
Learning Utility Fun
tions by Imputing

Group E1-119

The Fa
ulty of Engineering and S
ien
eAalborg UniversityDepartment of Computer S
ien
e
Title:Learning Utility Fun
tions by ImputingPeriod:February 1st � June 10th2005Proje
t group:E1-119Group members:Anders HansenNi
olaj Lo
kPeter PoulsenSupervisor:Thomas D. NielsenNo. of
opies: 7No. of pages: 76Appendix pages: 33Total no. of pages: 113

Abstra
t:In this proje
t two methods,
alled UtilityIteration and Imputing by Comparison, aredeveloped. These methods learn the utilit-ies of an observed agent, su
h that its pref-eren
es
an be modeled in an in�uen
e dia-gram. The utilities are learned from the beha-vior of the agent, by
reating
onstraints basedon the observed de
isions made by it. Thetwo methods are designed to handle agentsthat
hange behavior, using di�erent poli
iesto handle
on�i
ting behavior. The meth-ods have mu
h in
ommon with FLUF, de-veloped in Hansen et al. (2004), the main dif-feren
e being how partially observed strategiesare handled. Where FLUF relaxes
onstraintsto ensure that the true utility fun
tion is notex
luded, then Utility Iteration and Imputingby Comparison impute observations to makethe strategy fully observed, thereby removingthe need to relax
onstraints. Experiments are
ondu
ted with the two new methods and withFLUF. Three di�erent kinds of
hanging beha-vior are de�ned, and experiments are
ondu
-ted with respe
t to ea
h kind. Both in the ex-periments with
hanging behavior and the ex-periment with stati
 behavior, the new meth-ods a
hieved better results than FLUF, bothwith regard to a

ura
y and learning speed. Itis
on
luded that, under the assumption madeabout the domain in this proje
t, imputing ob-servations will yield a higher a

ura
y than re-laxing
onstraints.

Prefa
e
This proje
t is done by group E1-119 at Aalborg University department of Computer S
ien
e.We would like to thank Hugin Expert A/S for allowing us to use a full version of their programHugin Resear
her. Also, we would like to thank Thomas D. Nielsen for helping with the entireproje
t.Aalborg June 10th. 2005

Anders Hansen Ni
olaj Lo
k
Peter Poulsen

III

CONTENTS
Prefa
e III1 Introdu
tion 11.1 Prerequisites . 21.1.1 The Agent . 21.1.2 Prior Knowledge . 21.2 Goals of this Proje
t . 21.3 The Stru
ture of the Report . 32 The Method FLUF 52.1 In�uen
e Diagrams . 52.1.1 Solving In�uen
e Diagrams . 62.2 Assumptions . 82.3 Fully Observed Strategies . 92.4 Partially Observed Strategies . 102.5 Choosing Utility Values . 132.6 Comparison of FLUF and Chajewska et al. (2001) 142.6.1 Stru
ture . 142.6.2 Complexity . 162.7 Limitations of FLUF . 172.7.1 The Optimal Method . 173 Imputing 253.1 Imputing Analysis . 253.1.1 Imputations Causing Con�i
t . 263.2 Imputing Strategy . 283.2.1 Basi
 Te
hnique . 293.3 Utility Iteration . 293.3.1 Imputing Virtual De
isions . 303.3.2 The Utility Iteration Algorithm . 313.3.3 Analysis . 333.3.4 Summary . 36V

CONTENTS3.4 Imputing by Comparison . 363.4.1 Measuring Distan
e Between Probabilities 373.4.2 The Imputing by Comparison Algorithm 383.4.3 Analysis . 403.4.4 Summary . 423.5 Con
lusion . 433.5.1 Imputing
ompared to FLUF . 433.5.2 A

ura
y . 433.5.3 Complexity . 434 Dynami
 Domains 454.1 Types of Dynami
 Domains . 454.2 Con�i
t Handling . 464.3 Drift and Flu
tuation . 484.3.1 Imputing by Comparison and Utility Iteration 484.3.2 FLUF . 494.3.3 The Constraint Relaxation Poli
y . 504.4 Noise . 524.4.1 Oldest First . 534.4.2 Newest First . 535 Experiments 555.1 Domain . 565.2 The Experiment Program . 575.3 The Experiments . 585.3.1 Stati
 Domain . 585.3.2 Domain with Drift . 595.3.3 Domain with Flu
tuation . 625.3.4 Domain with Noise . 645.3.5 Alternative Domain . 665.3.6 S
alability . 685.4 General Results . 706 Con
lusion 716.1 Perspe
tive . 716.1.1 Dynami
 Domains . 716.1.2 Unknown Probability Distributions . 726.2 Summary . 726.3 Future Work . 736.3.1 Handling Noise . 736.3.2 Complexity . 746.3.3 Missing Data . 746.3.4 Improved Comparison . 75A Pla
ing Constraints 77VI

CONTENTSB The A

urate Te
hnique - Utility Iteration 79C Domains 83C.1 The Alternative Domain . 83C.2 The S
alability Domain . 84D Results 87D.1 Stati
 Domain . 87D.2 Domain with Drift . 89D.3 Domain with Flu
tuation . 95D.4 Domain with Noise . 100D.5 Alternative Domain . 102D.6 S
alability . 104E Summery of Learning Utility Fun
tions by Imputing 107E.1 Previous Work . 107E.2 Assumptions . 108E.3 The Developed Methods . 108E.3.1 Utility Iteration . 109E.3.2 Imputing by Comparison . 109E.4 Dynami
 Domains . 110E.5 Experimental Results and Con
lusion . 110Index 111Bibliography 113

VII

CHAPTERONE
Introdu
tionThis proje
t fo
uses on learning utility fun
tions in in�uen
e diagrams. The utility fun
tionexpresses an agent's preferen
es for di�erent s
enarios. It might be essential to know thesepreferen
es in
ertain de
ision pro
esses, for instan
e when marketing a new produ
t it is im-portant to know the preferen
es of the
onsumer, otherwise the marketing
ampaign may fail torea
h the intended re
ipients. It
an also improve the arti�
ial intelligen
e in
omputer games,su
h that the game
an learn the player's strategy thus making the game more
hallenging.There are other areas in whi
h knowing the utility fun
tion
an aid the de
ision maker, thereforea method for learning the utility fun
tion is needed. Su
h methods are
alled utility learningmethods. Hansen et al. (2004) developed a utility learning method for agents with or without
hanging behavior. The method developed by Hansen et al. (2004) is
alled FLUF (FLUFLearning Utility Fun
tion) and the general idea is that FLUF learns the utility fun
tion byobserving the behavior of an agent. The agent is assumed to be a rational agent, that is anagent that always tries to maximize the expe
ted bene�t of its de
ision.Basi
ally FLUF derives some boundaries,
alled
onstraints, from the observations made.These
onstraints are inequalities that ex
lude a set of utility values that
annot explain theobservations. FLUF is designed to handle partially observed strategies , that is situations wherethe de
isions are not observed for all
on�gurations of the in�uen
e diagram. In general FLUF'sway of handling these unobserved
on�guration is to relax the already mentioned
onstraintsfor the utility values. These relaxations are done su
h that it is assured that any de
ision inthe unobserved
on�guration
ould be explained with some utility values within the allowedboundaries. To expand the area of appli
ation for FLUF, it is also designed to handle
hangingbehavior, where the utilities
an
hange over time whi
h
an
ause
on�i
ting or in
onsistentobservations.The experiments from Hansen et al. (2004) showed that predi
tions potentially
ould be donemore a

urately than done by FLUF. Some of the ina

ura
y that FLUF has when it
omesto predi
ting de
isions will most likely be derived from the relaxation of the
onstraints. If theagent's strategy is fully observed , i.e. the de
isions are observed in all
on�gurations, it willnot be ne
essary to relax the
onstraints.Many of the ideas used by Hansen et al. (2004) will be in
orporated in this proje
t, su
h as
reating
onstraints for the utility values based on the observations. One of the more importantdi�eren
es between Hansen et al. (2004) and this proje
t is in the way partially observed1

Chapter 1. Introdu
tionstrategies are handled. This proje
t investigates the idea of imputing to approximate theunobserved parts of an agent's strategy. A naive way of imputing would be to randomly sele
tde
isions for the unobserved strategies. This method would likely lead to wrong imputations,therefore another method for imputing should be employed. One su
h way
ould be to usethe observations already made, in that the preferen
es in these observations should provide ahint on what to expe
t with regard to future observations. This proje
t investigates di�erentimputing methods that impute based on the observations already made.1.1 PrerequisitesThis se
tion des
ribes the assumptions made. Assumptions are made about the prior knowledgeavailable and the agent being observed. The assumptions made for the methods are similar tothe prerequisites for FLUF, however the observations
an
ontain noise in the new methods,that is part of the observation may be
orrupted, i.e. by faulty hardware or bad networktransmissions.1.1.1 The AgentThe utilities of the agent are not known from the beginning, and these utilities have to beestimated, through observing the behavior of the agent. It is assumed that the agent tries tomaximize the expe
ted utility, i.e. the agent is behaving rationally.The agent is not restri
ted from
hanging its utilities, so utility learning methods should handle
hanging behavior. However, it is assumed that the observed agent is not using a similarlearning algorithm sin
e this may lead to in�nite
y
les of mutual predi
tions (Chajewskaet al., 2001). The possibility that the observed agent
an
hange its preferen
es, enables itto perform an a
tion given some
on�guration at one time, but then later, given the same
on�guration, perform a di�erent a
tion. Two su
h observations
an only be explained if theexpe
ted utility of the two a
tions are equal or if the agent has
hanged behavior.1.1.2 Prior KnowledgeAs this proje
t only fo
uses on the learning of an agent's utilities, it is assumed that theagent's per
eption of the variables and their
ausalities in the environment are known, thatis the probabilities are known. In e�e
t it assumed that, with the ex
eption of the utilityfun
tion, it is possible to
reate an in�uen
e diagram for the agent's de
ision s
enario.1.2 Goals of this Proje
tThe goal of this proje
t is, based on the ideas from Hansen et al. (2004), to
reate newutility learning methods that use imputing to handle partially observed strategies. Imputingmethods should impute the unobserved de
isions based on what is already observed. Moreoverthe methods should be able to handle
on�i
ts sin
e these may o

ur due to the imputing, andsin
e the agent is allowed to be
hange behavior. Experiments should be
ondu
ted using theimputing method, to determine its speed and a

ura
y, su
h that it
an be
ompared to similarexperiments with FLUF. Speed being measured in number of training
ases, and a

ura
ybegin measured by
omparison of the expe
ted utility of the strategy predi
ted by the utilitylearning method and the strategy used by the agent.2

1.3. The Stru
ture of the Report1.3 The Stru
ture of the ReportThe rest of this report is organized in the following
hapters:Chapter Two: A presentation of FLUF is given as many of the ideas used to develop thenew imputing method is based on
on
epts developed in FLUF. Further-more potential limitations of FLUF are analyzed.Chapter Three: Based on the analysis from
hapter two, general ideas on imputing arepresented, and two imputing algorithms are designed and presented. Fi-nally their potentials and limitations are analyzed.Chapter Four: Changing behavior of the observed agent is analyzed and presented to-gether with possible methods for handling this.Chapter Five: The algorithms designed in
hapter three, are tested in a series of experi-ments. These experiments and the results are presented in this
hapter.Chapter Six: Summary of the most signi�
ant
onsiderations and
on
lusions from theprevious
hapters.

3

Chapter 1. Introdu
tion

4

CHAPTERTWO
The Method FLUFIn this
hapter the method FLUF, and the poli
ies for handling
on�i
ting observations, arepresented. FLUF is based on work by Chajewska et al. (2001) whi
h estimates the utilitiesin a de
ision tree by establishing a feasible spa
e in whi
h the utility values are to be found.One main di�eren
e between FLUF and the work by Chajewska et al. (2001) is that FLUFis de�ned in terms of an in�uen
e diagram instead of a de
ision tree, this di�eren
e will bedis
ussed in Se
tion 2.6.The overall idea in FLUF and Chajewska et al. (2001) is that, based on the fa
t that theagent is rational, it
an be assumed that the expe
ted utility of an observed de
ision is higherthan the expe
ted utility of its alternatives. This is used to redu
e the number of possibleutility fun
tions, by generating inequalities that express the relationship observed. Among theremaining utility fun
tions one is
hosen by FLUF. This is then used as an estimate of theagent's utility fun
tion.First in�uen
e diagrams and some notation used throughout this report is presented. Thenthe assumptions for FLUF will be presented and then the method for estimating the utilityvalues if the strategy of the observed agent is fully observed will be presented. This will befollowed by a method for handling situations where the strategy is partially observed, whi
h isthe method a
tually used by FLUF.2.1 In�uen
e DiagramsDe
ision s
enarios are often represented as in�uen
e diagrams. In�uen
e diagram
an en
odepreferen
es and utilities of a de
ision maker in the de
ision s
enario. The in�uen
e diagram
an then be used by the de
ision maker to determine what de
isions that would yield thehighest expe
ted utility. In this se
tion the syntax and semanti
s of these will be presented,as in�uen
e diagrams are used by FLUF and new methods developed in this proje
t.SyntaxAn in�uen
e diagram
onsists of a dire
ted a
y
li
 graph over
han
e nodes, de
ision nodesand utility nodes, with the following qualitative properties, (Jensen, 2001):5

Chapter 2. The Method FLUF
• there is a dire
ted path
omprising all de
ision nodes
• the utility nodes have no
hildrenFor the quantitative spe
i�
ation, it is required that:
• the de
ision nodes and the
han
e nodes have a �nite set of mutually ex
lusive andexhaustive states
• a
onditional probability table P (A|pa(A)) is atta
hed to ea
h
han
e node A

• a real-valued fun
tion over pa(M) is atta
hed to ea
h utility node M ,
alled a lo
al utilityfun
tionwhere pa(N) is the parents of the node N .Semanti
sThe utility nodes represent some gain or loss for the de
ision maker, where ea
h utility node's
ontribution is determined by its utility fun
tion. The
han
e nodes represent elements thatmay, dire
tly or indire
tly, in�uen
e the gain or loss of the de
ision maker, or provide inform-ation for the de
ision maker. The de
ision nodes represent the
hoi
es that have to be madeby the de
ision maker.The de
isions are ordered relatively to ea
h other with respe
t to when they are made, this is
alled the temporal order . Graphi
ally, information pre
eden
e is represented as informationlinks ; there is an information link from a
han
e node A to a de
ision node Di if the
han
enode is observed before de
ision Di but after de
ision Di−1. The temporal order of the de
isionnodes is represented graphi
ally by links su
h that if de
ision D1 is made before de
ision D2then there exist a dire
ted path from D1 to D2. The temporal order also orders the
han
enodes a

ording to when they are observed. Any link that is not an information link is termeda relation link .A general assumption when dealing with in�uen
e diagrams is no-forgetting , whi
h means thatfor some de
ision node the de
ision maker knows all the
hoi
es for de
ision nodes prior to the
urrent de
ision node and the states of the observed
han
e nodes prior to any of the de
isionnodes earlier in the temporal order or the
urrent de
ision node.
I0 denotes the set of
han
e nodes that are observed before any de
ision is taken and I1 denotesthe set of
han
e nodes that are observed after the �rst de
ision and before the se
ond. If thereare n de
ision nodes, then In denote the set of
han
e nodes that are observed after the lastde
ision or not observed at all. This establishes the following temporal order: I0 < D1 < I1 <

. . . < Dn < In. The ordering of the nodes
an be dedu
ed from the links and the no-forgettingassumption.2.1.1 Solving In�uen
e DiagramsWhen using in�uen
e diagrams to determine what the best de
isions are, it
alled solvingthe in�uen
e diagram. The method for solving in�uen
e diagrams rely on the
hain rule forin�uen
e diagram, whi
h is as follows (Jensen (2001)):6

2.1. Influen
e DiagramsTheorem 2.1 Let ID be an in�uen
e diagram with the universe WC ∪ WD. Then
P (WC |WD) =

∏

X∈WC

P (X |pa(X))where WC is the set of
han
e nodes and WD the set of de
ision nodes.Let ID be an in�uen
e diagram over W = WC ∪WD. WC is the set of all
han
e nodes in IDwhile WD is the set of all de
ision nodes. Let the temporal order of the variables be des
ribedas I0 < D1 < I1 < . . . < Dn < In and let V (pa(U)) =
∑

i Vi(pa(Ui)) where Vi is the lo
alutility fun
tion for utility node Ui. Then the maximum expe
ted utility is:
MEU(ID) =

∑

I0

max
D1

∑

I1

max
D2

. . .max
Dn

∑

In

P (WC |WD)V (pa(U)) (2.1)Equation 2.1 is only a prin
iple solution sin
e the size of P (WC |WD) grows exponentially. Itis possible to avoid this problem by using the distributive law to eliminating the variables oneby one, to redu
e the size of the largest probability table. Sum-marginalization (marginaliza-tion of
han
e variables) and max-marginalization (marginalization of de
ision nodes)
annotinter
hange and the marginalization is therefore restri
ted by the temporal order, this is
alleda strong marginalization.De�nition 2.1 A poli
y for a de
ision node Di is a mapping σi, whi
h for any
on�gurationof the past of Di yields a de
ision for Di su
h that:
σi(I0, D1, I1, . . . , Di−1, Ii−1) ∈ sp(Di)where sp(Di) is the state spa
e of Di. A strategy
onsists of a set of poli
ies one for ea
hde
ision in the in�uen
e diagram. A solution to an in�uen
e diagram is the strategy thatmaximizes the expe
ted utility.If the de
ision maker a
ts rationally for de
ision Di and all future de
isions, i.e. makes thede
ision that maximizes the expe
ted utility, then the solution is the strategy that
omprisesall optimal poli
ies (De�nition 2.1).Using the
on
ept of poli
ies, an operational algorithm for
al
ulating the maximum expe
tedutility
an be des
ribed, this is done in Lemma 2.1. This is operational as the joint probabilityfor all
han
e nodes is never
al
ulated, but rather only the joint probability for a subset ofthe
han
e nodes is
al
ulated at ea
h step.Lemma 2.1 Let σi denote the poli
y for the de
ision node Di. The maximum expe
ted utilityfor the node Di is denoted by ρDi

. Let n be the number of de
ision nodes, then the maximumexpe
ted utility for the de
ision node Di, where i ≤ n is found by
ρDi

(past(Di)) =







max
Di

∑

Ii
P (Ii|past(Di), Di) · ρDi+1

(past(Di+1), Di+1) i 6= n

max
Di

∑

Ii
P (Ii|past(Di), Di) · V (pa(U)) i = n

(2.2)where past(Di) denotes a
on�guration of the past of de
ision node Di.7

Chapter 2. The Method FLUFRelevant PastIn Lemma 2.1 it is ne
essary to
onsider the entire past of the de
ision node, be
ause theexpe
ted utility is being
al
ulated, and the global utility fun
tion may depend on nodes thatare not in the relevant past of the de
ision node. However, if the expe
ted utility is not needed,but the optimal de
ision must be found, it is enough to examine the relevant past of a de
isionnode. Using only the relevant past of the de
ision nodes rather than the entire past whenthe optimal de
ision must be found, redu
es the number of
on�gurations of the past of thede
ision nodes that have to be investigated.De�nition 2.2 (Relevant Past) A de
ision or
han
e node X is in the relevant past of ade
ision node D, if there exists a
on�guration of the past of D (denoted y) and two instanti-ations of X (x and x′) where X is in the past of D, su
h that the de
ision made in node D isdi�erent for the two instantiations of X, i.e.: δD(y, x) 6= δD(y, x′)An analysis of relevant past is given in Sha
hter (1999) and an algorithm for �nding the relevantpast is found in Sha
hter (1998).2.2 AssumptionsThis se
tion des
ribes the assumptions needed for FLUF. The general idea in FLUF aswellas in Chajewska et al. (2001), is to determine the relationship between the observed de
isiongiven some past, and the alternative de
isions. When a de
ision is observed it
an be assumedthat the expe
ted utility of that de
ision is greater than for any of the alternatives, as theagent is assumed to be rational, i.e. always make de
isions that maximize the expe
ted utility.FLUF uses an in�uen
e diagram when trying to estimate the utility fun
tion of the agent, soone su
h must be given. The lo
al utility fun
tions are assumed to be unknown.In Figure 2.1 an example of an in�u
en
e diagram is given, where both D and C are binary,thus the probability table for C has four entries, shown in Table 2.1. Similarly the lo
al utilityfun
tions
an be expressed as tables, shown in Table 2.2. Su
h tables are
alled utility tables.Ea
h value returned by the utility fun
tions
ould also be
onsidered as a single utility value(denoted vi) whi
h is shown in Table 2.3. Furthermore, the utility values are assumed to benormalized, therefore the spa
e spanning the utilities is bounded by 0 ≤ v1 ≤ 1,· · · ,0 ≤ vm ≤ 1if there arem utility values, whi
h means that there arem di�erent
on�gurations of pa(U), thisregion is
alled the normalized region. Within this normalized region,
onstraints, des
ribingthe relationship between the expe
ted utility of the observed de
ision and the alternativede
isions (elaborated later in Se
tion 2.3 and Se
tion 2.4), are added. The spa
e spanned bythese
onstraints is
alled the feasible spa
e or the utility spa
e.For pra
ti
al reasons, whi
h will be des
ribed later, it is an advantage to in
lude ea
h utilityin every
ell of all utility tables. This is done by multiplying ea
h utility with a
oe�
ientthat is either zero or one. An example of this is shown in Table 2.4 where the entry V1(c1) isdes
ribed by the
oe�
ients (1, 0, 0, 0) to stipulate that v1 is the only relevant utility.In general, ea
h
ell in all utility tables is given a
ell number, su
h that no two
ells have thesame number. So the lo
al utility fun
tion for utility node Uj
an be des
ribed as:
Vj(pa(Uj)) =

m
∑

i=1

αj,i,pa(Uj)vi 8

2.3. Fully Observed Strategieswhere i denote
ell numbers. αj,i,pa(Uj) is 1 if i is the number assigned to the
ell
orrespondingto the parent
on�guration pa(Uj), and 0 for all others.C d1 d2

c1 p q
c2 1 - p 1 - qTable 2.1: P (C|D) from Figure2.1

c1 c2

U1 V1(c1) V1(c2)

c1 c2

U2 V2(c1) V2(c2)Table 2.2: U1(C) and U2(C),from Figure 2.1, as utility fun
-tions
c1 c2

U1 v1 v2

c1 c2

U2 v3 v4Table 2.3: U1(C) and U2(C),from Figure 2.1, as valuesU c1 c2

U1 1v1 + 0v2 + 0v3 + 0v4 0v1 + 1v2 + 0v3 + 0v4U c1 c2

U2 0v1 + 0v2 + 1v3 + 0v4 0v1 + 0v2 + 0v3 + 1v4Table 2.4: Unique utility values from Figure 2.1
D C

U1

U2Figure 2.1: Example in�uen
e diagramWhen using FLUF it is assumed that a series of observations have been made. These ob-servations des
ribe a sequen
e of variables observed and de
isions made by the agent. Ea
hobservation
ontains an instantiation of I0, I1 . . . In−1 and D1, D2 . . . Dn. The reason In is notin
luded is that the variables in In are observed after the last de
ision, if at all. These series ofobservations fall into two
ategories: fully observed strategies and partially observed strategies.2.3 Fully Observed StrategiesAssuming that the observed strategy is fully observed, then the following method
an be usedto determine boundaries for the utilities.Given some instantiation of Dk for some past(Dk, where past(Dk) is the relevant past ofde
ision node Dk, the observed
hoi
e in Dk for that parti
ular
on�guration of the relevantpast is denoted δDk
(past(Dk)). The entire past of Dk, i.e. all nodes prior to Dk in the temporalorder, is denoted epast(Dk). If Dk is the last de
ision node, the expe
ted utility of the observed
hoi
e
an be
al
ulated by Equation 2.3. 9

Chapter 2. The Method FLUF
ρDk

(

δDk
(past(Dk)), epast(Dk)

)

=
∑

Ik

P
(

Ik|epast(Dk), δDk
(past(Dk))

)

· V
(

pa(U)
)

=
∑

Ik∩pa(U)

P
(

Ik ∩ pa(U)|epast(Dk), δDk
(past(Dk))

)

· V
(

pa(U)
)(2.3)It is not ne
essary to maximize Dk as the observed
hoi
e is known. ρDk

denotes expe
tedutility of the
hoi
e and entire past re
eived as arguments.Now, by working ba
kward from the last de
ision node, Dn, it is possible to determine aset of
onstraints C. These are
onstraints on the utility values, and given these
onstraintsthe utilities
an be estimated. The
onstraints span a utility spa
e over the utilities. Any
ombination of utilities in this spa
e
ould explain the observed strategy.The overall method is to look at the last de
ision node and, based on the observations, de-termine what
hoi
e was made for ea
h of its possible
on�guration of the relevant past. Itis possible to determine the
hoi
e for ea
h past
on�guration be
ause it is a fully observedstrategy. For ea
h of the observed de
isions, the expe
ted utility of the observed
hoi
e must begreater than or equal to the expe
ted utility of the alternative
hoi
es, as the agent is rational.To establish
onstraints, let O denote the set of all the observations. o is a single observationin O on the form: i0, d1, i1, . . . , in−1, dn. ok is then the observations of i0, d1, . . . , ik−1, dk−1 in
o.First let k = n, then for ea
h observation o ∈ O add the following
onstraints to C:

∀d∈Dk\δDk
(ok) : ρDk

(δDk
(ok), ok) > ρDk

(d, ok) (2.4)After having added the
onstraints for all the observations, then repla
e the last de
ision node(Dk) with a
han
e node where the probability for the observed
hoi
e (δDk
(ok)) is one andthe probability for the alternative
hoi
es, given the same relevant past
on�guration, are zero.This means that the
han
e node repla
ing Dk must have all nodes in the relevant past of Dkas parents. Then apply Equation 2.4 for k − 1 and
ontinue until k = 0.The
onstraints are des
ribed as stri
t inequalities, sin
e any strategy
ould have been explainedby the trivial utility fun
tion, where all utilities from the same utility nodes are equal, if theinequalities had not been stri
t. This is be
ause the set of points des
ribing the trivial utilityfun
tion de�ne a part of the utility spa
e,
alled the diagonal1, that
onstraints
an at mostbe tangents to. Appendix A presents a proof that
onstraints
reated based on fully observedstrategies will always be tangents to this diagonal.2.4 Partially Observed StrategiesThis se
tion introdu
es the
al
ulations needed for generating
onstraints when the strategyis only partially observed. When the observed strategy is only partially observed it is notpossible to use the same method as for fully observed strategies. If one of the de
ision nodes,say Dk, is not observed for a parti
ular
on�guration of the relevant past, whi
h is the
ase byde�nition when the strategy is only partially observed, then to
al
ulate the expe
ted utilityfor the de
ision node prior to Dk, the following equation would be used:1This set of points is
alled the diagonal be
ause it in
ludes the line from (0, 0, . . . , 0) to (1, 1, 1, . . . , 1)10

2.4. Partially Observed Strategies
ρDk−1

(δDk−1
(past(Dk−1)), epast(Dk−1)) =

∑

Ik−1

P
(

Ik−1|epast(Dk−1), δDk−1
(past(Dk−1))

)

·
∑

d∈Dk

PδDk
(d|past(Dk))

∑

Ik

P
(

Ik|d, epast(Dk)
)

· V (pa(U))where PδDk
is the probability fun
tion that repla
es de
ision node Dk with a
han
e nodewhere the probability for the observed
hoi
e is one and all others are zero. Unfortunately

PδDk
(d|past(Dk)) is not known as de
ision node Dk is not observed given the past past(Dk).Alternatively the method
ould be based on the assumption that the
hoi
e in the de
isionnode Dk is the one that maximizes the expe
ted utility, whi
h is reasonable as the agent isrational. Under this assumption Equation 2.5
al
ulates maximum expe
ted utility for de
isionnode Dk given its past.
ρDk

(epast(Dk)) = max
Dk

∑

Ik

P (Ik|epast(Dk), Dk) · ρDk+1
(epast(Dk+1)) (2.5)However, Equation 2.5 is not linear, be
ause of the maximization, whi
h makes it infeasiblefor determining the
onstraints.The problem of making ρ linear
an be solved by relaxing the
onstraints. For ea
h
onstraintan upper bound and a lower bound is
reated like done by Chajewska et al. (2001). Thesebounds are
onstru
ted so that the upper bound is always larger than the expe
ted utility forthe node the
onstraint is derived from, and the lower bound is always less than the expe
tedutility. The upper bound is
reated so that the for ea
h utility value the de
ision is assumedto be made so that it maximize this utility value. This means that the probabilities that theutility value have to multiplied with (see Lemma 2.1) are as large as possible. As this is doneindividually for the utility value the
oe�
ients for ea
h utility value will always be as largeor larger than the
orresponding
oe�
ient when using Lemma 2.1. The opposite holds when
al
ulating lower bound.Formulae for Partially Observed StrategiesIn order to be able to des
ribe the method for developing
onstraints these upper and lowerbounds, a series of equations are ne
essary.In the following ρ denotes the
al
ulation of the upper bound and ρ the lower bound. Thesebounds are
al
ulated for ea
h
on�guration of the relevant past. Whether the de
ision nodeis observed for that relevant past, determines whi
h equation is used.If the de
ision node is observed in the
on�guration of its relevant past in epast(Dk) and isthe last node in the temporal order, the equation is:

ρDk
(epast(Dk), δDk

(past(Dk)) = ρ
Dk

(epast(Dk), δDk
(past(Dk))

=
∑

Ik

P
(

Ik|epast(Dk), δDk
(past(Dk))

)

· V (pa(U))

=
∑

Ik∩pa(U)

P
(

Ik ∩ pa(U)|epast(Dk), δDk
(past(Dk))

)

· V (pa(U))(2.6)11

Chapter 2. The Method FLUFIn Equation 2.6 it is not ne
essary to maximize the expe
ted utility for the de
ision node Dk asit has been observed. Note that Equation 2.6 is the same as Lemma 2.1 where k = n, meaningthat ρ = ρ = ρ when the de
ision node is the last de
ision node in the temporal order.If the de
ision node is the last node in the temporal order and is unobserved given the relevantpast in epast(Dk) and there is l utility nodes in the domain, the bounds are
al
ulated as:
ρDk

(epast(Dk)) =

m
∑

i=1



max
Dk





∑

Ik∩pa(U)

P (Ik ∩ pa(U)|epast(Dk), Dk) ·
l
∑

j=1

(αj,i,pa(Uj))



 · vi



 (2.7)
ρ

Dk
(epast(Dk)) =

m
∑

i=1



min
Dk





∑

Ik∩pa(U)

P (Ik ∩ pa(U)|epast(Dk), Dk) ·
l
∑

j=1

(αj,i,pa(Uj))



 · vi



 (2.8)An important aspe
t of Equation 2.7 and 2.8 is that the
omponents under the maximationare probabilities and
oe�
ients, whi
h both are
onstants. The utility variables (vi), the onlyvariables in the equations, are outside the maximation, so the equations are linear in the utilityvalues.If the node is observed given the relevant past in epast(Dk) and it is not the last de
ision nodein the temporal order, the bounds are
al
ulated a

ording to the equations:
ρDk

(epast(Dk), δDk
(past(Dk)) =
∑

Ik

P
(

Ik|epast(Dk), δDk
(past(Dk))

)

· ρDk+1

(

epast(Dk+1)
) (2.9)

ρ
Dk

(epast(Dk), δDk
(past(Dk)) =
∑

Ik

P
(

Ik|epast(Dk), δDk
(past(Dk))

)

· ρ
Dk+1

(

epast(Dk+1)
) (2.10)If the de
ision node is unobserved in the
on�gurations of its relevant past in epast(Dk), it isstill ne
essary to
al
ulate the bounds, as Equation 2.9 and 2.10 are de�ned re
ursively.For de�ning the equations that des
ribe how to
al
ulate the bounds for unobserved nodes,the de�nition for ρDk

has to be extended. ρDk

an be des
ribed as: ρDk

(epast(Dk)) =
ρDk,1(epast(Dk))v1 + ρDk,2(epast(Dk))v2 . . . where ρDk,i(epast(Dk)) is the
oe�
ient of viin ρDk

