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CHAPTERONE
IntrodutionThis projet fouses on learning utility funtions in in�uene diagrams. The utility funtionexpresses an agent's preferenes for di�erent senarios. It might be essential to know thesepreferenes in ertain deision proesses, for instane when marketing a new produt it is im-portant to know the preferenes of the onsumer, otherwise the marketing ampaign may fail toreah the intended reipients. It an also improve the arti�ial intelligene in omputer games,suh that the game an learn the player's strategy thus making the game more hallenging.There are other areas in whih knowing the utility funtion an aid the deision maker, thereforea method for learning the utility funtion is needed. Suh methods are alled utility learningmethods. Hansen et al. (2004) developed a utility learning method for agents with or withouthanging behavior. The method developed by Hansen et al. (2004) is alled FLUF (FLUFLearning Utility Funtion) and the general idea is that FLUF learns the utility funtion byobserving the behavior of an agent. The agent is assumed to be a rational agent, that is anagent that always tries to maximize the expeted bene�t of its deision.Basially FLUF derives some boundaries, alled onstraints, from the observations made.These onstraints are inequalities that exlude a set of utility values that annot explain theobservations. FLUF is designed to handle partially observed strategies , that is situations wherethe deisions are not observed for all on�gurations of the in�uene diagram. In general FLUF'sway of handling these unobserved on�guration is to relax the already mentioned onstraintsfor the utility values. These relaxations are done suh that it is assured that any deision inthe unobserved on�guration ould be explained with some utility values within the allowedboundaries. To expand the area of appliation for FLUF, it is also designed to handle hangingbehavior, where the utilities an hange over time whih an ause on�iting or inonsistentobservations.The experiments from Hansen et al. (2004) showed that preditions potentially ould be donemore aurately than done by FLUF. Some of the inauray that FLUF has when it omesto prediting deisions will most likely be derived from the relaxation of the onstraints. If theagent's strategy is fully observed , i.e. the deisions are observed in all on�gurations, it willnot be neessary to relax the onstraints.Many of the ideas used by Hansen et al. (2004) will be inorporated in this projet, suh asreating onstraints for the utility values based on the observations. One of the more importantdi�erenes between Hansen et al. (2004) and this projet is in the way partially observed1



Chapter 1. Introdutionstrategies are handled. This projet investigates the idea of imputing to approximate theunobserved parts of an agent's strategy. A naive way of imputing would be to randomly seletdeisions for the unobserved strategies. This method would likely lead to wrong imputations,therefore another method for imputing should be employed. One suh way ould be to usethe observations already made, in that the preferenes in these observations should provide ahint on what to expet with regard to future observations. This projet investigates di�erentimputing methods that impute based on the observations already made.1.1 PrerequisitesThis setion desribes the assumptions made. Assumptions are made about the prior knowledgeavailable and the agent being observed. The assumptions made for the methods are similar tothe prerequisites for FLUF, however the observations an ontain noise in the new methods,that is part of the observation may be orrupted, i.e. by faulty hardware or bad networktransmissions.1.1.1 The AgentThe utilities of the agent are not known from the beginning, and these utilities have to beestimated, through observing the behavior of the agent. It is assumed that the agent tries tomaximize the expeted utility, i.e. the agent is behaving rationally.The agent is not restrited from hanging its utilities, so utility learning methods should handlehanging behavior. However, it is assumed that the observed agent is not using a similarlearning algorithm sine this may lead to in�nite yles of mutual preditions (Chajewskaet al., 2001). The possibility that the observed agent an hange its preferenes, enables itto perform an ation given some on�guration at one time, but then later, given the sameon�guration, perform a di�erent ation. Two suh observations an only be explained if theexpeted utility of the two ations are equal or if the agent has hanged behavior.1.1.2 Prior KnowledgeAs this projet only fouses on the learning of an agent's utilities, it is assumed that theagent's pereption of the variables and their ausalities in the environment are known, thatis the probabilities are known. In e�et it assumed that, with the exeption of the utilityfuntion, it is possible to reate an in�uene diagram for the agent's deision senario.1.2 Goals of this ProjetThe goal of this projet is, based on the ideas from Hansen et al. (2004), to reate newutility learning methods that use imputing to handle partially observed strategies. Imputingmethods should impute the unobserved deisions based on what is already observed. Moreoverthe methods should be able to handle on�its sine these may our due to the imputing, andsine the agent is allowed to be hange behavior. Experiments should be onduted using theimputing method, to determine its speed and auray, suh that it an be ompared to similarexperiments with FLUF. Speed being measured in number of training ases, and auraybegin measured by omparison of the expeted utility of the strategy predited by the utilitylearning method and the strategy used by the agent.2



1.3. The Struture of the Report1.3 The Struture of the ReportThe rest of this report is organized in the following hapters:Chapter Two: A presentation of FLUF is given as many of the ideas used to develop thenew imputing method is based on onepts developed in FLUF. Further-more potential limitations of FLUF are analyzed.Chapter Three: Based on the analysis from hapter two, general ideas on imputing arepresented, and two imputing algorithms are designed and presented. Fi-nally their potentials and limitations are analyzed.Chapter Four: Changing behavior of the observed agent is analyzed and presented to-gether with possible methods for handling this.Chapter Five: The algorithms designed in hapter three, are tested in a series of experi-ments. These experiments and the results are presented in this hapter.Chapter Six: Summary of the most signi�ant onsiderations and onlusions from theprevious hapters.
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CHAPTERTWO
The Method FLUFIn this hapter the method FLUF, and the poliies for handling on�iting observations, arepresented. FLUF is based on work by Chajewska et al. (2001) whih estimates the utilitiesin a deision tree by establishing a feasible spae in whih the utility values are to be found.One main di�erene between FLUF and the work by Chajewska et al. (2001) is that FLUFis de�ned in terms of an in�uene diagram instead of a deision tree, this di�erene will bedisussed in Setion 2.6.The overall idea in FLUF and Chajewska et al. (2001) is that, based on the fat that theagent is rational, it an be assumed that the expeted utility of an observed deision is higherthan the expeted utility of its alternatives. This is used to redue the number of possibleutility funtions, by generating inequalities that express the relationship observed. Among theremaining utility funtions one is hosen by FLUF. This is then used as an estimate of theagent's utility funtion.First in�uene diagrams and some notation used throughout this report is presented. Thenthe assumptions for FLUF will be presented and then the method for estimating the utilityvalues if the strategy of the observed agent is fully observed will be presented. This will befollowed by a method for handling situations where the strategy is partially observed, whih isthe method atually used by FLUF.2.1 In�uene DiagramsDeision senarios are often represented as in�uene diagrams. In�uene diagram an enodepreferenes and utilities of a deision maker in the deision senario. The in�uene diagraman then be used by the deision maker to determine what deisions that would yield thehighest expeted utility. In this setion the syntax and semantis of these will be presented,as in�uene diagrams are used by FLUF and new methods developed in this projet.SyntaxAn in�uene diagram onsists of a direted ayli graph over hane nodes, deision nodesand utility nodes, with the following qualitative properties, (Jensen, 2001):5



Chapter 2. The Method FLUF
• there is a direted path omprising all deision nodes
• the utility nodes have no hildrenFor the quantitative spei�ation, it is required that:
• the deision nodes and the hane nodes have a �nite set of mutually exlusive andexhaustive states
• a onditional probability table P (A|pa(A)) is attahed to eah hane node A

• a real-valued funtion over pa(M) is attahed to eah utility node M , alled a loal utilityfuntionwhere pa(N) is the parents of the node N .SemantisThe utility nodes represent some gain or loss for the deision maker, where eah utility node'sontribution is determined by its utility funtion. The hane nodes represent elements thatmay, diretly or indiretly, in�uene the gain or loss of the deision maker, or provide inform-ation for the deision maker. The deision nodes represent the hoies that have to be madeby the deision maker.The deisions are ordered relatively to eah other with respet to when they are made, this isalled the temporal order . Graphially, information preedene is represented as informationlinks ; there is an information link from a hane node A to a deision node Di if the hanenode is observed before deision Di but after deision Di−1. The temporal order of the deisionnodes is represented graphially by links suh that if deision D1 is made before deision D2then there exist a direted path from D1 to D2. The temporal order also orders the hanenodes aording to when they are observed. Any link that is not an information link is termeda relation link .A general assumption when dealing with in�uene diagrams is no-forgetting , whih means thatfor some deision node the deision maker knows all the hoies for deision nodes prior to theurrent deision node and the states of the observed hane nodes prior to any of the deisionnodes earlier in the temporal order or the urrent deision node.
I0 denotes the set of hane nodes that are observed before any deision is taken and I1 denotesthe set of hane nodes that are observed after the �rst deision and before the seond. If thereare n deision nodes, then In denote the set of hane nodes that are observed after the lastdeision or not observed at all. This establishes the following temporal order: I0 < D1 < I1 <

. . . < Dn < In. The ordering of the nodes an be dedued from the links and the no-forgettingassumption.2.1.1 Solving In�uene DiagramsWhen using in�uene diagrams to determine what the best deisions are, it alled solvingthe in�uene diagram. The method for solving in�uene diagrams rely on the hain rule forin�uene diagram, whih is as follows (Jensen (2001)):6



2.1. Influene DiagramsTheorem 2.1 Let ID be an in�uene diagram with the universe WC ∪ WD. Then
P (WC |WD) =

∏

X∈WC

P (X |pa(X))where WC is the set of hane nodes and WD the set of deision nodes.Let ID be an in�uene diagram over W = WC ∪WD. WC is the set of all hane nodes in IDwhile WD is the set of all deision nodes. Let the temporal order of the variables be desribedas I0 < D1 < I1 < . . . < Dn < In and let V (pa(U)) =
∑

i Vi(pa(Ui)) where Vi is the loalutility funtion for utility node Ui. Then the maximum expeted utility is:
MEU(ID) =

∑

I0

max
D1

∑

I1

max
D2

. . .max
Dn

∑

In

P (WC |WD)V (pa(U)) (2.1)Equation 2.1 is only a priniple solution sine the size of P (WC |WD) grows exponentially. Itis possible to avoid this problem by using the distributive law to eliminating the variables oneby one, to redue the size of the largest probability table. Sum-marginalization (marginaliza-tion of hane variables) and max-marginalization (marginalization of deision nodes) annotinterhange and the marginalization is therefore restrited by the temporal order, this is alleda strong marginalization.De�nition 2.1 A poliy for a deision node Di is a mapping σi, whih for any on�gurationof the past of Di yields a deision for Di suh that:
σi(I0, D1, I1, . . . , Di−1, Ii−1) ∈ sp(Di)where sp(Di) is the state spae of Di. A strategy onsists of a set of poliies one for eahdeision in the in�uene diagram. A solution to an in�uene diagram is the strategy thatmaximizes the expeted utility.If the deision maker ats rationally for deision Di and all future deisions, i.e. makes thedeision that maximizes the expeted utility, then the solution is the strategy that omprisesall optimal poliies (De�nition 2.1).Using the onept of poliies, an operational algorithm for alulating the maximum expetedutility an be desribed, this is done in Lemma 2.1. This is operational as the joint probabilityfor all hane nodes is never alulated, but rather only the joint probability for a subset ofthe hane nodes is alulated at eah step.Lemma 2.1 Let σi denote the poliy for the deision node Di. The maximum expeted utilityfor the node Di is denoted by ρDi

. Let n be the number of deision nodes, then the maximumexpeted utility for the deision node Di, where i ≤ n is found by
ρDi

(past(Di)) =







max
Di

∑

Ii
P (Ii|past(Di), Di) · ρDi+1

(past(Di+1), Di+1) i 6= n

max
Di

∑

Ii
P (Ii|past(Di), Di) · V (pa(U)) i = n

(2.2)where past(Di) denotes a on�guration of the past of deision node Di.7



Chapter 2. The Method FLUFRelevant PastIn Lemma 2.1 it is neessary to onsider the entire past of the deision node, beause theexpeted utility is being alulated, and the global utility funtion may depend on nodes thatare not in the relevant past of the deision node. However, if the expeted utility is not needed,but the optimal deision must be found, it is enough to examine the relevant past of a deisionnode. Using only the relevant past of the deision nodes rather than the entire past whenthe optimal deision must be found, redues the number of on�gurations of the past of thedeision nodes that have to be investigated.De�nition 2.2 (Relevant Past) A deision or hane node X is in the relevant past of adeision node D, if there exists a on�guration of the past of D (denoted y) and two instanti-ations of X (x and x′) where X is in the past of D, suh that the deision made in node D isdi�erent for the two instantiations of X, i.e.: δD(y, x) 6= δD(y, x′)An analysis of relevant past is given in Shahter (1999) and an algorithm for �nding the relevantpast is found in Shahter (1998).2.2 AssumptionsThis setion desribes the assumptions needed for FLUF. The general idea in FLUF aswellas in Chajewska et al. (2001), is to determine the relationship between the observed deisiongiven some past, and the alternative deisions. When a deision is observed it an be assumedthat the expeted utility of that deision is greater than for any of the alternatives, as theagent is assumed to be rational, i.e. always make deisions that maximize the expeted utility.FLUF uses an in�uene diagram when trying to estimate the utility funtion of the agent, soone suh must be given. The loal utility funtions are assumed to be unknown.In Figure 2.1 an example of an in�uene diagram is given, where both D and C are binary,thus the probability table for C has four entries, shown in Table 2.1. Similarly the loal utilityfuntions an be expressed as tables, shown in Table 2.2. Suh tables are alled utility tables.Eah value returned by the utility funtions ould also be onsidered as a single utility value(denoted vi) whih is shown in Table 2.3. Furthermore, the utility values are assumed to benormalized, therefore the spae spanning the utilities is bounded by 0 ≤ v1 ≤ 1,· · · ,0 ≤ vm ≤ 1if there arem utility values, whih means that there arem di�erent on�gurations of pa(U), thisregion is alled the normalized region. Within this normalized region, onstraints, desribingthe relationship between the expeted utility of the observed deision and the alternativedeisions (elaborated later in Setion 2.3 and Setion 2.4), are added. The spae spanned bythese onstraints is alled the feasible spae or the utility spae.For pratial reasons, whih will be desribed later, it is an advantage to inlude eah utilityin every ell of all utility tables. This is done by multiplying eah utility with a oe�ientthat is either zero or one. An example of this is shown in Table 2.4 where the entry V1(c1) isdesribed by the oe�ients (1, 0, 0, 0) to stipulate that v1 is the only relevant utility.In general, eah ell in all utility tables is given a ell number, suh that no two ells have thesame number. So the loal utility funtion for utility node Uj an be desribed as:
Vj(pa(Uj)) =

m
∑

i=1

αj,i,pa(Uj)vi 8



2.3. Fully Observed Strategieswhere i denote ell numbers. αj,i,pa(Uj) is 1 if i is the number assigned to the ell orrespondingto the parent on�guration pa(Uj), and 0 for all others.C d1 d2

c1 p q
c2 1 - p 1 - qTable 2.1: P (C|D) from Figure2.1

c1 c2

U1 V1(c1) V1(c2)

c1 c2

U2 V2(c1) V2(c2)Table 2.2: U1(C) and U2(C),from Figure 2.1, as utility fun-tions
c1 c2

U1 v1 v2

c1 c2

U2 v3 v4Table 2.3: U1(C) and U2(C),from Figure 2.1, as valuesU c1 c2

U1 1v1 + 0v2 + 0v3 + 0v4 0v1 + 1v2 + 0v3 + 0v4U c1 c2

U2 0v1 + 0v2 + 1v3 + 0v4 0v1 + 0v2 + 0v3 + 1v4Table 2.4: Unique utility values from Figure 2.1
D C

U1

U2Figure 2.1: Example in�uene diagramWhen using FLUF it is assumed that a series of observations have been made. These ob-servations desribe a sequene of variables observed and deisions made by the agent. Eahobservation ontains an instantiation of I0, I1 . . . In−1 and D1, D2 . . . Dn. The reason In is notinluded is that the variables in In are observed after the last deision, if at all. These series ofobservations fall into two ategories: fully observed strategies and partially observed strategies.2.3 Fully Observed StrategiesAssuming that the observed strategy is fully observed, then the following method an be usedto determine boundaries for the utilities.Given some instantiation of Dk for some past(Dk, where past(Dk) is the relevant past ofdeision node Dk, the observed hoie in Dk for that partiular on�guration of the relevantpast is denoted δDk
(past(Dk)). The entire past of Dk, i.e. all nodes prior to Dk in the temporalorder, is denoted epast(Dk). If Dk is the last deision node, the expeted utility of the observedhoie an be alulated by Equation 2.3. 9



Chapter 2. The Method FLUF
ρDk

(

δDk
(past(Dk)), epast(Dk)

)

=
∑

Ik

P
(

Ik|epast(Dk), δDk
(past(Dk))

)

· V
(

pa(U)
)

=
∑

Ik∩pa(U)

P
(

Ik ∩ pa(U)|epast(Dk), δDk
(past(Dk))

)

· V
(

pa(U)
)(2.3)It is not neessary to maximize Dk as the observed hoie is known. ρDk

denotes expetedutility of the hoie and entire past reeived as arguments.Now, by working bakward from the last deision node, Dn, it is possible to determine aset of onstraints C. These are onstraints on the utility values, and given these onstraintsthe utilities an be estimated. The onstraints span a utility spae over the utilities. Anyombination of utilities in this spae ould explain the observed strategy.The overall method is to look at the last deision node and, based on the observations, de-termine what hoie was made for eah of its possible on�guration of the relevant past. Itis possible to determine the hoie for eah past on�guration beause it is a fully observedstrategy. For eah of the observed deisions, the expeted utility of the observed hoie must begreater than or equal to the expeted utility of the alternative hoies, as the agent is rational.To establish onstraints, let O denote the set of all the observations. o is a single observationin O on the form: i0, d1, i1, . . . , in−1, dn. ok is then the observations of i0, d1, . . . , ik−1, dk−1 in
o.First let k = n, then for eah observation o ∈ O add the following onstraints to C:

∀d∈Dk\δDk
(ok) : ρDk

(δDk
(ok), ok) > ρDk

(d, ok) (2.4)After having added the onstraints for all the observations, then replae the last deision node(Dk) with a hane node where the probability for the observed hoie (δDk
(ok)) is one andthe probability for the alternative hoies, given the same relevant past on�guration, are zero.This means that the hane node replaing Dk must have all nodes in the relevant past of Dkas parents. Then apply Equation 2.4 for k − 1 and ontinue until k = 0.The onstraints are desribed as strit inequalities, sine any strategy ould have been explainedby the trivial utility funtion, where all utilities from the same utility nodes are equal, if theinequalities had not been strit. This is beause the set of points desribing the trivial utilityfuntion de�ne a part of the utility spae, alled the diagonal1, that onstraints an at mostbe tangents to. Appendix A presents a proof that onstraints reated based on fully observedstrategies will always be tangents to this diagonal.2.4 Partially Observed StrategiesThis setion introdues the alulations needed for generating onstraints when the strategyis only partially observed. When the observed strategy is only partially observed it is notpossible to use the same method as for fully observed strategies. If one of the deision nodes,say Dk, is not observed for a partiular on�guration of the relevant past, whih is the ase byde�nition when the strategy is only partially observed, then to alulate the expeted utilityfor the deision node prior to Dk, the following equation would be used:1This set of points is alled the diagonal beause it inludes the line from (0, 0, . . . , 0) to (1, 1, 1, . . . , 1)10



2.4. Partially Observed Strategies
ρDk−1

(δDk−1
(past(Dk−1)), epast(Dk−1)) =

∑

Ik−1

P
(

Ik−1|epast(Dk−1), δDk−1
(past(Dk−1))

)

·
∑

d∈Dk

PδDk
(d|past(Dk))

∑

Ik

P
(

Ik|d, epast(Dk)
)

· V (pa(U))where PδDk
is the probability funtion that replaes deision node Dk with a hane nodewhere the probability for the observed hoie is one and all others are zero. Unfortunately

PδDk
(d|past(Dk)) is not known as deision node Dk is not observed given the past past(Dk).Alternatively the method ould be based on the assumption that the hoie in the deisionnode Dk is the one that maximizes the expeted utility, whih is reasonable as the agent isrational. Under this assumption Equation 2.5 alulates maximum expeted utility for deisionnode Dk given its past.
ρDk

(epast(Dk)) = max
Dk

∑

Ik

P (Ik|epast(Dk), Dk) · ρDk+1
(epast(Dk+1)) (2.5)However, Equation 2.5 is not linear, beause of the maximization, whih makes it infeasiblefor determining the onstraints.The problem of making ρ linear an be solved by relaxing the onstraints. For eah onstraintan upper bound and a lower bound is reated like done by Chajewska et al. (2001). Thesebounds are onstruted so that the upper bound is always larger than the expeted utility forthe node the onstraint is derived from, and the lower bound is always less than the expetedutility. The upper bound is reated so that the for eah utility value the deision is assumedto be made so that it maximize this utility value. This means that the probabilities that theutility value have to multiplied with (see Lemma 2.1) are as large as possible. As this is doneindividually for the utility value the oe�ients for eah utility value will always be as largeor larger than the orresponding oe�ient when using Lemma 2.1. The opposite holds whenalulating lower bound.Formulae for Partially Observed StrategiesIn order to be able to desribe the method for developing onstraints these upper and lowerbounds, a series of equations are neessary.In the following ρ denotes the alulation of the upper bound and ρ the lower bound. Thesebounds are alulated for eah on�guration of the relevant past. Whether the deision nodeis observed for that relevant past, determines whih equation is used.If the deision node is observed in the on�guration of its relevant past in epast(Dk) and isthe last node in the temporal order, the equation is:

ρDk
(epast(Dk), δDk

(past(Dk)) = ρ
Dk

(epast(Dk), δDk
(past(Dk))

=
∑

Ik
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(

Ik|epast(Dk), δDk
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=
∑

Ik∩pa(U)

P
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(past(Dk))

)

· V (pa(U))(2.6)11



Chapter 2. The Method FLUFIn Equation 2.6 it is not neessary to maximize the expeted utility for the deision node Dk asit has been observed. Note that Equation 2.6 is the same as Lemma 2.1 where k = n, meaningthat ρ = ρ = ρ when the deision node is the last deision node in the temporal order.If the deision node is the last node in the temporal order and is unobserved given the relevantpast in epast(Dk) and there is l utility nodes in the domain, the bounds are alulated as:
ρDk

(epast(Dk)) =

m
∑
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max
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∑
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P (Ik ∩ pa(U)|epast(Dk), Dk) ·
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∑
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 · vi



 (2.7)
ρ

Dk
(epast(Dk)) =

m
∑

i=1



min
Dk





∑

Ik∩pa(U)

P (Ik ∩ pa(U)|epast(Dk), Dk) ·
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 · vi



 (2.8)An important aspet of Equation 2.7 and 2.8 is that the omponents under the maximationare probabilities and oe�ients, whih both are onstants. The utility variables (vi), the onlyvariables in the equations, are outside the maximation, so the equations are linear in the utilityvalues.If the node is observed given the relevant past in epast(Dk) and it is not the last deision nodein the temporal order, the bounds are alulated aording to the equations:
ρDk
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) (2.9)

ρ
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· ρ
Dk+1

(

epast(Dk+1)
) (2.10)If the deision node is unobserved in the on�gurations of its relevant past in epast(Dk), it isstill neessary to alulate the bounds, as Equation 2.9 and 2.10 are de�ned reursively.For de�ning the equations that desribe how to alulate the bounds for unobserved nodes,the de�nition for ρDk

has to be extended. ρDk
an be desribed as: ρDk

(epast(Dk)) =
ρDk,1(epast(Dk))v1 + ρDk,2(epast(Dk))v2 . . . where ρDk,i(epast(Dk)) is the oe�ient of viin ρDk

(epast(Dk). The bounds for unobserved deision nodes given the past epast(Dk) priorto the last node is alulated as follows.
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2.5. Choosing Utility ValuesNote again that the part of the equations that is being maximized, does not ontain any utilityvariables meaning that the equations are linear in the utilities.With these equations it is possible to �nd the onstraints.First let k = n, then for eah observation o ∈ O: If deision node Dk is observed in o add theonstraints:
∀d∈Dk\δDk

(ok) : ρ(δDk
(ok), ok) > ρ(d, ok)Then derease k by one and iterate through the observations again, until k reahes zero meaningthat all deision nodes have been evaluated.2.5 Choosing Utility ValuesThis setion introdues the method for hoosing the utility values to be used in FLUF. Whenthe feasible spae has been established some utility values have to be hosen. Any point withinthe feasible spae is onsidered valid. In FLUF the seleted utility values are de�ned as theoordinates of the enter of the largest possible hypersphere in the feasible spae. The overallstrategy is to hoose a point that is within the onstraints so that the radius of the spherefrom that enter is as large as possible. This is expeted to be a fairly good strategy asthe onstraints span more utility values than those that an explain the observed behavior.The invalid utility values will likely be near the onstraints as the onstraints are relaxed,meaning that utility values near the onstraints might be in the feasible spae only as a resultof this relaxation. So the further from the onstraints, the utility values are hosen, the moreobservations are expeted to be explained, as long they are in the feasible spae.Let the set of onstraints be c1(v), c2(v), . . . , cz(v) and eah onstraint be de�ned as ci(v) ≡

ci,1v1 + ci,2v2 + · · ·+ ci,mvm > 0 where eah ci,t is a onstant. A new set of linear inequalitiesis de�ned from the onstraints as follow:
d(p, ck(v)) ≥ rwhere r is a new variable expressing the radius of the sphere, and d(p, ck(v)) is the distanefrom the point p to the hyperplane desribed by ck(v). d is alulated as:
d(p, ck(v)) =

ck,1p1 + ck,2p2 + · · · + ck,npn
√

c2
k,1 + c2

k,2 + · · · + c2
k,nThis means that the linear inequality for eah onstraint is as follows:

ck,1p1 + ck,2p2 + · · · + ck,npn
√

c2
k,1 + p2

k,2 + · · · + c2
k,n

≥r

m

ck,1p1 + ck,2p2 + · · · + ck,npn ≥r ·
√

c2
k,1 + c2

k,2 + · · · + c2
k,n

m

ck,1p1 + ck,2p2 + · · · + ck,npn − r ·
√

c2
k,1 + c2

k,2 + · · · + c2
k,n ≥0 (2.13)Besides the inequalities for the onstraints, inequalities have to be added to ensure that theenter of the hypersphere is within the normalized region.13



