we summarize the general performance

criteria of an AR system. As real time high quality visualization of the augmented
scene, in which the spectator must be able to move around in, is imperative to an
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AR system the three following criteria are put on the system:
e Frame rate of the rendered virtual images.
e High visual quality rendering of the virtual objects.
e Accuracy in registration of real and virtual images.

A frame rate of minimum 10 frames per second are considered acceptable for the
virtual objects in the AR scene not to appear jumpy. A low accuracy in registering
the images will result in the virtual objects not being perceived as stationary. If,
in the AR system, time delays occur in computing the alignment of the virtual
camera, the virtual objects will lag behind the motion in the real world. To put
it in short, in an AR system, speed, accuracy and low latency is of the essence.
High visual quality and high frame rate in the rendering of virtual objects is linked
directly to the Reproduction Fidelity measurement, and there is a trade-off between
image quality and frame rate. The better image quality, the lower the frame rate
and vice versa. Here 3D render acceleration hardware is useful, in order to speed
up rendering of virtual objects without stressing the main CPU(s) too much.

3.3 Choosing the AR Museum

To choose an AR application case, we need to find one where the PAVE? architec-
ture can be exploited to its full potential in terms of parallelization. Since PAVE
was designed with parallelization of real time graphical effects in mind, we find that
an AR application embodying such effects should be an obvious choice. We have
therefore chosen a museum as our case, as this provides a possibility for experiencing
dynamic real time effects, or computer art, in a fitting environment, which should
give the spectator a more immersive experience. We also wanted a simple applica-
tion, which would not rely on interaction between the spectator and the augmented
world. A virtual museum is well justified without interaction, but it is of course
an area of great possibilities for enhancing the spectators experience. Furthermore
a virtual museum filled with dynamic real time art would call for a large amount
of processing power and therefore the automatic scalability of PAVE makes it a
suitable platform. Later on, we will explain how real time graphical effects can be
tied into the AR Museum. In the following we will setup the requirements for the
AR Museum.

3.4 The AR Museum

The AR Museum is seen as an arbitrary real world room with virtual objects placed
in it. The virtual objects constitute the art in the museum and should ideally be

2Introduced in chapter 4.
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seen as existing in the room. There should be no real restrictions on the virtual ob-
jects. They can be static or dynamic in the sense that they change properties such
as e.g. form or material which will allow for e.g. pictures on the wall with dynamic
content. An interface between dynamic effects and such objects should be designed,
so frame data generated by algorithms consistuting the effects can be linked to an
object’s properties. This could be used for updating the material on a virtual object.

The museum should be able to be viewed from any position and orientation
desired, which is achieved by using a magnetical tracker to determine position and
gaze of the camera. We delimit the system from using optical tracking, such as
using e.g. image analysis algorithms to gain world knowledge. As a consequence
the AR Museum will have a relatively low Fztent of World Knowledge. The only
world knowledge the system must have apart from the camera position and gaze, is
a given rooms geometry.

Since we have had no access to see-through head-mounted displays, the museum
is presented on a monitor and the real world is captured by a standard web camera.
This is also the reason why the system will be delimited from supporting multiple
users/spectators.

The knowledge about the world (museum) is contained in a structure called the
World Model. 1t holds information both about reality and virtual reality. Part of
the reality description includes the picture grabbed by the camera and information
about the cameras position and gaze. It also includes a description of the static
geometry of the world such as walls, ceilings, floors and possible lightsources. The
knowledge of the virtual reality includes descriptions of the geometry of the art
objects present in the museum and their properties such as position and material.
In the process of constructing the World Model, we find that adding support for
using a modeling tool, e.g. 3DStudio MAX] is an important feature, since it allows
easier creation of complex geometry.

To enhance the overall performance of the AR system we have chosen to use 3D
graphical hardware for rendering the virtual objects. For this purpose we will use
the Microsoft Direct3D API, which encapsulates hardware accelerated rendering of
3D primitives. Furthermore we will focus on enhancing performance by detecting
objects that are not present in the cameras field of view. This information can be
used for deactivating dynamic effect algorithms, linked to certain virtual objects,
which generates frames used exclusively by these objects.

For merging the camera image of the real world with the computer generated
image of the virtual objects, camera calibration must be performed to compensate
for lens distortion, for this we need a Camera calibration component, that delivers
calibrated camera images to the World Model structure. The cameras position
and orientation read from the magnetical tracker must be collected by a Magnetic

21



tracker component, that delivers the data to the World Model structure. When the
information about the real world is known, based in camera input, position and
orientation and geometry descriptions encapsulated in the World Model structure,
Virtual object clipping must be done for objects that are outside the cameras view.
Finally, a Rendering component, that displays all the collected information on screen
is need. See figure 3.3 for a conceptual overview of the elements we imagine the
AR Museum must contain. The small circles denotes objects in the virtual world,
such as pictures on the walls or sculptures. The small graphs linked to each virtual
object, symbolizes dynamic effect algorithms, where each effect is tied to a given
objects material.

Magnetic
Camera tracker
Realorld
Camera
calibration
Dynami€&ffects \
Q‘ p Q p Q p Worltodel
Virtuabject
clipping
R )
Virtualvorld O endering
=

Figure 3.3: AR Museum overview.

Based on the above the specific requirements for the AR Museum, that will
influence the design and choice of algorithms for the components is summarized
below along with the delimitations we have made.

3.4.1 Requirements
Specific requirements for the AR Museum are:
e One camera for filming the real world.

e Magnetic tracker is used to track the position and orientation of the camera.
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e Calibration of the images grabbed by the camera.
e Dynamic virtual objects.
e Interfacing between dynamic effects and virtual object properties.

e Culling of virtual objects that are out of sight and dynamic effects tied to
those objects must be deactivated.

e Graphic rendering must take advantage of 3D hardware.

e World Model geometry can be described in a modeling tool.

3.4.2 Delimitations
The delimitations of the AR Museum are:

e Single user system.
e No interaction with objects in world model.
e The augmented result is seen on a standard monitor.

e No optical tracking.

3.5 Summary

We have described what augmented reality is, and listed the general requirements
for AR systems. We have setup requirements and made delimitations for our specific
application case, the AR Museum. The general requirements and specific require-
ments, will form the focus in the AR Museum design. Figure 3.3 shows how we
imagine the AR Museum must work conceptually. We will in the next chapter

present the baseline for the AR Museum, before the design is presented in chapter
5.
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Baseline

In this chapter we describe our baseline, consisting of the hardware, software and
programming tools we will use to create the AR Museum. Following after, we give a
description of how we calculate a cameras field of view. After that we explain some of
the fundamental principles in 3D graphics rendering. Finally, we describe the PAVE
framework, which will become the foundation of the AR Museums architectural
design.

4.1 Hardware

Based on the requirements for the AR Museum, we defined in section 3.4.1 on
page 22, we choose the following hardware.

e Polhemus 3SPACE FASTRAK magnetical tracker
e Creative Video Blaster WebCam 3 USB

e PC with two 400 MHz Intel Celeron CPU’s, 128 Kb cache each, 128 MB 66
MHz RAM and a NVIDIA TNT2 3D graphics card.

In figure 4.1 on the next page the hardware setup for the AR Museum system
is depicted.

The magnetical tracker is connected to the computer via a serial port. It has
a magnetical transmitter that creates a magnetical field around it. The receiver
connected to the magnetical tracker measures the magnetical field so that its posi-
tion and orientation can be determined. The receiver is placed on a wooden stick
behind the camera. The reason for this is that the camera generates too much elec-

tromagnetic noise for the receiver to be placed on top of the camera. The Polhemus
3SPACE FASTRAK has the following specifications:

e Position Coverage: 76 cm distance from receiver to transmitter with spec-
ified accuracy and up to 305 cm with slightly reduced accuracy.
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Figure 4.1: The AR museum hardware setup.

Static Accuracy: 0.08 cm RMS for the x, y and z receiver position, 0.15
degrees RMS for receiver orientation.

Resolution: 0.0005 cms/cm of range and 0.25 degrees.

Latency: 4.0 milliseconds from receiver measurement to output.

Update Rate: 120 updates/second.

The camera used is a standard commercially available low-price web camera
connected to the computer via the USB port. Its specifications in our setup are:

e Frame Rate: Maximum of 30 frames/second.
e Resolution: 320x240 pixels with 24bit color depth.

e Field of View: horizontal field of view: 43.6 degrees, vertical field of view:
34.4 degrees.

The field of view values have been empirically obtained, as described in sec-
tion 4.2.1 on the facing page.

The specifications for the FASTRAK tracker and the Creative camera can be
found at [FAS00] and [Cre01], respectively.

4.2 Software

The software platform the AR Museum system will be based upon, is listed below:
e The MS Windows 2000 operating system.
e The DirectX 8.0a subsystem (includes Direct3D) in Windows 2000.

e The C++ programming language.
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e The PAVE (Parallel Architecture for Visual Effects) framework, introduced
in section 4.3.

Now that we have presented the hardware and software, we will describe how
we have obtained the two field of view angles for the camera. Following after we
will explain the basic principles in a 3D graphics render pipeline, which is related
to the way the Direct3D subsystem works and hence influences how we design the
visualization algorithms of the virtual objects in the AR Museum. Lastly, we will
introduce the PAVE framework.

4.2.1 Calculation of Camera Field of View

To ensure that the real camera and the virtual camera are aligned, thus filming
the same part of the scenes, the virtual camera must have the same horizontal and
vertical field of view as the real camera. The field of view (FOV) is the angle covered
by the lens. It can be calculated as shown below:

Scene filmed

FOV

Camera

Figure 4.2: Field of view calculation.

In figure 4.2 w is the distance from the center to the edge of the scene filmed,
d is the distance from the camera to the scene, and angle W is half the FOV. In a
right-angled triangle, it holds that:

tan(W) = % (4.1)
Hence, FOV can be expressed as:
w
FOV = 2arctan (E) (4.2)
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The above equation has been used to calculate the FOV for the camera used, by
using distances w and d obtained empirically. This method is used to calculate both
the horizontal and the vertical FOV.

4.2.2 Rendering Pipeline

This section gives a brief explanation of some of the elements used for rendering
3D graphics. A 3D primitive is a collection of vertices that form a single 3D en-
tity. The simplest primitive is a collection of points in a 3D coordinate system.
Throughout this report we describe 3D graphics using a left-handed cartesian co-
ordinate system (see figure 4.3).  Often, 3D primitives are polygons. A polygon

Figure 4.3: Left-handed cartesian coordinate system.

is a closed 3D figure delineated by at least three vertices. The simplest polygon is
a triangle which can be combined to form large, complex polygons and meshes (a
collection of polygons). To enhance the realism of computer-generated 3D images
a texture can be mapped onto a polygon. A texture is a bitmap which is strecthed
onto the polygon by specifying what coordinates the vertices maps to in the bitmap.

A 3D model (one or more meshes) is described in model space which is a frame
of reference that uses vertices relative to the 3D model’s local origin. For visualizing
the 3D model, it must be sent through the rendering pipeline which applies three
transformations, the world, view, and projection transformations, to it.