(epast(Dk). The bounds for unobserved de
ision nodes given the past epast(Dk) priorto the last node is
al
ulated as follows.
ρDk

(epast(Dk)) =

m
∑

i=1

(

max
Dk

(

∑

Ik

P (Ik|epast(Dk), Dk) · ρDk+1,i(epast(Dk+1))

)

· vi

) (2.11)
ρ

Dk
(epast(Dk)) =

m
∑

i=1

(

min
Dk

(

∑

Ik

P (Ik|epast(Dk), Dk) · ρ
Dk+1,i

(epast(Dk+1))

)

· vi

) (2.12)12

2.5. Choosing Utility ValuesNote again that the part of the equations that is being maximized, does not
ontain any utilityvariables meaning that the equations are linear in the utilities.With these equations it is possible to �nd the
onstraints.First let k = n, then for ea
h observation o ∈ O: If de
ision node Dk is observed in o add the
onstraints:
∀d∈Dk\δDk

(ok) : ρ(δDk
(ok), ok) > ρ(d, ok)Then de
rease k by one and iterate through the observations again, until k rea
hes zero meaningthat all de
ision nodes have been evaluated.2.5 Choosing Utility ValuesThis se
tion introdu
es the method for
hoosing the utility values to be used in FLUF. Whenthe feasible spa
e has been established some utility values have to be
hosen. Any point withinthe feasible spa
e is
onsidered valid. In FLUF the sele
ted utility values are de�ned as the
oordinates of the
enter of the largest possible hypersphere in the feasible spa
e. The overallstrategy is to
hoose a point that is within the
onstraints so that the radius of the spherefrom that
enter is as large as possible. This is expe
ted to be a fairly good strategy asthe
onstraints span more utility values than those that
an explain the observed behavior.The invalid utility values will likely be near the
onstraints as the
onstraints are relaxed,meaning that utility values near the
onstraints might be in the feasible spa
e only as a resultof this relaxation. So the further from the
onstraints, the utility values are
hosen, the moreobservations are expe
ted to be explained, as long they are in the feasible spa
e.Let the set of
onstraints be c1(v), c2(v), . . . , cz(v) and ea
h
onstraint be de�ned as ci(v) ≡

ci,1v1 + ci,2v2 + · · ·+ ci,mvm > 0 where ea
h ci,t is a
onstant. A new set of linear inequalitiesis de�ned from the
onstraints as follow:
d(p, ck(v)) ≥ rwhere r is a new variable expressing the radius of the sphere, and d(p, ck(v)) is the distan
efrom the point p to the hyperplane des
ribed by ck(v). d is
al
ulated as:
d(p, ck(v)) =

ck,1p1 + ck,2p2 + · · · + ck,npn
√

c2
k,1 + c2

k,2 + · · · + c2
k,nThis means that the linear inequality for ea
h
onstraint is as follows:

ck,1p1 + ck,2p2 + · · · + ck,npn
√

c2
k,1 + p2

k,2 + · · · + c2
k,n

≥r

m

ck,1p1 + ck,2p2 + · · · + ck,npn ≥r ·
√

c2
k,1 + c2

k,2 + · · · + c2
k,n

m

ck,1p1 + ck,2p2 + · · · + ck,npn − r ·
√

c2
k,1 + c2

k,2 + · · · + c2
k,n ≥0 (2.13)Besides the inequalities for the
onstraints, inequalities have to be added to ensure that the
enter of the hypersphere is within the normalized region.13

Chapter 2. The Method FLUFEa
h of the
oordinates of the
enter must be above 0. So for ea
h dimension t, i.e. t ∈ [1; n],the following inequality is added:
pt ≥ r

m

pt − r ≥ 0 (2.14)Similarly ea
h of the
oordinates of the
enter must be less than one, for the ea
h dimensionin the feasible spa
e.
pt + r ≤ 1

m

pt + r − 1 ≤ 0 (2.15)Then r is maximized in a

ordan
e with the inequalities from Equation 2.13, 2.14 and 2.15.This
an be solved as a linear programming task (Fraleigh and Beauregard, 2003).The
entroid (p0, p1, . . . , pn) is then a point within the feasible spa
e. As ea
h dimension in thefeasible spa
e
orresponded to a utility, the values of the utilities are set to the
orresponding
oordinate of the
entroid. The point
hosen is also
alled the utility point.2.6 Comparison of FLUF and Chajewska et al. (2001)As mentioned FLUF is based on the method proposed by Chajewska et al. (2001), so in thisse
tion these two methods will be
ompared. This will in
lude
omparison in both stru
tureand in
omplexity.2.6.1 Stru
tureThe immediate stru
tural di�eren
e between FLUF and the method presented in Chajewskaet al. (2001) is that FLUF operates on in�uen
e diagrams whereas Chajewska et al. (2001)operates on de
ision trees. As already argued in Hansen et al. (2004) any symmetri
 de
isiontree
an be des
ribed as an in�uen
e diagram, and any de
ision tree
an be made symmetri
by inserting additional arti�
ial nodes. These arti�
ial nodes must have the same state spa
eas the
orresponding nodes in the alternative bran
hes. The reverse pro
ess from in�uen
ediagram to de
ision tree is also possible, so the representation of the domain does not a�e
twhen either method
an be used. As there is no de
ision s
enario where in�uen
e diagrams
anbe used while de
ision trees
annot, or vi
e versa, the remainder of this analysis will assumethat both are given. If that should not be the
ase, the des
ribed transformation might bene
essary whi
h is a non trivial pro
edure.Chajewska et al. (2001) assumes that ea
h utility node
omprises a series of linear additivesubutilities. Ea
h of these subutilities are assumed to
ontribute to all out
omes by some weight(zero if they do not
ontribute at all). When
omparing de
ision trees and in�uen
e diagrams,ea
h bran
h of the de
ision tree equals one instantiation of the entire in�uen
e diagram, andvi
e versa. This means that when
omparing the utility nodes of an in�uen
e diagram with theutility nodes of a de
ision tree, all of the utility nodes in the in�uen
e diagram
ontribute toea
h of the utility nodes in the de
ision tree. Ea
h of the possible out
omes of ea
h utility node14

2.6. Comparison of FLUF and Chajewska et al. (2001)in the in�uen
e diagram
an be
onsidered a single subutility in the de
ision tree. A signi�
antnumber of the weights for the subutilities will be zero, as for ea
h bran
h in the de
ision treeonly a single utility value from ea
h utility node in the in�uen
e diagram
an
ontribute. Thismat
hes how FLUF
onsiders the utility nodes in in�uen
e diagrams.In the method presented by Chajewska et al. (2001) the expe
ted utility is
al
ulated for ea
hnode in the de
ision tree in
luding the
han
e nodes, whereas FLUF only
al
ulates it for thede
ision nodes. FLUF instead in
orporates the
han
e nodes in
al
ulation of the expe
tedutility for ea
h de
ision node. It is fully possible to only
al
ulate the expe
ted utility forthe de
ision nodes in the de
ision tree as well. Considering the formula for
al
ulating theexpe
ted utility for an unobserved de
ision node in a de
ision tree. (V̂ n[v] is the upper boundfor expe
ted utility in node n in a de
ision tree, and S(n) is the set of su

essor nodes of node
n. This notation is presented in Chapter 2 and Chapter 3 in Hansen et al. (2004))

V̂ n[v] =
m
∑

i=1

max
αn′,i:n

′∈S(n)
(αn′,i · vi) (2.16)The expression being maximized (αn′,i · vi)
an be repla
ed with the formula for
al
ulatingthe expe
ted utility for
han
e nodes, shown in Equation 2.17.

V̂ n[v] =
∑

n′∈S(n)

pn′ V̂ n′ [v] (2.17)If the de
ision node, n, is not followed by
han
e nodes in some or all of the edges leading out,the
orresponding su

essors
ould, during
al
ulations, be treated as if there a
tually was a
han
e node between them and n, with only one state. This would not in
rease
omplexity,as the
orresponding n′ ∈ S(n) would only des
ribe one element in the inserted
han
e node.As Equation 2.17 shows, V̂ n[v] generates a mean of the su

essors if n is a
han
e node, soto use Equation 2.17 in the s
ope of de
ision nodes, the notation of V̂ n[v] is expanded to
V̂ n[v] =

∑m
i=1(V̂ n,i[v] · vi), meaning that V̂ n,i[v] is the
oe�
ient atta
hed to utility number

i in node n. Now the result of merging Equation 2.16 and 2.17 is shown in Equation 2.18.
V̂ n[v] =

m
∑

i=1



 max
n′∈S(n)





∑

n′′∈S(n′)

pn′′ · V̂ n′′,i[v]



 · vi



 (2.18)Comparing Equation 2.18 with the formula used by FLUF (Equation 2.19) the similaritiesbetween the two methods
an be seen. Equation 2.19 uses ρ to denote the expe
ted utilitywhereas Equation 2.18 uses V̂ .
ρDk

(epast(Dk)) =
m
∑

i=1

(

max
Dk

(

∑

Ik

P (Ik|epast(Dk), Dk) · ρDk+1,i(epast(Dk+1))

)

· vi

) (2.19)Note that Equation 2.18 does not expli
itly have to take the past into
onsideration, as it isrepresented by the node's position in the tree.When
hoosing the utility fun
tion, FLUF and Chajewska et al. (2001) uses
ompletely di�er-ent methods. FLUF �nds the utility values that are as far away from the
reated
onstraints15

Chapter 2. The Method FLUFas possible. Chajewska et al. (2001) assumes that a probability distribution over utility fun
-tions is given. This is then used to �nd a utility fun
tion within the feasible spa
e that hasa high likelihood. The exa
t di�eren
e between the utility fun
tion
hosen by FLUF and theone
hosen by Chajewska et al. (2001) depends on the supplied distribution over the utilityfun
tions, and no general
on
lusions are drawn. The di�eren
e between the two methods for
hoosing utility fun
tions, do not only a�e
t the utility fun
tion, but also makes the prerequis-ites for using the methods di�erent as FLUF does not require a prior knowledge about theutility fun
tion.In
on
lusion, FLUF and Chajewska et al. (2001)
reates the same feasible spa
e given that thesubutilities in Chajewska et al. (2001) is represented as des
ribed here. This is no
oin
iden
e asthe underlying work for how FLUF
reates its
onstraints, is the work presented in Chajewskaet al. (2001). The most signi�
ant stru
tural di�eren
e between the methods is how the utilityfun
tion is
hosen within the feasible spa
e.
2.6.2 ComplexityWhen solving de
ision trees and in�uen
e diagrams, both representations have a worst
asetime
omplexity that is O(nodesstates) where nodes is the number of de
ision and
han
e nodesin the domain for in�uen
e diagrams, and the depth of the tree for de
ision trees. states is thelargest state spa
e of any node in the domain. However, the worst
ase time
omplexities of themethods (Chajewska et al. (2001) and FLUF) are O(nodesstates · utilities), where utilities isthe number of (sub)utilities in the domain. This is be
ause, as Equations 2.18 and 2.19 show,
oe�
ients must be
al
ulated for every (sub)utility. Had the method for de
ision trees notbeen rewritten to Equation 2.18, the same
al
ulations would still have to be made, though ina di�erent order.However, even though the time
omplexities of the two methods are identi
al, the
omplexitiesof the models are not the same. The number of nodes in a de
ision tree grows exponentiallyin the depth of the tree, as ea
h potential future for a node will have to be modeled. Morepre
isely the
omplexity is O(statesnodes). This means that if the de
ision s
enario alwaysinvolves the same de
isions and the same un
ertainties in the same order, the tree will besymmetri
 where ea
h de
ision and ea
h un
ertainty is represented on
e for ea
h
on�gurationof the past.When the de
ision s
enario always involves the same de
isions and un
ertainties in the sameorder, in�uen
e diagrams have a lower
omplexity, with regard to the number of nodes, thande
ision trees. The reason being that the
on�guration of the past is not represented in thequalitative part of the in�uen
e diagram. The number of nodes is
onstant, no matter thesize of the state spa
es. However, the size of the needed probability table is always a �xedsize based on the state spa
e, so if the past in the de
ision s
enario
an make a de
ision orun
ertainty irrelevant, the in�uen
e diagram still have to model all out
omes, even those thatwill no impa
t on the utilities.In
on
lusion, if the relevant pasts of the de
ision nodes are large, meaning they
ontain alarge number of nodes, and that there are many
on�gurations of the relevant pasts that haveprobability zero, de
ision trees will have a lower
omplexity with regard to number of nodes.If the relevant pasts of the de
isions are small and there are few
on�gurations with zeroprobability in�uen
e diagrams will have a lower
omplexity.16

2.7. Limitations of FLUF2.7 Limitations of FLUFIn this se
tion an analysis of the learning method used by FLUF is presented, highlighting thesteps in FLUF in whi
h the ina

ura
ies o

ur.FLUF analyzes whi
h utility values in an in�uen
e diagram that
ould des
ribe the observedbehavior of an agent. Basi
ally it tries to de�ne a feasible spa
e for the utility values, asmore than one set of values
ould des
ribe the observed behavior. But the
omplexity of�nding the feasible spa
e of utility values that exa
tly des
ribes the observed behavior makesit impra
ti
al. Therefore FLUF uses a less
omplex method that �nds a di�erent spa
e, whi
his a super spa
e of the exa
t feasible spa
e, and
hooses its utility values from this super spa
e.This relaxation de
reases the a

ura
y with whi
h FLUF
an estimate the utility values of theobserved agent. It may result in FLUF not being able to determine a utility fun
tion that
ould explain the behavior already observed, even if the agent's utility values never
hange. Amethod that de�nes the
onstraints as exa
t as possible will be denoted the optimal method.In the following se
tion FLUF will be
ompared to the optimal method in order to understandwhere the ina

ura
ies in FLUF o

ur.2.7.1 The Optimal MethodThe feasible spa
e spanned by a
onstraint
reated using FLUF is larger than the feasible spa
ethat
ould explain the observed behavior. For an observed de
ision (Dk(ok)), the
al
ulationsof ρ (the expe
ted utility) is done as if the subsequent unobserved de
isions are in the statethat gives the largest possible
oe�
ient for ea
h utility value.When FLUF determines
onstraints, a lower bound for the expe
ted utility for the de
isionsthat was not sele
ted is also determined. When
al
ulating this, the unobserved de
isions areassumed being in the state that give the smallest possible
oe�
ients for determining ρ. Thisensures that the utility spa
e des
ribing the observed agents strategy is a sub spa
e of thespa
e spanned by the
reated
onstraint.The most exa
t expe
ted utility that
ould be de�ned for an unobserved de
ision node, is usingthe formula for
al
ulating the expe
ted utility:
ρDk

(epast(Dk)) =







max
Dk

∑

Ik
P (Ik|epast(Dk), Dk) · ρDk+1

(epast(Dk+1)) k 6= n

max
Dk

∑

Ik
P (Ik|epast(Dk), Dk) · V (pa(U)) k = nThis formula
an be used in
onjun
tion with the following formula, for
al
ulation of ρ whenthe
on�guration of the relevant past of Dk in epast has been observed to be δDk

(past(Dk)).
ρDk

(epast(Dk), δDk
(past(Dk))) =

{

∑

Ik
P
(

Ik|epast(Dk), δDk
(past(Dk))

)

· ρDk+1

(

epast(Dk+1)
)

k 6= n
∑

Ik
P
(

Ik|epast(Dk), δDk
(past(Dk))

)

· V (pa(U)) k = nWith those two formulas the
onstraints for ea
h observation
an be added. The
onstraintsfor ea
h observed de
ision are
reated as:
∀d∈Dk\δDk

(ok) : ρDk
(δDk

(ok), ok) ≥ ρDk
(d, ok)The feasible spa
e spanned by the
onstraints of the optimal method is denoted the true feasiblespa
e or the true utility spa
e. 17

Chapter 2. The Method FLUFFor an unobserved de
ision node Dk, in some
on�guration of its relevant past, the normalizedregion
an be divided into subregions, one for ea
h possible de
ision in Dk. For all utility pointswithin ea
h subregion, the
orresponding de
ision of Dk will yield the maximum expe
ted. Ifall the di�erent relevant pasts of Dk are
onsidered in this way, then ea
h relevant past willdivide the normalized region in a set of subregions, ea
h of these
orresponding to a spe
i�
de
ision for that relevant past. If a point is
hosen in the normalized region, then by examiningwhi
h subregions it is in, then a
omplete poli
y for node Dk
an be des
ribed.When
reating
onstraints using the optimal method, for some de
ision in a node, Dp, thatpre
eeds Dk (p < k), then a
onstraint for ea
h possible poli
y,
onforming with the behaviorobserved so far, is
reated. These
onstraints are
al
ulated as if the poli
y had been observed,meaning they
an be
reated as for fully observed strategies, Se
tion 2.3. However, ea
h
onstraint is only valid in the subregion
orresponding to the poli
y used to
reate it, so thespa
e spanned by the
onstraint is interse
ted with this subregion. Now the spa
es spannedwithin ea
h subregion des
ribe the utility points that
an explain the observed de
ision in Dp,when the poli
y in Dk is the one asso
iated with that subregion.The total spa
e that
an des
ribe the observed Dp is the union of all the spanned spa
es inthe subregions. The reason all the subregions have to be in
luded is that the subregion thatthe utilities are a
tually in is unknown.Exa
tly whi
h utility point that is
hosen within the true utility spa
e is irrelevant as theywould all des
ribed the observed behavior. So to
hoose the utility point as the
enter of thelargest possible hypersphere of the true utility spa
e
ould still be done. It should be notedthat �nding this is signi�
antly more
omplex than for FLUF, as the spa
e is no longer spannedby linear
onstraints.Now, the only di�eren
e between this optimal method and FLUF is the way the feasible spa
eis determined, so this will be examined
loser. Only unobserved de
ision nodes are examined,as the
al
ulations in observed nodes are semanti
ally identi
al. Using a notation that is likethe one used to des
ribe FLUF the optimal method would use Equation 2.20 (Note that ρ forthe optimal method is neither overlined nor underlined).
ρDk

(epast(Dk)) = max
Dk

(

∑

Ik

P (Ik|epast(Dk), Dk)ρDk+1
(epast(Dk+1))

)

= max
Dk

(

∑

Ik

P (Ik|epast(Dk), Dk) ·
m
∑

i=1

(

ρDk+1,i(epast(Dk+1)) · vi

)

)

= max
Dk

(

m
∑

i=1

(

∑

Ik

P (Ik|epast(Dk), Dk) · ρDk+1,i(epast(Dk+1))

)

· vi

)

(2.20)
This
al
ulation is done for ea
h subregion of Dk, su
h that maxDk

yields a di�erent de
isionin all these
al
ulations. However, ρDk+1,i(epast(Dk+1)) represents the expe
ted utility ofstrategy followed by the de
ision nodes following Dk in the temporal order. This means thatfor ea
h possible
hoi
e in Dk this
al
ulation has to be done on
e for ea
h set of poli
ies forsubsequent de
ision nodes,
onsistent with all observations made and the
hosen de
ision in
Dk.When FLUF maximizes the
oe�
ients for utility values it uses Equation 2.21.

ρDk
(epast(Dk)) =

m
∑

i=1

(

max
Dk

(

∑

Ik

P (Ik|epast(Dk), Dk) · ρDk+1,i(epast(Dk+1))

)

· vi

) (2.21)18

2.7. Limitations of FLUFComparing Equation 2.20 and 2.21 it
an be seen that the di�eren
e is in the order in whi
h thede
ision is made and when the utility values are added. As sum and max are not
ommutative,these are not equivalent. In fa
t it will always hold that, no matter whi
h de
ision is
hosenfor ρDk
:

ρDk
≥ ρDk

(2.22)The opposite argument
an be made for how FLUF minimizes the
oe�
ients for the utilityvalues:
ρ

Dk
(epast(Dk)) =

m
∑

i=1

(

min
Dk

(

∑

Ik

P (Ik|epast(Dk), Dk) · ρ
Dk+1,i

(epast(Dk+1))

)

· vi

) (2.23)Meaning that it will always hold that:
ρ

Dk
≤ ρDk

(2.24)Basi
ally, the
onstraints
reated by FLUF are of the form (in FLUF stri
t inequalities areused, but that does not a�e
t this dis
ussion):
∀d∈Dk

: ρDk=δDk
(epast(Dk)) − ρ

Dk=d
(epast(Dk)) ≥ 0 (2.25)Where δDk

is the observed
hoi
e in de
ision Dk. Using the optimal method the
onstraintsare of the form:
∀d∈Dk

: ρDk=δDk
(epast(Dk)) − ρDk=d(epast(Dk)) ≥ 0 (2.26)From the established relationships in Equations 2.22 and 2.24, used by FLUF and the optimalmethod, it
an be
on
luded that the feasible spa
e spanned by the
onstraints in FLUF willalways be a super spa
e of the
orresponding
onstraints in the optimal method.Another way of
omparing the feasible spa
e of the optimal method and FLUF, is to look athow many of the observations the methods would be able to explain after having observedthem. In other words, examining whether the
onstraints
reated during observations will bedes
riptive enough, for the method to predi
t the de
isions
orre
tly if one of the observationswere repeated. An experiment was
ondu
ted using the stati
 domain from the experiments inHansen et al. (2004). It was determined how many of the already observed training
ases
ouldbe predi
ted by the method every time a new observation is added. The optimal method hasnot been implemented but, theoreti
ally, its
hosen utility point would be able to explain allobserved de
isions. So the number of training
ases that FLUF is unable to predi
t
orre
tly,indi
ates how it performs
ompared to the optimal method, and thereby expresses how mu
hhave been lost in the approximation being done by FLUF.The values shown in Figure 2.2 is the average of training
ases predi
ted
orre
tly (that is bothde
isions are
orre
t). This average is based on 30 runs with 200 observations. As
an be seenin Figure 2.2 FLUF is able to predi
t 80% of the observed training
ases
orre
tly, on average,after only one
ase. The predi
tion by FLUF stabilizes at that level after 20
ases.As about 20% of the observations are not
orre
tly predi
ted by FLUF it indi
ates that theutility point is wrong. This means that the feasible spa
e of FLUF must be larger than thefeasible spa
e of the optimal method, as the optimal method would be able to predi
t theobservations from any utility point in its feasible spa
e.19

Chapter 2. The Method FLUF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200
C

or
re

ct
Observations

Legend
FlufFigure 2.2: Training
ases predi
ted
orre
tly

P (C1|D1) D1 = d1
1 D1 = d2

1

c1
1 0.3 0.75

c2
1 0.7 0.25Table 2.5: P (C1|D1) for Figure 2.3 P (C2|C1, D2) D2 = d1

2 D2 = d2
2

c1
1 (0.4, 0.2, 0.4) (0.1, 0.4, 0.5)

c2
1 (0.1, 0.7, 0.2) (0.3, 0.1, 0.6)Table 2.6: P (C2|C1, D2) for Figure 2.3Example 2.7.1 In order to illustrate the ina

ura
ies dis
ussed, an example is given of how
al
ulations would be made. The in�uen
e diagram used in this example is shown in Figure2.3, and the probability tables are shown in Table 2.5 and 2.6. Both de
ision nodes are binary.The following observation is made:

t = 〈D1 = d2
1, C1 = c1

1, D2 = d2
2〉Using FLUF the upper and lower bounds for the de
isions are
al
ulated. First for D2.

ρD2
(C1 = c1

1, D2 = d2
2) = P (c1

2|c
1
1, d

2
2)V (c1

2) + P (c2
2|c

1
1, d

2
2)V (c2

2) + P (c3
2|c

1
1, d

2
2)V (c3

2)

= 0.1(v1 + 0v2 + 0v3) + 0.4(0v1 + v2 + 0v3) + 0.5(0v1 + 0v2 + v3)

= 0.1v1 + 0.4v2 + 0.5v3

ρ
D2

(C1 = c1
1, D2 = d1

2) = P (c1
2|c

1
1, d

1
2)V (c1

2) + P (c2
2|c

1
1, d

1
2)V (c2

2) + P (c3
2|c

1
1, d

1
2)V (c3

2)

= 0.4(v1 + 0v2 + 0v3) + 0.2(0v1 + v2 + 0v3) + 0.4(0v1 + 0v2 + v3)

= 0.4v1 + 0.2v2 + 0.4v3

C2C1

D2

D1

UFigure 2.3: Example of an in�uen
e diagram20

2.7. Limitations of FLUFThis gives the
onstraint:
ρD2

(C1 = c1
1, D2 = d2

2) > ρ
D2

(C1 = c1
1, D2 = d1

2)

0.1v1 + 0.4v2 + 0.5v3 > 0.4v1 + 0.2v2 + 0.4v3

−0.3v1 + 0.2v2 + 0.1v3 > 0

(2.27)A
onstraint for D1 is also be
reated. Again the upper and lower bounds have to be
al
ulated.
ρD1

(D1 = d2
1) = P (c1

1|d
2
1)ρD2

(c1
1) + P (c2

1|d
2
1)ρD2

(c2
1)

= 0.75(0.1v1 + 0.4v2 + 0.5v3) + 0.25
(

max
D2

(

P (c1
2|c

2
1, d2)αU,1,c1

2
+ P (c2

2|c
2
1, d2)αU,1,c2

2
+ P (c3

2|c
2
1, d2)αU,1,c3

2

)

v1 +

max
D2

(

P (c1
2|c

2
1, d2)αU,2,c1

2
+ P (c2

2|c
2
1, d2)αU,2,c2

2
+ P (c3

2|c
2
1, d2)αU,2,c3

2

)

v2 +

max
D2

(

P (c1
2|c

2
1, d2)αU,3,c1

2
+ P (c2

2|c
2
1, d2)αU,3,c2

2
+ P (c3

2|c
2
1, d2)αU,3,c3

2

)

v3

)

= 0.075v1 + 0.3v2 + 0.3753 + 0.25
(

(0.3 · 1 + 0.1 · 0 + 0.6 · 0) v1 +

(0.1 · 0 + 0.7 · 1 + 0.2 · 0) v2 + (0.3 · 0 + 0.1 · 0 + 0.6 · 1) v3

)

= 0.075v1 + 0.3v2 + 0.375v3 + 0.25(0.3v1 + 0.7v2 + 0.6v3)

= 0.15v1 + 0.475v2 + 0.525v3

ρ
D1

(D1 = d1
1) = P (c1

1|d
1
1)ρD2

(c1
1) + P (c2

1|d
1
1)ρD2

(c2
1)

= 0.3(0.4v1 + 0.2v2 + 0.4v3) + 0.7
(

min
D2

(

P (c1
2|c

2
1, d2)αU,1,c1

2
+ P (c2

2|c
2
1, d2)αU,1,c2

2
+ P (c2

2|c
2
1, d2)αU,1,c3

2

)

v1 +

min
D2

(

P (c1
2|c

2
1, d2)αU,2,c1

2
+ P (c2

2|c
2
1, d2)αU,2,c2

2
+ P (c2

2|c
2
1, d2)αU,2,c3

2

)

v2 +

min
D2

(

P (c1
2|c

2
1, d2)αU,3,c1

2
+ P (c2

2|c
2
1, d2)αU,3,c1

2
+ P (c2

2|c
2
1, d2)αU,3,c3

2

)

v3

)

= 0.12v1 + 0.06v2 + 0.12v3 + 0.7
(

(0.1 · 1 + 0.7 · 0 + 0.2 · 0) v1 +

(0.3 · 0 + 0.1 · 1 + 0.6 · 0) v2 + (0.1 · 0 + 0.7 · 0 + 0.2 · 1) v3

)

= 0.12v1 + 0.06v2 + 0.12v3 + 0.7 (0.1v1 + 0.1v2 + 0.2v3)

= 0.22v1 + 0.16v2 + 0.32v3This gives the
onstraint:
ρD1

(D1 = d2
1) > ρ

D1

(D1 = d1
1)

0.15v1 + 0.475v2 + 0.525v3 > 0.22v1 + 0.16v2 + 0.32v3

−0.07v1 + 0.315v2 + 0.205v3 > 0

(2.28)The
onstraints generated when using the optimal method will now be
al
ulated, with theseit is possible to de�ne a smaller feasible spa
e. The
onstraint from Equation 2.27 is also21

Chapter 2. The Method FLUFpresent using the optimal method as no maximization is involved in determining it. However,
al
ulating the
onstraint for D1 is done di�erently.
ρD1

(d2
1) = P (c1

1|d
2
1)ρD2

(c1
1) + P (c2

1|d
2
1)ρD2

(c2
1)

= 0.75(0.1v1 + 0.4v2 + 0.5v3) +

0.25(max
D2

(P (c1
2|c

2
1, d2)v1 + P (c2

2|c
2
1, d2)v2 + P (c3

2|c
2
1, d2)v3))This
al
ulation must be done for ea
h subregion
onsistent with the observation made. As D2has two options and only has one unobserved relevant past, there will only be two subregionsin the normalized region for whi
h
onstraints must be
al
ulated. These subregions are foundby
omparing expe
ted utilities:

ρD2
(C1 = c2

1, D2 = d1
2) = P (c1

2|c
2
1, d

1
2)v1 + P (c2

2|c
2
1, d

1
2)v2 + P (c3

2|c
2
1, d

1
2)v3

= 0.1v1 + 0.7v2 + 0.2v3

ρD2
(C1 = c2

1, D2 = d2
2) = P (c1

2|c
2
1, d

2
2)v1 + P (c2

2|c
2
1, d

2
2)v2 + P (c3

2|c
2
1, d

2
2)v3

= 0.3v1 + 0.1v2 + 0.6v3Now it is possible to
omplete the
al
ulation for ρD1
(d2

1) in both subregions, as in ea
hsubregion a spe
i�

hoi
e of D2
an be
onsidered optimal when C1 is in state c2
1:

0.1v1 + 0.7v2 + 0.2v3 < 0.3v1 + 0.1v2 + 0.6v3 :

ρD1
(d2

1) = P (c1
1|d

2
1)ρD2

(c1
1) + P (c2

1|d
2
1)ρD2

(c2
1)

= 0.75(0.1v1 + 0.4v2 + 0.5v3) + 0.25(0.3v1 + 0.1v2 + 0.6v3)

= 0.15v1 + 0.325v2 + 0.525v3

0.3v1 + 0.1v2 + 0.6v3 < 0.1v1 + 0.7v2 + 0.2v3 :

ρD1
(d2

1) = P (c1
1|d

2
1)ρD2

(c1
1) + P (c1|d1)ρD2

(c2
1)

= 0.75(0.1v1 + 0.4v2 + 0.5v3) + 0.25(0.1v1 + 0.7v2 + 0.2v3)

= 0.1v1 + 0.475v2 + 0.425v3In order to
reate the
onstraint it is also ne
essary to determine ρD1
(d1

1):
0.1v1 + 0.7v2 + 0.2v3 < 0.3v1 + 0.1v2 + 0.6v3 :

ρD1
(d1

1) = P (c1
1|d

1
1)ρD2

(c1
1) + P (c2

1|d
1
1)ρD2

(c2
1)

= 0.3(0.1v1 + 0.4v2 + 0.5v3) + 0.7(0.3v1 + 0.1v2 + 0.6v3)

= 0.24v1 + 0.19v2 + 0.57v3 22

2.7. Limitations of FLUF
0.3v1 + 0.1v2 + 0.6v3 < 0.1v1 + 0.7v2 + 0.2v3 :

ρD1
(d1

1) = P (c1
1|d

2
1)ρD2

(c1
1) + P (c2

1|d
2
1)ρD2

(c2
1)

= 0.3(0.1v1 + 0.4v2 + 0.5v3) + 0.7(0.1v1 + 0.7v2 + 0.2v3)

= 0.1v1 + 0.61v2 + 0.29v3The
onstraint ρD1
(d2

1) > ρD1
(d1

1)
an now be determined:
0.1v1 + 0.7v2 + 0.2v3 < 0.3v1 + 0.1v2 + 0.6v3 :

ρD1
(d2

1) > ρD1
(d1

1)

0.15v1 + 0.325v2 + 0.525v3 > 0.24v1 + 0.19v2 + 0.57v3

−0.09v1 + 0.135v2 − 0.045v3 > 0

(2.29)As this
onstraint is only valid when 0.1v1+0.7v2+0.2v3 < 0.3v1+0.1v2+0.6v3, it is interse
tedwith the
onstraint 0.2v1 − 0.6v2 + 0.4v3 > 0. This interse
tion des
ribes the feasible spa
e inthe �rst subregion.For the se
ond subregion 0.3v1 + 0.1v2 + 0.6v3 < 0.1v1 + 0.7v2 + 0.2v3 the
onstraint is:
ρD1

(d2
1) > ρD1

(d1
1)

0.1v1 + 0.475v2 + 0.425v3 > 0.1v1 + 0.61v2 + 0.29v3

−0.135v2 + 0.135v3 > 0

(2.30)As this
onstraint is only valid when 0.3v1+0.1v2+0.6v3 < 0.1v1+0.7v2+0.2v3, it is interse
tedwith the
onstraint −0.2v1 + 0.6v2 − 0.4v3 > 0. This interse
tion des
ribes the feasible spa
ein the se
ond subregion.To des
ribe the feasible spa
e found by the optimal method, the feasible spa
e in the twosubregions should �rst be unioned, and the resulting spa
e should then be interse
ted with thespa
e des
ribed by the
onstraint in Equation 2.27.In Figure 2.4 the feasible spa
es for both methods are shown (it is the spa
e above all the
onstraints). As
an be seen the spa
e des
ribed by the interse
tion of the green and theblue
onstraints is larger than the spa
e des
ribed by the interse
tion of the green and the grey
onstraints, meaning that the optimal method de�nes a smaller region. The di�eren
e betweenthe spa
e spanned by the green plane and the grey planes illustrate the ina

ura
y of FLUF.The grid shows the division of the normalized region, where the de
ision of D2 that yields themaximum expe
ted utility is di�erent given past c2
1. In the subregion that
ontains (1, 0, 1),the de
ision that yields the maximum expe
ted utility for de
ision D2 is d2

2. In the subregionthat
ontains (0, 1, 0) the de
ision is d1
2.

2Considering Example 2.7.1, it
an be seen that even though that the point (0, 1, 0) is withinthe feasible spa
e of FLUF, that point would not explain the observation as the expe
tedutilities would be
ome: EU(D1 = d1
1) = 0.61 and EU(D1 = d2

1) = 0.475, meaning that theoptimal de
ision of D1 would always be d1
1. EU is short for expe
ted utility. In general, thereis no guarantee that the utility fun
tions expressed by any point in the feasible spa
e spannedby FLUF's
onstraints
an explain the observations made. However, the utility fun
tions23

Chapter 2. The Method FLUF

0

v2

1
0

v1

v3

1

Figure 2.4: The feasible spa
e de�ned by Equations 2.27(green), 2.28(blue), 2.29 and 2.30(grey). The feasiblespa
e is the region above the
onstraints. It might be hard to see what is above, but all
onstraints
ontain thepoint (0, 0.75, 1). v1 is from right to left, v2 is from the ba
k to the front, and v3 is from the bottom to thetop. The grid is the division of the subregions for D2.expressed by the spa
e spanned by the optimal method will, by its de�nition, explain theobservations made.In general it
an be
on
luded that when FLUF is in
apable of predi
ting the observationsalready made, it must be be
ause the utility spa
e
reated by FLUF is larger than the trueutility spa
e. This enlargement of the utility spa
e, is a
onsequen
e of the fa
t that the stateof de
ision nodes for unobserved
on�gurations of their relevant past is
hosen for ea
h utilityvalue. This is not ne
essarily the same state for all utility values. If a single state was
hosenfor these de
ision nodes the size of the utility spa
e would be smaller, and the amount of utilitypoints that does not
onform with the observed behavior will be redu
ed. This might be a wayto a
hieve better a

ura
y.