Chapter 2. The Method FLUFEah of the oordinates of the enter must be above 0. So for eah dimension t, i.e. t ∈ [1; n],the following inequality is added:
pt ≥ r

m

pt − r ≥ 0 (2.14)Similarly eah of the oordinates of the enter must be less than one, for the eah dimensionin the feasible spae.
pt + r ≤ 1

m

pt + r − 1 ≤ 0 (2.15)Then r is maximized in aordane with the inequalities from Equation 2.13, 2.14 and 2.15.This an be solved as a linear programming task (Fraleigh and Beauregard, 2003).The entroid (p0, p1, . . . , pn) is then a point within the feasible spae. As eah dimension in thefeasible spae orresponded to a utility, the values of the utilities are set to the orrespondingoordinate of the entroid. The point hosen is also alled the utility point.2.6 Comparison of FLUF and Chajewska et al. (2001)As mentioned FLUF is based on the method proposed by Chajewska et al. (2001), so in thissetion these two methods will be ompared. This will inlude omparison in both strutureand in omplexity.2.6.1 StrutureThe immediate strutural di�erene between FLUF and the method presented in Chajewskaet al. (2001) is that FLUF operates on in�uene diagrams whereas Chajewska et al. (2001)operates on deision trees. As already argued in Hansen et al. (2004) any symmetri deisiontree an be desribed as an in�uene diagram, and any deision tree an be made symmetriby inserting additional arti�ial nodes. These arti�ial nodes must have the same state spaeas the orresponding nodes in the alternative branhes. The reverse proess from in�uenediagram to deision tree is also possible, so the representation of the domain does not a�etwhen either method an be used. As there is no deision senario where in�uene diagrams anbe used while deision trees annot, or vie versa, the remainder of this analysis will assumethat both are given. If that should not be the ase, the desribed transformation might beneessary whih is a non trivial proedure.Chajewska et al. (2001) assumes that eah utility node omprises a series of linear additivesubutilities. Eah of these subutilities are assumed to ontribute to all outomes by some weight(zero if they do not ontribute at all). When omparing deision trees and in�uene diagrams,eah branh of the deision tree equals one instantiation of the entire in�uene diagram, andvie versa. This means that when omparing the utility nodes of an in�uene diagram with theutility nodes of a deision tree, all of the utility nodes in the in�uene diagram ontribute toeah of the utility nodes in the deision tree. Eah of the possible outomes of eah utility node14



2.6. Comparison of FLUF and Chajewska et al. (2001)in the in�uene diagram an be onsidered a single subutility in the deision tree. A signi�antnumber of the weights for the subutilities will be zero, as for eah branh in the deision treeonly a single utility value from eah utility node in the in�uene diagram an ontribute. Thismathes how FLUF onsiders the utility nodes in in�uene diagrams.In the method presented by Chajewska et al. (2001) the expeted utility is alulated for eahnode in the deision tree inluding the hane nodes, whereas FLUF only alulates it for thedeision nodes. FLUF instead inorporates the hane nodes in alulation of the expetedutility for eah deision node. It is fully possible to only alulate the expeted utility forthe deision nodes in the deision tree as well. Considering the formula for alulating theexpeted utility for an unobserved deision node in a deision tree. (V̂ n[v] is the upper boundfor expeted utility in node n in a deision tree, and S(n) is the set of suessor nodes of node
n. This notation is presented in Chapter 2 and Chapter 3 in Hansen et al. (2004))

V̂ n[v] =
m
∑

i=1

max
αn′,i:n

′∈S(n)
(αn′,i · vi) (2.16)The expression being maximized (αn′,i · vi) an be replaed with the formula for alulatingthe expeted utility for hane nodes, shown in Equation 2.17.

V̂ n[v] =
∑

n′∈S(n)

pn′ V̂ n′ [v] (2.17)If the deision node, n, is not followed by hane nodes in some or all of the edges leading out,the orresponding suessors ould, during alulations, be treated as if there atually was ahane node between them and n, with only one state. This would not inrease omplexity,as the orresponding n′ ∈ S(n) would only desribe one element in the inserted hane node.As Equation 2.17 shows, V̂ n[v] generates a mean of the suessors if n is a hane node, soto use Equation 2.17 in the sope of deision nodes, the notation of V̂ n[v] is expanded to
V̂ n[v] =

∑m
i=1(V̂ n,i[v] · vi), meaning that V̂ n,i[v] is the oe�ient attahed to utility number

i in node n. Now the result of merging Equation 2.16 and 2.17 is shown in Equation 2.18.
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 · vi



 (2.18)Comparing Equation 2.18 with the formula used by FLUF (Equation 2.19) the similaritiesbetween the two methods an be seen. Equation 2.19 uses ρ to denote the expeted utilitywhereas Equation 2.18 uses V̂ .
ρDk

(epast(Dk)) =
m
∑

i=1

(

max
Dk

(

∑

Ik

P (Ik|epast(Dk), Dk) · ρDk+1,i(epast(Dk+1))

)

· vi

) (2.19)Note that Equation 2.18 does not expliitly have to take the past into onsideration, as it isrepresented by the node's position in the tree.When hoosing the utility funtion, FLUF and Chajewska et al. (2001) uses ompletely di�er-ent methods. FLUF �nds the utility values that are as far away from the reated onstraints15



Chapter 2. The Method FLUFas possible. Chajewska et al. (2001) assumes that a probability distribution over utility fun-tions is given. This is then used to �nd a utility funtion within the feasible spae that hasa high likelihood. The exat di�erene between the utility funtion hosen by FLUF and theone hosen by Chajewska et al. (2001) depends on the supplied distribution over the utilityfuntions, and no general onlusions are drawn. The di�erene between the two methods forhoosing utility funtions, do not only a�et the utility funtion, but also makes the prerequis-ites for using the methods di�erent as FLUF does not require a prior knowledge about theutility funtion.In onlusion, FLUF and Chajewska et al. (2001) reates the same feasible spae given that thesubutilities in Chajewska et al. (2001) is represented as desribed here. This is no oinidene asthe underlying work for how FLUF reates its onstraints, is the work presented in Chajewskaet al. (2001). The most signi�ant strutural di�erene between the methods is how the utilityfuntion is hosen within the feasible spae.
2.6.2 ComplexityWhen solving deision trees and in�uene diagrams, both representations have a worst asetime omplexity that is O(nodesstates) where nodes is the number of deision and hane nodesin the domain for in�uene diagrams, and the depth of the tree for deision trees. states is thelargest state spae of any node in the domain. However, the worst ase time omplexities of themethods (Chajewska et al. (2001) and FLUF) are O(nodesstates · utilities), where utilities isthe number of (sub)utilities in the domain. This is beause, as Equations 2.18 and 2.19 show,oe�ients must be alulated for every (sub)utility. Had the method for deision trees notbeen rewritten to Equation 2.18, the same alulations would still have to be made, though ina di�erent order.However, even though the time omplexities of the two methods are idential, the omplexitiesof the models are not the same. The number of nodes in a deision tree grows exponentiallyin the depth of the tree, as eah potential future for a node will have to be modeled. Morepreisely the omplexity is O(statesnodes). This means that if the deision senario alwaysinvolves the same deisions and the same unertainties in the same order, the tree will besymmetri where eah deision and eah unertainty is represented one for eah on�gurationof the past.When the deision senario always involves the same deisions and unertainties in the sameorder, in�uene diagrams have a lower omplexity, with regard to the number of nodes, thandeision trees. The reason being that the on�guration of the past is not represented in thequalitative part of the in�uene diagram. The number of nodes is onstant, no matter thesize of the state spaes. However, the size of the needed probability table is always a �xedsize based on the state spae, so if the past in the deision senario an make a deision orunertainty irrelevant, the in�uene diagram still have to model all outomes, even those thatwill no impat on the utilities.In onlusion, if the relevant pasts of the deision nodes are large, meaning they ontain alarge number of nodes, and that there are many on�gurations of the relevant pasts that haveprobability zero, deision trees will have a lower omplexity with regard to number of nodes.If the relevant pasts of the deisions are small and there are few on�gurations with zeroprobability in�uene diagrams will have a lower omplexity.16



2.7. Limitations of FLUF2.7 Limitations of FLUFIn this setion an analysis of the learning method used by FLUF is presented, highlighting thesteps in FLUF in whih the inauraies our.FLUF analyzes whih utility values in an in�uene diagram that ould desribe the observedbehavior of an agent. Basially it tries to de�ne a feasible spae for the utility values, asmore than one set of values ould desribe the observed behavior. But the omplexity of�nding the feasible spae of utility values that exatly desribes the observed behavior makesit impratial. Therefore FLUF uses a less omplex method that �nds a di�erent spae, whihis a super spae of the exat feasible spae, and hooses its utility values from this super spae.This relaxation dereases the auray with whih FLUF an estimate the utility values of theobserved agent. It may result in FLUF not being able to determine a utility funtion thatould explain the behavior already observed, even if the agent's utility values never hange. Amethod that de�nes the onstraints as exat as possible will be denoted the optimal method.In the following setion FLUF will be ompared to the optimal method in order to understandwhere the inauraies in FLUF our.2.7.1 The Optimal MethodThe feasible spae spanned by a onstraint reated using FLUF is larger than the feasible spaethat ould explain the observed behavior. For an observed deision (Dk(ok)), the alulationsof ρ (the expeted utility) is done as if the subsequent unobserved deisions are in the statethat gives the largest possible oe�ient for eah utility value.When FLUF determines onstraints, a lower bound for the expeted utility for the deisionsthat was not seleted is also determined. When alulating this, the unobserved deisions areassumed being in the state that give the smallest possible oe�ients for determining ρ. Thisensures that the utility spae desribing the observed agents strategy is a sub spae of thespae spanned by the reated onstraint.The most exat expeted utility that ould be de�ned for an unobserved deision node, is usingthe formula for alulating the expeted utility:
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P (Ik|epast(Dk), Dk) · V (pa(U)) k = nThis formula an be used in onjuntion with the following formula, for alulation of ρ whenthe on�guration of the relevant past of Dk in epast has been observed to be δDk
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· V (pa(U)) k = nWith those two formulas the onstraints for eah observation an be added. The onstraintsfor eah observed deision are reated as:
∀d∈Dk\δDk

(ok) : ρDk
(δDk

(ok), ok) ≥ ρDk
(d, ok)The feasible spae spanned by the onstraints of the optimal method is denoted the true feasiblespae or the true utility spae. 17



Chapter 2. The Method FLUFFor an unobserved deision node Dk, in some on�guration of its relevant past, the normalizedregion an be divided into subregions, one for eah possible deision in Dk. For all utility pointswithin eah subregion, the orresponding deision of Dk will yield the maximum expeted. Ifall the di�erent relevant pasts of Dk are onsidered in this way, then eah relevant past willdivide the normalized region in a set of subregions, eah of these orresponding to a spei�deision for that relevant past. If a point is hosen in the normalized region, then by examiningwhih subregions it is in, then a omplete poliy for node Dk an be desribed.When reating onstraints using the optimal method, for some deision in a node, Dp, thatpreeeds Dk (p < k), then a onstraint for eah possible poliy, onforming with the behaviorobserved so far, is reated. These onstraints are alulated as if the poliy had been observed,meaning they an be reated as for fully observed strategies, Setion 2.3. However, eahonstraint is only valid in the subregion orresponding to the poliy used to reate it, so thespae spanned by the onstraint is interseted with this subregion. Now the spaes spannedwithin eah subregion desribe the utility points that an explain the observed deision in Dp,when the poliy in Dk is the one assoiated with that subregion.The total spae that an desribe the observed Dp is the union of all the spanned spaes inthe subregions. The reason all the subregions have to be inluded is that the subregion thatthe utilities are atually in is unknown.Exatly whih utility point that is hosen within the true utility spae is irrelevant as theywould all desribed the observed behavior. So to hoose the utility point as the enter of thelargest possible hypersphere of the true utility spae ould still be done. It should be notedthat �nding this is signi�antly more omplex than for FLUF, as the spae is no longer spannedby linear onstraints.Now, the only di�erene between this optimal method and FLUF is the way the feasible spaeis determined, so this will be examined loser. Only unobserved deision nodes are examined,as the alulations in observed nodes are semantially idential. Using a notation that is likethe one used to desribe FLUF the optimal method would use Equation 2.20 (Note that ρ forthe optimal method is neither overlined nor underlined).
ρDk

(epast(Dk)) = max
Dk

(

∑

Ik

P (Ik|epast(Dk), Dk)ρDk+1
(epast(Dk+1))

)

= max
Dk

(

∑

Ik

P (Ik|epast(Dk), Dk) ·
m
∑

i=1

(

ρDk+1,i(epast(Dk+1)) · vi

)

)

= max
Dk

(

m
∑

i=1

(

∑

Ik

P (Ik|epast(Dk), Dk) · ρDk+1,i(epast(Dk+1))

)

· vi

)

(2.20)
This alulation is done for eah subregion of Dk, suh that maxDk

yields a di�erent deisionin all these alulations. However, ρDk+1,i(epast(Dk+1)) represents the expeted utility ofstrategy followed by the deision nodes following Dk in the temporal order. This means thatfor eah possible hoie in Dk this alulation has to be done one for eah set of poliies forsubsequent deision nodes, onsistent with all observations made and the hosen deision in
Dk.When FLUF maximizes the oe�ients for utility values it uses Equation 2.21.

ρDk
(epast(Dk)) =

m
∑

i=1

(

max
Dk

(

∑

Ik

P (Ik|epast(Dk), Dk) · ρDk+1,i(epast(Dk+1))

)

· vi

) (2.21)18



2.7. Limitations of FLUFComparing Equation 2.20 and 2.21 it an be seen that the di�erene is in the order in whih thedeision is made and when the utility values are added. As sum and max are not ommutative,these are not equivalent. In fat it will always hold that, no matter whih deision is hosenfor ρDk
:

ρDk
≥ ρDk

(2.22)The opposite argument an be made for how FLUF minimizes the oe�ients for the utilityvalues:
ρ

Dk
(epast(Dk)) =

m
∑

i=1

(

min
Dk

(

∑

Ik

P (Ik|epast(Dk), Dk) · ρ
Dk+1,i

(epast(Dk+1))

)

· vi

) (2.23)Meaning that it will always hold that:
ρ

Dk
≤ ρDk

(2.24)Basially, the onstraints reated by FLUF are of the form (in FLUF strit inequalities areused, but that does not a�et this disussion):
∀d∈Dk

: ρDk=δDk
(epast(Dk)) − ρ

Dk=d
(epast(Dk)) ≥ 0 (2.25)Where δDk

is the observed hoie in deision Dk. Using the optimal method the onstraintsare of the form:
∀d∈Dk

: ρDk=δDk
(epast(Dk)) − ρDk=d(epast(Dk)) ≥ 0 (2.26)From the established relationships in Equations 2.22 and 2.24, used by FLUF and the optimalmethod, it an be onluded that the feasible spae spanned by the onstraints in FLUF willalways be a super spae of the orresponding onstraints in the optimal method.Another way of omparing the feasible spae of the optimal method and FLUF, is to look athow many of the observations the methods would be able to explain after having observedthem. In other words, examining whether the onstraints reated during observations will bedesriptive enough, for the method to predit the deisions orretly if one of the observationswere repeated. An experiment was onduted using the stati domain from the experiments inHansen et al. (2004). It was determined how many of the already observed training ases ouldbe predited by the method every time a new observation is added. The optimal method hasnot been implemented but, theoretially, its hosen utility point would be able to explain allobserved deisions. So the number of training ases that FLUF is unable to predit orretly,indiates how it performs ompared to the optimal method, and thereby expresses how muhhave been lost in the approximation being done by FLUF.The values shown in Figure 2.2 is the average of training ases predited orretly (that is bothdeisions are orret). This average is based on 30 runs with 200 observations. As an be seenin Figure 2.2 FLUF is able to predit 80% of the observed training ases orretly, on average,after only one ase. The predition by FLUF stabilizes at that level after 20 ases.As about 20% of the observations are not orretly predited by FLUF it indiates that theutility point is wrong. This means that the feasible spae of FLUF must be larger than thefeasible spae of the optimal method, as the optimal method would be able to predit theobservations from any utility point in its feasible spae.19
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P (C1|D1) D1 = d1
1 D1 = d2

1

c1
1 0.3 0.75

c2
1 0.7 0.25Table 2.5: P (C1|D1) for Figure 2.3 P (C2|C1, D2) D2 = d1

2 D2 = d2
2

c1
1 (0.4, 0.2, 0.4) (0.1, 0.4, 0.5)

c2
1 (0.1, 0.7, 0.2) (0.3, 0.1, 0.6)Table 2.6: P (C2|C1, D2) for Figure 2.3Example 2.7.1 In order to illustrate the inauraies disussed, an example is given of howalulations would be made. The in�uene diagram used in this example is shown in Figure2.3, and the probability tables are shown in Table 2.5 and 2.6. Both deision nodes are binary.The following observation is made:

t = 〈D1 = d2
1, C1 = c1

1, D2 = d2
2〉Using FLUF the upper and lower bounds for the deisions are alulated. First for D2.

ρD2
(C1 = c1

1, D2 = d2
2) = P (c1

2|c
1
1, d

2
2)V (c1

2) + P (c2
2|c

1
1, d

2
2)V (c2

2) + P (c3
2|c

1
1, d

2
2)V (c3

2)

= 0.1(v1 + 0v2 + 0v3) + 0.4(0v1 + v2 + 0v3) + 0.5(0v1 + 0v2 + v3)

= 0.1v1 + 0.4v2 + 0.5v3

ρ
D2

(C1 = c1
1, D2 = d1

2) = P (c1
2|c

1
1, d

1
2)V (c1

2) + P (c2
2|c

1
1, d

1
2)V (c2

2) + P (c3
2|c

1
1, d

1
2)V (c3

2)

= 0.4(v1 + 0v2 + 0v3) + 0.2(0v1 + v2 + 0v3) + 0.4(0v1 + 0v2 + v3)

= 0.4v1 + 0.2v2 + 0.4v3

C2C1

D2

D1

UFigure 2.3: Example of an in�uene diagram20



2.7. Limitations of FLUFThis gives the onstraint:
ρD2

(C1 = c1
1, D2 = d2

2) > ρ
D2

(C1 = c1
1, D2 = d1

2)

0.1v1 + 0.4v2 + 0.5v3 > 0.4v1 + 0.2v2 + 0.4v3

−0.3v1 + 0.2v2 + 0.1v3 > 0

(2.27)A onstraint for D1 is also be reated. Again the upper and lower bounds have to be alulated.
ρD1

(D1 = d2
1) = P (c1

1|d
2
1)ρD2

(c1
1) + P (c2

1|d
2
1)ρD2

(c2
1)

= 0.75(0.1v1 + 0.4v2 + 0.5v3) + 0.25
(

max
D2

(

P (c1
2|c

2
1, d2)αU,1,c1

2
+ P (c2

2|c
2
1, d2)αU,1,c2

2
+ P (c3

2|c
2
1, d2)αU,1,c3

2

)

v1 +

max
D2

(

P (c1
2|c

2
1, d2)αU,2,c1

2
+ P (c2

2|c
2
1, d2)αU,2,c2

2
+ P (c3

2|c
2
1, d2)αU,2,c3

2

)

v2 +

max
D2

(

P (c1
2|c

2
1, d2)αU,3,c1

2
+ P (c2

2|c
2
1, d2)αU,3,c2

2
+ P (c3

2|c
2
1, d2)αU,3,c3

2

)

v3

)

= 0.075v1 + 0.3v2 + 0.3753 + 0.25
(

(0.3 · 1 + 0.1 · 0 + 0.6 · 0) v1 +

(0.1 · 0 + 0.7 · 1 + 0.2 · 0) v2 + (0.3 · 0 + 0.1 · 0 + 0.6 · 1) v3

)

= 0.075v1 + 0.3v2 + 0.375v3 + 0.25(0.3v1 + 0.7v2 + 0.6v3)

= 0.15v1 + 0.475v2 + 0.525v3

ρ
D1

(D1 = d1
1) = P (c1

1|d
1
1)ρD2

(c1
1) + P (c2

1|d
1
1)ρD2

(c2
1)

= 0.3(0.4v1 + 0.2v2 + 0.4v3) + 0.7
(

min
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P (c1
2|c
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2
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2|c
2
1, d2)αU,1,c2

2
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2
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)

v1 +

min
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2
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2|c
2
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2
+ P (c2

2|c
2
1, d2)αU,2,c3

2
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v2 +

min
D2

(

P (c1
2|c

2
1, d2)αU,3,c1

2
+ P (c2

2|c
2
1, d2)αU,3,c1

2
+ P (c2

2|c
2
1, d2)αU,3,c3

2

)

v3

)

= 0.12v1 + 0.06v2 + 0.12v3 + 0.7
(

(0.1 · 1 + 0.7 · 0 + 0.2 · 0) v1 +

(0.3 · 0 + 0.1 · 1 + 0.6 · 0) v2 + (0.1 · 0 + 0.7 · 0 + 0.2 · 1) v3

)

= 0.12v1 + 0.06v2 + 0.12v3 + 0.7 (0.1v1 + 0.1v2 + 0.2v3)

= 0.22v1 + 0.16v2 + 0.32v3This gives the onstraint:
ρD1

(D1 = d2
1) > ρ

D1

(D1 = d1
1)

0.15v1 + 0.475v2 + 0.525v3 > 0.22v1 + 0.16v2 + 0.32v3

−0.07v1 + 0.315v2 + 0.205v3 > 0

(2.28)The onstraints generated when using the optimal method will now be alulated, with theseit is possible to de�ne a smaller feasible spae. The onstraint from Equation 2.27 is also21



Chapter 2. The Method FLUFpresent using the optimal method as no maximization is involved in determining it. However,alulating the onstraint for D1 is done di�erently.
ρD1

(d2
1) = P (c1

1|d
2
1)ρD2

(c1
1) + P (c2

1|d
2
1)ρD2

(c2
1)

= 0.75(0.1v1 + 0.4v2 + 0.5v3) +

0.25(max
D2

(P (c1
2|c

2
1, d2)v1 + P (c2

2|c
2
1, d2)v2 + P (c3

2|c
2
1, d2)v3))This alulation must be done for eah subregion onsistent with the observation made. As D2has two options and only has one unobserved relevant past, there will only be two subregionsin the normalized region for whih onstraints must be alulated. These subregions are foundby omparing expeted utilities:

ρD2
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= 0.1v1 + 0.7v2 + 0.2v3

ρD2
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2)v1 + P (c2

2|c
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1, d

2
2)v2 + P (c3

2|c
2
1, d

2
2)v3

= 0.3v1 + 0.1v2 + 0.6v3Now it is possible to omplete the alulation for ρD1
(d2

1) in both subregions, as in eahsubregion a spei� hoie of D2 an be onsidered optimal when C1 is in state c2
1:

0.1v1 + 0.7v2 + 0.2v3 < 0.3v1 + 0.1v2 + 0.6v3 :

ρD1
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1) = P (c1
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2
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1)

= 0.75(0.1v1 + 0.4v2 + 0.5v3) + 0.25(0.3v1 + 0.1v2 + 0.6v3)

= 0.15v1 + 0.325v2 + 0.525v3

0.3v1 + 0.1v2 + 0.6v3 < 0.1v1 + 0.7v2 + 0.2v3 :
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= 0.1v1 + 0.475v2 + 0.425v3In order to reate the onstraint it is also neessary to determine ρD1
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0.1v1 + 0.7v2 + 0.2v3 < 0.3v1 + 0.1v2 + 0.6v3 :
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= 0.24v1 + 0.19v2 + 0.57v3 22



2.7. Limitations of FLUF
0.3v1 + 0.1v2 + 0.6v3 < 0.1v1 + 0.7v2 + 0.2v3 :

ρD1
(d1

1) = P (c1
1|d

2
1)ρD2

(c1
1) + P (c2

1|d
2
1)ρD2

(c2
1)

= 0.3(0.1v1 + 0.4v2 + 0.5v3) + 0.7(0.1v1 + 0.7v2 + 0.2v3)

= 0.1v1 + 0.61v2 + 0.29v3The onstraint ρD1
(d2

1) > ρD1
(d1

1) an now be determined:
0.1v1 + 0.7v2 + 0.2v3 < 0.3v1 + 0.1v2 + 0.6v3 :

ρD1
(d2

1) > ρD1
(d1

1)

0.15v1 + 0.325v2 + 0.525v3 > 0.24v1 + 0.19v2 + 0.57v3

−0.09v1 + 0.135v2 − 0.045v3 > 0

(2.29)As this onstraint is only valid when 0.1v1+0.7v2+0.2v3 < 0.3v1+0.1v2+0.6v3, it is intersetedwith the onstraint 0.2v1 − 0.6v2 + 0.4v3 > 0. This intersetion desribes the feasible spae inthe �rst subregion.For the seond subregion 0.3v1 + 0.1v2 + 0.6v3 < 0.1v1 + 0.7v2 + 0.2v3 the onstraint is:
ρD1

(d2
1) > ρD1

(d1
1)

