Learning Utility Functions by Imputing

i

Group E1-119

The Faculty of Engineering and Science
Aalborg University

(8

AALBORG UNIYERSITET

Department of Computer Science

Title:
Learning Utility Functions by Imputing

Period:
February 1%t — June 10"
2005

Project group:
E1-119

Group members:
Anders Hansen
Nicolaj Lock
Peter Poulsen

Supervisor:
Thomas D. Nielsen

No. of copies: 7
No. of pages: 76
Appendix pages: 33

Total no. of pages: 113

Abstract:

In this project two methods, called Utility
Iteration and Imputing by Comparison, are
developed. These methods learn the utilit-
ies of an observed agent, such that its pref-
erences can be modeled in an influence dia-
gram. The utilities are learned from the beha-
vior of the agent, by creating constraints based
on the observed decisions made by it. The
two methods are designed to handle agents
that change behavior, using different policies
to handle conflicting behavior. The meth-
ods have much in common with FLUF, de-
veloped in Hansen et al. (2004), the main dif-
ference being how partially observed strategies
are handled. Where FLUF relaxes constraints
to ensure that the true utility function is not
excluded, then Utility Iteration and Imputing
by Comparison impute observations to make
the strategy fully observed, thereby removing
the need to relax constraints. Experiments are
conducted with the two new methods and with
FLUF. Three different kinds of changing beha-
vior are defined, and experiments are conduc-
ted with respect to each kind. Both in the ex-
periments with changing behavior and the ex-
periment with static behavior, the new meth-
ods achieved better results than FLUF, both
with regard to accuracy and learning speed. It
is concluded that, under the assumption made
about the domain in this project, imputing ob-
servations will yield a higher accuracy than re-
laxing constraints.

Preface

This project is done by group E1-119 at Aalborg University department of Computer Science.
We would like to thank Hugin Expert A/S for allowing us to use a full version of their program
Hugin Researcher. Also, we would like to thank Thomas D. Nielsen for helping with the entire

project.
Aalborg June 10*", 2005

Anders Hansen Nicolaj Lock

Peter Poulsen

III

CONTENTS

Preface III
Introduction 1
1.1 Prerequisites e e e e 2
1.1.1 The Agent. o 2
1.1.2 Prior Knowledge 2
1.2 Goals of this Project 2
1.3 The Structure of the Report 3
The Method FLUF 5
2.1 Influence Diagrams 5
2.1.1 Solving Influence Diagrams 6
2.2 Assumptions e e 8
2.3 Fully Observed Strategies 9
2.4 Partially Observed Strategies 10
2.5 Choosing Utility Values 13
2.6 Comparison of FLUF and Chajewska et al. (2001) 14
2.6.1 Structure 14
2.6.2 Complexity L 16
2.7 Limitations of FLUF e 17
2.7.1 The Optimal Method 17
Imputing 25
3.1 Imputing Analysis 25
3.1.1 Imputations Causing Conflict 26
3.2 Imputing Strategy 28
3.2.1 Basic Technique 29
3.3 Utility Iteration 29
3.3.1 Imputing Virtual Decisions 30
3.3.2 The Utility Iteration Algorithm 31
3.33 Analysis 33
3.3.4 Summary e e e 36

CONTENTS

3.4 Imputing by Comparison o 36
3.4.1 Measuring Distance Between Probabilities 37
3.4.2 The Imputing by Comparison Algorithm 38
343 Analysis L. 40
344 Summary . .o oL oL e e e e e 42

3.5 Conclusion 43
3.5.1 Imputing compared to FLUF 43
3.5.2 AccuraCy 43
3.5.3 Complexity o 43

4 Dynamic Domains 45

4.1 Types of Dynamic Domains 45

4.2 Conflict Handling 46

4.3 Drift and Fluctuation 48
4.3.1 Imputing by Comparison and Utility Iteration 48
4.3.2 FLUF e 49
4.3.3 The Constraint Relaxation Policy 50

4.4 NoiSe. o o e e e e e 52
441 Oldest First L 53
442 Newest First 53

5 Experiments 55

5.1 Domain e e 56

5.2 The Experiment Program o7

5.3 The Experiments 58
5.3.1 Static Domaino o 58
5.3.2 Domain with Drift o0 o 59
5.3.3 Domain with Fluctuation 62
5.3.4 Domain with Noise 64
5.3.5 Alternative Domain oL o 66
5.3.6 Scalability 68

54 General Results L 70

6 Conclusion 71

6.1 Perspective L e e 71
6.1.1 Dynamic Domains 71
6.1.2 Unknown Probability Distributions 72

6.2 SUMMATY« . 0 e e e e e e e e e 72

6.3 Future Work 73
6.3.1 Handling Noise o 73
6.3.2 Complexity o 74
6.3.3 Missing Datao 74
6.3.4 Improved Comparison i 75

A Placing Constraints 77

VI

CONTENTS

B The Accurate Technique - Utility Iteration 79
C Domains 83
C.1 The Alternative Domain 83
C.2 The Scalability Domain 84

D Results 87
D.1 Static Domain e e 87
D.2 Domain with Drift 89
D.3 Domain with Fluctuation 95
D.4 Domain with Noise e 100
D.5 Alternative Domain 102
D.6 Scalability o 104

E Summery of Learning Utility Functions by Imputing 107
E.1 Previous Work 107
E.2 Assumptions 108
E.3 The Developed Methods 108
E.3.1 Utility Iteration 109

E.3.2 Imputing by Comparison 109

E.4 Dynamic Domains L oo 110
E.5 Experimental Results and Conclusion 110
Index 111
Bibliography 113

VII

CHAPTER

ONE

Introduction

This project focuses on learning utility functions in influence diagrams. The utility function
expresses an agent’s preferences for different scenarios. It might be essential to know these
preferences in certain decision processes, for instance when marketing a new product it is im-
portant to know the preferences of the consumer, otherwise the marketing campaign may fail to
reach the intended recipients. It can also improve the artificial intelligence in computer games,
such that the game can learn the player’s strategy thus making the game more challenging.

There are other areas in which knowing the utility function can aid the decision maker, therefore
a method for learning the utility function is needed. Such methods are called wutility learning
methods. Hansen et al. (2004) developed a utility learning method for agents with or without
changing behavior. The method developed by Hansen et al. (2004) is called FLUF (FLUF
Learning Utility Function) and the general idea is that FLUF learns the utility function by
observing the behavior of an agent. The agent is assumed to be a rational agent, that is an
agent that always tries to maximize the expected benefit of its decision.

Basically FLUF derives some boundaries, called constraints, from the observations made.
These constraints are inequalities that exclude a set of utility values that cannot explain the
observations. FLUF is designed to handle partially observed strategies, that is situations where
the decisions are not observed for all configurations of the influence diagram. In general FLUF’s
way of handling these unobserved configuration is to relax the already mentioned constraints
for the utility values. These relaxations are done such that it is assured that any decision in
the unobserved configuration could be explained with some utility values within the allowed
boundaries. To expand the area of application for FLUF, it is also designed to handle changing
behavior, where the utilities can change over time which can cause conflicting or inconsistent
observations.

The experiments from Hansen et al. (2004) showed that predictions potentially could be done
more accurately than done by FLUF. Some of the inaccuracy that FLUF has when it comes
to predicting decisions will most likely be derived from the relaxation of the constraints. If the
agent’s strategy is fully observed, i.e. the decisions are observed in all configurations, it will
not be necessary to relax the constraints.

Many of the ideas used by Hansen et al. (2004) will be incorporated in this project, such as
creating constraints for the utility values based on the observations. One of the more important
differences between Hansen et al. (2004) and this project is in the way partially observed

CHAPTER 1. INTRODUCTION

strategies are handled. This project investigates the idea of imputing to approximate the
unobserved parts of an agent’s strategy. A naive way of imputing would be to randomly select
decisions for the unobserved strategies. This method would likely lead to wrong imputations,
therefore another method for imputing should be employed. One such way could be to use
the observations already made, in that the preferences in these observations should provide a
hint on what to expect with regard to future observations. This project investigates different
imputing methods that impute based on the observations already made.

1.1 Prerequisites

This section describes the assumptions made. Assumptions are made about the prior knowledge
available and the agent being observed. The assumptions made for the methods are similar to
the prerequisites for FLUF, however the observations can contain moise in the new methods,
that is part of the observation may be corrupted, i.e. by faulty hardware or bad network
transmissions.

1.1.1 The Agent

The utilities of the agent are not known from the beginning, and these utilities have to be
estimated, through observing the behavior of the agent. It is assumed that the agent tries to
maximize the expected utility, i.e. the agent is behaving rationally.

The agent is not restricted from changing its utilities, so utility learning methods should handle
changing behavior. However, it is assumed that the observed agent is not using a similar
learning algorithm since this may lead to infinite cycles of mutual predictions (Chajewska
et al., 2001). The possibility that the observed agent can change its preferences, enables it
to perform an action given some configuration at one time, but then later, given the same
configuration, perform a different action. Two such observations can only be explained if the
expected utility of the two actions are equal or if the agent has changed behavior.

1.1.2 Prior Knowledge

As this project only focuses on the learning of an agent’s utilities, it is assumed that the
agent’s perception of the variables and their causalities in the environment are known, that
is the probabilities are known. In effect it assumed that, with the exception of the utility
function, it is possible to create an influence diagram for the agent’s decision scenario.

1.2 Goals of this Project

The goal of this project is, based on the ideas from Hansen et al. (2004), to create new
utility learning methods that use imputing to handle partially observed strategies. Imputing
methods should impute the unobserved decisions based on what is already observed. Moreover
the methods should be able to handle conflicts since these may occur due to the imputing, and
since the agent is allowed to be change behavior. Experiments should be conducted using the
imputing method, to determine its speed and accuracy, such that it can be compared to similar
experiments with FLUF. Speed being measured in number of training cases, and accuracy
begin measured by comparison of the expected utility of the strategy predicted by the utility
learning method and the strategy used by the agent.

1.3. THE STRUCTURE OF THE REPORT

1.3 The Structure of the Report

The rest of this report is organized in the following chapters:

Chapter Two:

Chapter Three:

Chapter Four:

Chapter Five:

Chapter Six:

A presentation of FLUF is given as many of the ideas used to develop the
new imputing method is based on concepts developed in FLUF. Further-
more potential limitations of FLUF are analyzed.

Based on the analysis from chapter two, general ideas on imputing are
presented, and two imputing algorithms are designed and presented. Fi-
nally their potentials and limitations are analyzed.

Changing behavior of the observed agent is analyzed and presented to-
gether with possible methods for handling this.

The algorithms designed in chapter three, are tested in a series of experi-
ments. These experiments and the results are presented in this chapter.

Summary of the most significant considerations and conclusions from the
previous chapters.

CHAPTER 1. INTRODUCTION

CHAPTER

TWO

The Method FLUF

In this chapter the method FLUF, and the policies for handling conflicting observations, are
presented. FLUF is based on work by Chajewska et al. (2001) which estimates the utilities
in a decision tree by establishing a feasible space in which the utility values are to be found.
One main difference between FLUF and the work by Chajewska et al. (2001) is that FLUF
is defined in terms of an influence diagram instead of a decision tree, this difference will be
discussed in Section 2.6.

The overall idea in FLUF and Chajewska et al. (2001) is that, based on the fact that the
agent is rational, it can be assumed that the expected utility of an observed decision is higher
than the expected utility of its alternatives. This is used to reduce the number of possible
utility functions, by generating inequalities that express the relationship observed. Among the
remaining utility functions one is chosen by FLUF. This is then used as an estimate of the
agent’s utility function.

First influence diagrams and some notation used throughout this report is presented. Then
the assumptions for FLUF will be presented and then the method for estimating the utility
values if the strategy of the observed agent is fully observed will be presented. This will be
followed by a method for handling situations where the strategy is partially observed, which is
the method actually used by FLUF.

2.1 Influence Diagrams

Decision scenarios are often represented as influence diagrams. Influence diagram can encode
preferences and utilities of a decision maker in the decision scenario. The influence diagram
can then be used by the decision maker to determine what decisions that would yield the
highest expected utility. In this section the syntax and semantics of these will be presented,
as influence diagrams are used by FLUF and new methods developed in this project.

Syntax

An influence diagram consists of a directed acyclic graph over chance nodes, decision nodes
and utility nodes, with the following qualitative properties, (Jensen, 2001):

CHAPTER 2. THE METHOD FLUF

e there is a directed path comprising all decision nodes

e the utility nodes have no children

For the quantitative specification, it is required that:

e the decision nodes and the chance nodes have a finite set of mutually exclusive and
exhaustive states

e a conditional probability table P(A|pa(A)) is attached to each chance node A

e areal-valued function over pa(M) is attached to each utility node M, called a local utility
function

where pa(N) is the parents of the node N.

Semantics

The utility nodes represent some gain or loss for the decision maker, where each utility node’s
contribution is determined by its utility function. The chance nodes represent elements that
may, directly or indirectly, influence the gain or loss of the decision maker, or provide inform-
ation for the decision maker. The decision nodes represent the choices that have to be made
by the decision maker.

The decisions are ordered relatively to each other with respect to when they are made, this is
called the temporal order. Graphically, information precedence is represented as information
links; there is an information link from a chance node A to a decision node D; if the chance
node is observed before decision D; but after decision D;_1. The temporal order of the decision
nodes is represented graphically by links such that if decision D; is made before decision Dy
then there exist a directed path from D; to Ds. The temporal order also orders the chance
nodes according to when they are observed. Any link that is not an information link is termed
a relation link.

A general assumption when dealing with influence diagrams is no-forgetting, which means that
for some decision node the decision maker knows all the choices for decision nodes prior to the
current decision node and the states of the observed chance nodes prior to any of the decision
nodes earlier in the temporal order or the current decision node.

Iy denotes the set of chance nodes that are observed before any decision is taken and I; denotes
the set of chance nodes that are observed after the first decision and before the second. If there
are n decision nodes, then I,, denote the set of chance nodes that are observed after the last
decision or not observed at all. This establishes the following temporal order: Iy < D1 < I1 <
... < D, < I,. The ordering of the nodes can be deduced from the links and the no-forgetting
assumption.

2.1.1 Solving Influence Diagrams

When using influence diagrams to determine what the best decisions are, it called solving
the influence diagram. The method for solving influence diagrams rely on the chain rule for
influence diagram, which is as follows (Jensen (2001)):

2.1. INFLUENCE DIAGRAMS

Theorem 2.1 Let ID be an influence diagram with the universe Wo U Wp. Then

PWelWp)= [[P(Xlpa(X))
XeWe

where W is the set of chance nodes and Wp the set of decision nodes.

Let ID be an influence diagram over W = Wo U Wp. W is the set of all chance nodes in I D
while Wp is the set of all decision nodes. Let the temporal order of the variables be described
as Iy < D1 <) < ... < D, < I, and let V(pa(U)) = >, Vi(pa(U;)) where V; is the local
utility function for utility node U;. Then the maximum expected utility is:

MEU(ID) = I%%XZ max.. I%axz P(We|Wp)V (pa(U)) (2.1)
Io I "I

Equation 2.1 is only a principle solution since the size of P(W¢|Wp) grows exponentially. It
is possible to avoid this problem by using the distributive law to eliminating the variables one
by one, to reduce the size of the largest probability table. Sum-marginalization (marginaliza-
tion of chance variables) and max-marginalization (marginalization of decision nodes) cannot
interchange and the marginalization is therefore restricted by the temporal order, this is called
a strong marginalization.

Definition 2.1 A policy for a decision node D; is a mapping o;, which for any configuration
of the past of D; yields a decision for D; such that:

oi(lo, D1, I, ..., Di—1,1;—1) € sp(D;)

where sp(D;) is the state space of D;. A strategy consists of a set of policies one for each
decision in the influence diagram. A solution to an influence diagram is the strategy that
mazimizes the expected utility.

If the decision maker acts rationally for decision D; and all future decisions, i.e. makes the
decision that maximizes the expected utility, then the solution is the strategy that comprises
all optimal policies (Definition 2.1).

Using the concept of policies, an operational algorithm for calculating the maximum expected
utility can be described, this is done in Lemma 2.1. This is operational as the joint probability
for all chance nodes is never calculated, but rather only the joint probability for a subset of
the chance nodes is calculated at each step.

Lemma 2.1 Let o; denote the policy for the decision node D;. The maximum expected utility
for the node D; is denoted by pp,. Let n be the number of decision nodes, then the mazimum
expected utility for the decision node D;, where i < n is found by

max 3, P(lilpast(Di), Di) - ppi s (past(Diga), Diyr) i #n

ppi(past(Di)) = nbaixzh P(I;|past(D;), D;) - V(pa(U)) t=n

(2.2)

where past(D;) denotes a configuration of the past of decision node D;.

CHAPTER 2. THE METHOD FLUF

Relevant Past

In Lemma 2.1 it is necessary to consider the entire past of the decision node, because the
expected utility is being calculated, and the global utility function may depend on nodes that
are not in the relevant past of the decision node. However, if the expected utility is not needed,
but the optimal decision must be found, it is enough to examine the relevant past of a decision
node. Using only the relevant past of the decision nodes rather than the entire past when
the optimal decision must be found, reduces the number of configurations of the past of the
decision nodes that have to be investigated.

Definition 2.2 (Relevant Past) A decision or chance node X is in the relevant past of a
decision node D, if there exists a configuration of the past of D (denoted §) and two instanti-
ations of X (v and ') where X is in the past of D, such that the decision made in node D is
different for the two instantiations of X, i.e.: ép(g,xz) # ép(y,z’)

An analysis of relevant past is given in Shachter (1999) and an algorithm for finding the relevant
past is found in Shachter (1998).

2.2 Assumptions

This section describes the assumptions needed for FLUF. The general idea in FLUF aswell
as in Chajewska et al. (2001), is to determine the relationship between the observed decision
given some past, and the alternative decisions. When a decision is observed it can be assumed
that the expected utility of that decision is greater than for any of the alternatives, as the
agent is assumed to be rational, i.e. always make decisions that maximize the expected utility.

FLUF uses an influence diagram when trying to estimate the utility function of the agent, so
one such must be given. The local utility functions are assumed to be unknown.

In Figure 2.1 an example of an influcence diagram is given, where both D and C are binary,
thus the probability table for C' has four entries, shown in Table 2.1. Similarly the local utility
functions can be expressed as tables, shown in Table 2.2. Such tables are called wutility tables.
Each value returned by the utility functions could also be considered as a single utility value
(denoted v;) which is shown in Table 2.3. Furthermore, the utility values are assumed to be
normalized, therefore the space spanning the utilities is bounded by 0 < v, <1,---,0< v, <1
if there are m utility values, which means that there are m different configurations of pa(U), this
region is called the normalized region. Within this normalized region, constraints, describing
the relationship between the expected utility of the observed decision and the alternative
decisions (elaborated later in Section 2.3 and Section 2.4), are added. The space spanned by
these constraints is called the feasible space or the wutility space.

For practical reasons, which will be described later, it is an advantage to include each utility
in every cell of all utility tables. This is done by multiplying each utility with a coefficient
that is either zero or one. An example of this is shown in Table 2.4 where the entry Vi(c;) is
described by the coefficients (1,0, 0,0) to stipulate that vy is the only relevant utility.

In general, each cell in all utility tables is given a cell number, such that no two cells have the
same number. So the local utility function for utility node U; can be described as:

Vi(pa(Uy)) = i pa(u,)vi
=1

2.3. FuLLy OBSERVED STRATEGIES

where i denote cell numbers. a; ; o) is 1 if @ is the number assigned to the cell corresponding
to the parent configuration pa(Uj), and 0 for all others.

2l 2 a1 C
C d do Ui Vile) Vile) Ui v v
1 p q c c
1 2
cac 1l-p 1-q c1 C2
Uy Voler) Valep) Uy vs s
Table 2.1: P(C|D) from Figure
2.1 Table 2.2: Uy(C) and U2(C), muple 2.3: Uy(C) and Uz(C),
from Figure 2.1, as utility func- from Figure 2.1. as values
tions & Y
U c1 C2

Uy 1vi +0vy + Ovg 4+ 0vy Ovg + 1o 4+ Ovs + Ovg

U C1 C2
Us Ovi +0vg + 1lug 4+ 0vy Ovy + Ovg + Ovs + 1oy

Table 2.4: Unique utility values from Figure 2.1

o—

O

Figure 2.1: Example influence diagram

When using FLUF it is assumed that a series of observations have been made. These ob-
servations describe a sequence of variables observed and decisions made by the agent. Each
observation contains an instantiation of Iy, I ...I,_1 and Dy, D5...D,. The reason I, is not
included is that the variables in I,, are observed after the last decision, if at all. These series of
observations fall into two categories: fully observed strategies and partially observed strategies.

2.3 Fully Observed Strategies

Assuming that the observed strategy is fully observed, then the following method can be used
to determine boundaries for the utilities.

Given some instantiation of Dy for some past(Dy, where past(Dy) is the relevant past of
decision node Dy, the observed choice in Dy for that particular configuration of the relevant
past is denoted dp, (past(Dy)). The entire past of Dy, i.e. all nodes prior to Dy, in the temporal
order, is denoted epast(Dy). If Dy, is the last decision node, the expected utility of the observed
choice can be calculated by Equation 2.3.

CHAPTER 2. THE METHOD FLUF

oo, (0p, (past(Dy)), epast(Dy)) = Z P (Ix|epast(Dy), 6p, (past(Dy))) - V (pa(U))

Iy
= Z P(I Npa(U)|epast(Dy), dp, (past(Dy))) - V (pa(U))
I.Npa(U)

(2.3)

It is not necessary to maximize D), as the observed choice is known. pp, denotes expected
utility of the choice and entire past received as arguments.

Now, by working backward from the last decision node, D,,, it is possible to determine a
set of constraints C. These are constraints on the utility values, and given these constraints
the utilities can be estimated. The constraints span a utility space over the utilities. Any
combination of utilities in this space could explain the observed strategy.

The overall method is to look at the last decision node and, based on the observations, de-
termine what choice was made for each of its possible configuration of the relevant past. It
is possible to determine the choice for each past configuration because it is a fully observed
strategy. For each of the observed decisions, the expected utility of the observed choice must be
greater than or equal to the expected utility of the alternative choices, as the agent is rational.

To establish constraints, let O denote the set of all the observations. o is a single observation
in O on the form: ig,dy,41,...,9n_1,dn. 0k is then the observations of ig,d1,...,ix_1,dr_1 in
0.

First let kK = n, then for each observation o € O add the following constraints to C:

vdeDk\zSDk(Ok) * PDy, (5Dk (Ok)a Ok) > PDy, (da Ok) (24)

After having added the constraints for all the observations, then replace the last decision node
(D) with a chance node where the probability for the observed choice (dp, (0x)) is one and
the probability for the alternative choices, given the same relevant past configuration, are zero.
This means that the chance node replacing Dy must have all nodes in the relevant past of Dy
as parents. Then apply Equation 2.4 for k¥ — 1 and continue until k£ = 0.

The constraints are described as strict inequalities, since any strategy could have been explained
by the trivial utility function, where all utilities from the same utility nodes are equal, if the
inequalities had not been strict. This is because the set of points describing the trivial utility
function define a part of the utility space, called the diagonal', that constraints can at most
be tangents to. Appendix A presents a proof that constraints created based on fully observed
strategies will always be tangents to this diagonal.

2.4 Partially Observed Strategies

This section introduces the calculations needed for generating constraints when the strategy
is only partially observed. When the observed strategy is only partially observed it is not
possible to use the same method as for fully observed strategies. If one of the decision nodes,
say Dy, is not observed for a particular configuration of the relevant past, which is the case by
definition when the strategy is only partially observed, then to calculate the expected utility
for the decision node prior to Dy, the following equation would be used:

I This set of points is called the diagonal because it includes the line from (0,0,...,0) to (1,1,1,...,1)

10

2.4. PARTIALLY OBSERVED STRATEGIES

pDi_s (Op,_, (past(Dy1)), epast(Dg—1)) = Y P(Ix—1lepast(Dx_1),0p, _, (past(Dy-1)))

Ik —1

- > Py, (dlpast(Dy)) Y P(I|d, epast(Dy)) - V(pa(U))
de Dy, Iy

where P,;Dk is the probability function that replaces decision node Dy with a chance node
where the probability for the observed choice is one and all others are zero. Unfortunately
P, (dlpast(Dy)) is not known as decision node Dy is not observed given the past past(Dy).

Alternatively the method could be based on the assumption that the choice in the decision
node Dy is the one that maximizes the expected utility, which is reasonable as the agent is
rational. Under this assumption Equation 2.5 calculates maximum expected utility for decision
node Dy, given its past.

pp, (epast(Dy)) = mDax E P(Iy|epast(Dy), D) - pp,., (epast(Dyy1)) (2.5)
k
Iy

However, Equation 2.5 is not linear, because of the maximization, which makes it infeasible
for determining the constraints.

The problem of making p linear can be solved by relaxing the constraints. For each constraint
an upper bound and a lower bound is created like done by Chajewska et al. (2001). These
bounds are constructed so that the upper bound is always larger than the expected utility for
the node the constraint is derived from, and the lower bound is always less than the expected
utility. The upper bound is created so that the for each utility value the decision is assumed
to be made so that it maximize this utility value. This means that the probabilities that the
utility value have to multiplied with (see Lemma 2.1) are as large as possible. As this is done
individually for the utility value the coefficients for each utility value will always be as large
or larger than the corresponding coefficient when using Lemma 2.1. The opposite holds when
calculating lower bound.

Formulae for Partially Observed Strategies

In order to be able to describe the method for developing constraints these upper and lower
bounds, a series of equations are necessary.

In the following p denotes the calculation of the upper bound and p the lower bound. These
bounds are calculated for each configuration of the relevant past. Whether the decision node
is observed for that relevant past, determines which equation is used.

If the decision node is observed in the configuration of its relevant past in epast(Dy) and is
the last node in the temporal order, the equation is:

P, (epast(Dy), dp, (past(Dy)) = p,, (epast(Dy). op, (past(Dy))
= 3" P(Lilepast(Dy), 5p, (past(Dy))) - V(pa(U))

Iy,

= Z P (I N pa(U)|epast(Dy), 6p, (past(Dy))) - V (pa(U))
INpa(U)

(2.6)

11

CHAPTER 2. THE METHOD FLUF

In Equation 2.6 it is not necessary to maximize the expected utility for the decision node Dy, as
it has been observed. Note that Equation 2.6 is the same as Lemma 2.1 where k = n, meaning
that p = p = p when the decision node is the last decision node in the temporal order.

If the decision node is the last node in the temporal order and is unobserved given the relevant
past in epast(Dy) and there is [utility nodes in the domain, the bounds are calculated as:

Pp, (epast(Dy)) =

Z max Z P(Ix Npa(U)|epast(Dg), Di) -

‘ Dy,
=1 I,Npa(U)

MN

(ipay)) | -vi | (27)

<.
Il
—

pp, (epast(Dy)) =

1
Z rrll)ikn Z P(I; N pa(U)|epast(Dy), Dy) Z (@ipaw;)) | - v (2.8)
i=1 I Npa(U) J=1

An important aspect of Equation 2.7 and 2.8 is that the components under the maximation
are probabilities and coefficients, which both are constants. The utility variables (v;), the only
variables in the equations, are outside the maximation, so the equations are linear in the utility
values.

If the node is observed given the relevant past in epast(Dy,) and it is not the last decision node
in the temporal order, the bounds are calculated according to the equations:

Pp, (epast(Dy), op, (past(Dy)) =

Z P (Ix|epast(Dy), 6p, (past(Dy))) - PDisa (epast(Di+1)) (2.9)
Iy

Pp, (epast(Dy), dp, (past(Dy)) =

ZP(Ik|epast(Dk),5Dk (past(Dy))) -,(_)DHl(epast(DkH)) (2.10)
Iy

If the decision node is unobserved in the configurations of its relevant past in epast(Dy), it is
still necessary to calculate the bounds, as Equation 2.9 and 2.10 are defined recursively.

For defining the equations that describe how to calculate the bounds for unobserved nodes,
the definition for pp, has to be extended. pp, can be described as: pp, (epast(Dy)) =
pD.1(epast(Dy))vi + pp, 2(epast(Dy))vs ... where pp, ;(epast(Dy)) is the coefficient of v;
in pp, (epast(Dy). The bounds for unobserved decision nodes given the past epast(D}) prior
to the last node is calculated as follows.

Pp, (epast(Dy)) =

Z (max (ZP Ixlepast(Dy), D) - Pp,, ., Z(epasf(DkH))) -Ui> (2.11)

i=1

Pp, (epast(Dy))

[r

@
Il
-

<r%11? (Z P(Ig|epast(Dy), Dy) -BDHI,Z,(epast(DkH))) -Ui> (2.12)
Iy,

12

2.5. CHOOSING UTILITY VALUES

Note again that the part of the equations that is being maximized, does not contain any utility
variables meaning that the equations are linear in the utilities.

With these equations it is possible to find the constraints.

First let kK = n, then for each observation o € O: If decision node Dy, is observed in o add the
constraints:

vdEDk\zSDk(ozc) : ﬁ((SDk (Ok)v Ok) > /_)(da Ok)

Then decrease k by one and iterate through the observations again, until k reaches zero meaning
that all decision nodes have been evaluated.

2.5 Choosing Utility Values

This section introduces the method for choosing the utility values to be used in FLUF. When
the feasible space has been established some utility values have to be chosen. Any point within
the feasible space is considered valid. In FLUF the selected utility values are defined as the
coordinates of the center of the largest possible hypersphere in the feasible space. The overall
strategy is to choose a point that is within the constraints so that the radius of the sphere
from that center is as large as possible. This is expected to be a fairly good strategy as
the constraints span more utility values than those that can explain the observed behavior.
The invalid utility values will likely be near the constraints as the constraints are relaxed,
meaning that utility values near the constraints might be in the feasible space only as a result
of this relaxation. So the further from the constraints, the utility values are chosen, the more
observations are expected to be explained, as long they are in the feasible space.