24

CHAPTERTHREE
ImputingIn this
hapter the prin
iple of imputing is introdu
ed. Be
ause as shown in Se
tion 2.7, thefeasible spa
e des
ribed by FLUF is larger than needed, sin
e FLUF relaxes
onstraints whenthe strategy is partially observed, leading to ina

ura
ies. Therefore some other method forhandling unobserved
on�gurations of relevant pasts
ould be employed, whi
h does not relax
onstraints and thereby obtains a smaller feasible spa
e. The
on
ept of imputing observationsis introdu
ed for this purpose in this
hapter, and two new predi
tion methods are presentedthat use imputing te
hniques to handle partially observed strategies. These methods are namedUtility Iteration and Imputing by Comparison, and will also be referred to as the imputingmethods.With a partially observed strategy some
on�gurations of the di�erent relevant pasts in thedomain will be observed, while others will be unobserved. The general idea with imputing, isto impute observations with the
on�gurations of the relevant pasts in the domain that areunobserved. Using these imputed observations Utility Iteration and Imputing by Comparisonwill be able to
reate
onstraints, without relaxing them at all, as des
ribed for FLUF inSe
tion 2.3.3.1 Imputing AnalysisIn this se
tion the
onsequen
es of imputing observations is analyzed. Spe
i�
ally it is ana-lyzed whether imputing
ould be an improvement over relaxation, and whether imputations
an
ause
on�i
ts. In the new methods that are suggested in the following se
tions, the overallidea is to make the observed agent's strategy fully observed by imputing the missing observa-tions. Observations that are imputed have not really been observed, so they are
alled virtualobservations , while the observations that have been made will be
alled true observations .As mentioned the ina

ura
y in FLUF will stem from relaxing
onstraints leading to feasiblea spa
e that is to large. The reason for developing methods based on fully observed strategies,is that the feasible spa
es a
hieved from su
h methods will des
ribe smaller spa
es, be
ause norelaxation will be ne
essary. Considering how the
onstraints are
reated in FLUF:

h1v1 + h2v2 + · · · > l1v1 + l2v2 + · · ·where ea
h hk is
hosen as high as possible and ea
h lk is
hosen as low as possible, both25

Chapter 3. Imputingbeing
oe�
ients. Assuming the strategy is fully observed, and the
onstraints are thereforenot relaxed, they will be:
h′

1v1 + h′
2v2 + · · · > l′1v1 + l′2v2 + · · ·where ea
h h′

n and l′n are the
oe�
ients that mat
hes the
hosen de
ision. As it will alwayshold that hk ≥ h′
k and lk ≤ l′k it will also hold that:

h1v1 + h2v2 + · · · ≥ h′
1v1 + h′

2v2 + · · · ≥ l′1v1 + l′2v2 + · · · ≥ l1v1 + l2v2 + · · ·Any spa
e spanned by the
onstraints derived from a fully observed strategy is a subspa
e ofthe spa
e spanned by
onstraint
reated in FLUF.Considering the grey
onstraint in Example 2.7.1 ea
h plane
orresponds to di�erent de
isionsbeing made in D2. In general, when imputing an observation, for an unobserved
on�gurationof the relevant past, it results in a
onstraint being equal to one of the two grey
onstraintsfrom the optimal method.3.1.1 Imputations Causing Con�i
tBefore the methods are introdu
ed, it is dis
ussed how, under
ertain
ir
umstan
es, wrongimputations
an
ause observations to
on�i
t, i.e. the
onstraints added
ause the feasiblespa
e to be
ome empty, even though the observed agent never
hanges its strategy. Thisanalysis is based on the
onstraints added in the se
ond last de
ision node (Dn−1), in somedomain with n de
ision nodes (n ≥ 2). For ea
h of the
on�gurations of its relevant past, Dnwill yield a (possibly) di�erent expe
ted utility, the de
ision made in Dn−1 will in�uen
e thelikelihood of ea
h of these
on�gurations, and therefore any imputed de
isions in Dn will a�e
tthe expe
ted utilitiy of de
isions in Dn−1.Given a spe
i�

ombination of imputations in Dn, two
onstraints
an be
reated in Dn−1 thattogether makes the feasible spa
e be
ome empty. For this to be the
ase the two
onstraintsmust
oin
ide, and point in opposite dire
tions, i.e. the
onstraints would be on the form
c1 · v1 · · · · · cu · vu > 0 and −c1 · v1 · · · · · −cu · vu > 0 where u is the number of utilities in thedomain. Table 3.1 shows the relationship between the
oe�
ients of the
onstraints.

Constraint1 Constraint2
c1 −c1

c2 −c2

· · · · · ·
cu−1 −cu−1

(1 − c1 · · · − cu−1) −(1 − c1 · · · − cu−1)Table 3.1: Relationship between Constraint1 and Constraint2The
oe�
ients in these
onstraints must as always sum to 0, so if the �rst u − 1
oe�
ientsof the
onstraints
onform to the des
ribed relationship, then the last
oe�
ient will also.The states of In−1 are written (c1
n−1 · · · c

m
n−1), where there are m
on�gurations of the nodesin In−1. Throughout the rest of this se
tion three di�erent probability distributions over In−1will be used frequently, therefore shorthand notations for these probability distributions are26

3.1. Imputing Analysislisted in Equation 3.1.
pk

δ = P
(

ck
n−1|δDn−1

(past(Dn−1)), epast(Dn−1)
)

pk
1 = P

(

ck
n−1|d

1
n−1, epast(Dn−1)

)

pk
2 = P

(

ck
n−1|d

2
n−1, epast(Dn−1)

)

(3.1)Equation 3.2 shows the general method for
al
ulating one
oe�
ient (ci) when de
ision
δDn−1

(past(Dn−1)) is observed. ρDn,i(epast(Dn)) is the i′th
oe�
ient determined for Dn,given the past epast(Dn).
ci =

m
∑

k=1

pk
δ · ρDn,i(epast(Dn)) (3.2)What happens in Equation 3.2
orresponds to repla
ing de
ision node Dn by a
han
e node,and then
al
ulating the
oe�
ient. To
al
ulate ρ
orre
tly then, just as when substituting ade
ision node by a
han
e node, the de
ision node must be fully observed. When this is notthe
ase, virtual observations are imputed so that ρDn,i
an still be
al
ulated.Now let d1

n−1 and d2
n−1 be two de
isions in Dn−1 di�erent from δDn−1

(past(Dn−1)), it isnow known that the expe
ted utility of the two de
isions are smaller than the expe
ted util-ity of δDn−1
, given past(Dn−1). Let EU(δDn−1

(past(Dn−1))) > EU(d1
n−1(past(Dn−1))) be

Constraint1 while Constraint2 is EU(δDn−1
(past(Dn−1))) > EU(d2

n−1(past(Dn−1))). So
oe�
ient ci will be ρDn−1,i(δDn−1
(past(Dn−1)), epast(Dn−1)) with ρDn−1,i(d

1
n−1, epast(Dn−1))subtra
ted, in Constraint1. Based on Equation 3.2, Equation 3.3 shows how
oe�
ient ci is
al
ulated for Constraint1.

ci =
m
∑

k=1

(pk
δ − pk

1) · ρDn,i(epast(Dn)) (3.3)The two
onstraints are
reated in the same de
ision node (Dn−1) based on two di�erentde
isions (d1
n−1 and d2

n−1) given the same relevant past (past(Dn−1)) and observed de
ision(δn−1(past(Dn−1))). Sin
e the
onstraints are
reated in the same de
ision node given thesame past, then the imputations made, and thereby ρDn,i, will be the same when
al
ulatingboth
onstraints. Equation 3.4 shows what must hold, for
oe�
ient ci in the
onstraints to
onform with Table 3.1.
m
∑

k=1

(pk
δ − pk

1) · ρDn,i(epast(Dn)) = −
m
∑

k=1

(pk
δ − pk

1) · ρDn,i(epast(Dn))

m
m
∑

k=1

(2 · pk
δ − pk

1 − pk
2) · ρDn,i(epast(Dn)) = 0

(3.4)The expression in Equation 3.4 will not always be true. It will depend on the probabilitiesin the domain (pk
δ , pk

1 and pk
2), and the imputed poli
ies (ρDn,i(epast(Dn))). Ea
h probabilitydistributions will sum to 1, just as the
oe�
ients
al
ulated with ρDn,i will sum to 1.Two probability distributions are added in the expression (2 · pk

δ) while two other probabilitydistributions are subtra
ted (−pk
1 − pk

2), so summing this expression over all m
on�gurations27

Chapter 3. Imputingof the relevant past would yield 0. However, all the expressions
annot sum to 0 individuallyfor all m
on�gurations, unless the utility fun
tion is trivial or if the di�erent de
isions have noimpa
t on the utilities. These situations would both make the de
ision in node Dn−1 irrelevant,in turn making no de
ision wrong and any predi
tion
orre
t, so it is assumed that this is notthe
ase.Ea
h of the expressions
al
ulated using the probability distributions is multiplied by theexpe
ted utility of their out
ome, ρDn,i(epast(Dn)). The sum of this ρ expression over thethe m
on�gurations will be 1, and non of the ρ expressions will be negative. This is dueto the utilities being normalized. The ρDn,i expressions are de
ided by the domain and theimputations made, so any
ombination of ρDn,i values is possible as long as they are all nonnegative and sum to 1. The reason for this is that any
han
e node later the than Dn in thetemporal order have not been used in any expression so far, so the probability distribution forthese
han
e nodes are not restri
ted in any way.Now, with the part of the expression that is determined by probability distributions summingto 0 over the m
on�gurations and ρDn,i summing to 1, then it will be possible to pi
k a setof values for ρDn,i that makes the entire expression from Equation 3.4 sum to 0.To summarize, then in a domain where the agent does not
hange behavior over time,
on�i
ts
an still o

ur when imputations are made. The type of
on�i
t that has been shown to bepossible is the
ase where two
onstraints des
ribe exa
t opposite half spa
es, this is a veryspe
i�
 situation and is only meant to show that
on�i
ts are possible.Based on this result the methods that use imputations to make the domain fully observed, mustalso
onsider that these imputations
an make the feasible spa
e be
ome empty. Therefore themethods should in
lude te
hniques to handle
on�i
ts.
3.2 Imputing StrategyUtility Iteration and Imputing by Comparison are only dissimilar in the way the unobserved
on�gurations of relevant pasts are imputed, the overall strategy, that the two methods share,is presented in this se
tion.The methods maintain a set of true observations, i.e. all the observations made so far. Everytime a new observation is made this observation is added to that set. When the utility fun
tionis to be estimated by one of these imputing methods then this estimation is done based onthe maintained set of true observations. So the two imputing methods are bat
h learningte
hniques, sin
e when a new observation is made the results of the imputing methods frombefore that observations was made are dis
arded.When the utility fun
tion is to be estimated, this is done by establishing
onstraints based onobserved de
isions. Equation 2.4 is used to
reate
onstraints, this equation assumes that thede
ision node being evaluated is the last in the temporal order, and �nds the expe
ted utilityof ea
h de
ision by weighing the utility
oe�
ients by their probability of o

urren
e. For theimputing methods to use this equation, they must impute virtual observations su
h that thestrategy of the observed agent be
omes fully observed.After the methods have
reated
onstraints based on all the de
isions observed in the trueobservations, a point in the feasible spa
e is
hosen as the estimated utility fun
tion. Thispoint is
hosen, as in FLUF, to be the
enter of the largest possible hypersphere in the feasiblespa
e, see Se
tion 2.5 for a des
ription of the method.28

3.3. Utility Iteration3.2.1 Basi
 Te
hniqueThis se
tion presents a basi
 imputing te
hnique that illustrates the
on
ept whi
h the imputingmethods are based upon. This te
hnique basi
ally di
tates the order in whi
h de
ision nodesshould be evaluated and subsequently substituted by
han
e nodes.The main idea is to
al
ulate
onstraints for the last de
ision node in the temporal order �rst,and then repla
e the de
ision node with a
han
e node. The
han
e node en
odes the poli
y ofthe
orresponding de
ision node with ones and zeros. As mentioned, this is only possible if thede
ision node has been observed for all
on�gurations of its relevant past, therefore imputingis done for unobserved
on�gurations. With respe
t to the last de
ision in an observation,adding these
onstraints is straight forward sin
e no subsequent de
ision will exist. Thereforein a de
ision node (D) where the observed de
ision was δD and the fun
tion ρ determinesthe
oe�
ients for all utilities, as in FLUF, then the following
onstraints
an be added:
∀d∈D\δD

: ρ(δD) > ρ(d).Repla
ing a de
ision node (Dk) with a
han
e node (Ck), is done after
reating
onstraintsbased on the de
ision in all observations in O, O being the set of true observations, andthereafter the needed virtual de
isions, to repla
e Dk with Ck, are imputed. Now Ck
an beused instead of Dk throughout the rest of the imputing method, and it is now possible to
al
ulate
onstraints for de
ision node Dk−1 and so forth. Algorithm 3.2.1 shows the orderof the repla
ing and evaluations of de
ision nodes when using the basi
 te
hnique. n is thenumber of de
ision nodes.Algorithm 3.2.1
• For node = n to 1� For all observations (o) in O do

∗ Where δDnode
is the observed de
ision and onode is the relevant past of Dnodein the observation, add the following
onstraints to the feasible spa
e:

∀d∈Dnode\δDnode
: ρDnode

(δDnode
, onode) > ρDnode

(d, onode)� For every unobserved relevant past of de
ision node Dnode impute a virtual obser-vation� A

ording to true and virtual observations, repla
e Dnode by a
han
e nodeUsing this te
hnique means that the number of imputations needed for one de
ision node willbe relevant−observed, where relevant is the number of di�erent
on�gurations of the relevantpast of the node, while observed is the number of di�erent
on�gurations of the relevant pastthat has been observed. Sin
e every de
ision node is repla
ed on
e and used throughout the restof the algorithm, the number of imputations needed in the worst
ase for the entire algorithmwill be O(n · (relevantmax − observedmin)), where n is the number of de
isions, relevantmaxis the largest relevant past in the domain and observedmin is the least number of di�erentrelevant pasts observed for some de
ision node. So the number of imputations is linear in thenumber of de
isions and
on�gurations of their relevant past, and as more observations aremade less imputations are needed.3.3 Utility IterationIn this se
tion the �rst of the two imputing methods,
alled Utility Iteration, is presented andanalyzed. 29

Chapter 3. ImputingThis method imputes virtual observations in order to view the agent's strategy as fully observed,and basi
ally Utility Iteration attempts to stepwise re�ne the utility fun
tion, using the previousversion of the utility fun
tion. So every time
onstraints are added to the feasible spa
e a newutility point is
hosen, this point is
onsidered more a

urate than the previous point sin
e itis
hosen based on one more observed de
ision. Every point
hosen in this way
orrespondsto a so
alled temporary utility fun
tion. The newest temporary utility fun
tion is used whenvirtual observations need to be imputed, this is des
ribed in Se
tion 3.3.1.Ea
h step in the re�nement is done when the
onstraints added by one de
ision in one
on�gur-ation of its relevant past, are added, i.e. as observed in one of the true observations. When thedomain is stati
, the order of the observations is irrelevant. However, the order in whi
h thede
isions are evaluated is not irrelevant, sin
e de
isions late in the temporal order will
reatemore a

urate
onstraints.The ina

ura
y in the Utility Iteration method stems from the imputations that are madeduring exe
ution, so the more imputations that a�e
t the
onstraints
reated for a de
ision,the less reliable the
onstraints
reated will be. For this reason
onstraints are
reated in reverseorder of the temporal order, su
h that the last de
ision in the temporal order is evaluated �rst.Sin
e the order of observations is irrelevant, then for any de
ision node (Dk) in the temporalorder,
onstraints are
reated for de
ision Dk in all observations, before the previous de
isionnode (Dk−1) is evaluated in any observation. This is mu
h like the basi
 te
hnique des
ribed inSe
tion 3.2.1, however an extension is presented in Se
tion 3.3.1 that is expe
ted to in
reasesa

ura
y for Utility Iteration.
3.3.1 Imputing Virtual De
isionsAll the way through the Utility Iteration algorithm, a feasible spa
e is maintained, des
ribedby the
onstraints established as the algorithm progresses. So as more de
isions are evaluatedmore
onstraints will be limiting this feasible spa
e.When imputations are needed for some de
ision node, they are done based on the
urrentknowledge about the feasible spa
e, i.e. the temporary utility fun
tion. To determine whatde
isions should be made in the needed virtual observations, the poli
y
an be determined bymaximizing expe
ted utility a

ording to the temporary utility fun
tion, sin
e the observedagent is assumed to be rational. The determined poli
y is then used to repla
e the de
isionnode by a
han
e node. As mentioned, the ina

ura
y of the Utility Iteration methods lies inthe imputations, this is be
ause of the risk that the utility point
hosen from the feasible spa
emight not des
ribe the strategy of the observed agent. If this o

urs then
onstraints addedto the feasible spa
e will be wrong, enlarging the risk of
hoosing a wrong point again later.Ina

urate imputations may lead to wrong predi
tions or even the feasible spa
e be
omingempty, i.e.
ausing a
on�i
t in a domain where the agent never
hanges behavior. Thisina

ura
y is analyzed in detail in Se
tion 3.3.3.In the following se
tion an extension to the te
hnique des
ribed in Se
tion 3.2.1 is presented.This extended te
hnique imputes de
isions repeatedly, as more is learned about the feasiblespa
e, resulting in a higher a

ura
y. A third te
hnique is presented in Appendix B, whi
huses a ba
ktra
ing approa
h, trying di�erent
ombinations of imputations in order to get thebest result, this approa
h is not a viable alternative, sin
e it has a high
omplexity.30

3.3. Utility IterationExtended Te
hniqueIt makes sense to evaluate the observations sequentially, sin
e anything learned from one ob-servation
an be used to impute more a

urately in another observation. So that at somede
ision node in the temporal order (Dk), �rst observation o1 is used to
reate
onstraints at
Dk, by imputing poli
ies for all subsequent nodes (Di|i > k). Imputations in o2 for subsequentnodes (Di|i > k)
an then be done more a

urately, if the
onstraints
reated for Dk in o1are taken into a

ount when determining the temporary utility fun
tion. With the extendedte
hnique imputations would be done anew ea
h time they are needed. So de
ision node Dkwould still be used to
reate
onstraints in all observation, but using the extended te
hniqueall subsequent de
ision nodes (Di|i > k) will be imputed during the evaluation of Dk in ea
hobservation and not only on
e. Using this, probably more a

urate, approa
h
omes at a tradeo� in
omplexity, due to the higher number of imputations.3.3.2 The Utility Iteration AlgorithmIn this se
tion a pseudo
ode algorithm of the Utility Iteration method, using the extendedte
hnique from Se
tion 3.3.1, is presented. As mentioned in Se
tion 3.3.1 the method maintainsa feasible spa
e des
ribed by a set of
onstraints (CC), whi
h initially des
ribes the entirenormalized region. During exe
ution of the algorithm
onstraints will be added to CC . Likewisethe algorithm will maintain a list of all true observations, this list is termed L. Every timea new observation (onew) is made it is inserted in the beginning of this list (onew|L), in thealgorithm it is assumed that this insertion operation has already been done.As mentioned observations are evaluated sequentially, with respe
t to ea
h step in the temporalorder, whi
h
an also be seen in Algorithm 3.3.1. If the agent does not
hange behavior betweenobservations this sequen
e is irrelevant.Also mentioned in Se
tion 3.3.1, was that the method
ontained ina

ura
ies when imputing.This means that even though the agent never
hanges behavior, the virtual observations mayend up
ausing a
on�i
t with a true observation. It is theoreti
ally possible to iteratively stepba
k and forth between observations trying di�erent utility fun
tions, whi
h inevitably wouldlead to a utility fun
tion with whi
h all true observations
ould
onform. This would be
omevery
omplex however, as shown in Appendix B, so instead the true observations in whi
h the
on�i
t o

urs are simply deleted.Algorithm 3.3.1

• For k = n to 1� For all observations, o ∈ L, the following is done for one observation at a time1. Set point to be a utility point in the feasible spa
e, as des
ribed in Se
tion 2.5.2. For all relevant pasts, past(Di), of ea
h de
ision node, Di, after de
ision node
Dk (i > k)
∗ If Di given past(Di) has been observed then no imputing is done
∗ Else, impute a de
ision in node Di for past(Di) a

ording to the utilitypoint3. Substitute de
ision nodes after node k by
han
e nodes
orresponding to im-puted poli
ies4. Where δDk

is the true de
ision observed in o,
reate the following set of
on-straints (Ctemp): ∀d∈D\δDk
: ρDk

(δDk
, ok) > ρDk

(d, ok)5. If CC ∪ Ctemp des
ribes the empty spa
e then delete observation o and all its
onstraints in CC 31

Chapter 3. Imputing6. Else let CC = CC ∪ Ctemp

• Choose a utility point and return it as the predi
ted utility fun
tionWith regard to the
omplexity of the algorithm the number of imputations needed for onede
ision node will be relevant − observed, but when evaluating an observed de
ision fromnode Dk in an observation, all subsequent nodes (Di|i > k) are imputed, ea
h of these need-ing relevant − observed imputations. This means that to
reate
onstraints for Dk in oneobservation, O((n − k) · (relevantmax − observedmin)) imputations are needed in the worst
ase. Sin
e these imputations are done anew for every observation, then to
reate
onstraintsfor all observations of node Dk the number of imputations needed in the worst
ase be
omes
O(obs · (n − k) · (relevantmax − observedmin)), where obs is the number of true observations.Finally, the number of imputations needed for the entire algorithm will, in the worst
ase, be :

O

(

obs · (relevantmax − observedmin) ·
n−1
∑

k=1

k

)

m

O
(

obs · relevantmax · n2
)

(3.5)The in
reased a

ura
y of the extended te
hnique
ompared to the basi
 te
hnique,
omesat a trade o� in
omplexity. Sin
e the
omplexity introdu
ed is not exponential, the se
ondte
hnique is still
onsidered operational and will be used in this proje
t for Utility Iteration.Example 3.3.1 This is an example of how Utility Iteration imputes virtual observations andgenerates
onstraints. This example is set in the same domain (Illustrated in Figure 2.3) asexample 2.7.1 and with the same observation: 〈D1 = d2
1, C1 = c1

1, D2 = d2
2〉.Constraints
an be generated for the last de
ision, D2, without imputing any observations.This results in the same
onstraint as in Example 2.7.1:

ρD2
(C1 = c1

1, D2 = d2
2) > ρD2

(C1 = c1
1, D2 = d1

2)

0.1v1 + 0.4v2 + 0.5v3 > 0.4v1 + 0.2v2 + 0.4v3

−0.3v1 + 0.2v2 + 0.1v3 > 0

(3.6)To establish
onstraints based on the de
ision observed in node D1, imputation has to bedone for the unobserved out
ome of C1. Now a temporary utility fun
tion is needed, and it isobtained by
hoosing a utility point in the feasible spa
e. With the only
onstraint limiting thefeasible spa
e being −0.3v1 + 0.2v2 + 0.1v3 > 0 and the normal
onstraints for the normalizedregion, the
enter of the largest hypersphere be
omes (0.307956, 0.692044, 0.692044). How thispoint
an be found is des
ribed in Se
tion 2.5. With this utility point the de
ision in the virtualobservation imputed in D2 given C1 in state c2
1 be
omes d1

2, as
an be seen from Equation 3.7and 3.8.
EU(C1 = c2

1, D2 = d1
2) = 0.1 · 0.307956 + 0.7 · 0.692044 + 0.2 · 0.692044 ≈ 0.6536 (3.7)

EU(C1 = c2
1, D2 = d2

2) = 0.3 · 0.307956 + 0.1 · 0.692044 + 0.6 · 0.692044 ≈ 0.5768 (3.8)Given this imputation and the observed de
ision, de
ision node D2
an now be repla
ed by a
han
e node. Thereafter the
onstraint for de
ision D1
an be
al
ulated as if it was the lastnode in the temporal order, this is done in Equation 3.9.32

3.3. Utility Iteration

0

v2

1
0

v1

v3

1

Figure 3.1: Both the green
onstraint (−0.3v1 +0.2v2 +0.1v3 > 0) and the blue
onstraint (v2 < v3) des
ribethe spa
e
ontaining the
oordinate (0,0,1), illustrated by the red spot
ρD1

(D1 = d2
1) > ρD1

(D1 = d1
1)

0.1v1 + 0.475v2 + 0.425v3 > 0.1v1 + 0.61v2 + 0.29v3

−0.135v2 + 0.135v3 > 0

(3.9)This
orresponds to that v2 < v3. The
onstraint
an be seen in Figure 3.1,
omparing this�gure to Figure 2.4, it
an be seen that Utility Iteration des
ribes a smaller feasible spa
e thanFLUF. With more observations Utility Iteration will have more information on whi
h it
an
reate
onstraints and a

ura
y will in
rease as a result.
23.3.3 AnalysisThis analysis will fo
us on the possible ina

ura
ies in the temporary utility fun
tion. Firstit is dis
ussed how ina

ura
ies
an be re
ognized and how often they o

ur. After that theimpa
t of the ina

ura
ies is dis
ussed, to determine whether su
h ina

ura
ies will reinfor
ethemselves over time. The time
omplexity of the Utility Iteration method, using the extendedte
hnique, is also dis
ussed.ImputationsAt every step during the re�nement of the utility fun
tion, temporary utility fun
tions may be
hosen that are di�erent from the observed agent's a
tual utility fun
tion. These temporaryutility fun
tions
ould therefore impute observations that do not
onform with the strategy used33

Chapter 3. Imputingby the agent, and the only way for the Utility Iteration method to dis
over su
h an ina

ura
y,would be if the feasible spa
e for utility values be
omes empty. In su
h a situation, no methodis in pla
e to iteratively �nd other temporary utility fun
tions, sin
e it would be far to
omplex.Instead the algorithm will
ontinue exe
uting by deleting the
on�i
ting observation.The �rst utility fun
tion will be based on the last de
ision in all observations, and no imputingis done at this point, so the
onstraints
reated will be a

urate. So the more observations, thebetter the initial utility fun
tion will be. Furthermore, the more observations that have beenmade, the less imputing is ne
essary. Even though the �rst
onstraints are
orre
t, they maystill span a feasible spa
e in whi
h several di�erent strategies are possible, and sin
e only onestrategy is
ompletely
orre
t then when imputations are ne
essary they may be wrong. Thenext se
tion des
ribes how these ina

ura
ies
an impa
t the
reation of
onstraints.ConstraintsThe utility
oe�
ients for de
isions in the last de
ision node in the temporal order will alwaysbe
orre
t, sin
e the probabilities are assumed to be known. But for de
isions in earlier de
isionnodes, the utility
oe�
ients will depend on the imputed poli
ies for subsequent de
ision nodes.As these imputed poli
ies may not be the same as the poli
ies of the agent, the utility
oe�
ientsmay be in
orre
t.Constraints are added to the feasible spa
e based on the utility
oe�
ients, so ina

ura
ies inthe utility
oe�
ients
an result in temporary utility fun
tions being
hosen that are di�erentfrom the observed agents utility fun
tion. Initial ina

urate imputations
an lead to impre
isetemporary utility fun
tions, in turn leading to more ina

urate imputations.To analyze whether the
onstraints
reated by Equation 2.4 will reinfor
e ina

ura
ies, somenotation is �rst introdu
ed. If a temporary utility fun
tion is ina

urate enough, when evaluat-ing de
ision node Dk, so that the imputed poli
y for some de
ision node (Di|i > k) is di�erentfrom the poli
y of the agent, then Equation 3.10 will be true.
∃d ∈ Dk :

ρDk
(d, ok) = cd,1v1 + · · · + cd,nvn (3.10)

6= ρDk,true(d, ok) = cd,true,1v1 + · · · + cd,true,nvnWhere ρDk,true(d, ok) des
ribes the values that should have been attributed to option d inde
ision node Dk given the past ok. Now, let ρDk
(d, ok) be des
ribed as in Equation 3.11.