0.1v1 + 0.475v2 + 0.425v3 > 0.1v1 + 0.61v2 + 0.29v3

−0.135v2 + 0.135v3 > 0

(2.30)As this onstraint is only valid when 0.3v1+0.1v2+0.6v3 < 0.1v1+0.7v2+0.2v3, it is intersetedwith the onstraint −0.2v1 + 0.6v2 − 0.4v3 > 0. This intersetion desribes the feasible spaein the seond subregion.To desribe the feasible spae found by the optimal method, the feasible spae in the twosubregions should �rst be unioned, and the resulting spae should then be interseted with thespae desribed by the onstraint in Equation 2.27.In Figure 2.4 the feasible spaes for both methods are shown (it is the spae above all theonstraints). As an be seen the spae desribed by the intersetion of the green and theblue onstraints is larger than the spae desribed by the intersetion of the green and the greyonstraints, meaning that the optimal method de�nes a smaller region. The di�erene betweenthe spae spanned by the green plane and the grey planes illustrate the inauray of FLUF.The grid shows the division of the normalized region, where the deision of D2 that yields themaximum expeted utility is di�erent given past c2
1. In the subregion that ontains (1, 0, 1),the deision that yields the maximum expeted utility for deision D2 is d2

2. In the subregionthat ontains (0, 1, 0) the deision is d1
2.

2Considering Example 2.7.1, it an be seen that even though that the point (0, 1, 0) is withinthe feasible spae of FLUF, that point would not explain the observation as the expetedutilities would beome: EU(D1 = d1
1) = 0.61 and EU(D1 = d2

1) = 0.475, meaning that theoptimal deision of D1 would always be d1
1. EU is short for expeted utility. In general, thereis no guarantee that the utility funtions expressed by any point in the feasible spae spannedby FLUF's onstraints an explain the observations made. However, the utility funtions23
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Figure 2.4: The feasible spae de�ned by Equations 2.27(green), 2.28(blue), 2.29 and 2.30(grey). The feasiblespae is the region above the onstraints. It might be hard to see what is above, but all onstraints ontain thepoint (0, 0.75, 1). v1 is from right to left, v2 is from the bak to the front, and v3 is from the bottom to thetop. The grid is the division of the subregions for D2.expressed by the spae spanned by the optimal method will, by its de�nition, explain theobservations made.In general it an be onluded that when FLUF is inapable of prediting the observationsalready made, it must be beause the utility spae reated by FLUF is larger than the trueutility spae. This enlargement of the utility spae, is a onsequene of the fat that the stateof deision nodes for unobserved on�gurations of their relevant past is hosen for eah utilityvalue. This is not neessarily the same state for all utility values. If a single state was hosenfor these deision nodes the size of the utility spae would be smaller, and the amount of utilitypoints that does not onform with the observed behavior will be redued. This might be a wayto ahieve better auray.
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CHAPTERTHREE
ImputingIn this hapter the priniple of imputing is introdued. Beause as shown in Setion 2.7, thefeasible spae desribed by FLUF is larger than needed, sine FLUF relaxes onstraints whenthe strategy is partially observed, leading to inauraies. Therefore some other method forhandling unobserved on�gurations of relevant pasts ould be employed, whih does not relaxonstraints and thereby obtains a smaller feasible spae. The onept of imputing observationsis introdued for this purpose in this hapter, and two new predition methods are presentedthat use imputing tehniques to handle partially observed strategies. These methods are namedUtility Iteration and Imputing by Comparison, and will also be referred to as the imputingmethods.With a partially observed strategy some on�gurations of the di�erent relevant pasts in thedomain will be observed, while others will be unobserved. The general idea with imputing, isto impute observations with the on�gurations of the relevant pasts in the domain that areunobserved. Using these imputed observations Utility Iteration and Imputing by Comparisonwill be able to reate onstraints, without relaxing them at all, as desribed for FLUF inSetion 2.3.3.1 Imputing AnalysisIn this setion the onsequenes of imputing observations is analyzed. Spei�ally it is ana-lyzed whether imputing ould be an improvement over relaxation, and whether imputationsan ause on�its. In the new methods that are suggested in the following setions, the overallidea is to make the observed agent's strategy fully observed by imputing the missing observa-tions. Observations that are imputed have not really been observed, so they are alled virtualobservations , while the observations that have been made will be alled true observations .As mentioned the inauray in FLUF will stem from relaxing onstraints leading to feasiblea spae that is to large. The reason for developing methods based on fully observed strategies,is that the feasible spaes ahieved from suh methods will desribe smaller spaes, beause norelaxation will be neessary. Considering how the onstraints are reated in FLUF:

h1v1 + h2v2 + · · · > l1v1 + l2v2 + · · ·where eah hk is hosen as high as possible and eah lk is hosen as low as possible, both25



Chapter 3. Imputingbeing oe�ients. Assuming the strategy is fully observed, and the onstraints are thereforenot relaxed, they will be:
h′

1v1 + h′
2v2 + · · · > l′1v1 + l′2v2 + · · ·where eah h′

n and l′n are the oe�ients that mathes the hosen deision. As it will alwayshold that hk ≥ h′
k and lk ≤ l′k it will also hold that:

h1v1 + h2v2 + · · · ≥ h′
1v1 + h′

2v2 + · · · ≥ l′1v1 + l′2v2 + · · · ≥ l1v1 + l2v2 + · · ·Any spae spanned by the onstraints derived from a fully observed strategy is a subspae ofthe spae spanned by onstraint reated in FLUF.Considering the grey onstraint in Example 2.7.1 eah plane orresponds to di�erent deisionsbeing made in D2. In general, when imputing an observation, for an unobserved on�gurationof the relevant past, it results in a onstraint being equal to one of the two grey onstraintsfrom the optimal method.3.1.1 Imputations Causing Con�itBefore the methods are introdued, it is disussed how, under ertain irumstanes, wrongimputations an ause observations to on�it, i.e. the onstraints added ause the feasiblespae to beome empty, even though the observed agent never hanges its strategy. Thisanalysis is based on the onstraints added in the seond last deision node (Dn−1), in somedomain with n deision nodes (n ≥ 2). For eah of the on�gurations of its relevant past, Dnwill yield a (possibly) di�erent expeted utility, the deision made in Dn−1 will in�uene thelikelihood of eah of these on�gurations, and therefore any imputed deisions in Dn will a�etthe expeted utilitiy of deisions in Dn−1.Given a spei� ombination of imputations in Dn, two onstraints an be reated in Dn−1 thattogether makes the feasible spae beome empty. For this to be the ase the two onstraintsmust oinide, and point in opposite diretions, i.e. the onstraints would be on the form
c1 · v1 · · · · · cu · vu > 0 and −c1 · v1 · · · · · −cu · vu > 0 where u is the number of utilities in thedomain. Table 3.1 shows the relationship between the oe�ients of the onstraints.

Constraint1 Constraint2
c1 −c1

c2 −c2

· · · · · ·
cu−1 −cu−1

(1 − c1 · · · − cu−1) −(1 − c1 · · · − cu−1)Table 3.1: Relationship between Constraint1 and Constraint2The oe�ients in these onstraints must as always sum to 0, so if the �rst u − 1 oe�ientsof the onstraints onform to the desribed relationship, then the last oe�ient will also.The states of In−1 are written (c1
n−1 · · · c

m
n−1), where there are m on�gurations of the nodesin In−1. Throughout the rest of this setion three di�erent probability distributions over In−1will be used frequently, therefore shorthand notations for these probability distributions are26



3.1. Imputing Analysislisted in Equation 3.1.
pk

δ = P
(

ck
n−1|δDn−1

(past(Dn−1)), epast(Dn−1)
)

pk
1 = P

(

ck
n−1|d

1
n−1, epast(Dn−1)

)

pk
2 = P

(

ck
n−1|d

2
n−1, epast(Dn−1)

)

(3.1)Equation 3.2 shows the general method for alulating one oe�ient (ci) when deision
δDn−1

(past(Dn−1)) is observed. ρDn,i(epast(Dn)) is the i′th oe�ient determined for Dn,given the past epast(Dn).
ci =

m
∑

k=1

pk
δ · ρDn,i(epast(Dn)) (3.2)What happens in Equation 3.2 orresponds to replaing deision node Dn by a hane node,and then alulating the oe�ient. To alulate ρ orretly then, just as when substituting adeision node by a hane node, the deision node must be fully observed. When this is notthe ase, virtual observations are imputed so that ρDn,i an still be alulated.Now let d1

n−1 and d2
n−1 be two deisions in Dn−1 di�erent from δDn−1

(past(Dn−1)), it isnow known that the expeted utility of the two deisions are smaller than the expeted util-ity of δDn−1
, given past(Dn−1). Let EU(δDn−1

(past(Dn−1))) > EU(d1
n−1(past(Dn−1))) be

Constraint1 while Constraint2 is EU(δDn−1
(past(Dn−1))) > EU(d2

n−1(past(Dn−1))). Sooe�ient ci will be ρDn−1,i(δDn−1
(past(Dn−1)), epast(Dn−1)) with ρDn−1,i(d

1
n−1, epast(Dn−1))subtrated, in Constraint1. Based on Equation 3.2, Equation 3.3 shows how oe�ient ci isalulated for Constraint1.

ci =
m
∑

k=1

(pk
δ − pk

1) · ρDn,i(epast(Dn)) (3.3)The two onstraints are reated in the same deision node (Dn−1) based on two di�erentdeisions (d1
n−1 and d2

n−1) given the same relevant past (past(Dn−1)) and observed deision(δn−1(past(Dn−1))). Sine the onstraints are reated in the same deision node given thesame past, then the imputations made, and thereby ρDn,i, will be the same when alulatingboth onstraints. Equation 3.4 shows what must hold, for oe�ient ci in the onstraints toonform with Table 3.1.
m
∑

k=1

(pk
δ − pk

1) · ρDn,i(epast(Dn)) = −
m
∑

k=1

(pk
δ − pk

1) · ρDn,i(epast(Dn))

m
m
∑

k=1

(2 · pk
δ − pk

1 − pk
2) · ρDn,i(epast(Dn)) = 0

(3.4)The expression in Equation 3.4 will not always be true. It will depend on the probabilitiesin the domain (pk
δ , pk

1 and pk
2), and the imputed poliies (ρDn,i(epast(Dn))). Eah probabilitydistributions will sum to 1, just as the oe�ients alulated with ρDn,i will sum to 1.Two probability distributions are added in the expression (2 · pk

δ ) while two other probabilitydistributions are subtrated (−pk
1 − pk

2), so summing this expression over all m on�gurations27



Chapter 3. Imputingof the relevant past would yield 0. However, all the expressions annot sum to 0 individuallyfor all m on�gurations, unless the utility funtion is trivial or if the di�erent deisions have noimpat on the utilities. These situations would both make the deision in node Dn−1 irrelevant,in turn making no deision wrong and any predition orret, so it is assumed that this is notthe ase.Eah of the expressions alulated using the probability distributions is multiplied by theexpeted utility of their outome, ρDn,i(epast(Dn)). The sum of this ρ expression over thethe m on�gurations will be 1, and non of the ρ expressions will be negative. This is dueto the utilities being normalized. The ρDn,i expressions are deided by the domain and theimputations made, so any ombination of ρDn,i values is possible as long as they are all nonnegative and sum to 1. The reason for this is that any hane node later the than Dn in thetemporal order have not been used in any expression so far, so the probability distribution forthese hane nodes are not restrited in any way.Now, with the part of the expression that is determined by probability distributions summingto 0 over the m on�gurations and ρDn,i summing to 1, then it will be possible to pik a setof values for ρDn,i that makes the entire expression from Equation 3.4 sum to 0.To summarize, then in a domain where the agent does not hange behavior over time, on�itsan still our when imputations are made. The type of on�it that has been shown to bepossible is the ase where two onstraints desribe exat opposite half spaes, this is a veryspei� situation and is only meant to show that on�its are possible.Based on this result the methods that use imputations to make the domain fully observed, mustalso onsider that these imputations an make the feasible spae beome empty. Therefore themethods should inlude tehniques to handle on�its.
3.2 Imputing StrategyUtility Iteration and Imputing by Comparison are only dissimilar in the way the unobservedon�gurations of relevant pasts are imputed, the overall strategy, that the two methods share,is presented in this setion.The methods maintain a set of true observations, i.e. all the observations made so far. Everytime a new observation is made this observation is added to that set. When the utility funtionis to be estimated by one of these imputing methods then this estimation is done based onthe maintained set of true observations. So the two imputing methods are bath learningtehniques, sine when a new observation is made the results of the imputing methods frombefore that observations was made are disarded.When the utility funtion is to be estimated, this is done by establishing onstraints based onobserved deisions. Equation 2.4 is used to reate onstraints, this equation assumes that thedeision node being evaluated is the last in the temporal order, and �nds the expeted utilityof eah deision by weighing the utility oe�ients by their probability of ourrene. For theimputing methods to use this equation, they must impute virtual observations suh that thestrategy of the observed agent beomes fully observed.After the methods have reated onstraints based on all the deisions observed in the trueobservations, a point in the feasible spae is hosen as the estimated utility funtion. Thispoint is hosen, as in FLUF, to be the enter of the largest possible hypersphere in the feasiblespae, see Setion 2.5 for a desription of the method.28



3.3. Utility Iteration3.2.1 Basi TehniqueThis setion presents a basi imputing tehnique that illustrates the onept whih the imputingmethods are based upon. This tehnique basially ditates the order in whih deision nodesshould be evaluated and subsequently substituted by hane nodes.The main idea is to alulate onstraints for the last deision node in the temporal order �rst,and then replae the deision node with a hane node. The hane node enodes the poliy ofthe orresponding deision node with ones and zeros. As mentioned, this is only possible if thedeision node has been observed for all on�gurations of its relevant past, therefore imputingis done for unobserved on�gurations. With respet to the last deision in an observation,adding these onstraints is straight forward sine no subsequent deision will exist. Thereforein a deision node (D) where the observed deision was δD and the funtion ρ determinesthe oe�ients for all utilities, as in FLUF, then the following onstraints an be added:
∀d∈D\δD

: ρ(δD) > ρ(d).Replaing a deision node (Dk) with a hane node (Ck), is done after reating onstraintsbased on the deision in all observations in O, O being the set of true observations, andthereafter the needed virtual deisions, to replae Dk with Ck, are imputed. Now Ck an beused instead of Dk throughout the rest of the imputing method, and it is now possible toalulate onstraints for deision node Dk−1 and so forth. Algorithm 3.2.1 shows the orderof the replaing and evaluations of deision nodes when using the basi tehnique. n is thenumber of deision nodes.Algorithm 3.2.1
• For node = n to 1� For all observations (o) in O do

∗ Where δDnode
is the observed deision and onode is the relevant past of Dnodein the observation, add the following onstraints to the feasible spae:

∀d∈Dnode\δDnode
: ρDnode

(δDnode
, onode) > ρDnode

(d, onode)� For every unobserved relevant past of deision node Dnode impute a virtual obser-vation� Aording to true and virtual observations, replae Dnode by a hane nodeUsing this tehnique means that the number of imputations needed for one deision node willbe relevant−observed, where relevant is the number of di�erent on�gurations of the relevantpast of the node, while observed is the number of di�erent on�gurations of the relevant pastthat has been observed. Sine every deision node is replaed one and used throughout the restof the algorithm, the number of imputations needed in the worst ase for the entire algorithmwill be O(n · (relevantmax − observedmin)), where n is the number of deisions, relevantmaxis the largest relevant past in the domain and observedmin is the least number of di�erentrelevant pasts observed for some deision node. So the number of imputations is linear in thenumber of deisions and on�gurations of their relevant past, and as more observations aremade less imputations are needed.3.3 Utility IterationIn this setion the �rst of the two imputing methods, alled Utility Iteration, is presented andanalyzed. 29



Chapter 3. ImputingThis method imputes virtual observations in order to view the agent's strategy as fully observed,and basially Utility Iteration attempts to stepwise re�ne the utility funtion, using the previousversion of the utility funtion. So every time onstraints are added to the feasible spae a newutility point is hosen, this point is onsidered more aurate than the previous point sine itis hosen based on one more observed deision. Every point hosen in this way orrespondsto a so alled temporary utility funtion. The newest temporary utility funtion is used whenvirtual observations need to be imputed, this is desribed in Setion 3.3.1.Eah step in the re�nement is done when the onstraints added by one deision in one on�gur-ation of its relevant past, are added, i.e. as observed in one of the true observations. When thedomain is stati, the order of the observations is irrelevant. However, the order in whih thedeisions are evaluated is not irrelevant, sine deisions late in the temporal order will reatemore aurate onstraints.The inauray in the Utility Iteration method stems from the imputations that are madeduring exeution, so the more imputations that a�et the onstraints reated for a deision,the less reliable the onstraints reated will be. For this reason onstraints are reated in reverseorder of the temporal order, suh that the last deision in the temporal order is evaluated �rst.Sine the order of observations is irrelevant, then for any deision node (Dk) in the temporalorder, onstraints are reated for deision Dk in all observations, before the previous deisionnode (Dk−1) is evaluated in any observation. This is muh like the basi tehnique desribed inSetion 3.2.1, however an extension is presented in Setion 3.3.1 that is expeted to inreasesauray for Utility Iteration.
3.3.1 Imputing Virtual DeisionsAll the way through the Utility Iteration algorithm, a feasible spae is maintained, desribedby the onstraints established as the algorithm progresses. So as more deisions are evaluatedmore onstraints will be limiting this feasible spae.When imputations are needed for some deision node, they are done based on the urrentknowledge about the feasible spae, i.e. the temporary utility funtion. To determine whatdeisions should be made in the needed virtual observations, the poliy an be determined bymaximizing expeted utility aording to the temporary utility funtion, sine the observedagent is assumed to be rational. The determined poliy is then used to replae the deisionnode by a hane node. As mentioned, the inauray of the Utility Iteration methods lies inthe imputations, this is beause of the risk that the utility point hosen from the feasible spaemight not desribe the strategy of the observed agent. If this ours then onstraints addedto the feasible spae will be wrong, enlarging the risk of hoosing a wrong point again later.Inaurate imputations may lead to wrong preditions or even the feasible spae beomingempty, i.e. ausing a on�it in a domain where the agent never hanges behavior. Thisinauray is analyzed in detail in Setion 3.3.3.In the following setion an extension to the tehnique desribed in Setion 3.2.1 is presented.This extended tehnique imputes deisions repeatedly, as more is learned about the feasiblespae, resulting in a higher auray. A third tehnique is presented in Appendix B, whihuses a baktraing approah, trying di�erent ombinations of imputations in order to get thebest result, this approah is not a viable alternative, sine it has a high omplexity.30



3.3. Utility IterationExtended TehniqueIt makes sense to evaluate the observations sequentially, sine anything learned from one ob-servation an be used to impute more aurately in another observation. So that at somedeision node in the temporal order (Dk), �rst observation o1 is used to reate onstraints at
Dk, by imputing poliies for all subsequent nodes (Di|i > k). Imputations in o2 for subsequentnodes (Di|i > k) an then be done more aurately, if the onstraints reated for Dk in o1are taken into aount when determining the temporary utility funtion. With the extendedtehnique imputations would be done anew eah time they are needed. So deision node Dkwould still be used to reate onstraints in all observation, but using the extended tehniqueall subsequent deision nodes (Di|i > k) will be imputed during the evaluation of Dk in eahobservation and not only one. Using this, probably more aurate, approah omes at a tradeo� in omplexity, due to the higher number of imputations.3.3.2 The Utility Iteration AlgorithmIn this setion a pseudo ode algorithm of the Utility Iteration method, using the extendedtehnique from Setion 3.3.1, is presented. As mentioned in Setion 3.3.1 the method maintainsa feasible spae desribed by a set of onstraints (CC), whih initially desribes the entirenormalized region. During exeution of the algorithm onstraints will be added to CC . Likewisethe algorithm will maintain a list of all true observations, this list is termed L. Every timea new observation (onew) is made it is inserted in the beginning of this list (onew|L), in thealgorithm it is assumed that this insertion operation has already been done.As mentioned observations are evaluated sequentially, with respet to eah step in the temporalorder, whih an also be seen in Algorithm 3.3.1. If the agent does not hange behavior betweenobservations this sequene is irrelevant.Also mentioned in Setion 3.3.1, was that the method ontained inauraies when imputing.This means that even though the agent never hanges behavior, the virtual observations mayend up ausing a on�it with a true observation. It is theoretially possible to iteratively stepbak and forth between observations trying di�erent utility funtions, whih inevitably wouldlead to a utility funtion with whih all true observations ould onform. This would beomevery omplex however, as shown in Appendix B, so instead the true observations in whih theon�it ours are simply deleted.Algorithm 3.3.1

• For k = n to 1� For all observations, o ∈ L, the following is done for one observation at a time1. Set point to be a utility point in the feasible spae, as desribed in Setion 2.5.2. For all relevant pasts, past(Di), of eah deision node, Di, after deision node
Dk (i > k)
∗ If Di given past(Di) has been observed then no imputing is done
∗ Else, impute a deision in node Di for past(Di) aording to the utilitypoint3. Substitute deision nodes after node k by hane nodes orresponding to im-puted poliies4. Where δDk

is the true deision observed in o, reate the following set of on-straints (Ctemp): ∀d∈D\δDk
: ρDk

(δDk
, ok) > ρDk

(d, ok)5. If CC ∪ Ctemp desribes the empty spae then delete observation o and all itsonstraints in CC 31



Chapter 3. Imputing6. Else let CC = CC ∪ Ctemp

• Choose a utility point and return it as the predited utility funtionWith regard to the omplexity of the algorithm the number of imputations needed for onedeision node will be relevant − observed, but when evaluating an observed deision fromnode Dk in an observation, all subsequent nodes (Di|i > k) are imputed, eah of these need-ing relevant − observed imputations. This means that to reate onstraints for Dk in oneobservation, O((n − k) · (relevantmax − observedmin)) imputations are needed in the worstase. Sine these imputations are done anew for every observation, then to reate onstraintsfor all observations of node Dk the number of imputations needed in the worst ase beomes
O(obs · (n − k) · (relevantmax − observedmin)), where obs is the number of true observations.Finally, the number of imputations needed for the entire algorithm will, in the worst ase, be :

O

(

obs · (relevantmax − observedmin) ·
n−1
∑

k=1

k

)

m

O
(

obs · relevantmax · n2
)

(3.5)The inreased auray of the extended tehnique ompared to the basi tehnique, omesat a trade o� in omplexity. Sine the omplexity introdued is not exponential, the seondtehnique is still onsidered operational and will be used in this projet for Utility Iteration.Example 3.3.1 This is an example of how Utility Iteration imputes virtual observations andgenerates onstraints. This example is set in the same domain (Illustrated in Figure 2.3) asexample 2.7.1 and with the same observation: 〈D1 = d2
1, C1 = c1

1, D2 = d2
2〉.Constraints an be generated for the last deision, D2, without imputing any observations.This results in the same onstraint as in Example 2.7.1:

ρD2
(C1 = c1

1, D2 = d2
2) > ρD2

(C1 = c1
1, D2 = d1

2)

0.1v1 + 0.4v2 + 0.5v3 > 0.4v1 + 0.2v2 + 0.4v3

−0.3v1 + 0.2v2 + 0.1v3 > 0

(3.6)To establish onstraints based on the deision observed in node D1, imputation has to bedone for the unobserved outome of C1. Now a temporary utility funtion is needed, and it isobtained by hoosing a utility point in the feasible spae. With the only onstraint limiting thefeasible spae being −0.3v1 + 0.2v2 + 0.1v3 > 0 and the normal onstraints for the normalizedregion, the enter of the largest hypersphere beomes (0.307956, 0.692044, 0.692044). How thispoint an be found is desribed in Setion 2.5. With this utility point the deision in the virtualobservation imputed in D2 given C1 in state c2
1 beomes d1

2, as an be seen from Equation 3.7and 3.8.
EU(C1 = c2

1, D2 = d1
2) = 0.1 · 0.307956 + 0.7 · 0.692044 + 0.2 · 0.692044 ≈ 0.6536 (3.7)

EU(C1 = c2
1, D2 = d2

2) = 0.3 · 0.307956 + 0.1 · 0.692044 + 0.6 · 0.692044 ≈ 0.5768 (3.8)Given this imputation and the observed deision, deision node D2 an now be replaed by ahane node. Thereafter the onstraint for deision D1 an be alulated as if it was the lastnode in the temporal order, this is done in Equation 3.9.32



3.3. Utility Iteration

0

v2

1
0

v1

v3

1

Figure 3.1: Both the green onstraint (−0.3v1 +0.2v2 +0.1v3 > 0) and the blue onstraint (v2 < v3) desribethe spae ontaining the oordinate (0,0,1), illustrated by the red spot
ρD1

(D1 = d2
1) > ρD1

(D1 = d1
1)

0.1v1 + 0.475v2 + 0.425v3 > 0.1v1 + 0.61v2 + 0.29v3

−0.135v2 + 0.135v3 > 0

(3.9)This orresponds to that v2 < v3. The onstraint an be seen in Figure 3.1, omparing this�gure to Figure 2.4, it an be seen that Utility Iteration desribes a smaller feasible spae thanFLUF. With more observations Utility Iteration will have more information on whih it anreate onstraints and auray will inrease as a result.
23.3.3 AnalysisThis analysis will fous on the possible inauraies in the temporary utility funtion. Firstit is disussed how inauraies an be reognized and how often they our. After that theimpat of the inauraies is disussed, to determine whether suh inauraies will reinforethemselves over time. The time omplexity of the Utility Iteration method, using the extendedtehnique, is also disussed.ImputationsAt every step during the re�nement of the utility funtion, temporary utility funtions may behosen that are di�erent from the observed agent's atual utility funtion. These temporaryutility funtions ould therefore impute observations that do not onform with the strategy used33



Chapter 3. Imputingby the agent, and the only way for the Utility Iteration method to disover suh an inauray,would be if the feasible spae for utility values beomes empty. In suh a situation, no methodis in plae to iteratively �nd other temporary utility funtions, sine it would be far to omplex.Instead the algorithm will ontinue exeuting by deleting the on�iting observation.The �rst utility funtion will be based on the last deision in all observations, and no imputingis done at this point, so the onstraints reated will be aurate. So the more observations, thebetter the initial utility funtion will be. Furthermore, the more observations that have beenmade, the less imputing is neessary. Even though the �rst onstraints are orret, they maystill span a feasible spae in whih several di�erent strategies are possible, and sine only onestrategy is ompletely orret then when imputations are neessary they may be wrong. Thenext setion desribes how these inauraies an impat the reation of onstraints.ConstraintsThe utility oe�ients for deisions in the last deision node in the temporal order will alwaysbe orret, sine the probabilities are assumed to be known. But for deisions in earlier deisionnodes, the utility oe�ients will depend on the imputed poliies for subsequent deision nodes.As these imputed poliies may not be the same as the poliies of the agent, the utility oe�ientsmay be inorret.Constraints are added to the feasible spae based on the utility oe�ients, so inauraies inthe utility oe�ients an result in temporary utility funtions being hosen that are di�erentfrom the observed agents utility funtion. Initial inaurate imputations an lead to impreisetemporary utility funtions, in turn leading to more inaurate imputations.To analyze whether the onstraints reated by Equation 2.4 will reinfore inauraies, somenotation is �rst introdued. If a temporary utility funtion is inaurate enough, when evaluat-ing deision node Dk, so that the imputed poliy for some deision node (Di|i > k) is di�erentfrom the poliy of the agent, then Equation 3.10 will be true.
∃d ∈ Dk :

ρDk
(d, ok) = cd,1v1 + · · · + cd,nvn (3.10)

6= ρDk,true(d, ok) = cd,true,1v1 + · · · + cd,true,nvnWhere ρDk,true(d, ok) desribes the values that should have been attributed to option d indeision node Dk given the past ok. Now, let ρDk
(d, ok) be desribed as in Equation 3.11.