Let the set of constraints be ¢1(v), ca(v),...,c.(v) and each constraint be defined as ¢;(v) =
€101 + Ci2v2 + - - + CimUm > 0 where each ¢; ¢ is a constant. A new set of linear inequalities
is defined from the constraints as follow:

d(p; ci(v)) =7
where r is a new variable expressing the radius of the sphere, and d(p, cx(v)) is the distance
from the point p to the hyperplane described by ci(v). d is calculated as:
Ck,1P1 + Ck2D2 + -+ - + CknDn

d(p, ck(v)) = 5 5 5
\/Ck,l tCat Ty

This means that the linear inequality for each constraint is as follows:
Ck,1P1 + Ck2D2 + -+ - + CknDn >
\/0%71 +p%’2 +o C%m

Ck,1P1 + Ck2P2 + -+ ChnPn 2T \/031 +gat e,

CkaP1 + Cr2pe + -+ ChPn — T \/CZJ +ep gt e, >0 (2.13)

Besides the inequalities for the constraints, inequalities have to be added to ensure that the
center of the hypersphere is within the normalized region.

13

CHAPTER 2. THE METHOD FLUF

Each of the coordinates of the center must be above 0. So for each dimension ¢, i.e. t € [1;7],
the following inequality is added:

Dt >

pe—r =0 (2.14)

Similarly each of the coordinates of the center must be less than one, for the each dimension
in the feasible space.

pt+r <1

)

pt+r—1 <0 (2.15)

Then r is maximized in accordance with the inequalities from Equation 2.13, 2.14 and 2.15.
This can be solved as a linear programming task (Fraleigh and Beauregard, 2003).

The centroid (po, p1, - - -, pn) is then a point within the feasible space. As each dimension in the
feasible space corresponded to a utility, the values of the utilities are set to the corresponding
coordinate of the centroid. The point chosen is also called the wutility point.

2.6 Comparison of FLUF and Chajewska et al. (2001)

As mentioned FLUF is based on the method proposed by Chajewska et al. (2001), so in this
section these two methods will be compared. This will include comparison in both structure
and in complexity.

2.6.1 Structure

The immediate structural difference between FLUF and the method presented in Chajewska
et al. (2001) is that FLUF operates on influence diagrams whereas Chajewska et al. (2001)
operates on decision trees. As already argued in Hansen et al. (2004) any symmetric decision
tree can be described as an influence diagram, and any decision tree can be made symmetric
by inserting additional artificial nodes. These artificial nodes must have the same state space
as the corresponding nodes in the alternative branches. The reverse process from influence
diagram to decision tree is also possible, so the representation of the domain does not affect
when either method can be used. As there is no decision scenario where influence diagrams can
be used while decision trees cannot, or vice versa, the remainder of this analysis will assume
that both are given. If that should not be the case, the described transformation might be
necessary which is a non trivial procedure.

Chajewska et al. (2001) assumes that each utility node comprises a series of linear additive
subutilities. Each of these subutilities are assumed to contribute to all outcomes by some weight
(zero if they do not contribute at all). When comparing decision trees and influence diagrams,
each branch of the decision tree equals one instantiation of the entire influence diagram, and
vice versa. This means that when comparing the utility nodes of an influence diagram with the
utility nodes of a decision tree, all of the utility nodes in the influence diagram contribute to
each of the utility nodes in the decision tree. Each of the possible outcomes of each utility node

14

2.6. COMPARISON OF FLUF AND CHAJEWSKA ET AL. (2001)

in the influence diagram can be considered a single subutility in the decision tree. A significant
number of the weights for the subutilities will be zero, as for each branch in the decision tree
only a single utility value from each utility node in the influence diagram can contribute. This
matches how FLUF considers the utility nodes in influence diagrams.

In the method presented by Chajewska et al. (2001) the expected utility is calculated for each
node in the decision tree including the chance nodes, whereas FLUF only calculates it for the
decision nodes. FLUF instead incorporates the chance nodes in calculation of the expected
utility for each decision node. It is fully possible to only calculate the expected utility for
the decision nodes in the decision tree as well. Considering the formula for calculating the
expected utility for an unobserved decision node in a decision tree. (V,[v] is the upper bound
for expected utility in node n in a decision tree, and S(n) is the set of successor nodes of node
n. This notation is presented in Chapter 2 and Chapter 3 in Hansen et al. (2004))

?n[v] = Z max (ap/ ;- v;) (2.16)

Pt Qs i €S(n)

The expression being maximized (o, ; - v;) can be replaced with the formula for calculating
the expected utility for chance nodes, shown in Equation 2.17.

n’€S(n)

If the decision node, n, is not followed by chance nodes in some or all of the edges leading out,
the corresponding successors could, during calculations, be treated as if there actually was a
chance node between them and n, with only one state. This would not increase complexity,
as the corresponding n’ € S(n) would only describe one element in the inserted chance node.

As Equation 2.17 shows, Va [v] generates a mean of the successors if n is a chance node, so
to use Equation 2.17 in the scope of decision nodes, the notation of Vn[v] is expanded to

Valv] = Zgl(vm[v] - v;), meaning that ?nz[v] is the coefficient attached to utility number
¢ in node n. Now the result of merging Equation 2.16 and 2.17 is shown in Equation 2.18.

En[V]=Z max > P - Vi) | - v (2.18)
=1

n’€S(n) T

Comparing Equation 2.18 with the formula used by FLUF (Equation 2.19) the similarities
between the two methods can be seen. Equation 2.19 uses p to denote the expected utility
whereas Equation 2.18 uses V.

Pp, (epast(Dy)) Z <max <ZP (Ik|epast(Dr), Di) - Pp,, ,, 1(epast(Dk+1))> -vi> (2.19)

Note that Equation 2.18 does not explicitly have to take the past into consideration, as it is
represented by the node’s position in the tree.

When choosing the utility function, FLUF and Chajewska et al. (2001) uses completely differ-
ent methods. FLUF finds the utility values that are as far away from the created constraints

15

CHAPTER 2. THE METHOD FLUF

as possible. Chajewska et al. (2001) assumes that a probability distribution over utility func-
tions is given. This is then used to find a utility function within the feasible space that has
a high likelihood. The exact difference between the utility function chosen by FLUF and the
one chosen by Chajewska et al. (2001) depends on the supplied distribution over the utility
functions, and no general conclusions are drawn. The difference between the two methods for
choosing utility functions, do not only affect the utility function, but also makes the prerequis-
ites for using the methods different as FLUF does not require a prior knowledge about the
utility function.

In conclusion, FLUF and Chajewska et al. (2001) creates the same feasible space given that the
subutilities in Chajewska et al. (2001) is represented as described here. This is no coincidence as
the underlying work for how FLUF creates its constraints, is the work presented in Chajewska
et al. (2001). The most significant structural difference between the methods is how the utility
function is chosen within the feasible space.

2.6.2 Complexity

When solving decision trees and influence diagrams, both representations have a worst case
time complexity that is O(nodes**®***) where nodes is the number of decision and chance nodes
in the domain for influence diagrams, and the depth of the tree for decision trees. states is the
largest state space of any node in the domain. However, the worst case time complexities of the
methods (Chajewska et al. (2001) and FLUF) are O(nodes®*4¢ . utilities), where utilities is
the number of (sub)utilities in the domain. This is because, as Equations 2.18 and 2.19 show,
coefficients must be calculated for every (sub)utility. Had the method for decision trees not
been rewritten to Equation 2.18, the same calculations would still have to be made, though in
a different order.

However, even though the time complexities of the two methods are identical, the complexities
of the models are not the same. The number of nodes in a decision tree grows exponentially
in the depth of the tree, as each potential future for a node will have to be modeled. More
precisely the complexity is O(states™?*). This means that if the decision scenario always
involves the same decisions and the same uncertainties in the same order, the tree will be
symmetric where each decision and each uncertainty is represented once for each configuration
of the past.

When the decision scenario always involves the same decisions and uncertainties in the same
order, influence diagrams have a lower complexity, with regard to the number of nodes, than
decision trees. The reason being that the configuration of the past is not represented in the
qualitative part of the influence diagram. The number of nodes is constant, no matter the
size of the state spaces. However, the size of the needed probability table is always a fixed
size based on the state space, so if the past in the decision scenario can make a decision or
uncertainty irrelevant, the influence diagram still have to model all outcomes, even those that
will no impact on the utilities.

In conclusion, if the relevant pasts of the decision nodes are large, meaning they contain a
large number of nodes, and that there are many configurations of the relevant pasts that have
probability zero, decision trees will have a lower complexity with regard to number of nodes.
If the relevant pasts of the decisions are small and there are few configurations with zero
probability influence diagrams will have a lower complexity.

16

2.7. LIMITATIONS OF FLUF

2.7 Limitations of FLUF

In this section an analysis of the learning method used by FLUF is presented, highlighting the
steps in FLUF in which the inaccuracies occur.

FLUF analyzes which utility values in an influence diagram that could describe the observed
behavior of an agent. Basically it tries to define a feasible space for the utility values, as
more than one set of values could describe the observed behavior. But the complexity of
finding the feasible space of utility values that exactly describes the observed behavior makes
it impractical. Therefore FLUF uses a less complex method that finds a different space, which
is a super space of the exact feasible space, and chooses its utility values from this super space.
This relaxation decreases the accuracy with which FLUF can estimate the utility values of the
observed agent. It may result in FLUF not being able to determine a utility function that
could explain the behavior already observed, even if the agent’s utility values never change. A
method that defines the constraints as exact as possible will be denoted the optimal method.
In the following section FLUF will be compared to the optimal method in order to understand
where the inaccuracies in FLUF occur.

2.7.1 The Optimal Method

The feasible space spanned by a constraint created using FLUF is larger than the feasible space
that could explain the observed behavior. For an observed decision (Dg(ox)), the calculations
of p (the expected utility) is done as if the subsequent unobserved decisions are in the state
that gives the largest possible coefficient for each utility value.

When FLUF determines constraints, a lower bound for the expected utility for the decisions
that was not selected is also determined. When calculating this, the unobserved decisions are
assumed being in the state that give the smallest possible coefficients for determining p. This
ensures that the utility space describing the observed agents strategy is a sub space of the
space spanned by the created constraint.

The most exact expected utility that could be defined for an unobserved decision node, is using
the formula for calculating the expected utility:

max Zlk P(Iy|epast(Dy), Dy) - pp,,, (epast(Dyy1)) k#n
k

PPt = eSS, PUklepast(Dy). Di) -V (pa(t)) k=n

This formula can be used in conjunction with the following formula, for calculation of p when
the configuration of the relevant past of Dy, in epast has been observed to be dp, (past(Dy)).

ppy.(epast(Dy), op, (past(Dy))) =

Zlk P(Ik |€pCLSt(Dk), 5Dk (pGSt(Dk))) " PDry1 (epa5t(Dk+1)) k 75 n
1, P(Ixlepast(Dy), p, (past(Dy))) - V(pa(U)) k=n

With those two formulas the constraints for each observation can be added. The constraints
for each observed decision are created as:

vdeDk\lSDk(Ok) * PDy (5Dk (Ok)a Ok) > PDy, (d, Ok)

The feasible space spanned by the constraints of the optimal method is denoted the true feasible
space or the true utility space.

17

CHAPTER 2. THE METHOD FLUF

For an unobserved decision node Dy, in some configuration of its relevant past, the normalized
region can be divided into subregions, one for each possible decision in Dy. For all utility points
within each subregion, the corresponding decision of Dy, will yield the maximum expected. If
all the different relevant pasts of Dy are considered in this way, then each relevant past will
divide the normalized region in a set of subregions, each of these corresponding to a specific
decision for that relevant past. If a point is chosen in the normalized region, then by examining
which subregions it is in, then a complete policy for node Dy can be described.

When creating constraints using the optimal method, for some decision in a node, D,, that
preceeds Dy (p < k), then a constraint for each possible policy, conforming with the behavior
observed so far, is created. These constraints are calculated as if the policy had been observed,
meaning they can be created as for fully observed strategies, Section 2.3. However, each
constraint is only valid in the subregion corresponding to the policy used to create it, so the
space spanned by the constraint is intersected with this subregion. Now the spaces spanned
within each subregion describe the utility points that can explain the observed decision in D,,
when the policy in Dy, is the one associated with that subregion.

The total space that can describe the observed D, is the union of all the spanned spaces in
the subregions. The reason all the subregions have to be included is that the subregion that
the utilities are actually in is unknown.

Exactly which utility point that is chosen within the true utility space is irrelevant as they
would all described the observed behavior. So to choose the utility point as the center of the
largest possible hypersphere of the true utility space could still be done. It should be noted
that finding this is significantly more complex than for FLUF, as the space is no longer spanned
by linear constraints.

Now, the only difference between this optimal method and FLUF is the way the feasible space
is determined, so this will be examined closer. Only unobserved decision nodes are examined,
as the calculations in observed nodes are semantically identical. Using a notation that is like
the one used to describe FLUF the optimal method would use Equation 2.20 (Note that p for
the optimal method is neither overlined nor underlined).

pp, (epast(Dy)) = max (Z P(Ig|epast(Dy), Dk)pDk+l(epast(Dk+1))>
Iy

Ms

= max <ZP Ii|lepast(Dy), Dy,) - (PDysr i(epast(Dyg1)) v1)> (2.20)

Il
-

3

= max (Z (Z P(Ix|epast(Dy), Dy, -pDHm(epast(Dkﬂ))) -vi>

i=1 \ I

This calculation is done for each subregion of Dy, such that maxp, yields a different decision
in all these calculations. However, pp,_, i(epast(Dy41)) represents the expected utility of
strategy followed by the decision nodes following Dy, in the temporal order. This means that
for each possible choice in Dy this calculation has to be done once for each set of policies for
subsequent decision nodes, consistent with all observations made and the chosen decision in
Dy.

When FLUF maximizes the coefficients for utility values it uses Equation 2.21.

Pp, (epast(Dy)) Z <max <ZP Ix|epast(Dy), Dk) - Pp, ., 1(epast(Dk+1))> .v¢> (2.21)

18

2.7. LIMITATIONS OF FLUF

Comparing Equation 2.20 and 2.21 it can be seen that the difference is in the order in which the
decision is made and when the utility values are added. As sum and max are not commutative,
these are not equivalent. In fact it will always hold that, no matter which decision is chosen
for pp,:

Py 2 P, (2.22)

The opposite argument can be made for how FLUF minimizes the coefficients for the utility
values:

Pp, (epast(Dy)) = Z; <H[1)i:1 (; P(Ix|epast(Dy), Dy) -,(_)Dk+l7i(epast(Dk+1))> -vi> (2.23)

Meaning that it will always hold that:

Pp, < PDy (2.24)

Basically, the constraints created by FLUF are of the form (in FLUF strict inequalities are
used, but that does not affect this discussion):

Ve, : Dpesp, (epast(Di)) — p,, _ (epast(Dy)) > 0 (2.25)

Where dp, is the observed choice in decision Dj. Using the optimal method the constraints
are of the form:

vdE[)k : pDk:5Dk (epaSt(Dk)) - pDk:d(epa’St(Dk)) Z 0 (226)

From the established relationships in Equations 2.22 and 2.24, used by FLUF and the optimal
method, it can be concluded that the feasible space spanned by the constraints in FLUF will
always be a super space of the corresponding constraints in the optimal method.

Another way of comparing the feasible space of the optimal method and FLUF, is to look at
how many of the observations the methods would be able to explain after having observed
them. In other words, examining whether the constraints created during observations will be
descriptive enough, for the method to predict the decisions correctly if one of the observations
were repeated. An experiment was conducted using the static domain from the experiments in
Hansen et al. (2004). It was determined how many of the already observed training cases could
be predicted by the method every time a new observation is added. The optimal method has
not been implemented but, theoretically, its chosen utility point would be able to explain all
observed decisions. So the number of training cases that FLUF is unable to predict correctly,
indicates how it performs compared to the optimal method, and thereby expresses how much
have been lost in the approximation being done by FLUF.

The values shown in Figure 2.2 is the average of training cases predicted correctly (that is both
decisions are correct). This average is based on 30 runs with 200 observations. As can be seen
in Figure 2.2 FLUF is able to predict 80% of the observed training cases correctly, on average,
after only one case. The prediction by FLUF stabilizes at that level after 20 cases.

As about 20% of the observations are not correctly predicted by FLUF it indicates that the
utility point is wrong. This means that the feasible space of FLUF must be larger than the
feasible space of the optimal method, as the optimal method would be able to predict the
observations from any utility point in its feasible space.

19

CHAPTER 2. THE METHOD FLUF

g os6f
8
04+
02
0 0 ”20 40 (;O éO lE)O 1‘20 1;0 l%O 1‘80 200
Observations
Figure 2.2: Training cases predicted correctly
P(Cy|D;) Dy=di D;=d} P(C5|Cy, Dy) Dy = dj Dy = dj
cl 0.3 0.75 i (0.4,0.2,0.4) (0.1,0.4, 0.5)
c 0.7 0.25 c? (0.1,0.7,0.2) (0.3, 0.1, 0.6)
Table 2.5: P(C1|D1) for Figure 2.3 Table 2.6: P(C2|C1, D2) for Figure 2.3

Example 2.7.1 In order to illustrate the inaccuracies discussed, an example is given of how
calculations would be made. The influence diagram used in this example is shown in Figure
2.3, and the probability tables are shown in Table 2.5 and 2.6. Both decision nodes are binary.

The following observation is made:

t= <D1 = d%,C’l = C%,DQ = d§>

Using FLUF the upper and lower bounds for the decisions are calculated. First for Ds.

Poa(Cr=ch Dy =) = Pl @)WV (ch) + Pl B)V(A) + P, V()
0.1(v1 + Ovg + Ovs) + 0.4(0vy + v2 + Ovg) + 0.5(0vy + Ove + vs3)
0.1v1 + 0.4v9 + 0.5v3
pp,(Cr=cl,Da=dy) = P(cler, dy)V(ey) + P(c3|el, d3)V(c3) + P(c3ler, d3)V(c3)
= 0.4(vy + Ovg + Ovz) + 0.2(0vy + vo + Ovg) + 0.4(0vy + Ovy + v3)
= 0.4v7 4+ 0.2v9 + 0.4v3

Figure 2.3: Example of an influence diagram

20

2.7. LIMITATIONS OF FLUF

This gives the constraint:

Pp,(C1=ci, D2 =d3) > p, (C1 =cj, D2 = dy)
0.1v1 + 0.4ve + 0.5v3 > 0.4v; + 0.2v9 + 0.4v3 (2.27)
—0.3v7 + 0.2v9 + 0.1v3 > 0

A constraint for D; is also be created. Again the upper and lower bounds have to be calculated.
Pp, (D1 =di) = P(ci|d})pp,(c1) + P(c1|d?)pp, (c})
= 0.75(0.1vy + 0.4v5 + 0.503) + 0.25(
max (P(3, da)ay 1.0y + P(SIG, da)ay 1. + P(EIG, da)ay 1) vr +
2
max (P(C%Ma da)ay ey + P(c3|cf, dz)ay o 3 + Plc3|ct, dz)amz,cg) vz +
2
1.2 2) .2 3) .2
max (P(c}|e, da)ag . + P(c3led, do)ay 3 3 + PSS, da)as g) vs)
2

= 0.07501 + 0.305 + 0.3753 + 0.25((0.3- 1+ 0.1- 0+ 0.6 - 0) v; +
(0.1-040.7-1+0.2-0)v2 + (0.3-040.1-0+0.6 - 1) v3)

= 0.075v1 + 0.305 + 0.375v3 + 0.25(0.3v; + 0.7v + 0.6v3)

= 0.150; + 0.475v3 + 0.525v3

o (Di=d) = P(d)p, () + Pld)p, ()
= 0.3(04v; +0.205 + 0.4v5) +0.7(
min (P(c%|c%7d2)aU,l7cé + P(c3|ef, da)ayy, + P(C§|C%ad2)aU71,cg) v+
2

min P(C%|C%’ dz)aUQ el T P(C§|C%5 dQ)aUQ 2+ P(C§|C%a d2)aU 2,c3 | V2 +
D2 14+ 142 142

min (P(c3|ct, dz)ay s o + P(3|ct, da)ay sy + P(c3|cl, do)ay 5.3) vs
Do 19,C3 »9,Cg »9,Co

= 0.12v1 4 0.06v2 + 0.12v3 + 0.7((0.1- 1+ 0.7-040.2-0) vy +
(03:04+0.1-1+40.6-0)v24 (0.1-040.7-0+0.2- 1) v3)

= 0.12v1 + 0.06v + 0.12v3 + 0.7 (0.1v1 4 0.1vg + 0.2v3)

= 0.22v; + 0.16vy + 0.32v3

This gives the constraint:

pp, (D1 =d}) > p, (D1 =d)
0.15v; + 0.475v9 + 0.525v5 > 0.22v; + 0.16vy + 0.3203 (2.28)
—0.07v1 + 0.315v5 + 0.205v3 > 0

The constraints generated when using the optimal method will now be calculated, with these
it is possible to define a smaller feasible space. The constraint from Equation 2.27 is also

21

CHAPTER 2. THE METHOD FLUF

present using the optimal method as no maximization is involved in determining it. However,
calculating the constraint for D; is done differently.

pp,(d) = Pleildi)pp, (1) + P(cild?)pp, (cf)
0.75(0.1v1 + 0.4v2 + 0.5v3) +
0-25(1%%(13(050%7 da)vr + P(c3ci, da)va + P(c3|c}, d2)v3))
2

This calculation must be done for each subregion consistent with the observation made. As Do
has two options and only has one unobserved relevant past, there will only be two subregions
in the normalized region for which constraints must be calculated. These subregions are found
by comparing expected utilities:

pp,(C1 =i, Dy =dy) = P(cs|ct,dy)vr + P(c3|ct, dy)vs + P(c3|cT, dj)vs
= 0.1vy + 0.7ve 4+ 0.2v3
pp,(C1=ci,Dy =d35) = P(cy|c},d3)vy + P(c3|cf, d3)va + P(c3|ct, d3)vs

= 0.3v1 + 0.1v9 + 0.6v3

Now it is possible to complete the calculation for pp,(d?) in both subregions, as in each
subregion a specific choice of Dy can be considered optimal when C is in state c3:

0.1v1 + 0.7v9 + 0.2v3 < 0.3v1 + 0.1v2 4 0.6v3 :

pp,(d7) = P(cild])pp,(c1) + P(cild})pp,(c])
0.75(0.1v1 + 0.4v2 + 0.5v3) + 0.25(0.3v; + 0.1v9 + 0.6v3)
0.15v1 4+ 0.325v9 + 0.525v3

0.3v1 + 0.1vg + 0.6v3 < 0.1v1 + 0.7v2 4+ 0.2v3 :

pp,(d7) = P(ci|d?)pp,(ci) + Pleildi)pp, ()
0.75(0.1v1 + 0.4v3 + 0.503) + 0.25(0.1v1 + 0.7 + 0.203)
= 0.1v1 + 0.475v9 + 0.425v3

In order to create the constraint it is also necessary to determine pp, (d?):

0.1v1 + 0.7v9 + 0.2v3 < 0.3v1 + 0.1v2 4 0.6v3 :

P(cild)pp, (c7) + P(cildi)pp, (c])
= 0.3(0.1v1 + 0.4v2 + 0.5v3) + 0.7(0.3v1 + 0.1v2 + 0.6v3)
= 0.24v7 4+ 0.19v5 + 0.57v3

PDy (d%)

22

2.7. LIMITATIONS OF FLUF

0.3v1 + 0.1v2 + 0.6v3 < 0.1vy 4 0.7Tvy 4 0.2v3 :

pp,(d1) = P(ci|d})pp,(c1) + P(&]d)pp, ()
= 0.3(0.1v1 + 0.4v2 + 0.5v3) + 0.7(0.1v1 + 0.7ve + 0.2v3)
= 0.1v; 4+ 0.61vy + 0.29v3

The constraint pp, (d?) > pp, (d}) can now be determined:
0.1v1 + 0.7vy 4+ 0.2v3 < 0.3v1 + 0.1v9 + 0.6v3 :

PDy (d%) > PD; (d%)
0.15v1 + 0.325v2 + 0.525v3 > 0.24v1 + 0.19v9 4 0.57v3 (2.29)
—0.09v7 4+ 0.135v9 — 0.045v3 > 0

As this constraint is only valid when 0.1v14+0.7v2+0.2v3 < 0.3v1+0.1v240.6v3, it is intersected
with the constraint 0.2v; — 0.6v2 + 0.4v3 > 0. This intersection describes the feasible space in
the first subregion.

For the second subregion 0.3v; + 0.1vy + 0.6vs < 0.1v; + 0.7v5 4 0.2v3 the constraint is:

PD; (d%) > pD, (d%)
0.1vy 4 0.475v9 + 0.425v3 > 0.1v1 + 0.61vs 4 0.29v3 (2.30)
—0.135v2 + 0.135v3 > 0

As this constraint is only valid when 0.3v; 4+0.1v2+0.6vs < 0.1v14+0.7v2+0.2v3, it is intersected
with the constraint —0.2v; + 0.6vy — 0.4v3 > 0. This intersection describes the feasible space
in the second subregion.

To describe the feasible space found by the optimal method, the feasible space in the two
subregions should first be unioned, and the resulting space should then be intersected with the
space described by the constraint in Equation 2.27.

In Figure 2.4 the feasible spaces for both methods are shown (it is the space above all the
constraints). As can be seen the space described by the intersection of the green and the
blue constraints is larger than the space described by the intersection of the green and the grey
constraints, meaning that the optimal method defines a smaller region. The difference between
the space spanned by the green plane and the grey planes illustrate the inaccuracy of FLUF.

The grid shows the division of the normalized region, where the decision of Do that yields the
maximum expected utility is different given past c?. In the subregion that contains (1,0,1),
the decision that yields the maximum expected utility for decision Ds is d3. In the subregion
that contains (0, 1,0) the decision is d3.

a

Considering Example 2.7.1, it can be seen that even though that the point (0,1,0) is within
the feasible space of FLUF, that point would not explain the observation as the expected
utilities would become: EU(D; = di) = 0.61 and EU(D; = d?) = 0.475, meaning that the
optimal decision of D; would always be d}. EU is short for expected utility. In general, there
is no guarantee that the utility functions expressed by any point in the feasible space spanned
by FLUF’s constraints can explain the observations made. However, the utility functions

23

CHAPTER 2. THE METHOD FLUF

Figure 2.4: The feasible space defined by Equations 2.27(green), 2.28(blue), 2.29 and 2.30(grey). The feasible
space is the region above the constraints. It might be hard to see what is above, but all constraints contain the
point (0,0.75,1). w1 is from right to left, v2 is from the back to the front, and wvs is from the bottom to the
top. The grid is the division of the subregions for Dj.

expressed by the space spanned by the optimal method will, by its definition, explain the
observations made.

In general it can be concluded that when FLUF is incapable of predicting the observations
already made, it must be because the utility space created by FLUF is larger than the true
utility space. This enlargement of the utility space, is a consequence of the fact that the state
of decision nodes for unobserved configurations of their relevant past is chosen for each utility
value. This is not necessarily the same state for all utility values. If a single state was chosen
for these decision nodes the size of the utility space would be smaller, and the amount of utility
points that does not conform with the observed behavior will be reduced. This might be a way
to achieve better accuracy.

24

CHAPTER

THREE

Imputing

In this chapter the principle of imputing is introduced. Because as shown in Section 2.7, the
feasible space described by FLUF is larger than needed, since FLUF relaxes constraints when
the strategy is partially observed, leading to inaccuracies. Therefore some other method for
handling unobserved configurations of relevant pasts could be employed, which does not relax
constraints and thereby obtains a smaller feasible space. The concept of imputing observations
is introduced for this purpose in this chapter, and two new prediction methods are presented
that use imputing techniques to handle partially observed strategies. These methods are named
Utility Iteration and Imputing by Comparison, and will also be referred to as the imputing
methods.

With a partially observed strategy some configurations of the different relevant pasts in the
domain will be observed, while others will be unobserved. The general idea with imputing, is
to impute observations with the configurations of the relevant pasts in the domain that are
unobserved. Using these imputed observations Utility Iteration and Imputing by Comparison
will be able to create constraints, without relaxing them at all, as described for FLUF in
Section 2.3.

3.1 Imputing Analysis

In this section the consequences of imputing observations is analyzed. Specifically it is ana-
lyzed whether imputing could be an improvement over relaxation, and whether imputations
can cause conflicts. In the new methods that are suggested in the following sections, the overall
idea is to make the observed agent’s strategy fully observed by imputing the missing observa-
tions. Observations that are imputed have not really been observed, so they are called virtual
observations , while the observations that have been made will be called true observations .

As mentioned the inaccuracy in FLUF will stem from relaxing constraints leading to feasible
a space that is to large. The reason for developing methods based on fully observed strategies,
is that the feasible spaces achieved from such methods will describe smaller spaces, because no
relaxation will be necessary. Considering how the constraints are created in FLUF"

hivi + hovg + -+ > Livg + lovg + - -

where each hy is chosen as high as possible and each [lj is chosen as low as possible, both

25

CHAPTER 3. IMPUTING

being coefficients. Assuming the strategy is fully observed, and the constraints are therefore
not relaxed, they will be:

hivi + hhve + -+ > Lo + v + - - -

where each h!, and [, are the coefficients that matches the chosen decision. As it will always
hold that hy > h}, and I;, <!} it will also hold that:

hivi + hovy + - -+ > hjv1 + hoyva + -+ > Loy + lyva + -+ > Loy + lpvg + - -

Any space spanned by the constraints derived from a fully observed strategy is a subspace of
the space spanned by constraint created in FLUF.

Considering the grey constraint in Example 2.7.1 each plane corresponds to different decisions
being made in Ds. In general, when imputing an observation, for an unobserved configuration
of the relevant past, it results in a constraint being equal to one of the two grey constraints
from the optimal method.