ρDk
(d, ok) = (cd,true,1 + ∆cd,1)v1 + · · · + (cd,true,n + ∆cd,n)vn (3.11)Where ∆cd,n is the di�eren
e between cd,true,n and cd,n. In Equation 3.12 this notation is usedto establish
onstraints based on the observed de
ision δDk

and an alternative de
ision d ∈ Dk,34

3.3. Utility Iterationgiven past ok:
ρ(δDk

(ok), ok) > ρ(d, ok)

m

(cδDk
(ok),true,1 + ∆cδDk

(ok),1)v1 + · · · + (cδDk
(ok),true,n + ∆cδDk

(ok),n)vn >

(cd,true,1 + ∆cd,1)v1 + · · · + (cd,true,n + ∆cd,n)vn

m

((cδDk
(ok),true,1 − cd,true,1) + (∆cδDk

(ok),1 − ∆cd,1))v1+

· · · + ((cδDk
(ok),true,n − cd,true,n) + (∆cδDk

(ok),n − ∆cd,n))vn > 0

(3.12)
Noti
e that the expression (cδDk

(ok),true,n − cd,true,n)vn
orresponds to the a
tual di�eren
ebetween the
oe�
ients that should have been attributed to the n'th utility, while (∆cδDk
(ok),n−

∆cd,n))vn is the resulting impa
t on the
onstraints from the ina

ura
ies in the utility fun
-tions.These ∆c will depend mu
h on the temporary utility fun
tions, in the sense that the imputedpoli
ies are shaped after the utility fun
tions and the
oe�
ients are only
hanged from theirtrue values when the poli
ies are
hanged. So if the temporary utility fun
tion rates a utility(uk) lower than it should, then the poli
y imputed may
hange a

ordingly making a di�erentde
ision, given some relevant past, that redu
es the ck
oe�
ient. In other words, if a ∆c valueis positive, then the
orresponding utility was overrated by the temporary utility fun
tion, andunderrated for a negative ∆c value. This would imply that
oe�
ients for the same utility,su
h as cδDk
(ok),n and cd,n, would have the same sign on their ∆c values.When
reating
onstraints the impa
t of the ∆c values is de
ided by their relative size. Theresult of having a positive ∆cδDk

(ok),n − ∆cd,n expression would be a relaxed
onstraint withrespe
t to the
orresponding utility, uk, while a negative value would result in a stri
ter thannormal
onstraint.As mentioned earlier, it is
ertain that the
oe�
ients
al
ulated for any observed de
ision willhave some truth to them, whi
h stems from the last de
ision having the
orre
t
oe�
ientsatta
hed for the observed relevant past. Naturally, there
an be a lot more truth to bothobserved and unobserved de
isions than that, but on average the
oe�
ients of an observedde
isions may be marginally more a

urate than those of an unobserved de
isions. A

uratemeaning small ∆c values.If an observed de
ision (δDk
(ok)) is more a

urate than an unobserved de
ision (d ∈ Dk), withrespe
t to a single utility
oe�
ient cr, then |∆cδDk

(ok),r| will be smaller than |∆cd,r|. This willin turn mean that positive ∆cr values would, all else being equal, generate relaxed
onstraints,rating the
orresponding utility (ur) smaller, while negative ∆cr values would generate stri
ter
onstraints, rating ur higher. This means that ina

ura
ies on ur should diminish over time.But whether any signi�
ant di�eren
e in a

ura
y between the
oe�
ients of observed andunobserved de
isions will exist is un
ertain.However, without
ondu
ting experiments it is very di�
ult to tell whether ina

ura
ies willreinfor
e themselves.ComplexityWith regard to the
omplexity of the Utility Iteration method, then using the extended te
h-nique the number of imputations in the worst
ase will be O(obs · relevantmax · n2), as shownin Se
tion 3.3.1. For ea
h imputation the in�uen
e diagram is solved based on the temporary35

Chapter 3. Imputingutility fun
tion, but only with respe
t to one de
ision given one relevant past. This task has atime
omplexity of O(nodesstates), where nodes are the nodes that are unobserved when thede
ision being imputed is made, and states is the largest number of states those nodes have.So if nodes is
onsidered all nodes in the domain, the worst
ase time
omplexity of the entireUtility Iteration algorithm be
omes O(obs · relevantmax · n2 · nodesstates).3.3.4 SummaryThis analysis indi
ates that the Utility Iteration method will not reinfor
e ina

ura
ies, butto ensure that this is the
ase experiments need to be
ondu
ted. In any
ase, the method isvery dependent on an a

urate set of initial
onstraints, sin
e these will impa
t the a

ura
yof imputations when later
onstraints are
reated. Should
on�i
ts o

ur due to ina

urate
onstraints the only feasible solution, of those investigated here, is to delete observations and
orresponding
onstraints. The extent and impa
t of ina

ura
ies will depend on the number oftrue observations, in that with more true observations more
onstraints
an be
reated beforeimputations be
ome ne
essary, making temporary utility fun
tions more a

urate.3.4 Imputing by ComparisonIn this se
tion the other imputing method
alled Imputing by Comparison is des
ribed, thismethod is similar to Utility Iteration in many ways, and the main di�eren
e between the twomethods is the imputing, whi
h is dis
ussed and analyzed in this se
tion.The idea in Imputing by Comparison is to impute the de
isions, su
h that the virtual ob-servation be
omes the most like a true observation as possible. This is done by imputing thede
ision that, together with the relevant past in the virtual observation, makes it look the mostlike some relevant past and de
ision in a true observation. Considerations have to be made todetermine how to best
ompare two di�erent
ombinations of relevant past and de
ision withea
h other.Determining whi
h
ombination of relevant past and de
ision that looks the most like another,
ould be done by
omparing how many variables that mat
h, i.e. the variables are in the samestate, and possibly how important these variables are. However, the importan
e of variablesare derived from the utility nodes, so weighing the variables will not be possible sin
e theutility values are unknown.Another
onsideration that has to be made with regard to these
omparisons, is that when twos
enarios have been observed where neither mat
h with the needed virtual observation withregards to some node N . Then if the two true observations have N in two di�erent states,perhaps one of the states
ould be said to be
loser to the state needed. An example of su
h
ould be the variable �want
ho
olate� that
ould be in the states: �no�, �a little� and �
raving�,then �no�
ould be
onsidered
loser to �a little� than to �
raving�. However, the order of statesin ordered variables is domain spe
i�
 prior knowledge, and so
omparing states will not bepursued further in this proje
t.Instead
ombinations of relevant pasts and de
isions
ould be
ompared with respe
t to a setof hypothesis variables H . The set of hypothesis variables is all the variables that have a utilitynode as a
hild, denoted as pa(U). This
omparison should
al
ulate di�erent relevant pasts'impa
t on the distribution of H , so that two relevant past
on�gurations are equivalent if theyinfer the same distribution on H . The intuition behind this idea is that it is not possibleto
ompare utilities for di�erent relevant pasts, but the impa
t on H may hint the expe
tedutility. 36

3.4. Imputing by ComparisonIt may be the
ase that a de
ision node has a utility node as a
hild, in whi
h
ase the de
isionnode would be
ontained in H , and probability distributions over de
ision nodes does not makesense. However, it will always be the
ase that, when the distribution over H is
al
ulated,the de
ision node will be determined to be in some state, i.e. the
al
ulation is made withrespe
t to a spe
i�
 de
ision. So during
al
ulation of H 's distribution, the de
ision node
an be substituted by a
han
e node, with a probability of 1 for the observed or imputedde
ision. Any
han
e node in the relevant past of the de
ision will also be instantiated, sowhen
al
ulating H any
han
e nodes in the relevant past will be treated as
han
e nodeswith eviden
e on them. In this way the probability distribution of H
an be
al
ulated inany domain. The two ways to
ompare probability distributions, that have been examined, isKullba
k-Leibler divergen
e and Eu
lidean distan
e, both des
ribed in Se
tion 3.4.1.3.4.1 Measuring Distan
e Between ProbabilitiesA
ommonly used method for
al
ulating distan
e between probability distributions is theKullba
k-Leibler divergen
e. This method is also known as the relative entropy between twoprobability distributions:
KL(p,q) =

∑

k

qklog2

(

qk

pk

) (3.13)Where p and q are dis
rete probability distributions and qk and pk is the probability forout
ome k in the two distributions. Note that Kullba
k-Leibler divergen
e is not symmetri
in p and q. Kullba
k-Leibler have the ni
e property of being stri
tly proper, i.e. KL(p,q) = 0if and only if p = q, and KL(p,q) > 0 when p 6= q. (Jensen, 2001)Kullba
k-Leibler
ould be used by
al
ulating the distan
e between the probability distributionof H , given the observed past and the observed de
ision (δD) in some true observation, versusthe distribution given the unobserved past needed in the virtual observation and the di�erentde
isions in D (∀d ∈ D). This
al
ulation would be done for all true observations, and thede
ision in the
al
ulation whi
h yields the smallest distan
e would be
hosen as the de
isionin the virtual observation. If two
al
ulations yields equal distan
es then a de
ision, from oneof the
al
ulations, would be
hosen at random.Even though Kullba
k-Leibler is a
ommonly used method for
al
ulating di�eren
es in probab-ility distributions, it is not the best
hoi
e for Imputing by Comparison. Basi
ally the intuitionbehind this approa
h is that if a set of utility
oe�
ients have been observed as being prefer-able in some
ontext, then a de
ision in a virtual observation yielding
oe�
ients
lose to theobserved ones should be good. However, Kullba
k-Leibler distan
es weigh small probabilitiesheavier than larger probabilities, as shown in Equation 3.14 where the Kullba
k-Leibler diver-gen
e between two likely out
omes (qlikely · log2
qlikely

plikely
) is smaller than the divergen
e betweentwo less likely out
omes (qunlikely · log2

qunlikely

punlikely
) even though the di�eren
e in probabilities inboth
ases are the same (0.01). An example where Kullba
k-Leibler distan
e is a poor measureis presented in Example 3.4.1.

0.96 ·

(

log2
0.96

0.95

)

<0.05 ·

(

log2
0.05

0.04

)

m (3.14)
0.0145 <0.0161Example 3.4.1 Consider an example where H has four out
omes, meaning the domain hasfour utilities. Ea
h of H 's out
omes yield a
oe�
ient of one for a di�erent utility. A true37

Chapter 3. Imputingobservation has been made with the distribution P (H |obstrue) = (0.001, 0.2, 0.399, 0.4) over
H . Only two di�erent de
isions
an be
hosen for the virtual observation, so the one withthe distribution that yields the smallest Kullba
k-Leibler value should be
hosen. De
ision d1yields the distribution (0.12, 0.2, 0.34, 0.34)while the se
ond de
ision, d2, yields the distribution
(0.001, 0.1, 0.299, 0.6). Table 3.2 shows the Kullba
k-Leibler distan
es, as well as numeri
aldi�eren
e of the probabilities. The table shows that de
ision d2 gives the smallest Kullba
k-Leibler distan
e between the distributions of the hypothesis variables, in spite of giving thelargest numeri
 di�eren
es, i.e. |0.119|+ |0|+ |−0.059|+ |−0.06| < |0|+ |−0.1|+ |−0.1|+ |0.2|
orresponding to 0.238 < 0.4.Virtual distributions KL distan
e to P (obstrue) Numeri
 di�eren
e(0.12,0.2,0.34,0.34) 0.1789 (0.119,0,-0.059,-0.06)(0.001,0.1,0.299,0.6) 0.1155 (0,-0.1,-0.1,0.2)Table 3.2: Kullba
k-Leibler distan
es and numeri
 di�eren
e

2Sin
e these probabilities translate dire
tly to utility
oe�
ients, the numeri
al di�eren
e shouldbe as small as possible, and this is not ensured when using Kullba
k-Leibler. So insteadImputing by Comparison uses the Eu
lidean distan
e between
oe�
ients to measure whi
hdistribution is
losest to that of a true observation. Equation 3.15 shows how Eu
lideandistan
es between probability distributions (p and q) are
al
ulated. Using Eu
lidean distan
ethe
hosen virtual de
ision will be the one where the numeri
 di�eren
e is the smallest. UsingEu
lidean distan
e in Example 3.4.1 would yield the results shown in table 3.3, the smallestdistan
e being attributed to the virtual de
ision with the smallest sum of numeri
 di�eren
es.
Ec(p,q) =

∑

k

(qk − pk)2 (3.15)Virtual distributions E
 distan
e to P (obstrue) Numeri
 di�eren
e(0.12,0.2,0.34,0.34) 1.2354 (0.119,0,-0.059,-0.06)(0.001,0.1,0.299,0.6) 1.4086 (0,-0.1,-0.1,0.2)Table 3.3: Eu
lidean distan
es and numeri
 di�eren
e3.4.2 The Imputing by Comparison AlgorithmIn this se
tion the Imputing by Comparison algorithm is presented. This method uses thebasi
 te
hnique presented in Se
tion 3.2. After the new observation has been added to O, thenAlgorithm 3.4.2 is run. Algorithm 3.4.2 adds
onstraints for every de
ision in all observations,su
h that ea
h de
ision node Dk is evaluated in all observations before any prior de
ision node,i.e. Dk−1, is evaluated in any de
ision.Let D be the de
ision node that needs to be imputed, in some virtual observation
alled
obs. The
on�guration of the relevant past for de
ision node D in obs is
alled v_relevantD.
v_relevant is short for �virtual relevant�, and t_relevant, is short for �true relevant�, theseare used in the algorithm to des
ribe relevant pasts. Now the algorithm for imputing is shownin Algorithm 3.4.1. 38

3.4. Imputing by ComparisonAlgorithm 3.4.11. For all observations o in O, where t_relevantD is the relevant past of D in o and
δD(t_relevantD) is the observed de
ision given the past

• For all d ∈ D� Cal
ulate Ec(P (H |v_relevantD, d), P (H |t_relevantD, δD(t_relevantD)))� If the observation yields the lowest Eu
lidean distan
e so far, mark d, andunmark any already marked ds with a greater Eu
lidean distan
e2. Choose an arbitrary d among the marked de
isions
• Use the
hosen de
ision as the de
ision in obsUsing Algorithm 3.4.1 to impute observations, the entire algorithm for Imputing by Compar-ison is shown in Algorithm 3.4.2. Algorithm 3.4.2 is based on Algorithm 3.2.1 for the basi
te
hnique.Algorithm 3.4.2

• For node = n to 1� For all observations (o) in O do1. Where δDnode
is the observed de
ision and onode is the relevant past of Dnodein the observation, add the following
onstraints to the feasible spa
e:

∀d∈Dnode\δDnode
: ρDnode

(δDnode
, onode) > ρDnode

(d, onode)2. If the feasible spa
e has be
ome empty, remove all
onstraints added by o andremove o from O3. For every unobserved relevant past of de
ision node Dnode,
all Algorithm 3.4.1to impute a de
ision4. A

ording to observed and imputed de
isions, repla
e Dnode by a
han
e nodeStep 3 and 4 are, stri
tly speaking, not ne
essary for the �rst de
ision node in the temporalorder, as de
ision nodes are repla
ed with
han
e nodes so that the prior de
ision node be
omesthe last in the temporal order.As dis
ussed in Se
tion 3.1.1
on�i
ts may o

ur when imputing observations to make thedomain fully observed. To handle this, Algorithm 3.4.2 must
he
k if the feasible spa
e be
omesempty, i.e. the radius of the largest possible hypersphere in the feasible spa
e is zero, ea
h timea new
onstraint is added. If the spa
e be
omes empty the newly added
onstraints are removedagain.When the newest
onstraint reveals a
on�i
t it is, in a stati
 domain, possible to avoid removing
onstraints altogether by imputing di�erently. The immediate way of doing this would be toexamine those imputations where there were more than one de
ision with the same Eu
lideandistan
e, and one of whi
h was
hosen arbitrarily. In these
ases the alternative
hoi
es shouldbe used instead. Unfortunately it is not
ertain that it would give a non-empty feasible spa
e.If that is the
ase the
hoi
es with the se
ond shortest Eu
lidean distan
e would have to beexamined. Again that does not guarantee that the feasible spa
e be
omes non-empty, so the
hoi
es with the third shortest distan
e might have to be examined and so on. In the worst
ase all
ombinations of possible imputations over all relevant pasts, in all but the �rst de
isionnode, would have to be examined to �nd a non-empty spa
e.The advantage of this alternative method for removing
onstraints is that, in a stati
 do-main, it will eventually �nd a
ombination of imputations that des
ribe a non-empty feas-ible spa
e. However, the time
omplexity makes it infeasible. In fa
t, in the worst
ase39

Chapter 3. Imputingthe number of imputation needed would be exponential in the number of de
ision nodes,
O(|D|max · relevantnmax), where relevantmax means the largest number of
on�gurations ofany relevant past in the domain and |D|max is the largest number of di�erent de
isions in onede
ision node.Example 3.4.2 This is an example of how Imputing by Comparison
hooses virtual observa-tions and generates
onstraints. This example is set in the same domain (illustrated in Figure2.3) as Example 2.7.1 and with the same observation: 〈D1 = d2

1, C1 = c1
1, D2 = d2

2〉.Constraints
an be generated for the last de
ision, D2, without imputing any observations.This results in the same
onstraint as in Example 2.7.1. The observed de
ision, d2
2, must yielda larger expe
ted utility than d1

2, given
han
e node C1 in state c1
1:

ρD2
(C1 = c1

1, D2 = d2
2) > ρD2

(C1 = c1
1, D2 = d1

2)

0.1v1 + 0.4v2 + 0.5v3 > 0.4v1 + 0.2v2 + 0.4v3

−0.3v1 + 0.2v2 + 0.1v3 > 0

(3.16)To establish
onstraints based on the de
ision observed in node D1, imputation has to bedone for the unobserved out
ome of C1. This means that the probability distribution ofthe hypothesis variables, whi
h in this example is limited to C2, given the true observation,
t = 〈D1 = d2

1, C1 = c1
1, D2 = d2

2〉, must be
ompared with the distribution given v1 = 〈D1 =
d2
1, C1 = c2

1, D2 = d1
2〉 and v2 = 〈D1 = d2

1, C1 = c2
1, D2 = d2

2〉 respe
tively, where v1 and v2 arethe two virtual observations, and t the true observation. The Eu
lidean distan
e is
al
ulateda

ording to Equation 3.15, the
al
ulations are shown below:
Ec
(

P (C2|t), P (C2|v1)
)

= (0.1 − 0.1)2 + (0.4 − 0.7)2 + (0.5 − 0.2)2 = 0.18

Ec
(

P (C2|t), P (C2|v2)
)

= (0.1 − 0.3)2 + (0.4 − 0.1)2 + (0.5 − 0.6)2 = 0.14In the virtual observation d2
2 is
hosen for C1 in state c2

1, sin
e it yielded the smallest Eu
lideandistan
e to the true observation, and the �nal
onstraint
an then be
al
ulated.
ρD1

(d2
1) > ρD1

(d1
1)

0.15v1 + 0.325v2 + 0.525v3 > 0.24v1 + 0.19v2 + 0.57v3

−0.09v1 + 0.135v2 − 0.045v3 > 0

(3.17)The
onstraints generated by Imputing by Comparison
an be seen in Figure 3.2, and thespa
e spanned
an be
ompared to Figure 2.4, whi
h shows the spa
e spanned by FLUF andthe optimal method given the same observation. The spa
e des
ribed by the Imputing byComparison method is smaller than the spa
e spanned by FLUF, and it still in
ludes the spa
espanned by the optimal method.
23.4.3 AnalysisThis analysis will fo
us on the ina

ura
ies that might be introdu
ed in the Imputing byComparison method. The
omplexity of the Imputing by Comparison method is also analyzed.40

3.4. Imputing by Comparison

0

v2

1
0

v1

v3

1

Figure 3.2: Both the green
onstraint (−0.3v1 + 0.2v2 + 0.1v3 > 0) and the blue
onstraint (−0.09v1 +
0.135v2 − 0.045v3 > 0) des
ribe the spa
e
ontaining the
oordinate (0,0,1), illustrated by the red spotA

ura
yIna

ura
ies
an o

ur when imputing an observation, sin
e de
isions that are not optimal,a

ording to the observed agent's utility fun
tion,
an be
hosen. A

ura
y of the method willdepend on the number of observations made, �rst of all be
ause with more true observations lessvirtual observations will be ne
essary. Furthermore, the method
ompares all true observationswith the possible virtual observations, meaning that a high number of true observations willresult in a better foundation for
hoosing the de
ision for the virtual observation.There is a risk that ina

ura
ies
an reinfor
e themselves, sin
e the distribution of the hypo-thesis variables, that possible virtual de
isions are
ompared with, is in�uen
ed by the
han
enodes that repla
e de
ision nodes after imputations. So if some imputing for node Dk is in-
orre
t then the distributions, that are
ompared to determine imputation in node Dk−1, willalso be in
orre
t. This ina

ura
y in
reases the risk that de
ision Dk−1 is imputed in
orre
tly.However, as the number of di�erent true observations in
rease the extent of ina

ura
ies, andany reinfor
ement of ina

ura
ies, will diminish.ComplexityWith regards to the
omplexity of this method, ea
h imputation is linear in the number ofobservations, sin
e the Eu
lidean distan
e, between the distribution over the hypothesis vari-ables of the virtual observation and the
orresponding distribution in ea
h true observation,must be
al
ulated. So the
omplexity of imputing one de
ision be
omes relevanttrue · |D|,where relevanttrue is the number di�erent relevant past
on�gurations already observed forthe de
ision node, and |D| is the number of possible de
isions. A true observation may
on-tain
on�guration of a relevant past that have already been observed, but relevanttrue will begrowing with the number of observations made.41

Chapter 3. ImputingIn ea
h de
ision node, the number of imputations needed is relevant − relevanttrue, where
relevant is the number of possible
on�guration of the relevant past. relevanttrue is sub-tra
ted from relevant be
ause imputations are only done for unobserved
on�gurations of therelevant past, and relevanttrue
an at most be
ome equal to relevant in whi
h
ase no virtualobservations are needed.So as more observations are made, with respe
t to some de
ision node, fewer imputationsare ne
essary but ea
h imputation be
omes more
omplex, this is expressed as (relevant −
relevanttrue) · (relevanttrue · |D|).During exe
ution, poli
ies will be imputed for all de
ision nodes in the domain, meaning ea
hrelevant past
on�guration of ea
h de
ision node, that has not been observed, is imputed. With
n de
ision nodes in the domain the
omplexity for imputing for one de
ision node
an be usedto express the
omplexity of the entire Imputing by Comparison method as in Equation 3.18,where the i in subs
ripts imply that the variable
orresponds to de
ision node Di.

n
∑

i=2

|Di| · (relevanttrue,i · relevanti − relevant2true,i) (3.18)Sin
e this
omplexity is a se
ond-order polynomial expression over relevanttrue,i,
omplexitywill in
rease, for de
ision nodeDi, as observations are made until relevanttrue,i = −(relevanti)
2·(−1) =

relevanti

2 . After this point
omplexity will de
rease until relevanttrue,i = relevanti where noimputations are needed. For this reason relevanttrue,i is substituted by relevanti

2 when ex-pressing worst
ase
omplexity. Now the number of times that Eu
lidean distan
e must be
al
ulated, in the entire Imputing by Comparison algorithm,
an be seen in Equation 3.19.
O

(

(n − 1) · |D|max ·

(

relevantmax

1
· relevantmax −

(

relevantmax

2

)2
))

m

O
(

n · |D|max · relevant2max

)

(3.19)The
omplexity of Eu
lidean distan
e
al
ulations is not
onstant, but linear in the size ofthe state spa
e of the hypothesis variables. As the hypothesis variables are the parents of theutility nodes, the size of their state spa
e is the number of utilities in the domain. MakingImputing by Comparisons worst
ase time
omplexity O
(

utilities · n · |D|max · relevant2max

).3.4.4 SummaryThis leads to the
on
lusion that this method may be a viable alternative to FLUF. The impa
tof the ina

ura
ies that may be introdu
ed by imputing wrong observations and the extentto whi
h the ina

ura
ies are reinfor
ed,
annot be predi
ted at this point. The a

ura
y ofthis method should grow with the number of observations made, sin
e less imputations will bene
essary and a better foundation for imputations will be available, but to get a better ideaabout the speed at whi
h this a

ura
y will in
rease experiments must be
ondu
ted.42

3.5. Con
lusion3.5 Con
lusionIn this se
tion results about the a

ura
y and
omplexity of the proposed methods from Se
-tions 3.4 and 3.3 are brie�y summarized. First the new imputing method's di�eren
es
omparedto FLUF are summarized.3.5.1 Imputing
ompared to FLUFThere are two big di�eren
es between the two imputing methods and FLUF. The �rst isthat FLUF is an adaptive learning te
hnique,
hanging its feasible spa
e every time a newobservations is made, while the two new imputing methods are bat
h learning te
hniques,storing new observations in the set of true observations and when making predi
tions evaluateall the true observations. The se
ond di�eren
e is the way partially observed strategies arehandled. As des
ribed in Se
tion 2.4 FLUF handles partially observed strategies by
reatingrelaxed
onstraints, while the two new imputing methods handle partially observed strategiesby imputing the needed observations to view the strategy as fully observed.What the imputing methods have in
ommon with FLUF is the feasible spa
e, and the
on
eptof
reating
onstraints in this spa
e when observations are made. The methods also share thebasi
 way that
onstraints are
reated, namely that the expe
ted utility of observed de
isionsmust be larger than the expe
ted utilities of their alternatives. The way a utility point is
hosen in the FLUF method, i.e. the
enter of the largest possible hypersphere, is also used inthe imputing methods.3.5.2 A

ura
yFor the imputing methods to be viable utility learning methods they should be
ome morea

urate over time, i.e. the number of de
isions predi
ted
orre
tly and expe
ted utility shouldin
rease with the number of observations. Both analysis have shown that ina

ura
ies imposedduring exe
ution does not seem to be reinfor
ed, implying that a

ura
y will in
rease as moreobservations are evaluated, making both methods usable. To
on�rm this result and to betterdetermine the a

ura
y of the two methods, experiments will be
ondu
ted.3.5.3 ComplexityThe only di�eren
e between the two new methods is in the way imputing is done. This stillleads to signi�
ant di�eren
es in worst
ase time
omplexity, where for Utility Iteration itis O
(

obs · relevantmax · n2 · nodesstates
) while for Imputing by Comparison algorithm it is

O
(

utilities · n · |D|max · relevant2max

). So in some domain, as the number of observationsin
rease, Utility Iteration will be
ome slower relative to Imputing by Comparison. The a
tualspeed of the methods
annot be determined at this point, but the worst
ase time
omplexitiesindi
ate that the Utility Iteration algorithm will be more sensitive to in
reasing state spa
esof nodes.
43

Chapter 3. Imputing

44

CHAPTERFOUR
Dynami
 DomainsThe two imputing methods and FLUF are basi
ally designed to determine the utilities of anagent that does not
hange its behavior. Two di�erent poli
ies, for handling agents that
hangebehavior over time, were designed as extensions for FLUF in Hansen et al. (2004) (these arebrie�y des
ribed below in Se
tion 4.3.2). In this
hapter the ways in whi
h agents
an
hangebehavior and di�erent approa
hes to handling
hanging behavior, in Utility Iteration andImputing by Comparison, are dis
ussed.When modeling the behavior of an agent that does not
hange its behavior, an in�uen
ediagram
an be
onstru
ted where the
hoi
es made by the agent
orresponds to maximizingexpe
ted utility. Sin
e the agent does not
hange behavior, then on
e the in�uen
e diagramdes
ribes its behavior
orre
tly, it
an be used to predi
t the agents
hoi
es and updatingthe diagram should never be ne
essary. A domain modeling an agent that does not
hangebehavior is
alled a stati
 domain, and the behavior of the agent is
alled stati
 as well.When modeling the behavior of an agent with
hanging behavior, then even though an in�uen
ediagram may be
onstru
ted where the
urrent strategy of an agent
orresponds to maximizingexpe
ted utility in the in�uen
e diagram, the agent
an
hange its strategy over time su
h thatthe in�uen
e diagram must be updated as well, to keep des
ribing the agents behavior
orre
tly.A domain is
alled dynami
 if the agent being modeled
an
hange its behavior, a

ording tothe de�nitions below. The behavior of an agent in a dynami
 domain is
alled dynami
 as well.To enable Imputing by Comparison and Utility Iteration to handle dynami
 domains, methodsfor handling in
onsistent observations, in
urred by
hanging behavior, are des
ribed in Se
tions4.3 and 4.4. Before these methods are presented, the di�erent ways in whi
h the agent's
hanging behavior
an be modeled is analyzed.4.1 Types of Dynami
 DomainsTo help design methods for spe
i�
 kinds of behavioral
hanges, three di�erent ways in whi
han agent
an
hange its behavior are des
ribed. A good method for handling one kind ofbehavioral
hanges may not work for other kinds. Under the assumption that the
ausalitiesand probabilities in the domain, as the agent per
eives them, are known and do not
hange,then
hanging behavior
an be expressed as a
hanging utility fun
tion. Below, the three ways45

Chapter 4. Dynami
 Domainsof viewing
hanging behavior are des
ribed in terms of a utility point in the utility spa
e,i.e. the point des
ribing all utility values in the domain.DriftOne way of viewing
hanging behavior is as drift. This means that the utility values are
hanging
ontinuously. This kind of dynami
 behavior
an be seen as the utility point of theobserved agent drifting around in the normalized region, whi
h is also why it is
alled drift.Drift does not ne
essary to maintain its speed and dire
tion, meaning that over time the driftingof the utility point
an slow down or
hange dire
tion. Changing behavior is
ategorized asdrift when the strategy of the agent
hanges slowly and gradually, in the sense that the strategymay
hange often but only with respe
t to a few poli
ies at the time. An example of drift
ouldbe if the utilities in the in�uen
e diagram are modeling the pri
e of some goods, and thesepri
es
hange over time. The pri
es may in
rease or de
rease thus making the utilities drifta

ordingly over time.Flu
tuationChanging behavior
ould be viewed as �u
tuations, where �u
tuations are radi
al
hangesintrodu
ed into the in�uen
e diagram. Flu
tuations
an introdu
e major and sudden shiftsin the expe
ted utility for the domain,
hanging the observed agent's strategy. With regardsto the utility point of the observed agent, this
orresponds to the utility point jumping fromone position in the normalized region to a
ompletely di�erent position independent of the�rst. Changing behavior is
ategorized as �u
tuating when the strategy of the agent
an
hange radi
ally, in the sense that a large number of poli
ies in the agent's strategy
hangesimultaneously.NoiseThe last way to view
hanging behavior introdu
ed here is noise. Noise is not a
hange in thedomain like drift and �u
tuation. Instead noise is unforeseen interferen
e not modeled in thedomain and introdu
ed by sour
es outside the domain, e.g. re
ording or reading in
orre
tly ina database of observations. Even though the utility point of the observed agent is not
hangedby noise, it may appear to have done so. Changing behavior is
ategorized as noise when thestrategy followed by the agent in a single observation deviates from the strategy followed inprevious observations, only to return to the strategy followed in previous observations againin subsequent observations. An example of noise
ould be interferen
e with a humidity sensorresulting in a low reading, this would result in a
han
e node showing a wrong state. Noise
an a�e
t more than one node however, and it may a�e
t de
ision as well as
han
e nodes.The three di�erent types of dynami
 behavior presented here are not the only ways to
ategorizedynami
 behavior. However, these are the only kinds of dynami
 behavior
onsidered in thisproje
t, and dynami
 behavior will be
lassi�ed a

ording to the three
ategories.4.2 Con�i
t HandlingThis se
tion des
ribes the di�erent poli
ies for
on�i
t handling in FLUF, Imputing by Compar-ison and Utility Iteration. The main idea behind
on�i
t handling is to remove the
onstraints46