ρDk
(d, ok) = (cd,true,1 + ∆cd,1)v1 + · · · + (cd,true,n + ∆cd,n)vn (3.11)Where ∆cd,n is the di�erene between cd,true,n and cd,n. In Equation 3.12 this notation is usedto establish onstraints based on the observed deision δDk

and an alternative deision d ∈ Dk,34



3.3. Utility Iterationgiven past ok:
ρ(δDk

(ok), ok) > ρ(d, ok)

m

(cδDk
(ok),true,1 + ∆cδDk

(ok),1)v1 + · · · + (cδDk
(ok),true,n + ∆cδDk

(ok),n)vn >

(cd,true,1 + ∆cd,1)v1 + · · · + (cd,true,n + ∆cd,n)vn

m

((cδDk
(ok),true,1 − cd,true,1) + (∆cδDk

(ok),1 − ∆cd,1))v1+

· · · + ((cδDk
(ok),true,n − cd,true,n) + (∆cδDk

(ok),n − ∆cd,n))vn > 0

(3.12)
Notie that the expression (cδDk

(ok),true,n − cd,true,n)vn orresponds to the atual di�erenebetween the oe�ients that should have been attributed to the n'th utility, while (∆cδDk
(ok),n−

∆cd,n))vn is the resulting impat on the onstraints from the inauraies in the utility fun-tions.These ∆c will depend muh on the temporary utility funtions, in the sense that the imputedpoliies are shaped after the utility funtions and the oe�ients are only hanged from theirtrue values when the poliies are hanged. So if the temporary utility funtion rates a utility(uk) lower than it should, then the poliy imputed may hange aordingly making a di�erentdeision, given some relevant past, that redues the ck oe�ient. In other words, if a ∆c valueis positive, then the orresponding utility was overrated by the temporary utility funtion, andunderrated for a negative ∆c value. This would imply that oe�ients for the same utility,suh as cδDk
(ok),n and cd,n, would have the same sign on their ∆c values.When reating onstraints the impat of the ∆c values is deided by their relative size. Theresult of having a positive ∆cδDk

(ok),n − ∆cd,n expression would be a relaxed onstraint withrespet to the orresponding utility, uk, while a negative value would result in a striter thannormal onstraint.As mentioned earlier, it is ertain that the oe�ients alulated for any observed deision willhave some truth to them, whih stems from the last deision having the orret oe�ientsattahed for the observed relevant past. Naturally, there an be a lot more truth to bothobserved and unobserved deisions than that, but on average the oe�ients of an observeddeisions may be marginally more aurate than those of an unobserved deisions. Auratemeaning small ∆c values.If an observed deision (δDk
(ok)) is more aurate than an unobserved deision (d ∈ Dk), withrespet to a single utility oe�ient cr, then |∆cδDk

(ok),r| will be smaller than |∆cd,r|. This willin turn mean that positive ∆cr values would, all else being equal, generate relaxed onstraints,rating the orresponding utility (ur) smaller, while negative ∆cr values would generate striteronstraints, rating ur higher. This means that inauraies on ur should diminish over time.But whether any signi�ant di�erene in auray between the oe�ients of observed andunobserved deisions will exist is unertain.However, without onduting experiments it is very di�ult to tell whether inauraies willreinfore themselves.ComplexityWith regard to the omplexity of the Utility Iteration method, then using the extended teh-nique the number of imputations in the worst ase will be O(obs · relevantmax · n2), as shownin Setion 3.3.1. For eah imputation the in�uene diagram is solved based on the temporary35



Chapter 3. Imputingutility funtion, but only with respet to one deision given one relevant past. This task has atime omplexity of O(nodesstates), where nodes are the nodes that are unobserved when thedeision being imputed is made, and states is the largest number of states those nodes have.So if nodes is onsidered all nodes in the domain, the worst ase time omplexity of the entireUtility Iteration algorithm beomes O(obs · relevantmax · n2 · nodesstates).3.3.4 SummaryThis analysis indiates that the Utility Iteration method will not reinfore inauraies, butto ensure that this is the ase experiments need to be onduted. In any ase, the method isvery dependent on an aurate set of initial onstraints, sine these will impat the aurayof imputations when later onstraints are reated. Should on�its our due to inaurateonstraints the only feasible solution, of those investigated here, is to delete observations andorresponding onstraints. The extent and impat of inauraies will depend on the number oftrue observations, in that with more true observations more onstraints an be reated beforeimputations beome neessary, making temporary utility funtions more aurate.3.4 Imputing by ComparisonIn this setion the other imputing method alled Imputing by Comparison is desribed, thismethod is similar to Utility Iteration in many ways, and the main di�erene between the twomethods is the imputing, whih is disussed and analyzed in this setion.The idea in Imputing by Comparison is to impute the deisions, suh that the virtual ob-servation beomes the most like a true observation as possible. This is done by imputing thedeision that, together with the relevant past in the virtual observation, makes it look the mostlike some relevant past and deision in a true observation. Considerations have to be made todetermine how to best ompare two di�erent ombinations of relevant past and deision witheah other.Determining whih ombination of relevant past and deision that looks the most like another,ould be done by omparing how many variables that math, i.e. the variables are in the samestate, and possibly how important these variables are. However, the importane of variablesare derived from the utility nodes, so weighing the variables will not be possible sine theutility values are unknown.Another onsideration that has to be made with regard to these omparisons, is that when twosenarios have been observed where neither math with the needed virtual observation withregards to some node N . Then if the two true observations have N in two di�erent states,perhaps one of the states ould be said to be loser to the state needed. An example of suhould be the variable �want hoolate� that ould be in the states: �no�, �a little� and �raving�,then �no� ould be onsidered loser to �a little� than to �raving�. However, the order of statesin ordered variables is domain spei� prior knowledge, and so omparing states will not bepursued further in this projet.Instead ombinations of relevant pasts and deisions ould be ompared with respet to a setof hypothesis variables H . The set of hypothesis variables is all the variables that have a utilitynode as a hild, denoted as pa(U). This omparison should alulate di�erent relevant pasts'impat on the distribution of H , so that two relevant past on�gurations are equivalent if theyinfer the same distribution on H . The intuition behind this idea is that it is not possibleto ompare utilities for di�erent relevant pasts, but the impat on H may hint the expetedutility. 36



3.4. Imputing by ComparisonIt may be the ase that a deision node has a utility node as a hild, in whih ase the deisionnode would be ontained in H , and probability distributions over deision nodes does not makesense. However, it will always be the ase that, when the distribution over H is alulated,the deision node will be determined to be in some state, i.e. the alulation is made withrespet to a spei� deision. So during alulation of H 's distribution, the deision nodean be substituted by a hane node, with a probability of 1 for the observed or imputeddeision. Any hane node in the relevant past of the deision will also be instantiated, sowhen alulating H any hane nodes in the relevant past will be treated as hane nodeswith evidene on them. In this way the probability distribution of H an be alulated inany domain. The two ways to ompare probability distributions, that have been examined, isKullbak-Leibler divergene and Eulidean distane, both desribed in Setion 3.4.1.3.4.1 Measuring Distane Between ProbabilitiesA ommonly used method for alulating distane between probability distributions is theKullbak-Leibler divergene. This method is also known as the relative entropy between twoprobability distributions:
KL(p,q) =

∑

k

qklog2

(

qk

pk

) (3.13)Where p and q are disrete probability distributions and qk and pk is the probability foroutome k in the two distributions. Note that Kullbak-Leibler divergene is not symmetriin p and q. Kullbak-Leibler have the nie property of being stritly proper, i.e. KL(p,q) = 0if and only if p = q, and KL(p,q) > 0 when p 6= q. (Jensen, 2001)Kullbak-Leibler ould be used by alulating the distane between the probability distributionof H , given the observed past and the observed deision (δD) in some true observation, versusthe distribution given the unobserved past needed in the virtual observation and the di�erentdeisions in D (∀d ∈ D). This alulation would be done for all true observations, and thedeision in the alulation whih yields the smallest distane would be hosen as the deisionin the virtual observation. If two alulations yields equal distanes then a deision, from oneof the alulations, would be hosen at random.Even though Kullbak-Leibler is a ommonly used method for alulating di�erenes in probab-ility distributions, it is not the best hoie for Imputing by Comparison. Basially the intuitionbehind this approah is that if a set of utility oe�ients have been observed as being prefer-able in some ontext, then a deision in a virtual observation yielding oe�ients lose to theobserved ones should be good. However, Kullbak-Leibler distanes weigh small probabilitiesheavier than larger probabilities, as shown in Equation 3.14 where the Kullbak-Leibler diver-gene between two likely outomes (qlikely · log2
qlikely

plikely
) is smaller than the divergene betweentwo less likely outomes (qunlikely · log2

qunlikely

punlikely
) even though the di�erene in probabilities inboth ases are the same (0.01). An example where Kullbak-Leibler distane is a poor measureis presented in Example 3.4.1.
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)

m (3.14)
0.0145 <0.0161Example 3.4.1 Consider an example where H has four outomes, meaning the domain hasfour utilities. Eah of H 's outomes yield a oe�ient of one for a di�erent utility. A true37



Chapter 3. Imputingobservation has been made with the distribution P (H |obstrue) = (0.001, 0.2, 0.399, 0.4) over
H . Only two di�erent deisions an be hosen for the virtual observation, so the one withthe distribution that yields the smallest Kullbak-Leibler value should be hosen. Deision d1yields the distribution (0.12, 0.2, 0.34, 0.34)while the seond deision, d2, yields the distribution
(0.001, 0.1, 0.299, 0.6). Table 3.2 shows the Kullbak-Leibler distanes, as well as numerialdi�erene of the probabilities. The table shows that deision d2 gives the smallest Kullbak-Leibler distane between the distributions of the hypothesis variables, in spite of giving thelargest numeri di�erenes, i.e. |0.119|+ |0|+ |−0.059|+ |−0.06| < |0|+ |−0.1|+ |−0.1|+ |0.2|orresponding to 0.238 < 0.4.Virtual distributions KL distane to P (obstrue) Numeri di�erene(0.12,0.2,0.34,0.34) 0.1789 (0.119,0,-0.059,-0.06)(0.001,0.1,0.299,0.6) 0.1155 (0,-0.1,-0.1,0.2)Table 3.2: Kullbak-Leibler distanes and numeri di�erene

2Sine these probabilities translate diretly to utility oe�ients, the numerial di�erene shouldbe as small as possible, and this is not ensured when using Kullbak-Leibler. So insteadImputing by Comparison uses the Eulidean distane between oe�ients to measure whihdistribution is losest to that of a true observation. Equation 3.15 shows how Eulideandistanes between probability distributions (p and q) are alulated. Using Eulidean distanethe hosen virtual deision will be the one where the numeri di�erene is the smallest. UsingEulidean distane in Example 3.4.1 would yield the results shown in table 3.3, the smallestdistane being attributed to the virtual deision with the smallest sum of numeri di�erenes.
Ec(p,q) =

∑

k

(qk − pk)2 (3.15)Virtual distributions E distane to P (obstrue) Numeri di�erene(0.12,0.2,0.34,0.34) 1.2354 (0.119,0,-0.059,-0.06)(0.001,0.1,0.299,0.6) 1.4086 (0,-0.1,-0.1,0.2)Table 3.3: Eulidean distanes and numeri di�erene3.4.2 The Imputing by Comparison AlgorithmIn this setion the Imputing by Comparison algorithm is presented. This method uses thebasi tehnique presented in Setion 3.2. After the new observation has been added to O, thenAlgorithm 3.4.2 is run. Algorithm 3.4.2 adds onstraints for every deision in all observations,suh that eah deision node Dk is evaluated in all observations before any prior deision node,i.e. Dk−1, is evaluated in any deision.Let D be the deision node that needs to be imputed, in some virtual observation alled
obs. The on�guration of the relevant past for deision node D in obs is alled v_relevantD.
v_relevant is short for �virtual relevant�, and t_relevant, is short for �true relevant�, theseare used in the algorithm to desribe relevant pasts. Now the algorithm for imputing is shownin Algorithm 3.4.1. 38



3.4. Imputing by ComparisonAlgorithm 3.4.11. For all observations o in O, where t_relevantD is the relevant past of D in o and
δD(t_relevantD) is the observed deision given the past

• For all d ∈ D� Calulate Ec(P (H |v_relevantD, d), P (H |t_relevantD, δD(t_relevantD)))� If the observation yields the lowest Eulidean distane so far, mark d, andunmark any already marked ds with a greater Eulidean distane2. Choose an arbitrary d among the marked deisions
• Use the hosen deision as the deision in obsUsing Algorithm 3.4.1 to impute observations, the entire algorithm for Imputing by Compar-ison is shown in Algorithm 3.4.2. Algorithm 3.4.2 is based on Algorithm 3.2.1 for the basitehnique.Algorithm 3.4.2

• For node = n to 1� For all observations (o) in O do1. Where δDnode
is the observed deision and onode is the relevant past of Dnodein the observation, add the following onstraints to the feasible spae:

∀d∈Dnode\δDnode
: ρDnode

(δDnode
, onode) > ρDnode

(d, onode)2. If the feasible spae has beome empty, remove all onstraints added by o andremove o from O3. For every unobserved relevant past of deision node Dnode, all Algorithm 3.4.1to impute a deision4. Aording to observed and imputed deisions, replae Dnode by a hane nodeStep 3 and 4 are, stritly speaking, not neessary for the �rst deision node in the temporalorder, as deision nodes are replaed with hane nodes so that the prior deision node beomesthe last in the temporal order.As disussed in Setion 3.1.1 on�its may our when imputing observations to make thedomain fully observed. To handle this, Algorithm 3.4.2 must hek if the feasible spae beomesempty, i.e. the radius of the largest possible hypersphere in the feasible spae is zero, eah timea new onstraint is added. If the spae beomes empty the newly added onstraints are removedagain.When the newest onstraint reveals a on�it it is, in a stati domain, possible to avoid removingonstraints altogether by imputing di�erently. The immediate way of doing this would be toexamine those imputations where there were more than one deision with the same Eulideandistane, and one of whih was hosen arbitrarily. In these ases the alternative hoies shouldbe used instead. Unfortunately it is not ertain that it would give a non-empty feasible spae.If that is the ase the hoies with the seond shortest Eulidean distane would have to beexamined. Again that does not guarantee that the feasible spae beomes non-empty, so thehoies with the third shortest distane might have to be examined and so on. In the worstase all ombinations of possible imputations over all relevant pasts, in all but the �rst deisionnode, would have to be examined to �nd a non-empty spae.The advantage of this alternative method for removing onstraints is that, in a stati do-main, it will eventually �nd a ombination of imputations that desribe a non-empty feas-ible spae. However, the time omplexity makes it infeasible. In fat, in the worst ase39



Chapter 3. Imputingthe number of imputation needed would be exponential in the number of deision nodes,
O(|D|max · relevantnmax), where relevantmax means the largest number of on�gurations ofany relevant past in the domain and |D|max is the largest number of di�erent deisions in onedeision node.Example 3.4.2 This is an example of how Imputing by Comparison hooses virtual observa-tions and generates onstraints. This example is set in the same domain (illustrated in Figure2.3) as Example 2.7.1 and with the same observation: 〈D1 = d2

1, C1 = c1
1, D2 = d2

2〉.Constraints an be generated for the last deision, D2, without imputing any observations.This results in the same onstraint as in Example 2.7.1. The observed deision, d2
2, must yielda larger expeted utility than d1

2, given hane node C1 in state c1
1:

ρD2
(C1 = c1

1, D2 = d2
2) > ρD2

(C1 = c1
1, D2 = d1

2)

0.1v1 + 0.4v2 + 0.5v3 > 0.4v1 + 0.2v2 + 0.4v3

−0.3v1 + 0.2v2 + 0.1v3 > 0

(3.16)To establish onstraints based on the deision observed in node D1, imputation has to bedone for the unobserved outome of C1. This means that the probability distribution ofthe hypothesis variables, whih in this example is limited to C2, given the true observation,
t = 〈D1 = d2

1, C1 = c1
1, D2 = d2

2〉, must be ompared with the distribution given v1 = 〈D1 =
d2
1, C1 = c2

1, D2 = d1
2〉 and v2 = 〈D1 = d2

1, C1 = c2
1, D2 = d2

2〉 respetively, where v1 and v2 arethe two virtual observations, and t the true observation. The Eulidean distane is alulatedaording to Equation 3.15, the alulations are shown below:
Ec
(

P (C2|t), P (C2|v1)
)

= (0.1 − 0.1)2 + (0.4 − 0.7)2 + (0.5 − 0.2)2 = 0.18

Ec
(

P (C2|t), P (C2|v2)
)

= (0.1 − 0.3)2 + (0.4 − 0.1)2 + (0.5 − 0.6)2 = 0.14In the virtual observation d2
2 is hosen for C1 in state c2

1, sine it yielded the smallest Eulideandistane to the true observation, and the �nal onstraint an then be alulated.
ρD1

(d2
1) > ρD1

(d1
1)

0.15v1 + 0.325v2 + 0.525v3 > 0.24v1 + 0.19v2 + 0.57v3

−0.09v1 + 0.135v2 − 0.045v3 > 0

(3.17)The onstraints generated by Imputing by Comparison an be seen in Figure 3.2, and thespae spanned an be ompared to Figure 2.4, whih shows the spae spanned by FLUF andthe optimal method given the same observation. The spae desribed by the Imputing byComparison method is smaller than the spae spanned by FLUF, and it still inludes the spaespanned by the optimal method.
23.4.3 AnalysisThis analysis will fous on the inauraies that might be introdued in the Imputing byComparison method. The omplexity of the Imputing by Comparison method is also analyzed.40



3.4. Imputing by Comparison

0

v2

1
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v1
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1

Figure 3.2: Both the green onstraint (−0.3v1 + 0.2v2 + 0.1v3 > 0) and the blue onstraint (−0.09v1 +
0.135v2 − 0.045v3 > 0) desribe the spae ontaining the oordinate (0,0,1), illustrated by the red spotAurayInauraies an our when imputing an observation, sine deisions that are not optimal,aording to the observed agent's utility funtion, an be hosen. Auray of the method willdepend on the number of observations made, �rst of all beause with more true observations lessvirtual observations will be neessary. Furthermore, the method ompares all true observationswith the possible virtual observations, meaning that a high number of true observations willresult in a better foundation for hoosing the deision for the virtual observation.There is a risk that inauraies an reinfore themselves, sine the distribution of the hypo-thesis variables, that possible virtual deisions are ompared with, is in�uened by the hanenodes that replae deision nodes after imputations. So if some imputing for node Dk is in-orret then the distributions, that are ompared to determine imputation in node Dk−1, willalso be inorret. This inauray inreases the risk that deision Dk−1 is imputed inorretly.However, as the number of di�erent true observations inrease the extent of inauraies, andany reinforement of inauraies, will diminish.ComplexityWith regards to the omplexity of this method, eah imputation is linear in the number ofobservations, sine the Eulidean distane, between the distribution over the hypothesis vari-ables of the virtual observation and the orresponding distribution in eah true observation,must be alulated. So the omplexity of imputing one deision beomes relevanttrue · |D|,where relevanttrue is the number di�erent relevant past on�gurations already observed forthe deision node, and |D| is the number of possible deisions. A true observation may on-tain on�guration of a relevant past that have already been observed, but relevanttrue will begrowing with the number of observations made.41



Chapter 3. ImputingIn eah deision node, the number of imputations needed is relevant − relevanttrue, where
relevant is the number of possible on�guration of the relevant past. relevanttrue is sub-trated from relevant beause imputations are only done for unobserved on�gurations of therelevant past, and relevanttrue an at most beome equal to relevant in whih ase no virtualobservations are needed.So as more observations are made, with respet to some deision node, fewer imputationsare neessary but eah imputation beomes more omplex, this is expressed as (relevant −
relevanttrue) · (relevanttrue · |D|).During exeution, poliies will be imputed for all deision nodes in the domain, meaning eahrelevant past on�guration of eah deision node, that has not been observed, is imputed. With
n deision nodes in the domain the omplexity for imputing for one deision node an be usedto express the omplexity of the entire Imputing by Comparison method as in Equation 3.18,where the i in subsripts imply that the variable orresponds to deision node Di.

n
∑

i=2

|Di| · (relevanttrue,i · relevanti − relevant2true,i) (3.18)Sine this omplexity is a seond-order polynomial expression over relevanttrue,i, omplexitywill inrease, for deision nodeDi, as observations are made until relevanttrue,i = −(relevanti)
2·(−1) =

relevanti

2 . After this point omplexity will derease until relevanttrue,i = relevanti where noimputations are needed. For this reason relevanttrue,i is substituted by relevanti

2 when ex-pressing worst ase omplexity. Now the number of times that Eulidean distane must bealulated, in the entire Imputing by Comparison algorithm, an be seen in Equation 3.19.
O

(

(n − 1) · |D|max ·

(

relevantmax

1
· relevantmax −

(

relevantmax

2

)2
))

m

O
(

n · |D|max · relevant2max

)

(3.19)The omplexity of Eulidean distane alulations is not onstant, but linear in the size ofthe state spae of the hypothesis variables. As the hypothesis variables are the parents of theutility nodes, the size of their state spae is the number of utilities in the domain. MakingImputing by Comparisons worst ase time omplexity O
(

utilities · n · |D|max · relevant2max

).3.4.4 SummaryThis leads to the onlusion that this method may be a viable alternative to FLUF. The impatof the inauraies that may be introdued by imputing wrong observations and the extentto whih the inauraies are reinfored, annot be predited at this point. The auray ofthis method should grow with the number of observations made, sine less imputations will beneessary and a better foundation for imputations will be available, but to get a better ideaabout the speed at whih this auray will inrease experiments must be onduted.42



3.5. Conlusion3.5 ConlusionIn this setion results about the auray and omplexity of the proposed methods from Se-tions 3.4 and 3.3 are brie�y summarized. First the new imputing method's di�erenes omparedto FLUF are summarized.3.5.1 Imputing ompared to FLUFThere are two big di�erenes between the two imputing methods and FLUF. The �rst isthat FLUF is an adaptive learning tehnique, hanging its feasible spae every time a newobservations is made, while the two new imputing methods are bath learning tehniques,storing new observations in the set of true observations and when making preditions evaluateall the true observations. The seond di�erene is the way partially observed strategies arehandled. As desribed in Setion 2.4 FLUF handles partially observed strategies by reatingrelaxed onstraints, while the two new imputing methods handle partially observed strategiesby imputing the needed observations to view the strategy as fully observed.What the imputing methods have in ommon with FLUF is the feasible spae, and the oneptof reating onstraints in this spae when observations are made. The methods also share thebasi way that onstraints are reated, namely that the expeted utility of observed deisionsmust be larger than the expeted utilities of their alternatives. The way a utility point ishosen in the FLUF method, i.e. the enter of the largest possible hypersphere, is also used inthe imputing methods.3.5.2 AurayFor the imputing methods to be viable utility learning methods they should beome moreaurate over time, i.e. the number of deisions predited orretly and expeted utility shouldinrease with the number of observations. Both analysis have shown that inauraies imposedduring exeution does not seem to be reinfored, implying that auray will inrease as moreobservations are evaluated, making both methods usable. To on�rm this result and to betterdetermine the auray of the two methods, experiments will be onduted.3.5.3 ComplexityThe only di�erene between the two new methods is in the way imputing is done. This stillleads to signi�ant di�erenes in worst ase time omplexity, where for Utility Iteration itis O
(

obs · relevantmax · n2 · nodesstates
) while for Imputing by Comparison algorithm it is

O
(

utilities · n · |D|max · relevant2max

). So in some domain, as the number of observationsinrease, Utility Iteration will beome slower relative to Imputing by Comparison. The atualspeed of the methods annot be determined at this point, but the worst ase time omplexitiesindiate that the Utility Iteration algorithm will be more sensitive to inreasing state spaesof nodes.
43