3.1.1 Imputations Causing Conflict

Before the methods are introduced, it is discussed how, under certain circumstances, wrong
imputations can cause observations to conflict, i.e. the constraints added cause the feasible
space to become empty, even though the observed agent never changes its strategy. This
analysis is based on the constraints added in the second last decision node (D,_1), in some
domain with n decision nodes (n > 2). For each of the configurations of its relevant past, D,
will yield a (possibly) different expected utility, the decision made in D,,_; will influence the
likelihood of each of these configurations, and therefore any imputed decisions in D,, will affect
the expected utilitiy of decisions in D,_;.

Given a specific combination of imputations in D,,, two constraints can be created in D,,_; that
together makes the feasible space become empty. For this to be the case the two constraints
must coincide, and point in opposite directions, i.e. the constraints would be on the form
ClL VL Cu Uy >0and —cyp-vy -+ - —c¢y - vy > 0 where v is the number of utilities in the
domain. Table 3.1 shows the relationship between the coefficients of the constraints.

Constraint, Constraints
C1 —C1
C2 —C2
Cu—1 —Cy—1
(I-ci--—cu1) —(l—c1---—cu1)

Table 3.1: Relationship between Constraint; and Constraints

The coefficients in these constraints must as always sum to 0, so if the first u — 1 coefficients
of the constraints conform to the described relationship, then the last coefficient will also.

The states of I,,_1 are written (cL_;---¢™), where there are m configurations of the nodes

in I,_1. Throughout the rest of this section three different probability distributions over I,,_;
will be used frequently, therefore shorthand notations for these probability distributions are

26

3.1. IMPUTING ANALYSIS

listed in Equation 3.1.

5 = P(ch_116p, _, (past(Dy-1)), epast(Dy 1))

ph = P(cE_j|d}_ . epast(Do-1)) (3.1)
5 = P(ch_1|d;_y, epast(Dy-1))

Equation 3.2 shows the general method for calculating one coefficient (c¢;) when decision
dp,_,(past(Dy,—1)) is observed. pp, ;(epast(D,)) is the i'th coeflicient determined for D,
given the past epast(D,,).

¢ = Zplg - pp,,i(epast(Dy)) (3.2)
=1

What happens in Equation 3.2 corresponds to replacing decision node D,, by a chance node,
and then calculating the coefficient. To calculate p correctly then, just as when substituting a
decision node by a chance node, the decision node must be fully observed. When this is not
the case, virtual observations are imputed so that pp,, ; can still be calculated.

Now let d._; and d2_; be two decisions in D,,_; different from &p, ,(past(D,_1)), it is
now known that the expected utility of the two decisions are smaller than the expected util-
ity of dp, ,, given past(D,,_1). Let EU(6p, ,(past(D,_1))) > EU(dL_,(past(D,_1))) be
Constraint; while Constraints is EU(0p, _,(past(D,—1))) > EU(d?_,(past(D,-1))). So
coefficient ¢; willbe pp,, ,.:(0p, . (past(Dp_1)),epast(Dy,—1)) with pp, , ;(dL_;, epast(Dy—1))
subtracted, in Constraint;. Based on Equation 3.2, Equation 3.3 shows how coefficient ¢; is
calculated for Constraint;.

m

ci = (5 —p}) - pp,.i(epast(Dy)) (3.3)
k=1

The two constraints are created in the same decision node (D,_1) based on two different
decisions (d}_; and d2_,) given the same relevant past (past(D,_1)) and observed decision
(0n—1(past(Dy—1))). Since the constraints are created in the same decision node given the
same past, then the imputations made, and thereby pp, i, will be the same when calculating
both constraints. Equation 3.4 shows what must hold, for coefficient ¢; in the constraints to
conform with Table 3.1.

NE

(p§ = P5) - pp,i(epast(Dn)) = = > (9§ —pt) - pp,.i(epast(Dy))
k=1

>
Il
—

(2-pk —p¥ —) - pp,.i(epast(Dy)) = 0

NE

~
Il
—

The expression in Equation 3.4 will not always be true. It will depend on the probabilities
in the domain (p%,p} and p%), and the imputed policies (pp,, i(epast(D,))). Each probability
distributions will sum to 1, just as the coefficients calculated with pp,, ; will sum to 1.

Two probability distributions are added in the expression (2 - p¥) while two other probability
distributions are subtracted (—p¥ — pk), so summing this expression over all m configurations

27

CHAPTER 3. IMPUTING

of the relevant past would yield 0. However, all the expressions cannot sum to 0 individually
for all m configurations, unless the utility function is trivial or if the different decisions have no
impact on the utilities. These situations would both make the decision in node D,,_; irrelevant,
in turn making no decision wrong and any prediction correct, so it is assumed that this is not
the case.

Each of the expressions calculated using the probability distributions is multiplied by the
expected utility of their outcome, pp, :(epast(D,)). The sum of this p expression over the
the m configurations will be 1, and non of the p expressions will be negative. This is due
to the utilities being normalized. The pp, ; expressions are decided by the domain and the
imputations made, so any combination of pp, ; values is possible as long as they are all non
negative and sum to 1. The reason for this is that any chance node later the than D,, in the
temporal order have not been used in any expression so far, so the probability distribution for
these chance nodes are not restricted in any way.

Now, with the part of the expression that is determined by probability distributions summing
to 0 over the m configurations and pp, ; summing to 1, then it will be possible to pick a set
of values for pp, ; that makes the entire expression from Equation 3.4 sum to 0.

To summarize, then in a domain where the agent does not change behavior over time, conflicts
can still occur when imputations are made. The type of conflict that has been shown to be
possible is the case where two constraints describe exact opposite half spaces, this is a very
specific situation and is only meant to show that conflicts are possible.

Based on this result the methods that use imputations to make the domain fully observed, must
also consider that these imputations can make the feasible space become empty. Therefore the
methods should include techniques to handle conflicts.

3.2 Imputing Strategy

Utility Iteration and Imputing by Comparison are only dissimilar in the way the unobserved
configurations of relevant pasts are imputed, the overall strategy, that the two methods share,
is presented in this section.

The methods maintain a set of true observations, i.e. all the observations made so far. Every
time a new observation is made this observation is added to that set. When the utility function
is to be estimated by one of these imputing methods then this estimation is done based on
the maintained set of true observations. So the two imputing methods are batch learning
techniques, since when a new observation is made the results of the imputing methods from
before that observations was made are discarded.

When the utility function is to be estimated, this is done by establishing constraints based on
observed decisions. Equation 2.4 is used to create constraints, this equation assumes that the
decision node being evaluated is the last in the temporal order, and finds the expected utility
of each decision by weighing the utility coefficients by their probability of occurrence. For the
imputing methods to use this equation, they must impute virtual observations such that the
strategy of the observed agent becomes fully observed.

After the methods have created constraints based on all the decisions observed in the true
observations, a point in the feasible space is chosen as the estimated utility function. This
point is chosen, as in FLUF, to be the center of the largest possible hypersphere in the feasible
space, see Section 2.5 for a description of the method.

28

3.3. UtiLiTY ITERATION

3.2.1 Basic Technique

This section presents a basic imputing technique that illustrates the concept which the imputing
methods are based upon. This technique basically dictates the order in which decision nodes
should be evaluated and subsequently substituted by chance nodes.

The main idea is to calculate constraints for the last decision node in the temporal order first,
and then replace the decision node with a chance node. The chance node encodes the policy of
the corresponding decision node with ones and zeros. As mentioned, this is only possible if the
decision node has been observed for all configurations of its relevant past, therefore imputing
is done for unobserved configurations. With respect to the last decision in an observation,
adding these constraints is straight forward since no subsequent decision will exist. Therefore
in a decision node (D) where the observed decision was dp and the function p determines
the coefficients for all utilities, as in FLUF, then the following constraints can be added:

Vaep\sp : P(6D) > p(d).

Replacing a decision node (D) with a chance node (Cf), is done after creating constraints
based on the decision in all observations in O, O being the set of true observations, and
thereafter the needed virtual decisions, to replace Dy with C}, are imputed. Now C% can be
used instead of Dy throughout the rest of the imputing method, and it is now possible to
calculate constraints for decision node Dy_; and so forth. Algorithm 3.2.1 shows the order
of the replacing and evaluations of decision nodes when using the basic technique. n is the
number of decision nodes.

Algorithm 3.2.1
e For node =n to 1

— For all observations (0) in O do

* Where dp,_,. is the observed decision and onede is the relevant past of Dy ode
in the observation, add the following constraints to the feasible space:

vdeDnodze\tsD " PDrode (5Dnode ’ Onode) > PDpode (da Onode)

node
— For every unobserved relevant past of decision node D,,,q impute a virtual obser-
vation

— According to true and virtual observations, replace D4 by a chance node

Using this technique means that the number of imputations needed for one decision node will
be relevant — observed, where relevant is the number of different configurations of the relevant
past of the node, while observed is the number of different configurations of the relevant past
that has been observed. Since every decision node is replaced once and used throughout the rest
of the algorithm, the number of imputations needed in the worst case for the entire algorithm
will be O(n - (relevant g, — observedy)), where n is the number of decisions, relevant,,qz
is the largest relevant past in the domain and observed,,;, is the least number of different
relevant pasts observed for some decision node. So the number of imputations is linear in the
number of decisions and configurations of their relevant past, and as more observations are
made less imputations are needed.

3.3 Utility Iteration

In this section the first of the two imputing methods, called Utility Iteration, is presented and
analyzed.

29

CHAPTER 3. IMPUTING

This method imputes virtual observations in order to view the agent’s strategy as fully observed,
and basically Utility Iteration attempts to stepwise refine the utility function, using the previous
version of the utility function. So every time constraints are added to the feasible space a new
utility point is chosen, this point is considered more accurate than the previous point since it
is chosen based on one more observed decision. Every point chosen in this way corresponds
to a so called temporary utility function. The newest temporary utility function is used when
virtual observations need to be imputed, this is described in Section 3.3.1.

Each step in the refinement is done when the constraints added by one decision in one configur-
ation of its relevant past, are added, i.e. as observed in one of the true observations. When the
domain is static, the order of the observations is irrelevant. However, the order in which the
decisions are evaluated is not irrelevant, since decisions late in the temporal order will create
more accurate constraints.

The inaccuracy in the Utility Iteration method stems from the imputations that are made
during execution, so the more imputations that affect the constraints created for a decision,
the less reliable the constraints created will be. For this reason constraints are created in reverse
order of the temporal order, such that the last decision in the temporal order is evaluated first.
Since the order of observations is irrelevant, then for any decision node (D) in the temporal
order, constraints are created for decision Dy in all observations, before the previous decision
node (Dy—_1) is evaluated in any observation. This is much like the basic technique described in
Section 3.2.1, however an extension is presented in Section 3.3.1 that is expected to increases
accuracy for Utility Iteration.

3.3.1 Imputing Virtual Decisions

All the way through the Utility Iteration algorithm, a feasible space is maintained, described
by the constraints established as the algorithm progresses. So as more decisions are evaluated
more constraints will be limiting this feasible space.

When imputations are needed for some decision node, they are done based on the current
knowledge about the feasible space, i.e. the temporary utility function. To determine what
decisions should be made in the needed virtual observations, the policy can be determined by
maximizing expected utility according to the temporary utility function, since the observed
agent is assumed to be rational. The determined policy is then used to replace the decision
node by a chance node. As mentioned, the inaccuracy of the Utility [teration methods lies in
the imputations, this is because of the risk that the utility point chosen from the feasible space
might not describe the strategy of the observed agent. If this occurs then constraints added
to the feasible space will be wrong, enlarging the risk of choosing a wrong point again later.
Inaccurate imputations may lead to wrong predictions or even the feasible space becoming
empty, i.e. causing a conflict in a domain where the agent never changes behavior. This
inaccuracy is analyzed in detail in Section 3.3.3.

In the following section an extension to the technique described in Section 3.2.1 is presented.
This extended technique imputes decisions repeatedly, as more is learned about the feasible
space, resulting in a higher accuracy. A third technique is presented in Appendix B, which
uses a backtracing approach, trying different combinations of imputations in order to get the
best result, this approach is not a viable alternative, since it has a high complexity.

30

3.3. UtiLiTY ITERATION

Extended Technique

It makes sense to evaluate the observations sequentially, since anything learned from one ob-
servation can be used to impute more accurately in another observation. So that at some
decision node in the temporal order (Dy), first observation o; is used to create constraints at
Dy, by imputing policies for all subsequent nodes (D;|i > k). Imputations in oy for subsequent
nodes (D;|i > k) can then be done more accurately, if the constraints created for Dy in o;
are taken into account when determining the temporary utility function. With the extended
technique imputations would be done anew each time they are needed. So decision node Dy,
would still be used to create constraints in all observation, but using the extended technique
all subsequent decision nodes (D;|i > k) will be imputed during the evaluation of Dy, in each
observation and not only once. Using this, probably more accurate, approach comes at a trade
off in complexity, due to the higher number of imputations.

3.3.2 The Utility Iteration Algorithm

In this section a pseudo code algorithm of the Utility Iteration method, using the extended
technique from Section 3.3.1, is presented. As mentioned in Section 3.3.1 the method maintains
a feasible space described by a set of constraints (C¢), which initially describes the entire
normalized region. During execution of the algorithm constraints will be added to Cc. Likewise
the algorithm will maintain a list of all true observations, this list is termed L. Every time
a new observation (0ney) is made it is inserted in the beginning of this list (0new|L), in the
algorithm it is assumed that this insertion operation has already been done.

As mentioned observations are evaluated sequentially, with respect to each step in the temporal
order, which can also be seen in Algorithm 3.3.1. If the agent does not change behavior between
observations this sequence is irrelevant.

Also mentioned in Section 3.3.1, was that the method contained inaccuracies when imputing.
This means that even though the agent never changes behavior, the virtual observations may
end up causing a conflict with a true observation. It is theoretically possible to iteratively step
back and forth between observations trying different utility functions, which inevitably would
lead to a utility function with which all true observations could conform. This would become
very complex however, as shown in Appendix B, so instead the true observations in which the
conflict occurs are simply deleted.

Algorithm 3.3.1
e Fork=ntol

— For all observations, o € L, the following is done for one observation at a time

1. Set point to be a utility point in the feasible space, as described in Section 2.5.
2. For all relevant pasts, past(D;), of each decision node, D;, after decision node
x If D, given past(D;) has been observed then no imputing is done
* Else, impute a decision in node D; for past(D;) according to the utility
point
3. Substitute decision nodes after node k£ by chance nodes corresponding to im-
puted policies
4. Where 6p, is the true decision observed in o, create the following set of con-
straints (Cremp): VdeD\[ng : pp, (0D, 0k) > pp, (d, oK)
5. If Cc U Ciemyp describes the empty space then delete observation o and all its
constraints in Co

31

CHAPTER 3. IMPUTING

6. Else let Cc = Cc U Cremp

e Choose a utility point and return it as the predicted utility function

With regard to the complexity of the algorithm the number of imputations needed for one
decision node will be relevant — observed, but when evaluating an observed decision from
node Dy in an observation, all subsequent nodes (D;|i > k) are imputed, each of these need-
ing relevant — observed imputations. This means that to create constraints for Dy in one
observation, O((n — k) - (relevant,q, — observed,,;,)) imputations are needed in the worst
case. Since these imputations are done anew for every observation, then to create constraints
for all observations of node Dy the number of imputations needed in the worst case becomes
O(obs - (n — k) - (relevant ez — observedy,y)), where obs is the number of true observations.
Finally, the number of imputations needed for the entire algorithm will, in the worst case, be :

n—1
@ <obs - (relevant g, — observed,in) - Z k)

k=1
)

O(obs -relevantqag - n2)

(3.5)

The increased accuracy of the extended technique compared to the basic technique, comes
at a trade off in complexity. Since the complexity introduced is not exponential, the second
technique is still considered operational and will be used in this project for Utility Iteration.

Example 3.3.1 This is an example of how Utility Iteration imputes virtual observations and
generates constraints. This example is set in the same domain (Illustrated in Figure 2.3) as
example 2.7.1 and with the same observation: (D; = d3,C; = ¢}, Dy = d3).

Constraints can be generated for the last decision, D9, without imputing any observations.
This results in the same constraint as in Example 2.7.1:

pp,(C1 = ¢1, Do = d3) > pp,(C1 = ¢, Dz = d3)
0.1v1 + 0.4vs + 0.5v3 > 0.4v1 + 0.2v9 4 0.4v3 (36)
—0.3v1 + 0.2v9 4+ 0.1v3 > 0

To establish constraints based on the decision observed in node D, imputation has to be
done for the unobserved outcome of C;. Now a temporary utility function is needed, and it is
obtained by choosing a utility point in the feasible space. With the only constraint limiting the
feasible space being —0.3v1 4+ 0.2v2 4+ 0.1vg > 0 and the normal constraints for the normalized
region, the center of the largest hypersphere becomes (0.307956,0.692044,0.692044). How this
point can be found is described in Section 2.5. With this utility point the decision in the virtual
observation imputed in D5 given C; in state c% becomes d%, as can be seen from Equation 3.7
and 3.8.

EU(Cy = c2, Dy = db) = 0.1-0.307956 + 0.7 - 0.692044 + 0.2 - 0.692044 ~ 0.6536 (3.7)
EU(Cy = 3, Dy = d2) = 0.3-0.307956 + 0.1 - 0.692044 + 0.6 - 0.692044 ~ 0.5768 (3.8)

Given this imputation and the observed decision, decision node Dy can now be replaced by a

chance node. Thereafter the constraint for decision D; can be calculated as if it was the last
node in the temporal order, this is done in Equation 3.9.

32

3.3. UtiLiTY ITERATION

Figure 3.1: Both the green constraint (—0.3v1 4+ 0.2v2 + 0.1v3 > 0) and the blue constraint (v2 < v3) describe
the space containing the coordinate (0,0,1), illustrated by the red spot

pp, (D1 = d}) > pp, (D1 = dj)
0.1v1 + 0.475v5 + 0.425v3 > 0.1v1 + 0.61vo + 0.29v3 (3.9)
—0.135v2 + 0.135v3 > 0

This corresponds to that vs < vs. The constraint can be seen in Figure 3.1, comparing this
figure to Figure 2.4, it can be seen that Utility Iteration describes a smaller feasible space than
FLUF. With more observations Utility Iteration will have more information on which it can
create constraints and accuracy will increase as a result.

d

3.3.3 Analysis

This analysis will focus on the possible inaccuracies in the temporary utility function. First
it is discussed how inaccuracies can be recognized and how often they occur. After that the
impact of the inaccuracies is discussed, to determine whether such inaccuracies will reinforce
themselves over time. The time complexity of the Utility Iteration method, using the extended
technique, is also discussed.

Imputations
At every step during the refinement of the utility function, temporary utility functions may be

chosen that are different from the observed agent’s actual utility function. These temporary
utility functions could therefore impute observations that do not conform with the strategy used

33

CHAPTER 3. IMPUTING

by the agent, and the only way for the Utility Iteration method to discover such an inaccuracy,
would be if the feasible space for utility values becomes empty. In such a situation, no method
is in place to iteratively find other temporary utility functions, since it would be far to complex.
Instead the algorithm will continue executing by deleting the conflicting observation.

The first utility function will be based on the last decision in all observations, and no imputing
is done at this point, so the constraints created will be accurate. So the more observations, the
better the initial utility function will be. Furthermore, the more observations that have been
made, the less imputing is necessary. Even though the first constraints are correct, they may
still span a feasible space in which several different strategies are possible, and since only one
strategy is completely correct then when imputations are necessary they may be wrong. The
next section describes how these inaccuracies can impact the creation of constraints.

Constraints

The utility coefficients for decisions in the last decision node in the temporal order will always
be correct, since the probabilities are assumed to be known. But for decisions in earlier decision
nodes, the utility coefficients will depend on the imputed policies for subsequent decision nodes.
As these imputed policies may not be the same as the policies of the agent, the utility coefficients
may be incorrect.

Constraints are added to the feasible space based on the utility coefficients, so inaccuracies in
the utility coefficients can result in temporary utility functions being chosen that are different
from the observed agents utility function. Initial inaccurate imputations can lead to imprecise
temporary utility functions, in turn leading to more inaccurate imputations.

To analyze whether the constraints created by Equation 2.4 will reinforce inaccuracies, some
notation is first introduced. If a temporary utility function is inaccurate enough, when evaluat-
ing decision node Dy, so that the imputed policy for some decision node (D;|i > k) is different
from the policy of the agent, then Equation 3.10 will be true.

dd € Dy,:
PDy, (da Ok) = C4,1V1 +---+ Cd,nUn (310)

7& PDy true (d, Ok) = Cd,true,1V1 + *** + Cd,true,;nUn

Where pp, true(d,or) describes the values that should have been attributed to option d in
decision node Dy, given the past og. Now, let pp, (d, o) be described as in Equation 3.11.

PD;y (d7 Ok) = (Cd,true,l + Ach)Ul +-+ (cd,true,n + Acd,n)Un (311)

Where Acg,, is the difference between cg trye,n and cq . In Equation 3.12 this notation is used
to establish constraints based on the observed decision dp, and an alternative decision d € Dy,

34

3.3. UtiLiTY ITERATION

given past o:

p(dp,, (o), 0r) > p(d, o)
(3

(Cop, (or),true1 + Doy, (04),1)V1 + -+ + (Cop, (o) true,n T DCsp, (o)) Vn >
(Cd,true,l + ACd,l)'Ul +-+ (Cd,true,n + Acd,n)vn (312)

)

((sp, (o) true,1 — Cdytrue,1) + (Acsp, (o)1 — Acg,1))v1+

-+ ((Céuk (ok),true,n — Cd,true,n) + (AcéDk (or),m — ACd’n))’Un >0

Notice that the expression (c(;Dk(ok)’tme)n — Cd,true,n)Un corresponds to the actual difference
between the coefficients that should have been attributed to the n’th utility, while (Acs by (08),n
Acdn))vn is the resulting impact on the constraints from the inaccuracies in the utility func-
tions.

These Ac will depend much on the temporary utility functions, in the sense that the imputed
policies are shaped after the utility functions and the coefficients are only changed from their
true values when the policies are changed. So if the temporary utility function rates a utility
(uk) lower than it should, then the policy imputed may change accordingly making a different
decision, given some relevant past, that reduces the ¢i coefficient. In other words, if a Ac value
is positive, then the corresponding utility was overrated by the temporary utility function, and
underrated for a negative Ac value. This would imply that coefficients for the same utility,
such as Cop,, (o) and ¢q,n, would have the same sign on their Ac values.

When creating constraints the impact of the Ac values is decided by their relative size. The
result of having a positive Ac[;Dk(Ok)m — Acq,n expression would be a relaxed constraint with
respect to the corresponding utility, ux, while a negative value would result in a stricter than
normal constraint.

As mentioned earlier, it is certain that the coefficients calculated for any observed decision will
have some truth to them, which stems from the last decision having the correct coefficients
attached for the observed relevant past. Naturally, there can be a lot more truth to both
observed and unobserved decisions than that, but on average the coefficients of an observed
decisions may be marginally more accurate than those of an unobserved decisions. Accurate
meaning small Ac values.

If an observed decision (0p, (o)) is more accurate than an unobserved decision (d € Dy,), with
respect to a single utility coefficient ¢,., then |A05Dk(ok),r| will be smaller than |Acg,,|. This will
in turn mean that positive Ac, values would, all else being equal, generate relaxed constraints,
rating the corresponding utility (u,) smaller, while negative Ac, values would generate stricter
constraints, rating w, higher. This means that inaccuracies on u, should diminish over time.
But whether any significant difference in accuracy between the coefficients of observed and
unobserved decisions will exist is uncertain.

However, without conducting experiments it is very difficult to tell whether inaccuracies will
reinforce themselves.

Complexity
With regard to the complexity of the Utility Iteration method, then using the extended tech-

nique the number of imputations in the worst case will be O(obs - relevant pq, - n?), as shown
in Section 3.3.1. For each imputation the influence diagram is solved based on the temporary

35

CHAPTER 3. IMPUTING

utility function, but only with respect to one decision given one relevant past. This task has a
time complexity of O(nodes*t@¢*), where nodes are the nodes that are unobserved when the
decision being imputed is made, and states is the largest number of states those nodes have.
So if nodes is considered all nodes in the domain, the worst case time complexity of the entire
Utility Iteration algorithm becomes O(obs - relevant pq, - n? - nodes®t4ts),

3.3.4 Summary

This analysis indicates that the Utility Iteration method will not reinforce inaccuracies, but
to ensure that this is the case experiments need to be conducted. In any case, the method is
very dependent on an accurate set of initial constraints, since these will impact the accuracy
of imputations when later constraints are created. Should conflicts occur due to inaccurate
constraints the only feasible solution, of those investigated here, is to delete observations and
corresponding constraints. The extent and impact of inaccuracies will depend on the number of
true observations, in that with more true observations more constraints can be created before
imputations become necessary, making temporary utility functions more accurate.

3.4 Imputing by Comparison

In this section the other imputing method called Imputing by Comparison is described, this
method is similar to Utility Iteration in many ways, and the main difference between the two
methods is the imputing, which is discussed and analyzed in this section.

The idea in Imputing by Comparison is to impute the decisions, such that the virtual ob-
servation becomes the most like a true observation as possible. This is done by imputing the
decision that, together with the relevant past in the virtual observation, makes it look the most
like some relevant past and decision in a true observation. Considerations have to be made to
determine how to best compare two different combinations of relevant past and decision with
each other.

Determining which combination of relevant past and decision that looks the most like another,
could be done by comparing how many variables that match, i.e. the variables are in the same
state, and possibly how important these variables are. However, the importance of variables
are derived from the utility nodes, so weighing the variables will not be possible since the
utility values are unknown.

Another consideration that has to be made with regard to these comparisons, is that when two
scenarios have been observed where neither match with the needed virtual observation with
regards to some node N. Then if the two true observations have N in two different states,
perhaps one of the states could be said to be closer to the state needed. An example of such
could be the variable “want chocolate” that could be in the states: “no”, “a little” and “craving”,
then “no” could be considered closer to “a little” than to “craving”. However, the order of states
in ordered variables is domain specific prior knowledge, and so comparing states will not be
pursued further in this project.

Instead combinations of relevant pasts and decisions could be compared with respect to a set
of hypothesis variables H. The set of hypothesis variables is all the variables that have a utility
node as a child, denoted as pa(U). This comparison should calculate different relevant pasts’
impact on the distribution of H, so that two relevant past configurations are equivalent if they
infer the same distribution on H. The intuition behind this idea is that it is not possible
to compare utilities for different relevant pasts, but the impact on H may hint the expected
utility.

36

3.4. IMPUTING BY COMPARISON

It may be the case that a decision node has a utility node as a child, in which case the decision
node would be contained in H, and probability distributions over decision nodes does not make
sense. However, it will always be the case that, when the distribution over H is calculated,
the decision node will be determined to be in some state, i.e. the calculation is made with
respect to a specific decision. So during calculation of H’s distribution, the decision node
can be substituted by a chance node, with a probability of 1 for the observed or imputed
decision. Any chance node in the relevant past of the decision will also be instantiated, so
when calculating H any chance nodes in the relevant past will be treated as chance nodes
with evidence on them. In this way the probability distribution of H can be calculated in
any domain. The two ways to compare probability distributions, that have been examined, is
Kullback-Leibler divergence and Fuclidean distance, both described in Section 3.4.1.

3.4.1 Measuring Distance Between Probabilities

A commonly used method for calculating distance between probability distributions is the
Kullback-Leibler divergence. This method is also known as the relative entropy between two
probability distributions:

KL(p,a) = Y qilogs <Z—Z> (3.13)

k

Where p and q are discrete probability distributions and g and pg is the probability for
outcome k in the two distributions. Note that Kullback-Leibler divergence is not symmetric
in p and ¢. Kullback-Leibler have the nice property of being strictly proper, i.e. KL(p,q) =0
if and only if p = q, and KL(p,q) > 0 when p # q. (Jensen, 2001)

Kullback-Leibler could be used by calculating the distance between the probability distribution
of H, given the observed past and the observed decision (d0p) in some true observation, versus
the distribution given the unobserved past needed in the virtual observation and the different
decisions in D (Vd € D). This calculation would be done for all true observations, and the
decision in the calculation which yields the smallest distance would be chosen as the decision
in the virtual observation. If two calculations yields equal distances then a decision, from one
of the calculations, would be chosen at random.

Even though Kullback-Leibler is a commonly used method for calculating differences in probab-
ility distributions, it is not the best choice for Imputing by Comparison. Basically the intuition
behind this approach is that if a set of utility coefficients have been observed as being prefer-
able in some context, then a decision in a virtual observation yielding coefficients close to the
observed ones should be good. However, Kullback-Leibler distances weigh small probabilities
heavier than larger probabilities, as shown in Equation 3.14 where the Kullback-Leibler diver-

gence between two likely outcomes (qikeiy 'loggf)ii:—“:z) is smaller than the divergence between

Juntikely) oyven though the difference in probabilities in

two less likely outcomes (quniikely - log2
‘ Punlikely

both cases are the same (0.01). An example where Kullback-Leibler distance is a poor measure
is presented in Example 3.4.1.

0.96 0.05
.96 - | logg—— .05 | logg——
0.96 (Og20.95> <0.05 (og20.04>

(i (3.14)
0.0145 <0.0161

Example 3.4.1 Consider an example where H has four outcomes, meaning the domain has
four utilities. Each of H’s outcomes yield a coefficient of one for a different utility. A true

37

CHAPTER 3. IMPUTING

observation has been made with the distribution P(H|0bstryue) = (0.001,0.2,0.399,0.4) over
H. Only two different decisions can be chosen for the virtual observation, so the one with
the distribution that yields the smallest Kullback-Leibler value should be chosen. Decision d;
yields the distribution (0.12,0.2,0.34,0.34) while the second decision, ds, yields the distribution
(0.001,0.1,0.299,0.6). Table 3.2 shows the Kullback-Leibler distances, as well as numerical
difference of the probabilities. The table shows that decision ds gives the smallest Kullback-
Leibler distance between the distributions of the hypothesis variables, in spite of giving the
largest numeric differences, i.e. |0.119|+ |0| 4| —0.059]|+| —0.06] < |0] 4+ | —0.1| 4+ | —0.1| 4 0.2
corresponding to 0.238 < 0.4.

