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SYNOPSIS:Over the years the need for a more power-ful �rewall lassi�ation sheme to supple-ment stateless paket lassi�ation has be-ome apparent. As a response to this de-mand Stateful Inspetion (SI) was devel-oped. While signi�antly more powerful,this sheme has a number of inherent dis-advantages. One of the most predominantones being its inherent dependene on us-tom made protool onformane spei�a-tions against whih the inspeted streamsan be heked.Currently, SI apable �rewalls implementthese spei�ations by hard-oding theminto the �rewall using the generi languageused to implement the rest of the �rewall.While simple, this approah however has anumber of disadvantages in terms of om-plexity and subsequently in terms of theorretness of the implemented spei�a-tions. In e�et this omplexity means thatthe risk of errors present in these spe-i�ations is onsiderable and as a resultthe overall level of seurity imposed by the�rewall might be dereased.In this report we propose, implement, andtest a system apable of easing the task ofspeifying and implementing protool on-formane spei�ations. Using this sys-tem the risk of errors should therefore beredued and as a result the general levelof seurity should be inreased. This isahieved through the introdution of re-targetable spei�ations whih an be re-used aross di�erent �rewall implementa-tions while at the same time be imple-mented using a ustom made language.This way, more e�ort an be put intothe development and testing of one sharedspei�ation, as opposed to its ompletereimplementation on eah available �re-wall.
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PrefaeThis report douments the Master's Thesis by Lars R. Olsen written un-der the researh unit of Distributed Systems and Semantis at the Depart-ment of Computer Siene at Aalborg University. The projet is onernedwith stateful inspetions dependene on ustom made protool onformanespei�ations, working as overlays against whih the inspeted streams areheked. To redue this dependeny this report proposes, implements, andtests a system apable of easing the reation and implementation of suhspei�ations, while at the same time making them retargetable so that theyan be reused aross di�erent �rewalls.The report assumes that the reader has elementary knowledge aboutbasi networking onepts suh as pakets, routing, the TCP/IP protoolsuite, and �rewalls in general. It is split into 3 parts. The �rst, beingthe introdution, motivates the projet, gives an introdution to the urrentpraties in the implementation of stateful inspetion, and desribes howprotool onformane spei�ations are urrently reated for these. Withthat in plae, a system apable of easing the reation of spei�ations forthese implementations is then proposed. In the seond part this system isthen desribed in detail. Finally, in the third part, an implementation of theproposed system is tested and a onlusion onerning the advantages anddrawbaks of the proposal is drawn.A homepage ontaining this report as well as the implementation of theproposed system is loated at the following address:http://www.s.aau.dk/∼lro/rps
Lars Riis Olsen





PART I
Introdution

This part provides an introdution to the projet. It starts by motivatingthe projet in Chapter 1; what is stateful inspetion, whih improvementsdoes it o�er ompared to stateless paket lassi�ation, and whih de�ien-ies in the urrent way of reating and implementing spei�ations for it dowe want to alleviate. With that in plae, Chapter 2 provides a more detailedintrodution to stateful inspetion and desribes how it is implemented andperformed by urrent �rewalls. With an outset in this desription, some ofthe problems introdued by stateful inspetion are desribed and our pro-posal to alleviate some of these problems is introdued. Finally, with thisintrodution in plae, the part onludes with a de�nition of the �nal sopeand goals of the projet.





Chapter 1MotivationOver the past deade the Internet has grown tremendously. From inludingonly 213 hosts in 1981, it has grown to onsist of approximately 233 millionhosts as of January 2004[Sur04℄. This dramati inrease illustrates the de-velopment of the Internet, from a small set of interonneted omputers usedfor sienti� and military purposes only, to the general purpose, ommerialnetwork that it is today.A result of this dramati growth is an equal inrease in the demand fortehnologies to protet and ontrol its users. The �rewall is one suh tehnol-ogy. A �rewall is essentially a seletive router whih works by intereptingand examining selet parts of the protool headers of all pakets sent throughit. Based on this examination, ommonly known as lassi�ation, the paketis either bloked or let through, thereby allowing the �rewall administratorto ontrol the tra� passing through it. To further maximize the ontrol,�rewalls are usually deployed to at as gateways between networks, therebyallowing for the examination of all tra� passing between them. An exampleof this setup an be seen in Figure 1.1. Needless to say the e�etiveness of
Figure 1.1. A �rewall ating as a gateway between two networks has reeived two pakets. Ithas been on�gured to only aept pakets with an IP soure protool header �eld of 10.*.*.*.This means that Paket 1 has been allowed to pass whereas paket 2 has been dropped andtherefore removed from the network.



Motivation 4the �rewall depends on its ability to lassify the interepted pakets. The�rst �rewalls, now referred to as stateless �rewalls relied solely on a statelesslassi�ation sheme where all pakets are lassi�ed independently from eahother. While fast and simple this sheme however has a number of seriouslimitations. One of the most predominant ones is the fat that, using thissheme, basing the lassi�ation on mutable header �elds1 suh as sequenenumbers and TCP �ags, rarely makes muh sense. The result is that thelassi�ation in stateless �rewalls most often an only be based on a smallportion of the paket (the immutable �elds), thereby negleting a lot of in-formation that ould otherwise be used to sharpen the lassi�ation. Anexample of the onsequenes of this limitation is the ACK ping attak whihallows an attaker to determine whether an IP address is in use, even thoughthe potential host would plaed behind a stateless �rewall[tW00℄. Where atraditional ping works by sending an ICMP type 8 paket to the address inquestion[Pos81a℄, the ACK ping attak works by sending an unsoliited TCPACK paket (a TCP paket with the ACK �ag set) to the vitim. If the ad-dress is in use, the vitim, realizing that the paket is illegal, responds withan RST paket[Pos81b℄ ultimately telling the attaker that the address is inuse. Where a stateless �rewall an easily be made to drop all ICMP type 8pakets, thereby disallowing the traditional ping, it has no way of telling theunsoliited paket from a soliited one. The result is that stateless �rewallsare not apable of proteting against suh attaks as simply dropping allACK or RST pakets would disrupt legal tra� as well. From this exampleit should therefore be lear that this lassi�ation sheme is inadequate anda new, more powerful sheme, is needed.Stateful Inspetion (SI) is one suh sheme. It distinguishes itself fromthe stateless approah in that it inorporates the notion of paket streams,thus making it possible to lassify eah paket in the ontext of the streamto whih it belongs. In other words, it is apable of behaving very muhlike the hosts it is trying to protet. It works by storing information aboutthe state of the paket streams existing aross the �rewall. Every timea paket arrives it is lassi�ed using this stored information and a user-de�ned Protool Conformane Spei�ation (PCS) speifying a number ofrequirements that must be met by streams of the type in question (e.g. TCPstreams)2. As the requirements of the PCS an be made to di�er dependingon the state of the stream, the inspetion an therefore be made stateful bystoring the state of the stream in-between inspetion of the pakets. Basedon how the ontents of the paket mathes the requirements spei�ed forthe state in question, a result of the inspetion an be obtained (e.g. ok orinvalid) and used in the �nal lassi�ation of the paket. Through the use of1Protool header �elds whose orretness depend on the state of the paket stream towhih the paket belongs.2Note that there is no universally aepted name for these spei�ations but that wewill refer to them as protool onformane spei�ations.



5 1.1 Projet Goalsthis sheme it is therefore possible for the �rewall to base the lassi�ationon the state of the stream whih in turn enables it to base the lassi�ationon mutable �elds as well. As a result, through the use of SI, it is possible toprotet against state dependent attaks suh as ACK Ping as it an easilybe established that the unsoliited paket does not belong to any existingstream.While the introdution of SI learly inreases apabilities of the �rewallit also brings about a number of inherent disadvantages. First of all it addsa onsiderable amount of omplexity to the �rewall. While SI is oneptu-ally fairly simple, its implementation involves the handling of a number ofomplex issues suh as the e�ient storing of information and the imple-mentation of the PCSs. As added omplexity always inreases the risk oferrors being made during development, this fator essentially dereases theoverall level of seurity imposed by the �rewall. One of the most signi�antsoures of this added degree of omplexity is the fat that SI requires at leastone PCS to be devised and implemented for eah supported type of stream(TCP, UDP, et)3. In the ase of stateless �rewalls, adding support for a newtype of protool/paket was simply a matter of getting aess to the �elds inthat pakets protool header(s). For SI on the other hand, the inorporationof the notion of streams means that a speialized PCS must be developedas well. In urrent �rewalls these spei�ations, whih often span severalhundred lines of ode, are implemented using the same general purpose lan-guage used to implement the rest of the �rewall[Hom04℄[Fil04℄. As an beseen from the time and e�ort gone into implementing PCSs for the urrentlyavailable open soure �rewalls the result is that adding new PCSs is often atedious and ompliated task. Furthermore, when implementing PCSs usinggeneral purpose languages a lot of time is usually spent paying attentionto issues not related to the behavior of the streams (avoidane of pointererrors et.). As �rewalls are �rst and foremost about providing seurity, andomplexity always serves to inrease the risk of errors, this approah to theimplementation of PCSs is by no means ideal. This projet aims to solvethis problem by developing a new and more reliable way of implementingPCSs.1.1 Projet GoalsThe goal of this projet is to inrease the �exibility and seurity of SI. Thisgoal is ahieved through the development of a retargetable PCS spei�a-tion system that allows the developer to write the PCSs in a ustom made,protool-oriented, and �rewall independent language. This language hides,to the behavior of a protool, unimportant issues suh as the storing and3More than one if you for reasons of seurity, performane et. are not ontent withusing the same PCS for all streams of the same type.



Motivation 6retrieving of state information. Doing so, it allows the PCS developer tostop thinking about these issues and instead allows him to fous on what isimportant - the intended behavior of the paket streams. Seondly, beingprotool-oriented means that the language is made exlusively for the taskof speifying PCSs. Most notably this means that the language does notontain any unneessary onstruts that an ompliate the task at hand.Furthermore, the language being �rewall independent allows for the develop-ment of ompilers that an ompile PCSs written in the language into odeusable by urrent and future �rewalls. This way di�erent �rewalls an reusethe same PCS implementation, thus making it possible to fous on perfetingthis single implementation as opposed to manually porting it to the di�erent�rewalls. This in turn should strengthen the quality of the PCS and therebyinrease the overall level of seurity imposed by the �rewall. Finally, thesystem eases the job of developers of new �rewalls, as all that is needed toadd a wide range of PCSs, is to make a ompiler for the developed �rewall.Having brie�y introdued and motivated the projet the next hapter willprovide a more in-depth desription of SI and its strengths and weaknesses.With this desription in plae, the proposed retargetable PCS reation sys-tem will then be introdued, and the �nal sope of the projet de�ned.



Chapter 2Stateful Inspetion and itsInherent ProblemsIn the previous hapter it was desribed how SI, while useful and onep-tually simple, has a number of inherent disadvantages when it omes toimplementing it. In order to make it lear why this is so, and to furtherlarify the purpose of the proposed retargetable PCS system, this hapterprovides a more in-depth introdution to SI. To fully understand this intro-dution, one however �rst need to attain an understanding of the oneptualarhiteture of a �rewall, how it works, and how it goes about inorporat-ing lassi�ation shemes suh as SI and stateless paket lassi�ation. InSetion 2.1 a brief introdution to �rewalls and their oneptual arhitetureis therefore given. Then, in Setion 2.2 a more thorough introdution to SIand how it is performed is provided. Over the ourse of that desription,the problems surrounding its implementation should beome lear, and inSetion 2.3 these problems will then be desribed in greater detail. In Se-tion 2.4 we give a short desription to how PCSs are implemented in someurrent day �rewalls, and then in Setion 2.5 a more detailed introdution toour retargetable PCS system whih aims to ease this task, is given. Finally,in Setion 2.6 the introdution is onluded by the de�nition of the �nalsope of the projet.2.1 The Coneptual Arhiteture of a FirewallA �rewall an, in short, be desribed as an advaned seletive router. That is,a devie whih reeives pakets on a network interfae, removes those whihare not allowed to pass, and forwards the rest to their proper destination.Exatly whih pakets are allowed to pass and whih are to be bloked isde�ned in a set of rules reated by the administrator of the �rewall. Morespei�ally, these rules are reated by speifying a number of propertiesthat a lass of pakets must omply with, along with a desription of what