The first stage of the pipeline transforms a model’s vertices from their local
coordinate system to a coordinate system that is used by all the objects in a scene.
The process of reorienting the vertices is called the world transformation. This new
orientation is commonly referred to as world space, and each vertex in world space
is declared using world coordinates.

In the second stage, the vertices that describe the 3D world are oriented with

respect to a camera. That is, a chosen point-of-view for the scene, and world space
coordinates are relocated and rotated around the camera’s view, turning world space
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into camera space. This is the view transformation.

The third stage is the projection transformation. In this part of the pipeline,
objects are usually scaled with relation to their distance from the viewer in order to
give the illusion of depth to a scene; close objects are made to appear larger than
distant objects, and so on. This transformation can be seen as projecting 3D coor-
dinates into 2D space. The projection transformation can also be said to describe
a viewing frustum which is an 3D volume in which a scene is positioned relative
to the camera. For perspective viewing, the viewing frustum can be visualized as
a pyramid (see figure 4.4), with the camera positioned at the tip. This pyramid
is intersected by a front and back clipping plane. The volume within the pyramid
between the front and back clipping planes is the viewing frustum. Objects are
visible only when they are in this volume.

Viewinfrustum

/ Backlippinglane

Frontlippinglane

Figure 4.4: Viewing frustum.

In the final part of the pipeline, any vertices that will not be visible on the screen
are removed, so that it does not take up time to calculate the colors and lighting for
something that will never be seen. This process is called clipping. After clipping,
the remaining vertices are scaled according to the window viewport and converted
into screen coordinates. The resulting vertices seen on the screen when the scene is
visualized exist in screen space.

To handle occlusion of the drawn polygons a depth buffer can be used. A depth
buffer is holding depth information for each pixel on the screen. Whenever a pixel
is drawn, its depth value is checked against the value in the depth buffer. If the
value is smaller than the value in the buffer the pixel is drawn and the new depth
value stored in the depth buffer, otherwise the pixel is discarded.

The Microsoft Direct3D API, which is a drawing interface that provides access
to 3D video-display hardware in a device-independent manner, will be used for
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rendering the graphics used in the AR museum. It provides mechanisms for using
the above described elements plus many more.

4.3 The PAVE framework

PAVE is a framework supporting parallel execution of tasks in a generic fashion,
where the tasks can be algorithms in graphics rendering. We will describe the key
aspects of the underlying model in PAVE and describe the design of the components
in PAVE that have a direct influence on the architectural style and algorithmic func-
tionality of the AR Museum as it is introduced in section 1.2 and further explained
in section 3.4.

PAVE was designed to facilitate parallel rendering of visual effects out of the
requirement that speed is important in graphics rendering, especially for realtime
purposes. Another requirement was that it should be relatively simple for a pro-
grammer to add new well-defined render components (denoted modules) to PAVE
without having to think about parallelization issues. Hence the parallelization is
designed to be generic and is taken care of by the underlying PAVE architecture.
The last requirement, we had, was that an end user should be able to take the
modules, made by the programmer, and connect them together in a dataflow graph
to form his/her own composition of graphical algorithms. It was very important to
us that the concept of a dataflow graph consisting of render components, should
both be intuitive to a user and at the same time reflect the algorithmic dataflow.

4.3.1 Render Model and Data Flow

The process of rendering can be seen as, in turn, applying a number of algorithms
to the data that must be rendered. In the context of an AR system, the data is
typically bitmap data, world model descriptions etc., that is, graphical data that
is supposed to be rendered to a computer display. The algorithms are typically
those that generate bitmap data, world model descriptions and/or manipulate such
data structures. The rendering process can be divided into subtasks, which must be
evaluated in some predefined order. Rendering lends itself very easily to partitioning
into subtasks, as the graphical manipulation algorithms commonly used are designed
for one small specific purpose, such as a gaussian blur filter algorithm. The task
partitioning is implicitly given, as each algorithm can be seen as a subtask itself,
and it is the composition of the graph by the end user that defines the order of
subtasks.

Task Graph

The order of the tasks describe the flow of data. As mentioned this can be repre-
sented as a task graph, as it is done in [CT95]. We call the data flowing between
the tasks frames. A frame can literally be any datatype, even a reference to a
datatype instance. The rendering flow starts with one or more input nodes, which
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produces input frames, that travel through a number of algorithmic tasks and end
in one or more output nodes. The input and output nodes are the start and end
points of the graph, respectively. An input node, is a node that has no predecessors
in the graph. The data it works on comes either from an external source or resides
in the node itself. An output node has no successors, and its data is typically output
on an external device, such as a display.

To have a meaningful graph representation, the graph must be directed, showing
the direction in which data flows. This leads to using a directed acyclic graph, see
[Cor98], as our task ordering representation. In figure 4.5, an example task graph
is shown.

Figure 4.5: An example of a task graph. i denotes input nodes, o denotes output nodes

4.3.2 Modules

We have denoted the tasks of the graph modules. Each module in the graph is
conceptually considered as a “black box”. The role of a module is to apply its al-
gorithm to the input frames it receives from its predecessors, and pass on the result
to its successors.

Furthermore, the end user should easily be able to adjust a module, so that the
graphical effect the module represents, can appear to his liking. For that purpose,
we introduced Module states. To any given time a module is in a certain state,
determined by a number of parameters, which the end user can change the values
of. The decision of which parameters that exist on a given module, is made by the
programmer depending on the algorithm he uses in the module he is creating. For
instance we can imagine the programmer creating a module that can take bitmap
frames (images) as input, blur them with a Gaussian Blur algorithm and then out-
put blurred bitmap frames. An example of a parameter on such a module could
be “Blurriness”, that describes how blurry the module’s Gaussian Blur algorithm
should make each input image.

The algorithm of the module manipulates the input data, given the state of the
module. The manipulated result is delivered as the output.
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We have defined the input/output relationship in a module as follows:

e Receive ¢ inputs from its p predecessors, where ¢ > p > 0. Wait until every
input from the predecessors has arrived.

e Apply the algorithm to the input, according to the state.

e Send o outputs to its s successors, where o > s > 0. If one or more of the
successors are busy, wait until all successors are available to receive.

As we will explain in section 4.3.7, this input/output definition is the key to the
syncronization between modules in a task graph.

4.3.3 Parallelization in PAVE

The parallelization in PAVE is based on two parallization methods, called Func-
tional Parallelism and Temporal Parallelism, as discussed in [Cro97].

Functional Parallelism is achieved by splitting the rendering up into smaller dis-
tinct functions, which is then applied to a sequence of data frames. If a processor
is then assigned to a function or a group of functions, called a functional unit,
and data frames are communicated between the functional units, this constitutes a
pipeline. When the first data frame, that have entered the pipeline, have reached
the last functional unit of the pipeline, all functional units will be working in par-
allel, hence the degree of parallelism is proportional to the number of functional
units and relies on repeated inputs i.e. a stream. Furthermore it is the slowest
unit in the pipeline that will determine the overall speed of the rendering. This
parallelization technique fits the task graph concept in a very straightforward way.
In our framework a functional unit is a module.

Temporal Parallelism comes from partitioning the rendering task in the time do-
main (e.g. by frame index number). The sequence of frames to be rendered are split
into frame sequence subsets. A frame sequence subset can consist of one or more
frames. Each frame in a subset is rendered concurrently, by having a replication
of the rendering unit working on each frame. In our case this means that a given
module in the graph is replicated a number of times to obtain “local” temporal par-
allelism for that given module. The temporal parallelism in PAVE is optional in the
way, that a programmer can choose to specify that a certain module must be repli-
cated a number of times if the given module is a potential bottleneck in the pipeline.

Se figure 4.6 for an illustration of Functional Parallelism and “local” Temporal
Parallelism respectively.
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A) B)

Figure 4.6: A) The default Functional Parallelism. B) Temporal Parallelism by replica-
tion. The rectangle depicts two identical module replica working on each their frame.

Task scheduling

A task can be a module or a group of modules. The main problem of scheduling
tasks, is that of assigning tasks to processing units, in a way that optimizes the
processing. A typical parameter, one wishes to minimize is the total execution time
of the scheduled tasks compared to the sequential total running time, and hence
dividing the tasks as optimal as possible among the processing units.

In [UII75], it is shown that the general problem of scheduling a set of tasks is
NP-complete, unless some task parameters are constrained, one of these parame-
ters could be that all tasks must have the same execution time (as it is done in
[CT95]). In the PAVE framework there is no actual knowledge of what goes on
inside a module, and no static measurement of the execution time of modules, as
this differs hugely depending on the module’s input, algorithm and state. As we
want to support different kinds of events, such as changing parameters, that in turn
modifies the state of a module over time in a dynamic fashion, this causes modules
to have varying running times per frame.

From these observations we chose to abstract away the scheduling of modules,
and let the Windows 2000 SMP! kernel do the scheduling. This is done in the
framework by using threads? as the processing units. The Windows 2000 scheduler
is capable of scheduling threads between a pool of available processors. Every time
a thread is ready to be scheduled it is assigned to one of the available processors for
execution for a given time slice. This means that when PAVE is running on e.g. a
dual-CPU machine, two treads are always running concurrent, one for each of the

!Symmetrical Multi Processing as defined in [Sta97]
2In abstraction, a thread can be seen as a virtual processing unit.
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two processors. The threads are set to have the same priority, which is the default
priority of the process creating the threads. The Windows 2000 kernel utilizes a
round-robin scheduling policy.

In addition, test results showed us that minimizing the number of threads in an
application under Windows 2000 did not provide any significant benefit in terms of
less overhead and better speed. Last semester, we tested the Windows 2000 schedul-
ing capabilities by running a process that created up to 2000 threads, partitioning a
job into the same number of parts as threads, each part having one thread running
it. It showed no significant overhead in terms of completion time of the overall job
by going from one thread to 2000 threads. As a consequence the default behaviour
in PAVE is to assign a seperate thread of execution to each module in a task graph,
as illustrated in figure 4.6 where the arcs shown at each module denotes a thread.
That way the scheduler in Windows 2000 takes care of all the scheduling, and mod-
ules that have precedence over other modules will be evaluated first automatically.
Modules that are independent of each other are automatically run in parallel, and
a module that has multiple parents will wait until all of its parents have delivered
data. This is possible, since the input/output relationship in a module works as a
syncronization mechanism. A module is only allowed to invoke its algorithm when
all inputs are present and only allowed to deliver outputs when all its children are
ready to receive them.

4.3.4 PAVE Design

We have introduced the key aspects and definitions of the render model in PAVE.
Now we will describe how the render model has been designed as an object-oriented
framework to support modular parallel graphics rendering.

The PAVE design can be said to consist of five major parts, each part consisting
of a number of classes. In the following we will introduce the five parts and describe
their overall roles. After that we will go into describing the classes in each part in
more detail.