Virtual distributions KL distance to P(0bst.) Numeric difference
(0.12,0.2,0.34,0.34) 0.1789 (0.119,0,-0.059,-0.06)
(0.001,0.1,0.299,0.6) 0.1155 (0,-0.1,-0.1,0.2)

Table 3.2: Kullback-Leibler distances and numeric difference

Since these probabilities translate directly to utility coefficients, the numerical difference should
be as small as possible, and this is not ensured when using Kullback-Leibler. So instead
Imputing by Comparison uses the Euclidean distance between coefficients to measure which
distribution is closest to that of a true observation. Equation 3.15 shows how Euclidean
distances between probability distributions (p and q) are calculated. Using Euclidean distance
the chosen virtual decision will be the one where the numeric difference is the smallest. Using
Euclidean distance in Example 3.4.1 would yield the results shown in table 3.3, the smallest
distance being attributed to the virtual decision with the smallest sum of numeric differences.

Ec(p,a) =) (ax — pr)° (3.15)
k

Virtual distributions Ec distance to P(0bsi,.) Numeric difference
(0.12,0.2,0.34,0.34) 1.2354 (0.119,0,-0.059,-0.06)
(0.001,0.1,0.299,0.6) 1.4086 (0,-0.1,-0.1,0.2)

Table 3.3: Euclidean distances and numeric difference

3.4.2 The Imputing by Comparison Algorithm

In this section the Imputing by Comparison algorithm is presented. This method uses the
basic technique presented in Section 3.2. After the new observation has been added to O, then
Algorithm 3.4.2 is run. Algorithm 3.4.2 adds constraints for every decision in all observations,
such that each decision node Dy, is evaluated in all observations before any prior decision node,
i.e. Dy_1, is evaluated in any decision.

Let D be the decision node that needs to be imputed, in some virtual observation called
obs. The configuration of the relevant past for decision node D in obs is called v_relevantp.
v_relevant is short for “virtual relevant”, and ¢ _relevant, is short for “true relevant”, these
are used in the algorithm to describe relevant pasts. Now the algorithm for imputing is shown
in Algorithm 3.4.1.

38

3.4. IMPUTING BY COMPARISON

Algorithm 3.4.1
1. For all observations o in O, where t_relevantp is the relevant past of D in o and
dp(t_relevantp) is the observed decision given the past

e Forallde D

— Calculate Ec(P(H|v_relevantp,d), P(H|t_relevantp,dp(t_relevantp)))

— If the observation yields the lowest Euclidean distance so far, mark d, and
unmark any already marked ds with a greater Euclidean distance

2. Choose an arbitrary d among the marked decisions

e Use the chosen decision as the decision in obs

Using Algorithm 3.4.1 to impute observations, the entire algorithm for Imputing by Compar-
ison is shown in Algorithm 3.4.2. Algorithm 3.4.2 is based on Algorithm 3.2.1 for the basic
technique.

Algorithm 3.4.2
e For node =n to 1

— For all observations (0) in O do

1. Where ép,,. is the observed decision and oy04e is the relevant past of Dyode
in the observation, add the following constraints to the feasible space:
vdeDnode\éDnode * PDrode (5Dnode s Onode) > PDrode (d, onode)

2. If the feasible space has become empty, remove all constraints added by o and
remove o from O

3. For every unobserved relevant past of decision node D,,4e, call Algorithm 3.4.1
to impute a decision

4. According to observed and imputed decisions, replace D,,o4. by a chance node

Step 3 and 4 are, strictly speaking, not necessary for the first decision node in the temporal
order, as decision nodes are replaced with chance nodes so that the prior decision node becomes
the last in the temporal order.

As discussed in Section 3.1.1 conflicts may occur when imputing observations to make the
domain fully observed. To handle this, Algorithm 3.4.2 must check if the feasible space becomes
empty, i.e. the radius of the largest possible hypersphere in the feasible space is zero, each time
a new constraint is added. If the space becomes empty the newly added constraints are removed
again.

When the newest constraint reveals a conflict it is, in a static domain, possible to avoid removing
constraints altogether by imputing differently. The immediate way of doing this would be to
examine those imputations where there were more than one decision with the same Euclidean
distance, and one of which was chosen arbitrarily. In these cases the alternative choices should
be used instead. Unfortunately it is not certain that it would give a non-empty feasible space.
If that is the case the choices with the second shortest Euclidean distance would have to be
examined. Again that does not guarantee that the feasible space becomes non-empty, so the
choices with the third shortest distance might have to be examined and so on. In the worst
case all combinations of possible imputations over all relevant pasts, in all but the first decision
node, would have to be examined to find a non-empty space.

The advantage of this alternative method for removing constraints is that, in a static do-
main, it will eventually find a combination of imputations that describe a non-empty feas-
ible space. However, the time complexity makes it infeasible. In fact, in the worst case

39

CHAPTER 3. IMPUTING

the number of imputation needed would be exponential in the number of decision nodes,
O(|D|maz - Televant?,,.), where relevant,,,, means the largest number of configurations of
any relevant past in the domain and |D|,,q, is the largest number of different decisions in one
decision node.

Example 3.4.2 This is an example of how Imputing by Comparison chooses virtual observa-
tions and generates constraints. This example is set in the same domain (illustrated in Figure
2.3) as Example 2.7.1 and with the same observation: (D = d?,C} = ci, Dy = d3).

Constraints can be generated for the last decision, Ds, without imputing any observations.
This results in the same constraint as in Example 2.7.1. The observed decision, d3, must yield
a larger expected utility than d3, given chance node C in state c}:

pp,(C1 = ¢1, D2 = d3) > pp, (C1 = ¢}, D2 = dj)
0.1v7 4+ 0.4v2 + 0.5v3 > 0.4v1 + 0.2v5 + 0.4v3 (3.16)
—0.3v1 + 0.2v9 + 0.1v3 > 0

To establish constraints based on the decision observed in node D, imputation has to be
done for the unobserved outcome of C;. This means that the probability distribution of
the hypothesis variables, which in this example is limited to Cs, given the true observation,
t = (Dy = d?,C, = ¢}, Dy = d3), must be compared with the distribution given v; = (D; =
d3,C1 = c2,Dy =d}) and vy = (D1 = d3,C1 = ¢2, Dy = d3) respectively, where v; and vy are
the two virtual observations, and ¢ the true observation. The Euclidean distance is calculated
according to Equation 3.15, the calculations are shown below:

Ec(P(Cslt), P(Calv1)) = (0.1 — 0.1) + (0.4 — 0.7)% + (0.5 — 0.2)* = 0.18
Ec(P(Calt), P(Calvz)) = (0.1 — 0.3)> + (0.4 — 0.1)* + (0.5 — 0.6)> = 0.14

In the virtual observation d% is chosen for C; in state c%, since it yielded the smallest Euclidean
distance to the true observation, and the final constraint can then be calculated.

pp,(d}) > pp, (d})
0.15v1 + 0.325v + 0.525v3 > 0.24v; + 0.19v5 + 0.57vs (3.17)
—0.09v1 + 01350 — 0.045v3 > 0

The constraints generated by Imputing by Comparison can be seen in Figure 3.2, and the
space spanned can be compared to Figure 2.4, which shows the space spanned by FLUF and
the optimal method given the same observation. The space described by the Imputing by
Comparison method is smaller than the space spanned by FLUF, and it still includes the space
spanned by the optimal method.

O

3.4.3 Analysis

This analysis will focus on the inaccuracies that might be introduced in the Imputing by
Comparison method. The complexity of the Imputing by Comparison method is also analyzed.

40

3.4. IMPUTING BY COMPARISON

Figure 3.2: Both the green constraint (—0.3vi + 0.2v2 + 0.1v3 > 0) and the blue constraint (—0.09v1 +
0.135v2 — 0.045v3 > 0) describe the space containing the coordinate (0,0,1), illustrated by the red spot

Accuracy

Inaccuracies can occur when imputing an observation, since decisions that are not optimal,
according to the observed agent’s utility function, can be chosen. Accuracy of the method will
depend on the number of observations made, first of all because with more true observations less
virtual observations will be necessary. Furthermore, the method compares all true observations
with the possible virtual observations, meaning that a high number of true observations will
result in a better foundation for choosing the decision for the virtual observation.

There is a risk that inaccuracies can reinforce themselves, since the distribution of the hypo-
thesis variables, that possible virtual decisions are compared with, is influenced by the chance
nodes that replace decision nodes after imputations. So if some imputing for node Dy is in-
correct then the distributions, that are compared to determine imputation in node Dy_1, will
also be incorrect. This inaccuracy increases the risk that decision Dy_ is imputed incorrectly.
However, as the number of different true observations increase the extent of inaccuracies, and
any reinforcement of inaccuracies, will diminish.

Complexity

With regards to the complexity of this method, each imputation is linear in the number of
observations, since the Euclidean distance, between the distribution over the hypothesis vari-
ables of the virtual observation and the corresponding distribution in each true observation,
must be calculated. So the complexity of imputing one decision becomes relevantiyy. - | D),
where relevantiy. is the number different relevant past configurations already observed for
the decision node, and |D| is the number of possible decisions. A true observation may con-
tain configuration of a relevant past that have already been observed, but relevants,,. will be
growing with the number of observations made.

41

CHAPTER 3. IMPUTING

In each decision node, the number of imputations needed is relevant — relevants, ., where
relevant is the number of possible configuration of the relevant past. relevanti .. is sub-
tracted from relevant because imputations are only done for unobserved configurations of the
relevant past, and relevant;,... can at most become equal to relevant in which case no virtual
observations are needed.

So as more observations are made, with respect to some decision node, fewer imputations
are necessary but each imputation becomes more complex, this is expressed as (relevant —
relevantiyye) - (relevantiyye - | D).

During execution, policies will be imputed for all decision nodes in the domain, meaning each
relevant past configuration of each decision node, that has not been observed, is imputed. With
n decision nodes in the domain the complexity for imputing for one decision node can be used
to express the complexity of the entire Imputing by Comparison method as in Equation 3.18,
where the 7 in subscripts imply that the variable corresponds to decision node D;.

n

Z |D;| - (relevantyyye,; - relevant; — Televantfme,i) (3.18)
i=2

Since this complexity is a second-order polynomial expression over relevantsyy. ;, complexity

a1y — ! ti
will increase, for decision node D;, as observations are made until relevantyye ; = —(relevanti) _

2-(-1)
T‘ele%”t After this point complexity will decrease until relevanti e, = relevant; where no
imputations are needed. For this reason relevantiy,e,; is substituted by mle%”t when ex-

pressing worst case complexity. Now the number of times that Euclidean distance must be
calculated, in the entire Imputing by Comparison algorithm, can be seen in Equation 3.19.

relevant relevant 2
@ ((n — 1) |D|max <fm -relevant gz — <fﬂm)))

)

@ (n - |Dlmag - relevant?)

max

(3.19)

The complexity of Euclidean distance calculations is not constant, but linear in the size of
the state space of the hypothesis variables. As the hypothesis variables are the parents of the
utility nodes, the size of their state space is the number of utilities in the domain. Making

Imputing by Comparisons worst case time complexity O (utilities “n -+ |D|maz - relevantfmw).

3.4.4 Summary

This leads to the conclusion that this method may be a viable alternative to FLUF. The impact
of the inaccuracies that may be introduced by imputing wrong observations and the extent
to which the inaccuracies are reinforced, cannot be predicted at this point. The accuracy of
this method should grow with the number of observations made, since less imputations will be
necessary and a better foundation for imputations will be available, but to get a better idea
about the speed at which this accuracy will increase experiments must be conducted.

42

3.5. CONCLUSION

3.5 Conclusion

In this section results about the accuracy and complexity of the proposed methods from Sec-
tions 3.4 and 3.3 are briefly summarized. First the new imputing method’s differences compared
to FLUF are summarized.

3.5.1 Imputing compared to FLUF

There are two big differences between the two imputing methods and FLUF. The first is
that FLUF is an adaptive learning technique, changing its feasible space every time a new
observations is made, while the two new imputing methods are batch learning techniques,
storing new observations in the set of true observations and when making predictions evaluate
all the true observations. The second difference is the way partially observed strategies are
handled. As described in Section 2.4 FLUF' handles partially observed strategies by creating
relaxed constraints, while the two new imputing methods handle partially observed strategies
by imputing the needed observations to view the strategy as fully observed.

What the imputing methods have in common with FLUF is the feasible space, and the concept
of creating constraints in this space when observations are made. The methods also share the
basic way that constraints are created, namely that the expected utility of observed decisions
must be larger than the expected utilities of their alternatives. The way a utility point is
chosen in the FLUF method, i.e. the center of the largest possible hypersphere, is also used in
the imputing methods.

3.5.2 Accuracy

For the imputing methods to be viable utility learning methods they should become more
accurate over time, i.e. the number of decisions predicted correctly and expected utility should
increase with the number of observations. Both analysis have shown that inaccuracies imposed
during execution does not seem to be reinforced, implying that accuracy will increase as more
observations are evaluated, making both methods usable. To confirm this result and to better
determine the accuracy of the two methods, experiments will be conducted.

3.5.3 Complexity

The only difference between the two new methods is in the way imputing is done. This still
leads to significant differences in worst case time complexity, where for Utility Iteration it
is O(obs - relevant gy - N2 - nodessmtes) while for Imputing by Comparison algorithm it is
O (utilities - n - |D|mqq - relevant? .,). So in some domain, as the number of observations
increase, Utility Iteration will become slower relative to Imputing by Comparison. The actual
speed of the methods cannot be determined at this point, but the worst case time complexities
indicate that the Utility Iteration algorithm will be more sensitive to increasing state spaces

of nodes.

43

CHAPTER 3. IMPUTING

44

CHAPTER

FOUR

Dynamic Domains

The two imputing methods and FLUF are basically designed to determine the utilities of an
agent that does not change its behavior. Two different policies, for handling agents that change
behavior over time, were designed as extensions for FLUF in Hansen et al. (2004) (these are
briefly described below in Section 4.3.2). In this chapter the ways in which agents can change
behavior and different approaches to handling changing behavior, in Utility Iteration and
Imputing by Comparison, are discussed.

When modeling the behavior of an agent that does not change its behavior, an influence
diagram can be constructed where the choices made by the agent corresponds to maximizing
expected utility. Since the agent does not change behavior, then once the influence diagram
describes its behavior correctly, it can be used to predict the agents choices and updating
the diagram should never be necessary. A domain modeling an agent that does not change
behavior is called a static domain, and the behavior of the agent is called static as well.

When modeling the behavior of an agent with changing behavior, then even though an influence
diagram may be constructed where the current strategy of an agent corresponds to maximizing
expected utility in the influence diagram, the agent can change its strategy over time such that
the influence diagram must be updated as well, to keep describing the agents behavior correctly.
A domain is called dynamic if the agent being modeled can change its behavior, according to
the definitions below. The behavior of an agent in a dynamic domain is called dynamic as well.

To enable Imputing by Comparison and Utility Iteration to handle dynamic domains, methods
for handling inconsistent observations, incurred by changing behavior, are described in Sections
4.3 and 4.4. Before these methods are presented, the different ways in which the agent’s
changing behavior can be modeled is analyzed.

4.1 Types of Dynamic Domains

To help design methods for specific kinds of behavioral changes, three different ways in which
an agent can change its behavior are described. A good method for handling one kind of
behavioral changes may not work for other kinds. Under the assumption that the causalities
and probabilities in the domain, as the agent perceives them, are known and do not change,
then changing behavior can be expressed as a changing utility function. Below, the three ways

45

CHAPTER 4. DyNaAMIC DOMAINS

of viewing changing behavior are described in terms of a utility point in the utility space,
i.e. the point describing all utility values in the domain.

Drift

One way of viewing changing behavior is as drift. This means that the utility values are
changing continuously. This kind of dynamic behavior can be seen as the utility point of the
observed agent drifting around in the normalized region, which is also why it is called drift.
Drift does not necessary to maintain its speed and direction, meaning that over time the drifting
of the utility point can slow down or change direction. Changing behavior is categorized as
drift when the strategy of the agent changes slowly and gradually, in the sense that the strategy
may change often but only with respect to a few policies at the time. An example of drift could
be if the utilities in the influence diagram are modeling the price of some goods, and these
prices change over time. The prices may increase or decrease thus making the utilities drift
accordingly over time.

Fluctuation

Changing behavior could be viewed as fluctuations, where fluctuations are radical changes
introduced into the influence diagram. Fluctuations can introduce major and sudden shifts
in the expected utility for the domain, changing the observed agent’s strategy. With regards
to the utility point of the observed agent, this corresponds to the utility point jumping from
one position in the normalized region to a completely different position independent of the
first. Changing behavior is categorized as fluctuating when the strategy of the agent can
change radically, in the sense that a large number of policies in the agent’s strategy change
simultaneously.

Noise

The last way to view changing behavior introduced here is noise. Noise is not a change in the
domain like drift and fluctuation. Instead noise is unforeseen interference not modeled in the
domain and introduced by sources outside the domain, e.g. recording or reading incorrectly in
a database of observations. Even though the utility point of the observed agent is not changed
by noise, it may appear to have done so. Changing behavior is categorized as noise when the
strategy followed by the agent in a single observation deviates from the strategy followed in
previous observations, only to return to the strategy followed in previous observations again
in subsequent observations. An example of noise could be interference with a humidity sensor
resulting in a low reading, this would result in a chance node showing a wrong state. Noise
can affect more than one node however, and it may affect decision as well as chance nodes.

The three different types of dynamic behavior presented here are not the only ways to categorize
dynamic behavior. However, these are the only kinds of dynamic behavior considered in this
project, and dynamic behavior will be classified according to the three categories.

4.2 Conflict Handling

This section describes the different policies for conflict handling in FLUF, Imputing by Compar-
ison and Utility Iteration. The main idea behind conflict handling is to remove the constraints

46

4.2. ConFLICT HANDLING

causing the conflict, these are termed the guilty constraints. When a conflict occurs, the con-
straints considered guilty will depend on how the dynamic behavior of the agent has been
categorized. In case of drift and fluctuations the oldest constraints will be considered guilty,
while in case of noise the newest constraint is considered guilty. This means that the order in
which the observations are evaluated are no longer insignificant.

If a domain contains both drift and fluctuation conflict handling can still be done, since the
two kinds of dynamic behavior will characterize the same set of constraints as guilty. But if the
domain contains noise along with either drift or fluctuations, then choosing which constraints
are guilty becomes harder, because the guilty observation would be the newest in case of noise
but the oldest in case of drift or fluctuation. One way to determine which constraints are guilty,
assuming that an expected frequency of noise is given, would be, when conflicts occur, to view
new constraints as being guilty as long as less conflicts occur than suggested by the expected
frequency of noise. When more conflicts start occurring it would be a sign that some sort
of drift or fluctuation had taken place, and old constraints should then be considered guilty.
However the frequency of noise is not always known, and in this project domains with noise
are assumed to show no other kind of dynamic behavior.

Two more limitations to the conflict handling policies for Imputing by Comparison and Util-
ity Iteration should be noted. First, the imputations in both the methods may be affected
by conflicting observations making them less accurate, this problem could in part be solved
by extensive backtracking, as demonstrated in Appendix B, but to keep the conflict handling
policies operational no modifications are made to handle imputing inaccuracies. Furthermore,
as shown in Section 3.1.1, inaccurate imputations may lead to conflicts, and conflicts incurred
due to inaccurate imputations should ideally be handled differently than conflicts that occur
due to dynamic behavior, however since there is only one way to detect that a conflict oc-
curs, namely that the feasible space become empty, no method has been developed to tell the
difference.

Furthermore, as an alternative to the deletion policies, a policy called the constraint relaxation
policy is developed, that can be used to handle conflicts that occur in domains containing drift
and/or fluctuations. The policy is based on relaxing constraints when conflicts occur, so it
would not be suitable for handling noise as it would relax all constraints, thereby reducing
their accuracy, even though only one constraint was guilty. The noisy constraint would still
be present in the feasible space after this relaxation, adding further to any inaccuracies and
increasing the risk that further relaxation will be necessary when new observations are made.

Since Imputing by Comparison and Utility Iteration create constraints in the same way and
order, they will have the same conflict handling policies and are therefore described in the same
section. In the following sections different conflict handling policies are described, four policies
suitable for conflicts caused by drift and fluctuations and one policy suitable for handling
conflicts introduced by noise are described in the following.

e Drift and Fluctuation

— A deletion policy for Imputing by Comparison and Utility Iteration
— Two deletion policies for FLUF

— The constraint relaxation policy, suitable for FLUF, Imputing by Comparison and
Utility Iteration

e Noise

— A deletion policy for Imputing by Comparison and Utility Iteration

47

CHAPTER 4. DyNaAMIC DOMAINS

4.3 Drift and Fluctuation

In this section policies are described for Imputing by Comparison, Utility Iteration and FLUF,
that can be used when conflicts occur in dynamic domains. The policies in this section are
designed to handle conflicts that occur due to dynamic behavior categorized as either drift or
fluctuation. The reason why these types of dynamic behavior are described together, is that
they both assume that the older observations are, the less likely they will be to conform to
the current strategy. Therefore the policies described below can be applied to both kinds of
dynamic behavior.Before these are presented a design issue, that influence conflict handling in
both methods, is discussed, namely the coarseness with which constraints should be removed.

In Imputing by Comparison and Utility Iteration the methods maintain a set of true obser-
vations, unlike FLUF where a set of constraints is maintained instead. The two methods,
Imputing by Comparison and Utility Iteration, still construct a set of constraints, but every
time a new observation is made, the constraints created earlier are deleted so that a new set
can be constructed. The goal of the conflict handling policies described below, is to resolve
conflicts by removing the oldest constraints that conflict along with the observations they be-
long to. The reason why the entire observation is removed, is that if one of the constraints it
adds can cause a conflict, then either drift or fluctuation has caused the policy to change for
one or more of the decision nodes in their observed relevant pasts. At the time the observation
that causes the conflict was made, the observed agent must have been using a different utility
function than the current utility function, due to the drift or fluctuation that has occurred
since then. So even though only one constraint conflicts, then the other constraints added
by the observation may still be incorrect, i.e. the current utility values of the agent cannot be
described by those constraints, and if they are not removed their incorrectness will affect which
utility point is chosen. Also, the observation that is based on an obsolete utility function, will
continue to affect the imputations if only the constraint is removed.

As mentioned, the methods described here will remove entire observations, to ensure that
inaccuracies are reduced. Alternatively the extent of these removals could be limited to reduce
the number of constraints deleted, e.g. by only removing constraints added based on the same
decision node in the same observation. However, due to limited time available for this project,
this alternative is not explored.

Another way of reducing the amount of observations removed, would be to use the method from
FLUF, mentioned in Innocent Until Proven Guilty (Section 4.3.2), for finding the constraints
that make the space empty. When these constraints are found the corresponding observations
could be termed guilty. Unfortunately this approach would not work, since all constraints
added by Imputing by Comparison and Utility Iteration will be based on a fully observed
strategy, and any constraint based on a fully observed strategy will intersect with all points in
the feasible space that describe the trivial utility function (the diagonal). In Appendix A it is
proven that constraints created in domains with fully observed strategies will always intersect
the diagonal, and this will be the case in Utility Iteration and Imputing by Comparison since
they impute the needed observations to make the strategy fully observed. With all constraints
intersecting each other in the diagonal, then all constraints would be termed guilty if the
method used by FLUF in the Innocent until Proven Guilty policy was adopted.

4.3.1 Drift and Fluctuation in Imputing by Comparison and Utility
Iteration
The approach used in Imputing by Comparison and Utility Iteration examines all observations

in parallel, in the sense that all observations are examined with respect to decision node D;

48

4.3. DRIFT AND FLUCTUATION

before any observation is examined with respect to decision node D;_;. Therefore it is likely
that an observation will have added several constraints by the time it is discovered to be a
conflicting observation, and these constraints will not necessarily have been added recently.

As observations are examined in parallel the guilty observation should not necessarily be de-
termined to be the one in which the conflict was discovered. While removing the conflicting
observation will resolve the conflict immediately, but over time this approach may cause many
accurate observations to be removed that did not have to. Under the assumption that the dy-
namic behavior in the domain can be categorized as either drift or fluctuation, then to resolve
a conflict the method used works much like the Always Guilty policy in FLUF. Here observa-
tions are deleted one at the time according to age, such that the oldest observation is removed
first along with its constraints, and removal of observations continue until the feasible space
becomes non empty. Using this approach, then in the worst case the observation in which the
conflict was discovered and all older observations will be deleted.

With O being the set of true observations, ordered by age such that o' is the newest observation
while 0™ is the oldest, where m is the number of true observations in O. Letting C be the
set of constraints added to the feasible space, then Algorithm 4.3.1 describes how conflicts
are handled by this policy. The algorithm is run no differently if more decisions have been
evaluated in some observations than in others, e.g. if the first ten observations have been
evaluated with respect to one more decision node than all other observations when a conflict
occurs, that would have no impact on the algorithm.

Algorithm 4.3.1
o Fromk=mtol

— Remove all constraints added by o* from C, and o* from O
— If C describes a non empty space

* then halt this algorithm

4.3.2 Drift and Fluctuation in FLUF

FLUF’s conflict handling policies are designed to handle drift and fluctuation. The policies
are called Always Guilty and Innocent until Proven guilty. The experiments in Hansen et al.
(2004) showed that the two policies performed equally well when the domain drifts, and that
the Always Guilty policy recovers from a fluctuation fastest.

Always Guilty

In the Always Guilty policy the constraints are removed in the order they were added. When a
new constraint is added which makes the feasible space empty, the oldest constraint is deleted,
if the feasible space is still empty the second oldest constraint is also deleted and so on. This
way the oldest constraints are deleted until the feasible space becomes non empty. Many of
the deleted constraints may not have caused the conflict but nevertheless they are deleted. In
fact it is only certain that the last of the deleted constraints was guilty. The argument for
deleting this many constraints, is that since the domain has either drifted or fluctuated since
the guilty constraint was added, then all constraints added before the guilty would, just like
the guilty constraint, have been added based on observations of an agent using a strategy that
is now obsolete.

49

CHAPTER 4. DyNaAMIC DOMAINS

Innocent Until Proven Guilty

The Innocent until Proven Guilty policy removes a minimal amount of constraints, by only
removing constraints that actually cause the feasible space to become empty. To determine
which constraints cause the space to become empty, corresponds to determining which con-
straints make the radius of the largest possible hypersphere in the feasible space to become
zero. This set of constraints can be found using the method for finding the largest possible
hyper sphere, as described in Section 2.5. If the space is empty, the largest possible sphere will
have a radius of zero, but the method will still calculate the center of this sphere. Finding the
constraints that caused the space to become empty can now be done in linear time, by entering
the coordinates of the determined center into each constraint, then the constraints that equals
zero are the “guilty” constraints. These guilty constraints are removed one at the time, the
oldest being removed first. Each time a constraint is removed the hypersphere is recalculated,
and only if the radius is still zero the next constraint is removed.

4.3.3 The Constraint Relaxation Policy

The conflict handling policies described so far are based on deletion of observations and con-
straints, however the constraint relaxation policy relaxes constraints instead. This conflict
handling policy is developed especially with drift in mind. Because constraints become less
reliable the older they grow, they could be relaxed as they grew older to retain some reliability.
The policy is based on an idea from the future work section in Hansen et al. (2004), where
it is suggested that relaxing constraints could be done by adding a constant that grows each
time a new observations is made, in an attempt to avoid conflicts incurred by drift. Since all
constraints are on the form f(x) > 0 adding a positive constant, f(x) + ¢ > 0, would increase
the space spanned by that constraint. As ¢ would gradually become larger, eventually the
entire normalized region would be a subspace of the space spanned by the constraint, at which
point the constraint would be obsolete and could be removed.

Using this policy conflicts will rarely occur, since each time a new observations is made, the
constraints from all other observations will have been relaxed. Since all old constraints have
been relaxed at least once, only the newest constraint will intersect the diagonal, ensuring that
a hypersphere with a radius larger than zero can always exist near the diagonal. There is one
exception to this rule, namely if the new observation conflicts with itself, which is possible
if imputations are inaccurate. In this situation, the new constraint should be deleted, as is
ordinarily done in the imputing methods when imputations cause conflicts.

A result of using constraint relaxation to avoid conflicts, is that when conflicts are avoided by
relaxing constraints, the valid constraints will not be deleted but instead have their influence
on the utility point diminished. It is likely that new constraints will at some point make the
older constraints superfluous, as at some point the relaxed constraint may span a super space
of the feasible space. This effect is desirable in fluctuation as well as drift.

In this project, instead of adding a constant in the constraint relaxation policy, the coefficients
in the constraints are changed instead, so that the constraints will still be relaxed but will
also continue to intersect with the origin. This is because translating constraints by adding
constants will have an unwanted impact on the feasible space. When constraints are created
in FLUF, Utility Iteration or Imputing by Comparison, they describe a relationship between
expected utilities, such as v; < wa. Since multiplying all utilities with the same positive
constant would yield the exact same strategy, then constraints with constants added (f(x)+c¢ >
0), would allow all combinations of utility values, as long as all values are less than ¢, thereby
describing all strategies. For this reason, then instead of translating constraints they are rotated

50

4.3. DRIFT AND FLUCTUATION

around the origin, in a direction such that they describe an increasing part of the normalized
region, until they describe the entire region at which point they can be deleted.