Chapter 3. Imputing

44



CHAPTERFOUR
Dynami DomainsThe two imputing methods and FLUF are basially designed to determine the utilities of anagent that does not hange its behavior. Two di�erent poliies, for handling agents that hangebehavior over time, were designed as extensions for FLUF in Hansen et al. (2004) (these arebrie�y desribed below in Setion 4.3.2). In this hapter the ways in whih agents an hangebehavior and di�erent approahes to handling hanging behavior, in Utility Iteration andImputing by Comparison, are disussed.When modeling the behavior of an agent that does not hange its behavior, an in�uenediagram an be onstruted where the hoies made by the agent orresponds to maximizingexpeted utility. Sine the agent does not hange behavior, then one the in�uene diagramdesribes its behavior orretly, it an be used to predit the agents hoies and updatingthe diagram should never be neessary. A domain modeling an agent that does not hangebehavior is alled a stati domain, and the behavior of the agent is alled stati as well.When modeling the behavior of an agent with hanging behavior, then even though an in�uenediagram may be onstruted where the urrent strategy of an agent orresponds to maximizingexpeted utility in the in�uene diagram, the agent an hange its strategy over time suh thatthe in�uene diagram must be updated as well, to keep desribing the agents behavior orretly.A domain is alled dynami if the agent being modeled an hange its behavior, aording tothe de�nitions below. The behavior of an agent in a dynami domain is alled dynami as well.To enable Imputing by Comparison and Utility Iteration to handle dynami domains, methodsfor handling inonsistent observations, inurred by hanging behavior, are desribed in Setions4.3 and 4.4. Before these methods are presented, the di�erent ways in whih the agent'shanging behavior an be modeled is analyzed.4.1 Types of Dynami DomainsTo help design methods for spei� kinds of behavioral hanges, three di�erent ways in whihan agent an hange its behavior are desribed. A good method for handling one kind ofbehavioral hanges may not work for other kinds. Under the assumption that the ausalitiesand probabilities in the domain, as the agent pereives them, are known and do not hange,then hanging behavior an be expressed as a hanging utility funtion. Below, the three ways45



Chapter 4. Dynami Domainsof viewing hanging behavior are desribed in terms of a utility point in the utility spae,i.e. the point desribing all utility values in the domain.DriftOne way of viewing hanging behavior is as drift. This means that the utility values arehanging ontinuously. This kind of dynami behavior an be seen as the utility point of theobserved agent drifting around in the normalized region, whih is also why it is alled drift.Drift does not neessary to maintain its speed and diretion, meaning that over time the driftingof the utility point an slow down or hange diretion. Changing behavior is ategorized asdrift when the strategy of the agent hanges slowly and gradually, in the sense that the strategymay hange often but only with respet to a few poliies at the time. An example of drift ouldbe if the utilities in the in�uene diagram are modeling the prie of some goods, and thesepries hange over time. The pries may inrease or derease thus making the utilities driftaordingly over time.FlutuationChanging behavior ould be viewed as �utuations, where �utuations are radial hangesintrodued into the in�uene diagram. Flutuations an introdue major and sudden shiftsin the expeted utility for the domain, hanging the observed agent's strategy. With regardsto the utility point of the observed agent, this orresponds to the utility point jumping fromone position in the normalized region to a ompletely di�erent position independent of the�rst. Changing behavior is ategorized as �utuating when the strategy of the agent anhange radially, in the sense that a large number of poliies in the agent's strategy hangesimultaneously.NoiseThe last way to view hanging behavior introdued here is noise. Noise is not a hange in thedomain like drift and �utuation. Instead noise is unforeseen interferene not modeled in thedomain and introdued by soures outside the domain, e.g. reording or reading inorretly ina database of observations. Even though the utility point of the observed agent is not hangedby noise, it may appear to have done so. Changing behavior is ategorized as noise when thestrategy followed by the agent in a single observation deviates from the strategy followed inprevious observations, only to return to the strategy followed in previous observations againin subsequent observations. An example of noise ould be interferene with a humidity sensorresulting in a low reading, this would result in a hane node showing a wrong state. Noisean a�et more than one node however, and it may a�et deision as well as hane nodes.The three di�erent types of dynami behavior presented here are not the only ways to ategorizedynami behavior. However, these are the only kinds of dynami behavior onsidered in thisprojet, and dynami behavior will be lassi�ed aording to the three ategories.4.2 Con�it HandlingThis setion desribes the di�erent poliies for on�it handling in FLUF, Imputing by Compar-ison and Utility Iteration. The main idea behind on�it handling is to remove the onstraints46



4.2. Conflit Handlingausing the on�it, these are termed the guilty onstraints. When a on�it ours, the on-straints onsidered guilty will depend on how the dynami behavior of the agent has beenategorized. In ase of drift and �utuations the oldest onstraints will be onsidered guilty,while in ase of noise the newest onstraint is onsidered guilty. This means that the order inwhih the observations are evaluated are no longer insigni�ant.If a domain ontains both drift and �utuation on�it handling an still be done, sine thetwo kinds of dynami behavior will haraterize the same set of onstraints as guilty. But if thedomain ontains noise along with either drift or �utuations, then hoosing whih onstraintsare guilty beomes harder, beause the guilty observation would be the newest in ase of noisebut the oldest in ase of drift or �utuation. One way to determine whih onstraints are guilty,assuming that an expeted frequeny of noise is given, would be, when on�its our, to viewnew onstraints as being guilty as long as less on�its our than suggested by the expetedfrequeny of noise. When more on�its start ourring it would be a sign that some sortof drift or �utuation had taken plae, and old onstraints should then be onsidered guilty.However the frequeny of noise is not always known, and in this projet domains with noiseare assumed to show no other kind of dynami behavior.Two more limitations to the on�it handling poliies for Imputing by Comparison and Util-ity Iteration should be noted. First, the imputations in both the methods may be a�etedby on�iting observations making them less aurate, this problem ould in part be solvedby extensive baktraking, as demonstrated in Appendix B, but to keep the on�it handlingpoliies operational no modi�ations are made to handle imputing inauraies. Furthermore,as shown in Setion 3.1.1, inaurate imputations may lead to on�its, and on�its inurreddue to inaurate imputations should ideally be handled di�erently than on�its that ourdue to dynami behavior, however sine there is only one way to detet that a on�it o-urs, namely that the feasible spae beome empty, no method has been developed to tell thedi�erene.Furthermore, as an alternative to the deletion poliies, a poliy alled the onstraint relaxationpoliy is developed, that an be used to handle on�its that our in domains ontaining driftand/or �utuations. The poliy is based on relaxing onstraints when on�its our, so itwould not be suitable for handling noise as it would relax all onstraints, thereby reduingtheir auray, even though only one onstraint was guilty. The noisy onstraint would stillbe present in the feasible spae after this relaxation, adding further to any inauraies andinreasing the risk that further relaxation will be neessary when new observations are made.Sine Imputing by Comparison and Utility Iteration reate onstraints in the same way andorder, they will have the same on�it handling poliies and are therefore desribed in the samesetion. In the following setions di�erent on�it handling poliies are desribed, four poliiessuitable for on�its aused by drift and �utuations and one poliy suitable for handlingon�its introdued by noise are desribed in the following.
• Drift and Flutuation� A deletion poliy for Imputing by Comparison and Utility Iteration� Two deletion poliies for FLUF� The onstraint relaxation poliy, suitable for FLUF, Imputing by Comparison andUtility Iteration
• Noise� A deletion poliy for Imputing by Comparison and Utility Iteration47



Chapter 4. Dynami Domains4.3 Drift and FlutuationIn this setion poliies are desribed for Imputing by Comparison, Utility Iteration and FLUF,that an be used when on�its our in dynami domains. The poliies in this setion aredesigned to handle on�its that our due to dynami behavior ategorized as either drift or�utuation. The reason why these types of dynami behavior are desribed together, is thatthey both assume that the older observations are, the less likely they will be to onform tothe urrent strategy. Therefore the poliies desribed below an be applied to both kinds ofdynami behavior.Before these are presented a design issue, that in�uene on�it handling inboth methods, is disussed, namely the oarseness with whih onstraints should be removed.In Imputing by Comparison and Utility Iteration the methods maintain a set of true obser-vations, unlike FLUF where a set of onstraints is maintained instead. The two methods,Imputing by Comparison and Utility Iteration, still onstrut a set of onstraints, but everytime a new observation is made, the onstraints reated earlier are deleted so that a new setan be onstruted. The goal of the on�it handling poliies desribed below, is to resolveon�its by removing the oldest onstraints that on�it along with the observations they be-long to. The reason why the entire observation is removed, is that if one of the onstraints itadds an ause a on�it, then either drift or �utuation has aused the poliy to hange forone or more of the deision nodes in their observed relevant pasts. At the time the observationthat auses the on�it was made, the observed agent must have been using a di�erent utilityfuntion than the urrent utility funtion, due to the drift or �utuation that has ourredsine then. So even though only one onstraint on�its, then the other onstraints addedby the observation may still be inorret, i.e. the urrent utility values of the agent annot bedesribed by those onstraints, and if they are not removed their inorretness will a�et whihutility point is hosen. Also, the observation that is based on an obsolete utility funtion, willontinue to a�et the imputations if only the onstraint is removed.As mentioned, the methods desribed here will remove entire observations, to ensure thatinauraies are redued. Alternatively the extent of these removals ould be limited to reduethe number of onstraints deleted, e.g. by only removing onstraints added based on the samedeision node in the same observation. However, due to limited time available for this projet,this alternative is not explored.Another way of reduing the amount of observations removed, would be to use the method fromFLUF, mentioned in Innoent Until Proven Guilty (Setion 4.3.2), for �nding the onstraintsthat make the spae empty. When these onstraints are found the orresponding observationsould be termed guilty. Unfortunately this approah would not work, sine all onstraintsadded by Imputing by Comparison and Utility Iteration will be based on a fully observedstrategy, and any onstraint based on a fully observed strategy will interset with all points inthe feasible spae that desribe the trivial utility funtion (the diagonal). In Appendix A it isproven that onstraints reated in domains with fully observed strategies will always intersetthe diagonal, and this will be the ase in Utility Iteration and Imputing by Comparison sinethey impute the needed observations to make the strategy fully observed. With all onstraintsinterseting eah other in the diagonal, then all onstraints would be termed guilty if themethod used by FLUF in the Innoent until Proven Guilty poliy was adopted.4.3.1 Drift and Flutuation in Imputing by Comparison and UtilityIterationThe approah used in Imputing by Comparison and Utility Iteration examines all observationsin parallel, in the sense that all observations are examined with respet to deision node Di48



4.3. Drift and Flutuationbefore any observation is examined with respet to deision node Di−1. Therefore it is likelythat an observation will have added several onstraints by the time it is disovered to be aon�iting observation, and these onstraints will not neessarily have been added reently.As observations are examined in parallel the guilty observation should not neessarily be de-termined to be the one in whih the on�it was disovered. While removing the on�itingobservation will resolve the on�it immediately, but over time this approah may ause manyaurate observations to be removed that did not have to. Under the assumption that the dy-nami behavior in the domain an be ategorized as either drift or �utuation, then to resolvea on�it the method used works muh like the Always Guilty poliy in FLUF. Here observa-tions are deleted one at the time aording to age, suh that the oldest observation is removed�rst along with its onstraints, and removal of observations ontinue until the feasible spaebeomes non empty. Using this approah, then in the worst ase the observation in whih theon�it was disovered and all older observations will be deleted.With O being the set of true observations, ordered by age suh that o1 is the newest observationwhile om is the oldest, where m is the number of true observations in O. Letting C be theset of onstraints added to the feasible spae, then Algorithm 4.3.1 desribes how on�itsare handled by this poliy. The algorithm is run no di�erently if more deisions have beenevaluated in some observations than in others, e.g. if the �rst ten observations have beenevaluated with respet to one more deision node than all other observations when a on�itours, that would have no impat on the algorithm.Algorithm 4.3.1
• From k = m to 1� Remove all onstraints added by ok from C, and ok from O� If C desribes a non empty spae

∗ then halt this algorithm4.3.2 Drift and Flutuation in FLUFFLUF's on�it handling poliies are designed to handle drift and �utuation. The poliiesare alled Always Guilty and Innoent until Proven guilty. The experiments in Hansen et al.(2004) showed that the two poliies performed equally well when the domain drifts, and thatthe Always Guilty poliy reovers from a �utuation fastest.Always GuiltyIn the Always Guilty poliy the onstraints are removed in the order they were added. When anew onstraint is added whih makes the feasible spae empty, the oldest onstraint is deleted,if the feasible spae is still empty the seond oldest onstraint is also deleted and so on. Thisway the oldest onstraints are deleted until the feasible spae beomes non empty. Many ofthe deleted onstraints may not have aused the on�it but nevertheless they are deleted. Infat it is only ertain that the last of the deleted onstraints was guilty. The argument fordeleting this many onstraints, is that sine the domain has either drifted or �utuated sinethe guilty onstraint was added, then all onstraints added before the guilty would, just likethe guilty onstraint, have been added based on observations of an agent using a strategy thatis now obsolete. 49



Chapter 4. Dynami DomainsInnoent Until Proven GuiltyThe Innoent until Proven Guilty poliy removes a minimal amount of onstraints, by onlyremoving onstraints that atually ause the feasible spae to beome empty. To determinewhih onstraints ause the spae to beome empty, orresponds to determining whih on-straints make the radius of the largest possible hypersphere in the feasible spae to beomezero. This set of onstraints an be found using the method for �nding the largest possiblehyper sphere, as desribed in Setion 2.5. If the spae is empty, the largest possible sphere willhave a radius of zero, but the method will still alulate the enter of this sphere. Finding theonstraints that aused the spae to beome empty an now be done in linear time, by enteringthe oordinates of the determined enter into eah onstraint, then the onstraints that equalszero are the �guilty� onstraints. These guilty onstraints are removed one at the time, theoldest being removed �rst. Eah time a onstraint is removed the hypersphere is realulated,and only if the radius is still zero the next onstraint is removed.4.3.3 The Constraint Relaxation PoliyThe on�it handling poliies desribed so far are based on deletion of observations and on-straints, however the onstraint relaxation poliy relaxes onstraints instead. This on�ithandling poliy is developed espeially with drift in mind. Beause onstraints beome lessreliable the older they grow, they ould be relaxed as they grew older to retain some reliability.The poliy is based on an idea from the future work setion in Hansen et al. (2004), whereit is suggested that relaxing onstraints ould be done by adding a onstant that grows eahtime a new observations is made, in an attempt to avoid on�its inurred by drift. Sine allonstraints are on the form f(x) > 0 adding a positive onstant, f(x) + c > 0, would inreasethe spae spanned by that onstraint. As c would gradually beome larger, eventually theentire normalized region would be a subspae of the spae spanned by the onstraint, at whihpoint the onstraint would be obsolete and ould be removed.Using this poliy on�its will rarely our, sine eah time a new observations is made, theonstraints from all other observations will have been relaxed. Sine all old onstraints havebeen relaxed at least one, only the newest onstraint will interset the diagonal, ensuring thata hypersphere with a radius larger than zero an always exist near the diagonal. There is oneexeption to this rule, namely if the new observation on�its with itself, whih is possibleif imputations are inaurate. In this situation, the new onstraint should be deleted, as isordinarily done in the imputing methods when imputations ause on�its.A result of using onstraint relaxation to avoid on�its, is that when on�its are avoided byrelaxing onstraints, the valid onstraints will not be deleted but instead have their in�ueneon the utility point diminished. It is likely that new onstraints will at some point make theolder onstraints super�uous, as at some point the relaxed onstraint may span a super spaeof the feasible spae. This e�et is desirable in �utuation as well as drift.In this projet, instead of adding a onstant in the onstraint relaxation poliy, the oe�ientsin the onstraints are hanged instead, so that the onstraints will still be relaxed but willalso ontinue to interset with the origin. This is beause translating onstraints by addingonstants will have an unwanted impat on the feasible spae. When onstraints are reatedin FLUF, Utility Iteration or Imputing by Comparison, they desribe a relationship betweenexpeted utilities, suh as v1 < v2. Sine multiplying all utilities with the same positiveonstant would yield the exat same strategy, then onstraints with onstants added (f(x)+c >

0), would allow all ombinations of utility values, as long as all values are less than c, therebydesribing all strategies. For this reason, then instead of translating onstraints they are rotated50



4.3. Drift and Flutuationaround the origin, in a diretion suh that they desribe an inreasing part of the normalizedregion, until they desribe the entire region at whih point they an be deleted.The Aguilera-Peréz algorithm, presented in Aguilera and Peréz-Aguila (2004), is one possibleapproah for rotating the onstraints that has been onsidered. By providing the Aguilera-Peréz algorithm with a (n− 2) dimensional subspae to rotate around and an angle to rotate,a set of points su�ient to extrapolate the new position of the onstraint ould be alulated.The advantage of using a poliy suh as this, would be that the speed at whih onstraintsrotate ould be ompletely ontrolled, e.g. at �ve degrees in every rotation. Furthermore, theAguilera-Peréz algorithm is designed suh that a set of transformation matries are alulated,and one suh a matrix is alulated for a onstraint it ould be used every time the onstraintwas to rotate. Sine the omplexity of alulating suh a matrix is polynomial in the numberof dimensions (n2), the algorithm ould be onsidered operational. Rotating the hyper planesthat de�ne the onstraints aording to the Aguilera-Peréz algorithm would mean that theonstraints are relaxed equally for all the utility values. This would be desirable as no partiularutility value is andidate for more relaxation than others.However, no method has been found to alulate the subspae that should at as the rotationaxis, and sine implementation of suh a method along with the Aguilera-Peréz algorithmwould be a time onsuming task, a simpler but less elegant method is used.As onstraints are reated from ρD(δD) > ρD(d) it would be possible to relax the onstraint byeither dereasing the oe�ients of ρD(d) or inreasing the oe�ients of ρD(δD). This wouldinrease the di�erene between the two ρs and make it easier to satisfy the onstraint. Suha relaxation would express a dereasing on�dene in the relationship between the expetedutility of the hosen deision (δD) and the alternative hoie (d). When relaxing like this, itwould be hard to ontrol how fast the onstraint should span the entire normalized region,therefore the relaxation is done by onsidering the utility oe�ients of ρD(δD) − ρD(d) > 0.This will have a set of positive as well as a set of negative oe�ients. The spae desribed bya onstraint an be inreased by inreasing the negative oe�ients, until all the oe�ientsare non negative at whih point the onstraint will desribed the entire normalized region. Aslong as at least one oe�ient is negative the onstraint will exlude a part of the normalizedspae, e.g. by subtrating a tenth of the original value of eah negative oe�ients from thatoe�ient every time rotation is done, then the onstraint would desribe the entire normalizedregion after ten rotations.The onstraint relaxation poliy would have to be implemented di�erently in FLUF and theimputing methods, sine FLUF maintains a set of onstraints while the imputing methodsmaintain a set of observations instead. Using this poliy in FLUF, Algorithm 4.3.2 would haveto be exeuted every time onstraints are reated by a new observation. C denotes the set ofonstraints established so far, and cnew denotes the new onstraints being added.Algorithm 4.3.2
• Relax all onstraints in C

• Remove any onstraint that desribes the entire normalized region
• Add cnew to CUsing the onstraint relaxation poliy in Utility Iteration or Imputing by Comparison, Al-gorithm 4.3.3 would have to be exeuted every time a new observation is made. In the al-gorithm O denotes the set of true observations and onew denoted the new observation that isnot yet part of O. Eah observation should have an age attahed, suh that when onstraintsare reated for that observation they an be relaxed aording to this age. factor denotes51



Chapter 4. Dynami Domainsthe speed at whih onstraints are to be relaxed, e.g. with a factor of 10 a onstraint woulddesribe the entire normalized region after 10 relaxations.Algorithm 4.3.3
• Inrease the age of all observations in O by 1

• Remove any observation in O with an age above factor

• Add onew with an age of 0, to OThis poliy has a time omplexity linear in the number of dimensions making it operational.Furthermore, the poliy allows for easy ontrol of how many rotations needed before a on-straint beomes obsolete. The downside of this poliy is that the onstraint may be relaxedfaster with respet to some utilities than others.4.4 NoiseIn this setion it is disussed how noise an be handled by Imputing by Comparison and UtilityIteration. When noise is the only dynami behavior that an our in the domain, the newlyentered observation will generally be onsidered guilty, when on�its our. The argumentis that if an observation ontains noise, it will most likely ause a on�it immediately, atleast when there is a large set of true observations already. However, a noisy observationmay only on�it with a few and rare on�gurations of relevant pasts, and perhaps none ofthese have been observed before the noisy observation, in whih ase it will not ause a on�it.Furthermore, if a noisy observation is made before a large set of true observations is established,then it may not ause a on�it immediately. Therefore any poliy designed to handle on�itsin domains ontaining noise should not immediately assume that the new observation is guilty.Therefore this poliy removes the onstraints added by di�erent observations, when on�itsour, to see whih observation is guilty. Constraints are only removed for one observation atthe time, and if that does not solve the on�it they are reinserted. So this will, in the worstase be done one for eah observation from whih onstraints were added before the on�itourred. One an observation is found that solved the on�it if removed, it is removed fromthe set of true observations.Using this approah the order in whih observations are removed to see if the feasible spaebeomes non empty, is very important. The poliy for handling on�its aused by noisy ob-servations uses both an oldest �rst approah and a newest �rst approah, in an attempt toremove noisy observations without removing large numbers of non-noisy observations. It is im-portant to note that when a on�it our during exeution of either Imputing by Comparisonor Utility Iteration, the on�it is resolved using either the oldest or newest �rst approah,and then the exeution ontinues. Meaning that the set of onstraints is maintained, withexeption of the newly removed onstraints, and exeution does not start over.Algorithm 4.4.1 gives an overview of how on�its are handled in a domain that ontains noise.The two approahes, oldest �rst and newest �rst are desribed below. Every time a on�itsours, a ounter is inremented, this ounter is used to keep trak of the number of on�itsthat have ourred, it is alled conflicts and is initially set to zero. Initially the oldest �rstapproah is used to solve on�its, but when conflicts reahes a predetermined limit (limit),the newest �rst approah is used instead. Now every time on�its our in a domain withnoise, Algorithm 4.4.1 is run.Algorithm 4.4.1
• If conflicts < limit 52



4.4. Noise� then Inrement conflicts by one, and run the oldest �rst algorithm� Else Run the newest �rst algorithm4.4.1 Oldest FirstBeause noise may not ause on�its immediately, the �rst set of onstraints to be removedare those added by the oldest observation, from whih onstraints ould solve the on�it ifremoved. If onstraints have already been added for the last deision node in all observationswhen the on�it ours, the oldest of all true observation would be the one examined �rst. Ifit annot solve the on�it then the seond oldest is examined and so on. If not before, thenthe on�it will be resolved when the turn omes to the observation in whih the on�it wasdisovered.Doing this the �rst time a on�it ours ensures that if the newest observation is not noisybut a noisy observation previously has gone undeteted. If the new and the noisy observationson�it, the noisy observation will be deleted. There is a risk that inaurate imputationsould result in the new observation also on�iting with a seond non noisy observation, inwhih ase the two non noisy observations may on�it, sparing the atual noisy observation.For this reason it ould be onsidered if this oldest �rst approah should be used more thanfor just the �rst on�it, i.e. limit should be greater than 1. Inreasing the number of timesthe oldest �rst approah is used will inrease the likelihood that noisy observations, alreadyadded to the set of true observations, will be removed. The trade o� for inreasing the numberof times the oldest �rst approah is used, is that if the new observation is noisy then it willause more orret observations to be deleted and there will be an inreased risk that the noisyobservation will be allowed to remain in the set of true observations.Due to the fats that the frequeny with whih inaurate imputations will ause on�its andthe frequeny of noise is domain spei�, the number of times (limit) the oldest �rst approahis best used will also be domain spei�.The oldest �rst approah should be implemented as Algorithm 4.4.2, where O denotes the setof all true observations and the di�erent observations are denoted (o1, · · · ,om) where there are
m observations in O and om is the oldest observation. Finally C denotes the set of onstraintsadded before the on�it ourred.Algorithm 4.4.2

• For k = m to 11. Remove the onstraints added by ok from C2. If C desribes the empty spae� then insert the removed onstraints from ok into C again� Else remove ok from O, and halt this algorithm4.4.2 Newest FirstAt some point, when the oldest �rst approah has been used a predetermined number of times(limit) and on�its keep ourring, it is assumed that the new observation is the one ausingthe on�it. At this point the newest �rst approah is used instead. Using the newest �rstapproah, the newest observation is examined by removing its onstraints to hek if the on�itis resolved, and only if this is the ase the observation will be deleted. As the set of observationsdid not on�it before the new observation was made, removing it will most likely resolve the53



Chapter 4. Dynami Domainson�it. If removing the newest observation does not resolve the on�it, then the on�it isourring beause the new observation is ausing di�erent imputations, and these imputationsare ausing the on�it. As an be seen in Setions 3.3 and 3.4, these situations are handled byremoving the observation in whih the on�it was disovered. This is also done in the newest�rst approah, when removing the newest observation does not solve the on�it.The algorithm for the newest �rst approah is shown in Algorithm 4.4.3, where the samenotation is used as in Algorithm 4.4.2. Furthermore, let oconflict be the observation where theon�it was disovered.Algorithm 4.4.3
• Remove the onstraints added by o1 from C

• If C desribes the empty spae� then insert the removed onstraints from o1 into C again� Else remove o1 from O, and halt this algorithm
• Remove the onstraints added by oconflict from C

• Remove oconflict from O
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CHAPTERFIVE
ExperimentsTo evaluate the Imputing by Comparison and Utility Iteration methods, desribed in Setion 3.3and Setion 3.4, several experiments have been onduted. These experiments were ondutedto examine how well the imputing methods estimates utility funtions, in stati as well asdynami domains.The methods have been evaluated with regard to two di�erent aspets: speed and auray .Speed is measured in the number of observations, so a method that reahes a higher level ofauray with fewer observations is onsidered fast. Auray is measured in three di�erentways. The �rst is omparison of expeted utility of the predited strategy using the real utilityvalues. The purpose of this measurement is to evaluate whether the hoies predited bythe method would yield good deisions. This would be interesting when determining if themethod should be used in some advisory role. The seond measure of auray is how frequenta single deision is predited orretly. This measure will be the fration of the relevantpast on�gurations where the method's estimated utility funtion would result in the samedeision as the agents real utility funtion (ignoring those relevant pasts that annot our).As likely on�gurations of the relevant past are not given any greater weights than unlikelyon�gurations, this indiates how well the method predit on�gurations that has only beenobserved a few time, if at all. To determine how aurately the method performs in general,a third measure is used where the preditions are weighed based on eah on�guration of therelevant past's probability of ourring. Measuring the auray of predition for eah deisionwould be interesting in a senario where the observed agent is some sort of opponent, e.g. ifthe appliation using one of the methods should try to ounter the ation that the observedagent is about to make.The weighed auray of prediting a deision node is alulated with Equation 5.1, where

correctD(past(D)) is one when the method is able to predit whih hoie the agent wouldmake for deision D given the relevant past past(D), and zero otherwise. If a deision node isa part of the relevant past, it is replaed with a deterministi hane node that have the samestate spae as the deision node, and enters the state that orresponds to the hoie the agentwould make.
∑

past(D)