4.2. Confli
t Handling
ausing the
on�i
t, these are termed the guilty
onstraints. When a
on�i
t o

urs, the
on-straints
onsidered guilty will depend on how the dynami
 behavior of the agent has been
ategorized. In
ase of drift and �u
tuations the oldest
onstraints will be
onsidered guilty,while in
ase of noise the newest
onstraint is
onsidered guilty. This means that the order inwhi
h the observations are evaluated are no longer insigni�
ant.If a domain
ontains both drift and �u
tuation
on�i
t handling
an still be done, sin
e thetwo kinds of dynami
 behavior will
hara
terize the same set of
onstraints as guilty. But if thedomain
ontains noise along with either drift or �u
tuations, then
hoosing whi
h
onstraintsare guilty be
omes harder, be
ause the guilty observation would be the newest in
ase of noisebut the oldest in
ase of drift or �u
tuation. One way to determine whi
h
onstraints are guilty,assuming that an expe
ted frequen
y of noise is given, would be, when
on�i
ts o

ur, to viewnew
onstraints as being guilty as long as less
on�i
ts o

ur than suggested by the expe
tedfrequen
y of noise. When more
on�i
ts start o

urring it would be a sign that some sortof drift or �u
tuation had taken pla
e, and old
onstraints should then be
onsidered guilty.However the frequen
y of noise is not always known, and in this proje
t domains with noiseare assumed to show no other kind of dynami
 behavior.Two more limitations to the
on�i
t handling poli
ies for Imputing by Comparison and Util-ity Iteration should be noted. First, the imputations in both the methods may be a�e
tedby
on�i
ting observations making them less a

urate, this problem
ould in part be solvedby extensive ba
ktra
king, as demonstrated in Appendix B, but to keep the
on�i
t handlingpoli
ies operational no modi�
ations are made to handle imputing ina

ura
ies. Furthermore,as shown in Se
tion 3.1.1, ina

urate imputations may lead to
on�i
ts, and
on�i
ts in
urreddue to ina

urate imputations should ideally be handled di�erently than
on�i
ts that o

urdue to dynami
 behavior, however sin
e there is only one way to dete
t that a
on�i
t o
-
urs, namely that the feasible spa
e be
ome empty, no method has been developed to tell thedi�eren
e.Furthermore, as an alternative to the deletion poli
ies, a poli
y
alled the
onstraint relaxationpoli
y is developed, that
an be used to handle
on�i
ts that o

ur in domains
ontaining driftand/or �u
tuations. The poli
y is based on relaxing
onstraints when
on�i
ts o

ur, so itwould not be suitable for handling noise as it would relax all
onstraints, thereby redu
ingtheir a

ura
y, even though only one
onstraint was guilty. The noisy
onstraint would stillbe present in the feasible spa
e after this relaxation, adding further to any ina

ura
ies andin
reasing the risk that further relaxation will be ne
essary when new observations are made.Sin
e Imputing by Comparison and Utility Iteration
reate
onstraints in the same way andorder, they will have the same
on�i
t handling poli
ies and are therefore des
ribed in the samese
tion. In the following se
tions di�erent
on�i
t handling poli
ies are des
ribed, four poli
iessuitable for
on�i
ts
aused by drift and �u
tuations and one poli
y suitable for handling
on�i
ts introdu
ed by noise are des
ribed in the following.
• Drift and Flu
tuation� A deletion poli
y for Imputing by Comparison and Utility Iteration� Two deletion poli
ies for FLUF� The
onstraint relaxation poli
y, suitable for FLUF, Imputing by Comparison andUtility Iteration
• Noise� A deletion poli
y for Imputing by Comparison and Utility Iteration47

Chapter 4. Dynami
 Domains4.3 Drift and Flu
tuationIn this se
tion poli
ies are des
ribed for Imputing by Comparison, Utility Iteration and FLUF,that
an be used when
on�i
ts o

ur in dynami
 domains. The poli
ies in this se
tion aredesigned to handle
on�i
ts that o

ur due to dynami
 behavior
ategorized as either drift or�u
tuation. The reason why these types of dynami
 behavior are des
ribed together, is thatthey both assume that the older observations are, the less likely they will be to
onform tothe
urrent strategy. Therefore the poli
ies des
ribed below
an be applied to both kinds ofdynami
 behavior.Before these are presented a design issue, that in�uen
e
on�i
t handling inboth methods, is dis
ussed, namely the
oarseness with whi
h
onstraints should be removed.In Imputing by Comparison and Utility Iteration the methods maintain a set of true obser-vations, unlike FLUF where a set of
onstraints is maintained instead. The two methods,Imputing by Comparison and Utility Iteration, still
onstru
t a set of
onstraints, but everytime a new observation is made, the
onstraints
reated earlier are deleted so that a new set
an be
onstru
ted. The goal of the
on�i
t handling poli
ies des
ribed below, is to resolve
on�i
ts by removing the oldest
onstraints that
on�i
t along with the observations they be-long to. The reason why the entire observation is removed, is that if one of the
onstraints itadds
an
ause a
on�i
t, then either drift or �u
tuation has
aused the poli
y to
hange forone or more of the de
ision nodes in their observed relevant pasts. At the time the observationthat
auses the
on�i
t was made, the observed agent must have been using a di�erent utilityfun
tion than the
urrent utility fun
tion, due to the drift or �u
tuation that has o

urredsin
e then. So even though only one
onstraint
on�i
ts, then the other
onstraints addedby the observation may still be in
orre
t, i.e. the
urrent utility values of the agent
annot bedes
ribed by those
onstraints, and if they are not removed their in
orre
tness will a�e
t whi
hutility point is
hosen. Also, the observation that is based on an obsolete utility fun
tion, will
ontinue to a�e
t the imputations if only the
onstraint is removed.As mentioned, the methods des
ribed here will remove entire observations, to ensure thatina

ura
ies are redu
ed. Alternatively the extent of these removals
ould be limited to redu
ethe number of
onstraints deleted, e.g. by only removing
onstraints added based on the samede
ision node in the same observation. However, due to limited time available for this proje
t,this alternative is not explored.Another way of redu
ing the amount of observations removed, would be to use the method fromFLUF, mentioned in Inno
ent Until Proven Guilty (Se
tion 4.3.2), for �nding the
onstraintsthat make the spa
e empty. When these
onstraints are found the
orresponding observations
ould be termed guilty. Unfortunately this approa
h would not work, sin
e all
onstraintsadded by Imputing by Comparison and Utility Iteration will be based on a fully observedstrategy, and any
onstraint based on a fully observed strategy will interse
t with all points inthe feasible spa
e that des
ribe the trivial utility fun
tion (the diagonal). In Appendix A it isproven that
onstraints
reated in domains with fully observed strategies will always interse
tthe diagonal, and this will be the
ase in Utility Iteration and Imputing by Comparison sin
ethey impute the needed observations to make the strategy fully observed. With all
onstraintsinterse
ting ea
h other in the diagonal, then all
onstraints would be termed guilty if themethod used by FLUF in the Inno
ent until Proven Guilty poli
y was adopted.4.3.1 Drift and Flu
tuation in Imputing by Comparison and UtilityIterationThe approa
h used in Imputing by Comparison and Utility Iteration examines all observationsin parallel, in the sense that all observations are examined with respe
t to de
ision node Di48

4.3. Drift and Flu
tuationbefore any observation is examined with respe
t to de
ision node Di−1. Therefore it is likelythat an observation will have added several
onstraints by the time it is dis
overed to be a
on�i
ting observation, and these
onstraints will not ne
essarily have been added re
ently.As observations are examined in parallel the guilty observation should not ne
essarily be de-termined to be the one in whi
h the
on�i
t was dis
overed. While removing the
on�i
tingobservation will resolve the
on�i
t immediately, but over time this approa
h may
ause manya

urate observations to be removed that did not have to. Under the assumption that the dy-nami
 behavior in the domain
an be
ategorized as either drift or �u
tuation, then to resolvea
on�i
t the method used works mu
h like the Always Guilty poli
y in FLUF. Here observa-tions are deleted one at the time a

ording to age, su
h that the oldest observation is removed�rst along with its
onstraints, and removal of observations
ontinue until the feasible spa
ebe
omes non empty. Using this approa
h, then in the worst
ase the observation in whi
h the
on�i
t was dis
overed and all older observations will be deleted.With O being the set of true observations, ordered by age su
h that o1 is the newest observationwhile om is the oldest, where m is the number of true observations in O. Letting C be theset of
onstraints added to the feasible spa
e, then Algorithm 4.3.1 des
ribes how
on�i
tsare handled by this poli
y. The algorithm is run no di�erently if more de
isions have beenevaluated in some observations than in others, e.g. if the �rst ten observations have beenevaluated with respe
t to one more de
ision node than all other observations when a
on�i
to

urs, that would have no impa
t on the algorithm.Algorithm 4.3.1
• From k = m to 1� Remove all
onstraints added by ok from C, and ok from O� If C des
ribes a non empty spa
e

∗ then halt this algorithm4.3.2 Drift and Flu
tuation in FLUFFLUF's
on�i
t handling poli
ies are designed to handle drift and �u
tuation. The poli
iesare
alled Always Guilty and Inno
ent until Proven guilty. The experiments in Hansen et al.(2004) showed that the two poli
ies performed equally well when the domain drifts, and thatthe Always Guilty poli
y re
overs from a �u
tuation fastest.Always GuiltyIn the Always Guilty poli
y the
onstraints are removed in the order they were added. When anew
onstraint is added whi
h makes the feasible spa
e empty, the oldest
onstraint is deleted,if the feasible spa
e is still empty the se
ond oldest
onstraint is also deleted and so on. Thisway the oldest
onstraints are deleted until the feasible spa
e be
omes non empty. Many ofthe deleted
onstraints may not have
aused the
on�i
t but nevertheless they are deleted. Infa
t it is only
ertain that the last of the deleted
onstraints was guilty. The argument fordeleting this many
onstraints, is that sin
e the domain has either drifted or �u
tuated sin
ethe guilty
onstraint was added, then all
onstraints added before the guilty would, just likethe guilty
onstraint, have been added based on observations of an agent using a strategy thatis now obsolete. 49

Chapter 4. Dynami
 DomainsInno
ent Until Proven GuiltyThe Inno
ent until Proven Guilty poli
y removes a minimal amount of
onstraints, by onlyremoving
onstraints that a
tually
ause the feasible spa
e to be
ome empty. To determinewhi
h
onstraints
ause the spa
e to be
ome empty,
orresponds to determining whi
h
on-straints make the radius of the largest possible hypersphere in the feasible spa
e to be
omezero. This set of
onstraints
an be found using the method for �nding the largest possiblehyper sphere, as des
ribed in Se
tion 2.5. If the spa
e is empty, the largest possible sphere willhave a radius of zero, but the method will still
al
ulate the
enter of this sphere. Finding the
onstraints that
aused the spa
e to be
ome empty
an now be done in linear time, by enteringthe
oordinates of the determined
enter into ea
h
onstraint, then the
onstraints that equalszero are the �guilty�
onstraints. These guilty
onstraints are removed one at the time, theoldest being removed �rst. Ea
h time a
onstraint is removed the hypersphere is re
al
ulated,and only if the radius is still zero the next
onstraint is removed.4.3.3 The Constraint Relaxation Poli
yThe
on�i
t handling poli
ies des
ribed so far are based on deletion of observations and
on-straints, however the
onstraint relaxation poli
y relaxes
onstraints instead. This
on�i
thandling poli
y is developed espe
ially with drift in mind. Be
ause
onstraints be
ome lessreliable the older they grow, they
ould be relaxed as they grew older to retain some reliability.The poli
y is based on an idea from the future work se
tion in Hansen et al. (2004), whereit is suggested that relaxing
onstraints
ould be done by adding a
onstant that grows ea
htime a new observations is made, in an attempt to avoid
on�i
ts in
urred by drift. Sin
e all
onstraints are on the form f(x) > 0 adding a positive
onstant, f(x) + c > 0, would in
reasethe spa
e spanned by that
onstraint. As c would gradually be
ome larger, eventually theentire normalized region would be a subspa
e of the spa
e spanned by the
onstraint, at whi
hpoint the
onstraint would be obsolete and
ould be removed.Using this poli
y
on�i
ts will rarely o

ur, sin
e ea
h time a new observations is made, the
onstraints from all other observations will have been relaxed. Sin
e all old
onstraints havebeen relaxed at least on
e, only the newest
onstraint will interse
t the diagonal, ensuring thata hypersphere with a radius larger than zero
an always exist near the diagonal. There is oneex
eption to this rule, namely if the new observation
on�i
ts with itself, whi
h is possibleif imputations are ina

urate. In this situation, the new
onstraint should be deleted, as isordinarily done in the imputing methods when imputations
ause
on�i
ts.A result of using
onstraint relaxation to avoid
on�i
ts, is that when
on�i
ts are avoided byrelaxing
onstraints, the valid
onstraints will not be deleted but instead have their in�uen
eon the utility point diminished. It is likely that new
onstraints will at some point make theolder
onstraints super�uous, as at some point the relaxed
onstraint may span a super spa
eof the feasible spa
e. This e�e
t is desirable in �u
tuation as well as drift.In this proje
t, instead of adding a
onstant in the
onstraint relaxation poli
y, the
oe�
ientsin the
onstraints are
hanged instead, so that the
onstraints will still be relaxed but willalso
ontinue to interse
t with the origin. This is be
ause translating
onstraints by adding
onstants will have an unwanted impa
t on the feasible spa
e. When
onstraints are
reatedin FLUF, Utility Iteration or Imputing by Comparison, they des
ribe a relationship betweenexpe
ted utilities, su
h as v1 < v2. Sin
e multiplying all utilities with the same positive
onstant would yield the exa
t same strategy, then
onstraints with
onstants added (f(x)+c >

0), would allow all
ombinations of utility values, as long as all values are less than c, therebydes
ribing all strategies. For this reason, then instead of translating
onstraints they are rotated50

4.3. Drift and Flu
tuationaround the origin, in a dire
tion su
h that they des
ribe an in
reasing part of the normalizedregion, until they des
ribe the entire region at whi
h point they
an be deleted.The Aguilera-Peréz algorithm, presented in Aguilera and Peréz-Aguila (2004), is one possibleapproa
h for rotating the
onstraints that has been
onsidered. By providing the Aguilera-Peréz algorithm with a (n− 2) dimensional subspa
e to rotate around and an angle to rotate,a set of points su�
ient to extrapolate the new position of the
onstraint
ould be
al
ulated.The advantage of using a poli
y su
h as this, would be that the speed at whi
h
onstraintsrotate
ould be
ompletely
ontrolled, e.g. at �ve degrees in every rotation. Furthermore, theAguilera-Peréz algorithm is designed su
h that a set of transformation matri
es are
al
ulated,and on
e su
h a matrix is
al
ulated for a
onstraint it
ould be used every time the
onstraintwas to rotate. Sin
e the
omplexity of
al
ulating su
h a matrix is polynomial in the numberof dimensions (n2), the algorithm
ould be
onsidered operational. Rotating the hyper planesthat de�ne the
onstraints a

ording to the Aguilera-Peréz algorithm would mean that the
onstraints are relaxed equally for all the utility values. This would be desirable as no parti
ularutility value is
andidate for more relaxation than others.However, no method has been found to
al
ulate the subspa
e that should a
t as the rotationaxis, and sin
e implementation of su
h a method along with the Aguilera-Peréz algorithmwould be a time
onsuming task, a simpler but less elegant method is used.As
onstraints are
reated from ρD(δD) > ρD(d) it would be possible to relax the
onstraint byeither de
reasing the
oe�
ients of ρD(d) or in
reasing the
oe�
ients of ρD(δD). This wouldin
rease the di�eren
e between the two ρs and make it easier to satisfy the
onstraint. Su
ha relaxation would express a de
reasing
on�den
e in the relationship between the expe
tedutility of the
hosen de
ision (δD) and the alternative
hoi
e (d). When relaxing like this, itwould be hard to
ontrol how fast the
onstraint should span the entire normalized region,therefore the relaxation is done by
onsidering the utility
oe�
ients of ρD(δD) − ρD(d) > 0.This will have a set of positive as well as a set of negative
oe�
ients. The spa
e des
ribed bya
onstraint
an be in
reased by in
reasing the negative
oe�
ients, until all the
oe�
ientsare non negative at whi
h point the
onstraint will des
ribed the entire normalized region. Aslong as at least one
oe�
ient is negative the
onstraint will ex
lude a part of the normalizedspa
e, e.g. by subtra
ting a tenth of the original value of ea
h negative
oe�
ients from that
oe�
ient every time rotation is done, then the
onstraint would des
ribe the entire normalizedregion after ten rotations.The
onstraint relaxation poli
y would have to be implemented di�erently in FLUF and theimputing methods, sin
e FLUF maintains a set of
onstraints while the imputing methodsmaintain a set of observations instead. Using this poli
y in FLUF, Algorithm 4.3.2 would haveto be exe
uted every time
onstraints are
reated by a new observation. C denotes the set of
onstraints established so far, and cnew denotes the new
onstraints being added.Algorithm 4.3.2
• Relax all
onstraints in C

• Remove any
onstraint that des
ribes the entire normalized region
• Add cnew to CUsing the
onstraint relaxation poli
y in Utility Iteration or Imputing by Comparison, Al-gorithm 4.3.3 would have to be exe
uted every time a new observation is made. In the al-gorithm O denotes the set of true observations and onew denoted the new observation that isnot yet part of O. Ea
h observation should have an age atta
hed, su
h that when
onstraintsare
reated for that observation they
an be relaxed a

ording to this age. factor denotes51

Chapter 4. Dynami
 Domainsthe speed at whi
h
onstraints are to be relaxed, e.g. with a factor of 10 a
onstraint woulddes
ribe the entire normalized region after 10 relaxations.Algorithm 4.3.3
• In
rease the age of all observations in O by 1

• Remove any observation in O with an age above factor

• Add onew with an age of 0, to OThis poli
y has a time
omplexity linear in the number of dimensions making it operational.Furthermore, the poli
y allows for easy
ontrol of how many rotations needed before a
on-straint be
omes obsolete. The downside of this poli
y is that the
onstraint may be relaxedfaster with respe
t to some utilities than others.4.4 NoiseIn this se
tion it is dis
ussed how noise
an be handled by Imputing by Comparison and UtilityIteration. When noise is the only dynami
 behavior that
an o

ur in the domain, the newlyentered observation will generally be
onsidered guilty, when
on�i
ts o

ur. The argumentis that if an observation
ontains noise, it will most likely
ause a
on�i
t immediately, atleast when there is a large set of true observations already. However, a noisy observationmay only
on�i
t with a few and rare
on�gurations of relevant pasts, and perhaps none ofthese have been observed before the noisy observation, in whi
h
ase it will not
ause a
on�i
t.Furthermore, if a noisy observation is made before a large set of true observations is established,then it may not
ause a
on�i
t immediately. Therefore any poli
y designed to handle
on�i
tsin domains
ontaining noise should not immediately assume that the new observation is guilty.Therefore this poli
y removes the
onstraints added by di�erent observations, when
on�i
tso

ur, to see whi
h observation is guilty. Constraints are only removed for one observation atthe time, and if that does not solve the
on�i
t they are reinserted. So this will, in the worst
ase be done on
e for ea
h observation from whi
h
onstraints were added before the
on�i
to

urred. On
e an observation is found that solved the
on�i
t if removed, it is removed fromthe set of true observations.Using this approa
h the order in whi
h observations are removed to see if the feasible spa
ebe
omes non empty, is very important. The poli
y for handling
on�i
ts
aused by noisy ob-servations uses both an oldest �rst approa
h and a newest �rst approa
h, in an attempt toremove noisy observations without removing large numbers of non-noisy observations. It is im-portant to note that when a
on�i
t o

ur during exe
ution of either Imputing by Comparisonor Utility Iteration, the
on�i
t is resolved using either the oldest or newest �rst approa
h,and then the exe
ution
ontinues. Meaning that the set of
onstraints is maintained, withex
eption of the newly removed
onstraints, and exe
ution does not start over.Algorithm 4.4.1 gives an overview of how
on�i
ts are handled in a domain that
ontains noise.The two approa
hes, oldest �rst and newest �rst are des
ribed below. Every time a
on�i
tso

urs, a
ounter is in
remented, this
ounter is used to keep tra
k of the number of
on�i
tsthat have o

urred, it is
alled conflicts and is initially set to zero. Initially the oldest �rstapproa
h is used to solve
on�i
ts, but when conflicts rea
hes a predetermined limit (limit),the newest �rst approa
h is used instead. Now every time
on�i
ts o

ur in a domain withnoise, Algorithm 4.4.1 is run.Algorithm 4.4.1
• If conflicts < limit 52

4.4. Noise� then In
rement conflicts by one, and run the oldest �rst algorithm� Else Run the newest �rst algorithm4.4.1 Oldest FirstBe
ause noise may not
ause
on�i
ts immediately, the �rst set of
onstraints to be removedare those added by the oldest observation, from whi
h
onstraints
ould solve the
on�i
t ifremoved. If
onstraints have already been added for the last de
ision node in all observationswhen the
on�i
t o

urs, the oldest of all true observation would be the one examined �rst. Ifit
annot solve the
on�i
t then the se
ond oldest is examined and so on. If not before, thenthe
on�i
t will be resolved when the turn
omes to the observation in whi
h the
on�i
t wasdis
overed.Doing this the �rst time a
on�i
t o

urs ensures that if the newest observation is not noisybut a noisy observation previously has gone undete
ted. If the new and the noisy observations
on�i
t, the noisy observation will be deleted. There is a risk that ina

urate imputations
ould result in the new observation also
on�i
ting with a se
ond non noisy observation, inwhi
h
ase the two non noisy observations may
on�i
t, sparing the a
tual noisy observation.For this reason it
ould be
onsidered if this oldest �rst approa
h should be used more thanfor just the �rst
on�i
t, i.e. limit should be greater than 1. In
reasing the number of timesthe oldest �rst approa
h is used will in
rease the likelihood that noisy observations, alreadyadded to the set of true observations, will be removed. The trade o� for in
reasing the numberof times the oldest �rst approa
h is used, is that if the new observation is noisy then it will
ause more
orre
t observations to be deleted and there will be an in
reased risk that the noisyobservation will be allowed to remain in the set of true observations.Due to the fa
ts that the frequen
y with whi
h ina

urate imputations will
ause
on�i
ts andthe frequen
y of noise is domain spe
i�
, the number of times (limit) the oldest �rst approa
his best used will also be domain spe
i�
.The oldest �rst approa
h should be implemented as Algorithm 4.4.2, where O denotes the setof all true observations and the di�erent observations are denoted (o1, · · · ,om) where there are
m observations in O and om is the oldest observation. Finally C denotes the set of
onstraintsadded before the
on�i
t o

urred.Algorithm 4.4.2

• For k = m to 11. Remove the
onstraints added by ok from C2. If C des
ribes the empty spa
e� then insert the removed
onstraints from ok into C again� Else remove ok from O, and halt this algorithm4.4.2 Newest FirstAt some point, when the oldest �rst approa
h has been used a predetermined number of times(limit) and
on�i
ts keep o

urring, it is assumed that the new observation is the one
ausingthe
on�i
t. At this point the newest �rst approa
h is used instead. Using the newest �rstapproa
h, the newest observation is examined by removing its
onstraints to
he
k if the
on�i
tis resolved, and only if this is the
ase the observation will be deleted. As the set of observationsdid not
on�i
t before the new observation was made, removing it will most likely resolve the53

Chapter 4. Dynami
 Domains
on�i
t. If removing the newest observation does not resolve the
on�i
t, then the
on�i
t iso

urring be
ause the new observation is
ausing di�erent imputations, and these imputationsare
ausing the
on�i
t. As
an be seen in Se
tions 3.3 and 3.4, these situations are handled byremoving the observation in whi
h the
on�i
t was dis
overed. This is also done in the newest�rst approa
h, when removing the newest observation does not solve the
on�i
t.The algorithm for the newest �rst approa
h is shown in Algorithm 4.4.3, where the samenotation is used as in Algorithm 4.4.2. Furthermore, let oconflict be the observation where the
on�i
t was dis
overed.Algorithm 4.4.3
• Remove the
onstraints added by o1 from C

• If C des
ribes the empty spa
e� then insert the removed
onstraints from o1 into C again� Else remove o1 from O, and halt this algorithm
• Remove the
onstraints added by oconflict from C

• Remove oconflict from O

54

CHAPTERFIVE
ExperimentsTo evaluate the Imputing by Comparison and Utility Iteration methods, des
ribed in Se
tion 3.3and Se
tion 3.4, several experiments have been
ondu
ted. These experiments were
ondu
tedto examine how well the imputing methods estimates utility fun
tions, in stati
 as well asdynami
 domains.The methods have been evaluated with regard to two di�erent aspe
ts: speed and a

ura
y .Speed is measured in the number of observations, so a method that rea
hes a higher level ofa

ura
y with fewer observations is
onsidered fast. A

ura
y is measured in three di�erentways. The �rst is
omparison of expe
ted utility of the predi
ted strategy using the real utilityvalues. The purpose of this measurement is to evaluate whether the
hoi
es predi
ted bythe method would yield good de
isions. This would be interesting when determining if themethod should be used in some advisory role. The se
ond measure of a

ura
y is how frequenta single de
ision is predi
ted
orre
tly. This measure will be the fra
tion of the relevantpast
on�gurations where the method's estimated utility fun
tion would result in the samede
ision as the agents real utility fun
tion (ignoring those relevant pasts that
annot o

ur).As likely
on�gurations of the relevant past are not given any greater weights than unlikely
on�gurations, this indi
ates how well the method predi
t
on�gurations that has only beenobserved a few time, if at all. To determine how a

urately the method performs in general,a third measure is used where the predi
tions are weighed based on ea
h
on�guration of therelevant past's probability of o

urring. Measuring the a

ura
y of predi
tion for ea
h de
isionwould be interesting in a s
enario where the observed agent is some sort of opponent, e.g. ifthe appli
ation using one of the methods should try to
ounter the a
tion that the observedagent is about to make.The weighed a

ura
y of predi
ting a de
ision node is
al
ulated with Equation 5.1, where

correctD(past(D)) is one when the method is able to predi
t whi
h
hoi
e the agent wouldmake for de
ision D given the relevant past past(D), and zero otherwise. If a de
ision node isa part of the relevant past, it is repla
ed with a deterministi

han
e node that have the samestate spa
e as the de
ision node, and enters the state that
orresponds to the
hoi
e the agentwould make.
∑

past(D)

(

P (past(D)) · correctD(past(D))
) (5.1)The unweighed a

ura
y of predi
ting a de
ision is
al
ulated with Equation 5.2 where |past(D)|55

Chapter 5. Experimentsis the number of possible
on�gurations of the relevant past. Con�gurations that have zeroprobability are not in
luded in this measurement.
∑

past(D)

(

correctD(past(D))
)

|past(D)|
(5.2)Rather than just
omparing the two imputing methods against ea
h other, the experimentswill also be
ondu
ted using FLUF. This will make it possible to evaluate whether the newmethods are improvements
ompared to FLUF.FLUF works with a
onstraint removal poli
y to handle
on�i
ting observations. The exper-iments in Hansen et al. (2004) revealed that between the �Always Guilty� and the �Inno
entUntil Proven Guilty� poli
ies there was only minor di�eren
es in a

ura
y, with the ex
eptionof handling �u
tuations in the utility values, in whi
h
ase the �Always Guilty� poli
y re
overedfaster. For that reason experiments with FLUF in this proje
t was only
ondu
ted using the�Always Guilty� poli
y. See Se
tion 4.3.2.The
omparison between FLUF and the new methods is slightly uneven, as FLUF only keeps
onstraints whereas the new methods keeps observations and rebuilds the
onstraints for ea
hpredi
tion. This means that the new methods will use more spa
e and be somewhat slower(in terms of exe
ution time) than FLUF. To make the
omparison more even and to redu
eexe
ution time and use of spa
e, the methods will only use a number of the newest observationsto
reate
onstraints, the number of observations
hosen is
alled window size. The windowsize in these experiments has been
hosen to be 100, for
ing the methods to dis
ard theiroldest observations if they at any point have more than 100 observations, thus limiting thenumber of observations and thereby also the number of
onstraints being used. As FLUFremoves
onstraints when
on�i
ts o

ur all the
onstraints derived from one observation mayeventually be removed, in whi
h
ase that observation is
onsidered as being removed.5.1 DomainThe in�uen
e diagram used in the initial experiments is the same as used in Hansen et al.(2004) and is shown in Figure 5.1, the nodes have the number of states shown in Table 5.1.Node Number of states

A 4
OM 4
OQ 4
M 4
Q 4
M∗ 4
H 7
OH 7
T 3Table 5.1: Number of statesThe utility values in node C are generally lower than those in node U . The reason for this is thatde
ision node A
ould otherwise be di
tated by utility node C, regardless of the
on�gurationof the relevant past of A. With the
hosen utility values the de
ision that yields the maximumexpe
ted utility in de
ision node A
hanges depending on the
on�guration of the relevant pastof de
ision node A. 56

5.2. The Experiment Program
Q

OQ

H

M∗

A

C

M

OM

OH

U T

Figure 5.1: In�uen
e diagram for experiments5.2 The Experiment ProgramThe program used to perform the experiments on FLUF is the program develop in Hansenet al. (2004), with minor modi�
ations. The library for solving linear inequalities is repla
edby lp_solve (Berkelaar et al., 2005) due to a simpler interfa
e. The implementation of FLUFis also extended to allow the use of the
onstraint relaxation poli
y for
on�i
t handling, asdes
ribed in Se
tion 4.3.3. The two methods Utility Iteration and Imputing by Comparison isimplemented as designed in Se
tions 3.3 and 3.4, in
luding
on�i
t handling poli
ies, des
ribedin Se
tion 4.2, for drift/�u
tuation and noise along with the
onstraint relaxation poli
y. Tohandle the probabilisti
 networks Hugin Resear
her from Hugin Expert A/S (A/S, 2004) isused.With regard to exe
ution time of the methods, FLUF is the fastest of the three in the originaldomain, but when the domains in
rease in size, FLUF de
rease signi�
antly in speed, (seeSe
tion 5.3.6). Naturally the exa
t time spent by ea
h method will depend on the system onwhi
h the experiment is
ondu
ted. The exe
ution times presented here were running on a
1.6 GHz Pentium M laptop. Experien
e have shown that Utility Iteration is almost as fastas FLUF in all experiments on the original domain. FLUF generally took just less than 30minutes per 200 observations while Utility Iteration took just above 30 minutes. With regard toImputing by Comparison, it took about two and a half hours per 200 observations in driftingdomains, be
ause several
on�i
ts o

ur and observations are removed as a result, as laterresult will show, this is fast. Re
all that the worst
ase time
omplexity of the Imputing byComparison algorithm was polynomial in the largest number of possible
on�gurations of therelevant past, in the domain, as shown in Equation 3.19, be
ause the method grows more
omplex as more observations are entered, until the number of observations equals #relevanti

2 .Sin
e a window size has been introdu
ed into the algorithm the
omplexity is redu
ed to
min(windowsize, relevanti

2), this is a signi�
ant de
rease with respe
t to de
ision T , whi
h hasa relevant past of size 448. In spite of this redu
tion the Imputing by Comparison is very slowwhen observations are not regularly removed due to
on�i
ts, whi
h is the
ase in the stati
domain, single �u
tuation and noisy observations experiments. In these experiments ea
h runwith 200 observations took 10 hours to
omplete using the Imputing by Comparison method,while using Utility Iteration and FLUF it took less than 40 minutes per 200 observations.57