Stateful Inspetion and its Inherent Problems 8must happen to pakets belonging to this lass. The properties that anbe spei�ed depend on the apabilities of the �rewall and the following ruleillustrates this:rule IP_SRC=10.0.*.* IP_PROTO=6 -a ACCEPTThis rule, whih is typial for a stateless �rewall, de�nes a lass onsistingof all pakets with the IP_SRC �eld set to 10.0.*.* and the IP_PROTO�eld set to 6 (TCP). Furthermore it spei�es that all pakets belonging tothis lass must be aepted, thereby allowing all tra� that adheres to theseproperties to pass through the �rewall. As previously desribed stateless�rewalls are restrited to lassify all pakets independently. More preisely,we de�ne stateless paket lassi�ation as performed by the stateless �rewallsas follows:De�nition 1 (Stateless Paket Classi�ation)The task of lassifying pakets based solely on the ontents of the pro-tool headers of the paket.Using this de�nition implies that only properties onerning the ontentsof the pakets an be spei�ed as properties of the individual lasses. SI onthe other hand allows for a more high level view. An example of this anbe seen in the following rule, whih is typial for a �rewall apable of usingboth SI as well as the stateless paket lassi�ation:rule IP_SRC=10.0.*.* IP_PROTO=6 -ps=MyPCS SI=OK -a ACCEPTThe di�erene in this rule ompared to the stritly stateless example, is theaddition of a new property speifying that the paket, when heked againstthe MyPCS PCS, must result in SI returning OK. This way it is no longersu�ient for the TCP pakets to have an IP_SRC �eld of 10.0.*.*. as theynow must also make the MyPCS PCS return OK. Given a PCS that heksfor the orret use of the TCP �ags, this rule would therefore protet againstall ACK Ping attaks with pakets ontaining an IP_SRC �eld of 10.0.*.*.With this in mind we de�ne SI as follows:De�nition 2 (Stateful Inspetion)The task of traking the state of a stream, and based upon this state,heking its pakets against a prede�ned PCS and subsequently returningthe inspetion result to the rest of the �rewall for further lassi�ation.where a stream is de�ned as a sequene of related pakets, or more spei�allyas follows:



9 2.2 Stateful InspetionDe�nition 3 (Stream)A sequene of pakets related by some relation de�ned by a protoolused by the pakets.With this short desription of how a �rewall is on�gured using proper-ties and lasses in plae, the oneptual arhiteture of a �rewall an now bedesribed. This oneptual arhiteture an be seen in Figure 2.1. In this
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Stateful Inspetion and its Inherent Problems 102.2.1 The Protool Conformane Spei�ationThe PCS is essentially the on�guration whih de�nes how SI should behave.It de�nes, given the reeption of any paket of the type for whih the PCSwas made, and knowledge about the state whih the stream is urrently in,the property value to be returned to the �rewall ore as well as the newstate of the stream. The PCS an therefore be seen as a state mahineand Figure 2.2, whih shows a graphial illustration of a PCS apable ofdeteting the ACK Ping attak desribed in Chapter 1, illustrates this. In
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11 2.2 Stateful Inspetionunsoliited paket. As a result, the paket is heked against the transitionsemerging from the losed (Closed) state. As the PCS spei�es that theproperty value Invalid is to be returned if the �rst paket is not a SYNpaket, the �rewall administrator an protet against ACK Ping attaks bybloking pakets returning this value. For an example of how to reate aPCS for streams utilizing the TCP/IP protool, see Example 2.2.1.Example 2.2.1 (Simpli�ed PCS for the TCP/IP Protool Suite)TCP is a onnetion-oriented protool and therefore by de�nition goesthrough a series of states when opening and losing a onnetion. For thesake of simpliity this example fouses only on the set up phase. In Fig-ure 7.1(a), a transition system showing the states that a TCP/IP onne-tion an pass through during this part of the protool, an be seen[Pos81b℄.
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Stateful Inspetion and its Inherent Problems 12�elds they are identi�ed as belonging to the same stream.With this short desription of the �rst states of the TCP protool, itis possible to make a PCS that ensures that TCP/IP onnetions are setup orretly. A graphial illustration of suh a PCS, using the previouslydesribed notation, an be seen in Figure 7.1(b). As an be seen from thatspei�ation any new onnetion must be initiated by a SYN paket forNew to be returned to the �rewall ore. Furthermore, it an also be seenthat this paket brings the onnetion into the SYN Sent state. From heretwo things an happen. Either a return SYNACK or a return SYN paketis interepted. In the former ase, the onnetion enters the SYNACKSent state where a further ACK paket will bring the onnetion into theEstablished state. In the latter ase, whih is the situation where bothhosts simultaneously try to open a onnetion, a further two ACK paketsmust be sent before the onnetion an �nally be established. By droppingall pakets returning Invalid the spei�ations of the Figure 7.1(a) antherefore be upheld. Similarly, by dropping New pakets from a network,the establishment of onnetions by users on this network an be prevented.2.2.2 Performing the InspetionWith the PCS in plae it is possible to perform the atual inspetion. Cur-rently several di�erent approahes to doing this exists. The most widelyused is Table Based Stateful Inspetion[JSCO02℄ whih is used by most opensoure �rewalls[Fil04℄[Hom04℄ and built around a table (the state table) inwhih the state of all streams urrently being inspeted is stored. Whenevera paket is reeived, the state table is onsulted for state information aboutthe stream to whih the paket belongs, and the paket an subsequentlybe inspeted. The pseudo-ode for the InspetPaket funtion, as shown inAlgorithm 1, shows how this is done.As an be seen from this outline the �rst task upon reeiving a paket isto perform a lookup in the state table to determine whether any informationis stored about the stream of the paket. Based upon the outome of thislookup two things an happen:Information is found: If information about the stream is found, this in-formation tells whih state the stream was in prior to the reeptionof the new paket. With this information the ontent of the paket isthen heked against the onstraints of the transitions emerging fromthis state. When a transition whose onstraints are satis�ed by thepaket is found, the property value assoiated with that transition isdelivered to the �rewall ore. Depending on whether the �rewall endsup aepting the paket two things an then happen. If the paketis aepted, the state table is updated to re�et the hanges broughtby the paket. On the other hand, if the paket is dropped, the state



13 2.2 Stateful InspetionAlgorithm 1: Outline of the InspectPacket funtionData : paket to be inspetedstate info ← LookupStreamInTable(paket);if state info found thenforeah transition in PCS emerging from stored state doif ontent of paket satis�es transition onstraints thenif property value assoiated with the transition auses the�rewall to aept the paket thenif new state is a losed state thendelete state info;elseupdate state info;elseforeah transition in PCS emerging from losed state doif ontent of paket satis�es transition onstraints thenif property value assoiated with the transition auses the�rewall to aept the paket thenif new state is an open state thenreate state info for new stream;
information remains unhanged to re�et the fat that the paket willnever reah its �nal destination.No information is found: If the lookup yields no information it must beassumed that the reeived paket is the �rst in a new stream. In thisase the ontents of the paket is therefore heked against the transi-tions emerging from the losed state. When a mathing transition isfound its assoiated property value is passed on to the �rewall ore.As was the ase for when state information was found, two things anthen happen. If the �rewall hooses to aept the paket the afore-mentioned transition is heked to see if it points to an open state. Ifit does, a new entry is added to the state table to re�et the arrival ofthis new stream. If on the other hand the �rewall hooses to blok thepaket no entry is added regardless of the new state.With respet to timeouts these are handled in a slightly di�erent manner.Where the InspetPaket funtion heked the reeived pakets against thetransitions in the spei�ation, timeouts only our when no pakets havebeen reeived for a prede�ned amount of time. The normal proedure in



Stateful Inspetion and its Inherent Problems 14table based SI is therefore to periodially hek the status of all streamsin the state table. If a stream is found for whih no pakets have beenreeived within the prede�ned amount of time, the stream has timed outand the entry is deleted. The outline of the TimeoutHandler funtion shownin Algorithm 2 illustrates this.Algorithm 2: Outline of the T imeoutHandler funtionwhile true doforeah stream in state table doif stream has timed out thendelete state info for stream;wait X seonds;2.3 Design Problems Introdued by Stateful Inspe-tionWith the more detailed desription of SI in plae, we now turn our attentionto a desription of some of the problems introdued by it. Some of the mostpredominant ones will be desribed next.2.3.1 Adds a Considerable Amount of Complexity to theFirewallFrom the desription in the previous setion it should be lear that perform-ing SI is a relatively ompliated task. Inevitably the introdution of SI intoan otherwise stateless �rewall therefore leads to an inrease in the omplexityof the �rewall. As omplexity always inreases the risk of errors being madeduring design and implementation, this is a serious problem. The followingparagraphs desribe, from a design and implementation point of view, someof the origins of this added omplexity.Fast storage and aess to stream information: The key aspet di�er-entiating SI from stateless paket lassi�ation is SIs ability to view thepakets in the ontext of the streams to whih they belong. For this tobe possible the �rewall needs to be able to store, update, and aessinformation about this ontext. As should be lear from the outlineof the InspetPaket funtion this information needs to be aessed atleast one for every interepted paket. For these operations not toinur to great a performane penalty, it is therefore paramount to theperformane of the �rewall, that they an be performed in a fast ande�ient manner.



15 2.3 Design Problems Introdued by Stateful InspetionState information needs to be kept onsistent: With the ability to storeinformation omes the need to keep it onsistent with the stream itrepresents. In partiular, this means that two pakets belonging tothe same stream an not be inspeted at the same time as the odein-between the table lookup and the table update is a ritial region.That is, if two pakets from the same stream are in this setion atthe same time, the latter is likely to take outset in a wrong state, andtherefore likely to be wrongfully inspeted.Seondly, there is the issue of oordinating the operations of the In-spetPaket and TimeoutHandler funtions. As was desribed in Se-tion 2.2.2 the normal proedure is to periodially traverse the entirestate table in the searh for timed out streams. But what if the Time-outHandler enounters a stream that appears to have timed out onlybeause a paket whih arrived within time is still in the previouslymentioned ritial region. In this situation the onnetion has learlynot timed out and the stream information should not be deleted.Both of the above issues an obviously be dealt with through the useof a number of loks. However, as with most multi-threading, thesolution and its implementation an quikly beome omplex when thepreviously mentioned performane requirements are also taken intoaount.Fast aess to protool onformane spei�ations: As with the statetable a PCS is aessed every time a paket is reeived. While the spe-i�ation does not hange during the operation of the �rewall, a fast wayof aessing it is still needed.E�ient handling of timeouts: While the ode needed to deal with time-outs is not very di�erent from that needed for the inspetion of pakets,it still puts a onsiderable strain on the state table. Where the Inspet-Paket funtion requires a state table with fast aess to a single table,the TimeoutHandler requires fast traversal of all entries. As a result, adatastruture apable of performing well in both situations, while stillallowing for a great deal of onurreny, is needed.2.3.2 Keeping SI Up-to-date With New Protools is a Te-dious and Error Prone TaskAs eah PCS is spei� to one type of stream at least one PCS is needed foreah type of stream supported by the �rewall. This means that in order toperform SI on a large number of stream types, you either need an easy way ofadding new spei�ations, or otherwise spend a lot of time adding these. Thelatter approah however raises a number of issues. First of all it is not likelyto be a very feasible long term solution as new protools and hene new types



Stateful Inspetion and its Inherent Problems 16of streams frequently appear. Seondly, it raises some onerns with regardto the overall seurity of the �rewall. The problem arises with the fat thatwith eah new PCS the amount of ode making up the �rewall inreases.As it is a widely reognized fat that in relation to seurity, simpliity is avirtue[ea03℄[ea02℄, it is a good idea to make the addition of new spei�ationsas easy as possible. This need is further inreased by the fat that onePCS for eah type of stream might not be enough to suit all needs. Anexample of this is the PCS for the detetion of ACK Ping attaks desribedin Setion 2.2.1. While this spei�ation is indeed apable of deteting suhattaks, it does not deal with e.g. the inorret use of the sequene number�elds. Where the spei�ation may therefore be su�ient in some areas ofuse, it may equally as well be totally insu�ient in others. On the other hand,more omprehensive PCSs may in some situations be to strit or indulge togreat a performane penalty, and may therefore for some purposes be equallyunsuitable. As a result, several PCSs for the same type of stream is likely tobe needed.However, one key fator somewhat easing the need for new PCSs is to befound in the layered layout of the TCP/IP referene model[CK74℄. Beauseof this model, all streams simultaneously make use of several di�erent pro-tools. In relation to SI this makes it possible to divide these protools intotwo groups, eah with their own distint properties. The �rst group make upthe network and transport layer protools. These protools are harater-ized by being few in numbers and hardly ever hanging. The seond groupomprises the appliation layer protools, and where only a few network andtransport layer protools exists, new appliation layer protools appear ona regular basis. A way of ountering the need for many PCSs would there-fore be to limit the support to inlude network and transport layer protoolsonly. This approah however has one major drawbak. While only allowingfor SI on network and transport layer protools is ertainly an improvementover the stritly stateless approah, its e�et is still limited ompared to thefull approah where support for all the protools of the paket is provided.No matter whih solution is hosen there is however nothing eliminating theneed for easy way of adding new PCSs.2.4 Current Praties in the Implementation of State-ful InspetionThis setion provides an introdution to how two urrently available �re-walls implement SI and try to deal with the previously desribed problems.It starts by desribing the simplest and least �exible approah (used byOpenBSD PF [Fil04℄), before moving onto the more �exible approah usedby the Linux Net�lter [Hom04℄ �rewall. Finally, a desription of some of thegeneral limitations of the urrent praties will be given.