The Aguilera-Peréz algorithm, presented in Aguilera and Peréz-Aguila (2004), is one possible
approach for rotating the constraints that has been considered. By providing the Aguilera-
Peréz algorithm with a (n — 2) dimensional subspace to rotate around and an angle to rotate,
a set of points sufficient to extrapolate the new position of the constraint could be calculated.
The advantage of using a policy such as this, would be that the speed at which constraints
rotate could be completely controlled, e.g. at five degrees in every rotation. Furthermore, the
Aguilera-Peréz algorithm is designed such that a set of transformation matrices are calculated,
and once such a matrix is calculated for a constraint it could be used every time the constraint
was to rotate. Since the complexity of calculating such a matrix is polynomial in the number
of dimensions (n?), the algorithm could be considered operational. Rotating the hyper planes
that define the constraints according to the Aguilera-Peréz algorithm would mean that the
constraints are relaxed equally for all the utility values. This would be desirable as no particular
utility value is candidate for more relaxation than others.

However, no method has been found to calculate the subspace that should act as the rotation
axis, and since implementation of such a method along with the Aguilera-Peréz algorithm
would be a time consuming task, a simpler but less elegant method is used.

As constraints are created from pp(dp) > pp(d) it would be possible to relax the constraint by
either decreasing the coefficients of pp(d) or increasing the coefficients of pp(dp). This would
increase the difference between the two ps and make it easier to satisfy the constraint. Such
a relaxation would express a decreasing confidence in the relationship between the expected
utility of the chosen decision (0p) and the alternative choice (d). When relaxing like this, it
would be hard to control how fast the constraint should span the entire normalized region,
therefore the relaxation is done by considering the utility coefficients of pp(dp) — pp(d) > 0.
This will have a set of positive as well as a set of negative coefficients. The space described by
a constraint can be increased by increasing the negative coefficients, until all the coefficients
are non negative at which point the constraint will described the entire normalized region. As
long as at least one coefficient is negative the constraint will exclude a part of the normalized
space, e.g. by subtracting a tenth of the original value of each negative coefficients from that
coefficient every time rotation is done, then the constraint would describe the entire normalized
region after ten rotations.

The constraint relaxation policy would have to be implemented differently in FLUF and the
imputing methods, since FLUF maintains a set of constraints while the imputing methods
maintain a set of observations instead. Using this policy in FLUF, Algorithm 4.3.2 would have
to be executed every time constraints are created by a new observation. C denotes the set of
constraints established so far, and c;,¢, denotes the new constraints being added.

Algorithm 4.3.2
e Relax all constraints in C

e Remove any constraint that describes the entire normalized region

e Add cyew to C

Using the constraint relaxation policy in Utility Iteration or Imputing by Comparison, Al-
gorithm 4.3.3 would have to be executed every time a new observation is made. In the al-
gorithm O denotes the set of true observations and 0™*" denoted the new observation that is
not yet part of O. Each observation should have an age attached, such that when constraints
are created for that observation they can be relaxed according to this age. factor denotes

51

CHAPTER 4. DyNaAMIC DOMAINS

the speed at which constraints are to be relaxed, e.g. with a factor of 10 a constraint would
describe the entire normalized region after 10 relaxations.

Algorithm 4.3.3
e Increase the age of all observations in O by 1

e Remove any observation in O with an age above factor

e Add 0™ with an age of 0, to O

This policy has a time complexity linear in the number of dimensions making it operational.
Furthermore, the policy allows for easy control of how many rotations needed before a con-
straint becomes obsolete. The downside of this policy is that the constraint may be relaxed
faster with respect to some utilities than others.

4.4 Noise

In this section it is discussed how noise can be handled by Imputing by Comparison and Utility
Iteration. When noise is the only dynamic behavior that can occur in the domain, the newly
entered observation will generally be considered guilty, when conflicts occur. The argument
is that if an observation contains noise, it will most likely cause a conflict immediately, at
least when there is a large set of true observations already. However, a noisy observation
may only conflict with a few and rare configurations of relevant pasts, and perhaps none of
these have been observed before the noisy observation, in which case it will not cause a conflict.
Furthermore, if a noisy observation is made before a large set of true observations is established,
then it may not cause a conflict immediately. Therefore any policy designed to handle conflicts
in domains containing noise should not immediately assume that the new observation is guilty.

Therefore this policy removes the constraints added by different observations, when conflicts
occur, to see which observation is guilty. Constraints are only removed for one observation at
the time, and if that does not solve the conflict they are reinserted. So this will, in the worst
case be done once for each observation from which constraints were added before the conflict
occurred. Once an observation is found that solved the conflict if removed, it is removed from
the set of true observations.

Using this approach the order in which observations are removed to see if the feasible space
becomes non empty, is very important. The policy for handling conflicts caused by noisy ob-
servations uses both an oldest first approach and a newest first approach, in an attempt to
remove noisy observations without removing large numbers of non-noisy observations. It is im-
portant to note that when a conflict occur during execution of either Imputing by Comparison
or Utility Iteration, the conflict is resolved using either the oldest or newest first approach,
and then the execution continues. Meaning that the set of constraints is maintained, with
exception of the newly removed constraints, and execution does not start over.

Algorithm 4.4.1 gives an overview of how conflicts are handled in a domain that contains noise.
The two approaches, oldest first and newest first are described below. Every time a conflicts
occurs, a counter is incremented, this counter is used to keep track of the number of conflicts
that have occurred, it is called conflicts and is initially set to zero. Initially the oldest first
approach is used to solve conflicts, but when con flicts reaches a predetermined limit (limit),
the newest first approach is used instead. Now every time conflicts occur in a domain with
noise, Algorithm 4.4.1 is run.

Algorithm 4.4.1
o If conflicts < limit

52

4.4. NOISE

— then Increment conflicts by one, and run the oldest first algorithm

— Else Run the newest first algorithm

4.4.1 Oldest First

Because noise may not cause conflicts immediately, the first set of constraints to be removed
are those added by the oldest observation, from which constraints could solve the conflict if
removed. If constraints have already been added for the last decision node in all observations
when the conflict occurs, the oldest of all true observation would be the one examined first. If
it cannot solve the conflict then the second oldest is examined and so on. If not before, then
the conflict will be resolved when the turn comes to the observation in which the conflict was
discovered.

Doing this the first time a conflict occurs ensures that if the newest observation is not noisy
but a noisy observation previously has gone undetected. If the new and the noisy observations
conflict, the noisy observation will be deleted. There is a risk that inaccurate imputations
could result in the new observation also conflicting with a second non noisy observation, in
which case the two non noisy observations may conflict, sparing the actual noisy observation.
For this reason it could be considered if this oldest first approach should be used more than
for just the first conflict, i.e. limit should be greater than 1. Increasing the number of times
the oldest first approach is used will increase the likelihood that noisy observations, already
added to the set of true observations, will be removed. The trade off for increasing the number
of times the oldest first approach is used, is that if the new observation is noisy then it will
cause more correct observations to be deleted and there will be an increased risk that the noisy
observation will be allowed to remain in the set of true observations.

Due to the facts that the frequency with which inaccurate imputations will cause conflicts and
the frequency of noise is domain specific, the number of times (limit) the oldest first approach
is best used will also be domain specific.

The oldest first approach should be implemented as Algorithm 4.4.2, where O denotes the set
of all true observations and the different observations are denoted (o, - - ,0™) where there are
m observations in O and o™ is the oldest observation. Finally C denotes the set of constraints
added before the conflict occurred.

Algorithm 4.4.2
e Fork=mtol

1. Remove the constraints added by o* from C
2. If C describes the empty space

— then insert the removed constraints from o into C again
— Else remove o from O, and halt this algorithm

4.4.2 Newest First

At some point, when the oldest first approach has been used a predetermined number of times
(limat) and conflicts keep occurring, it is assumed that the new observation is the one causing
the conflict. At this point the newest first approach is used instead. Using the newest first
approach, the newest observation is examined by removing its constraints to check if the conflict
is resolved, and only if this is the case the observation will be deleted. As the set of observations
did not conflict before the new observation was made, removing it will most likely resolve the

53

CHAPTER 4. DyNaAMIC DOMAINS

conflict. If removing the newest observation does not resolve the conflict, then the conflict is
occurring because the new observation is causing different imputations, and these imputations
are causing the conflict. As can be seen in Sections 3.3 and 3.4, these situations are handled by
removing the observation in which the conflict was discovered. This is also done in the newest
first approach, when removing the newest observation does not solve the conflict.

The algorithm for the newest first approach is shown in Algorithm 4.4.3, where the same
notation is used as in Algorithm 4.4.2. Furthermore, let 0°"f!** he the observation where the
conflict was discovered.

Algorithm 4.4.3
e Remove the constraints added by o' from C

e If C describes the empty space

— then insert the removed constraints from o' into C again

— Else remove o' from O, and halt this algorithm
e Remove the constraints added by ol from C

e Remove ocflict from O

54

CHAPTER

FIVE

Fxperiments

To evaluate the Imputing by Comparison and Utility Iteration methods, described in Section 3.3
and Section 3.4, several experiments have been conducted. These experiments were conducted
to examine how well the imputing methods estimates utility functions, in static as well as
dynamic domains.

The methods have been evaluated with regard to two different aspects: speed and accuracy.
Speed is measured in the number of observations, so a method that reaches a higher level of
accuracy with fewer observations is considered fast. Accuracy is measured in three different
ways. The first is comparison of expected utility of the predicted strategy using the real utility
values. The purpose of this measurement is to evaluate whether the choices predicted by
the method would yield good decisions. This would be interesting when determining if the
method should be used in some advisory role. The second measure of accuracy is how frequent
a single decision is predicted correctly. This measure will be the fraction of the relevant
past configurations where the method’s estimated utility function would result in the same
decision as the agents real utility function (ignoring those relevant pasts that cannot occur).
As likely configurations of the relevant past are not given any greater weights than unlikely
configurations, this indicates how well the method predict configurations that has only been
observed a few time, if at all. To determine how accurately the method performs in general,
a third measure is used where the predictions are weighed based on each configuration of the
relevant past’s probability of occurring. Measuring the accuracy of prediction for each decision
would be interesting in a scenario where the observed agent is some sort of opponent, e.g. if
the application using one of the methods should try to counter the action that the observed
agent is about to make.

The weighed accuracy of predicting a decision node is calculated with Equation 5.1, where
correctp(past(D)) is one when the method is able to predict which choice the agent would
make for decision D given the relevant past past(D), and zero otherwise. If a decision node is
a part of the relevant past, it is replaced with a deterministic chance node that have the same
state space as the decision node, and enters the state that corresponds to the choice the agent
would make.

Z (P(past(D)) - correctp(past(D))) (5.1)
past(D)

The unweighed accuracy of predicting a decision is calculated with Equation 5.2 where |past(D)]

55

CHAPTER 5. EXPERIMENTS

is the number of possible configurations of the relevant past. Configurations that have zero
probability are not included in this measurement.

2 past(D) (correctp(past(D)))
[past(D)|

(5.2)

Rather than just comparing the two imputing methods against each other, the experiments
will also be conducted using FLUF. This will make it possible to evaluate whether the new
methods are improvements compared to FLUF.

FLUF works with a constraint removal policy to handle conflicting observations. The exper-
iments in Hansen et al. (2004) revealed that between the “Always Guilty” and the “Innocent
Until Proven Guilty” policies there was only minor differences in accuracy, with the exception
of handling fluctuations in the utility values, in which case the “Always Guilty” policy recovered
faster. For that reason experiments with FLUF in this project was only conducted using the
“Always Guilty” policy. See Section 4.3.2.

The comparison between FLUF and the new methods is slightly uneven, as FLUF only keeps
constraints whereas the new methods keeps observations and rebuilds the constraints for each
prediction. This means that the new methods will use more space and be somewhat slower
(in terms of execution time) than FLUF. To make the comparison more even and to reduce
execution time and use of space, the methods will only use a number of the newest observations
to create constraints, the number of observations chosen is called window size. The window
size in these experiments has been chosen to be 100, forcing the methods to discard their
oldest observations if they at any point have more than 100 observations, thus limiting the
number of observations and thereby also the number of constraints being used. As FLUF
removes constraints when conflicts occur all the constraints derived from one observation may
eventually be removed, in which case that observation is considered as being removed.

5.1 Domain

The influence diagram used in the initial experiments is the same as used in Hansen et al.
(2004) and is shown in Figure 5.1, the nodes have the number of states shown in Table 5.1.

Node Number of states
A
OM
oqQ
M
Q
M*
H
OH
T

GUIEN JEN [T SQUINQIF OISO

Table 5.1: Number of states

The utility values in node C' are generally lower than those in node U. The reason for this is that
decision node A could otherwise be dictated by utility node C, regardless of the configuration
of the relevant past of A. With the chosen utility values the decision that yields the maximum
expected utility in decision node A changes depending on the configuration of the relevant past
of decision node A.

56

5.2. THE EXPERIMENT PROGRAM

O-E<>

OO

@10
<

Figure 5.1: Influence diagram for experiments

5.2 The Experiment Program

The program used to perform the experiments on FLUF is the program develop in Hansen
et al. (2004), with minor modifications. The library for solving linear inequalities is replaced
by 1p_solve (Berkelaar et al., 2005) due to a simpler interface. The implementation of FLUF
is also extended to allow the use of the constraint relaxation policy for conflict handling, as
described in Section 4.3.3. The two methods Utility Iteration and Imputing by Comparison is
implemented as designed in Sections 3.3 and 3.4, including conflict handling policies, described
in Section 4.2, for drift/fluctuation and noise along with the constraint relaxation policy. To
handle the probabilistic networks Hugin Researcher from Hugin Expert A/S (A/S, 2004) is
used.

With regard to execution time of the methods, FLUF is the fastest of the three in the original
domain, but when the domains increase in size, FLUF decrease significantly in speed, (see
Section 5.3.6). Naturally the exact time spent by each method will depend on the system on
which the experiment is conducted. The execution times presented here were running on a
1.6 GHz Pentium M laptop. Experience have shown that Utility Iteration is almost as fast
as FLUF in all experiments on the original domain. FLUF generally took just less than 30
minutes per 200 observations while Utility Iteration took just above 30 minutes. With regard to
Imputing by Comparison, it took about two and a half hours per 200 observations in drifting
domains, because several conflicts occur and observations are removed as a result, as later
result will show, this is fast. Recall that the worst case time complexity of the Imputing by
Comparison algorithm was polynomial in the largest number of possible configurations of the
relevant past, in the domain, as shown in Equation 3.19, because the method grows more
complex as more observations are entered, until the number of observations equals M
Since a window size has been introduced into the algorithm the complexity is reduced to
min(windowsize, ”levf‘mti), this is a significant decrease with respect to decision 7', which has
a relevant past of size 448. In spite of this reduction the Imputing by Comparison is very slow
when observations are not regularly removed due to conflicts, which is the case in the static
domain, single fluctuation and noisy observations experiments. In these experiments each run
with 200 observations took 10 hours to complete using the Imputing by Comparison method,
while using Utility Iteration and FLUF it took less than 40 minutes per 200 observations.

57

CHAPTER 5. EXPERIMENTS

5.3 The Experiments

In this section the experiments themselves are presented. Different scenarios have been de-
veloped in order to test the methods under different circumstances. The scenarios are de-
veloped to represent a wide range of different possible situations where methods like FLUF
Imputing by Comparison and Utility Iteration could be used. Scenarios with both dynamic and
static behavior are chosen. In the experiments dynamic behavior is categorized as either drift,
fluctuation or noise as described in Chapter 4. To achieve reliable mean values and variance
all experiments are run 10 times, and all experiments are performed with 200 observations in
each run. Since the window size is only 100, then if the methods converge toward some mean
values, they will do so before all 200 observations have been evaluated.

A number of experiments are conducted with the domain described in Section 5.1. The first
experiment presented is conducted with a static domain. Then experiments are done on differ-
ent kinds of drifting domains. Finally experiments with two kinds of fluctuation are presented
followed by an experiment with a domain containing noise.

After these initial experiments have been presented, an experiment is presented where the
domain has been slightly altered, to examine specific properties of the methods.

All results from the experiments are shown in Appendix D, and in this chapter only selected
results are shown.

5.3.1 Experiment One - Static Domain

In this experiment the domain is static, meaning it does not change between the observations.
The experiment serves as a baseline for how well the methods perform with regard to both
accuracy and speed. Utility values have been chosen for the static domain such that differ-
ent decisions should be made given different relevant pasts, when following the strategy for
maximizing expected utility.

Even though the setup may seem simple it must be considered realistic. An example of such
a situation could be something as buying office supplies as long as the prices does not change.

Results

The expected utility of the methods can be seen in Figure 5.2. FLUF starts with an expected
utility of 0.86 but rapidly increases and reach 0.98 after 22 cases. FLUF does not improve
after that. Utility Iteration and Imputing by Comparison starts with expected utilities of 0.87
and reaches 0.99 after 34 and 32 cases respectively. All methods have variance of less than 0.01
after the first 20 observations and throughout the remaining training cases.

For decision A FLUF starts with an accuracy of 0.6 and after only 2 training cases predicts
0.8 correctly (weighed). Unweighed the results are lower by approximately 0.03-0.05. Utility
Iteration starts almost identically to FLUF but continues to increase its accuracy until 35
training cases have been entered. After that it has an accuracy between 0.97 and 1 throughout
the remaining observations. When considering unweighed prediction, it takes Utility Iteration
30 additional training cases to reach the same level of accuracy. Imputing by Comparison
behaves identically to Utility Iteration, except that after the first 60 observations Imputing
by Comparison’s accuracy remains about 0.02 below that of Utility Iteration, but only with
regard to unweighed predictions.

For decision T' FLUF starts with predicting 0.65 (weighed) correctly and reaches 0.98 after

58

5.3. THE EXPERIMENTS

50 cases. Utility Iteration starts at 0.7 and reaches 0.98 after 53 cases, but does, on average,
predicts more accurately than FLUF. The accuracy of Imputing by Comparison starts at 0.64
and reaches 0.98 after 39 cases. After they reach 0.98 all methods maintain that accuracy.
After 39 cases the variance of Utility Iteration and Imputing by Comparison decreases to 0.01
whereas FLUF does not reach that until after 71 cases. When considering decision T" unweighed
the methods performs almost equally well. They start with little more than 0.5 correct and
reach 0.9 after 20-30 cases. They increase slowly after that but none of them increase above
0.98.

Conclusion

In general it must be said that Utility Iteration and Imputing by Comparison performs equally
well, and that they both are faster and more accurate than FLUF for static domains. The
higher level of accuracy that Utility Iteration and Imputing by Comparison reaches is most
apparent for decision A, and the better expected utility must be attributed to that. FLUF
cannot predict decision A as precise as Imputing by Comparison and Utility Iteration due to
the fact that FLUF uses relaxations to create the constraints for the partial observed domain.
These relaxations induce inaccuracies in the chosen utility point used to explain decision A (see
Section 2.7). Imputing by Comparison and Utility Iteration are both more precise at predicting
decision A can it be concluded that, for a static domain, imputing is a better method than the
relaxation techniques of FLUF.

105

085 '] 08 If g
0.9 ‘» 4

2
=
?
06 [
g 0.85 §
Q
£ o
E 08 | 1 04
8
= o7y Legend
True Expexted Utility ——— 02 | Legend
07 Fluf 4 Fluf ——
Utility Iteration - Utility Iteration
065 L tmoutingBy Comperison | o LL__tmputing By Comparison -}
o 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Observations Observations

Figure 5.2: Expected utility for static domain (ex- Figure 5.3: Prediction of decision A (weighed) (ex-
periment 1) periment 1)

5.3.2 Experiment Two - Domain with Drift

To test the methods with regard to domains containing drift, three different forms of drift was
used, to examine if and how different kinds of drift would impact the accuracy and speed of
the methods. The three kinds of drift are called one way drift, random drift and local drift.
Ten experiments with 200 observations were conducted for each type of drift. Experiments
using deletion policies was conducted with all three kinds of drift, while experiments were only
conducted using the constraint relaxation policy under local drift.

One Way Drift In one way drift the utility values are drifting in the same direction between
the observations, i.e. utility values that are increasing continue to increase, and decreasing
utility values continue to decrease. This means that after a number of observations the strategy

59

CHAPTER 5. EXPERIMENTS

of the agent may change, and it may happen again later as time progresses. But at some point,
as the utility values continue to drift in the same direction, the strategy of the agent will not
change anymore. It should be noted that this point is not reached within the 200 observations
included in the conducted experiments.

The utility values that are decreasing will be denoted U~ and the increasing values will be
denoted U™. Now, between each observation the utility values will be updated as follows:

Vu € U :u:=u+ c where ¢ € (0;0.01) and Yu € U™ : u:= u — ¢ where ¢ € (—0.01;0).

As the utilities are normalized between every observation a change of 0.01 is significant. Each
utility value is increased or decreased by the same amount between each observation.

An example of such a scenario could be the development of prices of goods. The prices may for
a period have a steady development, and the shopper’s strategy will continue to be adjusted
to these prices.

Local Drift With local drift the utility values drift within certain boundaries. These bound-
aries are that each utility at most may be 20% above or below its original value. The purpose of
this experiment is to simulate that the agent is not completely sure about the domain and that
the utility values actually are estimated values. This means that nothing necessarily changes
in the environment, but just that the agent may judge situations differently from time to time.

When updating the utility values between the observations it is always relative to the original
utility values. Let u be the original utility value, u’ the utility value prior to the update and
u” the utility value after the update. Then the values are updated as:

u” := v + c where ¢ € (—0.01;0.01) A’ + ¢ € (0.8u;1.2u).

The utility values have original values so that the 20% boundaries allow for more than one
strategy. The c value is chosen randomly from the values that would satisfy the equation. Note
that the utilities are normalized between observations and the maximum drift speed is 0.01,
as in one way drift.

This could for example occur when the observed agent is trying to decide what kind of ad-
vertisement that should be used. The effect of each type of advertisements will probably be
estimates.

Random Drift With random drift the agent’s utility values also drift, like with local drift,
but this time they are unbounded. They are, however, limited in how much they change
between each observation. To avoid letting the drift becoming fluctuation, each utility value
only drifts between —0.01 and 0.01 between each observation, i.e. a utility value can at most
increase or decrease by 0.01. Having the same maximum drift speed as in local and one way
drift also makes it easier to compare results.

Updating utilities is very similar to how the utility values are updated in local drift except
that they are updated relative to the current value only.

Vu € U : v := u+ ¢ where ¢ € (—0.01;0.01)

Again, the ¢ value is chosen randomly from the values that would satisfy the equation, and the
utilities are normalized between observations.

This could for example be customer’s preferences based on what is fashionable. What is
considered fashion may vary greatly over time.

60

5.3. THE EXPERIMENTS

Results
105 : : : : : : : : : 105
> 1
1 =
S 095
> 09l % 09 | A
= S ossf
09
B i E 08 |
g g
g o8| g 075 |-
£ 07l
2 08l
£ 065
S s 0 20 40 60 8 100 120 140 160 180 200
.75 Legend Observati
True Expexted Utility ——— servations
07 L Fluf] Legend
_ Utility Iteration - True Expexted Utility ———
065 __Imputing By Comparison .))) FLUF - constraint relaxation
0 20 40 60 8 100 120 140 160 180 200 Utilitylte'r:aLtiL(J; o
Observations Utility Iteration - constraint relaxation

Figure 5.4: Expected Utility for One Way Drift (ex- Figure 5.5: Expected utility for local drift with con-
periment 2) straint relaxation policy (experiment 2)

The experiments show that all utility learning methods achieve a higher expected utility in the
domain with one way drift (see Figure 5.4) than in the other two, and between local drift and
random drift, the methods all handle local drift better than random drift. In one way drift there
is an indication that the methods improve over time, converging around an expected utility
between 0.92 and 0.96 after about 80 observations. In the two other kinds of drift the methods
expected utilities increase only until observation number 20. In local drift the expected utility
of the three methods are about the same after the first 20 observations, remaining between
0.86 and 0.96, but showing a tendency that FLUEF’s expected utility is the smallest.

With respect to the accuracy of predicting decision A Utility Iteration and Imputing by Com-
parison are equal in all the experiments, FLUF only obtains equal result in local drift, while
in one way and random drift FLUF performs worse than Utility Iteration and Imputing by
Comparison. In local drift all three methods maintain a predicting accuracy around 0.7 with
a variance around 0.2 throughout the experiment, for weighed as well as unweighed measure-
ments. With respect to experiments with one way drift and random drift, Utility Iteration and
Imputing by Comparison has an accuracy around 0.8. In one way drift the variance is mostly
below 0.2 for Utility Iteration and Imputing by Comparison, while it is around 0.3 in random
drift. The mean accuracy of FLUF in one way drift and random drift is around 0.6 while the
variance in both cases is around 0.35 and goes as high as 0.4. When predicting decision T’
all methods work equally well for all three kinds of drift. The three methods having a mean
accuracy around 0.6 in one way drift and random drift, with a variance around 0.15 for one
way drift and 0.2 for random drift. With respect to local drift the three methods perform
better, with a mean accuracy around 0.7 and a variance around 0.25.

An experiment was conducted where the constraint relaxation conflict handling policy was
used in conjunction with each of the three methods in a domain with local drift. The same
training cases were used in both this and the original experiments with local drift, to increase
comparability. Figure 5.5 shows the expected utilities achieved by the three methods when
using constraint relaxation, variances are not shown on the graph. The experiments showed
that constraint relaxations works well with all three methods, but does not significantly improve
the accuracy of any of the methods. All three methods predict both decisions almost equally
well, with a mean accuracy around 0.9, very much like without constraint relaxation.

61

CHAPTER 5. EXPERIMENTS

Conclusion

Throughout these drift experiments FLUF has, with or without constraint relaxation, shown
expected utilities lower than the ones generated by Utility Iteration and Imputing by Com-
parison. Examining the accuracies of the methods with respect to prediction of decisions, it is
obvious that the reduced expected utility of FLUF is a result of FLUF’s inability to predict
decision A as well as the to imputing methods. The two imputing methods seem equal, with
the exception of one way drift, where there is an indication that Utility Iteration achieves a
higher mean on expected utility than Imputing by Comparison.

Concerning the constraint relaxation policy, there is no noteworthy change in the accuracy of
the methods. Without constraint relaxation the constraints contribute to the feasible space
by their original coefficients, whereas with constraint relaxation only the newest constraint
contribute with its original coefficients. So one possible explanation of that the results does
not vary much is that the dominant constraint is the newest, meaning that when not using
constraint relaxation, a high number of constraints must be deleted. This is supported by the
fact that the average number of observations kept by the methods is around 10.

5.3.3 Experiment Three - Domain with Fluctuation

Another kind of dynamic behavior is fluctuations where the agent being observed makes a
radical shift in its strategy. How the methods handle this is tested in two different setups;
Single Fluctuation which is a single shift in the strategy and Multiple Fluctuations where the
agents change strategy very often. Experiments have been conducted using the deletion policy
with all three methods in both kinds of fluctuation, while constraint relaxation has been used
with all methods under single fluctuation and only with FLUF under multiple fluctuation.

Single Fluctuation For this setup the agent’s utility values will make one great shift and
otherwise remain unchanged. The main purpose of this is to assesses the methods’ ability to
handle a radical shift from one strategy to a completely different strategy. The shift in utility
values is designed such that at least a third of the possible relevant past configurations lead to
a changed policy.

This could represent a scenario where an agent in a poker game makes a sudden shift in the
strategy to throw off opponents, or it may represent changes in a farmer’s priorities if there is
a sudden change in the weather, given that the domain does not explicitly model the weather
development.

Multiple Fluctuations For this setup the agent’s utility values will make several great
shifts. The purpose of this is to determine how well the methods handle a very uncertain
strategy.

This could represent a scenario where an agent is deliberately trying to prevent the method
from determining the strategy.

Results

The expected utility for each method is shown in Figure 5.6. FLUF starts with a mean expected
utility at 0.88 and reaches 0.96 after 10 observations in single fluctuation. The mean expected
utility continues to increase until the strategy is changed at which the mean expected utility
is above 0.98 (0.98 is in fact reached after only 25 observations, and only minor improvements

62

5.3. THE EXPERIMENTS

1.05 T T T T T T T T T 1.05
2 1
S R R S o957
B
z 095 g 09
= i o L
g : 3 0.85
% 09 E 08 i
£ ormt !
%L 0.85 - 8 07
E i = |
E 08 | i d 0.65 L I I 1 1
S H 0 20 40 60 80 100 120 140 160 180 200
= L f i i
0.75 Legend Observations
True Expexted Utility —— Legend
07 Fluf 1 True Ex ility ——
~ Utility lteration -~~~ rue Bxpexted Utility
065 __Imputing By Comparison :))) Utility Induction -
- FLUF - constraint relaxation
0 20 40 60 80 100 120 140 160 180 200 Utility Induction - constraint relaxation
Observations Imputing By Comparison - constraint relaxation

Figure 5.6: Expected utility for single fluctuation Figure 5.7: Expected utility for single fluctuation
(experiment 3) using constraint relaxation (experiment 3)

are made after that). After the strategy is changed it takes FLUF 30 observations to reach an
expected utility of 0.98.

In multiple fluctuation FLUF starts with a mean expected utility at 0.88. The strategy is
changed after 10 observations and as a result FLUF’s mean expected utility then drops to
0.64. It quickly recovers and gains a mean expected utility of 0.96 before the strategy is
changed again. This pattern repeats itself throughout all 200 observations.

Both Imputing by Comparison and Utility Iteration follow the same pattern as FLUF. They
generally have higher mean expected utility than FLUF and recovers faster than FLUF from
a change in the strategy. In particular in multiple fluctuations, Imputing by Comparison and
Utility Iteration methods recover faster than FLUF.

Concerning the prediction of the decisions all three methods are almost equally good at pre-
dicting decision 7. In single fluctuation, the methods reach an accuracy of approximately
0.95 after 25 observations, with FLUF being five observations slower at reaching that level.
When the strategy changes after 100 observations the methods drop to an accuracy of 0.2, but
they then regain a level around 0.98 after additional 30 observations. For multiple fluctuation,
Imputing by Comparison and Utility Iteration peaked between each change in the strategy at
approximately 0.97, and then dropped to approximately 0.7. FLUF increased to, on average,
0.96 and dropped to 0.72 when the strategy was changed.