Chapter 5. Experiments5.3 The ExperimentsIn this se
tion the experiments themselves are presented. Di�erent s
enarios have been de-veloped in order to test the methods under di�erent
ir
umstan
es. The s
enarios are de-veloped to represent a wide range of di�erent possible situations where methods like FLUF ,Imputing by Comparison and Utility Iteration
ould be used. S
enarios with both dynami
 andstati
 behavior are
hosen. In the experiments dynami
 behavior is
ategorized as either drift,�u
tuation or noise as des
ribed in Chapter 4. To a
hieve reliable mean values and varian
eall experiments are run 10 times, and all experiments are performed with 200 observations inea
h run. Sin
e the window size is only 100, then if the methods
onverge toward some meanvalues, they will do so before all 200 observations have been evaluated.A number of experiments are
ondu
ted with the domain des
ribed in Se
tion 5.1. The �rstexperiment presented is
ondu
ted with a stati
 domain. Then experiments are done on di�er-ent kinds of drifting domains. Finally experiments with two kinds of �u
tuation are presentedfollowed by an experiment with a domain
ontaining noise.After these initial experiments have been presented, an experiment is presented where thedomain has been slightly altered, to examine spe
i�
 properties of the methods.All results from the experiments are shown in Appendix D, and in this
hapter only sele
tedresults are shown.5.3.1 Experiment One - Stati
 DomainIn this experiment the domain is stati
, meaning it does not
hange between the observations.The experiment serves as a baseline for how well the methods perform with regard to botha

ura
y and speed. Utility values have been
hosen for the stati
 domain su
h that di�er-ent de
isions should be made given di�erent relevant pasts, when following the strategy formaximizing expe
ted utility.Even though the setup may seem simple it must be
onsidered realisti
. An example of su
ha situation
ould be something as buying o�
e supplies as long as the pri
es does not
hange.ResultsThe expe
ted utility of the methods
an be seen in Figure 5.2. FLUF starts with an expe
tedutility of 0.86 but rapidly in
reases and rea
h 0.98 after 22
ases. FLUF does not improveafter that. Utility Iteration and Imputing by Comparison starts with expe
ted utilities of 0.87and rea
hes 0.99 after 34 and 32
ases respe
tively. All methods have varian
e of less than 0.01after the �rst 20 observations and throughout the remaining training
ases.For de
ision A FLUF starts with an a

ura
y of 0.6 and after only 2 training
ases predi
ts0.8
orre
tly (weighed). Unweighed the results are lower by approximately 0.03-0.05. UtilityIteration starts almost identi
ally to FLUF but
ontinues to in
rease its a

ura
y until 35training
ases have been entered. After that it has an a

ura
y between 0.97 and 1 throughoutthe remaining observations. When
onsidering unweighed predi
tion, it takes Utility Iteration30 additional training
ases to rea
h the same level of a

ura
y. Imputing by Comparisonbehaves identi
ally to Utility Iteration, ex
ept that after the �rst 60 observations Imputingby Comparison's a

ura
y remains about 0.02 below that of Utility Iteration, but only withregard to unweighed predi
tions.For de
ision T FLUF starts with predi
ting 0.65 (weighed)
orre
tly and rea
hes 0.98 after58

5.3. The Experiments50
ases. Utility Iteration starts at 0.7 and rea
hes 0.98 after 53
ases, but does, on average,predi
ts more a

urately than FLUF. The a

ura
y of Imputing by Comparison starts at 0.64and rea
hes 0.98 after 39
ases. After they rea
h 0.98 all methods maintain that a

ura
y.After 39
ases the varian
e of Utility Iteration and Imputing by Comparison de
reases to 0.01whereas FLUF does not rea
h that until after 71
ases. When
onsidering de
ision T unweighedthe methods performs almost equally well. They start with little more than 0.5
orre
t andrea
h 0.9 after 20-30
ases. They in
rease slowly after that but none of them in
rease above0.98.Con
lusionIn general it must be said that Utility Iteration and Imputing by Comparison performs equallywell, and that they both are faster and more a

urate than FLUF for stati
 domains. Thehigher level of a

ura
y that Utility Iteration and Imputing by Comparison rea
hes is mostapparent for de
ision A, and the better expe
ted utility must be attributed to that. FLUF
annot predi
t de
ision A as pre
ise as Imputing by Comparison and Utility Iteration due tothe fa
t that FLUF uses relaxations to
reate the
onstraints for the partial observed domain.These relaxations indu
e ina

ura
ies in the
hosen utility point used to explain de
ision A (seeSe
tion 2.7). Imputing by Comparison and Utility Iteration are both more pre
ise at predi
tingde
ision A
an it be
on
luded that, for a stati
 domain, imputing is a better method than therelaxation te
hniques of FLUF.
 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expexted Utility

Fluf
Utility Iteration

Imputing By ComparisonFigure 5.2: Expe
ted utility for stati
 domain (ex-periment 1) 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Fluf

Utility Iteration
Imputing By ComparisonFigure 5.3: Predi
tion of de
ision A (weighed) (ex-periment 1)5.3.2 Experiment Two - Domain with DriftTo test the methods with regard to domains
ontaining drift, three di�erent forms of drift wasused, to examine if and how di�erent kinds of drift would impa
t the a

ura
y and speed ofthe methods. The three kinds of drift are
alled one way drift, random drift and lo
al drift.Ten experiments with 200 observations were
ondu
ted for ea
h type of drift. Experimentsusing deletion poli
ies was
ondu
ted with all three kinds of drift, while experiments were only
ondu
ted using the
onstraint relaxation poli
y under lo
al drift.One Way Drift In one way drift the utility values are drifting in the same dire
tion betweenthe observations, i.e. utility values that are in
reasing
ontinue to in
rease, and de
reasingutility values
ontinue to de
rease. This means that after a number of observations the strategy59

Chapter 5. Experimentsof the agent may
hange, and it may happen again later as time progresses. But at some point,as the utility values
ontinue to drift in the same dire
tion, the strategy of the agent will not
hange anymore. It should be noted that this point is not rea
hed within the 200 observationsin
luded in the
ondu
ted experiments.The utility values that are de
reasing will be denoted U− and the in
reasing values will bedenoted U+. Now, between ea
h observation the utility values will be updated as follows:
∀u ∈ U+ : u := u + c where c ∈ (0; 0.01) and ∀u ∈ U− : u := u − c where c ∈ (−0.01; 0).As the utilities are normalized between every observation a
hange of 0.01 is signi�
ant. Ea
hutility value is in
reased or de
reased by the same amount between ea
h observation.An example of su
h a s
enario
ould be the development of pri
es of goods. The pri
es may fora period have a steady development, and the shopper's strategy will
ontinue to be adjustedto these pri
es.Lo
al Drift With lo
al drift the utility values drift within
ertain boundaries. These bound-aries are that ea
h utility at most may be 20% above or below its original value. The purpose ofthis experiment is to simulate that the agent is not
ompletely sure about the domain and thatthe utility values a
tually are estimated values. This means that nothing ne
essarily
hangesin the environment, but just that the agent may judge situations di�erently from time to time.When updating the utility values between the observations it is always relative to the originalutility values. Let u be the original utility value, u′ the utility value prior to the update and
u′′ the utility value after the update. Then the values are updated as:
u′′ := u′ + c where c ∈ (−0.01; 0.01)∧ u′ + c ∈ (0.8u; 1.2u).The utility values have original values so that the 20% boundaries allow for more than onestrategy. The c value is
hosen randomly from the values that would satisfy the equation. Notethat the utilities are normalized between observations and the maximum drift speed is 0.01,as in one way drift.This
ould for example o

ur when the observed agent is trying to de
ide what kind of ad-vertisement that should be used. The e�e
t of ea
h type of advertisements will probably beestimates.Random Drift With random drift the agent's utility values also drift, like with lo
al drift,but this time they are unbounded. They are, however, limited in how mu
h they
hangebetween ea
h observation. To avoid letting the drift be
oming �u
tuation, ea
h utility valueonly drifts between −0.01 and 0.01 between ea
h observation, i.e. a utility value
an at mostin
rease or de
rease by 0.01. Having the same maximum drift speed as in lo
al and one waydrift also makes it easier to
ompare results.Updating utilities is very similar to how the utility values are updated in lo
al drift ex
eptthat they are updated relative to the
urrent value only.
∀u ∈ U : u′ := u + c where c ∈ (−0.01; 0.01)Again, the c value is
hosen randomly from the values that would satisfy the equation, and theutilities are normalized between observations.This
ould for example be
ustomer's preferen
es based on what is fashionable. What is
onsidered fashion may vary greatly over time.60

5.3. The ExperimentsResults

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expexted Utility

Fluf
Utility Iteration

Imputing By ComparisonFigure 5.4: Expe
ted Utility for One Way Drift (ex-periment 2)
 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expexted Utility

FLUF - constraint relaxation
FLUF

Utility Iteration
Utility Iteration - constraint relaxationFigure 5.5: Expe
ted utility for lo
al drift with
on-straint relaxation poli
y (experiment 2)The experiments show that all utility learning methods a
hieve a higher expe
ted utility in thedomain with one way drift (see Figure 5.4) than in the other two, and between lo
al drift andrandom drift, the methods all handle lo
al drift better than random drift. In one way drift thereis an indi
ation that the methods improve over time,
onverging around an expe
ted utilitybetween 0.92 and 0.96 after about 80 observations. In the two other kinds of drift the methodsexpe
ted utilities in
rease only until observation number 20. In lo
al drift the expe
ted utilityof the three methods are about the same after the �rst 20 observations, remaining between

0.86 and 0.96, but showing a tenden
y that FLUF's expe
ted utility is the smallest.With respe
t to the a

ura
y of predi
ting de
ision A Utility Iteration and Imputing by Com-parison are equal in all the experiments, FLUF only obtains equal result in lo
al drift, whilein one way and random drift FLUF performs worse than Utility Iteration and Imputing byComparison. In lo
al drift all three methods maintain a predi
ting a

ura
y around 0.7 witha varian
e around 0.2 throughout the experiment, for weighed as well as unweighed measure-ments. With respe
t to experiments with one way drift and random drift, Utility Iteration andImputing by Comparison has an a

ura
y around 0.8. In one way drift the varian
e is mostlybelow 0.2 for Utility Iteration and Imputing by Comparison, while it is around 0.3 in randomdrift. The mean a

ura
y of FLUF in one way drift and random drift is around 0.6 while thevarian
e in both
ases is around 0.35 and goes as high as 0.4. When predi
ting de
ision Tall methods work equally well for all three kinds of drift. The three methods having a meana

ura
y around 0.6 in one way drift and random drift, with a varian
e around 0.15 for oneway drift and 0.2 for random drift. With respe
t to lo
al drift the three methods performbetter, with a mean a

ura
y around 0.7 and a varian
e around 0.25.An experiment was
ondu
ted where the
onstraint relaxation
on�i
t handling poli
y wasused in
onjun
tion with ea
h of the three methods in a domain with lo
al drift. The sametraining
ases were used in both this and the original experiments with lo
al drift, to in
rease
omparability. Figure 5.5 shows the expe
ted utilities a
hieved by the three methods whenusing
onstraint relaxation, varian
es are not shown on the graph. The experiments showedthat
onstraint relaxations works well with all three methods, but does not signi�
antly improvethe a

ura
y of any of the methods. All three methods predi
t both de
isions almost equallywell, with a mean a

ura
y around 0.9, very mu
h like without
onstraint relaxation.61

Chapter 5. ExperimentsCon
lusionThroughout these drift experiments FLUF has, with or without
onstraint relaxation, shownexpe
ted utilities lower than the ones generated by Utility Iteration and Imputing by Com-parison. Examining the a

ura
ies of the methods with respe
t to predi
tion of de
isions, it isobvious that the redu
ed expe
ted utility of FLUF is a result of FLUF's inability to predi
tde
ision A as well as the to imputing methods. The two imputing methods seem equal, withthe ex
eption of one way drift, where there is an indi
ation that Utility Iteration a
hieves ahigher mean on expe
ted utility than Imputing by Comparison.Con
erning the
onstraint relaxation poli
y, there is no noteworthy
hange in the a

ura
y ofthe methods. Without
onstraint relaxation the
onstraints
ontribute to the feasible spa
eby their original
oe�
ients, whereas with
onstraint relaxation only the newest
onstraint
ontribute with its original
oe�
ients. So one possible explanation of that the results doesnot vary mu
h is that the dominant
onstraint is the newest, meaning that when not using
onstraint relaxation, a high number of
onstraints must be deleted. This is supported by thefa
t that the average number of observations kept by the methods is around 10.5.3.3 Experiment Three - Domain with Flu
tuationAnother kind of dynami
 behavior is �u
tuations where the agent being observed makes aradi
al shift in its strategy. How the methods handle this is tested in two di�erent setups;Single Flu
tuation whi
h is a single shift in the strategy and Multiple Flu
tuations where theagents
hange strategy very often. Experiments have been
ondu
ted using the deletion poli
ywith all three methods in both kinds of �u
tuation, while
onstraint relaxation has been usedwith all methods under single �u
tuation and only with FLUF under multiple �u
tuation.Single Flu
tuation For this setup the agent's utility values will make one great shift andotherwise remain un
hanged. The main purpose of this is to assesses the methods' ability tohandle a radi
al shift from one strategy to a
ompletely di�erent strategy. The shift in utilityvalues is designed su
h that at least a third of the possible relevant past
on�gurations lead toa
hanged poli
y.This
ould represent a s
enario where an agent in a poker game makes a sudden shift in thestrategy to throw o� opponents, or it may represent
hanges in a farmer's priorities if there isa sudden
hange in the weather, given that the domain does not expli
itly model the weatherdevelopment.Multiple Flu
tuations For this setup the agent's utility values will make several greatshifts. The purpose of this is to determine how well the methods handle a very un
ertainstrategy.This
ould represent a s
enario where an agent is deliberately trying to prevent the methodfrom determining the strategy.ResultsThe expe
ted utility for ea
h method is shown in Figure 5.6. FLUF starts with a mean expe
tedutility at 0.88 and rea
hes 0.96 after 10 observations in single �u
tuation. The mean expe
tedutility
ontinues to in
rease until the strategy is
hanged at whi
h the mean expe
ted utilityis above 0.98 (0.98 is in fa
t rea
hed after only 25 observations, and only minor improvements62

5.3. The Experiments

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expexted Utility

Fluf
Utility Iteration

Imputing By ComparisonFigure 5.6: Expe
ted utility for single �u
tuation(experiment 3)
 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expexted Utility

FLUF
Utility Induction

FLUF - constraint relaxation
Utility Induction - constraint relaxation

Imputing By Comparison - constraint relaxationFigure 5.7: Expe
ted utility for single �u
tuationusing
onstraint relaxation (experiment 3)are made after that). After the strategy is
hanged it takes FLUF 30 observations to rea
h anexpe
ted utility of 0.98.In multiple �u
tuation FLUF starts with a mean expe
ted utility at 0.88. The strategy is
hanged after 10 observations and as a result FLUF's mean expe
ted utility then drops to0.64. It qui
kly re
overs and gains a mean expe
ted utility of 0.96 before the strategy is
hanged again. This pattern repeats itself throughout all 200 observations.Both Imputing by Comparison and Utility Iteration follow the same pattern as FLUF. Theygenerally have higher mean expe
ted utility than FLUF and re
overs faster than FLUF froma
hange in the strategy. In parti
ular in multiple �u
tuations, Imputing by Comparison andUtility Iteration methods re
over faster than FLUF.Con
erning the predi
tion of the de
isions all three methods are almost equally good at pre-di
ting de
ision T . In single �u
tuation, the methods rea
h an a

ura
y of approximately0.95 after 25 observations, with FLUF being �ve observations slower at rea
hing that level.When the strategy
hanges after 100 observations the methods drop to an a

ura
y of 0.2, butthey then regain a level around 0.98 after additional 30 observations. For multiple �u
tuation,Imputing by Comparison and Utility Iteration peaked between ea
h
hange in the strategy atapproximately 0.97, and then dropped to approximately 0.7. FLUF in
reased to, on average,0.96 and dropped to 0.72 when the strategy was
hanged.For de
ision A FLUF in single �u
tuation, had an a

ura
y of 0.8 throughout the �rst 100observations, whereas Imputing by Comparison and Utility Iteration rea
h 0.9 after 10 obser-vations and 0.99 after 20 observations. After the strategy
hanges all three methods drops toaround 0.65 in a

ura
y for de
ision A and then in
reases to 0.99 after additional 30 obser-vations. For multiple �u
tuation the methods' a

ura
y ranges from 0.2 to 1.0 at the mostextreme. Whi
h of the methods that re
over qui
kest from a
hange in strategy varies ea
htime the strategy varies.The expe
ted utility for ea
h method using
onstraint relaxation is shown in Figure 5.7. For
omparison FLUF without
onstraint relaxation is also shown. For single �u
tuation the
onstraint relaxation te
hnique des
ribed in Se
tion 4.3.3 was tested. With regard to themean expe
ted utility FLUF rea
hes 0.96 after 20 observations where Imputing by Comparisonand Utility Iteration rea
h 0.98 after 20 observations. Before the strategy
hanges the meanexpe
ted utility of all three methods are generally 0.02 lower than without
onstraint relaxation.After the
hange in strategy all three methods drops to around 0.83 in mean expe
ted utilityand then in
reases to 0.91 after observation 102 and rea
hes 0.96 after observation 105. Themethods perform better after the
hange in strategy with
onstraint relaxation in that they63

Chapter 5. Experimentsrea
hes the same level of a

ura
y as without
onstraint relaxation but faster.Due to the results a
hieved for FLUF with
onstraint relaxation in single �u
tuation, FLUFwith
onstraint relaxation was also tested with multiple �u
tuation. The mean expe
ted utilityof FLUF with
onstraint relaxation drops as low as 0.37 whereas FLUF without
onstraintrelaxation only drops to 0.53. Both have a peak at 0.96. However, between the
hanges instrategy FLUF with
onstraint relaxation have a mean expe
ted utility at 0.86 whereas FLUFwithout
onstraint relaxation have a mean expe
ted utility of 0.8.Con
lusionIn general Imputing by Comparison and Utility Iteration performs equally well, both withregard to de
ision predi
tion and expe
ted utility. Compared to FLUF they both have ahigher mean expe
ted utility and are generally faster at rea
hing high level of a

ura
y. Theinteresting element is how well the methods re
over after the strategy
hanges. Here Imputingby Comparison and Utility Iteration are faster than FLUF, in parti
ular in single �u
tuation.One explanation for this might be that they not only throw away
onstraints when
on�i
tso

ur, but throw away all
onstraints related to the guilty observation. This means that numberof
onstraints from old observations will de
rease very fast when �u
tuation o

ur.With
onstraint relaxation the three methods performed almost equally well. Considering theresults prior to the
hange in the strategy indi
ate that whether the methods work betterwith or without
onstraint relaxation may be domain spe
i�
. The methods in
rease themean expe
ted utility after the
hange in the strategy faster with
onstraint relaxation thanwithout. The mean expe
ted utility after the
hange in the strategy is almost identi
al forall three methods, indi
ating that for the utility fun
tion used in the last 100 observation the
onstraint relaxation is more important than how the
onstraints are
reated. The generalimprovement in mean expe
ted utility is probably a
onsequen
e of old
onstraints qui
klybeing made irrelevant by new
onstraints, as old
onstraints are relaxed.After the
hange in strategy, the de
ision with the highest expe
ted utility in node A is same,independent of the
on�guration of its relevant past. This allows FLUF to a
hieve a very higha

ura
y on de
ision A. The fa
t that a good mean expe
ted utility is a
hieved faster afterthe
hange in the strategy is most likely a result of the in
reased a

ura
y on de
ision A.5.3.4 Experiment Four - Domain with NoiseIn this experiment the training
ases
ontain noise, that is observations that does not ne
essarily
onform with the utility values of the domain. Ea
h new sample has probability p of beingnoisy; in this experiment p equals 0.05. The noise is introdu
ed by
reating an ordinary sampleand then randomly pi
king three non utility nodes. Ea
h of these three nodes are then putin a random state, whi
h might be their original state. So in fa
t less than three nodes maybe altered in noisy observations, and using this approa
h the noise introdu
ed might a
tually
onform with the agents utility fun
tion.Noise
ould o

ur in almost any s
enario, e.g. be
ause of human failure to re
ord
orre
tlywhat is observed, or be
ause of
orrupted data due to
omputer failure, or faulty networktransmissions.ResultsThe expe
ted utility of the methods
an be seen in Figure 5.8.64

5.3. The Experiments

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expexted Utility

Utility Iteration (no noise handling)
Utility Iteration

Imputing By ComparisonFigure 5.8: Expe
ted utility with noise (experiment4) 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expexted Utility

Fluf
Utility IterationFigure 5.9: Expe
ted utility with single �u
tuationin alternative domain (experiment 5)For this experiment the results of using Utility Iteration using the
on�i
t handling poli
y forstati
 domains, is in
luded for
omparison. Utility Iteration starts with a mean expe
ted utilityof 0.89 and then in
reases to 0.98 after 27
ases. Then its mean expe
ted utility drops to almost0.96 and for the remaining
ases the mean expe
ted utility varies between 0.97 and 0.99. BothImputing by Comparison and Utility Iteration with noise handling start with a mean expe
tedutility at 0.89 and in
reases slowly to 0.99 after approximately 40
ases. Neither of them dropssigni�
antly below that level.For de
ision node A Utility Iteration without noise handling predi
ts
orre
tly for 0.68 of theweighed
on�gurations. Its ability to predi
t de
ision A varies between 0.95 and 0.99, andnever really stabilizes. For de
ision T the a

ura
y varies between 0.9 and 0.99. However, itdoes not rea
h the same level as for Utility Iteration with noise handling.Both Imputing by Comparison and Utility Iteration with noise handling start with predi
tingde
ision A
orre
t for 0.68 of the weighed
on�gurations and then
ontinues to in
rease untilthey rea
h 0.99 after approximately 30
ases. After 30
ases both Imputing by Comparison andUtility Iteration remain at predi
ting
orre
tly in approximately 0.99 of the weighed relevantpast
on�gurations. De
ision T is predi
ted
orre
tly in 0.95 of the
ases after approximately40 observations, and after that it in
reases to an a

ura
y of 0.98 after 65 observations.

Con
lusionThe mean expe
ted utility (see Figure 5.8) for the noise experiment indi
ates that the poli
yused by Imputing by Comparison and Utility Iteration to handle noise in the training
ases,does take
are of most of the noise. The results of the experiment show that Utility Iterationwithout noise handling takes a severe
ut in its ability to get a good expe
ted utility,
omparedto how it performs for stati
 domains, while Imputing by Comparison and Utility Iterationwith noise handling are largely una�e
ted. Imputing by Comparison and Utility Iteration withnoise handling take about an additional 20
ases to rea
h almost the same level of a

ura
y forthe de
isions as for the stati
 domain. This does have a minor impa
t on the mean expe
tedutility. The fa
t that Imputing by Comparison and Utility Iteration are almost identi
al isnot surprising
onsidering that they also had almost identi
al results in the experiment with astati
 domain, and that they are using the same
on�i
t handling poli
y.65

Chapter 5. Experiments5.3.5 Experiment Five - Alternative DomainA question that has risen from experiments
ondu
ted so far, is why FLUF's a

ura
y onde
ision A is lower than on de
ision T . It is examined if its relatively low a

ura
y may bedue to poor estimations of the utilities in utility node C.Considering that C is the dominant utility node, with respe
t to predi
ting de
ision A, theexplanation
ould be that the only
onstraints
reated by FLUF that
an be used to expressanything about the utilities in node C are the
onstraints
reated in de
ision node A. All
onstraints
reated in de
ision node A are subje
ted to relaxation in FLUF, and this relaxation
ould be the
ause of ina

ura
ies.To examine this question an alternative domain is
onstru
ted, whi
h is shown in AppendixC. This alternative domain is
reated as a modi�
ation of the original domain. Here a thirdde
ision node is introdu
ed into the domain,
alled D, and a new
han
e node N is introdu
edas parent for D and C. D has indegree of 2 and outdegree of 1 with nodes OM and N asparents and Q as
hild, meaning that the edge from node OM to de
ision node A has nowbe
ome obsolete due to the assumption of no-forgetting. The new de
ision will have a relevantpast of size 12, and should due to an in
reased number of either relaxations or imputations bea di�
ult node to predi
t for all methods.With respe
t to this alternative domain, tests are
ondu
ted with lo
al drift and single �u
tu-ation. Only one version of drift is used, in that the tenden
ies are expe
ted to be the same forall three versions of drift, mu
h as experien
ed in the earlier experiments. Single �u
tuation isused, be
ause the �rst 100 observations
an be used as an indi
ation of what would happen in astati
 domain, and the experiment will still allow for examination of the impa
t of altering thedomain on �u
tuation. Due to the in
reased number of imputations needed in the alternativedomain, sin
e de
isions must be imputed for node A in that domain, only FLUF and UtilityIteration are run.ResultsThe experiment on the alternative domain with lo
al drift, showed that both Utility Iterationand FLUF a
hieved a mean expe
ted utility around 0.87, whi
h is a redu
tion with respe
t tothe original domain. The a

ura
y of de
ision node A was redu
ed
ompared with results fromthe original domain, whi
h in part explains the redu
ed expe
ted utility. The mean a

ura
yof both methods lay around 0.6 with respe
t to de
ision A. So the reason why a lower expe
tedutility is a
hieved alternative domain
ompared to the original domain, is found in de
isionnode D. Both method have very large varian
es with respe
t to de
ision D, namely about 0.3in both
ases. The mean a

ura
y of Utility Iteration goes as low as 0.35 and as high as 0.85,while FLUF goes even lower at 0.29 and equally high at 0.85. With only 3 possible de
isions in
D, this a

ura
y is at time as bad as random guessing. Therefore the drop in mean expe
tedutility must be attributed to the D predi
tions.With respe
t to �u
tuation on the alternative domain, both FLUF and Utility Iteration pre-di
ted T without any signi�
ant di�eren
e from the original domain. With respe
t to the
A de
ision it was initially predi
ted better by FLUF in this alternative domain than in theoriginal domain, the mean a

ura
y for FLUF was just below 0.9 up until the �u
tuation.After the �u
tuation FLUF's mean a

ura
y stayed between 0.7 and 0.8, whereas FLUF
ouldpredi
t de
ision A with an a

ura
y of 1 after re
overing from the �u
tuations in the originaldomain.Utility Iteration a
hieved a mean a

ura
y for predi
ting de
ision A of 0.96 both before andafter the �u
tuation, and it showed no di�
ulty re
overing from the �u
tuation, it a
tually66

5.3. The Experiments
onverged faster after the �u
tuation than before. Con
erning de
ision node D, Utility It-eration predi
ted it very well, a
hieving a mean a

ura
y of 0.95 both before and after the�u
tuation
onverging equally fast. FLUF on the other hand had di�
ulties with de
isionnode D, with a mean a

ura
y varying between 0.4 and 0.8 up until the �u
tuation took pla
e,showing no sign of improvement. Immediately after the �u
tuation FLUF predi
ted D withan a

ura
y of only about 0.2, but after about 50 observations it seemed to re
over to thesame a

ura
y as before the �u
tuation. Throughout the experiment FLUF's a

ura
y had avarian
e of 0.35 when predi
ting de
ision D. The a

ura
y of de
ision D for single �u
tuationis shown in Figure 5.11.Despite FLUF's a

ura
y on the D de
ision it a
hieved a mean expe
ted utility around 0.97before the �u
tuation and 0.93 after, before the �u
tuation FLUF
onverged after 10 obser-vation and after the �u
tuation it took about 30. Utility Iteration does better, with a meanexpe
ted utility around 0.99 before and 0.98 after, it should be noted that it took only 10observations for Utility Iteration to
onverge before the �u
tuation, but 40 observations todo so after. These results would indi
ate that FLUF's ina

ura
y in the D de
ision did nothave a very large impa
t on expe
ted utility, sin
e the expe
ted utility of the two methods wasalmost equal before the �u
tuation. FLUF's de
rease in expe
ted utility is more likely due toits redu
ed a

ura
y on the A de
ision, after the �u
tuation. The expe
ted utility for single�u
tuation
an be seen in Figure 5.9.Con
lusionCon
erning FLUF, this experiment indi
ates that the a

ura
y of FLUF, with respe
t to A,depends a lot on the domains used. In the �u
tuation experiment, the
hange of strategy forthe observed agent is the same in all 10 runs, allowing for a very high or low mean a

ura
ydepending on how the
hosen utilities �t a spe
i�
 method. The varying a

ura
ies observedduring the �u
tuating setup has probably more to do with the values
hosen for utilities, thanwhether or not a �u
tuation has o

urred yet. Seeing as Utility Iteration a
hieves a higha

ura
y in �u
tuation, unlike FLUF, indi
ates that the imputing method is more robust.With respe
t to de
ision D, Utility Iteration handles it very well, under �u
tuation, whileFLUF only a
hieves an a

ura
y slightly better than random. Neither method a
hieves gooda

ura
ies on D in
ase of drift. The D node was in
luded in an attempt to explain FLUF'sina

ura
y on the A de
ision. Sin
e the expe
ted utility of de
ision D, unlike de
ision A,is equally dependent on both utility nodes, FLUF's ina

ura
y
annot be explained only byina

urate estimations on the utilities in node C due to relaxed
onstraints, sin
e then A shouldhave been more ina

urate than D. It turns out that a

ura
y has as mu
h to do with thenumber of nodes between the de
ision node and its utility des
endants as it does with goodestimations of the utility values.To get de
ision T right, it is almost enough for the methods to order the utilities
orre
tly inutility node U , sin
e T only depends on that utility node. Sin
e the other parent of node U(H) is unobserved when a de
ision is made in node T , the relative size of the utilities be
omesimportant sin
e the expe
ted utility of the de
isions in T be
omes a weighed average of theout
omes of H . So even if the order of the utilities are
orre
t, the expe
ted utility of thede
isions in T
an be ordered in
orre
tly if the relative size of the utilities in U are wrong,and this would result in a wrong de
ision. Now, sin
e the un
ertainties with respe
t to H arerelatively low, due to the OH node, and be
ause the
onstraints
reated at node T does notneed to be relaxed, a high a

ura
y is often a
hieved by FLUF on the T de
ision.This experiment indi
ates that the a

ura
y that is a
hieved in the A de
ision, is most likely aresult of the A de
ision node's proximity to the C utility node. In the
ondu
ted experiment,67

Chapter 5. Experimentswhen the A de
ision is to be made, all other parents of C has already been observed, meaningthat to
al
ulate the expe
ted utilities a
hieved from C for the de
isions in A no averagingout is ne
essary. So had the expe
ted utility of A only been dependent on C, then gettingthe order of the utilities in C right would be enough to get A
orre
t. However the expe
tedutility of A also depends on U , making the relative size of all utilities in the domain importantwhen predi
ting A. The utilities in C be
ome the most important sin
e their di�eren
es arenot being averaged out, as the utilities from U are. So the results observed in this experiment,where D is predi
ted poorly, indi
ates that the further a de
ision node is from utility nodes, themore a

urate estimations on the utilities are ne
essary in order to be able to predi
t de
isions.In other words, a rough estimate of the utilities in U , that orders the utilities
orre
tly, willbe enough to predi
t de
ision T very well, but not ne
essarily
ompletely
orre
t. To predi
tde
ision A with a high a

ura
y, the estimates of utilities for both C and U must be quite goodsin
e the utilities from U are averaged out. In fa
t the more averaging out that is ne
essary,the better estimations will be needed to a
hieve a high degree of a

ura
y. The reason why thede
ision in node D is predi
ted so badly by FLUF, is most likely that utilities from both utilitynodes are averaged out when
al
ulating the expe
ted utilities in node D, and FLUF onlymakes a rough estimate on the utilities in node C due to the relaxation done when
onstraintsare
reated.5.3.6 Experiment Six - S
alabilityThis experiment was
ondu
ted to examine the a

ura
y and exe
ution time of the threemethods, when the number of utilities in
rease. This was tested by letting the methods try topredi
t the behavior of an agent, modeled by a domain signi�
antly larger than the originaldomain, this domain is
alled the s
alability domain and is des
ribed in detail in Appendix C.To brie�y des
ribe the s
alability domain, it in
ludes 4 de
ision nodes, 7
han
e nodes and
3 utility nodes a

ounting for a total of 121 utilities (In the original domain there was only
25 utilities). De
ision node D2 has a relevant past with 9 possible
on�gurations, D1 and
RD have a relevant past with 16 possible
on�gurations and LD has a relevant past with 64possible
on�gurations.ResultsThe experiments was not
ompleted for the FLUF method, sin
e it did not manage to evaluateeven the �rst observation after 30 minutes on a 1.6 GHz Pentium M laptop. An exe
ution timethis poor
an be explained by
onsidering the worst
ase time
omplexity of FLUF, as determ-ined in Se
tion 2.6.2. The
omplexity of FLUF was determined to be O(nodesstates·utilities),so with 11 nodes in the domain and 121 utilities it is no surprise that the exe
ution time ofFLUF be
omes extremely high.Utility Iteration
ompletes one run,
ontaining 200 observations, in about 16 hours. After the�rst 10 observations the mean expe
ted utility varies between 0.83 and 0.91 throughout theexperiment with lo
al drift. This is less than in the original domain, where the mean expe
tedutility varied between 0.86 and 0.96, whi
h indi
ates that the a

ura
y of Utility Iteration hasde
reased in the s
alability domain. De
ision node D1, whi
h has 5 states, is predi
ted witha mean a

ura
y around 0.5, D2 whi
h has 3 states is predi
ted with a mean around 0.7, LDhas 4 states and is also predi
ted with a mean a

ura
y around 0.5 while RD whi
h also has4 states is predi
ted with a mean a

ura
y around 0.7. In the original domain, both A and Twas predi
ted with an a

ura
y around 0.7 in lo
al drift, so the results from this experimentare slightly worse explaining the lower expe
ted utility.68