17 2.4 Current Praties in the Implementation of StatefulInspetion2.4.1 OpenBSD PFThe implementation of SI in PF has a very monolithi arhiteture wherefous has been put on immediate simpliity as opposed to �exibility andextendability. This means that while its arhiteture and ode tends to berelatively simple, the task of adding new PCSs is omparatively harder. Thisis most learly visible in the fat that the �rewall provides no funtionalityfor easing the task of adding new PCSs. An example of this is the lak ofa built-in state table implementation that automatially handles issues suhas performane and onurreny. The result is that the implementor of newspei�ations is fored to handle these issues himself. Arguably, this is prob-ably also one of the reasons why only very few PCSs have been added to this�rewall. Finally, all spei�ations must be written in C, thereby as desribedin Chapter 1, further inreasing the risk of errors in their implementation.2.4.2 Linux Net�lterIn Net�lter, ontrary to what was the ase with PF, �exibility and modular-ity has been a major design goal in all aspets of the development proess.This partiularly shows in its SI implementation whih provides the PCSdeveloper with a number of built-in modules that an be used to e�ientlystore information, handle onurreny issues et. While the Net�lter �rewallmight ease the task of storing state information it does however nothing tomake the atual spei�ation of the protool any easier1. This, along withthe ode integrating it with the built-in modules still has to be written in C.However, in omparison to PF, the addition of these built-in modules is stilla big improvement. Furthermore, as these modules are used by virtually allPCSs and are integral parts of the SI subsystem, the number of bugs in thesemodules is likely to be small. By using these modules, the PCS developeran therefore stop fousing on these issues and instead onentrate more onatual behavior of the stream.With regards to the protools supported by Net�lter, the e�ets of themodular arhiteture are lear. As of writing, Net�lter ships with severaldi�erent PCSs for the most ommonly used network and transport layerprotools as well as PCSs for a wide range of appliation layer protools.2.4.3 Limitations in Current PratiesAlthough the two �rewalls approah to the implementation of SI di�er, thereis one problem they both share - the job of adding new PCSs is a tediousand unstrutured proess ontaining a mix of dealing with the behavior ofthe stream, as well as writing ode integrating it with the �rewall. WhileNet�lter learly onstitutes an improvement over PF it is still insu�ient.1In Net�lter PCSs are referred to as onnetion traking helpers



Stateful Inspetion and its Inherent Problems 18Most of this stems from the fat the spei�ations must still be written in Cand that this language is simply not designed for this. This makes the taskunneessarily ompliated and an be the ause of errors whih have nothingto do with the behavior of the streams (pointer errors et.). Beause �rewallsare intended to provide seurity, and many of them (espeially hardware�rewalls used by private users) are not easily upgradeable one they havebeen deployed, it is important that they are free of errors. Writing PCSs ingeneral purpose languages is therefore overkill and not a feasible approah.Furthermore, as orretness is paramount to the overall level of seurity itwould be a onsiderable improvement if it was possible to formally provethe orretness of the PCSs. As proving the orretness of ode written inomplex languages suh as C is generally a very tedious task, this is yetanother reason why the urrent praties are insu�ient.2.5 The Proposed Solution - Retargetable ProtoolConformane Spei�ationsHaving desribed the di�erent problems involved in performing SI and de-termined the limitation of the urrent praties, our proposal to a solutionto the problem of adding PCSs will now be introdued. We start by givinga brief outline of the proposal thereby desribing its ore features.2.5.1 Outline of the ProposalOne of the main problems haunting todays implementations of SI is theirlak of a simple speialized language designed solely for the task of speifyingPCSs. We propose the development of suh a language. The main advantagewill be that suh a language an be made to perfetly hide all issues notdiretly related to the spei�ation of the PCS. Seondly, having a languagethat is simple and tailored towards the spei�ation of PCSs should reduethe risk of bugs being present in the �nal spei�ation. Furthermore, as thebehavior of a protool remains the same no matter in whih �rewall it isinspeted, the language an be kept independent of any partiular �rewall.The result is that a PCS written in this language an be seen as a universalspei�ation whose deployment is no longer on�ned to any single �rewall.In e�et, suh a language would therefore allow for the development of afully retargetable PCS reation system that an be used by urrent andfuture �rewalls. All that is left to the developer of the �rewall is to developa ompiler apable of transforming the universal spei�ations into odeusable by his partiular �rewall. This way, the same tried and tested PCSsan be reused aross di�erent �rewalls thereby further strengthening theirquality and easing the task of adding them. Finally, the language an betailored towards easing the task of formally proving the orretness of the



192.5 The Proposed Solution - Retargetable Protool ConformaneSpei�ationsspei�ations. This way, the system will not only ease the implementationof the PCSs, but also make it easier to verify their orretness. In turn, thisshould thereby redue the risk of having to issue expensive �xes to alreadydeployed �rewalls as a result of erroneous software.2.5.2 The Arhiteture of the Proposed SystemIn Figure 2.4 the three phases involved in transforming a universal spei�a-tion written in the �rewall independent language, into the �nal ode usableby a partiular �rewall, an be seen. The approah is simple and fairlysimilar to what is used by other ompilers. That is, the universal spei�a-tion is parsed into an intermediate representation from whih the di�erentoutputs are generated. Using this approah ode reuse an be maximizedas the implementation reated for phases 1 and 2 remains the same for alloutput generators. This way, all that is left to the �rewall developer is toreate an output generator for his partiular �rewall (whih itself is a fairlysimple task). Finally, as the system is not bound to any spei� program-ming language, the entire system along with the output generators an beimplemented in a more high level language whih, in turn, should ease thedevelopment proess.
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step in the transformation is to generate the atual output. This task is per-formed by output generators provided by the �rewall developers. The jobof these generators is to transform the optimized spei�ation stored in theintermediate representation, into something usable by the di�erent �rewalls.2.6 Projet DesriptionThe goal of this projet is to design, implement, and test the model andaompanying retargetable PCS system desribed in the previous setion.As this, to our knowledge is the �rst projet dealing with this issue, we willnarrow its fous and limit the system to the support of PCSs for TCP/IPand UDP/IP only. The reason for hoosing these protools is mainly due totheir widespread use as the basis for most of todays Internet tra�[Tra01℄.As desribed in Setion 2.5 the development of the proposed system in-ludes the design and implementation of the following omponents:
• Phase 1� A model apable of representing protool onformane spei�a-tions for the TCP/IP and UDP/IP protool suites.� A �rewall independent and protool oriented language with anexpressive power equivalent to that of the aforementioned model.� A parser apable of turning PCSs written in the previously men-tioned language into a parse tree ating as an interfae betweenthe parser and the intermediate representation.
• Phase 2� An intermediate representation apable of optimizing and storingthe PCS.� An API for use by the output generators, apable of providingaess to PCSs stored in the intermediate representation.
• Phase 3� To be able to test the proposed system and failitate its urrentand future development an output generator for the Net�lter[Hom04℄�rewall is needed.



PART II
The Proposed System

Having brie�y introdued the proposed system this part desribes, in detail,the di�erent parts of that system. As desribed in relation to the arhite-ture a number of steps are involved in transforming the PCS written in the�rewall independent language into ode usable by the individual �rewalls.To re�et this arhiteture this part ontains a separate hapter for eah ofthese steps. As a result, Chapter 3 desribes the underlying minimal modelapable of representing PCSs for the TCP/IP and UDP/IP protool suites,and developed to at as the foundation for the retargetable system. Withthat foundation in plae, Chapter 4 desribes the protool oriented languagedeveloped to be apable of representing that model. With the language inplae Chapter 5 onerns the development of the intermediate representationand the orresponding API from whih the �nal output an be generated.Finally, Chapter 6 is onerned with output generation proess and providesa hands-on example of how an output an be generated using the aforemen-tioned API.





Chapter 3The Underlying ModelThis hapter desribes the model underlying the proposed system. To in-rease �exibility, while at the same time building a solid foundation for the�nal system, the development of this model was split into two phases. InSetion 3.1 the behavior and di�erent piees of basi funtionality needed ina PCS is desribed, and an abstrat model, the protool onformane model(PCM), whih aptures this behavior and funtionality is de�ned. Throughthe reation of this abstrat model we aim to reate a ommon foundationwhih, depending on how it is speialized, an be made to represent PCSs forvarious urrent and future protools. Finally, and in tune with this approah,Setion 3.2 presents suh a speialization apable of representing TCP andUDP PCSs. Throughout the rest of the report, this speialization is thenused as the basis for the urrent version of proposed system.3.1 The Protool Conformane ModelAs should be lear from the PCSs desribed and illustrated in the previoushapters, the behavior of a protool, and hene the streams using them, anbe desribed using an automaton. The PCM is therefore a formal de�nitionof the key onepts of the automaton desribed in those hapters, ombinedwith a de�nition of the environment in whih it operates1. We begin bydesribing and de�ning the major omponents in this environment.3.1.1 The EnvironmentThe two elements in the environment in whih SI, and therefore the PCSs,operates are those of hosts and streams. In this environment it is the respon-sibility of the SI system to inspet the ontents of the pakets and return a1The automaton used in the previous hapters is itself heavily inspired by that of timedautomata[AD94℄.



The Underlying Model 24result to the �rewall ore. As all pakets using the same protools are usu-ally divided into the same prede�ned number of parts (eah part ontaininga partiular piee of information, IP_SRC, TCP_SRCPORT et.), a paketan be seen as a prede�ned set of variables whose valuation depend on theontent of the inspeted paket. In the PCM the pakets heked againstthe PCS an therefore be de�ned in terms of suh variables:De�nition 4 (Paket Variables)A �nite non-empty set of bounded variables PV ontained within allpakets assumed to belong to streams of the type being inspeted. Thevalue of a paket variable v ∈ PV as stored in the paket p is denotedpv(v,p).A natural onsequene of this de�nition is that only pakets with a valuationfor eah paket variable, an ever be presented to the PCS. As will later belear this is an essential property as it ensures that all pakets, presentedto the PCS and legal within the framework of the PCM, an be suessfullyinspeted.3.1.1.1 StreamsThe seond in�uening element in the environment is the streams. As pre-viously de�ned, these are sequenes of pakets logially bound together ateah host using a relation de�ned by one of the protools of the stream. Inthe PCM this relation is modeled by the abstrat onept of the stream keywhih is de�ned as follows:De�nition 5 (Stream Key)The relation used to relate pakets belonging to the same stream to eahother.In tune with the previous desription of SI, it is in the PCM the responsibilityof the SI system, using the stream key, to investigate any reeived paketand �nd the stream to whih it is seems to belong. Upon ompletion of thistask it is then heked against the PCS and an inspetion result is identi�ed.3.1.2 The Protool Conformane Spei�ationThe seond part of the PCM is the model of the PCS itself. As previouslydesribed, this part an be modeled using an automaton where state hangean our either as the result of a paket being reeived, or as the resultof a timeout. In the former ase a result is returned to the �rewall oresignifying the outome of the inspetion. Depending on the �nal lassi�ationperformed by the �rewall two things an happen. If the paket is allowed to



25 3.1 The Protool Conformane Modelpass, the state information for that stream is updated to re�et the reeptionof that paket. On the other hand, if the paket is bloked, no updatesour and the paket is simply ignored. To model this behavior a number ofdi�erent entities need to be inorporated into the automaton of the PCM.The following setions desribe and de�ne these entities.3.1.2.1 Loations and TransitionsBeing an automaton the PCS, as modeled in the PCM, onsists of a numberof loations and transitions. The loations (of the set L) model the basistates in whih the inspeted streams an be. As was the ase for the samplePCSs desribed in Chapter 2, two di�erent types of loations exists. The�rst loation in any PCS is the losed loation whih represents the statewhere no pakets have been reeived and therefore no information is stored.Similarly, the open loations are the loations representing the intermediatestates where information is stored.Conerning transitions two types, with di�ering semantis, exists - updatetransitions and ignore transitions. The update transitions (UT) are thetraditional transitions used whenever the �nal aeptane of a paket meansthat the state information needs to be updated. Ignore transitions (IT) onthe other hand are self-loops used whenever the aeptane of a paket mustnot lead to that information being updated (at the very least an updatetransition will reset the timeout timer). A senario where ignore transitionsare useful is in situations where an invalid paket has been reeived. In theevent that the �rewall, regardless of this, hooses to aept the paket itould be useful for SI system to simply ignore the paket and assume thatit will be ignored by the reeiving host. Had a traditional update transitionbeen used, essential information suh as the timeout timer would have beenupdated and no longer been onsistent with the stream.3.1.2.2 State InformationTo keep trak of the state of a stream in-between inspetions, state informa-tion needs to be stored. In the PCM this apability is made possible throughthe introdution of a number of stored variables. These variables are de�nedas follows:De�nition 6 (Stored Variables)A �nite set of bounded variables SV stored by the SI system for eahstream being inspeted using the partiular PCS. The value of a storedvariable v ∈ SV is denoted sv(v).