For decision A FLUF in single fluctuation, had an accuracy of 0.8 throughout the first 100
observations, whereas Imputing by Comparison and Utility Iteration reach 0.9 after 10 obser-
vations and 0.99 after 20 observations. After the strategy changes all three methods drops to
around 0.65 in accuracy for decision A and then increases to 0.99 after additional 30 obser-
vations. For multiple fluctuation the methods’ accuracy ranges from 0.2 to 1.0 at the most
extreme. Which of the methods that recover quickest from a change in strategy varies each
time the strategy varies.

The expected utility for each method using constraint relaxation is shown in Figure 5.7. For
comparison FLUF without constraint relaxation is also shown. For single fluctuation the
constraint relaxation technique described in Section 4.3.3 was tested. With regard to the
mean expected utility FLUF reaches 0.96 after 20 observations where Imputing by Comparison
and Utility Iteration reach 0.98 after 20 observations. Before the strategy changes the mean
expected utility of all three methods are generally 0.02 lower than without constraint relaxation.
After the change in strategy all three methods drops to around 0.83 in mean expected utility
and then increases to 0.91 after observation 102 and reaches 0.96 after observation 105. The
methods perform better after the change in strategy with constraint relaxation in that they

63

CHAPTER 5. EXPERIMENTS

reaches the same level of accuracy as without constraint relaxation but faster.

Due to the results achieved for FLUF with constraint relaxation in single fluctuation, FLUF
with constraint relaxation was also tested with multiple fluctuation. The mean expected utility
of FLUF with constraint relaxation drops as low as 0.37 whereas FLUF without constraint
relaxation only drops to 0.53. Both have a peak at 0.96. However, between the changes in
strategy FLUF with constraint relaxation have a mean expected utility at 0.86 whereas FLUF
without constraint relaxation have a mean expected utility of 0.8.

Conclusion

In general Imputing by Comparison and Utility Iteration performs equally well, both with
regard to decision prediction and expected utility. Compared to FLUF they both have a
higher mean expected utility and are generally faster at reaching high level of accuracy. The
interesting element is how well the methods recover after the strategy changes. Here Imputing
by Comparison and Utility Iteration are faster than FLUF, in particular in single fluctuation.
One explanation for this might be that they not only throw away constraints when conflicts
occur, but throw away all constraints related to the guilty observation. This means that number
of constraints from old observations will decrease very fast when fluctuation occur.

With constraint relaxation the three methods performed almost equally well. Considering the
results prior to the change in the strategy indicate that whether the methods work better
with or without constraint relaxation may be domain specific. The methods increase the
mean expected utility after the change in the strategy faster with constraint relaxation than
without. The mean expected utility after the change in the strategy is almost identical for
all three methods, indicating that for the utility function used in the last 100 observation the
constraint relaxation is more important than how the constraints are created. The general
improvement in mean expected utility is probably a consequence of old constraints quickly
being made irrelevant by new constraints, as old constraints are relaxed.

After the change in strategy, the decision with the highest expected utility in node A is same,
independent of the configuration of its relevant past. This allows FLUF to achieve a very high
accuracy on decision A. The fact that a good mean expected utility is achieved faster after
the change in the strategy is most likely a result of the increased accuracy on decision A.

5.3.4 Experiment Four - Domain with Noise

In this experiment the training cases contain noise, that is observations that does not necessarily
conform with the utility values of the domain. Each new sample has probability p of being
noisy; in this experiment p equals 0.05. The noise is introduced by creating an ordinary sample
and then randomly picking three non utility nodes. Each of these three nodes are then put
in a random state, which might be their original state. So in fact less than three nodes may
be altered in noisy observations, and using this approach the noise introduced might actually
conform with the agents utility function.

Noise could occur in almost any scenario, e.g. because of human failure to record correctly
what is observed, or because of corrupted data due to computer failure, or faulty network
transmissions.

Results

The expected utility of the methods can be seen in Figure 5.8.

64

5.3. THE EXPERIMENTS

1 T T R e e v e 11
1
0.98 + /
09
= 2
g 09 S osl
B B
B | g o7t
=% L =%
3 0.94 i &
E g 06r
g | g
S 092 S 05
= =
Legend 04 -
09 | True Expexted Utility —— 1 L egend
Utility Iteration (no noise handling) 03} True Expexted Utility ——
Utility Iteration - : Fluf
088 i i i Impglinq By Comparison‘ i 02 i Utili;ylteration e)))
o 20 40 60 80 100 120 140 160 180 200) 20 40 60 80 100 120 140 160 180 200
Observations Observations

Figure 5.8: Expected utility with noise (experiment Figure 5.9: Expected utility with single fluctuation
4) in alternative domain (experiment 5)

For this experiment the results of using Utility Iteration using the conflict handling policy for
static domains, is included for comparison. Utility Iteration starts with a mean expected utility
of 0.89 and then increases to 0.98 after 27 cases. Then its mean expected utility drops to almost
0.96 and for the remaining cases the mean expected utility varies between 0.97 and 0.99. Both
Imputing by Comparison and Utility Iteration with noise handling start with a mean expected
utility at 0.89 and increases slowly to 0.99 after approximately 40 cases. Neither of them drops
significantly below that level.

For decision node A Utility Iteration without noise handling predicts correctly for 0.68 of the
weighed configurations. Its ability to predict decision A varies between 0.95 and 0.99, and
never really stabilizes. For decision 7' the accuracy varies between 0.9 and 0.99. However, it
does not reach the same level as for Utility Iteration with noise handling.

Both Imputing by Comparison and Utility Iteration with noise handling start with predicting
decision A correct for 0.68 of the weighed configurations and then continues to increase until
they reach 0.99 after approximately 30 cases. After 30 cases both Imputing by Comparison and
Utility Iteration remain at predicting correctly in approximately 0.99 of the weighed relevant
past configurations. Decision T is predicted correctly in 0.95 of the cases after approximately
40 observations, and after that it increases to an accuracy of 0.98 after 65 observations.

Conclusion

The mean expected utility (see Figure 5.8) for the noise experiment indicates that the policy
used by Imputing by Comparison and Utility Iteration to handle noise in the training cases,
does take care of most of the noise. The results of the experiment show that Utility Iteration
without noise handling takes a severe cut in its ability to get a good expected utility, compared
to how it performs for static domains, while Imputing by Comparison and Utility Iteration
with noise handling are largely unaffected. Imputing by Comparison and Utility Iteration with
noise handling take about an additional 20 cases to reach almost the same level of accuracy for
the decisions as for the static domain. This does have a minor impact on the mean expected
utility. The fact that Imputing by Comparison and Utility Iteration are almost identical is
not surprising considering that they also had almost identical results in the experiment with a
static domain, and that they are using the same conflict handling policy.

65

CHAPTER 5. EXPERIMENTS

5.3.5 Experiment Five - Alternative Domain

A question that has risen from experiments conducted so far, is why FLUF’s accuracy on
decision A is lower than on decision 7. It is examined if its relatively low accuracy may be
due to poor estimations of the utilities in utility node C.

Considering that C' is the dominant utility node, with respect to predicting decision A, the
explanation could be that the only constraints created by FLUF that can be used to express
anything about the utilities in node C are the constraints created in decision node A. All
constraints created in decision node A are subjected to relaxation in FLUF, and this relaxation
could be the cause of inaccuracies.

To examine this question an alternative domain is constructed, which is shown in Appendix
C. This alternative domain is created as a modification of the original domain. Here a third
decision node is introduced into the domain, called D, and a new chance node N is introduced
as parent for D and C. D has indegree of 2 and outdegree of 1 with nodes OM and N as
parents and @ as child, meaning that the edge from node OM to decision node A has now
become obsolete due to the assumption of no-forgetting. The new decision will have a relevant
past of size 12, and should due to an increased number of either relaxations or imputations be
a difficult node to predict for all methods.

With respect to this alternative domain, tests are conducted with local drift and single fluctu-
ation. Only one version of drift is used, in that the tendencies are expected to be the same for
all three versions of drift, much as experienced in the earlier experiments. Single fluctuation is
used, because the first 100 observations can be used as an indication of what would happen in a
static domain, and the experiment will still allow for examination of the impact of altering the
domain on fluctuation. Due to the increased number of imputations needed in the alternative
domain, since decisions must be imputed for node A in that domain, only FLUF and Utility
Iteration are run.

Results

The experiment on the alternative domain with local drift, showed that both Utility Iteration
and FLUF achieved a mean expected utility around 0.87, which is a reduction with respect to
the original domain. The accuracy of decision node A was reduced compared with results from
the original domain, which in part explains the reduced expected utility. The mean accuracy
of both methods lay around 0.6 with respect to decision A. So the reason why a lower expected
utility is achieved alternative domain compared to the original domain, is found in decision
node D. Both method have very large variances with respect to decision D, namely about 0.3
in both cases. The mean accuracy of Utility Iteration goes as low as 0.35 and as high as 0.85,
while FLUF goes even lower at 0.29 and equally high at 0.85. With only 3 possible decisions in
D, this accuracy is at time as bad as random guessing. Therefore the drop in mean expected
utility must be attributed to the D predictions.

With respect to fluctuation on the alternative domain, both FLUF and Utility Iteration pre-
dicted T without any significant difference from the original domain. With respect to the
A decision it was initially predicted better by FLUF in this alternative domain than in the
original domain, the mean accuracy for FLUF was just below 0.9 up until the fluctuation.
After the fluctuation FLUF’s mean accuracy stayed between 0.7 and 0.8, whereas FLUF could
predict decision A with an accuracy of 1 after recovering from the fluctuations in the original
domain.

Utility Iteration achieved a mean accuracy for predicting decision A of 0.96 both before and
after the fluctuation, and it showed no difficulty recovering from the fluctuation, it actually

66

5.3. THE EXPERIMENTS

converged faster after the fluctuation than before. Concerning decision node D, Utility It-
eration predicted it very well, achieving a mean accuracy of 0.95 both before and after the
fluctuation converging equally fast. FLUF on the other hand had difficulties with decision
node D, with a mean accuracy varying between 0.4 and 0.8 up until the fluctuation took place,
showing no sign of improvement. Immediately after the fluctuation FLUF predicted D with
an accuracy of only about 0.2, but after about 50 observations it seemed to recover to the
same accuracy as before the fluctuation. Throughout the experiment FLUF’s accuracy had a
variance of 0.35 when predicting decision D. The accuracy of decision D for single fluctuation
is shown in Figure 5.11.

Despite FLUF’s accuracy on the D decision it achieved a mean expected utility around 0.97
before the fluctuation and 0.93 after, before the fluctuation FLUF converged after 10 obser-
vation and after the fluctuation it took about 30. Utility Iteration does better, with a mean
expected utility around 0.99 before and 0.98 after, it should be noted that it took only 10
observations for Utility Iteration to converge before the fluctuation, but 40 observations to
do so after. These results would indicate that FLUF’s inaccuracy in the D decision did not
have a very large impact on expected utility, since the expected utility of the two methods was
almost equal before the fluctuation. FLUF’s decrease in expected utility is more likely due to
its reduced accuracy on the A decision, after the fluctuation. The expected utility for single
fluctuation can be seen in Figure 5.9.

Conclusion

Concerning FLUF, this experiment indicates that the accuracy of FLUF, with respect to A,
depends a lot on the domains used. In the fluctuation experiment, the change of strategy for
the observed agent is the same in all 10 runs, allowing for a very high or low mean accuracy
depending on how the chosen utilities fit a specific method. The varying accuracies observed
during the fluctuating setup has probably more to do with the values chosen for utilities, than
whether or not a fluctuation has occurred yet. Seeing as Utility Iteration achieves a high
accuracy in fluctuation, unlike FLUF, indicates that the imputing method is more robust.

With respect to decision D, Utility Iteration handles it very well, under fluctuation, while
FLUF only achieves an accuracy slightly better than random. Neither method achieves good
accuracies on D in case of drift. The D node was included in an attempt to explain FLUF’s
inaccuracy on the A decision. Since the expected utility of decision D, unlike decision A,
is equally dependent on both utility nodes, FLUF’s inaccuracy cannot be explained only by
inaccurate estimations on the utilities in node C' due to relaxed constraints, since then A should
have been more inaccurate than D. It turns out that accuracy has as much to do with the
number of nodes between the decision node and its utility descendants as it does with good
estimations of the utility values.

To get decision T right, it is almost enough for the methods to order the utilities correctly in
utility node U, since T only depends on that utility node. Since the other parent of node U
(H) is unobserved when a decision is made in node 7', the relative size of the utilities becomes
important since the expected utility of the decisions in 7" becomes a weighed average of the
outcomes of H. So even if the order of the utilities are correct, the expected utility of the
decisions in T' can be ordered incorrectly if the relative size of the utilities in U are wrong,
and this would result in a wrong decision. Now, since the uncertainties with respect to H are
relatively low, due to the OH node, and because the constraints created at node 7" does not
need to be relaxed, a high accuracy is often achieved by FLUF on the T decision.

This experiment indicates that the accuracy that is achieved in the A decision, is most likely a
result of the A decision node’s proximity to the C' utility node. In the conducted experiment,

67

CHAPTER 5. EXPERIMENTS

when the A decision is to be made, all other parents of C' has already been observed, meaning
that to calculate the expected utilities achieved from C for the decisions in A no averaging
out is necessary. So had the expected utility of A only been dependent on C, then getting
the order of the utilities in C right would be enough to get A correct. However the expected
utility of A also depends on U, making the relative size of all utilities in the domain important
when predicting A. The utilities in C' become the most important since their differences are
not being averaged out, as the utilities from U are. So the results observed in this experiment,
where D is predicted poorly, indicates that the further a decision node is from utility nodes, the
more accurate estimations on the utilities are necessary in order to be able to predict decisions.

In other words, a rough estimate of the utilities in U, that orders the utilities correctly, will
be enough to predict decision T very well, but not necessarily completely correct. To predict
decision A with a high accuracy, the estimates of utilities for both C' and U must be quite good
since the utilities from U are averaged out. In fact the more averaging out that is necessary,
the better estimations will be needed to achieve a high degree of accuracy. The reason why the
decision in node D is predicted so badly by FLUF, is most likely that utilities from both utility
nodes are averaged out when calculating the expected utilities in node D, and FLUF only
makes a rough estimate on the utilities in node C' due to the relaxation done when constraints
are created.

5.3.6 Experiment Six - Scalability

This experiment was conducted to examine the accuracy and execution time of the three
methods, when the number of utilities increase. This was tested by letting the methods try to
predict the behavior of an agent, modeled by a domain significantly larger than the original
domain, this domain is called the scalability domain and is described in detail in Appendix C.

To briefly describe the scalability domain, it includes 4 decision nodes, 7 chance nodes and
3 utility nodes accounting for a total of 121 utilities (In the original domain there was only
25 utilities). Decision node D2 has a relevant past with 9 possible configurations, D1 and
RD have a relevant past with 16 possible configurations and LD has a relevant past with 64
possible configurations.

Results

The experiments was not completed for the FLUF method, since it did not manage to evaluate
even the first observation after 30 minutes on a 1.6 GHz Pentium M laptop. An execution time
this poor can be explained by considering the worst case time complexity of FLUF, as determ-
ined in Section 2.6.2. The complexity of FLUF was determined to be O(nodesstates-utilitics)
so with 11 nodes in the domain and 121 utilities it is no surprise that the execution time of
FLUF becomes extremely high.

Utility Iteration completes one run, containing 200 observations, in about 16 hours. After the
first 10 observations the mean expected utility varies between 0.83 and 0.91 throughout the
experiment with local drift. This is less than in the original domain, where the mean expected
utility varied between 0.86 and 0.96, which indicates that the accuracy of Utility Iteration has
decreased in the scalability domain. Decision node D1, which has 5 states, is predicted with
a mean accuracy around 0.5, D2 which has 3 states is predicted with a mean around 0.7, LD
has 4 states and is also predicted with a mean accuracy around 0.5 while RD which also has
4 states is predicted with a mean accuracy around 0.7. In the original domain, both A and T
was predicted with an accuracy around 0.7 in local drift, so the results from this experiment
are slightly worse explaining the lower expected utility.

68

5.3. THE EXPERIMENTS

105

1

2
E 095
B
i E
£ 8
3
£
S 0.85
=

0.8 | [

[Legend | [Legend
True Expexted Utility —— Fluf ——
075 i __Utility Iteration |))) o __Utility Iteration))))
o 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Observations Observations

Figure 5.10: Expected utility for local drift (exper- Figure 5.11: Prediction of decision D for single fluc-
iment 6) tuation (weighed) (experiment 5)

The expected utility is shown in Figure 5.10.

Decision D1 was predicted with an accuracy of only 0.5, even though it is the only parent of
two of the utility nodes that has not been observed, when the decision is made. D1 is much
like node A in the original domain, they can both with certainty determine the utility in early
utility nodes, and they both influence the probabilities of the parents of the last utility node,
i.e. the last utility node is a utility descendant. Furthermore the relevant pasts of the two
nodes have the same number of configurations. The fact the the accuracy of node D1 is still
0.2 lower than A can, in part, be explained by node D1 having one more possible decision, but
it is more likely due to the increased number of utility values. D1 must consider over 6 times
as many utilities as A has to, and in the utility nodes that are children of the decision nodes,
and therefore assumed dominating compared to the utility node that is far away, D1 has 40
utilities while A only has 4.

Decision node D2 is much like decision node 7' in the original domain. Both nodes are the last
in the temporal order, parents of a utility node, have 3 possible decisions. Two big differences
are that 7T has a relevant past with 416 configurations while D2 only has 9, and T has 21
utilities to consider while D2 has 81. In spite of these two differences the two nodes are pretty
much predicted with the same accuracy, with a mean around 0.7, indicating that the difference
in the size of relevant past, which should have given D2 a higher accuracy than T, is evened
out by the difference in the number of utilities.

Only one run was completed for the Imputing by Comparison method, due to high execution
time. The Imputing by Comparison method was faster than FLUF though, since it after
approximately 60 hours had evaluated all 200 observations, on the same 1.6GH zPentiumM
laptop. The worst case complexity was found to be O(n - |D|mas - Televant?,) in Section
3.4.3, the high execution time can at first seem strange, since the number of different relevant
past configurations in the scalability domain is smaller than in the original domain, where
Imputing by Comparison executed the corresponding experiment in two and a half hours. The
explanation why Imputing by Comparison is still slower in this domain must be due the the
increased number of decision nodes instead.

In that only one run was completed using Imputing by Comparison, the results are much less
reliable than if 10 runs had been completed. The expected utility varies, between 0.68 and 0.99.
It should be noted that, when comparing the number of observations retained by the method
and the expected utility achieved, there is clear relationship. When the number of observations
that the method is able to keep increases, then so does the expected utility. Actually, whenever
the method has more than 10 observations its expected utility is above 0.9. With respect to

69

CHAPTER 5. EXPERIMENTS

the accuracy of the decisions, it is difficult to conclude anything with respect to Imputing by
Comparison, except to say that when comparing the accuracies obtained in the first run of
Utility Iteration with the run in Imputing by Comparison, they were similar.

Conclusion

These experiments support the results from Section 2.6.2, where FLUF’s complexity is de-
termined to be exponential in the number of utilities. It proved infeasible to conduct this
experiment with FLUF in the scalability domain. With respect to Imputing by Comparison
the execution time also increased, but even though the increase was less dramatic than for
FLUF, not enough runs could be completed to achieve reliable measurements.

Furthermore these experiments showed that the execution time of Utility Iteration increased
to 16 hours per 200 observations in the scalability domain. The experiment conducted with
Utility Iteration showed a reduction in accuracy as the number of utilities increase, but while
the reduction was significant, the method still achieved accuracies considerably better than
random guessing would, and a mean expected utility just below 0.9, which is only slighty lower
than for local drift in the original domain.

5.4 General Results

The experiments confirmed the result from Hansen et al. (2004) that FLUF was not able to
predict decision A in the domain used for most of the experiments. The reason for this was
investigated by trying to use FLUF on a modified domain where another decision node was
added. The experiments indicated that the reason for FLUF’s poor prediction, of decision
node A, was that chance nodes between the decision node and the U utility node made it
difficult to establish the correct relationship between the utility values in node C' and in node
U. The imputing methods was more accurate in their prediction of decision node A.

During the experiments a window size of 100 observations was used to keep the methods
reasonably fast (in execution time) and to make the comparison of FLUF and the imputing
methods as even as possible. The experiments showed that the chosen window size actually had
little effect. For the experiments with a static domain, the average number of observations any
of the methods had in the windows were 75, over all 200 observations. Here it should be noted
that with the static domain almost no observations were deleted, so after 100 observations,
the windows held 100 observations. However, for the experiments with drifting domains and
multiple fluctuations the methods had an average of approximately 10 observations in the
window, and a maximum of 35 observations. For the noise experiment the methods had on
average around 75 observations in the window, except for FLUF which had an average around
35. For the noise experiment and the single fluctuation the highest number of observations in
the windows was 100. The single fluctuation experiment gave around 50 observations in the
window on average for all the the methods.

This indicates that if the domain changes frequently the size of the window can be as low as
40 and still be used without any impact on the results, as the methods will delete observations
aggressively. This also holds for the domains where the strategy of the observed agent changes
rarely, as a window size of 40, would still be large enough for the results to converge.

70

CHAPTER

SIX

Conclusion

In this chapter the report is concluded. First some thoughts on how the utility learning
methods in this project, can be considered in contexts outside that defined in the introduction,
are presented in Section 6.1. Then the results and conclusions drawn throughout the project
are summarized in Section 6.2. Finally possible subjects for future work, related to the work
done in this project, are discussed in Section 6.3.

6.1 Perspective

In the first part of this section the concept of dynamic domains is discussed, along with the ad-
vantage of being able to handle dynamic domains. The second part considers the prerequisites
for Imputing by Comparison and Utility Iteration, namely that they require that the probab-
ilities of the variables in the influence diagram are known. FLUF allows differences between
the probabilities in the influence diagram it uses and the one used by the agent. It is argued
that the two imputing methods might handle differences in probability distributions as well as
FLUF, even though they were not designed to.

6.1.1 Dynamic Domains

When comparing the method presented in Chajewska et al. (2001) with FLUF, Imputing
by Comparison and Utility Iteration, the latter three methods are designed to work with less
restrictive assumptions than the method presented in Chajewska et al. (2001), in that dynamic
domains can be handled using different conflict handling policies. It should be noted that the
conflict handling policies developed for FLUF can be used in conjunction with the method
from Chajewska et al. (2001), since the two methods create the exact same constraints.

Considering the capability of handling dynamic behavior, it should be considered why dynamic
behavior is observed. For example, if a soccer player normally plays defensively to conserve
strength, but he exhibits drifting behavior since he over time begins to play more aggressively,
then there is probably a cause for this drifting behavior. In the example the reason for the
change in the player’s tactics could be that he has been getting in better shape over time, and
if his shape was not modeled in the domain then the change would seem as drifting behavior.

71

CHAPTER 6. CONCLUSION

As in the example, it can be argued that all changing behavior is due to an incomplete model.
From this perspective then all domains are static if they are modeled completely, i.e. all vari-
ables that influence decisions are taken into account.

The complexity of a model that literally takes all causalities into account can easily become so
large that it is infeasible to represent it. It is not even certain that all causalities are known.
So since it can be infeasible to model domains completely, then including as many variables
as possible and accepting the apparent dynamic behavior is a possibility. In other words, a
dynamic domain can be considered an approximation of the “real” domain, and the policies
designed for the utility learning methods, presented in this project, actually increase their area
of application into “real” domains of otherwise infeasible complexity.

The bigger the difference is between the “real” and the “modeled” domain, the more dynamic
behavior should be expected. So when modeling some domain for use with a utility learning
method, the relationship between the methods’ complexity and ability to handle dynamic
behavior should be considered, e.g. if the method is very good at handling dynamic behavior
but has poor scalability then a simple model should be chosen.

6.1.2 Unknown Probability Distributions

The imputing methods are designed under the assumption that the probability distributions
of the observed agent are known, whereas FLUF is able to handle differences between the
probabilities used in the influence diagram it uses and the ones used by the agent. FLUF
handles such differences by choosing a utility function that compensates for these difference so
that the strategy of the agent is still predicted correctly. This compensation means that the
utility function estimated by FLUF might not be very accurate, in the sense that the utilities
are different from the agents utilities.

Since different probabilities will result in different utility coefficients, the created constraints
will weigh the utilities differently than they should due to these probabilities. With several
decision nodes in the domain, then the difference in probabilities may only influence the expec-
ted utilities in some of the decision nodes. If only a subset of the decision nodes are influenced
by differences in probabilities, then the policies for those decision nodes would seem to follow
a different set of utility values than the unaffected decision nodes. Therefore, when there are
differences between the probabilities used by the agent and those used by FLUF, it might be
impossible for FLUF to establish a set of utility values that predicts the observed strategy of
the agent, because the utilities might be distorted by these differences with respect to only a
subset of the decision nodes.

For a domain where the utility learning method does not have the same probability distributions
as the observed agent, the imputing methods might be usable aswell. The reason for this is that
no specific policy is needed to handle such situations, due to the way the imputing methods are
designed they will implicitly compensate for inaccurate probabilities when estimating a utility
function, just like FLUF.

6.2 Summary

In this project two methods similar to FLUF has been designed. The two new methods are
called Utility Iteration and Imputing by Comparison, and share FLUF’s concept of generating
a set of constraints based on observations to describe possible utility values. FLUF has been
shown to be a viable prediction method in the past (Hansen et al. (2004)), but there are
inaccuracies in the method that leave room for improvement. These inaccuracies are, to some

72

6.3. FUTURE WORK

extent, due to the fact that the constraints describe a feasible space that is to large. Therefore
methods developed during this project are based on the idea, that describing smaller spaces
could increase accuracy. The main reason why FLUF’s utility space is to large is that relaxation
of the constraints are done when the domain is not fully observed. The new methods avoid this
relaxation by imputing the missing observations so that the domain becomes fully observed.
The experiments conducted indicate that this results in a higher degree of accuracy and also
requires fewer training cases. However, the two different ways of imputing used by the methods
showed no significant difference from each other with respect to accuracy or speed.

In addition to using imputing as a technique to achieve higher accuracy, a technique called
constraint relaxation has also been developed. The idea here is to avoid conflicts by relaxing
the constraints as they grow older. The experiments showed that this worked well with FLUF
and especially in domains with fluctuating utilities it enables FLUF to achieve better results
faster.

Besides developing new methods to improve the accuracy of prediction, a policy to handle
noisy observations was also developed. The technique for handling noise was developed so that
it could be used together with the imputing methods, to increase their area of application.
The experiments indicated that using the noise policy, the imputing methods handles domains
with noise almost as well as static domains. However, it was only tested in one scenario and
other domains and higher frequencies of noise may reveal some limitations of the noise handling
technique.

Finally, it seems that imputing unobserved decisions is preferable to relaxing the constraints
the way FLUF does it. Generally the imputation methods achieve more accurate predictions
with fewer observations, no matter which of the imputing methods is used.

6.3 Future Work

The two new utility learning methods presented in this report, together with the constraint
relaxation policy have made it possible to predict the behavior of an observed agent more
accurately than FLUF, as it was presented in Hansen et al. (2004). However, the experiments
conducted in this project have also shown areas that can be investigated and possibly improve
the accuracy even further.

6.3.1 Handling Noise

The policy developed to handle noise in this project is based on assuming that when it is
no longer possible to explain the behavior of the observed agent, it is because of noise or
imputation error. The method does not try to determine if the individual observation was
contaminated, meaning that it cannot determine if the guilty observations are causing conflicts
due to imputation errors or noise. The experiments showed that the way the observations are
removed works reasonably well.

It could be possible to integrate noise handling with a method for handling drift, by evaluating
comparing new observation to the true observations already made, thereby determining the
likelihood of the new observation. This could for example be done by using the utility values
estimated before the new observation was made. Doing this, it would be possible to discard
observations that seem unrealistic compared to the expected utility of the observed decisions.

To measure if some observation is realistic, using the utility function that was estimated before
the observations was made (called V,;4), then the expected utility of each of the decisions made

73

CHAPTER 6. CONCLUSION

in the new observation could be compared to the maximum expected utility of that decision
node when using V4. With a large deviance in the expected utility of one or more decisions,
the new observation could be categorized as noisy and ignored. If only some of the decisions
in the observation yield a large difference in expected utility, then it should be considered
whether the entire observation should be discarded, or if the constraints from some of the
decisions could still be considered reliable. In any case it wold also have to be considered how
large the divergence in expected utility would have to be, for the observations to be categorized
as noisy.

The reason why this policy cannot be used in domains with fluctuation, is that the first
observations after a fluctuation could easily yield low expected utilities with respect to Vg4,
without being noisy. A conflict handling policy using such as the one suggested here, would
have to take into account that with very few observations the next observation might easily
seem unrealistic, even if it is not noisy.

6.3.2 Complexity

Every time constraints are generated, the different formulae presented throughout the report
are used by the utility learning methods. In FLUF most of the execution time is spent calcu-
lating these constraints, while the imputing methods spend time imputing virtual observations
as well. As the probabilities are considered static, it is possible to reduce the number of calcu-
lations needed to generate constraints. Instead of calculating coefficients every time constraints
are generated for some decision with some relevant past, they could be saved the first time
they are calculated, so that later calculations would not need to compute the same coefficients.
Such an approach would benefit all methods, but it would be a space for speed tradeoff and
the memory consumption would be higher than the naive implementation. Whether it is worth
it would depend on the system doing the calculations.

6.3.3 Missing Data

FLUF, Imputing by Comparison and Utility Iteration all assume that each observation shows
the state of all decision nodes and all chance nodes, prior to the last decision node. Just as
it is possible that some of the observations are contaminated with noise, it could also happen
that some of the states of the nodes are lost. An extension to the methods described in the
report could be to handle such cases.