5.3. The Experiments

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expexted Utility

Utility IterationFigure 5.10: Expe
ted utility for lo
al drift (exper-iment 6) 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Fluf

Utility IterationFigure 5.11: Predi
tion of de
ision D for single �u
-tuation (weighed) (experiment 5)The expe
ted utility is shown in Figure 5.10.De
ision D1 was predi
ted with an a

ura
y of only 0.5, even though it is the only parent oftwo of the utility nodes that has not been observed, when the de
ision is made. D1 is mu
hlike node A in the original domain, they
an both with
ertainty determine the utility in earlyutility nodes, and they both in�uen
e the probabilities of the parents of the last utility node,i.e. the last utility node is a utility des
endant. Furthermore the relevant pasts of the twonodes have the same number of
on�gurations. The fa
t the the a

ura
y of node D1 is still
0.2 lower than A
an, in part, be explained by node D1 having one more possible de
ision, butit is more likely due to the in
reased number of utility values. D1 must
onsider over 6 timesas many utilities as A has to, and in the utility nodes that are
hildren of the de
ision nodes,and therefore assumed dominating
ompared to the utility node that is far away, D1 has 40utilities while A only has 4.De
ision node D2 is mu
h like de
ision node T in the original domain. Both nodes are the lastin the temporal order, parents of a utility node, have 3 possible de
isions. Two big di�eren
esare that T has a relevant past with 416
on�gurations while D2 only has 9, and T has 21utilities to
onsider while D2 has 81. In spite of these two di�eren
es the two nodes are prettymu
h predi
ted with the same a

ura
y, with a mean around 0.7, indi
ating that the di�eren
ein the size of relevant past, whi
h should have given D2 a higher a

ura
y than T , is evenedout by the di�eren
e in the number of utilities.Only one run was
ompleted for the Imputing by Comparison method, due to high exe
utiontime. The Imputing by Comparison method was faster than FLUF though, sin
e it afterapproximately 60 hours had evaluated all 200 observations, on the same 1.6GHzPentiumMlaptop. The worst
ase
omplexity was found to be O(n · |D|max · relevant2max) in Se
tion3.4.3, the high exe
ution time
an at �rst seem strange, sin
e the number of di�erent relevantpast
on�gurations in the s
alability domain is smaller than in the original domain, whereImputing by Comparison exe
uted the
orresponding experiment in two and a half hours. Theexplanation why Imputing by Comparison is still slower in this domain must be due the thein
reased number of de
ision nodes instead.In that only one run was
ompleted using Imputing by Comparison, the results are mu
h lessreliable than if 10 runs had been
ompleted. The expe
ted utility varies, between 0.68 and 0.99.It should be noted that, when
omparing the number of observations retained by the methodand the expe
ted utility a
hieved, there is
lear relationship. When the number of observationsthat the method is able to keep in
reases, then so does the expe
ted utility. A
tually, wheneverthe method has more than 10 observations its expe
ted utility is above 0.9. With respe
t to69

Chapter 5. Experimentsthe a

ura
y of the de
isions, it is di�
ult to
on
lude anything with respe
t to Imputing byComparison, ex
ept to say that when
omparing the a

ura
ies obtained in the �rst run ofUtility Iteration with the run in Imputing by Comparison, they were similar.Con
lusionThese experiments support the results from Se
tion 2.6.2, where FLUF's
omplexity is de-termined to be exponential in the number of utilities. It proved infeasible to
ondu
t thisexperiment with FLUF in the s
alability domain. With respe
t to Imputing by Comparisonthe exe
ution time also in
reased, but even though the in
rease was less dramati
 than forFLUF, not enough runs
ould be
ompleted to a
hieve reliable measurements.Furthermore these experiments showed that the exe
ution time of Utility Iteration in
reasedto 16 hours per 200 observations in the s
alability domain. The experiment
ondu
ted withUtility Iteration showed a redu
tion in a

ura
y as the number of utilities in
rease, but whilethe redu
tion was signi�
ant, the method still a
hieved a

ura
ies
onsiderably better thanrandom guessing would, and a mean expe
ted utility just below 0.9, whi
h is only slighty lowerthan for lo
al drift in the original domain.5.4 General ResultsThe experiments
on�rmed the result from Hansen et al. (2004) that FLUF was not able topredi
t de
ision A in the domain used for most of the experiments. The reason for this wasinvestigated by trying to use FLUF on a modi�ed domain where another de
ision node wasadded. The experiments indi
ated that the reason for FLUF's poor predi
tion, of de
isionnode A, was that
han
e nodes between the de
ision node and the U utility node made itdi�
ult to establish the
orre
t relationship between the utility values in node C and in node
U . The imputing methods was more a

urate in their predi
tion of de
ision node A.During the experiments a window size of 100 observations was used to keep the methodsreasonably fast (in exe
ution time) and to make the
omparison of FLUF and the imputingmethods as even as possible. The experiments showed that the
hosen window size a
tually hadlittle e�e
t. For the experiments with a stati
 domain, the average number of observations anyof the methods had in the windows were 75, over all 200 observations. Here it should be notedthat with the stati
 domain almost no observations were deleted, so after 100 observations,the windows held 100 observations. However, for the experiments with drifting domains andmultiple �u
tuations the methods had an average of approximately 10 observations in thewindow, and a maximum of 35 observations. For the noise experiment the methods had onaverage around 75 observations in the window, ex
ept for FLUF whi
h had an average around35. For the noise experiment and the single �u
tuation the highest number of observations inthe windows was 100. The single �u
tuation experiment gave around 50 observations in thewindow on average for all the the methods.This indi
ates that if the domain
hanges frequently the size of the window
an be as low as40 and still be used without any impa
t on the results, as the methods will delete observationsaggressively. This also holds for the domains where the strategy of the observed agent
hangesrarely, as a window size of 40, would still be large enough for the results to
onverge.

70

CHAPTERSIX
Con
lusionIn this
hapter the report is
on
luded. First some thoughts on how the utility learningmethods in this proje
t,
an be
onsidered in
ontexts outside that de�ned in the introdu
tion,are presented in Se
tion 6.1. Then the results and
on
lusions drawn throughout the proje
tare summarized in Se
tion 6.2. Finally possible subje
ts for future work, related to the workdone in this proje
t, are dis
ussed in Se
tion 6.3.6.1 Perspe
tiveIn the �rst part of this se
tion the
on
ept of dynami
 domains is dis
ussed, along with the ad-vantage of being able to handle dynami
 domains. The se
ond part
onsiders the prerequisitesfor Imputing by Comparison and Utility Iteration, namely that they require that the probab-ilities of the variables in the in�uen
e diagram are known. FLUF allows di�eren
es betweenthe probabilities in the in�uen
e diagram it uses and the one used by the agent. It is arguedthat the two imputing methods might handle di�eren
es in probability distributions as well asFLUF, even though they were not designed to.6.1.1 Dynami
 DomainsWhen
omparing the method presented in Chajewska et al. (2001) with FLUF, Imputingby Comparison and Utility Iteration, the latter three methods are designed to work with lessrestri
tive assumptions than the method presented in Chajewska et al. (2001), in that dynami
domains
an be handled using di�erent
on�i
t handling poli
ies. It should be noted that the
on�i
t handling poli
ies developed for FLUF
an be used in
onjun
tion with the methodfrom Chajewska et al. (2001), sin
e the two methods
reate the exa
t same
onstraints.Considering the
apability of handling dynami
 behavior, it should be
onsidered why dynami
behavior is observed. For example, if a so

er player normally plays defensively to
onservestrength, but he exhibits drifting behavior sin
e he over time begins to play more aggressively,then there is probably a
ause for this drifting behavior. In the example the reason for the
hange in the player's ta
ti
s
ould be that he has been getting in better shape over time, andif his shape was not modeled in the domain then the
hange would seem as drifting behavior.71

Chapter 6. Con
lusionAs in the example, it
an be argued that all
hanging behavior is due to an in
omplete model.From this perspe
tive then all domains are stati
 if they are modeled
ompletely, i.e. all vari-ables that in�uen
e de
isions are taken into a

ount.The
omplexity of a model that literally takes all
ausalities into a

ount
an easily be
ome solarge that it is infeasible to represent it. It is not even
ertain that all
ausalities are known.So sin
e it
an be infeasible to model domains
ompletely, then in
luding as many variablesas possible and a

epting the apparent dynami
 behavior is a possibility. In other words, adynami
 domain
an be
onsidered an approximation of the �real� domain, and the poli
iesdesigned for the utility learning methods, presented in this proje
t, a
tually in
rease their areaof appli
ation into �real� domains of otherwise infeasible
omplexity.The bigger the di�eren
e is between the �real� and the �modeled� domain, the more dynami
behavior should be expe
ted. So when modeling some domain for use with a utility learningmethod, the relationship between the methods'
omplexity and ability to handle dynami
behavior should be
onsidered, e.g. if the method is very good at handling dynami
 behaviorbut has poor s
alability then a simple model should be
hosen.6.1.2 Unknown Probability DistributionsThe imputing methods are designed under the assumption that the probability distributionsof the observed agent are known, whereas FLUF is able to handle di�eren
es between theprobabilities used in the in�uen
e diagram it uses and the ones used by the agent. FLUFhandles su
h di�eren
es by
hoosing a utility fun
tion that
ompensates for these di�eren
e sothat the strategy of the agent is still predi
ted
orre
tly. This
ompensation means that theutility fun
tion estimated by FLUF might not be very a

urate, in the sense that the utilitiesare di�erent from the agents utilities.Sin
e di�erent probabilities will result in di�erent utility
oe�
ients, the
reated
onstraintswill weigh the utilities di�erently than they should due to these probabilities. With severalde
ision nodes in the domain, then the di�eren
e in probabilities may only in�uen
e the expe
-ted utilities in some of the de
ision nodes. If only a subset of the de
ision nodes are in�uen
edby di�eren
es in probabilities, then the poli
ies for those de
ision nodes would seem to followa di�erent set of utility values than the una�e
ted de
ision nodes. Therefore, when there aredi�eren
es between the probabilities used by the agent and those used by FLUF, it might beimpossible for FLUF to establish a set of utility values that predi
ts the observed strategy ofthe agent, be
ause the utilities might be distorted by these di�eren
es with respe
t to only asubset of the de
ision nodes.For a domain where the utility learning method does not have the same probability distributionsas the observed agent, the imputing methods might be usable aswell. The reason for this is thatno spe
i�
 poli
y is needed to handle su
h situations, due to the way the imputing methods aredesigned they will impli
itly
ompensate for ina

urate probabilities when estimating a utilityfun
tion, just like FLUF.6.2 SummaryIn this proje
t two methods similar to FLUF has been designed. The two new methods are
alled Utility Iteration and Imputing by Comparison, and share FLUF's
on
ept of generatinga set of
onstraints based on observations to des
ribe possible utility values. FLUF has beenshown to be a viable predi
tion method in the past (Hansen et al. (2004)), but there areina

ura
ies in the method that leave room for improvement. These ina

ura
ies are, to some72

6.3. Future Workextent, due to the fa
t that the
onstraints des
ribe a feasible spa
e that is to large. Thereforemethods developed during this proje
t are based on the idea, that des
ribing smaller spa
es
ould in
rease a

ura
y. The main reason why FLUF's utility spa
e is to large is that relaxationof the
onstraints are done when the domain is not fully observed. The new methods avoid thisrelaxation by imputing the missing observations so that the domain be
omes fully observed.The experiments
ondu
ted indi
ate that this results in a higher degree of a

ura
y and alsorequires fewer training
ases. However, the two di�erent ways of imputing used by the methodsshowed no signi�
ant di�eren
e from ea
h other with respe
t to a

ura
y or speed.In addition to using imputing as a te
hnique to a
hieve higher a

ura
y, a te
hnique
alled
onstraint relaxation has also been developed. The idea here is to avoid
on�i
ts by relaxingthe
onstraints as they grow older. The experiments showed that this worked well with FLUFand espe
ially in domains with �u
tuating utilities it enables FLUF to a
hieve better resultsfaster.Besides developing new methods to improve the a

ura
y of predi
tion, a poli
y to handlenoisy observations was also developed. The te
hnique for handling noise was developed so thatit
ould be used together with the imputing methods, to in
rease their area of appli
ation.The experiments indi
ated that using the noise poli
y, the imputing methods handles domainswith noise almost as well as stati
 domains. However, it was only tested in one s
enario andother domains and higher frequen
ies of noise may reveal some limitations of the noise handlingte
hnique.Finally, it seems that imputing unobserved de
isions is preferable to relaxing the
onstraintsthe way FLUF does it. Generally the imputation methods a
hieve more a

urate predi
tionswith fewer observations, no matter whi
h of the imputing methods is used.6.3 Future WorkThe two new utility learning methods presented in this report, together with the
onstraintrelaxation poli
y have made it possible to predi
t the behavior of an observed agent morea

urately than FLUF, as it was presented in Hansen et al. (2004). However, the experiments
ondu
ted in this proje
t have also shown areas that
an be investigated and possibly improvethe a

ura
y even further.6.3.1 Handling NoiseThe poli
y developed to handle noise in this proje
t is based on assuming that when it isno longer possible to explain the behavior of the observed agent, it is be
ause of noise orimputation error. The method does not try to determine if the individual observation was
ontaminated, meaning that it
annot determine if the guilty observations are
ausing
on�i
tsdue to imputation errors or noise. The experiments showed that the way the observations areremoved works reasonably well.It
ould be possible to integrate noise handling with a method for handling drift, by evaluating
omparing new observation to the true observations already made, thereby determining thelikelihood of the new observation. This
ould for example be done by using the utility valuesestimated before the new observation was made. Doing this, it would be possible to dis
ardobservations that seem unrealisti

ompared to the expe
ted utility of the observed de
isions.To measure if some observation is realisti
, using the utility fun
tion that was estimated beforethe observations was made (
alled Vold), then the expe
ted utility of ea
h of the de
isions made73

Chapter 6. Con
lusionin the new observation
ould be
ompared to the maximum expe
ted utility of that de
isionnode when using Vold. With a large devian
e in the expe
ted utility of one or more de
isions,the new observation
ould be
ategorized as noisy and ignored. If only some of the de
isionsin the observation yield a large di�eren
e in expe
ted utility, then it should be
onsideredwhether the entire observation should be dis
arded, or if the
onstraints from some of thede
isions
ould still be
onsidered reliable. In any
ase it wold also have to be
onsidered howlarge the divergen
e in expe
ted utility would have to be, for the observations to be
ategorizedas noisy.The reason why this poli
y
annot be used in domains with �u
tuation, is that the �rstobservations after a �u
tuation
ould easily yield low expe
ted utilities with respe
t to Vold,without being noisy. A
on�i
t handling poli
y using su
h as the one suggested here, wouldhave to take into a

ount that with very few observations the next observation might easilyseem unrealisti
, even if it is not noisy.6.3.2 ComplexityEvery time
onstraints are generated, the di�erent formulae presented throughout the reportare used by the utility learning methods. In FLUF most of the exe
ution time is spent
al
u-lating these
onstraints, while the imputing methods spend time imputing virtual observationsas well. As the probabilities are
onsidered stati
, it is possible to redu
e the number of
al
u-lations needed to generate
onstraints. Instead of
al
ulating
oe�
ients every time
onstraintsare generated for some de
ision with some relevant past, they
ould be saved the �rst timethey are
al
ulated, so that later
al
ulations would not need to
ompute the same
oe�
ients.Su
h an approa
h would bene�t all methods, but it would be a spa
e for speed tradeo� andthe memory
onsumption would be higher than the naive implementation. Whether it is worthit would depend on the system doing the
al
ulations.6.3.3 Missing DataFLUF, Imputing by Comparison and Utility Iteration all assume that ea
h observation showsthe state of all de
ision nodes and all
han
e nodes, prior to the last de
ision node. Just asit is possible that some of the observations are
ontaminated with noise, it
ould also happenthat some of the states of the nodes are lost. An extension to the methods des
ribed in thereport
ould be to handle su
h
ases.One way of handling missing data
ould be to simply dis
ard the observations with missingdata. A
ouple of drawba
k with this approa
h would have to be
onsidered however. Theremight be so many observations
ontaining missing data, that the predi
tion method will onlykeep very few true observations. Another problem when simply removing observations, isthat if spe
i�

on�gurations are more likely to
ontain missing data than others, then thepredi
tion method
an be
ome biased sin
e the
onstraints that would have been added inthose
on�gurations are never
onsidered. If neither of these problems o

ur however, thenit is not unrealisti
 that deleting observations would be a good strategy, as the methods ingeneral are very fast, meaning that they get
lose to the real utility fun
tion with very fewobservations.Another way of handling missing data
ould be to instantiate the missing nodes, and then
reate
onstraints from the observed de
isions as normal. The
han
e nodes
ould be instantiated intheir most likely state, given the
on�guration of their parents and
hildren. De
ision nodeswhere the unobserved node is part of the relevant past
ould also be in
luded. If de
isionnodes are to be in
luded in this
al
ulation, the poli
y those nodes are assumed to follow,74

6.3. Future Workor perhaps even a temporary utility fun
tion, should be available. Missing de
ision nodes
ould be instantiated based on what would yield the highest expe
ted utility given the
urrentutility fun
tion. As with missing
han
e nodes the out
ome of the missing de
ision node's
hildren, and any other de
ision nodes where the missing node is in the relevant past,
ould be
onsidered. Even though data might not be missing at random, this approa
h
ould instantiatemissing nodes
orre
tly, if enough
an be learned about the utility fun
tion. The drawba
kof using su
h an approa
h, is that it
ould potentially reinfor
e the already predi
ted strategywhi
h might be wrong.6.3.4 Improved ComparisonAs Imputing by Comparison only
ompares the distributions of the hypothesis variables giventhe
hosen de
isions, any information that
ould have been used from the dis
arded de
isionsis lost. Imputing by Comparisons a

ura
y
ould be in
reased by in
luding this dis
ardedinformation in its
omparison te
hnique.Currently
omparison is done only with respe
t to the Eu
lidean distan
e between the jointdistribution of a set of hypothesis variables, given the di�erent true observations and the pos-sible virtual observations. However, in ea
h true observation a set of de
isions were dis
ardedin favor of the
hosen de
ision, the dis
arded de
isions would have resulted in di�erent jointdistributions over the hypothesis variables, these are
alled the dis
arded distributions in thatobservation. When
reating virtual observations for some de
ision node with n states, then
n di�erent virtual observations are possible. In ea
h virtual observation the set of dis
ardeddistributions will
orrespond to the distributions that would have been generated by the n− 1other virtual observations.A problem with the
urrent
omparisons, is that a virtual observation
an yield a distributionover the hypothesis variables that is very
lose to a distribution yielded by a true observation,while one of the dis
arded distributions in that virtual distribution would in fa
t have yieldeda higher expe
ted utility. As an example, if imputing a virtual observation of a de
ision,where the relevant past allow for high expe
ted utilities, then the worst de
ision might result adistribution on the hypothesis variables that is mu
h like the distribution indu
ed by the bestde
ision in a di�erent relevant past that has already been observed.So in some respe
t the true observation that is the most like a virtual observation, is the onewhere the set of dis
arded distributions, as well as the distribution indu
ed by the observedde
ision, yield short Eu
lidean distan
es to the
orresponding distributions from the virtualobservation. Dis
arded distributions
ould be
ompared to ensure that no dis
arded distribu-tion in the virtual observation yields a higher expe
ted utility than the
hosen distribution. Sodis
arded distributions in the virtual observation should somehow be
ompared to distributionsfrom a true observation, to determine whether they yield a smaller expe
ted utility than thedistribution of the
hosen de
ision in that virtual observation.This
an be examined in two steps, by �rst investigating if the dis
arded distributions yieldsmaller expe
ted utilities than a de
ision
hosen in a true observations, and then investigatingif the
hosen distribution in the virtual and true observations are alike.For the �rst step, then if all dis
arded distributions, in a virtual observation, have shortEu
lidean distan
es to at least one dis
arded distribution in some true observation, it is anindi
ation that they yield about the same expe
ted utility as that dis
arded distribution, andtherefore less than the distribution of the observed de
ision in that true observation. Thismeans that it is no problem if there are some dis
arded distributions in the true observationswith a large Eu
lidean distan
e to all dis
arded distributions in the virtual de
ision, as longas it is true for all dis
arded distributions in the virtual observation. This also means that75

Chapter 6. Con
lusionthe Eu
lidean distan
e should be
al
ulated with respe
t to all dis
arded distributions in thetrue observation for ea
h dis
arded distribution in the virtual observation, to �nd the shortestdistan
e for all distributions in the virtual observation. This results in (|D| − 1)2
al
ulations,where |D| is the number of de
isions in the node with whi
h the imputation is
on
erned. Sothe measure of how
lose two sets of dis
arded distributions are from ea
h other, a formulamu
h like the one shown below in Equation 6.1
ould be used. In the formula δv is the
hosende
ision in the virtual observations, while δt is the de
ision
hosen in the true observation.
1

|D|

∑

dv∈D/δv

mindt∈D/δt
(EC(P (H |dv), P (H |dt))) (6.1)If the dis
arded distributions are
lose and the distributions indu
ed by the
hosen de
isionsin the two observations simultaneously yield a short Eu
lidean distan
e to the distributions ofea
h other, then this in an indi
ation that the de
isions yield about the same expe
ted utility.Meaning that the
hosen de
ision in the virtual observations is likely to be the optimal de
ision.It should be noted that when a true observation is used for
omparison, then, sin
e the
hosende
ision is only a fa
tor due to its impa
t on the distribution, it should be
ompared with allthe possible virtual observations, as it is the distributions that determine whi
h observationsare alike. This means that ea
h true observation should be
ompared with |D| di�erent virtualobservations.In
orporating these measurements in the
omparison,
ould redu
e the risk that de
ision thatare not optimal are
hosen, thereby in
reasing the likelihood of imputing
orre
tly.

76

APPENDIXA
Pla
ing ConstraintsIn this se
tion the
onstraints generated for a fully observed strategy will be examined
loser.Note that when imputing missing observations the strategy be
omes fully observed, so theresult des
ribed here will also apply for the
onstraints generated by Imputing By Comparisonand Utility Iteration.The proposition presented here generally says that any
onstraints generated for a fully ob-served strategy will always interse
t the diagonal.In order to express and prove the proposition, in Theorem A.1, some notation is needed. Let

C be a
onstraint and ∑ci
be the sum of all the
oe�
ients of the utility values for the i′thutility node. Also let |U | be the number of utility nodes in the domain.Assuming that a strategy is fully observed and
onstraints are generated a

ording to Equation2.4, the following proposition will hold.

Theorem A.1 Let C be any
onstraint generated for a fully observed strategy. Then thefollowing will hold for that
onstraint:
∧

1≤i≤|U|

:
∑

ci

= 0

Proof (Theorem A.1) Let D be the last de
ision node in the temporal order. Then for someobservation where D has been observed in state δD for some relevant past past(D) and d′ issome other state for D, ea
h
onstraint will be of the following form:77

Chapter A. Pla
ing Constraints
∑

In

P
(

In|δD, past(D)
)

V
(

pa(u)
)

≥
∑

In

P
(

In|d
′, past(D)

)

V
(

pa(u)
)

m

∑

In



P
(

In|δD, past(D)
)

|U|
∑

i=1

Vi

(

pa(ui)
)



 ≥
∑

In



P
(

In|d
′, past(D)

)

|U|
∑

i=1

Vi

(

pa(ui)
)





m

|U|
∑

i=1

Vi

(

pa(ui)
)

∑

In

P
(

In|δD, past(D)
)

≥

|U|
∑

i=1

Vi

(

pa(ui)
)

∑

In

P
(

In|d
′, past(D)

)

As the expression under∑|U|
i=1 is the summation of the probabilities of ea
h parent
on�gurationof the i′th utility node, ea
h expression will sum to one. These probabilities are also the
oe�
ients for ea
h utility value, so for ea
h expression in the inequality it holds that:

∑

In

P
(

In|d, past(D)
)

= 1Where d is any de
ision from D. When subtra
ting the expression on the right side from bothexpressions the result is:
|U|
∑

i=1

Vi

(

pa(ui)
)

·
∑

In

P
(

In|δD, past(D)
)

−

|U|
∑

i=1

Vi

(

pa(ui)
)

·
∑

In

P
(

In|d
′, past(D)

)

≥ 0

m

|U|
∑

i=1

Vi

(

pa(ui)
)

·

(

∑

In

P
(

In|δD, past(D)
)

−
∑

In

P
(

In|d
′, past(D)

)

)

≥ 0where
∧

1≤i≤|U|

:
∑

ci

= 0

2An important
onsequen
e of Theorem A.1 is that all
onstraints
reated from a fully observedstrategy will interse
t where all utility values from the same utility node are equal. Note thatwhen this is the
ase, the utility values will des
ribe the trivial utility fun
tion.Whenever the feasible spa
e be
omes empty, it means that at least two
onstraints interse
t.Sin
e all
onstraints are linear and always interse
t in the trivial utility fun
tion they
aninterse
t nowhere else, unless they lie on top of ea
h other.
78

APPENDIXB
The A

urate Te
hnique - UtilityIterationBased on the extended te
hnique des
ribed in Se
tion 3.3.1, an a

urate te
hnique is des
ribedin this appendix that will always �nd a utility fun
tion satisfying all observations. Basi
ally thea

urate te
hnique will do the same as the extended te
hnique, but furthermore the a

uratete
hnique will maintain a list of alternative imputations that was not done, and when
on�i
tso

ur it will iterate ba
kwards imputing di�erently to avoid the
on�i
t. This te
hnique is morea

urate than the extended te
hnique, but it is shown in this se
tion that the time
omplexitybe
omes too high for the te
hnique to be operational.When
onstraints are
reated at some de
ision node, Dk, in some observation o, then imputa-tions are done for all (Di|i > k), yielding a set of poli
ies Σ = (σk+1, · · · , σn). The numberof di�erent Σ that are possible after de
ision node Dk is (numberσk+1

· . . . · numberσn
), where

numberσi
is the number of di�erent poli
ies for de
ision node Di and n is the number ofde
ision nodes in the domain.In the a

urate te
hnique a poli
y set is not found by
hoosing a point in the feasible spa
e.Instead all possible
ombinations of poli
ies are used to
reate
onstraints, and separatelythese
onstraints are inserted into the feasible spa
e, to examine if it be
omes empty. Now,for de
ision node Dk in observation o, a list is
reated
ontaining all sets of poli
ies, Lk,o =

(Σ1, · · · , Σm), that did not make the feasible spa
e empty. The intuition is that, if all previously
reated
onstraints are
orre
t, then the
orre
t imputation, for (Di|i > k) in o, must be amember of Lk,o. There is a signi�
ant di�eren
e between the two �rst te
hniques and thea

urate te
hnique, in that the temporary utility fun
tion is no longer used to
hoose a spe
i�
imputation, but to ex
lude a set of imputations instead.When the list of possible poli
y sets has been
reated, e.g. Lk,o = (Σi, Σi+1, Σi+2), then the
onstraints
reated using Σi are used, and the te
hnique pro
eeds to the next observation.There is no reason why Σi is
hosen above the others, sin
e they are all equally valid, but onemust be
hosen for the te
hnique to pro
eed. The other Σ may still be used, in
ase ba
ktra
ingbe
omes ne
essary.The algorithm for the a

urate te
hnique is shown in Algorithm B.0.1, whi
h des
ribed how
Lk,o is found and how
onstraints are
reated, and in Algorithm B.0.2, whi
h des
ribes howba
ktra
ing is done when
on�i
ts o

ur. 79

Chapter B. The A

urate Te
hnique - Utility IterationIn Algorithm B.0.1 op is the true observation in whi
h the
onstraints are being
reated forde
ision node Dk. The observation has a subs
ript, p, whi
h indi
ates the observations numberin the order of observations, and m is the total number of observations. Re
all the order ofobservations is irrelevant as the domain is assumed to be stati
, but to evaluate the observationssequentially the order be
omes ne
essary.
CC is the set of
onstraints des
ribing the feasible spa
e, before Dk is evaluated in observation
op. Oimputed is the set of virtual observations and Otrue des
ribe the true observations, theelements in these sets
onsist of a relevant past and the de
ision made in a de
ision node.Initially Oimputed is empty.Algorithm B.0.11. Let δDk

be the observed de
ision of Dk in op2. Let Ck,op
= CC and Oimputedk,op

= Oimputed3. Let Lk,op
be a list of all poli
y sets (Σ) over the nodes Di|i > k, that are
onsistent with

Oimputed and Otrue4. For all poli
y sets (Σ) in Lk,op

• Create an empty set of
onstraints
alled CΣ

• For all
on�gurations of the relevant past of de
ision nodes Di|i ≥ k, (oi)
onsistentwith op, for whi
h
onstraints has not yet been added� Repla
e Dj |j > i with
han
e nodes, Cj , a

ording to Σ� Where δDi
is the de
ision di
tated by Σ given past oi, add the following
on-straints to CΣ: ∀d∈Di\δDi

: ρDi
(δDi

, oi) > ρDi
(d, oi)� Return the
han
e nodes Cj to the original de
ision nodes Dj

• If the set of
onstraints CΣ ∩ CC des
ribes the empty spa
e� then remove Σ from Lk,op5. If Lk,op
is empty

• then
all Algorithm B.0.2, and halt this algorithm6. For the �rst set of poli
ies (Σfirst) in Lk,op

• Add imputed de
isions in Σfirst to Oimputed

• Add
onstraints
reated at step 4 using Σfirst to the set of
onstraints UC

• Remove Σfirst from Lk,op7. Save Lk,op
, Ck,op

and Oimputedk,op
(These are used by Algorithm B.0.2)8. If p 6= m

• then
all this algorithm re
ursively for the next observation op+1 and de
ision Dk

• Halt this algorithm9. If p = m and k 6= 1

• then
all this algorithm re
ursively for the �rst observation o1 and de
ision Dk−1

• Halt this algorithm10. If o = m and k = 1 80

• then, if all true observations
onform with the utility fun
tion des
ribed by the
hosen utility point in CC� then the Utility Iteration algorithm is done� Else the ba
ktra
ing algorithm is
alled (Algorithm B.0.2)It will always be possible for Algorithm B.0.1 to �nd a utility fun
tion that
onform withall observations. No matter the domain and the observations made, it may happen that allimputations made during exe
ution are
orre
t, i.e. the de
isions imputed are the same that theobserved agent would have made. Given su
h a set of perfe
t imputations, then the
onstraints(Co)
reated by some observation o, will des
ribe a spa
e (spaceo)in whi
h o
onforms withall utility fun
tions des
ribed by points in that spa
e. So with a set of di�erent observations(o1, · · · , om), ea
h having
reated a set of
onstraints with whi
h they
onform (Co1
, · · · , Com

),this algorithm would des
ribe a feasible spa
e by the
onstraints (Co1
∪ · · · ∪ Com

), whi
h isthe spa
e (spaceo1
∩ · · · ∩ spaceom

), or in other words the spa
e where all points will
onformwith all observations (o1, · · · , om).It is unlikely that Algorithm B.0.1 will guess exa
tly the
orre
t de
ision at every imputation,this is where the ba
ktra
ing algorithm
omes in, see Algorithm B.0.2. The ba
ktra
e algorithmis
alled if the spa
e be
omes empty at some point during exe
ution of Algorithm B.0.1 or ifthe utility fun
tion found by Algorithm B.0.1 does not
onform with all observations. Theba
ktra
e algorithm steps ba
kwards through the imputations made by Algorithm B.0.1, untilit �nds an observation op in whi
h the imputations done to
reate
onstraints for some de
isionnode (Dk)
ould have been done in another way, i.e where Lk,op
is not empty. After �ndingsu
h a
ombination of observation and de
ision node, denoted (op, Dk), the ba
ktra
e algorithm
reate
onstraints for (op, Dk) a

ording to one of the alternative imputations, and then startsAlgorithm B.0.1 again.The notation in Algorithm B.0.1 is used in the ba
ktra
e algorithm as well. When the algorithmis
alled, then all previously examined
ombinations (op, Dk) will have saved a list of thealternative sets of poli
ies that
ould have been imputed, (Lk,o), and a set of
onstraintsdes
ribing the feasible spa
e (Ck,o) as well as the de
ision already imputed (Oimputedk,op

),when they were examined (Ck,o), see Algorithm B.0.1 step 11.Algorithm B.0.21. Let (o,Dk) be the
hosen
ombination that have alternative Σ's in list Lk,o2. Remove the �rst element, Σ1, from Lk,o3. Create an empty set of
onstraints
alled CΣ14. For all
on�gurations of the relevant past of de
ision nodes Di|i ≥ k, (oi)
onsistentwith op, for whi
h
onstraints has not yet been added
• Repla
e Dj |j > i with
han
e nodes, Cj , a

ording to Σ1

• Where δDi
is the de
ision di
tated by Σ1 given past oi, add the following
onstraintsto CΣ1

: ∀d∈Di\δDi
: ρDi

(δDi
, oi) > ρDi

(d, oi)

• Return the
han
e nodes Cj to the original de
ision nodes Dj5. Set CC = CΣ1
∪ Ck,o6. Set Oimputed to Oimputedk,op7. Add imputed de
isions in Σ1 to Oimputed81

Chapter B. The A

urate Te
hnique - Utility Iteration8. Call Algorithm B.0.1 for the observation and de
ision node that su

eeds the
ombination(o, Dk) (Either (op+1, Dk) or (o1, Dk−1))Algorithm B.0.1 has a time
omplexity, with respe
t to (op, Dk), that is (|Dk+1|·(relevantk+1−
relevanttrue,k+1)) · . . . · (|Dn| · (relevantn − relevanttrue,n)), where relevanti is the numberof di�erent relevant past
on�gurations possible for de
ision node Di, |Di| is the number ofdi�erent de
isions in the node and relevanttrue,i is the number of di�erent
on�gurations ofthe relevant past observed for node Di. In other words the
omplexity for Algorithm B.0.1,when examining de
ision node Dk in some observation, is the number of di�erent poli
y sets forthe nodes Di|i > k,
onsistent with all true observations. This is be
ause the task of
reatingthe
onstraints CΣ and
omparing them with CC , is done for all Σ
onsistent with the trueobservations.The worst
ase
omplexity of Algorithm B.0.2 is only O((n − 1) · relevanttrue), being themaximal number of steps ba
kwards the algorithm
an take, where relevanttrue is the num-ber of true observations. For
omparison the worst
ase
omplexity of Algorithm B.0.1 is
O((relevantmax · |D|max)n−1), where relevantmax is the highest number of di�erent
on�gur-ations a relevant past
an have in the domain and |D|max is the highest number of di�erentde
isions one de
ision node
an have.For both algorithms, they will run O(policy_maxcombinations) times, in the worst
ase. Where
combinations = relevanttrue · (n − 1) is the number of di�erent
ombinations of observationand de
ision node where imputations are needed and policy_max = relevantmax · |D|max isthe highest number of di�erent poli
ies a de
ision node
an have.When des
ribing the worst
ase
omplexity of the a

urate method Algorithm B.0.2 be
omesirrelevant sin
e its
omplexity is linear while the
omplexity of Algorithm B.0.1 is exponentialin the number of de
isions. The worst
ase time
omplexity of the entire Utility Iterationmethod, using the a

urate te
hnique, is expressed in Equation B.1. As
an be seen from theequation, the time
omplexity of the entire algorithm be
omes exponential in both the numberof de
isions and the number of true observations.