The Underlying Model 263.1.2.3 Constraints on TransitionsAn essential part in the funtionality of a PCS is the ability to vary the resultof an inspetion based upon the ontents of the reeived pakets. In the PCMthis funtionality is implemented by allowing for a number of onstraintsto be plaed on the transitions of the automaton. As �rewalls, by theirvery nature assume the role of intermediary observers, two di�erent typesof onstraints are needed - diretion onstraints and ontent onstraints. Tosimplify the �nal system, while at the same time stressing that diretionand ontent onstraints, at least oneptually, are two di�erent types ofonstraints, these are kept as separate entities in the model. The �rst typeof onstraints, the diretion onstraints, are de�ned as follows:De�nition 7 (Diretion Constraints)Constraints on the diretion of the reeived paket. Being assigned toall transitions not emerging from the losed loation, the set of possiblediretions is denoted D and the diretion onstraint assoiated with atransition t ∈ UT ∪ IT is denoted d(t). Similarly the diretion of thepaket p is denoted dir(p).Similarly, the onstraints on the ontent of the paket, referred to as theguards, are de�ned as follows:De�nition 8 (Guards)Constraints over the stored and paket variables G ⊆ SV ∪PV , assignedto a transition t ∈ UT ∪ IT and obeying the following rules: Letting
emit(χ) denote the loation from where the transition χ ∈ UT ∪ IT isgoing out, it must for the guards grd(t) assoiated with the transitiont, never be the ase that ∃t′ ∈ UT ∪ IT where emit(t)=emit(t') anddir(t)=dir(t') and where the following holds:

|= grd(t)∩ |= grd(t′) 6= {∅}where |= ρ denotes the set of all tuples over the values of the stored andpaket variables that satisfy the guards ρ ∈ G. Finally, there must forany paket p, from all loations L and diretions D, be a transition whoseguards are satis�ed by the values of the paket variables of the paket.As an be seen from this de�nition all guards must adhere to two basirules. First of all it must never be the ase that the guards assigned to twotransitions ause these transitions overlap. If this property was to fail thePCS would beome non-deterministi and unable to return a distint resultto the �rewall ore. Seondly, there must always be an enabled transition forany given paket that, by the stream key, is onsidered part of the stream. Asthe result returned to the �rewall ore depends entirely on whih transition is



27 3.1 The Protool Conformane Modeltaken, the PCS ould, without this requirement, be presented with a paketto whih it has no response.3.1.2.4 Updating the State InformationUpon taking a transition it must be possible to update the state informationstored for the stream. To ful�ll this requirement variable assignments an beplaed on update transitions throughout the PCS. This way, when an updatetransition is traversed, the stored variables an be updated to re�et this. Toease the formalization of the model, the assignments on all transitions goingto the losed loation are prede�ned to assign to the stored variables, theirinitial value. More spei�ally these assignments, referred to as updates, arede�ned as follows:De�nition 9 (Updates)Assignments to the stored variables. Assoiated with update transitions,the updates are performed whenever the transition to whih they are as-signed is taken. The set of possible updates is denoted U and �nally,the updates assoiated with transitions going to the losed loation areprede�ned to reset all stored variables to their initial values.3.1.2.5 Speifying the Inspetion ResultThe next onept in the model is that of property values. As previouslydesribed these are used to speify the result to be returned to the �rewallore. In the PCM this is done by assigning a property value to eah transitionand returning it whenever that transition is taken. In the PCM the propertyvalue is de�ned as follows:De�nition 10 (Property Value)A value assigned to eah transition t ∈ UT ∪ IT and returned to the�rewall ore whenever that transition is taken. The set of property valuesis denoted V.3.1.2.6 TimeoutsThe �nal part of the automaton is the funtionality used to model timeouts.For this, two omponent are needed - the lok and the timeout value. Thelok, whih is used to keep trak of the time elapsed sine the reeption ofthe last aepted paket, is de�ned as follows:



The Underlying Model 28De�nition 11 (Clok)A variable C, ranging over ZZ
∗, whose value v(C) is inremented by 1eah time a seond passes and the stream is in an open loation.The timeout value, that is, the amount of time allowed to pass before atimeout ours is a value assigned to eah open loation. More formally itis de�ned as follows:De�nition 12 (Timeout Value)A value x ∈ ZZ

+ assigned to eah open loation. Given a loation, thisvalue de�nes the amount of time that may elapse between the reeptionof two aepted pakets.With the de�nitions of the individual omponents in plae the �nal automa-ton, named the protool onformane automaton, an be formally de�ned.In De�nition 13 this formal de�nition an be seen:De�nition 13 (Protool Conformane Automaton)A protool onformane automaton (PCA) is a tuple (L, l0, tval, C, UT ,
IT , dc, grd, upd, pval) where:
L, is a �nite non-empty set of loations.
l0 ∈ L, is the losed loation that is used when no state information isstored.
tval : L \ {l0} → ZZ

+, is a funtion whih labels eah open loation witha timeout value.
C, is a lok.
UT ⊆ L× L \ {(l0, l0)}, is a set of update transitions.
IT ⊆ L× L, is a set of ignore transitions where for any two onnetedloations l, l′ ∈ L then l = l′.
dc : (UT ∪ IT ) \ {l0} × L→ D, is a funtion whih labels eah transi-tion not going from l0 with a diretion onstraint.
grd : UT ∪ IT → G, is a funtion whih assigns to eah transition anumber of guards of the type, and obeying the rules de�ned in Def-inition 8.
upd : UT → U, is a funtion whih assigns to eah update transition notgoing to l0 a number of updates.
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pval : UT ∪ IT → V, is a funtion whih assigns a property value to eahtransition.Having de�ned the environment and the syntax of the PCA, the semantisof this automaton an now be de�ned.3.1.3 Semantis of Protool Conformane AutomataThe semantis of the PCA, and thus the behavior of a PCS, is de�ned inthe form of a transition system (S, s0,→). In this system S is a set of stateswhere eah state is a triple (l, v, t) with l being a loation, v a valuation ofthe stored variables, and t a valuation of the lok. s0 is the initial state

(l0, v0, t0), where the lok and all stored variables are zero. Finally, → isthe transition relation de�ning how to move between the states. To apturethe di�erenes in the transitions inurred by the absene of diretions ontransitions emerging from the losed loation, and the absene of a timeoutvalue on the losed loation, the transition relation de�nes two di�erenttypes of update and ignore transitions. The open transitions are transitionsnot emerging from losed loation, whereas the losed transitions all emergefrom this loation. Spei�ally, the transition system underlying a PCA isde�ned as follows, where |= is a satisfation relation between a valuation ofpaket variables, stored variables, and the set of guards G:De�nition 14 (Transition System Underlying a PCA)The transition system assoiated with the protool onformane automa-ton A, denoted M(A) is de�ned as (S, s0,→) where:
S = {(l, v, t) ∈ (L \ {l0})× sv(SV )× v(C) | t ≤ tval(l)}

s0 = (l0, v0, t0) where t0 = 0 and v0(x) = 0 for all x ∈ SV

the transition relation →⊆ S×({uo, uc, io, ic}×V ∪{t}∪ZZ
+)×S is defined by the rules :1 „

update

open

« : (l,v,t) uo,α
−→ (l',v',0) if the following onditions hold:a. e = (l,l') ∈ UT and l 6= l0b. a paket p is reeived. pv(PV ,p), v |= grd(e)d. the return of the property value α ∈ V assoiated with thetransition e, will allow the paket to pass through the �rewalle. v′ is the valuation of SV after applying upd(e) to vf. t < tval(l)g. dir(p) = d(e)
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update

closed

« : (l0,v0,t0) uc,α
−→ (l',v',t') if the following onditions hold:a. (l0,l') ∈ UTb. rules 1.b, 1., 1.d and 1.e hold2 „

ignore

open

« : (l,v,t) io,α
−→ (l,v,t) if the following onditions hold:a. (l,l) ∈ IT and l 6= l0b. rules 1.b, 1., 1.d, 1.f, and 1.g hold2 „

ignore

closed

« : (l0,v0,t0) ic,α
−→ (l0,v0,t0) if the following onditions hold:a. (l0,l0) ∈ ITb. rules 1.b, 1., and 1.d hold3 (timeout): (l,v,t) t

−→ (l0,v0,t0) if the following onditions hold:a. l 6= l0b. t = tval(l)4 (delay): (l,v,t) d
−→ (l,v,t+d) for any positive integer d, if the followingonditions hold:a. l 6= l0b. t+d ≤ tval(l). no paket is reeived3.1.4 Depiting the Protool Conformane ModelFor depiting the protool onformane model we use the following onven-tions. With regards to the PCA, irles denote loations and timeout valuesare written inside these irles. Update transitions are represented usingarrows and ignore transitions are denoted using dotted arrows. The guardsand updates assoiated with the update transitions are written above or tothe right of the arrows where as diretion onstraints and property values arewritten below or to the left. Furthermore, the losed loation is depited us-ing a double lined irle. Finally, for the sake of larity the di�erent loationsare given a name whih is written inside the irle.An example of this graphial representation of the PCM an be seen inFigure 3.1. In this example a stream an get into loation A if a paket satis-fying guard1 is reeived, and no information about the stream of the paket isstored. From there two things an happen: either a paket satisfying guard2,

guard3, or guard4 and have the appropriate diretion is reeived within 60seonds, or else a timeout ours. In the former ase where a paket satis�es
guard2, the stream remains in loation A, the stored information is updatedaording to update2, and the lok is reset. In the ase where guard4 is sat-
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Stream Key

Ok

A
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New

Closing

diretion1

60
guard3

guard4

Closed
update2

guard2

guard1diretion2 diretion1Figure 3.1. Graphial representation of a PCS spei�ed in the PCM.is�ed, the stream enters the losed loation and all information about it isdeleted. Similarly, in the ase where guard3 is satis�ed by a paket travelingin direction1, the property value Invalid is returned and all information,inluding the lok, is left unhanged. Finally, in the latter ase where nopakets are reeived, the stream times out and e�etively enters the losedstate where the stored information as well as the lok is reset.Having de�ned the abstrat version of the underlying model it an nowbe speialized towards the towards the task of representing PCSs for TCPand UDP streams. Most notably, this means that abstrat onepts suh aspaket variables, stream key, and guards must be speialized so that theyrepresent what is needed by these protools.3.2 The TCP/UDP SpeializationThe parts of the PCM whih need to be speialized for it to be apable ofrepresenting PCSs for TCP and UDP streams are paket variables, streamkey, stored variables, diretion onstraints, guards, and updates. An exampleof the need for a speialization an be seen in the de�nition of guards. Inthe PCM a guard is de�ned merely as a onstraint over the set of stored andpaket variables. But what does this mean in terms of representing PCSs forTCP and UDP streams?. That is, what must be possible to use as guardswhen reating PCSs for these streams. As the answer to this question, alongwith similar questions for the other parts, depends on the protool beinginspeted, and on what the PCS is supposed to hek, this question hasno exat and �nal answer. In an attempt to overome this problem a widerange of existing PCSs for these protools have therefore been investigated.Using the knowledge gained from this investigation, the PCM has then be



The Underlying Model 32speialized to a point where it is su�iently onrete to be used a the basisfor the universal language, while at the same time still expressive enough torepresent the investigated PCSs. Through the examination of PCSs that areompliated and in widespread use, we thereby hope to be able to representmost, if not all, PCSs one may want to make.In the following setion the referene PCS used as a basis for the speial-ization will be brie�y desribed2. Following this desription we onlude onthe requirements of that PCS and formally de�ne the speialized model.3.2.1 The Referene Protool Conformane Spei�ationThe PCS used as a referene for what must be representable by the speial-ization is a PCS whih heks TCP streams for their orret use of �ags andsequene numbers[Roo℄. The reason for using this as the referene is that itappears to be the most omprehensive, while at the same time being one ofthe most widely used PCSs around3. The sequene number part essentiallyplaes an upper and a lower bound on the TCP_SEQ and TCP_ACKSEQ�elds. That is, the values of these �elds must always fall within the windowde�ned by these bounds.In an environment where pakets are sent between hosts A and B and the�rewall F is plaed in between, the referene PCS de�nes the upper boundon the TCP_SEQ �eld as follows:
TCP_SEQA + TCP_LENA ≤ max

{

TCP_ACKSEQB + max(TCP_WINSIZEB , 1)

} (3.1)where the notation XY denotes the value of the variable X in a paketsent by Y and seen by F . Using that notation the onstraint signi�es thatthe sum of the TCP_SEQ and TCP_LEN �elds in any paket sent by A,must never exeed the maximum value of the sum of the TCP_SEQ andTCP_ACK �elds from pakets sent by B and seen by F. Finally, the term
max(TCP_WINB, 1) denotes the maximum value of the two arguments andis used in the speial ase where the window of host B needs to be re-probedafter its annuniation of a zero sized window. In the same environment, andusing the same notation, the lower bound for the TCP_SEQ �eld is de�nedas follows:
TCP_SEQA + max

{

max(TCP_WINB, 1)

}

≥ max

{

TCP_SEQA + TCP_LENA

} (3.2)Similarly, with respet to the TCP_ACKSEQ �eld, the upper bound isde�ned as follows:
TCP_ACKSEQA ≤ max

{

TCP_SEQ + TCP_LEN

} (3.3)2Several other PCSs for both TCP and UDP streams have been investigated but nonebrought about any additional requirements.3Most open soure �rewalls (PF, Net�lter, IPFilter et.) implement it.