Management

Supervisor

5

T T I
1.* 1 1
InputManager GraphLoader [ Ll PluginLoader

Figure 4.7: The management classes.
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The management part consists of classes that that manages the whole system.
The Supervisor class is instantiated by the main application that wishes to use
PAVE. The Supervisor utilizes a GraphLoader to load a graph description from a
text file. The PluginLoader is used to load the plugins used in the loaded graph.
A plugin contains a collection of modules. The InputManager is used to trigger
the graph, and is controlled by the Supervisor. The Supervisor is controlled by the
main application. The management classes can be seen in figure 4.7.

Graph Description

0.%
O
L.¥

Figure 4.8: The graph desciption classes.

The graph description classes are the ones who are instantiated by the GraphLoader
when a graph is loaded from a text file. Instances of those classes consistute the
complete Graph description, such as dependencies between GraphINodes, and for
each Dependency a number of Channels exist. The classes are depicted in figure
4.8.

Communication and Syncronization

Figure 4.9: Communication and syncronization classes.

Three classes form the data communication between modules in a graph. The
Node class contains the input/output relationship algorithm defined in section
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4.3.2. A Node instance contains a MailBox for each input it has. For each module
in a graph, there is a Node instance belonging to it, and for each Node instance
there is a GraphNode instance belonging to it. When data is communicated between
modules, a Mail containing the data is sent from one Node to another. The three
classes are shown in figure 4.9

Generic Components

BaseModule

1 A

BaseTypeList
<&

‘ Module 1 “ Module n ‘

Figure 4.10: The generic classes.

The generic components contains two base classes and a container class. A
module programmer that wishes to contribute new modules or new datatypes to
the framework, must inherit from BaseModule and BaseType respectively. These
classes define the interface for the module programmer. The BaseTypeList is a
utility container class used both by the communication classes and the programmer
to specify module inputs and outputs. On figure 4.10 the three classes are shown,
and possible specializations of them.

Execution Engine

The three classes, Threader, WorkerThread and Job, works as the execution
engine. The Threader creates WorkerThreads to execute a graph. A Job tells a
WorkerThread what nodes in the graph it must execute. See figure 4.11 for the
relationships between these classes.

The PAVE Classes

In figure 4.12 a class diagram depicting all the components and their relationship,
in the PAVE framework, can be seen. We will now continue to explain each class
in detail, starting with the generic component classes.
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Figure 4.11: The classes consituting the execution engine.
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Dependency
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BaseModule [0-*
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Figure 4.12: Class diagram illustrating relationships between components in the PAVE
framework.
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4.3.5 The Generic Components

Here we will describe the generic component classes in more detail.

BaseType

BaseType is the super class for all data types that are passed between modules in a
graph. When a new type is made by the programmer, the BaseType is specialized
and the neccessary attributes and methods are added. The framework does not need
to know the interface for derived types since it only passes them between modules
and does not interact with their methods or data. It does however need to be able
to get an id for a derived type so it can check if modules can receive that type. It is
the programmer’s responsibility to ensure that each new type created is assigned a
unique type id. On derived types a clone interface method has to be implemented
so the framework can duplicate types generically by calling the clone method. The
BaseType has a Framelndex and a TimeStamp as attributes, which are used
when instances of BaseType specializations (frames) are passed between modules.
Modules receiving frames can use this information to determine the current frame
index and the time for that particular frame index.

BaseTypelList

Can contain a list of BaseType specializations. This is a container class used in the
communication between modules, and used by the module programmer to declare
and utilize inputs and outputs.

BaseModule

The BaseModule is the super class for all modules that can be inserted in a graph in
the framework. It is inherited for each new module, a programmer wishes to write.
This class defines the template, that is the interface, for all modules. For writing
a BaseModule specialization, defining the modules functionality and exposing in-
formation about its input/output interface and unique type id to the framework,
is necessary. The constructor of the derived module must specify type information
for the following:

e Unique type id
e Inputs - The number of inputs and the type of each.
e Outputs - The number of outputs and the type of each.

e Parameters - The number of parameters and the type of each.
Specifying inputs, outputs and parameters, is done by adding empty BaseType

specializations to predefined lists (BaseTypeList containers) for inputs, outputs and
parameters, respectively. The unique type id is specified by setting an internal base
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string attribute. The type id of the BaseType specializations added are used for
type checking in the framework. The order in which BaseType specializations are
added to the lists defines the numbering of each input/output/parameter element
exposed to the framework. For instance if a BaseType representing a bitmap frame
type is added first to the input list then that frame input will be seen as input
number one of type bitmap frame on the module. The values of the specialized
BaseTypes added to the parameter list defines the module’s initial state.

In addition to implementing the constructor, two interface methods must be
implemented in the specialization:

e Init
e Action

Init is implemented when the programmer wishes to define initialization for a
module after the constructor has been called, but before executing the module algo-
rithm for the first time. The Action method is implemented to specify the module’s
functionality. The Action method in a BaseModule specialization contains the mod-
ule’s algorithm, that is called for each frame index. When the Action method is
called, input and parameter BaseTypeLists are passed to it and when finished, it
must return an output BaseTypeList. For instance, if the programmer wants to
create a blur module, the Action method will contain e.g. a Gaussian Blur filter
algorithm. The algorithm manipulates a bitmap frame delivered at input number
one and puts the resulting bitmap frame into an output list and returns it, for each
frame index.

The three above mentioned base classes form the fundamentals when it comes
to creating new render modules for PAVE and creating datatypes that such new
modules might need. It is actually the only things that a module programmer needs
to be concerned with. In appendix A, a small example of how a BaseModule spe-
cialization is implemented, is shown.

Until now we have occasionally talked about modules as being the nodes in a
graph, although this is conceptually true, we needed some kind of abstraction from
a module and a node in a graph. We decided to seperate the communication aspects
of a module and the internal algorithm of the module. The internal algorithm part is
contained in a BaseModule specialization as mentioned above. In addition we have
seperated the communication aspects and graph integrity properties also. As a
consequence we have two additional classes, each with their distinct roles. They are
called Node and GraphNode. A Node contains a BaseModule specialization instance
and takes care of the communication and syncronization between its module and
other Nodes. The GraphNode represents a vertex in a graph, and it contains a
reference to a Node instance and information such as dependencies between the
vertices. See figure 4.13 for an illustration of the run-time relationship between a
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GraphNode instance, Node instance and its BaseModule instance. The associations
between the instances are made at initialization and build time of the graph. The
WorkerThread shown is created by the Threader component and enters through
a ThreadEntry method in Node. GraphNode, Node, WorkerThread and Threader
along with the other components will be explained below.

GraphNode m
Node ref. .—ﬁ
Dependency 1 Node m

Dependency 2 Module ref. @
: \J ThreadEntry( ) \
: A
‘ Module m
Dependency n L it
Action()

Wor ead
(created by the Threader)

Figure 4.13: Run-time relationship between GraphNode, Node and BaseModule instances.
Inputs and outputs are not shown.

4.3.6 Graph description Components

Here we will describe the graph description component classes in detail.

GraphNode

A GraphNode is a vertex in a graph. It holds a Node and lists of Dependencies
to other GraphNodes. The GraphNode has methods for building the connections
in the graph, and for checking its consistency, i.e. that all nodes are connected
properly. The GraphNode can add and remove Channels to another GraphNode.
When a Channel is added, it is checked if the source and destination MailBoxes, on
the source GraphNode’s Node and the destination GraphNode’s Node respectively,
holds data of the same BaseType specialization by inspecting the type id. Oth-
erwise, a Channel cannot be created. If a Channel is added, and no Dependency
exists to the destination GraphNode, a Dependency is created and the Channel is
added to it. Likewise, if all Channels in a Dependency are removed, the empty
Dependency is removed.

The GraphNode has a method for returning its dependencies to the Node in-
stance it gets at creation time (from the GraphLoader), so the Node can send mails

to the right recipients.
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Dependency

A Dependency describes a dependency connection to a GraphNode. In other words,
it is an edge in the graph of GraphNodes. A Dependency holds a reference to
a GraphNode, to which the dependency exists, and a list of Channels, between
the GraphNode that holds the Dependency (source) and the one referenced in the
Dependency (destination). When a Dependency holds several Channels, it means
that several outputs are sent to different (input) MailBoxes on the receiving Node
in the destination GraphNode.

Channel

A Channel describes a connection between an output and an input of two nodes.
It holds two numbers, source and destination, which are the index number of a
MailBox on each node, respectively.

Graph

This class represents and contains a graph with connected GraphNodes. It has
methods to build and modify the graph, check its integrity such as detecting cy-
cles, find paths from one graph to another, add and remove dependencies between
GraphNodes.

The Graph consists of a list of GraphNodes. An example graph is shown in
figure 4.14.

GraphNode 1

1 2
GraphNode 4

Figure 4.14: An example graph. The numbers on the arcs denote input and output index
numbers, respectively.

The contents of the GraphNodes it contains, are shown in figure 4.15.

4.3.7 The Communication and Syncronization Components

Here we will describe the communication and syncronization component classes in
detail.
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Channels Channels
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GraphNode 3 GraphNode 4

Dependencies Node 4

Dependencies Node 3

GraphNode 4

Channels

NULL
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Figure 4.15: The contents of the four GraphNodes in figure 4.14.

Node

This class is perhaps the most central component in PAVE’s render core, as it
contains the syncronization between modules. It encapsulates an instance (more
instances if replication is present, see 4.3.3) of a BaseModule specialization. It con-
trols all the input and output to/from its encapsulated module, it contains the in-
put/output relationship syncronization algorithm presented in 4.3.2. The algorithm
is situated in a ThreadEntry method that is called by an associated WorkerThread.
The Node holds a MailBox for each input the module has. When the module is
executed the Node retrieves a Mail from each MailBox and inserts these into the
module’s input list. When the module has completed its processing of the input
data, it returns an output list to the Node which then asks its parent GraphN-
ode, what mailboxes to send the output to. If more than one Channel exists for
an output, that data for that output must be cloned for every Channel to prevent
succeeding modules in the graph from writing in the same data concurrently.

The realization of temporal parallelism in the framework is handled in the Node
by replication of modules i.e. several instances of the same type of module. All
instances of modules inside a Node are put in a ready queue and when a Work-
erThread wants to execute a module, it enters the Node and takes the first mod-
ule off the ready queue and executes its action method through the ThreadEntry
method. After execution the WorkerThread puts the module back at the end of the
ready queue. This way a number of WorkerThreads can be assigned to a Node for
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executing each of the replicated modules (see figure 4.16).

ThreadEntry (in Node)

Return module to ré/xﬁxqueue

Run module

Get module‘

Ready queue

BaseModule 1

BaseModule 2

BaseModule n

T

Figure 4.16: Illustration of a ready queue inside a Node.

When a Node holds replicated modules it is neccessary to have a mechanism in
ThreadEntry for syncronizing modules so they pass on their outputs in the same
order as inputs are received on the Node. This mechanism was inspired by to-
ken ring networks. The modules can be seen as nodes in a token ring and only
the module who has the token is allowed to send its output. The first module
that retrieves input from the mailboxes also receives the token. When it has sent
its output it sends the token to the module that retrieved input after it, and so forth.