(

P (past(D)) · correctD(past(D))
) (5.1)The unweighed auray of prediting a deision is alulated with Equation 5.2 where |past(D)|55



Chapter 5. Experimentsis the number of possible on�gurations of the relevant past. Con�gurations that have zeroprobability are not inluded in this measurement.
∑

past(D)

(

correctD(past(D))
)

|past(D)|
(5.2)Rather than just omparing the two imputing methods against eah other, the experimentswill also be onduted using FLUF. This will make it possible to evaluate whether the newmethods are improvements ompared to FLUF.FLUF works with a onstraint removal poliy to handle on�iting observations. The exper-iments in Hansen et al. (2004) revealed that between the �Always Guilty� and the �InnoentUntil Proven Guilty� poliies there was only minor di�erenes in auray, with the exeptionof handling �utuations in the utility values, in whih ase the �Always Guilty� poliy reoveredfaster. For that reason experiments with FLUF in this projet was only onduted using the�Always Guilty� poliy. See Setion 4.3.2.The omparison between FLUF and the new methods is slightly uneven, as FLUF only keepsonstraints whereas the new methods keeps observations and rebuilds the onstraints for eahpredition. This means that the new methods will use more spae and be somewhat slower(in terms of exeution time) than FLUF. To make the omparison more even and to redueexeution time and use of spae, the methods will only use a number of the newest observationsto reate onstraints, the number of observations hosen is alled window size. The windowsize in these experiments has been hosen to be 100, foring the methods to disard theiroldest observations if they at any point have more than 100 observations, thus limiting thenumber of observations and thereby also the number of onstraints being used. As FLUFremoves onstraints when on�its our all the onstraints derived from one observation mayeventually be removed, in whih ase that observation is onsidered as being removed.5.1 DomainThe in�uene diagram used in the initial experiments is the same as used in Hansen et al.(2004) and is shown in Figure 5.1, the nodes have the number of states shown in Table 5.1.Node Number of states

A 4
OM 4
OQ 4
M 4
Q 4
M∗ 4
H 7
OH 7
T 3Table 5.1: Number of statesThe utility values in node C are generally lower than those in node U . The reason for this is thatdeision node A ould otherwise be ditated by utility node C, regardless of the on�gurationof the relevant past of A. With the hosen utility values the deision that yields the maximumexpeted utility in deision node A hanges depending on the on�guration of the relevant pastof deision node A. 56



5.2. The Experiment Program
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Figure 5.1: In�uene diagram for experiments5.2 The Experiment ProgramThe program used to perform the experiments on FLUF is the program develop in Hansenet al. (2004), with minor modi�ations. The library for solving linear inequalities is replaedby lp_solve (Berkelaar et al., 2005) due to a simpler interfae. The implementation of FLUFis also extended to allow the use of the onstraint relaxation poliy for on�it handling, asdesribed in Setion 4.3.3. The two methods Utility Iteration and Imputing by Comparison isimplemented as designed in Setions 3.3 and 3.4, inluding on�it handling poliies, desribedin Setion 4.2, for drift/�utuation and noise along with the onstraint relaxation poliy. Tohandle the probabilisti networks Hugin Researher from Hugin Expert A/S (A/S, 2004) isused.With regard to exeution time of the methods, FLUF is the fastest of the three in the originaldomain, but when the domains inrease in size, FLUF derease signi�antly in speed, (seeSetion 5.3.6). Naturally the exat time spent by eah method will depend on the system onwhih the experiment is onduted. The exeution times presented here were running on a
1.6 GHz Pentium M laptop. Experiene have shown that Utility Iteration is almost as fastas FLUF in all experiments on the original domain. FLUF generally took just less than 30minutes per 200 observations while Utility Iteration took just above 30 minutes. With regard toImputing by Comparison, it took about two and a half hours per 200 observations in driftingdomains, beause several on�its our and observations are removed as a result, as laterresult will show, this is fast. Reall that the worst ase time omplexity of the Imputing byComparison algorithm was polynomial in the largest number of possible on�gurations of therelevant past, in the domain, as shown in Equation 3.19, beause the method grows moreomplex as more observations are entered, until the number of observations equals #relevanti

2 .Sine a window size has been introdued into the algorithm the omplexity is redued to
min(windowsize, relevanti

2 ), this is a signi�ant derease with respet to deision T , whih hasa relevant past of size 448. In spite of this redution the Imputing by Comparison is very slowwhen observations are not regularly removed due to on�its, whih is the ase in the statidomain, single �utuation and noisy observations experiments. In these experiments eah runwith 200 observations took 10 hours to omplete using the Imputing by Comparison method,while using Utility Iteration and FLUF it took less than 40 minutes per 200 observations.57



Chapter 5. Experiments5.3 The ExperimentsIn this setion the experiments themselves are presented. Di�erent senarios have been de-veloped in order to test the methods under di�erent irumstanes. The senarios are de-veloped to represent a wide range of di�erent possible situations where methods like FLUF ,Imputing by Comparison and Utility Iteration ould be used. Senarios with both dynami andstati behavior are hosen. In the experiments dynami behavior is ategorized as either drift,�utuation or noise as desribed in Chapter 4. To ahieve reliable mean values and varianeall experiments are run 10 times, and all experiments are performed with 200 observations ineah run. Sine the window size is only 100, then if the methods onverge toward some meanvalues, they will do so before all 200 observations have been evaluated.A number of experiments are onduted with the domain desribed in Setion 5.1. The �rstexperiment presented is onduted with a stati domain. Then experiments are done on di�er-ent kinds of drifting domains. Finally experiments with two kinds of �utuation are presentedfollowed by an experiment with a domain ontaining noise.After these initial experiments have been presented, an experiment is presented where thedomain has been slightly altered, to examine spei� properties of the methods.All results from the experiments are shown in Appendix D, and in this hapter only seletedresults are shown.5.3.1 Experiment One - Stati DomainIn this experiment the domain is stati, meaning it does not hange between the observations.The experiment serves as a baseline for how well the methods perform with regard to bothauray and speed. Utility values have been hosen for the stati domain suh that di�er-ent deisions should be made given di�erent relevant pasts, when following the strategy formaximizing expeted utility.Even though the setup may seem simple it must be onsidered realisti. An example of suha situation ould be something as buying o�e supplies as long as the pries does not hange.ResultsThe expeted utility of the methods an be seen in Figure 5.2. FLUF starts with an expetedutility of 0.86 but rapidly inreases and reah 0.98 after 22 ases. FLUF does not improveafter that. Utility Iteration and Imputing by Comparison starts with expeted utilities of 0.87and reahes 0.99 after 34 and 32 ases respetively. All methods have variane of less than 0.01after the �rst 20 observations and throughout the remaining training ases.For deision A FLUF starts with an auray of 0.6 and after only 2 training ases predits0.8 orretly (weighed). Unweighed the results are lower by approximately 0.03-0.05. UtilityIteration starts almost identially to FLUF but ontinues to inrease its auray until 35training ases have been entered. After that it has an auray between 0.97 and 1 throughoutthe remaining observations. When onsidering unweighed predition, it takes Utility Iteration30 additional training ases to reah the same level of auray. Imputing by Comparisonbehaves identially to Utility Iteration, exept that after the �rst 60 observations Imputingby Comparison's auray remains about 0.02 below that of Utility Iteration, but only withregard to unweighed preditions.For deision T FLUF starts with prediting 0.65 (weighed) orretly and reahes 0.98 after58



5.3. The Experiments50 ases. Utility Iteration starts at 0.7 and reahes 0.98 after 53 ases, but does, on average,predits more aurately than FLUF. The auray of Imputing by Comparison starts at 0.64and reahes 0.98 after 39 ases. After they reah 0.98 all methods maintain that auray.After 39 ases the variane of Utility Iteration and Imputing by Comparison dereases to 0.01whereas FLUF does not reah that until after 71 ases. When onsidering deision T unweighedthe methods performs almost equally well. They start with little more than 0.5 orret andreah 0.9 after 20-30 ases. They inrease slowly after that but none of them inrease above0.98.ConlusionIn general it must be said that Utility Iteration and Imputing by Comparison performs equallywell, and that they both are faster and more aurate than FLUF for stati domains. Thehigher level of auray that Utility Iteration and Imputing by Comparison reahes is mostapparent for deision A, and the better expeted utility must be attributed to that. FLUFannot predit deision A as preise as Imputing by Comparison and Utility Iteration due tothe fat that FLUF uses relaxations to reate the onstraints for the partial observed domain.These relaxations indue inauraies in the hosen utility point used to explain deision A (seeSetion 2.7). Imputing by Comparison and Utility Iteration are both more preise at preditingdeision A an it be onluded that, for a stati domain, imputing is a better method than therelaxation tehniques of FLUF.
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Chapter 5. Experimentsof the agent may hange, and it may happen again later as time progresses. But at some point,as the utility values ontinue to drift in the same diretion, the strategy of the agent will nothange anymore. It should be noted that this point is not reahed within the 200 observationsinluded in the onduted experiments.The utility values that are dereasing will be denoted U− and the inreasing values will bedenoted U+. Now, between eah observation the utility values will be updated as follows:
∀u ∈ U+ : u := u + c where c ∈ (0; 0.01) and ∀u ∈ U− : u := u − c where c ∈ (−0.01; 0).As the utilities are normalized between every observation a hange of 0.01 is signi�ant. Eahutility value is inreased or dereased by the same amount between eah observation.An example of suh a senario ould be the development of pries of goods. The pries may fora period have a steady development, and the shopper's strategy will ontinue to be adjustedto these pries.Loal Drift With loal drift the utility values drift within ertain boundaries. These bound-aries are that eah utility at most may be 20% above or below its original value. The purpose ofthis experiment is to simulate that the agent is not ompletely sure about the domain and thatthe utility values atually are estimated values. This means that nothing neessarily hangesin the environment, but just that the agent may judge situations di�erently from time to time.When updating the utility values between the observations it is always relative to the originalutility values. Let u be the original utility value, u′ the utility value prior to the update and
u′′ the utility value after the update. Then the values are updated as:
u′′ := u′ + c where c ∈ (−0.01; 0.01)∧ u′ + c ∈ (0.8u; 1.2u).The utility values have original values so that the 20% boundaries allow for more than onestrategy. The c value is hosen randomly from the values that would satisfy the equation. Notethat the utilities are normalized between observations and the maximum drift speed is 0.01,as in one way drift.This ould for example our when the observed agent is trying to deide what kind of ad-vertisement that should be used. The e�et of eah type of advertisements will probably beestimates.Random Drift With random drift the agent's utility values also drift, like with loal drift,but this time they are unbounded. They are, however, limited in how muh they hangebetween eah observation. To avoid letting the drift beoming �utuation, eah utility valueonly drifts between −0.01 and 0.01 between eah observation, i.e. a utility value an at mostinrease or derease by 0.01. Having the same maximum drift speed as in loal and one waydrift also makes it easier to ompare results.Updating utilities is very similar to how the utility values are updated in loal drift exeptthat they are updated relative to the urrent value only.
∀u ∈ U : u′ := u + c where c ∈ (−0.01; 0.01)Again, the c value is hosen randomly from the values that would satisfy the equation, and theutilities are normalized between observations.This ould for example be ustomer's preferenes based on what is fashionable. What isonsidered fashion may vary greatly over time.60



5.3. The ExperimentsResults
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0.86 and 0.96, but showing a tendeny that FLUF's expeted utility is the smallest.With respet to the auray of prediting deision A Utility Iteration and Imputing by Com-parison are equal in all the experiments, FLUF only obtains equal result in loal drift, whilein one way and random drift FLUF performs worse than Utility Iteration and Imputing byComparison. In loal drift all three methods maintain a prediting auray around 0.7 witha variane around 0.2 throughout the experiment, for weighed as well as unweighed measure-ments. With respet to experiments with one way drift and random drift, Utility Iteration andImputing by Comparison has an auray around 0.8. In one way drift the variane is mostlybelow 0.2 for Utility Iteration and Imputing by Comparison, while it is around 0.3 in randomdrift. The mean auray of FLUF in one way drift and random drift is around 0.6 while thevariane in both ases is around 0.35 and goes as high as 0.4. When prediting deision Tall methods work equally well for all three kinds of drift. The three methods having a meanauray around 0.6 in one way drift and random drift, with a variane around 0.15 for oneway drift and 0.2 for random drift. With respet to loal drift the three methods performbetter, with a mean auray around 0.7 and a variane around 0.25.An experiment was onduted where the onstraint relaxation on�it handling poliy wasused in onjuntion with eah of the three methods in a domain with loal drift. The sametraining ases were used in both this and the original experiments with loal drift, to inreaseomparability. Figure 5.5 shows the expeted utilities ahieved by the three methods whenusing onstraint relaxation, varianes are not shown on the graph. The experiments showedthat onstraint relaxations works well with all three methods, but does not signi�antly improvethe auray of any of the methods. All three methods predit both deisions almost equallywell, with a mean auray around 0.9, very muh like without onstraint relaxation.61



Chapter 5. ExperimentsConlusionThroughout these drift experiments FLUF has, with or without onstraint relaxation, shownexpeted utilities lower than the ones generated by Utility Iteration and Imputing by Com-parison. Examining the auraies of the methods with respet to predition of deisions, it isobvious that the redued expeted utility of FLUF is a result of FLUF's inability to preditdeision A as well as the to imputing methods. The two imputing methods seem equal, withthe exeption of one way drift, where there is an indiation that Utility Iteration ahieves ahigher mean on expeted utility than Imputing by Comparison.Conerning the onstraint relaxation poliy, there is no noteworthy hange in the auray ofthe methods. Without onstraint relaxation the onstraints ontribute to the feasible spaeby their original oe�ients, whereas with onstraint relaxation only the newest onstraintontribute with its original oe�ients. So one possible explanation of that the results doesnot vary muh is that the dominant onstraint is the newest, meaning that when not usingonstraint relaxation, a high number of onstraints must be deleted. This is supported by thefat that the average number of observations kept by the methods is around 10.5.3.3 Experiment Three - Domain with FlutuationAnother kind of dynami behavior is �utuations where the agent being observed makes aradial shift in its strategy. How the methods handle this is tested in two di�erent setups;Single Flutuation whih is a single shift in the strategy and Multiple Flutuations where theagents hange strategy very often. Experiments have been onduted using the deletion poliywith all three methods in both kinds of �utuation, while onstraint relaxation has been usedwith all methods under single �utuation and only with FLUF under multiple �utuation.Single Flutuation For this setup the agent's utility values will make one great shift andotherwise remain unhanged. The main purpose of this is to assesses the methods' ability tohandle a radial shift from one strategy to a ompletely di�erent strategy. The shift in utilityvalues is designed suh that at least a third of the possible relevant past on�gurations lead toa hanged poliy.This ould represent a senario where an agent in a poker game makes a sudden shift in thestrategy to throw o� opponents, or it may represent hanges in a farmer's priorities if there isa sudden hange in the weather, given that the domain does not expliitly model the weatherdevelopment.Multiple Flutuations For this setup the agent's utility values will make several greatshifts. The purpose of this is to determine how well the methods handle a very unertainstrategy.This ould represent a senario where an agent is deliberately trying to prevent the methodfrom determining the strategy.ResultsThe expeted utility for eah method is shown in Figure 5.6. FLUF starts with a mean expetedutility at 0.88 and reahes 0.96 after 10 observations in single �utuation. The mean expetedutility ontinues to inrease until the strategy is hanged at whih the mean expeted utilityis above 0.98 (0.98 is in fat reahed after only 25 observations, and only minor improvements62
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Chapter 5. Experimentsreahes the same level of auray as without onstraint relaxation but faster.Due to the results ahieved for FLUF with onstraint relaxation in single �utuation, FLUFwith onstraint relaxation was also tested with multiple �utuation. The mean expeted utilityof FLUF with onstraint relaxation drops as low as 0.37 whereas FLUF without onstraintrelaxation only drops to 0.53. Both have a peak at 0.96. However, between the hanges instrategy FLUF with onstraint relaxation have a mean expeted utility at 0.86 whereas FLUFwithout onstraint relaxation have a mean expeted utility of 0.8.ConlusionIn general Imputing by Comparison and Utility Iteration performs equally well, both withregard to deision predition and expeted utility. Compared to FLUF they both have ahigher mean expeted utility and are generally faster at reahing high level of auray. Theinteresting element is how well the methods reover after the strategy hanges. Here Imputingby Comparison and Utility Iteration are faster than FLUF, in partiular in single �utuation.One explanation for this might be that they not only throw away onstraints when on�itsour, but throw away all onstraints related to the guilty observation. This means that numberof onstraints from old observations will derease very fast when �utuation our.With onstraint relaxation the three methods performed almost equally well. Considering theresults prior to the hange in the strategy indiate that whether the methods work betterwith or without onstraint relaxation may be domain spei�. The methods inrease themean expeted utility after the hange in the strategy faster with onstraint relaxation thanwithout. The mean expeted utility after the hange in the strategy is almost idential forall three methods, indiating that for the utility funtion used in the last 100 observation theonstraint relaxation is more important than how the onstraints are reated. The generalimprovement in mean expeted utility is probably a onsequene of old onstraints quiklybeing made irrelevant by new onstraints, as old onstraints are relaxed.After the hange in strategy, the deision with the highest expeted utility in node A is same,independent of the on�guration of its relevant past. This allows FLUF to ahieve a very highauray on deision A. The fat that a good mean expeted utility is ahieved faster afterthe hange in the strategy is most likely a result of the inreased auray on deision A.5.3.4 Experiment Four - Domain with NoiseIn this experiment the training ases ontain noise, that is observations that does not neessarilyonform with the utility values of the domain. Eah new sample has probability p of beingnoisy; in this experiment p equals 0.05. The noise is introdued by reating an ordinary sampleand then randomly piking three non utility nodes. Eah of these three nodes are then putin a random state, whih might be their original state. So in fat less than three nodes maybe altered in noisy observations, and using this approah the noise introdued might atuallyonform with the agents utility funtion.Noise ould our in almost any senario, e.g. beause of human failure to reord orretlywhat is observed, or beause of orrupted data due to omputer failure, or faulty networktransmissions.ResultsThe expeted utility of the methods an be seen in Figure 5.8.64
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ConlusionThe mean expeted utility (see Figure 5.8) for the noise experiment indiates that the poliyused by Imputing by Comparison and Utility Iteration to handle noise in the training ases,does take are of most of the noise. The results of the experiment show that Utility Iterationwithout noise handling takes a severe ut in its ability to get a good expeted utility, omparedto how it performs for stati domains, while Imputing by Comparison and Utility Iterationwith noise handling are largely una�eted. Imputing by Comparison and Utility Iteration withnoise handling take about an additional 20 ases to reah almost the same level of auray forthe deisions as for the stati domain. This does have a minor impat on the mean expetedutility. The fat that Imputing by Comparison and Utility Iteration are almost idential isnot surprising onsidering that they also had almost idential results in the experiment with astati domain, and that they are using the same on�it handling poliy.65



Chapter 5. Experiments5.3.5 Experiment Five - Alternative DomainA question that has risen from experiments onduted so far, is why FLUF's auray ondeision A is lower than on deision T . It is examined if its relatively low auray may bedue to poor estimations of the utilities in utility node C.Considering that C is the dominant utility node, with respet to prediting deision A, theexplanation ould be that the only onstraints reated by FLUF that an be used to expressanything about the utilities in node C are the onstraints reated in deision node A. Allonstraints reated in deision node A are subjeted to relaxation in FLUF, and this relaxationould be the ause of inauraies.To examine this question an alternative domain is onstruted, whih is shown in AppendixC. This alternative domain is reated as a modi�ation of the original domain. Here a thirddeision node is introdued into the domain, alled D, and a new hane node N is introduedas parent for D and C. D has indegree of 2 and outdegree of 1 with nodes OM and N asparents and Q as hild, meaning that the edge from node OM to deision node A has nowbeome obsolete due to the assumption of no-forgetting. The new deision will have a relevantpast of size 12, and should due to an inreased number of either relaxations or imputations bea di�ult node to predit for all methods.With respet to this alternative domain, tests are onduted with loal drift and single �utu-ation. Only one version of drift is used, in that the tendenies are expeted to be the same forall three versions of drift, muh as experiened in the earlier experiments. Single �utuation isused, beause the �rst 100 observations an be used as an indiation of what would happen in astati domain, and the experiment will still allow for examination of the impat of altering thedomain on �utuation. Due to the inreased number of imputations needed in the alternativedomain, sine deisions must be imputed for node A in that domain, only FLUF and UtilityIteration are run.ResultsThe experiment on the alternative domain with loal drift, showed that both Utility Iterationand FLUF ahieved a mean expeted utility around 0.87, whih is a redution with respet tothe original domain. The auray of deision node A was redued ompared with results fromthe original domain, whih in part explains the redued expeted utility. The mean aurayof both methods lay around 0.6 with respet to deision A. So the reason why a lower expetedutility is ahieved alternative domain ompared to the original domain, is found in deisionnode D. Both method have very large varianes with respet to deision D, namely about 0.3in both ases. The mean auray of Utility Iteration goes as low as 0.35 and as high as 0.85,while FLUF goes even lower at 0.29 and equally high at 0.85. With only 3 possible deisions in
D, this auray is at time as bad as random guessing. Therefore the drop in mean expetedutility must be attributed to the D preditions.With respet to �utuation on the alternative domain, both FLUF and Utility Iteration pre-dited T without any signi�ant di�erene from the original domain. With respet to the
A deision it was initially predited better by FLUF in this alternative domain than in theoriginal domain, the mean auray for FLUF was just below 0.9 up until the �utuation.After the �utuation FLUF's mean auray stayed between 0.7 and 0.8, whereas FLUF ouldpredit deision A with an auray of 1 after reovering from the �utuations in the originaldomain.Utility Iteration ahieved a mean auray for prediting deision A of 0.96 both before andafter the �utuation, and it showed no di�ulty reovering from the �utuation, it atually66



5.3. The Experimentsonverged faster after the �utuation than before. Conerning deision node D, Utility It-eration predited it very well, ahieving a mean auray of 0.95 both before and after the�utuation onverging equally fast. FLUF on the other hand had di�ulties with deisionnode D, with a mean auray varying between 0.4 and 0.8 up until the �utuation took plae,showing no sign of improvement. Immediately after the �utuation FLUF predited D withan auray of only about 0.2, but after about 50 observations it seemed to reover to thesame auray as before the �utuation. Throughout the experiment FLUF's auray had avariane of 0.35 when prediting deision D. The auray of deision D for single �utuationis shown in Figure 5.11.Despite FLUF's auray on the D deision it ahieved a mean expeted utility around 0.97before the �utuation and 0.93 after, before the �utuation FLUF onverged after 10 obser-vation and after the �utuation it took about 30. Utility Iteration does better, with a meanexpeted utility around 0.99 before and 0.98 after, it should be noted that it took only 10observations for Utility Iteration to onverge before the �utuation, but 40 observations todo so after. These results would indiate that FLUF's inauray in the D deision did nothave a very large impat on expeted utility, sine the expeted utility of the two methods wasalmost equal before the �utuation. FLUF's derease in expeted utility is more likely due toits redued auray on the A deision, after the �utuation. The expeted utility for single�utuation an be seen in Figure 5.9.ConlusionConerning FLUF, this experiment indiates that the auray of FLUF, with respet to A,depends a lot on the domains used. In the �utuation experiment, the hange of strategy forthe observed agent is the same in all 10 runs, allowing for a very high or low mean auraydepending on how the hosen utilities �t a spei� method. The varying auraies observedduring the �utuating setup has probably more to do with the values hosen for utilities, thanwhether or not a �utuation has ourred yet. Seeing as Utility Iteration ahieves a highauray in �utuation, unlike FLUF, indiates that the imputing method is more robust.With respet to deision D, Utility Iteration handles it very well, under �utuation, whileFLUF only ahieves an auray slightly better than random. Neither method ahieves goodauraies on D in ase of drift. The D node was inluded in an attempt to explain FLUF'sinauray on the A deision. Sine the expeted utility of deision D, unlike deision A,is equally dependent on both utility nodes, FLUF's inauray annot be explained only byinaurate estimations on the utilities in node C due to relaxed onstraints, sine then A shouldhave been more inaurate than D. It turns out that auray has as muh to do with thenumber of nodes between the deision node and its utility desendants as it does with goodestimations of the utility values.To get deision T right, it is almost enough for the methods to order the utilities orretly inutility node U , sine T only depends on that utility node. Sine the other parent of node U(H) is unobserved when a deision is made in node T , the relative size of the utilities beomesimportant sine the expeted utility of the deisions in T beomes a weighed average of theoutomes of H . So even if the order of the utilities are orret, the expeted utility of thedeisions in T an be ordered inorretly if the relative size of the utilities in U are wrong,and this would result in a wrong deision. Now, sine the unertainties with respet to H arerelatively low, due to the OH node, and beause the onstraints reated at node T does notneed to be relaxed, a high auray is often ahieved by FLUF on the T deision.This experiment indiates that the auray that is ahieved in the A deision, is most likely aresult of the A deision node's proximity to the C utility node. In the onduted experiment,67