33 3.2 The TCP/UDP SpeializationFinally, the lower bound for the TCP_ACKSEQ �eld is de�ned as follows:
TCP_ACKSEQA + MAXACKWINDOW ≥ max

{

TCP_SEQB + TCP_LENB

} (3.4)where MAXACKWINDOW is as a user-de�ned onstant slightly larger thanthe largest possible TCP window size.To implement the 4 onstraint the referene PCS proposes to use 3 storedvariables for eah of the two hosts. These are: X.td_end, X.td_maxend,and X.td_maxwin where X denotes either of the two hosts. X.td_end isused to hold the maximum value of max{TCP_SEQX + TCP_LENX} asused in onstraints 3.2, 3.3, and 3.4 where asX.td_maxend holds the value of
TCP_ACKSEQX + max{TCP_WINX , 1} as used by onstraint 3.1. Fi-nally, X.td_maxwin is used to hold the value ofmax{max(TCP_WINX , 1)}.With regards to the �ag heking part of the PCS, it simply enfores the rulesde�ned in RFC793[Pos81b℄, and is therefore a superset of the PCS previouslyshown in Figure 2.3(b).3.2.2 The Speialized Protool Conformane ModelFrom the referene PCS several things beomes lear with regards to theabstrat onepts whih need to be speialized. First of all, it is lear thatthe set of paket variables should be de�ned as set of all �elds present inthe headers of the inspeted protools. The reason for this is obvious as allinformation used by these protools is present within the protool headers.Seondly, it should be noted that the TCP protool makes use of two types ofheader �elds - normal �elds (e.g. TCP_WIN and TCP_SYN) and sequenenumber �elds (TCP_SEQ and TCP_ACKSEQ). The normal �elds are nor-mal bounded variables where as the sequene number �elds are used for sim-ulating unbounded behavior in the otherwise bounded variables[EB96℄. Asthe semantis of sequene number arithmetis (as presribed by RFC1982)requires these two types to be kept separate, the PCMs de�nition of paketvariables an be speialized to the following:De�nition 15 (Paket Variables for TCP and UDP Streams)The set of paket variables PV for TCP and UDP streams is the setof �elds in the protool headers of the pakets of the type of stream forwhih the PCS was made. The set PV is divided into two subsets, PSVwhih is the set of sequene number �elds and PNV whih is the set ofnormal �elds. For these sets the following must hold: PSV ∪ PNV =

PV and PSV ∩ PNV = {∅}Conerning the speialization of the stream key, TCP and UDP relate paketsby mathing the ontents of a few prede�ned �elds. If two pakets share thesame ontent in these �elds they are said to belong to the same stream. To



The Underlying Model 34re�et this, the stream key for TCP and UDP streams is de�ned in terms ofa pair of tuples apable of holding these prede�ned �elds.De�nition 16 (Stream Key for TCP and UDP Streams)A pair of ordered n-tuples a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)over the set of paket variables PV. Two pakets p and p′ are on-sidered to belong to the same stream if either pv(ai, p) = pv(ai, p
′) ∧

pv(bi, p) = pv(bi, p
′) or pv(ai, p) = pv(bi, p

′) ∧ pv(bi, p) = pv(ai, p
′), for

i = 1, 2, . . . , n.With regards to stored variables the referene PCS stores either the valuesof the �elds, or the result of an expression over the set of paket and storedvariables. As a paket variable is now de�ned as a set of �elds and as a �eldis essentially a bounded variable over the domain ZZ
∗ with a lower bound 0,and an upper bound of 2#bits − 1, the de�nition of stored variables an bespeialized to the following:De�nition 17 (Stored Variables for TCP and UDP Streams)The set of stored variables SV for TCP and UDP streams is a set ofbounded variables over ZZ

∗. The set SV is divided into two subsets, where
SNV is the set of stored normal variables and SSV is the set of storedsequene number variables. Letting ub(a) denote the upper bound forthe variable a ∈ SNV ∪ SSV , then for any variable x ∈ SNV thefollowing must hold: ub(x) = 2i − 1 for i ∈ {1, 2, . . . , 32}. Similarly,for any variable y ∈ SSV the following must hold: ub(y) = 2i − 1 for
i ∈ {8, 16, 32}. Finally, for the sets SNV and SSV the following musthold: SSV ∪ SNV = SV and SSV ∩ SNV = {∅}With regards to the diretion onstraints for TCP and UDP streams thediretion of pakets in these streams are seen relative to the �rst paket ofthe stream to whih they belong. Furthermore, the diretion depends onthe values stored within the �elds making up the stream key. In tune withthe de�nition of the stream key for TCP and UDP streams, this type ofonstraint is therefore speialized to the following:De�nition 18 (Diretion Constraints for TCP and UDP Streams)Either original or return, the diretion of a TCP or UDP paket is seenrelative to the �rst paket of the stream. A reeived paket p is said tobe �owing in the original diretion if for the �rst paket of the stream
p′ the following holds with regards to the tuples a and b in the streamkey: pv(ai, p) = pv(ai, p

′) ∧ pv(bi, p) = pv(bi, p
′), for i = 1, 2, . . . , n.Similarly a paket is �owing in the return diretion if the followingholds: pv(ai, p) = pv(bi, p

′) ∧ pv(bi, p) = pv(ai, p
′), for i = 1, 2, . . . , n.



35 3.2 The TCP/UDP SpeializationIn the PCM the set of guards is de�ned as a set of onstraints over the set ofpaket variables and stored variables. With the speialization of these twosets this abstrat onept an be speialized as well.As explained in the desription of the referene PCS, this PCS spei-�es a window for the sequene numbers. It therefore uses guards that areboolean expressions over expressions on the members of the sets of paketvariables, stored variables, and positive integer onstants. Based on this,and RFC1982s de�nition of sequene number arithmetis, we speialize theset of guards to the following:De�nition 19 (Guards for TCP and UDP Streams)For the set NEXP of expressions over the sets PNV ∪SNV , and for theset SEXP of expressions over the sets PSV ∪SSV , the set of guards forTCP and UDP streams is de�ned aording to the following grammar:
G ::= G1 ∧G2 | a ∼ b | x ∼ y | truewhere a, b ∈ NEXP , x, y ∈ SEXP , and ∼∈ {<,≤, >,≥,=}where true represents the guard that is always true. Furthermore, with anoutset in the referene PCS, we de�ne the set NEXP to be the set of expres-sions over normal variables using the ommon operators. More spei�ally,we de�ne it as follows:De�nition 20 (Set of Expressions Over Normal Variables)The set NEXP of expressions over normal variables is de�ned aordingto the following grammar:
φ ::= d | a | b | (φ) | (z)(φ1 ∼ φ2)where d ∈ ZZ

+, z ∈ {1, 2, . . . , 32}, a ∈ SNV , b ∈ PNV, and
∼ ∈ {+,−, ∗, /, //}Important to notie from this de�nition is the struture of the expressionsover the basi elements, positive integer values, paket variables, and storedvariables. As an be seen, expressions are augmented with a bit value (z )speifying the size of the domain in whih the evaluation of the expression isto be made. This is espeially useful when operating with expressions overdi�erent sized variables. Later, in De�nition 22, the exat meaning of thisbit value will be de�ned.Finally, in terms of the set SEXP of expressions over sequene numbervariables we de�ne this in aordane with the rules of RFC1982:



The Underlying Model 36De�nition 21 (Set of Expressions Over Sequene Number Variables)The set SEXP of expressions over sequene number variables is de�nedaording to the following grammar:
φ ::= x | y | x + a | y + awhere x ∈ SSV, y ∈ PSV, and a ∈ NEXPWith regards to the semantis of these two sets, the natural semantis ofexpressions over normal variables is de�ned as follows:De�nition 22 (Evaluation of Expressions over Normal Variables)The natural semantis for the evaluation of expressions over normal vari-ables is de�ned as follows:

[num] s ⊢ d→a n where n = N JdK

[varsv] s ⊢ a→a n where n = sv(a)

[varpv] s ⊢ b→a n where n = pv(b, p) and p is the paket being inspeted
[parent] s⊢φ→av

s⊢(φ)→av

[add] s⊢φ1→av1 s⊢φ2→av2 ⊢z→av3

s⊢(z)(φ1+φ2)→av where v = (v1 + v2) mod 2v3

[mult] s⊢φ1→av1 s⊢φ2→av2 ⊢z→av3

s⊢(z)(φ1∗φ2)→av where v = (v1 ∗ v2) mod 2v3

[divf ] s⊢φ1→av1 s⊢φ2→av2 ⊢z→av3

s⊢(z)(φ1/φ2)→av where v = ⌊ v1

v2

⌋mod 2v3

[divc] s⊢φ1→av1 s⊢φ2→av2 ⊢z→av3

s⊢(z)(φ1//φ2)→av where v = ⌈ v1

v2

⌉ mod 2v3

[sub1]
s⊢φ1→av1 s⊢φ2→av2 ⊢z→av3 v1≥v2→gtt

s⊢(z)(φ1−φ2)→av where v = (v1− v2) mod 2v3

[sub2]
s⊢φ1→av1 s⊢φ2→av2 ⊢z→av3 v1≥v2→gff

s⊢(z)(φ1−φ2)→av where v = 2v3 − v2 + 2v1Similarly, based upon RFC1982 the semantis of sequene number expres-sions is de�ned as follows:De�nition 23 (Evaluation of Sequene Number Expressions)Letting size(a) denote the number of bits assigned to the variable a ∈
PSV ∪SSV , the natural semantis for the evaluation of sequene numberexpressions from the set SEXP is as follows:
[varsv] s ⊢ x→x n where n = sv(x)
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[varpv] s ⊢ y →x n where n = pv(y, p) and p is the paket being inspeted
[adds]

s⊢x→xv1 s⊢a→av2

s⊢x+a→xv where 2size(x)−1 > v2and v = (v1 + v2) mod 2size(x)

[addp]
s⊢y→xv1 s⊢a→av2

s⊢y+a→xv where 2size(y)−1 > v2and v = (v1 + v2) mod 2size(y)With the syntax and semantis of the elements making up a guard in plae,the semantis for the evaluation of guards is de�ned as follows:De�nition 24 (Evaluation of Guards for TCP and UDP Streams)Letting size(a) denote the number of bits assigned to the variable a ∈
PSV ∪SSV , the natural semantis for the evaluation of guards for TCPand UDP streams is as follows:
[andt]

s⊢G1→gtt s⊢G2→gtt
s⊢G1∧G2→gtt

[andf ]
s⊢Gi→gff

s⊢G1∧G2→gff where i ∈ {1, 2}

[gtnt]
s⊢a→av1 s⊢b→av2

s⊢a>b→gtt where v1 > v2

[gtnf ] s⊢a→av1 s⊢b→av2
s⊢a>b→gff where v1 ≤ v2

[eqnt]
s⊢a→av1 s⊢b→av2

s⊢a=b→gtt where v1 = v2

[eqnf ] s⊢a→av1 s⊢b→av2
s⊢a=b→gff where v1 6= v2

[gtst]
s⊢x→xv1 s⊢y→xv2

s⊢x>y→gtt where size(x) = size(y)and v1 < v2 ∧ v2 − v1 ≥ 2size(x)−1

∨
v1 > v2 ∧ v1 − v2 ≤ 2size(x)−1

[gtsf ] s⊢x→xv1 s⊢y→xv2

s⊢x>y→gff where size(x) = size(y)and ¬

 

v1 < v2 ∧ v2 − v1 ≥ 2size(x)−1

∨
v1 > v2 ∧ v1 − v2 ≤ 2size(x)−1

!

[eqst]
s⊢a→xv1 s⊢b→xv2

s⊢a=b→gtt where v1 = v2

[eqsf ] s⊢a→xv1 s⊢b→xv2
s⊢a=b→gff where v1 6= v2

[true] s ⊢ true→g tt



The Underlying Model 38Important to note from this de�nition is the slight di�erene in the seman-tis of the omparison of sequene number variables as opposed to whatis presribed by RFC1982. Where the RFC leaves it free for any imple-mentation to deide on the outome of omparisons between values where
x − y = 2size(x)−1, the above semantis de�nes suh omparisons to true.This alternate de�nition is needed as the original de�nition would introdueambiguity into the �nal model. The new de�nition has been hosen as itmathes the semantis of the implementation urrently used by both Linuxand OpenBSD.Finally, with regards to updates, building upon the separation of normal andsequene number variables, we speialize them to the following:De�nition 25 (Updates for TCP and UDP Streams)The set of updates U for TCP and UDP streams is de�ned as generatedby the following grammar:

U ::= a := b | x := y | U1U2where a ∈ SNV, b ∈ NEXP, x ∈ SSV, and y ∈ SEXPwhere their semantis is de�ned as follows:De�nition 26 (Evaluation of Updates for TCP and UDP Streams)The set of updates U for TCP and UDP streams is de�ned as generatedby the following grammar:
[assnorm] 〈a := b, s〉 → s[a 7→ v] where s ⊢ b→a v

[assseq] 〈x := y, s〉 → s[x 7→ v] where s ⊢ y →x v

[comp] 〈U1,s〉→s′′ 〈U2,s′′〉→s′

〈U1U2,s〉→s′This onludes the development of the model underlying the proposedsystem. With that in plae, the stream oriented and �rewall independentlanguage apable of representing the speialized model an now be devised.