In the following the ThreadEntry method for executing a Node’s module(s) is
described in object oriented pseudo code:

ThreadEntry method (for WorkerThreads):

{
InputlList = empty BaseTypelist;
BaseModule = ReadyQueue.GetModule();

EnterCriticalSection;

// get mail tuple
for each MailBox

{
BaseType = MailBox.GetBaseType();
InputList.AddBaseType(BaseType);

}
ExitCriticalSection;

TimeStamp = InputList.GetTimeStamp();

43



ParameterList = GetParameterList(TimeStamp) ;
OutputList = BaseModule.Action(InputList, ParameterList);

WaitForToken;
for each BaseType in OutputList

{
BaseType.SetTimeStamp (TimeStamp) ;

MailBox = GraphNode.GetNextOutputMailBox () ;
MailBox.PostMail (BaseType) ;

}

if (an OutputList was returned from the module’s Action method)
delete Outputlist;

delete InputlList;

SendTokenToNextModule;

It should be noted that the critical section is necessary for ensuring that repli-
cated modules does not receive mails with the same timestamp. All mails with the
same time stamp must be retrieved by the same module.

MailBox

The MailBox is used by a Node for sending data between modules and holds a
FIFO list of elements of type Mail. A MailBox is created in Node for each input its
module has specified. At creation time, it is possible to specify how many elements
the MailBox should be able to hold. After it has been created the size remains
fixed. Methods for posting and retrieving mails from the MailBox are blocking in
the following sense:

e If a client call tries to retrieve a mail from the MailBox and it is empty, the
call blocks until a mail arrives.

e If a client call tries to post a mail to the MailBox and it is full, the call blocks
until a mail has been retrieved by another call (from another thread).

All access is protected by mutexes.

Mail

A container for BaseTypes, used for packaging frames between Nodes. It contains
the following:

e BaseTypelList of BaseType specialization elements.
e Time stamp
e Frame index

The BaseTypeList allows that user defined types can be sent via Mails.
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4.3.8 Management Components

Here the management component classes are described in detail.

Supervisor

The Supervisor acts as the main book keeping component in the framework. It
is the component that glues the Graph, InputManager and Threader components
together and manages them. In addition the Supervisor holds the PluginLoader.
The Supervisor is also intended as the interface between the main application and
the rest of the framework.

The Supervisor manages a Graph instance by associating it to an InputManager
and a Threader, giving a 3-tuple as follows:

(Graph, InputManager, Threader).

The overall roles that the Supervisor has are the following:

1. Loading a Graph using the GraphLoader by giving it a graph description file
and a reference to the PluginLoader.

2. Creating a Threader and InputManager and associate the Graph to them, cre-
ating a 3-tuple. For each GraphNode, it creates a Job to which it adds a Node
reference (coming from GraphNode). The Threader creates a WorkerThread
for each Job. References to input Nodes are added to the InputManager.

3. Starting, stopping or pausing the input frame flow to a Graph through the
InputManager instance.

4. Through the Threader instance controlling how many WorkerThreads are as-
signed to each Job (multiple WorkerThreads for one Job if Module replications
are present in one or more Nodes in a Job). Starting, stopping or if the Graph
is to be deleted terminating execution of the nodes.

5. Deleting a Graph and its associated InputManager and Threader. Upon dele-
tion of a Graph, the Supervisor stops the InputManager, so that input Nodes
stop creating frames. After that the Supervisor posts ”Shutdown” mails to
all Nodes in the Threader’s job list, telling them not to wait for input mails
any more. That way the Supervisor can delete the Threader safely, since each
WorkerThread will no longer block in the ThreadEntry function in Node.

See figure 4.17 for the data structures the Supervisor contains. The GraphLoader
instance is temporary, in the sense that every time a new Graph is loaded a new
GraphLoader is created and old instances are discarded. The PluginLoader instance
contains all the loaded plugins and instantiated BaseModule specializations during
the whole life of the Supervisor. The number of elements in the 3-tuple list, denotes
the number of Graph instances at any given time.
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Figure 4.17: Illustration of the data structures in a Supervisor.

PluginLoader

The PluginLoader is used for loading a group of modules, called a plugin, into
the framework. For creating a plugin, it is needed to derive the BaseModule class
and implement a number of methods (see definition of BaseModule). One or more
derived BaseModules are compiled to a DLL? file which the PluginLoader can load
at run time. Once the plugin is loaded, the PluginLoader can return instances of
the BaseModule specializations existing in the plugin. Which specialization that
should be instantiated is specified by the calling GraphLoader by giving a type id
name to PluginLoader.

GraphLoader

Loads a graph description from a text file, instantiates a Graph and creates GraphN-
odes and in turn adds a Node to each GraphNode. The description file includes the
following information:

e Which plugins are used.

e Which modules are used (by type id) and what their instance name should
be.

e How the module instances are connected (the Graph description).
e Which modules instances are replicated.

The GraphLoader is responsible for building up a Graph upon parsing the script.
This can be described in the following steps:

3A DLL (Dynamic Link Library) is a library of functions that uses dynamic linking. This
allows an executable to include only the information needed at run time to locate the executable
code for a DLL function.
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Calls PluginLoader to load plugins.

Asks PluginLoader for instances of modules by type id and give each instance
a name, according to the script.

Create a Node for each module instance and assign the instance to the Node.

Creates GraphNodes and assigns Nodes.

Creates a Graph and adds the GraphNodes.

e Adds Channels between GraphNodes, while checking for type compatibility
between inputs and outputs.

InputManager

The InputManger is responsible for starting and stopping input to a graph. Its
functionality could be compared to the functionality of a CD player which can play,
stop, pause and set the play position of a song. For starting the flow in the graph it
is necessary to tell the input nodes to generate their outputs since they do not have
any inputs themselves to trigger them. This is achieved by assigning one MailBox
to each input Node in a Graph, so they internally can act as normal Nodes. The
InputManager’s job is then to send a timestamped “trigger” command to each input
Node, that tells them to generate output. The Graph can be seen as a pipeline,
which means that “trigger” commands are the mechanisms that insures that the
pipeline is fed whenever the input Nodes are ready to produce output. The “play
position” is determined by the timestamp contained in the mail and stopping the
presentation means that the InputManager stops sending “trigger” commands.

The InputManager has a list of input Nodes, assigned by the Supervisor by
inspecting what Nodes that does not have any frame input. A separate thread in
the InputManager goes though the list of Nodes posting “trigger” command mails to
their mailboxes in the same manner as a Node posts its modules output to another
Node. Figure 4.18 on the following page illustrates this mechanism, where each
input Node contain a module that streams frames from e.g. a video camera. The
two frame streams are then delivered to a Node (having two MailBoxes) containing
a blending module (having two inputs and one output) that blends the input frames
together and outputs the result as one frame consisting of a composition of the two
inputs.

4.3.9 Execution engine Components

The execution engine component classes are in the following described in detail.
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Figure 4.18: An InputManager sends “trigger” commands to two input Nodes.

Threader

The Theader creates and handles all the WorkerThreads created when a graph is
running. It has a list of created WorkerThreads, each WorkerThread has a reference
to a Job. A Job can contain one or more Node references. If a module replication
(temporal parallelism) is present, more threads are assigned to the same Job. The
Threader controls starting, suspending and stopping of WorkerThreads on behalf
of the Supervisor.

WorkerThread

A WorkerThread is a thread of execution that is assigned to a Job (by the Threader).
The WorkerThread repeatedly executes its Job, by asking it which Node to execute,
until it is explicitly stopped. Several WorkerThreads can be assigned to the same
Job which is neccessary when a Node holds replicated modules.

Job

A Job is a task description for one or more WorkerThreads. The Job consists of a
list of Nodes that must be executed. This way a WorkerThread can execute several
Nodes. This implies that the list must be ordered by precedence so deadlock does
not occur, in the case of more than one Node in the list*. The default behaviour is
simply to assign one Node to a Job’s list. We decided on this approach from the
observations made in section 4.3.3. As a service the Job has a method, that each
time it is called by a WorkerThread, tells what Node in the list must be executed.
This method is protected by a mutex.

4The Supervisor is responsible for ordering Nodes in a job’s list by inspecting the dependencies
in the Graph.
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4.4 Summary

This concludes the baseline for our AR Museum. We have listed the hardware
we will use, the software, programming tools, explained how we calculate field of
view for a camera and the fundamentals in 3D graphics rendering. Finally, we have
described the most important aspects of the PAVE framework. As mentioned in
section 1.2 it is our goal to design the AR Museum so that it runs on top of PAVE
in order to make the system scale on multiprocessor PC’s. This consists of creating
specializations of the BaseModule class and connect instances of those modules in
a graph in a manner that corresponds to the conceptual view of the AR Museum
as shown in figure 3.3 on page 22 along with the requirements in section 3.4.1 on
page 22. The specifics about the design of the graph and the modules along with
some necessary enhancements of PAVE, are presented in the next chapter.
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Design

In this chapter, we describe the architectural style of our AR museum. It is designed
as modules in a graph for the PAVE framework. Each of the modules and their
functionality will be described and enhancements made to PAVE to facilitate the
design issues will be described.

5.1 Architectural Style

Based on the requirements of the AR museum in section 3.4.1 on page 22, we de-
scribe which algorithmic components, denoted modules in PAVE, are needed to
build our AR museum. We describe the way in which the modules are connected,
that is, as an AR museum graph in PAVE. The role of each of these modules are
briefly described. In section 5.3 the design of each module and their algorithmic
content is described.

In figure 5.1 on the following page the graph constituting the AR museum is de-
picted. Each box contains a module. Arcs in the figure represent frame data output
from a module passed on as input to successive modules. The small boxes are mod-
ules connected to form subgraphs constituting the dynamic effects that produce the
works of art outputted to the world object modules. A subgraph is typically various
bitmap effect modules combined. A subgraph exists for each world object where
it is desired to have some kind of changing material over time. The dotted arcs
between the frustum culling module and the subgraphs, symbolizes that the data
sent is a form of triggering that causes receiving modules to run. This triggering
mechanism is described in sections 5.2.2 on page 54 and 5.2.3 on page 55.

Three input modules are needed in the AR museum graph, one for grabbing
frames from the camera filming the real world, one that registers the position and
orientation of the camera, obtained by the magnetic tracker and a module that holds
information about the real and virtual world. These modules are denoted camera
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Figure 5.1: The AR museum graph.

module, magnetic tracker module and world model module, respectively. The world
model module and the magnetic tracker module are connected to the frustum culling
module. The task of this module is to decide which of the world object modules,
to which it is connected to through subgraphs, holds WorldObjects that are vis-
ible. Only these subgraphs must be triggered to run. The frames grabbed from
the camera needs to be corrected for the lens distortion that occurs in the camera.
This is done in the distortion correction module. The undistorted image of the real
world is passed on to a world object module, which creates a description of a vir-
tual world object. It is thus treated like the virtual world objects that has input
(e.g. bitmap textures) from subgraphs. These subgraphs are triggered to run by
the frustum culling module. All world object modules are connected to the world
update module. The task of this module is to update the WorldModel according
to its WorldObject inputs. The WorldModel and WorldObject data structure is
described in section 5.3.1 on page 59. The world update module receives a World-
Model reference and outputs an updated WorldModel to the render module. The
role of the render module is to render the WorldModel that it gets as input, so the
resulting rendered image can be displayed on a monitor.