O((relevantmax · |D|max)(relevanttrue·(n−1)) · (relevantmax · |D|max)n−1)

m

O((relevantmax · |D|max)relevanttrue·n)

(B.1)

82

APPENDIXC
DomainsDuring the experiments, des
ribed in Chapter 5, two domains are brie�y introdu
ed in that
hapter and experiments were
ondu
ted using these. These domains are
alled the alternativedomain and the s
alability domain. The �rst domain was used in the experiment des
ribed inSe
tion 5.3.5 while the se
ond domain was used in the experiment des
ribed in Se
tion 5.3.6.C.1 The Alternative DomainThe alternative domain is a modi�
ation the original domain, with a number of extra nodesinserted to examine the reason why the a

ura
y of A was lower than T . An extra de
isionnode,
alled D, was added. D was added to examine if the reason why the a

ura
y of A waslower than T was due to A being very dependent on a utility node that was poorly estimated.To make D equally dependent of C and U a
han
e node N was inserted, so that if D waspredi
ted better than A, it would be an indi
ation that C was estimated poorly. The alternativedomain is shown in Figure C.1.

Q

OQ

N

D

H

M∗

A

C

M

OM

OH

U T

Figure C.1: The se
ond alternative domain83

Chapter C. DomainsC.2 The S
alability DomainThe s
alability domain was introdu
ed in Se
tion 5.3.6, and was designed to test how well thedi�erent methods performed when the number of utilities in the domain grew. It
ontains 7
han
e nodes, 4 de
ision nodes and 3 utility nodes, with the number of states shown in TableC.1. As the table shows, the total number of utilities be
ome 121. The domain is shown inFigure C.2.

C1

L3 R3

L2 R2

L1 R1

U

LU1 RU1

D2

LD

RD

D1

Figure C.2: The s
alability domain

84

C.2. The S
alability Domain

Name Node type No. States
L1 Chan
e Node 4
L2 Chan
e Node 4
L3 Chan
e Node 3
R1 Chan
e Node 4
R2 Chan
e Node 4
R3 Chan
e Node 3
C1 Chan
e Node 3
D1 De
ision Node 5
RD De
ision Node 4
LD De
ision Node 4
D2 De
ision Node 3
LU1 Utility Node 20
RU1 Utility Node 20
U Utility Node 81Table C.1: Number of states in nodes

85

Chapter C. Domains

86

APPENDIXD
ResultsIn this appendix the results from the experiments des
ribed in Chapter 5 are shown. Meas-urements were done for every method in every experiment on the expe
ted utility and weigheda

ura
y of de
ision predi
tions as well as unweighed. In this appendix the expe
ted utilityand the weighed de
ision predi
tion a

ura
ies are shown. Unweighed a

ura
y is not shown,as it in all experiments resembled weighed a

ura
y, only a bit lower. Varian
e is in
luded inthe graphs, so to ensure that the graphs
an be easily read, ea
h graph will only
ontain oneset of results.

D.1 Stati
 Domain

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected UtilityFigure D.1: Expe
ted Utility for FLUF in stati
domain 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected UtilityFigure D.2: Expe
ted Utility for Utility Iteration instati
 domain87

Chapter D. Results

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected UtilityFigure D.3: Expe
ted Utility for Imputing by Com-parison in stati
 domain 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.4: FLUF's
han
e of predi
ting de
isionA in a stati
 domain

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.5: Utility Iteration's
han
e of predi
tingde
ision A in a stati
 domain 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by ComparisonFigure D.6: Imputing by Comparison's
han
e ofpredi
ting de
ision A in a stati
 domain

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.7: FLUF's
han
e of predi
ting de
isionT in a stati
 domain 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.8: Utility Iteration's
han
e of predi
tingde
ision T in a stati
 domain88

D.2. Domain with Drift

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200
C

or
re

ct
Observations

Legend
Imputing by ComparisonFigure D.9: Imputing by Comparison's
han
e ofpredi
ting de
ision T in a stati
 domainD.2 Domain with Drift

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.10: Expe
ted Utility for FLUF in one waydrift 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.11: Expe
ted Utility for Utility Iterationin one way drift

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.12: Expe
ted Utility for Imputing byComparison in one way drift 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.13: FLUF's
han
e of predi
ting de
isionA in a one way drift89

Chapter D. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.14: Utility Iteration's
han
e of predi
tingde
ision A in a one way drift 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by ComparisonFigure D.15: Imputing by Comparison's
han
e ofpredi
ting de
ision A in a one way drift

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.16: FLUF's
han
e of predi
ting de
isionT in a one way drift 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.17: Utility Iteration's
han
e of predi
tingde
ision T in a one way drift

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by ComparisonFigure D.18: Imputing by Comparison's
han
e ofpredi
ting de
ision T in a one way drift 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.19: Expe
ted Utility for FLUF in lo
aldrift90

D.2. Domain with Drift

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.20: Expe
ted Utility for Utility Iterationin lo
al drift 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.21: Expe
ted Utility for Imputing byComparison in lo
al drift

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.22: FLUF's
han
e of predi
ting de
isionA in a lo
al drift 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.23: Utility Iteration's
han
e of predi
tingde
ision A in a lo
al drift

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by ComparisonFigure D.24: Imputing by Comparison's
han
e ofpredi
ting de
ision A in a lo
al drift 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.25: FLUF's
han
e of predi
ting de
isionT in a lo
al drift91

Chapter D. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.26: Utility Iteration's
han
e of predi
tingde
ision T in a lo
al drift 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by ComparisonFigure D.27: Imputing by Comparison's
han
e ofpredi
ting de
ision T in a lo
al drift

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.28: Expe
ted Utility for FLUF in randomdrift 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.29: Expe
ted Utility for Utility Iterationin random drift

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.30: Expe
ted Utility for Imputing byComparison in random drift 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.31: FLUF's
han
e of predi
ting de
isionA in a random drift92

D.2. Domain with Drift

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.32: Utility Iteration's
han
e of predi
tingde
ision A in a random drift 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by ComparisonFigure D.33: Imputing by Comparison's
han
e ofpredi
ting de
ision A in a random drift

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.34: FLUF's
han
e of predi
ting de
isionT in a random drift 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.35: Utility Iteration's
han
e of predi
tingde
ision T in a random drift

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by ComparisonFigure D.36: Imputing by Comparison's
han
e ofpredi
ting de
ision T in a random drift 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Fluf - constraint relaxationFigure D.37: Expe
ted Utility for FLUF in lo
aldrift using
onstraint relaxation93

Chapter D. Results

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility Iteration - constraint relaxationFigure D.38: Expe
ted Utility for Utility Iterationin lo
al drift using
onstraint relaxation 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Imputing by Comparison - constraint relaxationFigure D.39: Expe
ted Utility for Imputing byComparison in lo
al drift using
onstraint relaxation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Fluf - constraint relaxationFigure D.40: FLUF's
han
e of predi
ting de
isionA in a lo
al drift using
onstraint relaxation 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility Iteration - constraint relaxationFigure D.41: Utility Iteration's
han
e of predi
tingde
ision A in a lo
al drift using
onstraint relaxation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by Comparison - constraint relaxationFigure D.42: Imputing by Comparison's
han
e ofpredi
ting de
ision A in a lo
al drift using
onstraintrelaxation 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Fluf - constraint relaxationFigure D.43: FLUF's
han
e of predi
ting de
isionT in a lo
al drift using
onstraint relaxation94

D.3. Domain with Flu
tuation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility Iteration - constraint relaxationFigure D.44: Utility Iteration's
han
e of predi
tingde
ision T in a lo
al drift using
onstraint relaxation 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by Comparison - constraint relaxationFigure D.45: Imputing by Comparison's
han
e ofpredi
ting de
ision T in a lo
al drift using
onstraintrelaxationD.3 Domain with Flu
tuation

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.46: Expe
ted Utility for FLUF in single�u
tuation 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.47: Expe
ted Utility for Utility Iterationin single �u
tuation

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.48: Expe
ted Utility for Imputing byComparison in single �u
tuation 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.49: FLUF's
han
e of predi
ting de
isionA in single �u
tuation95

Chapter D. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.50: Utility Iteration's
han
e of predi
tingde
ision A in single �u
tuation 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by ComparisonFigure D.51: Imputing by Comparison's
han
e ofpredi
ting de
ision A in single �u
tuation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.52: FLUF's
han
e of predi
ting de
isionT in single �u
tuation 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.53: Utility Iteration's
han
e of predi
tingde
ision T in single �u
tuation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by ComparisonFigure D.54: Imputing by Comparison's
han
e ofpredi
ting de
ision T in single �u
tuation 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.55: Expe
ted Utility for FLUF in multiple�u
tuations96

D.3. Domain with Flu
tuation

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.56: Expe
ted Utility for Utility Iterationin multiple �u
tuations 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.57: Expe
ted Utility for Imputing byComparison in multiple �u
tuations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.58: FLUF's
han
e of predi
ting de
isionA in multiple �u
tuations 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.59: Utility Iteration's
han
e of predi
tingde
ision A in multiple �u
tuations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by ComparisonFigure D.60: Imputing by Comparison's
han
e ofpredi
ting de
ision A in multiple �u
tuations 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.61: FLUF's
han
e of predi
ting de
isionT in multiple �u
tuations97

Chapter D. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.62: Utility Iteration's
han
e of predi
tingde
ision T in multiple �u
tuations 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by ComparisonFigure D.63: Imputing by Comparison's
han
e ofpredi
ting de
ision T in multiple �u
tuations

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.64: Expe
ted Utility for FLUF in single�u
tuation using
onstraint relaxation 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility Iteration - constraint relaxationFigure D.65: Expe
ted Utility for Utility Iterationin single �u
tuation using
onstraint relaxation

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Imputing by Comparison - constraint relaxationFigure D.66: Expe
ted Utility for Imputing byComparison in single �u
tuation using
onstraint re-laxation 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Fluf - constraint relaxationFigure D.67: FLUF's
han
e of predi
ting de
isionA in single �u
tuation using
onstraint relaxation98

D.3. Domain with Flu
tuation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility Iteration - constraint relaxationFigure D.68: Utility Iteration's
han
e of predi
t-ing de
ision A in single �u
tuation using
onstraintrelaxation 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by Comparison - constraint relaxationFigure D.69: Imputing by Comparison's
han
e ofpredi
ting de
ision A in single �u
tuation using
on-straint relaxation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Fluf - constraint relaxationFigure D.70: FLUF's
han
e of predi
ting de
isionT in single �u
tuation using
onstraint relaxation 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility Iteration - constraint relaxationFigure D.71: Utility Iteration's
han
e of predi
t-ing de
ision T in single �u
tuation using
onstraintrelaxation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by Comparison - constraint relaxationFigure D.72: Imputing by Comparison's
han
e ofpredi
ting de
ision T in single �u
tuation using
on-straint relaxation 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Fluf - constraint relaxationFigure D.73: Expe
ted Utility for FLUF in multiple�u
tuation using
onstraint relaxation99

Chapter D. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Fluf - constraint relaxationFigure D.74: FLUF's
han
e of predi
ting de
isionA in multiple �u
tuation using
onstraint relaxation 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Fluf - constraint relaxationFigure D.75: FLUF's
han
e of predi
ting de
isionT in multiple �u
tuation using
onstraint relaxationD.4 Domain with Noise

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.76: Expe
ted Utility for Utility Iterationfor stati
 domain, in noisy domain 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.77: Expe
ted Utility for Utility Iterationin noisy domain

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.78: Expe
ted Utility for Imputing byComparison in noisy domain 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility Iteration (no noise handling)Figure D.79: Utility Iterations
han
e of predi
tingde
ision A in a noisy domain, using poli
y for stati
domain100

D.4. Domain with Noise

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.80: Utility Iteration's
han
e of predi
tingde
ision A in a noisy domain 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by ComparisonFigure D.81: Imputing by Comparison's
han
e ofpredi
ting de
ision A in a noisy domain

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility Iteration (no noise handling)Figure D.82: Utility Iterations
han
e of predi
tingde
ision T in a noisy domain, using poli
y for stati
domain 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.83: Utility Iteration's
han
e of predi
tingde
ision T in a noisy domain

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Imputing by ComparisonFigure D.84: Imputing by Comparison's
han
e ofpredi
ting de
ision T in a noisy domain101

Chapter D. ResultsD.5 Alternative Domain

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.85: Expe
ted Utility for FLUF in the al-ternative domain with lo
al drift 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.86: Expe
ted Utility for Utility Iterationin the alternative domain with lo
al drift

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.87: FLUF's
han
e of predi
ting de
isionA in the alternative domain with lo
al drift 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.88: Utility Iteration's
han
e of predi
tingde
ision A in the alternative domain with lo
al drift

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.89: FLUF's
han
e of predi
ting de
isionT in the alternative domain with lo
al drift 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.90: Utility Iteration's
han
e of predi
tingde
ision T in the alternative domain with lo
al drift102

D.5. Alternative Domain

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.91: FLUF's
han
e of predi
ting de
isionD in the alternative domain with lo
al drift 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.92: Utility Iteration's
han
e of predi
tingde
ision D in the alternative domain with lo
al drift

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.93: Expe
ted Utility for FLUF in the al-ternative domain with single �u
tuation 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.94: Expe
ted Utility for Utility Iterationin the alternative domain with single �u
tuation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.95: FLUF's
han
e of predi
ting de
isionA in the alternative domain with single �u
tuation 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.96: Utility Iteration's
han
e of predi
t-ing de
ision A in the alternative domain with single�u
tuation103

Chapter D. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.97: FLUF's
han
e of predi
ting de
isionT in the alternative domain with single �u
tuation 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.98: Utility Iteration's
han
e of predi
tingde
ision T in a alternative domain two with single�u
tuation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
FlufFigure D.99: FLUF's
han
e of predi
ting de
isionD in the alternative domain with single �u
tuation 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.100: Utility Iteration's
han
e of predi
t-ing de
ision D in a alternati3ve domain two withsingle �u
tuationD.6 S
alability

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 e
xp

ec
te

d
ut

ili
ty

Observations

Legend
True Expected Utility

Utility IterationFigure D.101: Expe
ted Utility for Utility Iterationin s
alability domain 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.102: Utility Iteration's
han
e of predi
t-ing de
ision D1 in s
alability domain104

D.6. S
alability

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.103: Utility Iteration's
han
e of predi
t-ing de
ision D2 in s
alability domain 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.104: Utility Iteration's
han
e of predi
t-ing de
ision LD in s
alability domain

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
or

re
ct

Observations

Legend
Utility IterationFigure D.105: Utility Iteration's
han
e of predi
ting de
ision RD in s
alability domain

105

Chapter D. Results

106

APPENDIXE
Summery of Learning Utility Fun
tionsby ImputingIn this proje
t, methods are developed to learn the utility fun
tion of an observed agent. Theutility learning methods developed are
alled Utility Iteration and Imputing by Comparison.The methods are designed to handle agents in a stati
 domains as well as agents that
hangebehavior over time, mu
h like humans do. The motivation for fo
using on
hanging behavior,is that in any de
ision pro
ess of an agent that is to
omplex to model
ompletely, any fa
torsthat are left out will still have an impa
t on the agent. The impa
t of these unmodeled fa
tors
an be interpreted as
hanging behavior.Imagine attempting to model the behavior of a bus driver. Obvious fa
tors su
h as tra�
, thenumber of people riding the bus and the weather would probably be in
luded in the model, butsome fa
tors that in�uen
e the drivers behavior may be di�
ult to in
lude, su
h as how wellhe slept or the mood of his wife that morning. If, for example, the bus driver is an Ameri
anfootball fan, and he stays up late to wat
h Monday night football, then this
ould in�uen
ehis behavior on Tuesday. In other words there
ould be things that in�uen
e the driver that isnot modeled, thus the impa
t of unknown fa
tors
an be interpreted as
hanging behavior onthe drivers part.E.1 Previous WorkThe work done has been based on an earlier proje
t,
alled �FLUF Learning Utility Fun
tionby Observing Behavior� (Hansen et al., 2004) whi
h in turn is based on an arti
le aboutestimation of utility fun
tions,
alled �Learning an Agent's Utility Fun
tion by ObservingBehavior� (Chajewska et al., 2001).In the (Chajewska et al., 2001) arti
le a method for determining the utilities in a de
ision treeis presented. Central to this method, FLUF and the methods developed in this proje
t, is thata feasible spa
e of utility values is maintained. This feasible spa
e is m dimensional, where mis the number of utilities in the domain, and ea
h point in this spa
e assigns a value to ea
hutility. Ea
h point in the feasible spa
e thereby
orresponds to a utility fun
tion. Given aset of observations
onstraints are
reated, that limit the feasible spa
e. These
onstraints are107

Chapter E. Summery of Learning Utility Fun
tions by Imputingin fa
t inequalities, su
h as α1u1 + α2u2 > 0, where u1 and u2 are utilities and the α valuesare determined by the method. After all observations have been used to
reate
onstraints, autility point in the feasible spa
e is
hosen, that
onforms with all the established
onstraints.In Chajewska et al. (2001) a distribution over possible utility fun
tions is determined, basedon a prior probability distribution over all utility fun
tions.FLUF is as mentioned, based on the method from Chajewska et al. (2001), and was developedto work on in�uen
e diagrams instead of de
ision trees, and it was developed to handle agentsthat, while being rational,
hanged their behavior over time. Semanti
ally FLUF establishes
onstraints exa
tly as in the method from Chajewska et al. (2001), but the utility point is
hosen di�erently. Due to agents being allowed to
hange behavior, the assumption of havinga prior distribution over possible utility fun
tions, was
onsidered unlikely. Instead a methodis used, that maximized a hypersphere inside the feasible spa
e, while still
onforming with all
onstraints. The
enter of this hypersphere was used as the utility point.E.2 AssumptionsWhen developing Utility Iteration and Imputing by Comparison it was assumed that the prob-abilities and
ausalities in the domains, as the observed agent per
eives them, are known.Furthermore, the agent is assumed to be rational, meaning it will always maximize its expe
-ted utility.If the de
ision s
enario being modeled in
ludes a series of de
isions, then ea
h de
ision isassumed to have been observed in every observation, as well as the relevant past of thesede
isions.E.3 The Developed MethodsIn an attempt to develop new methods that a
hieved a higher a

ura
y than FLUF, an analysison the ina

ura
ies on FLUF was done. The analysis revealed that the ina

ura
ies in FLUFwas
aused by relaxations of the
reated
onstraints done by FLUF to handle partially observedstrategies. A partially observed strategy is when not all
on�gurations of the domain has beenobserved. These relaxations were done to ensure that the utility values still allowed in thefeasible spa
e, in
luded utility fun
tions that allowed all possible de
isions in the unobserved
on�gurations of the domain.So to remove this sour
e of ina

ura
y, the relaxations were repla
ed by imputations, in thesense that by imputing so
alled virtual observations for the
on�gurations that were un-observed, the strategy be
ame a fully observed strategy, meaning that relaxations would nolonger be ne
essary. The imputed observations are
alled virtual, be
ause they have neverreally o

urred, and a strategy is
alled fully observed when all
on�gurations of the domainare observed.Both utility learning methods start by
reating
onstraints for the last de
ision node in thetemporal order. The reason for examining the last de
ision �rst, is that the later in the temporalorder de
isions are, the less imputations will be ne
essary, e.g. after the last de
ision there areno de
isions that have not been observed. In Imputing by Comparison the order a
tuallyhas no impa
t, but in Utility Iteration it does, as des
ribed below. After evaluating de
isionnumber n, both imputing methods impute observations to ensure that de
ision n is fullyobserved, i.e. ensuring that all
on�gurations of the de
isions relevant past has a
orrespondingde
ision. When de
ision n have been made fully observed, it
an be repla
ed by a
han
e node108

E.3. The Developed Methodsthat en
odes the poli
y of the de
ision node. This enables the imputing methods to
reate
onstraints based on observed
hoi
es in de
ision node n−1 without relaxations, sin
e this hasbe
ome the last in the temporal order, and so on. This means that the only di�eren
e betweenthe two imputing methods is the way in whi
h imputations are done.E.3.1 Utility IterationIn Utility Iteration virtual observations are
hosen based on temporary utility fun
tions. Theinitial temporary utility fun
tion is found by
reating
onstraint for the last de
ision in allobservations, be
ause evaluating this de
ision does not require any imputations and therefore notemporary utility fun
tion. After adding
onstraints for de
ision number n in all observations,the
enter of the largest possible hypersphere,
onforming with these
onstraints, is used asthe initial temporary utility fun
tion.Using this temporary utility fun
tion in the agents in�uen
e diagram, a poli
y, i.e. mappingbetween relevant past
on�gurations and
hoi
es,
an be obtained for any de
ision node. Theinitial temporary utility fun
tion is used in this way to obtain a poli
y for de
ision node n.With the needed virtual observations imputed to make de
ision n fully observed,
onstraints
an be added for the observed
hoi
es in de
ision n−1. However,
onstraints are only added forone of the observed de
isions. This is be
ause after adding the
onstraints from one observationof de
ision n − 1, then a new temporary utility fun
tion
an be found, and the newly added
onstraints together with the
onstraints
reated already will yield a more reliable utilityfun
tion.So after the initial temporary utility fun
tion has been determined, then
hoi
es are evaluatedone at the time, in the order des
ribed above, ea
h time re�ning the utility fun
tion. Thetemporary utility fun
tion will
ontinually be re�ned, until all de
isions have been evaluatedin all observations. Now the �nal utility fun
tion, is the estimation done by Utility Iteration.E.3.2 Imputing by ComparisonImputing by Comparison �nds the de
isions in the unobserved
on�gurations of the relevantpasts that should be imputed by
omparing probability distributions. Some notation is neededto des
ribe imputations in Imputing by Comparison. The hypothesis variables of a de
ision, isthe parents of all utility des
endants of that de
ision. These hypothesis variables
an in
lude
han
e as well as de
ision nodes. The utility des
endants of some de
ision node, is the utilitynodes that
an be rea
hed from that de
ision node by following a dire
ted path through thein�uen
e diagram.To impute a virtual observation for some relevant past of a de
ision node, Imputing by Com-parison
al
ulates the joint distribution over the hypothesis variable. This joint distributionis
al
ulated for all the true observations, i.e. observations that have a
tually been made, byinstantiation the past of the de
ision node as observed in ea
h true observations, and treatingde
ision nodes as deterministi

han
e nodes. By
omparing the Eu
lidean distan
e betweenea
h true observation and ea
h possible virtual observation, with respe
t to the joint distri-bution of the hypothesis variable, then the virtual observation with the smallest Eu
lideandistan
e is
hosen. 109

Chapter E. Summery of Learning Utility Fun
tions by ImputingE.4 Dynami
 DomainsAs the agent is allowed to
hange behavior over time, then observations
an be made that
on�i
t with ea
h other, i.e. only the trivial utility fun
tion
an allow both observations too

ur. The trivial utility fun
tion is the utility fun
tion that attributes the same expe
tedutility to all de
isions, by having all lo
al utility fun
tions yield the same utility no matter the
on�guration of the in�uen
e diagram.Sin
e
on�i
ting observations
an o

ur, poli
ies were developed that Utility Iteration andImputing by Comparison
ould use to handle su
h
on�i
ts. These poli
ies were targeted onspe
i�
 kinds of dynami
 behavior, namely drift, �u
tuation and noise. Drift is when thestrategy of the agent gradually
hanges, �u
tuation is when it suddenly
hanges and noise iswhen a single observations faulty, i.e. single variables or de
isions have
hanged state fromwhat they should have been in the observation.E.5 Experimental Results and Con
lusionAfter
ondu
ting a series of experiments, it
an be
on
luded that the utility learning methodsbased on imputing virtual observations, instead of relaxing
onstraints, will generally predi
tde
isions more a

urately. With regards to
omplexity, the experiments supported the
om-plexity analysis, that indi
ated that Utility Iteration and Imputing by Comparison would havebetter s
alability, when the domain grew,
ompared to FLUF.

110

INDEX
AAgentAssumptions. .2Dynami
 Behavior . 45Stati
 Behavior . 45DDynami
 Domain . 45Con�i
t Poli
ies . 46Constraint Relaxation Poli
y 50Drift . 46Flu
tuation. .46Guilty Constraints.47Noise . 46EEu
lidean Distan
e. .38ExperimentsA

ura
y . 55Speed . 55FFLUF .5Assumptions. .8Complexity . 16Con�i
t Poli
yDrift and Flu
tuation 49Fully Observed Strategies 9Observations . 9Partially Observed Strategies 10Utility Values. .8Fully Observed Strategy.1GGoal . 2IImputing . 25Basi
 Te
hnique . 29True Observations . 25Virtual Observations 25

Imputing by Comparison 36Algorithm . 38Analysis . 40Complexity .41Con�i
t Poli
yDrift and Flu
tuation 49Noise . 52Hypothesis Variables 36In�uen
e Diagrams . 5Information Link . 6No-Forgetting . 6Poli
y . 7Relation Link. .6Relevant Past . 8Solving . 6Strategy . 7Temporal Order . 6KKullba
k-Leibler Divergen
e.37LLargest Possible Hypersphere 13OOptimal Method . 17Subregion . 18PPartially Observed Strategy 1Prerequisites . 2Agent . 2Prior Knowledge. .2SStati
 Domain . 45TTrue Feasible Spa
e . 17True Utility Spa
e . 17111

INDEXUUtility Iteration . 29A

urate Te
hnique 79Algorithm . 30, 31Analysis . 33Complexity .35Con�i
t Poli
yDrift and Flu
tuation 49Noise . 52Extended Te
hnique 31Temporary Utility Fun
tion 30

112

BIBLIOGRAPHY
Antonio Aguilera and Ri
hardo Peréz-Aguila. General n-Dimensional Rotations. In WSCGSHORT Communi
ation papers pro
eedings. UNION Agen
y - S
ien
e Press, 2004.Hugin Expert A/S. Hugin Resear
her,� http://www.hugin.
om/Produ
ts_Servi
es/Produ
ts/A
ademi
/Resear
her/ 2004.Mi
hel Berkelaar et al. LP Solve,� http://groups.yahoo.
om/group/lp_solve/ 2005.Urzula Chajewska, Daphne Koller, and Dirk Ormoneit. Learning an Agent's Utility Fun
tionby Observing Behavior. In Pro
eedings of the 18th International Conferen
e on Ma
hineLearning (ICML '01), pages 35�42, 2001.Fraleigh and Beauregard. Linear Algebra. Prenti
e Hall, se
ond edition, 2003.Anders Hansen, Ni
olaj Lo
k, and Peter Poulsen. FLUF Learning Utility Fun
tion. Master'sthesis, Aalborg University, 2004.Finn V. Jensen. Bayesian Networks and De
ision Graphs. Springer-Verlag, 2001.R. Sha
hter. Bayes-Ball: The rational pastime (for determining irrelevan
e and requisiteinformation in belief networks and in�uen
e diagrams,�
iteseer.ist.psu.edu/sha
hter98bayesball.html 1998.R. Sha
hter. E�
ient Value of Information Computation. In Pro
eedings of the 15th AnnualConferen
e on Un
ertainty in Arti�
ial Intelligen
e (UAI-99), pages 594�601, San Fran
is
o,CA, 1999. Morgan Kaufmann Publishers.

113