Chapter 4The Protool OrientedLanguageHaving onluded on the requirements for the desription of PCSs for TCPand UDP streams, and having devised a model enapsulating those require-ments, the protool oriented language an now be reated. In the followingsetion that language, named PCSL for Protool Conformane Spei�ationLanguage, will be desribed.4.1 The PCSL LanguageThe PCSL language is a strongly typed, delarative language inspired bythe ta language[LPY97℄ used by the formal veri�ation tool UppAal todesribe an extended version of timed automata. This hapter will desribethe PCSL language through the use of a simple example. Inluded in thatexample will be a graphial illustration of a PCS and the orrespondingPCSL ode desribing it. From this example the abstrat syntax of thedi�erent onstruts in the language, and how they �t into the previouslydesribed model, will be desribed1. With regards to the formal semantisof the language we refer to the de�nition of the speialized PCM as thesemantis of all signi�ant onstruts are already de�ned there. As a resultthe language is merely a way of desribing these onstruts in a textualway, and formally de�ning the semantis of the omplete language wouldtherefore be super�uous. With that said, the graphial representation ofthe example PCS used throughout this hapter an be seen in Figure 4.1.Similarly, the orresponding PCSL ode used to desribe this PCS an beseen in Table 4.1. As an be seen from the �gure, this rather naive PCSis apable of deteting SYN �oods against a single non-existent host. Morespei�ally, if more than 50 SYN pakets are sent through the �rewall within1For a full listing of the onrete and abstrat syntax of the PCSL language as well asa formal desription of its type system, see Appendix B.
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Figure 4.1. The PCS generated by the PCSL spei�ation in Table 4.1.1 defpropvalue Invalid;23 paketnorm IP_SRC 32;4 paketnorm IP_DST 32;5 paketnorm TCP_SRCPORT 16;6 paketnorm TCP_DSTPORT 16;7 paketnorm TCP_SYN 1;89 storednorm paketount 6;1011 keyitem IP_SRC , IP_DST;12 keyitem TCP_SRCPORT , TCP_DSTPORT;1314 loation Closed;15 oloation A 60;1617 utrans Closed -> A {18 guard TCP_SYN == 1;19 update paketount := 1;20 propvalue New;21 }2223 utrans A -> A {24 diretion original;

25 guard TCP_SYN == 1,26 paketount < 50;27 update paketount := (6)(paketount + 1);28 propvalue Ok;29 }3031 itrans A -> A {32 diretion original;33 guard TCP_SYN == 0;34 propvalue NotSyn;35 }3637 utrans A -> Closed {38 diretion return;39 propvalue Closing;40 }4142 utrans A -> Closed {43 diretion original;44 guard TCP_SYN == 1,45 paketount >= 50;46 propvalue Flood;47 }Table 4.1. The PCSL ode generating the PCS shown in Figure 4.1.a timeframe of 60 seonds, and no return paket is reeived, the propertyvalue Flood is returned to the �rewall ore. If on the other hand a reply toone of the pakets is reeived, the Closing value is returned and the trakingof the stream is terminated.4.1.1 The Overall Struture of the PCSL LanguageAs an be seen from the syntax in Table 4.2 a PCSL spei�ation onsistsof 5 basi parts. These are, default property value delaration, variable de-larations, stream key delaration, loation delarations, and transition dela-



41 4.1 The PCSL Languagerations.1. Syntati ategories
PCS ∈ Protocol Conformance Specifications

DD ∈ Default property value declaration

V D ∈ V ariable declarations

SD ∈ Stream key declaration

LD ∈ Location declarations

TD ∈ Transition declarations2. De�nitions
PCS ::= DD V D SD LD TDTable 4.2. The 5 parts of any PCSL spei�ation.In the following setions, with an outset in the example, the purpose andsyntax of eah part is desribed.4.1.2 Default Property Value DelarationThe �rst part of any PCSL spei�ation (line 1 in Table 4.1) is a onstrutused to simplify the ode needed to desribe a spei�ation. As desribedin the previous hapter, for a PCS to be legal, it must ontain an enabledtransition for every possible paket to whih it may be presented. This way,no matter whih paket is reeived by the �rewall, the SI system will alwaysbe able to take a transition and thereby return a result. To ease the taskof adding these transitions the default property value has been introdued.Instead of adding a lot of ignore transition overing all the pakets thatare to be ignored by the �rewall, this default value an be used to speifywhih value must be returned when no transition is enabled. This way,the developer is left with delaring the transitions for the speial ases andan leave the rest to the default value. An example of the bene�ts of thisonstrut an be seen in the example PCS (Figure 4.1) where the ignoretransition emerging from the Closed loation is not expliitly delared inthe PCSL ode. Instead, it is merely a result of the default property valuebeing Invalid. This way, the delaration of a lot of trivial transitions an beomitted. The syntax for the spei�ation of the default property value anbe seen in Table 4.3.4.1.3 Variable DelarationsThe next part in a PCSL spei�ation is the delaration of the variablesused throughout the PCS. In the example ode this part spans the linesfrom 3 to 9, and as an be seen from the syntax depited in Table 4.4, avariable delaration onsists of 3 parts. The �rst part is the variable type
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DD ∈ Default property value declarations

p ∈ Property values2. De�nitions
DD ::= defpropvalue p;Table 4.3. Abstrat syntax for the delaration of the default property value.1. Syntati ategories
V D ∈ V ariable declarations

sn ∈ Stored normal variables

ss ∈ Stored sequence number variables

pn ∈ Packet normal fields

ps ∈ Packet Sequence number fields

n ∈ Numerals2. De�nitions
V D ::= storednorm sn n; | storedseq ss n; | paketnorm pn n;

| paketseq ps n; | V D1 V D2Table 4.4. Syntax for variable delarations.where the name of eah type should speak for itself. The seond part is thename of the variable. For stored variables the name is, as in other languages,simply a way of identifying the variable for use later in the ode. For paketvariables on the other hand it ats as an interfae to the �elds in the inspetedpakets. In Appendix A the name-to-�eld mapping table used by the systeman seen. As an example of this system, when naming a paket variableTCP_SYN, it means that this variable must always ontain the value of theSYN �eld in the reeived TCP pakets. This way, all information storedin the headers of the paket an be aessed using the appropriate variablenames. The �nal part of the delaration is the number of bits assigned tohold the variable. As de�ned in the speialized PCM (De�nition 15), allvariables are bounded variables over Z∗ with a lower bound of 0. The upperbound however varies from variable to variable and therefore needs to bedelared. An example of suh a delaration an be seen in line 5 where thepaket variable TCP_SRCPORT has been delared with an upper bound of65535.4.1.4 Stream Key DelarationThe next part, whih overs lines 11 and 12, is the delaration of the streamkey. The syntax for this part an be seen in Table 4.5. As desribed in



43 4.1 The PCSL Language1. Syntati ategories
SD ∈ Stream key declaration

pn ∈ Packet normal fields

ps ∈ Packet sequence number fields

V LIST ∈ V ariable lists2. De�nitions
SD ::= keypair V LIST ; | SD1 SD2

V LIST ::= pn , pn | ps , psTable 4.5. Syntax for stream key delarations.the model (De�nition 16) the stream key is made up of two tuples of paketvariables. As also desribed in that de�nition, every member in eah tupleis paired with a member in the other tuple, and depending upon how theontents of these pairings math up, the diretion of the paket relativeto the stream an be determined. In PCSL these two tuples and pairingsare spei�ed using the keypair onstrut whih is made up of two ommaseparated parts. In this respet the �rst part spei�es a member in tuple A,whereas the seond part spei�es its orresponding pairing in tuple B. Usingthis syntax it is thereby always assured that the tuples are of the same size,while at the same time assuring for the easy spei�ation of e.g. the twosoket pairs used by TCP/IP streams.4.1.5 Loation DelarationsThe fourth part is the delaration of loations. In the example PCS this partovers lines 14 and 15 and its syntax an be seen in Table 4.6. As an be1. Syntati ategories
LD ∈ location declarations

cl ∈ Closed locations

ol ∈ Open locations

n ∈ Numerals

CLD ∈ Closed location declarations

OLD ∈ Open location declarations2. De�nitions
LD ::= CLD; OLD;
CLD ::= loation cl
OLD ::= oloation ol n | OLD1 ; OLD2Table 4.6. Syntax for loation delarations.



The Protool Oriented Language 44seen from that syntax this part is itself split into separate 2 parts. The �rstpart is for the delaration of the losed loation and onsists of the reservedword loation and a name for that loation. The seond part is a sequene ofdelarations of open loations with eah delaration onsisting of the reservedword oloation along with a loation name and a timeout value. The timeoutvalue orresponds to the timeout value in the PCM and desribes how manyseonds may pass before a timeout ours. In the example 2 loations aredelared. The losed loation is named Closed, where as the open loationis named A. Finally, the timeout value for the open loation is 60 seonds.4.1.6 Transition DelarationsThe �nal and most dominating part is the spei�ation of the transitions.This part spans from line 17 onto the end of the example and its syntax anbe seen in Table 4.7.1. Syntati ategories
TD ∈ Transition declarations
pn ∈ Packet normal fields
ps ∈ Packet sequence number fields
sn ∈ Stored normal variables
ss ∈ Stored sequence number variables
cl ∈ Closed locations
ol ∈ Open locations
n ∈ Numerals
p ∈ Property values
D ∈ Directions
GD ∈ Guard declarations
G ∈ Guards
UD ∈ Update declarations
U ∈ Updates
PD ∈ Property value declatations
NEXP ∈ Normal expressions
SEXP ∈ Sequence number expressions
BOP ∈ Boolean operators
AOP ∈ Arithmetic operators2. De�nitions
TD ::= itrans cl -> cl {GD PD}

| itrans ol -> ol {D GD PD}
| utrans cl -> ol {GD UD PD}
| utrans ol -> ol {D GD UD PD}ontinued on the next page



45 4.1 The PCSL Languageontinued from the previous page
| utrans ol -> cl {D GD PD}
| TD1 TD2

D ::= diretion original; | diretion return;
PD ::= propvalue p;
GD ::= guard G; | ǫ
G ::= NEXP BOP NEXP | SEXP BOP SEXP | G1 , G2

NEXP ::= n | sn | pn | (n)(NEXP AOP NEXP ) | (NEXP )
BOP ::= < | > | <= | >= | ==
SEXP ::= ps + NEXP | ss + NEXP
AOP ::= + | - | * | / | //
UD ::= update U ; | ǫ
U ::= sn := NEXP | ss :=SEXP | U1 , U2Table 4.7. Syntax for transition delarations.As an be seen from this syntax the delaration of transitions is fairly straightforward and built around the grammar de�ned in the previous hapter. Intune with the de�nitions of the model two types of transitions exists, updateand ignore. To re�et this, every delaration begins with one of the reservedwords, utrans or itrans, signifying the type of the transition. Following thisreserved word are the names of the loations that are to be onneted anda blok of delarations assigning onstraints, updates, and a property valueto the transition. Furthermore, as an be seen from the example the syntaxof the guards and updates is equal to that of the model, with the exeptionof the true guard being left out and represented by leaving out the guarddelaration. Finally, to ensure that no two transitions have overlappingonstraints, and thereby ensuring that the rules de�ned in relation to guardsin the underlying model are upheld, preedene is given to the transitionsin the order they are delared. Spei�ally, this means that in the eventthat the reeption of a paket auses two transitions to be enabled, the topmost transition as delared in the PCSL ode is hosen. While it is possibleto expliitly hek that no transitions are overlapping it is an NP-ompleteproblem and this simple approah of giving preedene is therefore usedinstead.This onludes the desription of the language apable of representingthe funtionality of the speialized protool onformane model. In the nexthapter the intermediate representation apable of storing, optimizing, ando�ering the PCS to the output generators, will be desribed.
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Chapter 5The IntermediateRepresentationAs desribed in Chapter 2 the role of the intermediate representation is two-fold. First of all it is the plae in whih �rewall independent optimizations areperformed, and seondly, it is in harge of providing the output generatorswith an easy-to-use interfae (the output generator API), giving them aessto the PCSs. In the �rst two setions we analyze what is required from theintermediate representation to represent PCSL spei�ations, and desribehow the urrent implementation of the system meets those requirements.With that in plae, Setion 5.3 gives a brief introdution to the interfaeurrently o�ered to the output generators1.5.1 Requirements to the Intermediate Representa-tionAs should be lear from the previous hapters the transitions are the or-nerstones of any PCS. The property value to be returned, the updates tobe applied, and the new state of the stream, are all fators determined bythe transitions. Beause of this, the intermediate representation, and henethe requirements to it, an be split into two parts - the requirements to therepresentation of transitions and the requirements to the representation ofeverything else. With regards to the transitions the intermediate represen-tation should meet the following requirements:Should make it easy to �nd the enabled transition: A major part inperforming SI is the task of determining whih transition is enabled bya given paket. To make it easier for the output generators to reatean output apable of doing this, the information provided through1For a omplete desription of the output generator API see the doumentation a-ompanying the urrent implementation.