The graph design described above, gives rise to some enhancements to the ex-
isting PAVE framework. Firstly, the frustum culling module must give output to a
variable number of subgraphs and the world update module must take input from
the same variable number of world object modules connected to those subgraphs.
This gives a need for allowing an optional number of inputs and outputs on mod-
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ules, where the number of outputs and inputs are not known at module creation
time, but first when the graph is being built.

Another issue in the design of the graph is that the frustum culling module is
responsible for triggering the subgraphs connected to it. The triggering of input
modules is a task in PAVE which originally was the exclusive responsibility of the
InputManager (see section 4.3.8 on page 47). Triggering in some form should also
be possible for a Node. Furthermore, subgraphs can be inactive, implying that no
processing by their modules is done. This is the case e.g. when the frustum culling
module detects that a WorldObject is not in the field of view, hence its subgraphs
does not need to be computed. The triggering mechanism must be enhanced so that
input modules to a certain subgraph connected to a world object module can be set
to be inactive in some way, so that modules in a given subgraph are not executed,
when it is not needed.

These PAVE enhancements among other general robustness enhancements, are
described in the following section.

5.2 PAVE Design Enhancements

The aforementioned design observations give rise to a collection of design enhance-
ments of PAVE that are desirable in order for the system as a whole to be both
flexible, robust and service the need for performance optimization at a higher level
than internal module algorithms. We start by describing the mechanism needed to
support optional inputs and outputs on a module. Next we describe the triggering
and how this can be used to deactivate subgraphs. These aspects can be catego-
rized as making graph building more flexible and serving to performance optimize
graph execution in general, respectively. Finally we describe the aspects for making
graph execution more robust, which involves designing a policy for general garbage
collection of data and controlling what data is read-only and what is writable.

5.2.1 Optional Inputs and Outputs on Nodes

Originally it was necessary for a BaseModule specialization to specify exactly how
many inputs and outputs (and their type) it needs in order to be able to function
(see 4.3.5). Clearly this imposes a limitation, since it is necessary to write a new
module, e.g. a frustum culling module, each time the number of world objects in
the virtual world changes and hence the number of world object modules in the AR
Museum graph. The reason for this is that the frustum culling module and world
update module would have changed their number of outputs and inputs, respectively.
It would be possible to set an upper limit on how many objects in the world model
that could be manipulated by subgraphs, regardless of how many actually existing
in the virtual world. But such a limitation seems rather unflexible and possibly
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serves to add more complexity in the AR museum graph. Therefore the need for a
rule that allows a given module to have an optional number of inputs and outputs
seems apparent.

We have decided to make the rule simple and so that it does not conflict with
the original design of PAVE. The modification contains the following:

e When a module has specified its “static” input and output types, in its con-
structor (see section 4.3.5 on page 38), in the conventional way, it should be
possible to tell the framework that it can have n optional inputs and/or out-
puts of some type following after the statically defined ones. If the module
has specified j “static” inputs, minimum j connections must be made to it,
and j 4+ n connections are possible, where n > 0. The same goes for optional
outputs.

e When the module is inserted into a graph, the conditions for inputs and
outputs must hold in the same way as originally designed.

e When connections are made to the optional inputs, additional MailBoxes on
Node must be made at connection time.

As a simple example, a module specifies that it has optional inputs only. If i
connections are made to a seperate input number in the module, the framework
automatically adds ¢ Channels to the associated GraphNode as before, but in ad-
dition ¢ MailBoxes in the associated Node must be added. The difference is that
the module specifies that it can have optional inputs, but does not know in advance
how many. So the framework must check how many Channels are made at graph
build time to the module, and add MailBoxes to the associated Node as needed.
That means that when the Supervisor (see section 4.3.8 on page 45) has loaded a
graph from a description file, it will go through every GraphNode, inspecting the
number of Channels added to each GraphNode. For each GraphNode, update the
associated Node’s number of MailBoxes.

5.2.2 Trigger Capable Node

In order for a Node to be able to gain control over certain input Nodes, it is necces-
sary to be able to connect it to these input Nodes. Originally it was not possible to
connect a Node to an input Node, since an input Node contains a module with no
frame input. The assumption was that since no frame input is desired, the rule was
that the input Node simply needed to be triggered by the InputManager (see 4.3.8
on page 47). So we need to modify the rule for the special case where a Node is
connected to an input Node, when the Supervisor inspects what Nodes that must
be associated with the InputManager.

We describe the modified rule in the following way:
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e If a Node has 0 inputs (its module has no frame inputs), it is considered an
input Node.

e If an input Node has a channel connected to it, it must not be associated to the
InputManager. Otherwise, the Node must be associated to the InputManager.

Now a Node can be triggered by either the InputManager as before, or be trig-
gered by another Node.

5.2.3 Empty Triggering

The idea of a Node being able to send “trigger” commands to another Node becomes
useful when we need to be able to deactivate subgraphs. We do this by generalizing
the functionality from sending “trigger” commands, to be able to send any type
of command. The decision of what type of command a Node will send to another
Node, is placed in a module’s action method belonging to the sending Node. That
way a module programmer can create a module that can send commands of any
type, but if the receiving Node would have to react on the command, the Node’s
ThreadEntry method must be modified to process a given command. Otherwise
only the module in the receiving Node can process the command.

To be able to deactivate given subgraphs at given times during rendering, we
add a few extra conditions in the Node’s ThreadEntry method. It it described in
the following:

1. Check to see whether the frame received at the first input is of the Command
type (by inspecting the type id), and if that is the case, see 2. If not, see 4.

2. If the received command is a normal “trigger” command (by inspecting the
command type’s string attribute), see 4. If not, see 3.

3. Check to see if the command is a so called “empty trigger”. If that is the case,
the action method of the Node’s module is not called and hence no execution
of the module for the given frame index. In addition send “empty trigger”
commands on all outputs.

4. The module’s action method is executed exactly as originally intended, and
output returned from the action method call is delivered on all outputs.

Another approach is that a Node could choose not the send any “trigger” com-
mands for given frame indexes, causing flow to stop completely in the subgraphs.
Unfortunately, this would stop all dependent succeeding nodes, since a Node waits
until input has arrived on all input MailBoxes and hence block the whole graph. It
would be possible to make a rule on the Node’s ThreadEntry method, where certain
input numbers could be optional, but the idea seem to complicate matters in far
too many cases. Sending an “empty trigger” also insures that frame index order is
not corrupted when subgraphs are made active/inactive.
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5.2.4 Garbage Collection

When modules are sending data in a graph, they are sending references to data. A
module that sends a result, to another module, typically creates the data and sends
a reference to that data as output. So in that case the creating module owns the
data by default. But cases also exist where a module merely forwards data that it
got from some other module. In such a case the ownership belongs to some other
module.

The problem is that a given module receiving data does not know to whom the
data belongs. And since data that is not being used anymore must be deleted in
some fashion, some mechanism in e.g. a module must take the initiative to delete
that data. This gives another problem since a given module does not know whether
another module also has a reference to the data, and hence cannot safely delete
data. In fact it is impossible for a module to determine whether it is safe to delete
data or not, since modules can be connected in many different ways, and a module
does not know the topology of the graph it is inserted in and does not know any-
thing about other modules. The only thing a module knows for sure is what input
data types it can receive and what output data types it delivers, and whether these
only can be read from or are writable (see 5.2.5 on the facing page). Therefore the
algorithm in the action method of a module can not determine who owns the data
it gets and whether that data is referenced in some other module in the graph.

The only thing a module knows about the data it sends along is whether it wants
to keep the data for future calculations or not. If it wants to keep the data, it also
has the responsibility of deleting it eventually, and hence other modules must not
delete it.

From this observation it is quite clear that some rule regarding the integrity
of the data being sent between modules, should be at hand. It is also neccessary
that the mechanism itself is not part of any module algorithm, since a module only
knows what it creates, wants to keep and what it does not want to keep. Another
reason is that a module programmer’s role should not be further complicated, as
stressed in our original goals for the PAVE design.

For this mechanism we have decided to add reference counting with garbage col-
lection on the BaseType class, so that all specializations of BaseType, e.g. World-
Model, WorldObject, FrameBuffer etc., have reference counting.

This is done by adding an integer attribute as a counter in the BaseType base-

class. In addition we add two methods to the BaseType base class called AddRef
and ReleaseRef. These two methods are decribed below:

e AddRef. Increments the reference counter attribute by one.
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e ReleaseRef. Decreases the reference counter attribute by one. If the counter
has reached zero, this BaseType instance deletes itself.

The two above methods are encapsulated in a critical region, protected by a
mutex. When a BaseType specialization is instatiated, its initial reference count is
one, meaning that the creator owns the BaseType instance initially. It is neccessary
to hold a reference variable to the created BaseType instance in order to e.g. give
up ownership (by calling the ReleaseRef method) of the reference to the instance. If
e.g. a module is receiving a reference to a BaseType instance and it wants to keep
that instance for future calculations, it calls the AddRef method on the instance.
If a module algorithm in the action method creates a new BaseType instance for
each frame index, that it wants to deliver as a result on one of its outputs, it adds
the reference to the output list (which is a BaseTypeList) and gives up its own
ownership by decreasing the reference count. That is unless it wants to keep the
result for future calculations.

When a BaseType instance is added to a BaseTypelList, the reference count is
increased by one, and when a BaseTypeList is deleted all its elements (BaseTypes)
have their reference count decreased. In section 4.3.7 on page 42, the pseudo code
for the original ThreadEntry method can be seen. It can be seen that the local
variable called InputList (which is a BaseTypeList) is assigned a number of Base-
Types from each input MailBox and given to the module’s action method. The
InputList is deleted when thread execution returns from ThreadEntry. This means
that if a module has not obtained ownership to one or more of the incoming input
BaseTypes they are deleted if no other modules has ownership to them.

This approach to garbage collection and reference counting is similar to e.g.
Microsoft’s Component Object Model (COM) and was inspired from that model.

5.2.5 Read-Only and Writable Data

To ensure that modules do not write in data they are not supposed to, and to avoid
making superfluous copies of data, we introduce read-only data, and writable data.
When a module’s input and output is declared, it must be stated if it is read-only
or writable. To support read-only and writable data, a permission attribute is put
on the BaseType, denoting if the data is read-only or writable.

The BaseTypes contained in a module’s input BaseTypeList and the BaseTypes
it generates as output must all have the permission attribute set. With the permis-
sion attribute set, the following semantics is used for sending data between modules.
For all Channels it holds:

¢ R — R: If the receiving module has specified its input data as read-only, it
will not write in it, and a reference to the original data can be sent.
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e W — R: As above.

e R — W: If the receiving module has specified its input data as writable, and
the data outputted is readable, a reference to a clone of the data is created
and sent.

e W — W: If both the receiving module and the sending module has specified
the data as writable, two cases exist:

— If the Channel in question is the last one stemming from the given output,
and no Channels from the output sends to a read-only destination, then
a reference to the original data is sent, as no other modules will access
the original data.