Chapter 5. Experimentswhen the A deision is to be made, all other parents of C has already been observed, meaningthat to alulate the expeted utilities ahieved from C for the deisions in A no averagingout is neessary. So had the expeted utility of A only been dependent on C, then gettingthe order of the utilities in C right would be enough to get A orret. However the expetedutility of A also depends on U , making the relative size of all utilities in the domain importantwhen prediting A. The utilities in C beome the most important sine their di�erenes arenot being averaged out, as the utilities from U are. So the results observed in this experiment,where D is predited poorly, indiates that the further a deision node is from utility nodes, themore aurate estimations on the utilities are neessary in order to be able to predit deisions.In other words, a rough estimate of the utilities in U , that orders the utilities orretly, willbe enough to predit deision T very well, but not neessarily ompletely orret. To preditdeision A with a high auray, the estimates of utilities for both C and U must be quite goodsine the utilities from U are averaged out. In fat the more averaging out that is neessary,the better estimations will be needed to ahieve a high degree of auray. The reason why thedeision in node D is predited so badly by FLUF, is most likely that utilities from both utilitynodes are averaged out when alulating the expeted utilities in node D, and FLUF onlymakes a rough estimate on the utilities in node C due to the relaxation done when onstraintsare reated.5.3.6 Experiment Six - SalabilityThis experiment was onduted to examine the auray and exeution time of the threemethods, when the number of utilities inrease. This was tested by letting the methods try topredit the behavior of an agent, modeled by a domain signi�antly larger than the originaldomain, this domain is alled the salability domain and is desribed in detail in Appendix C.To brie�y desribe the salability domain, it inludes 4 deision nodes, 7 hane nodes and
3 utility nodes aounting for a total of 121 utilities (In the original domain there was only
25 utilities). Deision node D2 has a relevant past with 9 possible on�gurations, D1 and
RD have a relevant past with 16 possible on�gurations and LD has a relevant past with 64possible on�gurations.ResultsThe experiments was not ompleted for the FLUF method, sine it did not manage to evaluateeven the �rst observation after 30 minutes on a 1.6 GHz Pentium M laptop. An exeution timethis poor an be explained by onsidering the worst ase time omplexity of FLUF, as determ-ined in Setion 2.6.2. The omplexity of FLUF was determined to be O(nodesstates·utilities),so with 11 nodes in the domain and 121 utilities it is no surprise that the exeution time ofFLUF beomes extremely high.Utility Iteration ompletes one run, ontaining 200 observations, in about 16 hours. After the�rst 10 observations the mean expeted utility varies between 0.83 and 0.91 throughout theexperiment with loal drift. This is less than in the original domain, where the mean expetedutility varied between 0.86 and 0.96, whih indiates that the auray of Utility Iteration hasdereased in the salability domain. Deision node D1, whih has 5 states, is predited witha mean auray around 0.5, D2 whih has 3 states is predited with a mean around 0.7, LDhas 4 states and is also predited with a mean auray around 0.5 while RD whih also has4 states is predited with a mean auray around 0.7. In the original domain, both A and Twas predited with an auray around 0.7 in loal drift, so the results from this experimentare slightly worse explaining the lower expeted utility.68
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Chapter 5. Experimentsthe auray of the deisions, it is di�ult to onlude anything with respet to Imputing byComparison, exept to say that when omparing the auraies obtained in the �rst run ofUtility Iteration with the run in Imputing by Comparison, they were similar.ConlusionThese experiments support the results from Setion 2.6.2, where FLUF's omplexity is de-termined to be exponential in the number of utilities. It proved infeasible to ondut thisexperiment with FLUF in the salability domain. With respet to Imputing by Comparisonthe exeution time also inreased, but even though the inrease was less dramati than forFLUF, not enough runs ould be ompleted to ahieve reliable measurements.Furthermore these experiments showed that the exeution time of Utility Iteration inreasedto 16 hours per 200 observations in the salability domain. The experiment onduted withUtility Iteration showed a redution in auray as the number of utilities inrease, but whilethe redution was signi�ant, the method still ahieved auraies onsiderably better thanrandom guessing would, and a mean expeted utility just below 0.9, whih is only slighty lowerthan for loal drift in the original domain.5.4 General ResultsThe experiments on�rmed the result from Hansen et al. (2004) that FLUF was not able topredit deision A in the domain used for most of the experiments. The reason for this wasinvestigated by trying to use FLUF on a modi�ed domain where another deision node wasadded. The experiments indiated that the reason for FLUF's poor predition, of deisionnode A, was that hane nodes between the deision node and the U utility node made itdi�ult to establish the orret relationship between the utility values in node C and in node
U . The imputing methods was more aurate in their predition of deision node A.During the experiments a window size of 100 observations was used to keep the methodsreasonably fast (in exeution time) and to make the omparison of FLUF and the imputingmethods as even as possible. The experiments showed that the hosen window size atually hadlittle e�et. For the experiments with a stati domain, the average number of observations anyof the methods had in the windows were 75, over all 200 observations. Here it should be notedthat with the stati domain almost no observations were deleted, so after 100 observations,the windows held 100 observations. However, for the experiments with drifting domains andmultiple �utuations the methods had an average of approximately 10 observations in thewindow, and a maximum of 35 observations. For the noise experiment the methods had onaverage around 75 observations in the window, exept for FLUF whih had an average around35. For the noise experiment and the single �utuation the highest number of observations inthe windows was 100. The single �utuation experiment gave around 50 observations in thewindow on average for all the the methods.This indiates that if the domain hanges frequently the size of the window an be as low as40 and still be used without any impat on the results, as the methods will delete observationsaggressively. This also holds for the domains where the strategy of the observed agent hangesrarely, as a window size of 40, would still be large enough for the results to onverge.
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CHAPTERSIX
ConlusionIn this hapter the report is onluded. First some thoughts on how the utility learningmethods in this projet, an be onsidered in ontexts outside that de�ned in the introdution,are presented in Setion 6.1. Then the results and onlusions drawn throughout the projetare summarized in Setion 6.2. Finally possible subjets for future work, related to the workdone in this projet, are disussed in Setion 6.3.6.1 PerspetiveIn the �rst part of this setion the onept of dynami domains is disussed, along with the ad-vantage of being able to handle dynami domains. The seond part onsiders the prerequisitesfor Imputing by Comparison and Utility Iteration, namely that they require that the probab-ilities of the variables in the in�uene diagram are known. FLUF allows di�erenes betweenthe probabilities in the in�uene diagram it uses and the one used by the agent. It is arguedthat the two imputing methods might handle di�erenes in probability distributions as well asFLUF, even though they were not designed to.6.1.1 Dynami DomainsWhen omparing the method presented in Chajewska et al. (2001) with FLUF, Imputingby Comparison and Utility Iteration, the latter three methods are designed to work with lessrestritive assumptions than the method presented in Chajewska et al. (2001), in that dynamidomains an be handled using di�erent on�it handling poliies. It should be noted that theon�it handling poliies developed for FLUF an be used in onjuntion with the methodfrom Chajewska et al. (2001), sine the two methods reate the exat same onstraints.Considering the apability of handling dynami behavior, it should be onsidered why dynamibehavior is observed. For example, if a soer player normally plays defensively to onservestrength, but he exhibits drifting behavior sine he over time begins to play more aggressively,then there is probably a ause for this drifting behavior. In the example the reason for thehange in the player's tatis ould be that he has been getting in better shape over time, andif his shape was not modeled in the domain then the hange would seem as drifting behavior.71



Chapter 6. ConlusionAs in the example, it an be argued that all hanging behavior is due to an inomplete model.From this perspetive then all domains are stati if they are modeled ompletely, i.e. all vari-ables that in�uene deisions are taken into aount.The omplexity of a model that literally takes all ausalities into aount an easily beome solarge that it is infeasible to represent it. It is not even ertain that all ausalities are known.So sine it an be infeasible to model domains ompletely, then inluding as many variablesas possible and aepting the apparent dynami behavior is a possibility. In other words, adynami domain an be onsidered an approximation of the �real� domain, and the poliiesdesigned for the utility learning methods, presented in this projet, atually inrease their areaof appliation into �real� domains of otherwise infeasible omplexity.The bigger the di�erene is between the �real� and the �modeled� domain, the more dynamibehavior should be expeted. So when modeling some domain for use with a utility learningmethod, the relationship between the methods' omplexity and ability to handle dynamibehavior should be onsidered, e.g. if the method is very good at handling dynami behaviorbut has poor salability then a simple model should be hosen.6.1.2 Unknown Probability DistributionsThe imputing methods are designed under the assumption that the probability distributionsof the observed agent are known, whereas FLUF is able to handle di�erenes between theprobabilities used in the in�uene diagram it uses and the ones used by the agent. FLUFhandles suh di�erenes by hoosing a utility funtion that ompensates for these di�erene sothat the strategy of the agent is still predited orretly. This ompensation means that theutility funtion estimated by FLUF might not be very aurate, in the sense that the utilitiesare di�erent from the agents utilities.Sine di�erent probabilities will result in di�erent utility oe�ients, the reated onstraintswill weigh the utilities di�erently than they should due to these probabilities. With severaldeision nodes in the domain, then the di�erene in probabilities may only in�uene the expe-ted utilities in some of the deision nodes. If only a subset of the deision nodes are in�uenedby di�erenes in probabilities, then the poliies for those deision nodes would seem to followa di�erent set of utility values than the una�eted deision nodes. Therefore, when there aredi�erenes between the probabilities used by the agent and those used by FLUF, it might beimpossible for FLUF to establish a set of utility values that predits the observed strategy ofthe agent, beause the utilities might be distorted by these di�erenes with respet to only asubset of the deision nodes.For a domain where the utility learning method does not have the same probability distributionsas the observed agent, the imputing methods might be usable aswell. The reason for this is thatno spei� poliy is needed to handle suh situations, due to the way the imputing methods aredesigned they will impliitly ompensate for inaurate probabilities when estimating a utilityfuntion, just like FLUF.6.2 SummaryIn this projet two methods similar to FLUF has been designed. The two new methods arealled Utility Iteration and Imputing by Comparison, and share FLUF's onept of generatinga set of onstraints based on observations to desribe possible utility values. FLUF has beenshown to be a viable predition method in the past (Hansen et al. (2004)), but there areinauraies in the method that leave room for improvement. These inauraies are, to some72



6.3. Future Workextent, due to the fat that the onstraints desribe a feasible spae that is to large. Thereforemethods developed during this projet are based on the idea, that desribing smaller spaesould inrease auray. The main reason why FLUF's utility spae is to large is that relaxationof the onstraints are done when the domain is not fully observed. The new methods avoid thisrelaxation by imputing the missing observations so that the domain beomes fully observed.The experiments onduted indiate that this results in a higher degree of auray and alsorequires fewer training ases. However, the two di�erent ways of imputing used by the methodsshowed no signi�ant di�erene from eah other with respet to auray or speed.In addition to using imputing as a tehnique to ahieve higher auray, a tehnique alledonstraint relaxation has also been developed. The idea here is to avoid on�its by relaxingthe onstraints as they grow older. The experiments showed that this worked well with FLUFand espeially in domains with �utuating utilities it enables FLUF to ahieve better resultsfaster.Besides developing new methods to improve the auray of predition, a poliy to handlenoisy observations was also developed. The tehnique for handling noise was developed so thatit ould be used together with the imputing methods, to inrease their area of appliation.The experiments indiated that using the noise poliy, the imputing methods handles domainswith noise almost as well as stati domains. However, it was only tested in one senario andother domains and higher frequenies of noise may reveal some limitations of the noise handlingtehnique.Finally, it seems that imputing unobserved deisions is preferable to relaxing the onstraintsthe way FLUF does it. Generally the imputation methods ahieve more aurate preditionswith fewer observations, no matter whih of the imputing methods is used.6.3 Future WorkThe two new utility learning methods presented in this report, together with the onstraintrelaxation poliy have made it possible to predit the behavior of an observed agent moreaurately than FLUF, as it was presented in Hansen et al. (2004). However, the experimentsonduted in this projet have also shown areas that an be investigated and possibly improvethe auray even further.6.3.1 Handling NoiseThe poliy developed to handle noise in this projet is based on assuming that when it isno longer possible to explain the behavior of the observed agent, it is beause of noise orimputation error. The method does not try to determine if the individual observation wasontaminated, meaning that it annot determine if the guilty observations are ausing on�itsdue to imputation errors or noise. The experiments showed that the way the observations areremoved works reasonably well.It ould be possible to integrate noise handling with a method for handling drift, by evaluatingomparing new observation to the true observations already made, thereby determining thelikelihood of the new observation. This ould for example be done by using the utility valuesestimated before the new observation was made. Doing this, it would be possible to disardobservations that seem unrealisti ompared to the expeted utility of the observed deisions.To measure if some observation is realisti, using the utility funtion that was estimated beforethe observations was made (alled Vold), then the expeted utility of eah of the deisions made73



Chapter 6. Conlusionin the new observation ould be ompared to the maximum expeted utility of that deisionnode when using Vold. With a large deviane in the expeted utility of one or more deisions,the new observation ould be ategorized as noisy and ignored. If only some of the deisionsin the observation yield a large di�erene in expeted utility, then it should be onsideredwhether the entire observation should be disarded, or if the onstraints from some of thedeisions ould still be onsidered reliable. In any ase it wold also have to be onsidered howlarge the divergene in expeted utility would have to be, for the observations to be ategorizedas noisy.The reason why this poliy annot be used in domains with �utuation, is that the �rstobservations after a �utuation ould easily yield low expeted utilities with respet to Vold,without being noisy. A on�it handling poliy using suh as the one suggested here, wouldhave to take into aount that with very few observations the next observation might easilyseem unrealisti, even if it is not noisy.6.3.2 ComplexityEvery time onstraints are generated, the di�erent formulae presented throughout the reportare used by the utility learning methods. In FLUF most of the exeution time is spent alu-lating these onstraints, while the imputing methods spend time imputing virtual observationsas well. As the probabilities are onsidered stati, it is possible to redue the number of alu-lations needed to generate onstraints. Instead of alulating oe�ients every time onstraintsare generated for some deision with some relevant past, they ould be saved the �rst timethey are alulated, so that later alulations would not need to ompute the same oe�ients.Suh an approah would bene�t all methods, but it would be a spae for speed tradeo� andthe memory onsumption would be higher than the naive implementation. Whether it is worthit would depend on the system doing the alulations.6.3.3 Missing DataFLUF, Imputing by Comparison and Utility Iteration all assume that eah observation showsthe state of all deision nodes and all hane nodes, prior to the last deision node. Just asit is possible that some of the observations are ontaminated with noise, it ould also happenthat some of the states of the nodes are lost. An extension to the methods desribed in thereport ould be to handle suh ases.One way of handling missing data ould be to simply disard the observations with missingdata. A ouple of drawbak with this approah would have to be onsidered however. Theremight be so many observations ontaining missing data, that the predition method will onlykeep very few true observations. Another problem when simply removing observations, isthat if spei� on�gurations are more likely to ontain missing data than others, then thepredition method an beome biased sine the onstraints that would have been added inthose on�gurations are never onsidered. If neither of these problems our however, thenit is not unrealisti that deleting observations would be a good strategy, as the methods ingeneral are very fast, meaning that they get lose to the real utility funtion with very fewobservations.Another way of handling missing data ould be to instantiate the missing nodes, and then reateonstraints from the observed deisions as normal. The hane nodes ould be instantiated intheir most likely state, given the on�guration of their parents and hildren. Deision nodeswhere the unobserved node is part of the relevant past ould also be inluded. If deisionnodes are to be inluded in this alulation, the poliy those nodes are assumed to follow,74



6.3. Future Workor perhaps even a temporary utility funtion, should be available. Missing deision nodesould be instantiated based on what would yield the highest expeted utility given the urrentutility funtion. As with missing hane nodes the outome of the missing deision node'shildren, and any other deision nodes where the missing node is in the relevant past, ould beonsidered. Even though data might not be missing at random, this approah ould instantiatemissing nodes orretly, if enough an be learned about the utility funtion. The drawbakof using suh an approah, is that it ould potentially reinfore the already predited strategywhih might be wrong.6.3.4 Improved ComparisonAs Imputing by Comparison only ompares the distributions of the hypothesis variables giventhe hosen deisions, any information that ould have been used from the disarded deisionsis lost. Imputing by Comparisons auray ould be inreased by inluding this disardedinformation in its omparison tehnique.Currently omparison is done only with respet to the Eulidean distane between the jointdistribution of a set of hypothesis variables, given the di�erent true observations and the pos-sible virtual observations. However, in eah true observation a set of deisions were disardedin favor of the hosen deision, the disarded deisions would have resulted in di�erent jointdistributions over the hypothesis variables, these are alled the disarded distributions in thatobservation. When reating virtual observations for some deision node with n states, then
n di�erent virtual observations are possible. In eah virtual observation the set of disardeddistributions will orrespond to the distributions that would have been generated by the n− 1other virtual observations.A problem with the urrent omparisons, is that a virtual observation an yield a distributionover the hypothesis variables that is very lose to a distribution yielded by a true observation,while one of the disarded distributions in that virtual distribution would in fat have yieldeda higher expeted utility. As an example, if imputing a virtual observation of a deision,where the relevant past allow for high expeted utilities, then the worst deision might result adistribution on the hypothesis variables that is muh like the distribution indued by the bestdeision in a di�erent relevant past that has already been observed.So in some respet the true observation that is the most like a virtual observation, is the onewhere the set of disarded distributions, as well as the distribution indued by the observeddeision, yield short Eulidean distanes to the orresponding distributions from the virtualobservation. Disarded distributions ould be ompared to ensure that no disarded distribu-tion in the virtual observation yields a higher expeted utility than the hosen distribution. Sodisarded distributions in the virtual observation should somehow be ompared to distributionsfrom a true observation, to determine whether they yield a smaller expeted utility than thedistribution of the hosen deision in that virtual observation.This an be examined in two steps, by �rst investigating if the disarded distributions yieldsmaller expeted utilities than a deision hosen in a true observations, and then investigatingif the hosen distribution in the virtual and true observations are alike.For the �rst step, then if all disarded distributions, in a virtual observation, have shortEulidean distanes to at least one disarded distribution in some true observation, it is anindiation that they yield about the same expeted utility as that disarded distribution, andtherefore less than the distribution of the observed deision in that true observation. Thismeans that it is no problem if there are some disarded distributions in the true observationswith a large Eulidean distane to all disarded distributions in the virtual deision, as longas it is true for all disarded distributions in the virtual observation. This also means that75



Chapter 6. Conlusionthe Eulidean distane should be alulated with respet to all disarded distributions in thetrue observation for eah disarded distribution in the virtual observation, to �nd the shortestdistane for all distributions in the virtual observation. This results in (|D| − 1)2 alulations,where |D| is the number of deisions in the node with whih the imputation is onerned. Sothe measure of how lose two sets of disarded distributions are from eah other, a formulamuh like the one shown below in Equation 6.1 ould be used. In the formula δv is the hosendeision in the virtual observations, while δt is the deision hosen in the true observation.
1

|D|

∑

dv∈D/δv

mindt∈D/δt
(EC(P (H |dv), P (H |dt))) (6.1)If the disarded distributions are lose and the distributions indued by the hosen deisionsin the two observations simultaneously yield a short Eulidean distane to the distributions ofeah other, then this in an indiation that the deisions yield about the same expeted utility.Meaning that the hosen deision in the virtual observations is likely to be the optimal deision.It should be noted that when a true observation is used for omparison, then, sine the hosendeision is only a fator due to its impat on the distribution, it should be ompared with allthe possible virtual observations, as it is the distributions that determine whih observationsare alike. This means that eah true observation should be ompared with |D| di�erent virtualobservations.Inorporating these measurements in the omparison, ould redue the risk that deision thatare not optimal are hosen, thereby inreasing the likelihood of imputing orretly.
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APPENDIXA
Plaing ConstraintsIn this setion the onstraints generated for a fully observed strategy will be examined loser.Note that when imputing missing observations the strategy beomes fully observed, so theresult desribed here will also apply for the onstraints generated by Imputing By Comparisonand Utility Iteration.The proposition presented here generally says that any onstraints generated for a fully ob-served strategy will always interset the diagonal.In order to express and prove the proposition, in Theorem A.1, some notation is needed. Let

C be a onstraint and ∑ci
be the sum of all the oe�ients of the utility values for the i′thutility node. Also let |U | be the number of utility nodes in the domain.Assuming that a strategy is fully observed and onstraints are generated aording to Equation2.4, the following proposition will hold.

Theorem A.1 Let C be any onstraint generated for a fully observed strategy. Then thefollowing will hold for that onstraint:
∧

1≤i≤|U|

:
∑

ci

= 0

Proof (Theorem A.1) Let D be the last deision node in the temporal order. Then for someobservation where D has been observed in state δD for some relevant past past(D) and d′ issome other state for D, eah onstraint will be of the following form:77



Chapter A. Plaing Constraints
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As the expression under∑|U|
i=1 is the summation of the probabilities of eah parent on�gurationof the i′th utility node, eah expression will sum to one. These probabilities are also theoe�ients for eah utility value, so for eah expression in the inequality it holds that:

∑

In

P
(

In|d, past(D)
)

= 1Where d is any deision from D. When subtrating the expression on the right side from bothexpressions the result is:
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·
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≥ 0where
∧

1≤i≤|U|

:
∑

ci

= 0

2An important onsequene of Theorem A.1 is that all onstraints reated from a fully observedstrategy will interset where all utility values from the same utility node are equal. Note thatwhen this is the ase, the utility values will desribe the trivial utility funtion.Whenever the feasible spae beomes empty, it means that at least two onstraints interset.Sine all onstraints are linear and always interset in the trivial utility funtion they aninterset nowhere else, unless they lie on top of eah other.
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APPENDIXB
The Aurate Tehnique - UtilityIterationBased on the extended tehnique desribed in Setion 3.3.1, an aurate tehnique is desribedin this appendix that will always �nd a utility funtion satisfying all observations. Basially theaurate tehnique will do the same as the extended tehnique, but furthermore the auratetehnique will maintain a list of alternative imputations that was not done, and when on�itsour it will iterate bakwards imputing di�erently to avoid the on�it. This tehnique is moreaurate than the extended tehnique, but it is shown in this setion that the time omplexitybeomes too high for the tehnique to be operational.When onstraints are reated at some deision node, Dk, in some observation o, then imputa-tions are done for all (Di|i > k), yielding a set of poliies Σ = (σk+1, · · · , σn). The numberof di�erent Σ that are possible after deision node Dk is (numberσk+1

· . . . · numberσn
), where

numberσi
is the number of di�erent poliies for deision node Di and n is the number ofdeision nodes in the domain.In the aurate tehnique a poliy set is not found by hoosing a point in the feasible spae.Instead all possible ombinations of poliies are used to reate onstraints, and separatelythese onstraints are inserted into the feasible spae, to examine if it beomes empty. Now,for deision node Dk in observation o, a list is reated ontaining all sets of poliies, Lk,o =

(Σ1, · · · , Σm), that did not make the feasible spae empty. The intuition is that, if all previouslyreated onstraints are orret, then the orret imputation, for (Di|i > k) in o, must be amember of Lk,o. There is a signi�ant di�erene between the two �rst tehniques and theaurate tehnique, in that the temporary utility funtion is no longer used to hoose a spei�imputation, but to exlude a set of imputations instead.When the list of possible poliy sets has been reated, e.g. Lk,o = (Σi, Σi+1, Σi+2), then theonstraints reated using Σi are used, and the tehnique proeeds to the next observation.There is no reason why Σi is hosen above the others, sine they are all equally valid, but onemust be hosen for the tehnique to proeed. The other Σ may still be used, in ase baktraingbeomes neessary.The algorithm for the aurate tehnique is shown in Algorithm B.0.1, whih desribed how
Lk,o is found and how onstraints are reated, and in Algorithm B.0.2, whih desribes howbaktraing is done when on�its our. 79



Chapter B. The Aurate Tehnique - Utility IterationIn Algorithm B.0.1 op is the true observation in whih the onstraints are being reated fordeision node Dk. The observation has a subsript, p, whih indiates the observations numberin the order of observations, and m is the total number of observations. Reall the order ofobservations is irrelevant as the domain is assumed to be stati, but to evaluate the observationssequentially the order beomes neessary.
CC is the set of onstraints desribing the feasible spae, before Dk is evaluated in observation
op. Oimputed is the set of virtual observations and Otrue desribe the true observations, theelements in these sets onsist of a relevant past and the deision made in a deision node.Initially Oimputed is empty.Algorithm B.0.11. Let δDk

be the observed deision of Dk in op2. Let Ck,op
= CC and Oimputedk,op

= Oimputed3. Let Lk,op
be a list of all poliy sets (Σ) over the nodes Di|i > k, that are onsistent with

Oimputed and Otrue4. For all poliy sets (Σ) in Lk,op

• Create an empty set of onstraints alled CΣ

• For all on�gurations of the relevant past of deision nodes Di|i ≥ k, (oi) onsistentwith op, for whih onstraints has not yet been added� Replae Dj |j > i with hane nodes, Cj , aording to Σ� Where δDi
is the deision ditated by Σ given past oi, add the following on-straints to CΣ: ∀d∈Di\δDi

: ρDi
(δDi

, oi) > ρDi
(d, oi)� Return the hane nodes Cj to the original deision nodes Dj

• If the set of onstraints CΣ ∩ CC desribes the empty spae� then remove Σ from Lk,op5. If Lk,op
is empty

• then all Algorithm B.0.2, and halt this algorithm6. For the �rst set of poliies (Σfirst) in Lk,op

• Add imputed deisions in Σfirst to Oimputed

• Add onstraints reated at step 4 using Σfirst to the set of onstraints UC

• Remove Σfirst from Lk,op7. Save Lk,op
, Ck,op

and Oimputedk,op
(These are used by Algorithm B.0.2)8. If p 6= m

• then all this algorithm reursively for the next observation op+1 and deision Dk

• Halt this algorithm9. If p = m and k 6= 1

• then all this algorithm reursively for the �rst observation o1 and deision Dk−1