The Intermediate Representation 48the output generator API should be strutured in a way that easilyaommodates this task. As a result, to ease the implementation ofthis API, the intermediate representation should store the informationregarding the onstraints on the transitions, in a way that eases this.Should redue the amount of guard heks needed: This requirementrelates to the fat that the intermediate representation is the plaewhere �rewall independent optimizations are performed. As an exten-sion to the last requirement the task of �nding the enabled transitionshould therefore be made as e�ient as possible. From a �rewall inde-pendent point of view, e�ieny is mainly in�uened by the number ofguards whih needs to be heked before the right transition is found.As a result, the intermediate representation should optimize the PCSto minimize this number of guard heks.Should retain the C like syntax used for guards and updates: This�nal requirement relates to how the individual piees of information inthe transitions must be represented. As the vast majority of urrent�rewalls are implemented in C and most output generators thereforeare likely to generate C ode, the struture of the information givento them by the output generator API should ease the generation of Code. Consequently, the intermediate representation should retain theC-like syntax of the guards and updates in the PCSL language andrefrain from ompiling them into another syntax.Finally, onerning the representation of the rest of the PCS only onerequirement exist. As most output generators must generate C ode, theoutput generator API should be geared towards supporting this. To easethe task of implementing that API the intermediate representation shouldtherefore store this part of the PCS in a way that simpli�es this.5.2 The Current Intermediate RepresentationThe intermediate representation urrently used in the retargetable PCS re-ation system is fairly simple. The reason for this being that this versionof the implementation serves mainly as a test and development platformfor the retargetable onept. In terms of the intermediate representation,fous has therefore been put on meeting the requirements onerning theease of �nding the enabled transition and reating a stable output generatorAPI. Beause of this, the desription provided in this report regarding thestruture of the intermediate representation is rather brief.



49 5.2 The Current Intermediate Representation5.2.1 Representing TransitionsCurrently transitions are represented using deision diagrams (one for eahloation and diretion) in whih the guards assoiated with the di�erenttransitions are enoded. In Figure 5.1 examples of these diagrams, along withthe ode for the transitions they represent, an be seen. The advantages of1 defpropvalue Invalid;2 ...snip...34 utrans X -> Y {5 diretion original;6 guard x==y, z<4;7 update x:=(4)(x+y);8 propvalue Flood;9 }
10 itrans X -> Y {11 diretion original;12 guard z==10;13 propvalue Flood;14 }1516 utrans X -> Y {17 diretion return;18 guard x>y, z<=10;

19 propvalue Ok;20 }2122 utrans X -> Y {23 diretion return;24 guard x>y, z>8;25 update x:=z;26 propvalue Ok;27 }(a) The PCSL ode generating the PCS shown in Figure 4.1.
ZZ

X=Y

Invalid
ignore

[11,15]

[0,9]

[10]
[0,3]

true false

update
x:=(4)(x+y)
location=y

Ok Flood
ignore

[4,9]

[11,15]

[10]

(b) The deision diagram representingthe original transitions in Figure 5.1a.
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() The deision diagram representingthe return transitions in Figure 5.1a.Figure 5.1. A partial PCSL spei�ation and the deision diagrams representing its transitions.using deision diagrams are many. First of all they ease the task of pikingthe right transition as this beomes merely a matter of traversing a tree.Seondly, as the terminals an hold all the information assoiated with thetransition they represent, generating ode for piking the right transitionsbeomes omparatively simple. As a result, this task amounts to nothingmore than traversing the diagram and generating onditional statements foreah node. Upon arriving at a terminal the ations assoiated with that nodean be performed and the paket has then been inspeted. Using deisiondiagrams therefore enables the intermediate representation to meet the �rstrequirement desribed in the previous setion. Another reason for usingdeision diagrams is to be found in the way they ease the task of optimizingthe PCS as presribed by requirement 2. As all transitions appliant toa single paket are enoded in the same diagram, minimizing the numberof guard heks amounts to nothing more than reduing the diagram thus



The Intermediate Representation 50potentially reduing its height2.5.2.1.1 The Deision DiagramFor the purpose of representing the transitions of the PCSL language a newtype of deision diagram had to be reated. The reason for this being thatnone of the investigated diagrams ould properly handle the potentially over-lapping transitions of the PCSL language, while at the same time allowingfor the use of (boolean) expressions over variables as the test assoiated witheah non-terminal. The result was a new type of diagram whih, as shouldbe lear from Figure 5.1, lends its basi struture from the intermediate rep-resentation of BPF+[ABG99℄ and its nodes from that of BDDs[FMY97℄ andIDDs[ST98℄. The diagram has two distinguishing features. First of all thetests assoiated with its non-terminals are apable of mirroring the guards ofthe speialized PCM. This way it meets the aforementioned requirement ofbeing able to retain the syntax of the guards of the PCSL language. Seondly,it inorporates the priorization of transitions de�ned in PCSL. This allowsfor the onstrution of the diagram without having to go through the ostlyproess of identifying and altering any overlapping guards. The result is thatthe time omplexity of the onstrution proess is linear to the number ofguard elements being enoded, thus allowing for the fast transformation ofPCSs from PCSL ode to the �nal output3.Construting the DiagramThe onstrution of the diagram is a two phase proess. In the �rst phase anintermediate boolean diagram for the guards of eah transition to be inludedin the �nal diagram is reated. These diagrams are onstruted using thereursive CreateID algorithm outlined in Algorithm 3, and examples of thesediagrams an be seen in Figure 5.2. This onstrution algorithm, whihtakes as input a list of the guard elements to be represented and returns theorresponding boolean diagram, has three parts. If the input list is empty,all non-terminal nodes have been reated and the �true� terminal is returned.If it is not empty, two things an happen depending on the guard elementat the head of the input list. Either the element is a boolean omparison oftwo variables (or expressions ontaining variables) in whih ase a booleannode with the partitions �true� and �false� is reated. On the other hand, ifthe list head ontains a omparison of a variable/expression and an integer2Due to the experimental status of the implementation only a very limited amount ofoptimization is performed on the diagrams. Well known prediate elimination tehniquessimilar to those desribed in [ABG99℄ ould however be applied.3It should be noted that the urrent diagram is very limited in the logi it is ableto represent, but that it is perfetly apable of representing that of the guards in thespeialized model.



51 5.2 The Current Intermediate Representation

FalseTrue

Z

X==Y

[0,3] [4,15]

falsetrue

(a) Intermediate dia-gram for the guardx==y, z<4. TrueFalse

Z

[11,15]

[10][0,9]

(b) Intermediate dia-gram for the guardz==10.Figure 5.2. The intermediate boolean diagrams for the diagram depited in Figure 5.1b.Algorithm 3: Outline of the CreateID algorithmData : list of guard elementsResult: diagram for guard element listif empty list thenreturn �true� terminal ;if list head ontains omparison of two variables thennode ← boolean node;hild(node, �true�) = CreateID(onseutive list elements);hild(node, �false�) = �false� terminal;elsenode ← valuation node;hild(node, satis�ed interval) = CreateID(onseutive list elements);foreah unsatis�ed interval i dohild(node, i) = �false� terminal;return node;onstant, a valuation node with the orresponding intervals as partitions isreated.Upon ompleting the �rst phase the di�erent intermediate diagrams needto be merged. This is done using the Append algorithm outlined in Algo-rithm 4. This algorithm takes as input two diagrams (A and B) andmerges them, so that in ases of overlaps, the transition(s) of diagram A are



The Intermediate Representation 52Algorithm 4: Outline of the Append algorithmData : diagram A, diagram BResult: new diagramif A is a �false� terminal thenreturn B ;if A is a �true� terminal thenreturn A;if A=B thenMutually deompose A and B into their greatest ommon intervals;foreah resulting interval i dohild(A,i) = Append(hild(A,i), hild(B,i));elseforeah interval i of A dohild(A,i) = Append(hild(A,i), B);return A;preferred. It ensures this property by only attahing the B diagram (or partsof it) to the intervals pointing to the �false� terminals in the A diagram. Thisway, only if the transitions represented by the �rst diagram are unsatis�able,will the transition of the next diagram be onsidered. An example of thisan be seen in Figure 5.1b where diagram B has replaed the �false� terminalpointed to by the X == Y node in diagram A. By merging the diagrams inthe order of their priority in the PCSL spei�ation the �nal diagram antherefore be reated.Having desribed how the urrent implementation internally representthe important parts of the PCS, the next setion provides a desription ofthe output generator API o�ered by the intermediate representation.5.3 The Output Generator APIThe output generator API is a C interfae ontaining 33 funtions split into5 groups, with eah group making available di�erent parts of the PCS. Inthis setion the basi priniples behind these groups along with the funtionsthey enompass are desribed4.5.3.1 The Initialization GroupThe initialization group ontains only one funtion.4For a omplete desription of the output generator API see the eletroni doumen-tation aompanying the urrent implementation.



53 5.3 The Output Generator APIrpshandler *proSpe(har *ps)It takes as input a PCS written in the PCSL language, proesses it, andreturns to the aller a rpshandler to an instane of the intermediate repre-sentation reated for that PCS. With an instane of the intermediate repre-sentation in plae, it is then the purpose of the funtions in the rest of API,to give aess to the information stored within that instane.5.3.2 The Variable GroupThe variable group ontains the funtions needed to obtain informationabout the variables delared in the PCS. They are as follows:int getNumVars(rpshandler *handler)varType getVarType(rpshandler *handler, int varId)int getVarSize(rpshandler *handler, int varId)har *getVarName(rpshandler *handler, int varId)Common for all of them is that they as their �rst parameter take a rp-shandler as returned by procSpec(). Seondly, eah individual variable isindexed and aessed using its own unique varId taken from the pool of in-tegers between 0 and getNumV ars()− 1. Using this funtion, all variablesan therefore be identi�ed and information suh as type (eg. paketnorm),
varsize (the number of bits assigned to the variable), and name an bedetermined.5.3.3 The Stream Key GroupAs the name suggests the stream key group is home to the funtions needed toobtain information about the stream key de�ned in the PCS. The funtionsin this group are as follows:int getNumKeyPairs(rpshandler *handler)har *getPairVariable(rpshandler *handler, int pairId, pEl mode)As was the ase with the variables, eah keypair is aessed using its ownunique Id. Using these Ids, the getPairV ariable() an be used to obtain thenames of the variables used in the di�erent keypairs by speifying the modeparameter (either TUPLE_A or TUPLE_B) whih desribes whih part ofthe keypair that should be returned.5.3.4 The Loation GroupThe fourth group is the loation group. This group enompasses all thefuntions needed to obtain information about the loations delared in thePCS. The funtions ontained within this group are as follows:



The Intermediate Representation 54int getNumLoations(rpshandler *handler)loType getLoType(rpshandler *handler, int loId)har *getLoName(rpshandler *handler, int loId)int getTimeout(rpshandler *handler, int loId)The funtions in the loation group are oneptually very similar to thosefound in the variable and key groups. As was the ase with variables andkeys, the individual loations are indexed and aessed using their ownunique Id's, and using the di�erent funtions in the group, information suhas type (open or losed), timeout value, and �nally the name of the loation,an be obtained.5.3.5 The Transition GroupThe last and largest group is the transition group. This group is itself splitinto 3 subgroups. The funtions in the �rst subgroup are used to get holdof the di�erent deision diagrams reated from the transitions in the PCS.They are as follows:dd *getClosed(rpshandler *handler)dd *getOpen(rpshandler *handler, int loId, diretions dir)As no diretion onstraints are assoiated with transitions emerging fromthe losed loation, the getClosed() funtion takes as its only input therpshandler representing the PCS in question. getOpen(), on the other hand,takes as input also a loation Id along with a diretion, and returns theorresponding deision diagram as desribed in Setion 5.2.1.The seond subgroup holds the funtions needed to traverse the transitiondeision diagrams returned by the above funtions. They are as follows:nType getNodeType(rpshandler *handler, dd *ddNode)uint getNumPartitions(rpshandler *handler, dd *ddNode)uint getLBound(rpshandler *handler, dd *ddNode, uint partId)uint getUBound(rpshandler *handler, dd *ddNode, uint partId)dd getNextNode(rpshandler *handler, dd *ddNode, uint partId)apTree *getGuardAPTree(rpshandler *handler, dd *ddNode)gType getGuardType(rpshandler *handler, apTree *aptNode)To traverse the diagram 5 di�erent funtions are available. getNodeType()is used to determine the type of a node in the diagram (non-terminal orterminal) and similarly getNumPartitions() returns the number of assoi-ated partitions. As with the previous groups the unique partIds an thenbe used to obtain the upper and lower bound of the partitions using thegetLBound() and getUBound(). Finally, an abstrat parse tree enoding thetest assoiated with a given node an be obtained using the getGuardAP-Tree() funtion. Furthermore, to obtain the type of the guard representedby that tree (boolean or expression), and thereby determine whether the