— Otherwise a reference to a clone of the output data is sent.

It should be noted that when sending output from a module, all clones of data are
made before the original reference may be sent. This avoids that data is cloned,
while residing in another module. A clone is always writable and its reference count
is set to one.

In figure 5.2, an example graph containing all different cases of R/W seman-
tics is depicted. With the R/W semantics introduced, modules can be connected

)
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Figure 5.2: Graph extract containing all different R/W data semantic cases.

in different ways, without explicitly stating for each possible graph built, whether
module outputs should be sent as references or references to clones.
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5.3 Components

Here, we will describe the necessary PAVE data structures and modules (see fig-
ure 5.1 on page 52), what algorithms each module must contain and how those
algorithms work.

5.3.1 Data Structures

In this section we describe the PAVE data types used by the AR museum modules.
All the types are specializations from BaseType (see section 4.3.5 on page 38) and
described in the following.

WorldObject

The WorldObject is a data type which encapsulates information about a real-world
or virtual object present in the world. The WorldObject consist of the following
elements:

e Name:
A unique string identifier.

e Mesh:
List of polygons describing the geometry of the WorldObject.

e Texture:
A bitmap image which is mapped onto the surface of the WorldObject.

¢ Bounding box:
An axis aligned minimal enclosing box that covers the geometry of the Worl-
dObject in all 3 dimensions. This will be used for visibility testing (see section
5.3.6).

e State:
The state string can either be ”static” or "dynamic”. See section 5.3.8 for a
description of how the state string is used.

e Visible attribute:
Determines whether the WorldObject is visible or not.

WorldModel

The WorldModel is a data type which holds information about the real and the
virtual world. In particular it is used for holding descriptions of geometry and from
what position and orientation the world is viewed. The WorldModel consist of the
following elements:
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e List of WorldObjects describing real-world objects:
Used for describing objects such as walls, floors, ceilings and other static real-
world objects. Its usage is described in section 5.3.9.

e List of WorldObjects describing virtual objects:
Used for describing all the virtual objects in the world.

e List of lightsource descriptions:
Used for simulating real-world lighting on the virtual objects.

e View transformation matrix:
Represents the position and orientation of the camera viewing the world.

e Projection transformation matrix:
Represents the viewing frustum in which the world is visible.

FrameBuffer

The FrameBuffer is a type which encapsulates a representation of a bitmap image.
It has a buffer holding the raw pixels in the image and descriptions of pixelformat
and resolution.

Matrix

The Matrix type is a representation of an arbitrarily sized matrix.

String

The String type encapsulates an arbitrarily sized string.

Float

The Float type encapsulates a single precision floating point value.

Command

The Command type is used for sending commands to Nodes in a PAVE graph. Two
types of commands will be used in the PAVE museum graph:

e Triggers (see section 4.3.8 on page 47).

e Empty triggers (see section 5.2.3 on page 55).

In the following sections we describe the modules constituting the AR museum
graph.
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5.3.2 World Model Module

e Inputs:

— none
e Outputs:

— WorldModel (read-only)
e Parameters:

— String: name of world model file

World Model
Module

l

Figure 5.3: World model module

The world model module is responsible for loading and initializing the World-
Model. Based on the filename given in its parameters it loads a geometry description
of the world from disk. The geometry is specified in a Microsoft X file which is a
template-driven format that enables storage of meshes, textures, animations, and
user-definable objects [msd01]. After the geometry is loaded the WorldModel struc-
ture is instantiated and the geometry is inserted into it. For each mesh in the X file
a WorldObject is created and inserted into the WorldModel. For each WorldObject
a bounding box is computed and stored in the WorldObject.

Furthermore a background WorldObject is created and inserted into the World-
Model. The background WorldObject represents the current image of the real world
which is grabbed by the camera. It is simply a rectangular mesh with the current
real-world image mapped onto it as a texture. See section 5.3.9 on page 69 for
descripition of how the background WorldObject is used when visualizing the AR
museum.

The world model module outputs a read-only WorldModel data structure each time
its action method is called and it keeps a reference to the WorldModel itself so
the WorldModel will not be deleted by the automatic garbage collection (see sec-
tion 5.2.4 on page 56).

5.3.3 Magnetic Tracker Module

e Inputs:
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— None
e Outputs:

— Matrix: 4x4 view transformation matrix. (writable)
e Parameters:

— Matrix: transmitter translation vector relative to world model origin.

— Matrix: receiver translation vector relative to camera.

Magnetic
Tracker
Module

Figure 5.4: Magnetic tracker module

The task of the magnetic tracker module is to read the position and orientation
of the magnetical receiver, that registers the camera’s extrinsic parameters.

When the module is initiated, the position of the magnetical transmitter must be
known. The transmitter translation vector V;, received in the parameters, describes
the translation from the origin in world space to the transmitter (see figure 5.5).

Transmitter

X

World space
2N

Figure 5.5: Transmitter translation vector

As the magnetical receiver is highly sensitive, we can not place it on top of the
camera, as the camera corrupts the magnetical field. As described in section 4.1
on page 25, the magnetical receiver is placed behind the camera on a wooden stick
to avoid corruption of the position and orientation measurements (see figure 5.6
on the next page). The receiver translation vector V., received in the parameters,
describes the translation from the receiver device to the camera lens.

When the action method is run a rotation matrix M, and a receiver position
vector Ve is obtained from the orientation and position measured. Since the re-
ceiver translation must be done in the camera’s local coordinate system, the receiver
translation vector V, is multiplied by the transposed rotation matrix:
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Camera Receiver

Figure 5.6: Receiver translation vector

V;‘l - ‘/r 'Mrot

The total translation vector V,,, is then described by:

V;fotal = V})os + V;“l + ‘/;5

From Viga @ 4x4 translation matrix My, 1s created. The view transformation
matrix M, 18 computed by multiplying My.q, by M, and is sent as output.

5.3.4 Camera Module

e Inputs:

— None
e Outputs:

— FrameBuffer (writable)
e Parameters:

— None

Camera
Module

|

Figure 5.7: Camera module.

The task of the camera module is to grab frames of the reality filmed by a
camera. It has no input and delivers a FrameBuffer containing the grabbed image
as output. To grab the frames, functionality in Microsoft’s DirectShow API was
used. When the action method is called, the current image grabbed is outputted
as a FrameBuffer.
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5.3.5 Distortion Correction Module

e Inputs:

— FrameBuffer (read-only)
e Outputs:

— FrameBuffer (writable)
e Parameters:

— 4 Floats: distortion coeflicients

|

Distortion
Correction
Module

Figure 5.8: Distortion correction module

The task of the Distortion Correction module is to compensate for the distortion
that occurs in the image grabbed by the web camera.

Distortion is an optical error in the camera lens that causes a displacement of
pixels at different points in the image. The pixels in the image are misplaced rela-
tive to the center of the field, hence it is called radial distortion.

Radial distortion comes in two forms: pincushion distortion (positive) and barrel
distortion (negative). The two forms of distortion is depicted in figure 5.9.

Figure 5.9: The result of pincushion distortion(left), non-distorted image (middle) and
barrel distortion(right)

The distortion of pixels is not linearly correlated to the distance to the center
of the image. At small distances to the center of the image there will be very little
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displacement and in the edges of the image displacement of pixels will be very large.
This can be approximated by the following equation:

T'spe = Tdest(ardest3 + brdest2 + Crest + d) (51)

raest denotes the distance from the pixel to the center of the image, in the distorted
image and 7, denotes the corresponding distance in the distortion corrected image.

The a, b and c coefficients is a measurement of the distortion in the image.
The parameter d describes the linear scaling of the image. Using d = 1, and
a = b = c =0 leaves the image as it is. If the distortion corrected image must have
the same size as the original image, it must hold that:

a+b+c+d=1 (5.2)

The above equations were taken from [Der99.

The difference between the actual (distorted image) and the ”real” predicted
(non-distorted image), as it would look taken by an ideal pinhole camera, can
be counteracted by displacing each point in the image along the direction vector
spanned by the center point of the image and the distorted point, as shown in the
above equation.

For each pixel index in the destination image, the distortion correction module
calculates which pixel index in the source image it must contain, and saves this in
a lookup table.

This table is used in the action method to correct pixel positions in every frame
the distortion correction module receives. The distortion coefficients used have been
obtained empirically by filming a checkerboard, and adjusting them to get an undis-
torted image.

5.3.6 Frustum Culling Module

e Inputs:

— WorldModel (read-only)

— Matrix: 4x4 view transformation matrix. (read-only)
e Outputs:

— WorldModel (writable)
— Multiple triggers/empty triggers (writable)

e Parameters:

— String: list of object names that needs to be checked for visibility.
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Frustrum
Culling
Module

Figure 5.10: Frustum culling module

— Float: horizontal field of view.

— Float: vertical field of view.

The task of the frustum culling module is to determine which of the WorldOb-
jects are visible and make sure that only subgraphs that produce frames for visible
objects are executed. This allows for more virtual objects in the world that use
frames generated by subgraphs, since all the virtual objects are rarely visible at the
same time and hence not all of the subgraphs needs to be executed. In terms of
rendering speed this can provide for a significant speedup.

Each of the module’s optional outputs (see section 5.2.1 on page 53) is dedicated
to a separate subgraph, which the frustum culling module can either activate or
deactivate by sending a trigger mail or an empty trigger mail respectively (see sec-
tion 5.2.3 on page 55). So all input nodes in a given subgraph must be connected to
the same output on the frustum culling module. Furthermore there may not exist
any dependencies between any of the subgraphs, since it could result in unpredicted
results when a module in an active subgraph expects valid data from a module in
an inactive subgraph. See figure 5.11 for an illustration of subgraphs connected
correctly to the frustum culling module.

Frustum
Culling
Module

Figure 5.11: Illustration of three subgraphs connected to each their output on the frustum
culling module. The dotted lines represents trigger/empty trigger mails being sent to input
nodes.

When the action method is called it must determine which of the optional outputs
to send triggers/empty triggers to. For this two things must be known. Firstly, it
must be known what output is linked to what WorldObject. This is achieved by
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giving the frustum culling module a string parameter containing the names of the
WorldModel objects that needs to be checked for visibility. Names are listed in the
string in the order which correspond to the numbering of the multiple outputs. If
for instance the string is ”objectl, object?’, a trigger will be sent on first of the
optional outputs if object! is visible. If object! is not visible an empty trigger will
be sent on the first of the optional outputs. This will be true for all the object
name/output pairs.

Secondly, the actual visibility test must be performed for each WorldObject. For
this to be achieved the view matrix and the projection matrix (see section 4.2.2 on
page 28) must be known. The view matrix is received on the second input and the
projection matrix is generated based on the vertical FOV and the horizontal FOV
received in the parameters and statical values for front and back clipping planes.
These values are set to span the entire world model. Alternately, they could be
determined by the nearest and farthest away visible geometry.