One way of handling missing data could be to simply discard the observations with missing
data. A couple of drawback with this approach would have to be considered however. There
might be so many observations containing missing data, that the prediction method will only
keep very few true observations. Another problem when simply removing observations, is
that if specific configurations are more likely to contain missing data than others, then the
prediction method can become biased since the constraints that would have been added in
those configurations are never considered. If neither of these problems occur however, then
it is not unrealistic that deleting observations would be a good strategy, as the methods in
general are very fast, meaning that they get close to the real utility function with very few
observations.

Another way of handling missing data could be to instantiate the missing nodes, and then create
constraints from the observed decisions as normal. The chance nodes could be instantiated in
their most likely state, given the configuration of their parents and children. Decision nodes
where the unobserved node is part of the relevant past could also be included. If decision
nodes are to be included in this calculation, the policy those nodes are assumed to follow,

74

6.3. FUTURE WORK

or perhaps even a temporary utility function, should be available. Missing decision nodes
could be instantiated based on what would yield the highest expected utility given the current
utility function. As with missing chance nodes the outcome of the missing decision node’s
children, and any other decision nodes where the missing node is in the relevant past, could be
considered. Even though data might not be missing at random, this approach could instantiate
missing nodes correctly, if enough can be learned about the utility function. The drawback
of using such an approach, is that it could potentially reinforce the already predicted strategy
which might be wrong.

6.3.4 Improved Comparison

As Imputing by Comparison only compares the distributions of the hypothesis variables given
the chosen decisions, any information that could have been used from the discarded decisions
is lost. Imputing by Comparisons accuracy could be increased by including this discarded
information in its comparison technique.

Currently comparison is done only with respect to the Euclidean distance between the joint
distribution of a set of hypothesis variables, given the different true observations and the pos-
sible virtual observations. However, in each true observation a set of decisions were discarded
in favor of the chosen decision, the discarded decisions would have resulted in different joint
distributions over the hypothesis variables, these are called the discarded distributions in that
observation. When creating virtual observations for some decision node with n states, then
n different virtual observations are possible. In each virtual observation the set of discarded
distributions will correspond to the distributions that would have been generated by the n —1
other virtual observations.

A problem with the current comparisons, is that a virtual observation can yield a distribution
over the hypothesis variables that is very close to a distribution yielded by a true observation,
while one of the discarded distributions in that virtual distribution would in fact have yielded
a higher expected utility. As an example, if imputing a virtual observation of a decision,
where the relevant past allow for high expected utilities, then the worst decision might result a
distribution on the hypothesis variables that is much like the distribution induced by the best
decision in a different relevant past that has already been observed.

So in some respect the true observation that is the most like a virtual observation, is the one
where the set of discarded distributions, as well as the distribution induced by the observed
decision, yield short Euclidean distances to the corresponding distributions from the virtual
observation. Discarded distributions could be compared to ensure that no discarded distribu-
tion in the virtual observation yields a higher expected utility than the chosen distribution. So
discarded distributions in the virtual observation should somehow be compared to distributions
from a true observation, to determine whether they yield a smaller expected utility than the
distribution of the chosen decision in that virtual observation.

This can be examined in two steps, by first investigating if the discarded distributions yield
smaller expected utilities than a decision chosen in a true observations, and then investigating
if the chosen distribution in the virtual and true observations are alike.

For the first step, then if all discarded distributions, in a virtual observation, have short
Euclidean distances to at least one discarded distribution in some true observation, it is an
indication that they yield about the same expected utility as that discarded distribution, and
therefore less than the distribution of the observed decision in that true observation. This
means that it is no problem if there are some discarded distributions in the true observations
with a large Euclidean distance to all discarded distributions in the virtual decision, as long
as it is true for all discarded distributions in the virtual observation. This also means that

75

CHAPTER 6. CONCLUSION

the Euclidean distance should be calculated with respect to all discarded distributions in the
true observation for each discarded distribution in the virtual observation, to find the shortest
distance for all distributions in the virtual observation. This results in (|D] — 1)? calculations,
where |D| is the number of decisions in the node with which the imputation is concerned. So
the measure of how close two sets of discarded distributions are from each other, a formula
much like the one shown below in Equation 6.1 could be used. In the formula 4, is the chosen
decision in the virtual observations, while J; is the decision chosen in the true observation.

B X mincoya, (BC(PU|d). P(HId) 1)

dy€D/é,

If the discarded distributions are close and the distributions induced by the chosen decisions
in the two observations simultaneously yield a short Euclidean distance to the distributions of
each other, then this in an indication that the decisions yield about the same expected utility.
Meaning that the chosen decision in the virtual observations is likely to be the optimal decision.
It should be noted that when a true observation is used for comparison, then, since the chosen
decision is only a factor due to its impact on the distribution, it should be compared with all
the possible virtual observations, as it is the distributions that determine which observations
are alike. This means that each true observation should be compared with |D| different virtual
observations.

Incorporating these measurements in the comparison, could reduce the risk that decision that
are not optimal are chosen, thereby increasing the likelihood of imputing correctly.

76

APPENDIX
A

Placing Constraints

In this section the constraints generated for a fully observed strategy will be examined closer.
Note that when imputing missing observations the strategy becomes fully observed, so the
result described here will also apply for the constraints generated by Imputing By Comparison
and Utility Iteration.

The proposition presented here generally says that any constraints generated for a fully ob-
served strategy will always intersect the diagonal.

In order to express and prove the proposition, in Theorem A.1, some notation is needed. Let
C be a constraint and), be the sum of all the coefficients of the utility values for the i'th
utility node. Also let |U| be the number of utility nodes in the domain.

Assuming that a strategy is fully observed and constraints are generated according to Equation
2.4, the following proposition will hold.

Theorem A.1 Let C' be any constraint generated for a fully observed strategy. Then the
following will hold for that constraint:

Proof (Theorem A.1) Let D be the last decision node in the temporal order. Then for some
observation where D has been observed in state dp for some relevant past past(D) and d’ is
some other state for D, each constraint will be of the following form:

77

CHAPTER A. PLACING CONSTRAINTS

Z P(1,|6p, past(D))V (pa(u)) > Z P(I,|d,past(D))V (pa(u))

I, I
T
|U| |U|
Z P(In|5D,past(D))ZVi(pa(ui)) ZZ P(In|d’,past(D))ZVi(pa(ui))
I, i=1 I, i=1
i
|U| |U|

Z Vi (pa(u;)) Z P(1,|0p, past(D)) > Z Vi (pa(u;)) Z P(1,|d, past(D))
i=1 I, i=1 I,

As the expression under E‘fi‘l is the summation of the probabilities of each parent configuration
of the #'th utility node, each expression will sum to one. These probabilities are also the
coefficients for each utility value, so for each expression in the inequality it holds that:

> P(I|d, past(D)) = 1

In

Where d is any decision from D. When subtracting the expression on the right side from both
expressions the result is:

U] |U|
Z V;(pa(ui))- ZP(In|§D,pa8t(D)) — Z V;(pa(ui)) . ZP(In|d',past(D)) >0
i=1 I, i=1 I,
(3
U]
Z%(pa(ui))- <Z P(I,L|5D,past(D)) — ZP(IMd’,past(D))) >0
i=1 I, I

where

O

An important consequence of Theorem A.1 is that all constraints created from a fully observed
strategy will intersect where all utility values from the same utility node are equal. Note that
when this is the case, the utility values will describe the trivial utility function.

Whenever the feasible space becomes empty, it means that at least two constraints intersect.
Since all constraints are linear and always intersect in the trivial utility function they can
intersect nowhere else, unless they lie on top of each other.

78

APPENDIX

B

The Accurate Technique - Utility
[teration

Based on the extended technique described in Section 3.3.1, an accurate technique is described
in this appendix that will always find a utility function satisfying all observations. Basically the
accurate technique will do the same as the extended technique, but furthermore the accurate
technique will maintain a list of alternative imputations that was not done, and when conflicts
occur it will iterate backwards imputing differently to avoid the conflict. This technique is more
accurate than the extended technique, but it is shown in this section that the time complexity
becomes too high for the technique to be operational.

When constraints are created at some decision node, Dy, in some observation o, then imputa-
tions are done for all (D;|i > k), yielding a set of policies ¥ = (0k4+1, - ,0n). The number
of different ¥ that are possible after decision node Dy is (numbers,, , - ... - numbers,), where
numbery, is the number of different policies for decision node D; and n is the number of
decision nodes in the domain.

In the accurate technique a policy set is not found by choosing a point in the feasible space.
Instead all possible combinations of policies are used to create constraints, and separately
these constraints are inserted into the feasible space, to examine if it becomes empty. Now,
for decision node Dy, in observation o, a list is created containing all sets of policies, Ly, =
(31, , %), that did not make the feasible space empty. The intuition is that, if all previously
created constraints are correct, then the correct imputation, for (D;|i > k) in o, must be a
member of Ly ,. There is a significant difference between the two first techniques and the
accurate technique, in that the temporary utility function is no longer used to choose a specific
imputation, but to exclude a set of imputations instead.

When the list of possible policy sets has been created, e.g. Lio, = (£, Xi1+1, Xit2), then the
constraints created using 3; are used, and the technique proceeds to the next observation.
There is no reason why ¥; is chosen above the others, since they are all equally valid, but one
must be chosen for the technique to proceed. The other 3 may still be used, in case backtracing
becomes necessary.

The algorithm for the accurate technique is shown in Algorithm B.0.1, which described how
Ly, is found and how constraints are created, and in Algorithm B.0.2, which describes how
backtracing is done when conflicts occur.

79

CHAPTER B. THE ACCURATE TECHNIQUE - UTILITY ITERATION

In Algorithm B.0.1 o, is the true observation in which the constraints are being created for
decision node Dy. The observation has a subscript, p, which indicates the observations number
in the order of observations, and m is the total number of observations. Recall the order of
observations is irrelevant as the domain is assumed to be static, but to evaluate the observations
sequentially the order becomes necessary.

Cc is the set of constraints describing the feasible space, before Dy, is evaluated in observation
0p- Oimputed is the set of virtual observations and Oy describe the true observations, the
elements in these sets consist of a relevant past and the decision made in a decision node.
Initially Oimputea is empty.

Algorithm B.0.1

1.
2.

3.

10.

Let dp, be the observed decision of Dy in o,
Let Ck,op = CC and Oimputedk,op = Oimputed

Let Lo, be a list of all policy sets (X) over the nodes D;|i > k, that are consistent with
Oimputed and Otrue

For all policy sets (X) in Ly o,

e Create an empty set of constraints called Cx

e For all configurations of the relevant past of decision nodes D;|i > k, (0;) consistent
with o, for which constraints has not yet been added

— Replace Dj|j > i with chance nodes, Cj, according to X
— Where dp, is the decision dictated by X given past o;, add the following con-
straints to Cx: Yaep,\6p, : PD; (0D;,0i) > pp,(d; 0i)
— Return the chance nodes C; to the original decision nodes D;
e If the set of constraints Cx N C¢ describes the empty space

— then remove X from Ly ,,

. If Ly, is empty

e then call Algorithm B.0.2, and halt this algorithm

. For the first set of policies (Xyirst) in Lg,o,

o Add imputed decisions in X first t0 Oimputed
o Add constraints created at step 4 using X ;-5 to the set of constraints Uc

e Remove Yyis¢ from Ly,

Save Li,o,, Ck,o, and Oimputedkyop (These are used by Algorithm B.0.2)

.Ifp#£m

e then call this algorithm recursively for the next observation 0,1 and decision Dy,

e Halt this algorithm

.Ifp=mand k#1

e then call this algorithm recursively for the first observation o; and decision Dj_1
e Halt this algorithm

Ifo=mand k=1

80

e then, if all true observations conform with the utility function described by the
chosen utility point in Co

— then the Utility Iteration algorithm is done
— Else the backtracing algorithm is called (Algorithm B.0.2)

It will always be possible for Algorithm B.0.1 to find a utility function that conform with
all observations. No matter the domain and the observations made, it may happen that all
imputations made during execution are correct, i.e. the decisions imputed are the same that the
observed agent would have made. Given such a set of perfect imputations, then the constraints
(Cy) created by some observation o, will describe a space (space,)in which o conforms with
all utility functions described by points in that space. So with a set of different observations
(01, ,0m), each having created a set of constraints with which they conform (Cy,,---,C,,,),
this algorithm would describe a feasible space by the constraints (C,, U---UC,), which is
the space (space,, N--- N space,,,), or in other words the space where all points will conform
with all observations (01, ,0m).

It is unlikely that Algorithm B.0.1 will guess exactly the correct decision at every imputation,
this is where the backtracing algorithm comes in, see Algorithm B.0.2. The backtrace algorithm
is called if the space becomes empty at some point during execution of Algorithm B.0.1 or if
the utility function found by Algorithm B.0.1 does not conform with all observations. The
backtrace algorithm steps backwards through the imputations made by Algorithm B.0.1, until
it finds an observation o, in which the imputations done to create constraints for some decision
node (Dy) could have been done in another way, i.e where Ly ,, is not empty. After finding
such a combination of observation and decision node, denoted (0,, Dy), the backtrace algorithm
create constraints for (o,, D) according to one of the alternative imputations, and then starts
Algorithm B.0.1 again.

The notation in Algorithm B.0.1 is used in the backtrace algorithm as well. When the algorithm
is called, then all previously examined combinations (op, Dy) will have saved a list of the
alternative sets of policies that could have been imputed, (L), and a set of constraints
describing the feasible space (Ck,,) as well as the decision already imputed (Oimputedkyop),
when they were examined (Cy,,), see Algorithm B.0.1 step 11.

Algorithm B.0.2
1. Let (0,Dy) be the chosen combination that have alternative ¥’s in list Ly, ,

2. Remove the first element, 3, from Lj ,
3. Create an empty set of constraints called Cyx,

4. For all configurations of the relevant past of decision nodes D;|i > k, (0;) consistent
with op, for which constraints has not yet been added

e Replace D,|j > i with chance nodes, C;, according to ¥

o Where dp, is the decision dictated by ¥, given past o;, add the following constraints
to Cs,: Vaep\op, : PD:(0D;,0i) > pp,(d, 0:)
e Return the chance nodes C; to the original decision nodes D

5. Set Cc = Cs, UCh,
6. Set Oimputed to Oirnpuitedk,op

7. Add imputed decisions in 31 t0 Oimputed

81

CHAPTER B. THE ACCURATE TECHNIQUE - UTILITY ITERATION

8. Call Algorithm B.0.1 for the observation and decision node that succeeds the combination
(0, Dy) (Either (op+1,Dy) or (01, Dk—1))

Algorithm B.0.1 has a time complexity, with respect to (o,, D), that is (| Dy1]- (relevantii1 —
relevantirye k+1)) * - - - (|Dn| - (relevant,, — relevantiyyen)), where relevant; is the number
of different relevant past configurations possible for decision node D;, |D;| is the number of
different decisions in the node and relevants . ; is the number of different configurations of
the relevant past observed for node D;. In other words the complexity for Algorithm B.0.1,
when examining decision node Dy, in some observation, is the number of different policy sets for
the nodes D;|i > k, consistent with all true observations. This is because the task of creating
the constraints Cy and comparing them with Cc, is done for all ¥ consistent with the true
observations.

The worst case complexity of Algorithm B.0.2 is only O((n — 1) - relevantsyye), being the
maximal number of steps backwards the algorithm can take, where relevanti,. is the num-
ber of true observations. For comparison the worst case complexity of Algorithm B.0.1 is
O((relevantmaz -+ |D|maz)" 1), where relevant ,q, is the highest number of different configur-
ations a relevant past can have in the domain and |D|,q4, is the highest number of different
decisions one decision node can have.

For both algorithms, they will run O(policy _maz®°mbimetions) times, in the worst case. Where
combinations = relevanti e - (n — 1) is the number of different combinations of observation
and decision node where imputations are needed and policy mazx = relevantmas - |D|maz 18
the highest number of different policies a decision node can have.

When describing the worst case complexity of the accurate method Algorithm B.0.2 becomes
irrelevant since its complexity is linear while the complexity of Algorithm B.0.1 is exponential
in the number of decisions. The worst case time complexity of the entire Utility Iteration
method, using the accurate technique, is expressed in Equation B.1. As can be seen from the
equation, the time complexity of the entire algorithm becomes exponential in both the number
of decisions and the number of true observations.

O((relevant pqy - |D|maw)(rde”‘mt”“‘i'("_1)) - (relevant aq - |D|ma$)"_1)

(i (B.1)

O((relevantmw X |D|maw)relevanttwe.n)

82

APPENDIX

C

Domains

During the experiments, described in Chapter 5, two domains are briefly introduced in that
chapter and experiments were conducted using these. These domains are called the alternative
domain and the scalability domain. The first domain was used in the experiment described in
Section 5.3.5 while the second domain was used in the experiment described in Section 5.3.6.

C.1 The Alternative Domain

The alternative domain is a modification the original domain, with a number of extra nodes
inserted to examine the reason why the accuracy of A was lower than 7. An extra decision
node, called D, was added. D was added to examine if the reason why the accuracy of A was
lower than T was due to A being very dependent on a utility node that was poorly estimated.
To make D equally dependent of C' and U a chance node N was inserted, so that if D was
predicted better than A, it would be an indication that C' was estimated poorly. The alternative
domain is shown in Figure C.1.

Figure C.1: The second alternative domain

83

CHAPTER C. DOMAINS

C.2 The Scalability Domain

The scalability domain was introduced in Section 5.3.6, and was designed to test how well the
different methods performed when the number of utilities in the domain grew. It contains 7
chance nodes, 4 decision nodes and 3 utility nodes, with the number of states shown in Table
C.1. As the table shows, the total number of utilities become 121. The domain is shown in
Figure C.2.

o @
DIl

3

L2 R2

(y 2] (1)

<5
()

Figure C.2: The scalability domain

84

C.2. THE SCALABILITY DOMAIN

Name | Node type No. States
L1 Chance Node 4
L2 Chance Node 4
L3 Chance Node 3
R1 Chance Node 4
R2 Chance Node 4
R3 Chance Node 3
C1 Chance Node 3
D1 Decision Node 5
RD Decision Node 4
LD Decision Node 4
D2 Decision Node 3
LU1 Utility Node 20
RU1 Utility Node 20
U Utility Node 81

Table C.1: Number of states in nodes

85

CHAPTER C. DOMAINS

86

APPENDIX

D

Results

In this appendix the results from the experiments described in Chapter 5 are shown. Meas-
urements were done for every method in every experiment on the expected utility and weighed
accuracy of decision predictions as well as unweighed. In this appendix the expected utility
and the weighed decision prediction accuracies are shown. Unweighed accuracy is not shown,
as it in all experiments resembled weighed accuracy, only a bit lower. Variance is included in
the graphs, so to ensure that the graphs can be easily read, each graph will only contain one
set of results.

D.1 Static Domain

2 g 2
E | E
{ g ’
é B é 4
£ £
=] =] g
E 1 E
8 &]
= 1 =
0.84 4 0.86 - 4
082 || Legend \ 1 084 1 Legend | 1
op | ——THEDOced Uiy —1 ., o l——Trebxected UMty ——1 | |
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Observations Observations

Figure D.1: Expected Utility for FLUF in static Figure D.2: Expected Utility for Utility Iteration in
domain static domain

87

CHAPTER D. RESULTS

1t i
2 hy
=
§
06]
£ oo fi 14
s . 3
E oofl i
% i 04t |
& ossy i
086 - 1 02k 1
084 1 Legend | 1
o0gp L——TeBrpested Uty —1 , , o LA ——]
0 20 4 60 8 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Observations Observations

Figure D.3: Expected Utility for Imputing by Com- Figure D.4: FLUF’s chance of predicting decision

parison in static domain

A in a static domain

g 06 4 g 06 4
S 8

04 | J 04| 4

02| 4 02 | 4
\ __Legend | } S }

o [___Utility Iteration —— |)))) 0 __Imputing by Comparison ——_)))
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

Observations Observations

Figure D.5:
decision A in

Utility Iteration’s
a static domain

chance of predicting

Figure D.6: Imputing by Comparison’s chance of

predicting decision A in a static domain

0.8

g] g osf]
S S
(@] (@]
04 + A 04 | A
02 | A 02 | A
[Legend |
[Fluf ——] ility i
o Fluf ——))))))) o [i Utility Iteration — ‘\))))
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Observations Observations

Figure D.7: FLUF’s chance of predicting decision

T in a static domain

88

Figure D.8: Utility Iteration’s chance

decision T in a static domain

of predicting

. DOMAIN WITH DRIFT

8 06
S
o
04 r
02 r
Legend]
0 [__Imputing by Comparison %‘\
0 20 40 60 80 100 120
Observations

Figure D.9:

140

160 180 200

Imputing by Comparison’s chance of

predicting decision T in a static domain

D.2 Domain with Drift

105 T T T T T T T T

0.95 1

0.9

0.85

Maximum expected utility

0.8
Legend
True Expected Utility
Utility Iteration ----+---
075 Ity ferdfion -, ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.10: Expected Utility for FLUF in one way

drift

105

1
2
g 095
B
8
§ 09
£
3
E i
s 0.85
=

08 |

‘ Legend
True Expected Utility
Utility Iteration +-—+-—
075 Ity ferdfion -, ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.12:
Comparison in one way drift

Expected Utility for Imputing by

Maximum expected utility

105

0.8

0.75

[Legend |
True Expected Utility

Utility Iteration +——+-— |)))

20 40 60 80 100 120 140 160 180 200

Observations

Figure D.11: Expected Utility for Utility Iteration
in one way drift

Correct

Figure D.13: FLUF’s

0.

0.

0.

0.

©

o

~

N

0

1r

‘A 1!“ ‘ “M ‘

Il

|
“‘l

|

l‘"
“"

!l
H

J

U‘
m

H
I

“,;\
‘ ll

‘I

U“HH

il
'||

I
i
|

F|u'f ——

0

20 40 60 80 100 120

Observations

200

chance of predicting decision

A in a one way drift

89

CHAPTER D. RESULTS

I | “||| ||||1

e

os i i ! |!||!\”E; i
i i‘ |

il
i

g 06 |
3
]
04
02
[Legend]
o [Utility Iterafion ——])) . .
0 20 40 60 8 100 120 140 160 180 200

Observations

Figure D.14: Utility Iteration’s chance of predicting

decision A in a one way drift

0.8 fi

0.6

Correct

I
||\
il
mo
St
|||||\|‘|| il

04

i
i
1

i

|
li
‘ ylﬁlw

02
o [Fluf ——])))))
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.16: FLUF’s chance of predicting decision

T in a one way drift

Correct

02
[Legend]
o [Tmputing by Comparison ——])))
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.18: Imputing by Comparison’s chance of

predicting decision T in a one way drift

90

Correct

0.2

b l |

I ‘ I

| '1“ il
I

Legend]

__Imputing by Comparison —+— ‘\

0

0 20

40 60 80 100 120 140 160 180 200
Observations

Figure D.15: Imputing by Comparison’s chance of
predicting decision A in a one way drift

Correct

0.2
[Legend]
o [Utiity Iterafion ——]))) .
0O 20 40 60 8 100 120 140 160 180 200

Observations

Figure D.17: Utility Iteration’s chance of predicting
decision T in a one way drift

Maximum expected utility

105

08 F—!
‘ Legend I
True Expected Utility
Utility Iteration ----+---
075 : v | L
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.19: Expected Utility for FLUF in local

drift

D.2. DOMAIN WITH DRIFT

1.05
1
2
£ 0%
B
3
g 0.9
€
3
£
S 0.85
=
0.8 +
[Legend
True Expected Utility
075 __Utility Iteration —-—+—- |)))
o 20 40 60 80 100 120 140 160 180 200

Figure D.20: Expected Utility for Utility Iteration

in local drift

Observations

Correct

0

0

Figure D.22: FLUF’s chance of predicting decision

20

0

A in a local drift

60

80 100 120 140 160
Observations

180 200

0. ‘|'

©

0.6

Correct

04

0.2

I|
Wl

I

||
'wml

|| |
1||I

V

A

\mhm“ \|“|
‘l Iu v ‘“ U||

r}:';!‘\nd\\\\l\h“mm mw

||u “"W\M' i
|r| \ﬂ |‘l\

Legend

__Imputing by Comparison %‘\

l||\

0
0

Figure D.24: Imputing by Comparison’s chance of

20

40

60

80 100 120 140 160
Observations

predicting decision A in a local drift

180 200

Maximum expected utility

105

0.8

0.75

[Legend |
True Expected Utility

__Utility Iteration =+ | ‘ ‘ ‘
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.21: Expected Utility for Imputing by
Comparison in local drift

Correct

0

|
[] Ullllylleralon%%\

0

20 40 60 80 100 120 140 160 180 200
Observations

Figure D.23: Utility Iteration’s chance of predicting
decision A in a local drift

Correct

0.8

0.4

0.2

0

oo G
. i ‘zlpl |

|

i
|\|u‘ |||¢||~!,|||‘ |
L

0

20 40 60 80 100 120 140 160 180 200

Observations

Figure D.25: FLUF’s chance of predicting decision
T in a local drift

CHAPTER D. RESULTS

i
A{M i || I
Ii 'll“"\i‘ e
IS

g g
8 8
0.2
[Legend | . -
o L Utllty lterafion ——] ‘ ‘ ‘ ‘ o LE—_Impufinaby Comparson +—— | | ‘
0O 20 40 60 8 100 120 140 160 180 200 0O 20 40 60 8 100 120 140 160 180 200
Observations Observations

Figure D.26: Utility Iteration’s chance of predicting Figure D.27: Imputing by Comparison’s chance of

decision T in a local drift predicting decision T in a local drift
1.05 T T T T T T T T T 1.05
1
0.95
2 2
ERCE E
B B
g 08 3
5 5
g 08 £
3 3
£ £
H 0.75 H
= =
07 |
065 L s Legend 0.75 Legend |
: True Expected Utility True Expected Utility
06 __Utility Iteration —-—+—- |) 07 __Utility Iteration —-—+—- |))
) 20 40 60 80 100 120 140 160 180 200) 20 40 60 80 100 120 140 160 180 200
Observations Observations

Figure D.28: Expected Utility for FLUF' in random Figure D.29: Expected Utility for Utility Iteration
drift in random drift

‘r
I

‘]
l

V I" Hh N

z ‘ | ‘ | I‘
£ i
= I
E v. ‘“ "H ””i ’\ i ‘“‘ ’l’
g g 06 |H vl U ‘ ﬂ“ H J| ’J ‘l\ m ,
5 S | ‘ \ | I i " "
£ 3 | l“ l ‘
3
: f
8
=
02
Legend
True Expected Utility -!ml
07 __Utility Iteration —-—+—- |))
) 20 40 60 80 100 120 140 160 180 200 0 20 140 160 180 200
Observations Observallons

Figure D.30: Expected Utility for Imputing by Figure D.31: FLUF’s chance of predicting decision
Comparison in random drift A in a random drift

92

D.2. DOMAIN WITH DRIFT

]
1|”l

l"""'\l!h“w\\HMM\I\N““ Hl;'\
f

1 ‘ ‘ | ““ " |‘ 1 Hv| |‘|\
||\ |I\| \

[__Legend |

“ ” |
Utln Iteration ——
N | — 1
0 20 40 60 80 100 120 140 160 180 200
Observations

“ “’\ ““ I
1;5 '"h “

m !1 il
il

“IMUM} ‘

il

I'M |“ ‘\
ul

k

||!
||

Correct

Figure D.32: Utility Iteration’s chance of predicting
decision A in a random drift

i
i
I

| “ i Ty |

Sl i Il
THl li

|\, ii w|||ln w;“ wl Al ‘ |

Correct

h‘ |||
| I|| | AJ|

I \‘Im“ul | .|H||f||

I

0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.34: FLUF’s chance of predicting decision
T in a random drift

T
l] |J ||\| vm“”‘ |, | il ll ,| I
| | | l'

ly H“|HI“| 1 i

Correct

[Legend |
[__Imputing by Comparison —+— \

0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.36: Imputing by Comparison’s chance of
predicting decision T in a random drift

‘i'l

!

\\» I H'Hllhl'um
L ‘ I ||

I \l ‘
[__Imputing by Companson —— \

0 20 40 60 80 100 120 140 160 180 200
Observations

‘lhll
||w |
m “ I \lh

il
||“||H

!

W H “|'

1I| ‘|

Correct

0.2

0

Figure D.33: Imputing by Comparison’s chance of
predicting decision A in a random drift

0.8

0.6

nlu

||H|‘| I ||1\ |
.“M| 0
|.M|||\

Correct

04

02 r
} __Legend }
Utln Iteration ——
0 : Uity Tteratl

0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.35: Utility Iteration’s chance of predicting
decision T in a random drift

2
=
g
3
<3
3]
£
3
£
8
=

0.8 - H

\ Legend \
True Expected Utility ——
075 A -consrantrdaxaion »—— | |,
o 20 40 60 8 100 120 140 160 180 200

Observations

Figure D.37: Expected Utility for FLUF in local
drift using constraint relaxation

CHAPTER D. RESULTS

Maximum expected utility

105

0.8

0.75

Legend
True Expected Utility
plility ‘Ileraliqn - oongrai nt [aaxatipn el
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.38: Expected Utility for Utility Iteration
in local drift using constraint relaxation

Correct

0.6

04

02

08 ‘

i

'||"W”A ;I
e ‘||

| “NI il

] I
| !!r!HWH" ‘ Il
It gaat e

i
i

[Legend |
[Fluf - constraint relaxation —— |
T e e T
0 20 40 60 80 100 120 140 160 180 200

Observations

Figure D.40: FLUF’s chance of predicting decision
A in a local drift using constraint relaxation

Correct

0.

©

0.

o

0.