• Halt this algorithm10. If o = m and k = 1 80



• then, if all true observations onform with the utility funtion desribed by thehosen utility point in CC� then the Utility Iteration algorithm is done� Else the baktraing algorithm is alled (Algorithm B.0.2)It will always be possible for Algorithm B.0.1 to �nd a utility funtion that onform withall observations. No matter the domain and the observations made, it may happen that allimputations made during exeution are orret, i.e. the deisions imputed are the same that theobserved agent would have made. Given suh a set of perfet imputations, then the onstraints(Co) reated by some observation o, will desribe a spae (spaceo)in whih o onforms withall utility funtions desribed by points in that spae. So with a set of di�erent observations(o1, · · · , om), eah having reated a set of onstraints with whih they onform (Co1
, · · · , Com

),this algorithm would desribe a feasible spae by the onstraints (Co1
∪ · · · ∪ Com

), whih isthe spae (spaceo1
∩ · · · ∩ spaceom

), or in other words the spae where all points will onformwith all observations (o1, · · · , om).It is unlikely that Algorithm B.0.1 will guess exatly the orret deision at every imputation,this is where the baktraing algorithm omes in, see Algorithm B.0.2. The baktrae algorithmis alled if the spae beomes empty at some point during exeution of Algorithm B.0.1 or ifthe utility funtion found by Algorithm B.0.1 does not onform with all observations. Thebaktrae algorithm steps bakwards through the imputations made by Algorithm B.0.1, untilit �nds an observation op in whih the imputations done to reate onstraints for some deisionnode (Dk) ould have been done in another way, i.e where Lk,op
is not empty. After �ndingsuh a ombination of observation and deision node, denoted (op, Dk), the baktrae algorithmreate onstraints for (op, Dk) aording to one of the alternative imputations, and then startsAlgorithm B.0.1 again.The notation in Algorithm B.0.1 is used in the baktrae algorithm as well. When the algorithmis alled, then all previously examined ombinations (op, Dk) will have saved a list of thealternative sets of poliies that ould have been imputed, (Lk,o), and a set of onstraintsdesribing the feasible spae (Ck,o) as well as the deision already imputed (Oimputedk,op

),when they were examined (Ck,o), see Algorithm B.0.1 step 11.Algorithm B.0.21. Let (o,Dk) be the hosen ombination that have alternative Σ's in list Lk,o2. Remove the �rst element, Σ1, from Lk,o3. Create an empty set of onstraints alled CΣ14. For all on�gurations of the relevant past of deision nodes Di|i ≥ k, (oi) onsistentwith op, for whih onstraints has not yet been added
• Replae Dj |j > i with hane nodes, Cj , aording to Σ1

• Where δDi
is the deision ditated by Σ1 given past oi, add the following onstraintsto CΣ1

: ∀d∈Di\δDi
: ρDi

(δDi
, oi) > ρDi

(d, oi)

• Return the hane nodes Cj to the original deision nodes Dj5. Set CC = CΣ1
∪ Ck,o6. Set Oimputed to Oimputedk,op7. Add imputed deisions in Σ1 to Oimputed81



Chapter B. The Aurate Tehnique - Utility Iteration8. Call Algorithm B.0.1 for the observation and deision node that sueeds the ombination(o, Dk) (Either (op+1, Dk) or (o1, Dk−1))Algorithm B.0.1 has a time omplexity, with respet to (op, Dk), that is (|Dk+1|·(relevantk+1−
relevanttrue,k+1)) · . . . · (|Dn| · (relevantn − relevanttrue,n)), where relevanti is the numberof di�erent relevant past on�gurations possible for deision node Di, |Di| is the number ofdi�erent deisions in the node and relevanttrue,i is the number of di�erent on�gurations ofthe relevant past observed for node Di. In other words the omplexity for Algorithm B.0.1,when examining deision node Dk in some observation, is the number of di�erent poliy sets forthe nodes Di|i > k, onsistent with all true observations. This is beause the task of reatingthe onstraints CΣ and omparing them with CC , is done for all Σ onsistent with the trueobservations.The worst ase omplexity of Algorithm B.0.2 is only O((n − 1) · relevanttrue), being themaximal number of steps bakwards the algorithm an take, where relevanttrue is the num-ber of true observations. For omparison the worst ase omplexity of Algorithm B.0.1 is
O((relevantmax · |D|max)n−1), where relevantmax is the highest number of di�erent on�gur-ations a relevant past an have in the domain and |D|max is the highest number of di�erentdeisions one deision node an have.For both algorithms, they will run O(policy_maxcombinations) times, in the worst ase. Where
combinations = relevanttrue · (n − 1) is the number of di�erent ombinations of observationand deision node where imputations are needed and policy_max = relevantmax · |D|max isthe highest number of di�erent poliies a deision node an have.When desribing the worst ase omplexity of the aurate method Algorithm B.0.2 beomesirrelevant sine its omplexity is linear while the omplexity of Algorithm B.0.1 is exponentialin the number of deisions. The worst ase time omplexity of the entire Utility Iterationmethod, using the aurate tehnique, is expressed in Equation B.1. As an be seen from theequation, the time omplexity of the entire algorithm beomes exponential in both the numberof deisions and the number of true observations.

O((relevantmax · |D|max)(relevanttrue·(n−1)) · (relevantmax · |D|max)n−1)

m

O((relevantmax · |D|max)relevanttrue·n)

(B.1)
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APPENDIXC
DomainsDuring the experiments, desribed in Chapter 5, two domains are brie�y introdued in thathapter and experiments were onduted using these. These domains are alled the alternativedomain and the salability domain. The �rst domain was used in the experiment desribed inSetion 5.3.5 while the seond domain was used in the experiment desribed in Setion 5.3.6.C.1 The Alternative DomainThe alternative domain is a modi�ation the original domain, with a number of extra nodesinserted to examine the reason why the auray of A was lower than T . An extra deisionnode, alled D, was added. D was added to examine if the reason why the auray of A waslower than T was due to A being very dependent on a utility node that was poorly estimated.To make D equally dependent of C and U a hane node N was inserted, so that if D waspredited better than A, it would be an indiation that C was estimated poorly. The alternativedomain is shown in Figure C.1.
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Figure C.1: The seond alternative domain83



Chapter C. DomainsC.2 The Salability DomainThe salability domain was introdued in Setion 5.3.6, and was designed to test how well thedi�erent methods performed when the number of utilities in the domain grew. It ontains 7hane nodes, 4 deision nodes and 3 utility nodes, with the number of states shown in TableC.1. As the table shows, the total number of utilities beome 121. The domain is shown inFigure C.2.
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Figure C.2: The salability domain
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C.2. The Salability Domain

Name Node type No. States
L1 Chane Node 4
L2 Chane Node 4
L3 Chane Node 3
R1 Chane Node 4
R2 Chane Node 4
R3 Chane Node 3
C1 Chane Node 3
D1 Deision Node 5
RD Deision Node 4
LD Deision Node 4
D2 Deision Node 3
LU1 Utility Node 20
RU1 Utility Node 20
U Utility Node 81Table C.1: Number of states in nodes
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APPENDIXD
ResultsIn this appendix the results from the experiments desribed in Chapter 5 are shown. Meas-urements were done for every method in every experiment on the expeted utility and weighedauray of deision preditions as well as unweighed. In this appendix the expeted utilityand the weighed deision predition auraies are shown. Unweighed auray is not shown,as it in all experiments resembled weighed auray, only a bit lower. Variane is inluded inthe graphs, so to ensure that the graphs an be easily read, eah graph will only ontain oneset of results.
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Chapter D. Results
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Imputing by ComparisonFigure D.6: Imputing by Comparison's hane ofprediting deision A in a stati domain
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D.2. Domain with Drift
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Utility IterationFigure D.11: Expeted Utility for Utility Iterationin one way drift
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Utility IterationFigure D.12: Expeted Utility for Imputing byComparison in one way drift  0
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Imputing by ComparisonFigure D.15: Imputing by Comparison's hane ofprediting deision A in a one way drift
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Utility IterationFigure D.17: Utility Iteration's hane of preditingdeision T in a one way drift
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Utility IterationFigure D.19: Expeted Utility for FLUF in loaldrift90



D.2. Domain with Drift
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Utility IterationFigure D.20: Expeted Utility for Utility Iterationin loal drift  0.75
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Utility IterationFigure D.21: Expeted Utility for Imputing byComparison in loal drift
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Utility IterationFigure D.23: Utility Iteration's hane of preditingdeision A in a loal drift
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Imputing by ComparisonFigure D.27: Imputing by Comparison's hane ofprediting deision T in a loal drift
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Utility IterationFigure D.28: Expeted Utility for FLUF in randomdrift  0.7
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Utility IterationFigure D.29: Expeted Utility for Utility Iterationin random drift
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Utility IterationFigure D.30: Expeted Utility for Imputing byComparison in random drift  0
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FlufFigure D.31: FLUF's hane of prediting deisionA in a random drift92



D.2. Domain with Drift
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Utility IterationFigure D.32: Utility Iteration's hane of preditingdeision A in a random drift  0
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Imputing by ComparisonFigure D.33: Imputing by Comparison's hane ofprediting deision A in a random drift
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FlufFigure D.34: FLUF's hane of prediting deisionT in a random drift  0
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Utility IterationFigure D.35: Utility Iteration's hane of preditingdeision T in a random drift
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Imputing by ComparisonFigure D.36: Imputing by Comparison's hane ofprediting deision T in a random drift  0.75
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Fluf - constraint relaxationFigure D.37: Expeted Utility for FLUF in loaldrift using onstraint relaxation93



Chapter D. Results
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Utility Iteration - constraint relaxationFigure D.38: Expeted Utility for Utility Iterationin loal drift using onstraint relaxation  0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0  20  40  60  80  100  120  140  160  180  200

M
ax

im
um

 e
xp

ec
te

d 
ut

ili
ty

Observations

Legend
True Expected Utility

Imputing by Comparison - constraint relaxationFigure D.39: Expeted Utility for Imputing byComparison in loal drift using onstraint relaxation
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Fluf - constraint relaxationFigure D.40: FLUF's hane of prediting deisionA in a loal drift using onstraint relaxation  0
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Utility Iteration - constraint relaxationFigure D.41: Utility Iteration's hane of preditingdeision A in a loal drift using onstraint relaxation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160  180  200

C
or

re
ct

Observations

Legend
Imputing by Comparison - constraint relaxationFigure D.42: Imputing by Comparison's hane ofprediting deision A in a loal drift using onstraintrelaxation  0
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Fluf - constraint relaxationFigure D.43: FLUF's hane of prediting deisionT in a loal drift using onstraint relaxation94



D.3. Domain with Flutuation
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Utility Iteration - constraint relaxationFigure D.44: Utility Iteration's hane of preditingdeision T in a loal drift using onstraint relaxation  0
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Imputing by Comparison - constraint relaxationFigure D.45: Imputing by Comparison's hane ofprediting deision T in a loal drift using onstraintrelaxationD.3 Domain with Flutuation
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Utility IterationFigure D.46: Expeted Utility for FLUF in single�utuation  0.65
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Utility IterationFigure D.47: Expeted Utility for Utility Iterationin single �utuation
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Utility IterationFigure D.48: Expeted Utility for Imputing byComparison in single �utuation  0
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FlufFigure D.49: FLUF's hane of prediting deisionA in single �utuation95



Chapter D. Results
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Utility IterationFigure D.50: Utility Iteration's hane of preditingdeision A in single �utuation  0
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Imputing by ComparisonFigure D.51: Imputing by Comparison's hane ofprediting deision A in single �utuation
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FlufFigure D.52: FLUF's hane of prediting deisionT in single �utuation  0
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Utility IterationFigure D.53: Utility Iteration's hane of preditingdeision T in single �utuation
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Imputing by ComparisonFigure D.54: Imputing by Comparison's hane ofprediting deision T in single �utuation  0.3
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Utility IterationFigure D.55: Expeted Utility for FLUF in multiple�utuations96



D.3. Domain with Flutuation
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Utility IterationFigure D.56: Expeted Utility for Utility Iterationin multiple �utuations  0.3
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Utility IterationFigure D.57: Expeted Utility for Imputing byComparison in multiple �utuations
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FlufFigure D.58: FLUF's hane of prediting deisionA in multiple �utuations  0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160  180  200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.59: Utility Iteration's hane of preditingdeision A in multiple �utuations
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Imputing by ComparisonFigure D.60: Imputing by Comparison's hane ofprediting deision A in multiple �utuations  0
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FlufFigure D.61: FLUF's hane of prediting deisionT in multiple �utuations97
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Utility IterationFigure D.62: Utility Iteration's hane of preditingdeision T in multiple �utuations  0
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Imputing by ComparisonFigure D.63: Imputing by Comparison's hane ofprediting deision T in multiple �utuations
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Utility IterationFigure D.64: Expeted Utility for FLUF in single�utuation using onstraint relaxation  0.7
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Utility Iteration - constraint relaxationFigure D.65: Expeted Utility for Utility Iterationin single �utuation using onstraint relaxation
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Imputing by Comparison - constraint relaxationFigure D.66: Expeted Utility for Imputing byComparison in single �utuation using onstraint re-laxation  0
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Fluf - constraint relaxationFigure D.67: FLUF's hane of prediting deisionA in single �utuation using onstraint relaxation98



D.3. Domain with Flutuation
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Utility Iteration - constraint relaxationFigure D.68: Utility Iteration's hane of predit-ing deision A in single �utuation using onstraintrelaxation  0
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Imputing by Comparison - constraint relaxationFigure D.69: Imputing by Comparison's hane ofprediting deision A in single �utuation using on-straint relaxation
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Fluf - constraint relaxationFigure D.70: FLUF's hane of prediting deisionT in single �utuation using onstraint relaxation  0
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Utility Iteration - constraint relaxationFigure D.71: Utility Iteration's hane of predit-ing deision T in single �utuation using onstraintrelaxation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160  180  200

C
or

re
ct

Observations

Legend
Imputing by Comparison - constraint relaxationFigure D.72: Imputing by Comparison's hane ofprediting deision T in single �utuation using on-straint relaxation  0.3
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Fluf - constraint relaxationFigure D.73: Expeted Utility for FLUF in multiple�utuation using onstraint relaxation99
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Fluf - constraint relaxationFigure D.74: FLUF's hane of prediting deisionA in multiple �utuation using onstraint relaxation  0
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Fluf - constraint relaxationFigure D.75: FLUF's hane of prediting deisionT in multiple �utuation using onstraint relaxationD.4 Domain with Noise
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Utility IterationFigure D.76: Expeted Utility for Utility Iterationfor stati domain, in noisy domain  0.86
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Utility IterationFigure D.77: Expeted Utility for Utility Iterationin noisy domain
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Utility IterationFigure D.78: Expeted Utility for Imputing byComparison in noisy domain  0
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Utility Iteration (no noise handling)Figure D.79: Utility Iterations hane of preditingdeision A in a noisy domain, using poliy for statidomain100



D.4. Domain with Noise
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Utility IterationFigure D.80: Utility Iteration's hane of preditingdeision A in a noisy domain  0
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Imputing by ComparisonFigure D.81: Imputing by Comparison's hane ofprediting deision A in a noisy domain
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Utility Iteration (no noise handling)Figure D.82: Utility Iterations hane of preditingdeision T in a noisy domain, using poliy for statidomain  0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160  180  200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.83: Utility Iteration's hane of preditingdeision T in a noisy domain
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Imputing by ComparisonFigure D.84: Imputing by Comparison's hane ofprediting deision T in a noisy domain101



Chapter D. ResultsD.5 Alternative Domain
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Utility IterationFigure D.85: Expeted Utility for FLUF in the al-ternative domain with loal drift  0.65
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Utility IterationFigure D.86: Expeted Utility for Utility Iterationin the alternative domain with loal drift
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FlufFigure D.87: FLUF's hane of prediting deisionA in the alternative domain with loal drift  0
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Utility IterationFigure D.88: Utility Iteration's hane of preditingdeision A in the alternative domain with loal drift
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FlufFigure D.89: FLUF's hane of prediting deisionT in the alternative domain with loal drift  0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160  180  200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.90: Utility Iteration's hane of preditingdeision T in the alternative domain with loal drift102



D.5. Alternative Domain
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FlufFigure D.91: FLUF's hane of prediting deisionD in the alternative domain with loal drift  0
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Utility IterationFigure D.92: Utility Iteration's hane of preditingdeision D in the alternative domain with loal drift
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Utility IterationFigure D.93: Expeted Utility for FLUF in the al-ternative domain with single �utuation  0.3
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Utility IterationFigure D.94: Expeted Utility for Utility Iterationin the alternative domain with single �utuation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160  180  200

C
or

re
ct

Observations

Legend
FlufFigure D.95: FLUF's hane of prediting deisionA in the alternative domain with single �utuation  0
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Utility IterationFigure D.96: Utility Iteration's hane of predit-ing deision A in the alternative domain with single�utuation103



Chapter D. Results
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FlufFigure D.97: FLUF's hane of prediting deisionT in the alternative domain with single �utuation  0
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Utility IterationFigure D.98: Utility Iteration's hane of preditingdeision T in a alternative domain two with single�utuation
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FlufFigure D.99: FLUF's hane of prediting deisionD in the alternative domain with single �utuation  0
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Utility IterationFigure D.100: Utility Iteration's hane of predit-ing deision D in a alternati3ve domain two withsingle �utuationD.6 Salability
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Utility IterationFigure D.101: Expeted Utility for Utility Iterationin salability domain  0
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Utility IterationFigure D.102: Utility Iteration's hane of predit-ing deision D1 in salability domain104



D.6. Salability
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Utility IterationFigure D.103: Utility Iteration's hane of predit-ing deision D2 in salability domain  0
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Utility IterationFigure D.104: Utility Iteration's hane of predit-ing deision LD in salability domain
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Utility IterationFigure D.105: Utility Iteration's hane of prediting deision RD in salability domain
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APPENDIXE
Summery of Learning Utility Funtionsby ImputingIn this projet, methods are developed to learn the utility funtion of an observed agent. Theutility learning methods developed are alled Utility Iteration and Imputing by Comparison.The methods are designed to handle agents in a stati domains as well as agents that hangebehavior over time, muh like humans do. The motivation for fousing on hanging behavior,is that in any deision proess of an agent that is to omplex to model ompletely, any fatorsthat are left out will still have an impat on the agent. The impat of these unmodeled fatorsan be interpreted as hanging behavior.Imagine attempting to model the behavior of a bus driver. Obvious fators suh as tra�, thenumber of people riding the bus and the weather would probably be inluded in the model, butsome fators that in�uene the drivers behavior may be di�ult to inlude, suh as how wellhe slept or the mood of his wife that morning. If, for example, the bus driver is an Amerianfootball fan, and he stays up late to wath Monday night football, then this ould in�uenehis behavior on Tuesday. In other words there ould be things that in�uene the driver that isnot modeled, thus the impat of unknown fators an be interpreted as hanging behavior onthe drivers part.E.1 Previous WorkThe work done has been based on an earlier projet, alled �FLUF Learning Utility Funtionby Observing Behavior� (Hansen et al., 2004) whih in turn is based on an artile aboutestimation of utility funtions, alled �Learning an Agent's Utility Funtion by ObservingBehavior� (Chajewska et al., 2001).In the (Chajewska et al., 2001) artile a method for determining the utilities in a deision treeis presented. Central to this method, FLUF and the methods developed in this projet, is thata feasible spae of utility values is maintained. This feasible spae is m dimensional, where mis the number of utilities in the domain, and eah point in this spae assigns a value to eahutility. Eah point in the feasible spae thereby orresponds to a utility funtion. Given aset of observations onstraints are reated, that limit the feasible spae. These onstraints are107



Chapter E. Summery of Learning Utility Funtions by Imputingin fat inequalities, suh as α1u1 + α2u2 > 0, where u1 and u2 are utilities and the α valuesare determined by the method. After all observations have been used to reate onstraints, autility point in the feasible spae is hosen, that onforms with all the established onstraints.In Chajewska et al. (2001) a distribution over possible utility funtions is determined, basedon a prior probability distribution over all utility funtions.FLUF is as mentioned, based on the method from Chajewska et al. (2001), and was developedto work on in�uene diagrams instead of deision trees, and it was developed to handle agentsthat, while being rational, hanged their behavior over time. Semantially FLUF establishesonstraints exatly as in the method from Chajewska et al. (2001), but the utility point ishosen di�erently. Due to agents being allowed to hange behavior, the assumption of havinga prior distribution over possible utility funtions, was onsidered unlikely. Instead a methodis used, that maximized a hypersphere inside the feasible spae, while still onforming with allonstraints. The enter of this hypersphere was used as the utility point.E.2 AssumptionsWhen developing Utility Iteration and Imputing by Comparison it was assumed that the prob-abilities and ausalities in the domains, as the observed agent pereives them, are known.Furthermore, the agent is assumed to be rational, meaning it will always maximize its expe-ted utility.If the deision senario being modeled inludes a series of deisions, then eah deision isassumed to have been observed in every observation, as well as the relevant past of thesedeisions.E.3 The Developed MethodsIn an attempt to develop new methods that ahieved a higher auray than FLUF, an analysison the inauraies on FLUF was done. The analysis revealed that the inauraies in FLUFwas aused by relaxations of the reated onstraints done by FLUF to handle partially observedstrategies. A partially observed strategy is when not all on�gurations of the domain has beenobserved. These relaxations were done to ensure that the utility values still allowed in thefeasible spae, inluded utility funtions that allowed all possible deisions in the unobservedon�gurations of the domain.So to remove this soure of inauray, the relaxations were replaed by imputations, in thesense that by imputing so alled virtual observations for the on�gurations that were un-observed, the strategy beame a fully observed strategy, meaning that relaxations would nolonger be neessary. The imputed observations are alled virtual, beause they have neverreally ourred, and a strategy is alled fully observed when all on�gurations of the domainare observed.Both utility learning methods start by reating onstraints for the last deision node in thetemporal order. The reason for examining the last deision �rst, is that the later in the temporalorder deisions are, the less imputations will be neessary, e.g. after the last deision there areno deisions that have not been observed. In Imputing by Comparison the order atuallyhas no impat, but in Utility Iteration it does, as desribed below. After evaluating deisionnumber n, both imputing methods impute observations to ensure that deision n is fullyobserved, i.e. ensuring that all on�gurations of the deisions relevant past has a orrespondingdeision. When deision n have been made fully observed, it an be replaed by a hane node108



E.3. The Developed Methodsthat enodes the poliy of the deision node. This enables the imputing methods to reateonstraints based on observed hoies in deision node n−1 without relaxations, sine this hasbeome the last in the temporal order, and so on. This means that the only di�erene betweenthe two imputing methods is the way in whih imputations are done.E.3.1 Utility IterationIn Utility Iteration virtual observations are hosen based on temporary utility funtions. Theinitial temporary utility funtion is found by reating onstraint for the last deision in allobservations, beause evaluating this deision does not require any imputations and therefore notemporary utility funtion. After adding onstraints for deision number n in all observations,the enter of the largest possible hypersphere, onforming with these onstraints, is used asthe initial temporary utility funtion.Using this temporary utility funtion in the agents in�uene diagram, a poliy, i.e. mappingbetween relevant past on�gurations and hoies, an be obtained for any deision node. Theinitial temporary utility funtion is used in this way to obtain a poliy for deision node n.With the needed virtual observations imputed to make deision n fully observed, onstraintsan be added for the observed hoies in deision n−1. However, onstraints are only added forone of the observed deisions. This is beause after adding the onstraints from one observationof deision n − 1, then a new temporary utility funtion an be found, and the newly addedonstraints together with the onstraints reated already will yield a more reliable utilityfuntion.So after the initial temporary utility funtion has been determined, then hoies are evaluatedone at the time, in the order desribed above, eah time re�ning the utility funtion. Thetemporary utility funtion will ontinually be re�ned, until all deisions have been evaluatedin all observations. Now the �nal utility funtion, is the estimation done by Utility Iteration.E.3.2 Imputing by ComparisonImputing by Comparison �nds the deisions in the unobserved on�gurations of the relevantpasts that should be imputed by omparing probability distributions. Some notation is neededto desribe imputations in Imputing by Comparison. The hypothesis variables of a deision, isthe parents of all utility desendants of that deision. These hypothesis variables an inludehane as well as deision nodes. The utility desendants of some deision node, is the utilitynodes that an be reahed from that deision node by following a direted path through thein�uene diagram.To impute a virtual observation for some relevant past of a deision node, Imputing by Com-parison alulates the joint distribution over the hypothesis variable. This joint distributionis alulated for all the true observations, i.e. observations that have atually been made, byinstantiation the past of the deision node as observed in eah true observations, and treatingdeision nodes as deterministi hane nodes. By omparing the Eulidean distane betweeneah true observation and eah possible virtual observation, with respet to the joint distri-bution of the hypothesis variable, then the virtual observation with the smallest Eulideandistane is hosen. 109



Chapter E. Summery of Learning Utility Funtions by ImputingE.4 Dynami DomainsAs the agent is allowed to hange behavior over time, then observations an be made thaton�it with eah other, i.e. only the trivial utility funtion an allow both observations toour. The trivial utility funtion is the utility funtion that attributes the same expetedutility to all deisions, by having all loal utility funtions yield the same utility no matter theon�guration of the in�uene diagram.Sine on�iting observations an our, poliies were developed that Utility Iteration andImputing by Comparison ould use to handle suh on�its. These poliies were targeted onspei� kinds of dynami behavior, namely drift, �utuation and noise. Drift is when thestrategy of the agent gradually hanges, �utuation is when it suddenly hanges and noise iswhen a single observations faulty, i.e. single variables or deisions have hanged state fromwhat they should have been in the observation.E.5 Experimental Results and ConlusionAfter onduting a series of experiments, it an be onluded that the utility learning methodsbased on imputing virtual observations, instead of relaxing onstraints, will generally preditdeisions more aurately. With regards to omplexity, the experiments supported the om-plexity analysis, that indiated that Utility Iteration and Imputing by Comparison would havebetter salability, when the domain grew, ompared to FLUF.
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