The projection matrix represents the viewing frustum (see figure 4.4 on page 29)
and the view matrix represents the the camera’s position and orientation. When
these two matrices are multiplied, the resulting matrix represents a transformed
viewing frustum that is the volume in which objects are visible to the camera. The
six planes front, back, left, right, top and bottom which constitutes the viewing
frustum are extracted from the multiplied matrix.

The visibility test checks if an object lies inside or outside of the transformed view-
ing frustum. For a single point this is done by checking for each of the six planes
planes if the point lies in the halfspace not containing the frustum. If for one or
more of the planes this is true, the point can be classified invisible. This check can
be very expensive if the WorldObject’s mesh consists of many polygons, since the
check needs to be done for each vertex in all the polygons. Therefore the Worl-
dObject’s bounding box is used instead since it only requires to test if the box is
inside the viewing frustum. If it is inside, the WorldObject is marked visible. This
ensures that if the bounding box is invisible then the mesh is also invisible. Though,
in some cases the bounding box can be visible but the mesh invisible, this is still a
highly preferable method performance-wise.

After the visibility test has been performed for each WorldObject in the World-
Model, a clone of the WorldModel is made and the view matrix and the projection
matrix are stored in it. Instead of forwarding the WorldModel received on the in-
put, the clone is made to ensure that the new view and projection matrices stored
for next frame do not overwrite the current ones before they have been used for
rendering.

5.3.7 World Object Module

e Inputs:

67



— FrameBuffer (read-only)
e Outputs:

— WorldObject (writable)
e Parameters:

— String: WorldObject name
— String: WorldObject state, ”dynamic” or ”static”

l

World Object
Module

!

Figure 5.12: World object module

The task of the world object module is to create a WorldObject based on its
input and parameters. The WorldObject is representing a virtual object, in the
WorldModel, which needs to be created or modified in some way. When the action
method is called the module names the WorldObject and sets its state as specified
in its parameters and assigns it a texture which is present in the FrameBuffer it
receives in its input.

5.3.8 World Update Module

e Inputs:

— WorldModel (read-only)
— Multiple WorldObjects/EmptyTriggers (read-only)

e Outputs:
— World Model (read-only).
e Parameters:

— none

The world update module is responsible for updating the WorldModel based on
the WorldObjects received in its inputs. The second input on this module is a
multiple type which allows an arbitrary number of modules to be connected to it.
These modules must output either a WorldObject or an empty trigger. When the
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Figure 5.13: World update module

action method is called all empty triggers are ignored while all the WorldObjects
are collected in a list and processed. This involves checking each WorldObject if it
exist in the WorldModel and if its state is set to dynamic. If this is the case the
WorldObjects’s FrameBuffer is read and uploaded to the texture memory on the
display adapter. This will overwrite the texture memory assigned to WorldObject’s
texture so that next time it is drawn the contents of the framebuffer is mapped
onto the surface of WorldObject. Note that the world update module is designed
only to update textures on the virtual objects, but it is easily extendable to sup-
port adding new WorldObjects to the WorldModel or updating other properties on
existing WorldObjects.

5.3.9 Render Module

e Inputs:

— WorldModel (read-only)
e Outputs:

— none
e Parameters:

— none

|

Render
Module

Figure 5.14: Render module

The render module is responsible for visualizing the visible objects in the world.
When the module is initialized it setups the Direct3D rendering pipeline and creates
a window in which the rendered image will be displayed.

When the action method is called the render module examines the WorldModel
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received on the input to render the final image. Two requirements exist for the
rendering:

e Requirement 1: Virtual object must be rendered overlayed onto the image of
the real world

e Requirement 2: Occlusion between virtual objects and real-world geometry
must be handled

Requirement 1 is achieved by first rendering the background WorldObject (see

section 5.3.2). The background WorldObject is a rectangular mesh with the image
of the real world mapped onto it. It can be seen as a plane always positioned per-
pendicularly to the camera view direction. Therefore it should not be transformed
by the view and projection matrices in the WorldModel. Instead it is projected di-
rectly into screen space using an orthogonal projection so it covers the entire render
window. Since the background WorldObject does not contain any depth informa-
tion the depth buffer is disabled while rendering it.
Next, the virtual objects must be rendered, but for achieving requirement 2, some
depth information about the real world is needed. An example of this could be a
room with pillars in and virtual pictures on the walls. It is likely that in some po-
sitions a virtual picture is occluded by a pillar, and in this situation it is necessary
to know depth information about the pillar. Since all depth information rely on
the provided descriptions of geometry , descriptions of the real-world objects that
can occlude virtual objects are needed. When rendering the real-world geometry
descriptions they should not be rendered to the color buffer since they are already
present in the image of the real world. Instead we disable writes to the color buffer
and enable writes to the depth buffer so only their depth information is present
in the scene. Afterwards when rendering the virtual objects, writes to the color
buffer are enabled and the visibility of the virtual objects will depend on the depth
information present in the depth buffer.

The view and projection matrices in the WorldModel are used to transform both
the real-world objects and the virtual objects so they appear correctly according to
the camera position and orientation. Lighting is enabled only when rendering the
virtual objects. Information about the lightsources are obtained in the WorldModel
and used for rendering the virtual objects so their appear illuminated by the real-
world lightsources. The lightsources in the WorldModel should of course be placed
at positions that correspond to where lightsources are positioned in the real world.

The render steps involved in rendering the complete scene is listed cronologically
below. For description of render specific terms see section 4.2.2.

e Clear depth buffer.

e Disable depth buffer.
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e Disable lighting.

e Set view transformation to the identity matrix.

e Set projection transformation to orthogonal projection.
e Render background WorldObject.

e Enable depth buffer.

e Disable writes to color buffer.

e Set view transformation to view matrix in WorldModel.
e Set projection transformation to projection matrix in WorldModel.
e Render WorldObjects that represent real-world objects.
e Enable writes to color buffer.

e Enable lighting.

e Render WorldObjects that represent virtual objects.

5.3.10 Summary

This chapter has described the overall design the AR museum by identifying what
components was needed to realize the AR museum using the PAVE framework.
This resulted in designing enhancements to PAVE and designing the functionality
of each component. This design has resulted in a implementation of a prototype of
the AR museum which will be subject to experiments in the following chapter.
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Experiments

In this chapter, we perform three types of tests to our AR museum. The perfor-
mance test will determine the scalability of the AR system by comparing frame
rates when running the system on a single and a dual processor machine. The user
impression test is less concrete. It is based on examining screenshots of the run-
ning system to see how well the augmented objects blend in with reality. In some
screenshots a displacement error of the virtual objects can be seen and therefore a
test was constructed that determines the precision of the magnetical tracker.

The world model used for the performance test and the user impression test contains
four virtual objects. Three pictures placed on the walls in the room and a teapot
placed on a table. The PAVE AR museum graph used for these tests is depicted
in figure 6.1 on the following page. It contains three subgraphs which are linked
to the virtual pictures on the walls and therefore the textures on these pictures are
the result of frame output from these subgraphs. The first subgraph contains an
image loader module which simply loads a bitmap image from disk when initial-
ized and outputs this image! each time it is called. The second subgraph contains
a plasma module which generates a swirling color pattern based on trigonometric
functions. The third subgraph contains a circle flower module which generates a
moving "flower like” pattern. Two of the virtual pictures are placed in positions
where real pictures exist in the room. This allows for observing if the virtual pic-
tures are situated at their correct positions.

All tests were performed on a Dual Celeron 400 MHz with 128 Kb cache, 128
Mb 66 MHz ram and a NVIDIA TNT2 graphics card.

6.1 Performance Scaling Test

This test measures the scalability of the AR system by comparing frame rates when
running the system on a single and a dual processor machine. Multiprocessor sup-

'We have used the famous painting called ”Skriget” by Edvard Munch.
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Figure 6.1: PAVE AR museum test graph.
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port was disabled in Windows 2000 for the single processor frame rate measurement.

6.1.1 Test Setup

The PAVE graph depicted in figure 6.1 on the preceding page was executed in the
PAVE framework. The frame rates measured are average frame rates obtained by
running the the AR museum graph for several minutes using arbitrary camera-
positions and orientations.

6.1.2 Test Results

The measured frame rates are listed in table 6.1. We consider the 54.2 percentage
gain in frame rate a satisfactory result.

| Fps on 1 CPU | Fps on 2 CPUs | gain in % |
| 5,9 | 9,1 | 542 |

Table 6.1: Performance scaling result table.

6.2 User Impression Test

This test is based on examining screenshots of the running system to see how well
the augmented objects blend in with reality.

6.2.1 Test Setup

The PAVE graph depicted in figure 6.1 on the preceding page was executed in the
PAVE framework. Screenshots were taken while the system was running.

6.2.2 Test Results

In figure 6.2 screenshots of the augmented objects can be seen. How well the virtual
objects blend in with the real world differs in the screenshots. It turned out that it
was highly dependent on camera position and orientation. Furthermore it is most
noticeable on the screenshots containing the virtual pictures since the virtual edges
do not allign the real-world edges. The virtual teapot, on the other hand, blends in
quite well.

In figure 6.3 three locations in the room can be seen with and without virtual
objects.

In figure 6.4 on page 78 an example of gross displacement of the virtual object
is seen. For this screenshot the camera was rolled 180 degrees which resulted in a
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(a) Virtual picture with dynamic texture. (b) Virtual picture with static texture.
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Figure 6.2: Screenshots of virtual objects blended with a real world image.
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Figure 6.3: Screenshots of three locations with and without virtual objects.
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displacement of the virtual picture. The displacements in the x and y directions are
approximately 18 and 12 centimetres respectively.

vPave D3D output

Figure 6.4: Screenshot showing the displacement of a virtual picture.

6.3 Magnetical Tracker Precision Test

Given the displacement of virtual objects experienced in the user impression test,
we wish to test whether the displacement can be put down to the inaccuracy in the
magnetical tracker measurements.

6.3.1 Test Setup

We wish to compare position and orientation measured by the magnetical tracker,
with the position and orientation that should be obtained. We have marked angles
covering 180 degrees rotation about the y-axis, in the xz-halfplane with 15 degrees
between them. The magnetical receiver is put on a stick, which is placed from the
transmitter to the 13 marked points. Each of the 13 angles (0 to 180 degrees), and
the corresponding x and z position is measured 10 times, and an average angle and
position is computed, to counteract inaccuracy in the test setup itself. In figure 6.5
on the next page, the tracker precision test setup is depicted.

6.3.2 Test Results

In table 6.2 on page 80 the results of the magnetical tracker test are listed. Angle
errors are measured in degrees and position errors are measured in centimeters. If
we look at the average, min and max values for angle and position errors, we can
see that position errors are less than angle errors. Because of the fact that position
errors do not impact the quality of AR as much as angle errors does, we only ex-
amine the angle errors further. To estimate how much impact the angle errors have
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Figure 6.5: Tracker precision test setup.

on displacement of the virtual objects, a simple case depicted in figure 6.6 is used.
This figure shows a camera looking at a wall from a distance d. The dotted line
represents the measured erroneous looking direction of the camera. This results in
a point being displaced by the distance x on the wall.