&

0.2

0

mw..h

il “
“"" ""%I“n""’ 'Iu"“‘““"\!"“ m I

i mN L \

HrR

|‘||'“'

||\|\|||||
1|| ‘

|\||“|I|‘[“|W
i

I“ I

,,v il

|||I|| [“

i IW U

[Legend]
Imputing by Comparison - constraint relaxation ——
0 20 40 60 80 100 120 140 160 180 200

Observations

Figure D.42: Imputing by Comparison’s chance of
predicting decision A in a local drift using constraint
relaxation

105

2
g
B
8
Q
&
£
3
£
8
=
08 A
[Legend |
True Expected Utility
075 Imputinq‘ by Comparisqn - oongrai nt (d axiion e

0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.39: Expected Utility for Imputing by
Comparison in local drift using constraint relaxation

il \
| I|I |||||| “M! ||| ||m““‘|| il
& ||\w

Correct

[Legend |
o [i ptiliw [teratiop-constraim relaxation —+—)
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.41: Utility Iteration’s chance of predicting
decision A in a local drift using constraint relaxation

|
I | btk
”a “' il NML I !|| ||\|!!h|‘;|| AT
I ‘ i |
i "l '||"m' i |\;|\ ||||||||\| i

Correct

Legend |
0 Fluf - congtraint relaxation ——))))
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.43: FLUF’s chance of predicting decision
T in a local drift using constraint relaxation

94

D.3. DOMAIN WITH FLUCTUATION

Correct

0.

©

0.

o

04

0.2

I!hnuplr!!w
I |“|

I |\|||\ \
|||||| rHl ‘“

P

llisi kil
I W"'ﬁ"”"\ﬂumw'!un'\ |'N"““m|'i
I ||w |||
| |‘

.||||“
\“v“

l‘“

“ﬂl‘l I
!!, fl‘ ‘

v

- _Legend _ |
Utility Iteration - constraint relaxation —— |)

0
0

20

40 60 80 100 120 140 160 180
Observations

200

Figure D.44: Utility Iteration’s chance of predicting
decision T in a local drift using constraint relaxation

Correct

il
i ‘||||| LF I
i

i
il

i “|'|| il
m“

| .m| "“p |‘|

il

[Legend |
0 [Imputing by Comparison - constraint relaxation —— |
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.45: Imputing by Comparison’s chance of
predicting decision T in a local drift using constraint

relaxation

D.3 Domain with Fluctuation

Maximum expected utility

0.7

0.65

Legend |

True Expected Utility —
__Utility Iteration t&--+-

0

20

40 60 8 100 120 140 160 180 200

Observations

Figure D.46: Expected Utility for FLUF in single
fluctuation

Maximum expected utility

0.75 -

0.7

0.65

Legend
True Expected Utility
__Utility Iteration =+ |

0

20

40 60 8 100 120 140 160 180 200

Observations

Figure D.48: Expected Utility for Imputing by
Comparison in single fluctuation

105

2
=
B
3
=1
&
g
E o08r
8
= ot
07 rf Legend \
True Expected Utility =
Utility Iteration +-—+-—
0.65 T Jtility lteration - | ‘ ‘ ‘
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.47: Expected Utility for Utility Iteration
in single fluctuation

Correct

0 [Auf ——]))))))
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.49:

FLUEF’s chance of predicting decision

A in single fluctuation

95

CHAPTER D. RESULTS

g
15}
o
04 | A
02 | A
} __Legend ‘
Utll Iteration ——
o L Utity terat A
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.50: Utility Iteration’s chance of predicting
decision A in single fluctuation

Correct

02 | A
o LR ——]))))))
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.52: FLUF’s chance of predicting decision
T in single fluctuation

Correct

02 | A
[Legend |
o [__Imputing by Comparison —+— ‘\)))
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.54: Imputing by Comparison’s chance of
predicting decision T in single fluctuation

96

200

T T LTT
g 06 1
S
o
04 | A
02 | A
[Legend |
0 [__Imputing by Comparison —+— ‘\)))
0 20 40 60 80 100 120 140 160 180
Observations

Figure D.51: Imputing by Comparison’s chance of
predicting decision A in single fluctuation

Correct

02 | A
} __Legend ‘
Utll Iteration ——
o L Utity terat A
0 20 40 60 80 100 120 140 160 180
Observations

200

Figure D.53: Utility Iteration’s chance of predicting

decision T in single fluctuation

Maximum expected utility

Legend
True Expected Utility

Utility Iteration =-—-+--
03 tility Iteration - ‘ ‘ ‘
0 20 40 60 80 100 120 140 160 180
Observations

200

Figure D.55: Expected Utility for FLUF in multiple

fluctuations

D.3. DOMAIN WITH FLUCTUATION

11

1

09t

0.8

0.7

0.6

Maximum expected utility

05

04

0.3

L

€gend
True Expected

Utility Iteration =-——+-— i
: ty lterati - :

Utility i

0

Figure D.56: Expected Utility for Utility Iteration

20

40 60

80 100 120
Observations

in multiple fluctuations

140 160 180 200

1t | | il “ |I| II| |I ||,
’l‘ I""" W‘ \!
i I*| “l “ mu l '
| Iyiz“ r‘ H H ‘ H
§ 0.6 | ‘ H il | ‘ ‘1
: \H \H w‘|
04 ‘ I E l 5
gl
02 | ‘ ‘
et
°0 20 4 e 8 100 120 10 160 180 20
Observations

Figure D.58: FLUF’s chance of predicting decision

A in multiple fluctuations

Correct

02 r
L egen
Imputing by Col son_—+—
o L Tnputing by Coffpdris
0 20 40 60 80 100 120 140 160 180 200

Figure D.60: Imputing by Comparison’s chance of

Observations

predicting decision A in multiple fluctuations

Maximum expected utility

11

09t

0.8

0.7 +

0.6

05

04

0.3

1=

Ll Legend

egend
True Expected Utility
. Utili}y Iteration e i

0 20

100 120 140 160 180 200
Observations

40 60 80

Figure D.57: Expected Utility for Imputing by
Comparison in multiple fluctuations

Correct

0.2 +

[L efjer
[Utifity[Iteratigh])
0O 20 40 60 8 100 120 140 160 180 200

Observations

Figure D.59: Utility [teration’s chance of predicting
decision A in multiple fluctuations

Correct

Figure D.61:

tr I

||| | |v Iv|| 1 l‘
os i 1 ‘hl “| || |J || | ‘||| I ‘ || |'|| | h “ || |
J||| ;\I ‘ i ' I||‘ ||'1|' " i |\|| ||'|I ‘“ || |“| |"|
04 r || 1 |’| ‘ I l r

’ l
. E 1 ’ 1

02 | F |

. L

0 20 40 60 80 100 120 140 160 180 200

Observations

FLUEF’s chance of predicting decision

T in multiple fluctuations

97

CHAPTER D. RESULTS

Correct

Legend

Utility Iteration —+—

. Miyiegion —]

0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.62: Utility Iteration’s chance of predicting

decision T in multiple fluctuations

105

1

095
09 §
085

0.8

Maximum expected utility

0.75

07

Legend | 4

True Expected Utility —— ‘

‘ __Uiility Iteration - | ‘ ‘ ‘

0.65

0

Figure D.64: Expected Utility for FLUF' in single

fluctuation

105

20 40 60 80 100 120 140 160 180
Observations

200

using constraint relaxation

Maximum expected utility

0.75 |

Legend 1

True Expected Utility ——

0.7

Imputinq‘ by Comparisqn - constraint relaxation “---+---

Figure D.66: Expected Utility for Imputing by
Comparison in single fluctuation using constraint re-

laxation

20 40 60 8 100 120 140 160 180

Observations

200

98

Correct

“Legend

__Imputing by Comparison —+— ‘\

20 40 60 80 100 120
Observations

140 160 180 200

Figure D.63: Imputing by Comparison’s chance of
predicting decision T' in multiple fluctuations

Maximum expected utility

105

0.85

0.8

0.75

0.7

rl L egend 4
True Expected Utility
. ptility ‘Ileratio‘n - constraint relaxation *---+---)
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.65: Expected Utility for Utility Iteration
in single fluctuation using constraint relaxation

Correct

04

0.2

Legend |
0 Fluf - congtraint relaxation ——))))

0

20 40 60 80 100 120

Observations

140 160 180 200

Figure D.67: FLUF’s chance of predicting decision
A in single fluctuation using constraint relaxation

D.3. DOMAIN WITH FLUCTUATION

B 1 B 1
IS IS
O O
04| g 04| g
02 g 02 g
} Legend | } Legend }
Utility Iteration - constraint relaxation —+— Imputin Comparison - constraint relaxation ——+—
0 . Utility Iteration - constraint refaxation ~——| 0 —Imputing by Comparisor Straint relaxatio "
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Observations Observations
Figure D.68: Utility Iteration’s chance of predict- Figure D.69: Imputing by Comparison’s chance of
ing decision A in single fluctuation using constraint predicting decision A in single fluctuation using con-
relaxation straint relaxation
8
8 5
IS (&}
O
04
02
[Legend |
Teoend _ _Lec i i
[Flm-conslrai%daxalion \‘ ‘ ‘ ‘ o [i ptlllty Iteratlop constraint rdaxathn — |)
0 0 20 40 60 8 100 120 140 160 180 200
0 20 40 60 80 100 120 140 160 180 200)
. Observations
Observations

. . o L -~
Figure D.70: FLUF’s chance of predicting decision Figure D.71: Utility Iteration’s chance of predict

o ing decision T in single fluctuation using constraint
T in single fluctuation using constraint relaxation ;5 i g g
relaxation

il
i T
| 2
g
g 06 1 %
S
o B
04 r A é
B
=
02 1 | }
‘ Legend ‘ 04| T R VRt —] 1
Imputin Comparison - constraint relaxation rue Exp ity
0 ‘ T ‘rpu;lq‘by Lo AN e T ‘ 03 Fluf - constraint relaxation g)))
0 20 40 60 80 100 120 140 160 180 200 g
. 0 20 40 60 80 100 120 140 160 180 200
Observations

Observations

Figure D.72: Imputing by Comparison’s chance of
predicting decision T in single fluctuation using con-
straint relaxation

Figure D.73: Expected Utility for FLUF in multiple
fluctuation using constraint relaxation

99

CHAPTER D. RESULTS

Correct

04

0.2

L egent]
-ccnstaimrd&gio ——]))

40 60 80 100 120 140 160 180
Observations

200

Figure D.74: FLUF’s chance of predicting decision
A in multiple fluctuation using constraint relaxation

D.4 Domain with Noise

104

2
g
B
8
S
&
£
3
E
8
=
0.88 [l LM |
' True Expected Utility
Utility Iteration ----+---
0.86 T : - | ‘ ‘ ‘
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.76: Expected Utility for Utility Iteration
for static domain, in noisy domain

2
5
{
5]
£
5
£
&
=
088 | Legend
True Expected Utility ‘
086 i i Utility Iteration |)))
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.78: Expected Utility for Imputing by
Comparison in noisy domain

100

Correct

“Legend

1uf - constraint

0

egend |
0 Fl relaxation —— |)) }

20

40 60 80 100 120
Observations

140 160 180 200

Figure D.75: FLUF’s chance of predicting decision
T in multiple fluctuation using constraint relaxation

b
g
B
8
S
&
£
3
E
8
=
0.88 | Tegend ‘ |
True Expected Utility
Utility Iteration ----+---
086 |
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.77: Expected Utility for Utility Iteration
in noisy domain

0.6

Correct

0.2

Legend |
Utility Tteration (no noise handling) ~—— |

20

40 60 80 100 120 140 160 180
Observations

200

Figure D.79: Utility Iterations chance of predicting
decision A in a noisy domain, using policy for static

domain

D.4. DoMAIN WITH NOISE

T $ Frommele et T $ ettt

8 06 8 06 1
S S
(8] o

0.4 04 r 4

0.2 02 r A

} __Legend } } Legend }
Utility Iteration —+— Imputing by Comparison —+—
0 T ‘v—y—v* T T L L L L 0 T D : —] yw p‘vﬁ T T L L L
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Observations

Observations

Figure D.80: Utility [teration’s chance of predicting

Figure D.81: Imputing by Comparison’s chance of
decision A in a noisy domain

predicting decision A in a noisy domain

B
3 8
(&} IS
O
04 ,
04 ,
02 ,
02 ,
[Legend |
[Utility Iteration (no noise handling) —— | [—Legend
0 T . L L ————— : [Utility Iteration —— |))))
0 20 40 60 80 100 120 140 160 180 200 0 ! : ;
) 0 20 40 60 8 100 120 140 160 180 200
Observations .
Observations
Figure D.82: Utility Iterations chance of predictin . . . L.
su . el . . orp '8 Figure D.83: Utility [teration’s chance of predicting
decision T in a noisy domain, using policy for static decision T i isv d .
domain ecision T in a noisy domain

8
5
O
0.4
0.2
Legend]
o L_imodtinaby Compatison - ——] |,

0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.84: Imputing by Comparison’s chance of
predicting decision T in a noisy domain

101

CHAPTER D. RESULTS

D.5 Alternative Domain

2 2
g g
{ {
3] 3]
£ £
=] =]
£ £
8 8
= =

07 1] Legend 07 Legend |

True Expected Utility True Expected Utility
Utility Iteration +---+--- Utility Iteration +---+---
065 T T T ! . . . 065 T T T ! . . .
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Observations Observations

Figure D.85: Expected Utility for FLUF in the al-

ternative domain with local drift

Correct

80 100 120 140 160 180
Observations

200

Figure D.87: FLUF’s chance of predicting decision

A in the alternative domain with local drift

n”
i
|I

Correct

0.2
LRuf ——]))))))
0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.89: FLUF’s chance of predicting decision

T in the alternative domain with local drift

Figure D.86: Expected Utility for Utility Iteration

in the alternative domain with local drift

Correct

n“ i Ll
| ‘ | I ‘|“!!
s

Ti H‘
' bt
I ||‘ H' il

Legend]
Utility Iteration —— |

20

40 60

80 100 120 140 160 180
Observations

200

Figure D.88: Utility Iteration’s chance of predicting

decision A in the alternative domain with local drift

Correct

0.2

Legend |
Uti‘litv Iteration — ‘\

0

0

20

40 60

80

1
100 120 140 160 180

Observations

200

Figure D.90: Utility Iteration’s chance of predicting
decision T in the alternative domain with local drift

102

D.5. ALTERNATIVE DOMAIN

1 1
ﬂmmlﬂhl\um i mll\" n"“ [\\ | \hn|| | “*“Ih"ml“ﬂHI[“I"'II\ |!
08 08 i | | | I il
MM il "“W ‘|I “ M\ "" sw “ il I\,l ‘| il ,\
IIV‘
- = "H il H
: 8 '“'\ I\' Hh \u\ Hh' \‘“ |\
0.4 0.4
0.2 0.2
}»_L end [__Legend
o= 1| L M o J e —]
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Observations Observations

Figure D.91: FLUF’s chance of predicting decision Figure D.92: Utility [teration’s chance of predicting

D in the alternative domain with local drift decision D in the alternative domain with local drift
11 11
1 1 i
] 09
2 ooh 2
5 i g i
B g o8y
B 48 8
g g
g g o7t
E o7} £
£ g 06
£ £
2 o6t g sl
05 rf Legend | 1 04] Legend
True Expected Utility —— True Expected Utility
04 . o Utility teration «-i- |, . . . 03 . o Utility teration «--e- |, . . .
"0 20 40 60 80 100 120 140 160 180 200 “0 20 40 60 8 100 120 140 160 180 200
Observations Observations

Figure D.93: Expected Utility for FLUF in the al- Figure D.94: Expected Utility for Utility Iteration
ternative domain with single fluctuation in the alternative domain with single fluctuation

0.8 fif

0.6

Correct
Correct

04

0.2

} __Legend
uti Iny Iteration ——
L L L L L L 0 . . ; y !
0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

Observations
Observations

Figure D.96: Utility Iteration’s chance of predict-
ing decision A in the alternative domain with single
fluctuation

Figure D.95: FLUF’s chance of predicting decision
A in the alternative domain with single fluctuation

103

CHAPTER D. RESULTS

0.8 ff 7
B
g 0.6 8
5 O
O
0.4 7
02 r 7
02 r 7
[Legend]
| Utility Iteration —+— |
0 20 40 60 80 100 120 140 160 180 200 0 2 o c0 8 10 120 140 160 150 200

Observations Observations
Figure D.97: FLUF’s chance of predicting decision Figure D.98: Utility Iteration’s chance of predicting

T in the alternative domain with single fluctuation dec1s1on. T'in a alternative domain two with single
fluctuation

0.8

0.6

Correct
Correct

04

02 7
[Legend |
o [Utility Iterafion ——])) . .

0 20 40 60 80 100 120 140 160 180 200
Observations

0 20 40 60 80 100 120 140 160 180 200
Observations

Figure D.100: Utility Iteration’s chance of predict-
ing decision D in a alternati3ve domain two with
single fluctuation

Figure D.99: FLUF’s chance of predicting decision
D in the alternative domain with single fluctuation

D.6 Scalability

E 08 |]
5
% il
0.6 i
a g I ||||u|\||| Iy
5] 8 il i I
: ‘h“|ﬂ kil Il
g Il
g il
5 ||
=
j i 02]
078 1y Legend *
True Expected Utility [Legend |
o7 __ Utlity lteration e | o L Utfitylterafion ——] =, |
) 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Observations Observations

Figure D.101: Expected Utility for Utility Iteration Figure D.102: Utility Iteration’s chance of predict-
in scalability domain ing decision D1 in scalability domain

104

D.6. SCALABILITY

1t
A
g . ,M\\WW“ ﬂh“m "“”‘"‘ ,l|| | H JI\NH‘ “ﬁih““w i Il
8 8 “ “ “ il !’ H‘ ‘\H !‘ ’“ ““'M U MW H‘\ lh ‘ H‘
04
|,“||“|“ || |H HM uH' H ||\|||‘1“ | “n
02 02
[__Legend] || i
0 [] UIIlly Iteration —— |) 0] Uuln n anon -
0 0 4 60 8 100 120 140 160 180 20 0 80 100 120 140 160 180 20

Observations

Figure D.103: Utility Iteration’s chance of predict-

ing decision D2 in scalability domain

Observations

Figure D.104: Utility Iteration’s chance of predict-
ing decision LD in scalability domain

1r
\ J\M\\ \ i \\“n“ﬂ\l\\l mlul“ \N\ i w M\ \Whuw\
i Mu mm\‘ f ‘M il
g ol “” |“ ‘|||' ‘“lhw“r"" “h““ ||‘H|”H “|\|’||| il u‘ ‘| “ ‘““'m‘
04 +
02
0 } . Ugﬁyﬂryl{gon %o%\

0 20 40 60

80 100 120 140 160 180 200
Observations

Figure D.105: Utility Iteration’s chance of predicting decision RD in scalability domain

105

CHAPTER D. RESULTS

106

APPENDIX

E

Summery of Learning Utility Functions
by Imputing

In this project, methods are developed to learn the utility function of an observed agent. The
utility learning methods developed are called Utility Iteration and Imputing by Comparison.
The methods are designed to handle agents in a static domains as well as agents that change
behavior over time, much like humans do. The motivation for focusing on changing behavior,
is that in any decision process of an agent that is to complex to model completely, any factors
that are left out will still have an impact on the agent. The impact of these unmodeled factors
can be interpreted as changing behavior.

Imagine attempting to model the behavior of a bus driver. Obvious factors such as traffic, the
number of people riding the bus and the weather would probably be included in the model, but
some factors that influence the drivers behavior may be difficult to include, such as how well
he slept or the mood of his wife that morning. If, for example, the bus driver is an American
football fan, and he stays up late to watch Monday night football, then this could influence
his behavior on Tuesday. In other words there could be things that influence the driver that is
not modeled, thus the impact of unknown factors can be interpreted as changing behavior on
the drivers part.

E.1 Previous Work

The work done has been based on an earlier project, called “FLUF Learning Utility Function
by Observing Behavior” (Hansen et al., 2004) which in turn is based on an article about
estimation of utility functions, called “Learning an Agent’s Utility Function by Observing
Behavior” (Chajewska et al., 2001).

In the (Chajewska et al., 2001) article a method for determining the utilities in a decision tree
is presented. Central to this method, FLUF and the methods developed in this project, is that
a feasible space of utility values is maintained. This feasible space is m dimensional, where m
is the number of utilities in the domain, and each point in this space assigns a value to each
utility. Each point in the feasible space thereby corresponds to a utility function. Given a
set of observations constraints are created, that limit the feasible space. These constraints are

107

CHAPTER E. SUMMERY OF LEARNING UTILITY FUNCTIONS BY IMPUTING

in fact inequalities, such as aju; + asus > 0, where u; and us are utilities and the « values
are determined by the method. After all observations have been used to create constraints, a
wtility point in the feasible space is chosen, that conforms with all the established constraints.
In Chajewska et al. (2001) a distribution over possible utility functions is determined, based
on a prior probability distribution over all utility functions.

FLUF is as mentioned, based on the method from Chajewska et al. (2001), and was developed
to work on influence diagrams instead of decision trees, and it was developed to handle agents
that, while being rational, changed their behavior over time. Semantically FLUF establishes
constraints exactly as in the method from Chajewska et al. (2001), but the utility point is
chosen differently. Due to agents being allowed to change behavior, the assumption of having
a prior distribution over possible utility functions, was considered unlikely. Instead a method
is used, that maximized a hypersphere inside the feasible space, while still conforming with all
constraints. The center of this hypersphere was used as the utility point.

E.2 Assumptions

When developing Utility Iteration and Imputing by Comparison it was assumed that the prob-
abilities and causalities in the domains, as the observed agent perceives them, are known.
Furthermore, the agent is assumed to be rational, meaning it will always maximize its expec-
ted utility.

If the decision scenario being modeled includes a series of decisions, then each decision is
assumed to have been observed in every observation, as well as the relevant past of these
decisions.

E.3 The Developed Methods

In an attempt to develop new methods that achieved a higher accuracy than FLUF, an analysis
on the inaccuracies on FLUF was done. The analysis revealed that the inaccuracies in FLUF
was caused by relaxations of the created constraints done by FLUF to handle partially observed
strategies. A partially observed strategy is when not all configurations of the domain has been
observed. These relaxations were done to ensure that the utility values still allowed in the
feasible space, included utility functions that allowed all possible decisions in the unobserved
configurations of the domain.

So to remove this source of inaccuracy, the relaxations were replaced by imputations, in the
sense that by imputing so called virtual observations for the configurations that were un-
observed, the strategy became a fully observed strategy, meaning that relaxations would no
longer be necessary. The imputed observations are called virtual, because they have never
really occurred, and a strategy is called fully observed when all configurations of the domain
are observed.

Both utility learning methods start by creating constraints for the last decision node in the
temporal order. The reason for examining the last decision first, is that the later in the temporal
order decisions are, the less imputations will be necessary, e.g. after the last decision there are
no decisions that have not been observed. In Imputing by Comparison the order actually
has no impact, but in Utility Iteration it does, as described below. After evaluating decision
number n, both imputing methods impute observations to ensure that decision n is fully
observed, i.e. ensuring that all configurations of the decisions relevant past has a corresponding
decision. When decision n have been made fully observed, it can be replaced by a chance node

108

E.3. THE DEVELOPED METHODS

that encodes the policy of the decision node. This enables the imputing methods to create
constraints based on observed choices in decision node n — 1 without relaxations, since this has
become the last in the temporal order, and so on. This means that the only difference between
the two imputing methods is the way in which imputations are done.

E.3.1 Utility Iteration

In Utility Iteration virtual observations are chosen based on temporary utility functions. The
initial temporary utility function is found by creating constraint for the last decision in all
observations, because evaluating this decision does not require any imputations and therefore no
temporary utility function. After adding constraints for decision number n in all observations,
the center of the largest possible hypersphere, conforming with these constraints, is used as
the initial temporary utility function.

Using this temporary utility function in the agents influence diagram, a policy, i.e. mapping
between relevant past configurations and choices, can be obtained for any decision node. The
initial temporary utility function is used in this way to obtain a policy for decision node n.

With the needed virtual observations imputed to make decision n fully observed, constraints
can be added for the observed choices in decision n—1. However, constraints are only added for
one of the observed decisions. This is because after adding the constraints from one observation
of decision n — 1, then a new temporary utility function can be found, and the newly added
constraints together with the constraints created already will yield a more reliable utility
function.

So after the initial temporary utility function has been determined, then choices are evaluated
one at the time, in the order described above, each time refining the utility function. The
temporary utility function will continually be refined, until all decisions have been evaluated
in all observations. Now the final utility function, is the estimation done by Utility Iteration.

E.3.2 Imputing by Comparison

Imputing by Comparison finds the decisions in the unobserved configurations of the relevant
pasts that should be imputed by comparing probability distributions. Some notation is needed
to describe imputations in Imputing by Comparison. The hypothesis variables of a decision, is
the parents of all utility descendants of that decision. These hypothesis variables can include
chance as well as decision nodes. The utility descendants of some decision node, is the utility
nodes that can be reached from that decision node by following a directed path through the
influence diagram.

To impute a virtual observation for some relevant past of a decision node, Imputing by Com-
parison calculates the joint distribution over the hypothesis variable. This joint distribution
is calculated for all the true observations, i.e. observations that have actually been made, by
instantiation the past of the decision node as observed in each true observations, and treating
decision nodes as deterministic chance nodes. By comparing the Fuclidean distance between
each true observation and each possible virtual observation, with respect to the joint distri-
bution of the hypothesis variable, then the virtual observation with the smallest Euclidean
distance is chosen.

109

CHAPTER E. SUMMERY OF LEARNING UTILITY FUNCTIONS BY IMPUTING

E.4 Dynamic Domains

As the agent is allowed to change behavior over time, then observations can be made that
conflict with each other, i.e. only the trivial utility function can allow both observations to
occur. The trivial utility function is the utility function that attributes the same expected
utility to all decisions, by having all local utility functions yield the same utility no matter the
configuration of the influence diagram.

Since conflicting observations can occur, policies were developed that Utility Iteration and
Imputing by Comparison could use to handle such conflicts. These policies were targeted on
specific kinds of dynamic behavior, namely drift, fluctuation and noise. Drift is when the
strategy of the agent gradually changes, fluctuation is when it suddenly changes and noise is
when a single observations faulty, i.e. single variables or decisions have changed state from
what they should have been in the observation.

E.5 Experimental Results and Conclusion

After conducting a series of experiments, it can be concluded that the utility learning methods
based on imputing virtual observations, instead of relaxing constraints, will generally predict
decisions more accurately. With regards to complexity, the experiments supported the com-
plexity analysis, that indicated that Utility Iteration and Imputing by Comparison would have
better scalability, when the domain grew, compared to FLUF.

110

A
Agent
Assumptions............ ...l 2
Dynamic Behavior.................... 45
Static Behavior....................... 45
D
Dynamic Domain 45
Conflict Policiest. 46
Constraint Relaxation Policy 50
Drift ... 46
Fluctuation........................... 46
Guilty Constraints.................... 47
Noise...ovvviiii i 46
E
Euclidean Distance........................ 38
Experiments
Accuracy ..o 55
Speed ..o 55
F
FLUF. ... o 5
Assumptions. ... 8
Complexity..........cooiiiiiiit. 16
Conflict Policy
Drift and Fluctuation 49
Fully Observed Strategies.............. 9
Observationsoocvieiinnn... 9
Partially Observed Strategies......... 10
Utility Values............ ... 8
Fully Observed Strategy.................... 1
G
Goal ... 2
I
Imputing 25
Basic Technique 29
True Observations.................... 25
Virtual Observations 25

INDEX

Imputing by Comparison.................. 36
Algorithm ...t 38
Analysis.......ooooiiiiii it 40
Complexity.........ooooiiiiii it 41
Conflict Policy

Drift and Fluctuation 49
Noise ...ovvieiiii i 52
Hypothesis Variables................. 36

Influence Diagrams......................... 5
Information Link 6
No-Forgettingcoe 6
Policy ...oovvvv 7
Relation Link..............., 6
Relevant Past 8
Solving . ..vvi e 6
Strategy ...coovviiiii i 7
Temporal Order 6

K

Kullback-Leibler Divergence............... 37
L

Largest Possible Hypersphere 13
o

Optimal Method 17
Subregion ...l 18

P

Partially Observed Strategy 1

Prerequisites.........cooveiiiii i 2
Agent ... 2
Prior Knowledge....................... 2

S
Static Domain 45
T
True Feasible Space.................c..... 17
True Utility Spacecoiiiiiion 17

111

INDEX

U

Utility Iteration..................cooninas. 29
Accurate Technique 79
Algorithm 30, 31
Analysis.......ocooiiiii i 33
Complexity......covveviiiiiniiit, 35

Conflict Policy
Drift and Fluctuation 49
Noise . covvvi 52
Extended Technique.................. 31
Temporary Utility Function 30

112

BIBLIOGRAPHY

Antonio Aguilera and Richardo Peréz-Aguila. General n-Dimensional Rotations. In WSCG
SHORT Communication papers proceedings. UNION Agency - Science Press, 2004.

Hugin Expert A/S. Hugin Researcher,
@ http://www.hugin.com/Products_Services/Products/Academic/Researcher/ 2004.

Michel Berkelaar et al. LP Solve,
@ http://groups.yahoo.com/group/lp_solve/ 2005.

Urzula Chajewska, Daphne Koller, and Dirk Ormoneit. Learning an Agent’s Utility Function
by Observing Behavior. In Proceedings of the 18th International Conference on Machine
Learning (ICML ’01), pages 35—42, 2001.

Fraleigh and Beauregard. Linear Algebra. Prentice Hall, second edition, 2003.

Anders Hansen, Nicolaj Lock, and Peter Poulsen. FLUF Learning Utility Function. Master’s
thesis, Aalborg University, 2004.

Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer-Verlag, 2001.

R. Shachter. Bayes-Ball: The rational pastime (for determining irrelevance and requisite
information in belief networks and influence diagrams,
@ citeseer.ist.psu.edu/shachter98bayesball.html 1998.

R. Shachter. Efficient Value of Information Computation. In Proceedings of the 15th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-99), pages 594601, San Francisco,
CA, 1999. Morgan Kaufmann Publishers.

113