If we return to figure 6.4 on the facing page showing gross displacement of a
virtual picture on a wall and use the information that the camera was placed ap-
proximately 2 meters from the wall, the displacement z can be calculated for the
average, min and maz angles errors. This gives 11.9, 1.0 and 23.5 centimeters re-
spectively. The displacements observed in the screenshot were 18 and 12 centimeters
respectively, so this lies within the value for the maz angle error. From this, we
concluded that the angle error introduced in the measurements of the magnetical
tracker’s orientation is significant enough to cause the displacement of the virtual
objects. These errors are most likely due to the magnetical tracker’s sensibility to
metal and other magnetic fields in the environment.

Figure 6.6: Displacement due to angular error.
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Angle H Angle err. | X pos. err. | Z pos. err.

0 0,3 0,9 0,0
15 1,6 1,5 0,6
30 2,0 1,5 1,0
15 2.4 1,3 1,2
60 2,3 0,8 1,0
75 2,5 0,4 1,3
90 3,1 0,2 1,6
105 3,8 0,0 1,3
120 4,3 0,5 1,0
135 4,9 0,6 0,7
150 5,4 1,2 0,7
175 6,7 2,3 0,1
180 5,3 0,7 0,3
Average 3,4 0,9 0,8
Min 0,3 0,0 0,0
Max 6,7 2,3 1,6

Table 6.2: Tracker precision result table.

6.4 Test Conclusion

The tests performed on the AR museum system shows that the system scales well.
In terms of the visual quality, the main reason for the less than perfect aligment
of the virtual objects, can be put down to the magnetical tracker, as mentioned in
the precision tests. Regarding the requirement, that the minimum acceptable frame
rate being 10 frames/second, in an AR system, this is barely satisfied. Our system
achieved a frame rate of 9.1 frames/second on the 2 processor test machine with a
TNT2 graphic card and hence is a little bit slower than the acceptable frame rate.
The dual Celeron machine is a rather slow machine, compared to even contemporary
single processor machines, and therefore we do not see this as a problem. We tested
the AR Museum on a 500 Mhz Pentium-III single processor machine with a GeForce
256 card, where the system ran with a frame rate of 20 frames/second, which gave
satisfactory visual results.
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Conclusion

In this chapter we will conclude upon our goals and requirements set in chapters 1
and 3.

We have designed an Augmented Reality Museum architecture, that allows a
user to inspect a room augmented with virtual objects constituting the art in the
museum. The museum is described by a world model holding information about the
real world and the virtual objects residing in it. The world model can be created by
using a modelling tool so that complex environments can be created. The virtual
objects can be dynamic and thereby giving the user a more immersive experience.

The design has been modularized and described by modules connected in a graph
in the PAVE framework. The inherent capability of PAVE to execute modules in
parallel ensures that the AR system will scale over multiple processors.

The PAVE framework allows creation of visual effects by building subgraphs
connecting effect modules. An interface has been designed that can link these sub-
graphs to virtual objects. This allows for easy integration of visual effects into the
AR environment.

Since the visual effects can be very time consuming we have designed a mecha-
nism that determines whether virtual objects are visible or not, and on that basis
control whether effect subgraphs should be active or inactive.

The AR museum’s functionalty has been analysed to identify areas in the PAVE
framework that needed new features and enhancements. This includes garbage col-
lection, read-only and write semantics for datatypes, optional inputs and outputs
on modules and the triggering/empty triggering mechanism. The optional inputs
and outputs mechanism on modules has greatly improved the flexibility in PAVE
and as a consequence also made the AR, Museum more flexible. The garbage col-
lection mechanism manages memory allocation efficiently and makes PAVE more
robust to changing configurations of graphs. The triggering mechanism enhances
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performance by reducing the execution of subgraphs to only when it is necessary.
The read-only and write semantics helps reducing cloning of data, and increases
overall efficiency of the system.

As part of realizing the AR museum, the intrinsic and extrinsic parameters are
determined for the camera, which allows calibration of the camera image and align-
ment of the virtual and the real camera. The visualization has been made to take
advantage of 3D acceleration hardware for better performance.

A prototype of the AR museum has been implemented and tested. It proved to
scale well on a dual processor machine and maintain a stable acceptable framerate.
The visual quality is quite good and the dynamic effects adds to the user expe-
rience. Regarding the registration of camera positions and orientation, our tests
showed that the magnetic tracker can be somewhat inaccurate, esspecially when
it comes to measuring orientation angles. This caused virtual objects to be more
or less displaced, where some displacements where gross. The conclusion from this
is, that more precise tracking equipment that is less sensitive to electromagnetical
noise, is a neccessity to obtain better results.

In general the system satisfies our goals and has proven to be quite robust, fairly
fast and stable. The concept of art on objects has shown to work quite well visually.
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Future Work

In this section we briefly describe possible future directions that can be taken to
expand on our project.

8.0.1 Enhanced Tracking

Since the magnetical tracking proved to be a somewhat imprecise method of regis-
tering the position and gaze of the camera, additional tracking methods would be
required to reach an acceptable user immersiveness. A of way achieving this could
be to examine ways of doing hybrid tracking by e.g. designing an optical tracking
component.

8.0.2 Multiple Users

If the AR museum were to be experienced by using head-mounted displays, it would
be desriable to allow multiple users at the same time. This would require modifying
the museum graph and most likely the functionality of the components too. For
instance, it should be investigated how the control of activating/deactivating the
effect subgraphs will change when considering multiple users field of view.

8.0.3 Hardware Accelerated Image Distortion

We have chosen to calibrate the camera image in software. It would be possible to
do this by taking advantage of graphics hardware by mapping the camera image
onto a distorted mesh. This would not give a per-pixel accuracy and therefore it
might be of interest to investigate a way of subdividing the mesh in areas where the
image distortion is most pronounced. Another possibility could be to render the
virtual objects into a texture and distort this in the above mentioned way instead
of distorting the camera image.
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8.0.4 Shadows

Making virtual objects cast shadows on each other and on real-world objects would
be a obvious way of enhancing the user immersiveness. With the world knowledge
and the rendering approach we have chosen it is possible to generate hardware
accelerated shadows on modelled real-world objects.

8.0.5 Depth of Field Blur

A way of making the rendered objects blend better in with the real-world image
could be to simulate a depth of field effect on the rendered image. The depth of
field effect is due to different parts of an image being in focus and others not. The
rendered image would need to be blurred in areas where the real-world image is
out of focus. Realtime depth of field blur effects are possible on todays consumer
graphics hardware [nvd01].
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BaseModule
Specialization
Example

This example shows how a module is implemented for PAVE framework, the module
shown is a real module called BlendModule, we implemented last semester. The
BlendModule takes two bitmap images, of FrameBuffer type!, as input. Its Action
method blends two images by some factor specified by an integer Value parame-
ter. It delivers a resulting bitmap image (of FrameBuffer type) that contains a
composite of the two inputs. Below is a C++ code example of the BlendModule
implementation, the blend algorithm resides in the action method.

The source code shown, is for a plugin package, we have called StandardModules,
that contains several other modules, but only the code for BlendModule is shown.
The code for registering the BlendModule into the plugin DLL-file representing the
StandardModules plugin package is also shown.

StandardModules.h:

#ifndef __StandardModules__
#define __StandardModules__
#include "Types.h"
#include "Base.h"

[/ //
// Blend module (declaration)
[/=———m //

LA specialization of BaseType that contains a bitmap image buffer.
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class BlendModule : public BaseModule

BaseTypeList* action(BaseTypelist* inputs, BaseTypelList* params); // Action method.

{
public:
BlendModule(); // Constructor.
“BlendModule(); // Destructor.
virtual void init(BaseTypelList* staticParams); // Intialization method.
private:
unsigned int m_imgSize;
I
#endif

StandardModules.cpp:

#include "StandardModules.h"

m_inputs->addBaseType (new FrameBuffer()); // Declare a FrameBuffer as input number one.
m_inputs->addBaseType (new FrameBuffer()); // Declare a FrameBuffer as input number two.
m_params->addBaseType (new Value()); // Declare a Value as parameter one.
m_outputs->addBaseType (new FrameBuffer()); // Declare a FrameBuffer as output number one.

[/==——mm e //
// Blend module - begin
[/==——mm e //
BlendModule: :BlendModule() // Constructor
{
this->setTypeID("BlendModule");
m_imgSize = 256%256%4; // Fixed size of the images
}
BlendModule: : “"BlendModule() // Destructor
{
// does not own anything that needs to be deleted.
s
void BlendModule::init(BaseTypelist* staticParams)
{
// no initialization is necessary.
}

BaseTypeList* BlendModule::action(BaseTypelList* inputs, BaseTypelList* params)

{

FrameBuffer* imagel = (FrameBuffer*) inputs->getBaseType(0);

FrameBuffer* image2

(FrameBuffer*) inputs->getBaseType(1);

// create a result FrameBuffer to send along.
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FrameBuffer* resultImage = new FrameBuffer (256, 256, 4);
unsigned char* drawbuf = resultImage->getPtr();
unsigned char* rgb_picl = imagel->getPtr();

unsigned char* rgb_pic2 = image2->getPtr();

Value* v = (Valuex*) params->getBaseType(0);
unsigned int step = v->getValue();

unsigned int invstep = 255 - step;
unsigned int imgSize = m_imgSize;

// Intel x86 assembler version of a blending algorithm.

__asm

{
mov edi, drawbuf
dec edi

mov esi, rgb_picl
mov ebx, rgb_pic2
mov ecx, imgSize

innerloop:
mov edx, [esi]
and edx, 0xO000000FF
imul edx, step
inc esi
shr edx, 8
mov eax, [ebx]
and eax, 0xO000000FF
imul eax, invstep
inc ebx
shr eax, 8
inc edi
add eax, edx //eax = (colorl*step)/256 + (color2*(255-step))/256
mov [edi], al
dec ecx
jnz innerloop

// Create an outputlist container
BaseTypeList* output = new BaseTypeList();

// Add the result image to the outputlist
output->addBaseType(resultImage) ;

// Release the reference to the result.
// Added after the enhancements of PAVE were implemented.

resultImage->releaseRef ();

return output; // return the output list to parent Node.

// Blend module - end
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/)= //
// Export module(s) here
[/===—mm e //

__declspec(dllexport) BaseModule* moduleQueryFunc(int moduleNr)
{
switch(moduleNr)
{
case 0:
return (BaseModule*) new BlendModule();
case 1:
return (BaseModule*) NEW .......eeeeeeeens

default:

return NULL;
}
}
[ [=mmmmmm e //
e //

The idea of exporting modules, is that an application can load the plugin DLL
file at run time. When loaded it can call one single generic factory function (mod-
uleQueryFunc) in the plugin and on behalf of the parameter given, the function
returns the desired module instance.
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