55 5.3 The Output Generator APInode storing it in the deision diagram is a boolean or expressional node,getGuardType() an be used. Finally, to traverse the abstrat parse tree, thefollowing 4 funtions are available and the spei�s to how they orrespondto the di�erent onstruts of the language an be found in the eletronidoumentation aompanying the urrent implementation:apTree *getTokenName(apTree *aptNode)apTree *getFirstChild(apTree *aptNode)apTree *getSeondChild(apTree *aptNode)apTree *getThirdChild(apTree *aptNode)As should be lear from the name getTokenName is used to get the name of anode in the abstrat parse tree. Depending on the outome of this funtion anumber of hildren are assigned to the node thereby making up the strutureof the tree. These hildren an subsequently be obtained through the use ofthe 3 get*Child funtion.The third and last subgroup ontain the funtions needed to obtain theinformation stored in the terminals of the deision diagram. They are asfollows:tType *getTransType(rpshandler *handler, dd *ddTerminal)int getNumUpds(rpshandler *handler, dd *ddTerminal)int getUpdVar(rpshandler *handler, dd *ddTerminal, int updId)apTree *getUpdAPTree(rpshandler *handler, dd *ddTerminal, int updId)int getNewLo(rpshandler *handler, dd *ddTerminal)har *getPropValue(rpshandler *handler, dd *ddTerminal)From their names the purpose of eah of these funtions should be lear. Aspreviously desribed, assoiated with eah terminal is a number of updates(possible 0). Using the three funtions getNumUpds(), getUpdVar(), andgetUpdAPTree() these updates an be obtained in a way similar to what wasthe ase with guards in the previous subsetion. Finally, the getTransType(),getNewLo(), and getPropValue() funtions an be used to get the type ofthe transition (ignore or update), the loation to whih the transition points,and �nally the property value assoiated with the transition in question.This onludes the desription of the requirements to the intermediatedesription, the intermediate representation used by the urrent implemen-tation of the retargetable PCS system, and the output generator API. Inthe next hapter, an example as to how to use this API to reate a simpleoutput generator for the Net�lter �rewall will be given.
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Chapter 6Output GenerationThis hapter desribes the output generation phase of the proposed system.As desribed in Setion 2.5.2 this is the phase where the PCS, obtained fromthe intermediate representation, is transformed into something usable by apartiular �rewall. Obviously, as what is usable by one �rewall is most likelyuseless to everything else, the development of these generators is left entirelyto the �rewall developers wanting to use the system. However, to give thereader a feel for the proess involved in making suh a generator, this hapterdesribes the design and implementation of a sample output generator fora slightly modi�ed version Net�lter1. In Setion 6.1 a brief introdutionto the SI part of this �rewall is given thus making it lear what needs tobe produed by the generator. With that in plae, Setion 6.2 provides adesription of the atual generator.6.1 Adding Protool Conformane Spei�ations toNet�lterAs desribed in Setion 2.4.2 Net�lter is an open-soure �rewall where a lot ofinfrastruture has been added to ease the development of new funtionality.Due to this added infrastruture, adding an additional PCS to the �rewallamounts to implementing a C interfae of 6 funtions and reating a tableentry strut speifying the variables to be stored in the state table.As desribed in Setion 2.2.2 table based SI works by storing the stateinformation in a table. Whenever a paket is reeived, a lookup is performedto determine whether information is stored about the stream of the paket.If a mathing entry is found the information stored in this entry is used in theinspetion of the paket. If not, the paket is heked against the transitions1Currently SI does not distinguish between the pakets that are to be bloked andthose that are to be aepted. As a result the state table is updated regardless of thefuture of the paket. To irumvent this, a few minor alterations have been made to thestandard �rewall, thus in e�et, easing the development of the generator.



Output Generation 58emerging from the losed state of the PCS. In Net�lter this inspetion proessis arried out using a number of funtions, eah with their own well de�nedarea of responsibility. By implementing these funtions a new PCS antherefore be added to the �rewall. More spei�ally, the proess that theSI subsystem goes through whenever a paket is reeived an be seen inAlgorithms 5 and 6, where the funtions to be implemented for eah PCSare written in itali. In Net�lter the InspetPaket funtion listed inAlgorithm 5: Outline of the Net�lter InspectPacket funtionData : paket to be inspetedentry ← LookupStreamInTable(paket);if entry found then
packet(entry, packet, direction);elseentry ← reate empty entry;
pkt_to_tuple(buffer, entry);
invert_tuple(buffer, entry);
new(entry, packet);Algorithm 5 is used to perform the atual inspetion. Depending on whetherthe paket is eventually aepted or dropped it is then the responsibility ofthe Commit funtion listed in Algorithm 6 to apply the updates to the statetable2.Algorithm 6: Outline of the Net�lter Commit funtionData : paket to be inspetedif paket is to be aepted thenif paket->delete thenDeleteEntryFromTable(paket);elsetableEntryForPaket=paket->updatedEntry;As an be seen from the InspetPaket funtion the �rst funtion to beused is the paket funtion whih has the following prototype:int paket(strut ip_onntrak *t, strut iphdr *iph, size_t len,enum ip_onntrak_info tinfo)2The introdution of the Commit funtion is one of the modi�ations made to thestandard �rewall.



59 6.1 Adding Protool Conformane Spei�ations to Net�lterThis funtion is alled whenever a paket for whose stream, an entry in thestate table exists. With the entry, paket, and the diretion as parameters,it is the job of this funtion to perform the atual inspetion. To make itpossible to delay the atual updating of the state table until it has beendetermined whether the paket is to be aepted or not, the updates arewritten into a temporary table entry strut attahed to the paket alongwith the property value of the satis�ed transition. Just before the paketis either aepted or dropped the updates an then be applied using theCommit funtion.Next, is the pkt_to_tuple funtion:int pkt_to_tuple(onst void *datah, size_t datalen,strut ip_onntrak_tuple *tuple)As an be seen from the listing this funtion is alled after an empty ta-ble entry has been reated. Given the paket and the new entry it is theresponsibility of this funtion to extrat from the paket, the values of thevariables making up the stream key, and write them in the new entry. Whenperforming lookups in the table the values of these stored variables an thenbe used to identify the appropriate entry.The third funtion in the interfae is invert_tuple:int invert_tuple(strut ip_onntrak_tuple *tuple,onst strut ip_onntrak_tuple *orig)The purpose of this funtion is very similar to that of pkt_to_tuple. Aswith that funtion, invert_tuple is used to �ll the �elds used to store thestream key. However, where the previous funtion simply extrated thevalues from the paket, this funtion stores an inverted version of thosevariables suh that they re�et how they would look had the paket been�owing in the return diretion. This way, the diretion of a reeived paketan be determined simply by heking whih version of the stream key ismathed by the paket.The fourth and �nal funtion used by InspetPaket is the new funtion.Its prototype looks as follows:int new(strut ip_onntrak *onntrak, strut iphdr *iph,size_t len)As with the paket funtion this funtion is responsible for performing theatual inspetion. However, as an be seen from InspetPaket this funtionis alled upon the reeption of the �rst paket in a stream. Apart from this,the responsibilities of paket and new are the same.In addition to the 4 funtions used by InspetPaket, two seondary fun-tions used to print the ontent of the state table entry must also be imple-mented. The prototype of the �rst funtion is as follows:



Output Generation 60unsigned int print_tuple(har *buffer,strut ip_onntrak_tuple *tuple)The purpose of this funtion is to print the ontents of the stream key intothe bu�er provided in the parameter list. This bu�er is then used to providethe user with information about the streams �owing aross the �rewall.The last funtion is the print_onntrak funtion:unsigned int print_onntrak(har *buffer,strut ip_onntrak *onntrak)Similar to print_tuple this funtion is responsible for printing informationabout the values stored in the state table entry to the given bu�er. However,ontrary to that funtion print_onntrak is responsible for printing thevalues of any additional variables not already overed by print_tuple.The last piee of the interfae to be implemented is the table entry strut.As previously desribed this strut delares the variables that are to be storedwithin eah entry in the state table. It is to instantiations of this strutupdates are made using the paket and new funtions.6.2 The Net�lter Output GeneratorHaving identi�ed the interfae whih needs to be implemented the outputgenerator an now be reated. As this generator is responsible for mappingthe di�erent onstruts of the protool onformane model to the operationsof Net�lter using the above mentioned interfae, the output generator willbe desribed in that order.6.2.1 Stored VariablesThe ode for generating the table entry strut, thereby mapping the storedvariables of the PCM to a PCS in Net�lter �rewall, is fairly straight forward.An outline of the ode apable of generating this strut an be seen in Algo-rithm 7 3. As an be seen from this outline a variable is simply delared foreah stored variable in the PCS. To ahieve the bounded behavior de�ned forvariables in the model, eah variable is delared to the exat size spei�ed inthe PCS. As a result the normal integer primitives are used for variables ofsize 8,16, and 32 whereas bit-�elds are used for everything else. Finally, asan be seen from the last line of the outline an additional integer is delaredto be used for storing the loation Id. This variable an then be used by thenew and paket funtions to trak the loation of the stream.3The handler parameter in the output generator API alls has been left out for brevity.



61 6.2 The Net�lter Output GeneratorAlgorithm 7: Outline of the generate_entry_struct funtionforeah stored variable varId doif getVarSize(varId) != 8,16 or 32 thendelare bit-�eld of size getV arSize(varId)elsedelare unsigned int of size getV arSize(varId)delare loation variable integer6.2.2 Stream KeyAs previously desribed the ode for implementing the stream key in Net�lteris split over two funtions, pkt_to_tuple and invert_paket. As the urrentsystem, and Net�lter on the transport layer level, urrently only supportsstreams utilizing the TCP and UDP protools, and as the stream keys forthese protools are always the same, the ode for generating these funtionsis trivial. An outline of this ode is shown in Algorithm 8. As an be seenAlgorithm 8: Outline of the generate_streamkey funtionforeah stream keypair doswith paket variable type doase TCP paket variablegenerate pkt_to_tuple funtion for TCPgenerate invert_tuple funtion for TCPexit generatorase UDP paket variablegenerate pkt_to_tuple funtion for UDPgenerate invert_tuple funtion for UDPexit generatorotherwiseontinuefrom this outline the stream key generator simply traverses the keypairsspei�ed in the PCS. As Net�lter handles all network layer parts of thestream key transparently, pairs related to this layer are simply ignored andthe traversal ontinues. Eventually, upon reahing a TCP or UDP streamkey pair (identi�ed on the pre�x of the variable) the ode orresponding tothat protool is generated and the generation stops.



Output Generation 626.2.3 Transitions and LoationsIn terms of mapping transitions and determining whih transition to take fora given paket, this is done in very muh the same way desribed in relationto the intermediate representation. As previously desribed two funtionsneed to be implemented, new and paket. An outline of the generator forthe new funtion an be seen in Figure 9. Initially alled with the rootAlgorithm 9: Outline of the generate_new funtionData : ddNode from the getClosed diagramswith getNodeType(ddNode) doase NON-TERMINALforeah partId assoiation with ddNode dogenerate onditional for partition partIdgenerate_new(getNextNode(ddNode, partId));ase TERMINALif getTransType(ddNode) == UPDATE thenforeah update assoiated with terminal dogenerate update odegenerate ode for updating loation variablegenerate ode for updating timeout valuegenerate ode for returning assoiated property valueof the diagram returned by the getClosed funtion, this reursive funtion isapable of traversing this diagram and generate the new funtion. It doesthis by �rst determining the type of the node in the diagram. In ase ofit being a terminal, the type of the transition represented by this terminaldetermines what happens next. If it is an update transition, ode for eahassoiated update is generated along with ode for updating the loationand timeout values. Finally, regardless of the transition type, ode for re-turning the property returned by getPropVal is generated. In ase of thegiven node being a non-terminal, onditional statements for eah partitionare generated. Upon ompletion of the generation for eah partition, thegenerate_new funtion is then alled with the hild of that partition.With regards to the ode for the paket funtion, the generator justdesribed an be reused. However, instead of alling it with the getCloseddiagram, paket requires it to be alled with eah diagram assoiated withthe open loations. Similarly, onditionals for heking the loation variablealong with the diretion of the reeived paket must be generated as well.



6.2.4 Additional FuntionalityAs previously desribed Net�lters PCS interfae ontains an additional twofuntions, print_tuple and print_onntrak. The purpose of these are toprint the ontents of a given table entry to a bu�er whih an subsequentlybe displayed in a /pro entry. The �rst funtion, print_tuple, is responsiblefor printing the ontents of the non-IP parts of the stream key. An outlineof the struture of the generated bu�er an be seen in Figure 10. BeauseAlgorithm 10: Outline of the struture of the bu�er generated for theprint_tuple funtionsprintf(bu�er,�foreah stream keypair pairId doif getPairVariable(pairId, TUPLE_A) != �IP_*� then
getPairV ariable(pairId, TUPLE_A) :%u
getPairV ariable(pairId, TUPLE_B) :%u�foreah stream keypair pairId doif getPairVariable(pairId, TUPLE_A) != �IP_*� then, getPairV ariable(pairId, TUPLE_A) ,
getPairV ariable(pairId, TUPLE_B));Net�lter handles all network layer stream key information transparently thegenerator simply piks out the non-IP pairs of the stream key. For eahvariable the name along with its value is then printed to the bu�er.With regards to the bu�er generated for the print_onntrak funtionthis is very similar to what just desribed. However, where the print_tuplebu�er printed the value of the stream key variables this bu�er prints thenames and values of the stored variables. An outline of the struture of thisbu�er an be seen in Algorithm 11. As an be seen from this outline thebu�er is generated simply by traversing the stored variables of the PCS. Asthe generator for the table entry strut delared these variables using thesame names as in the PCS these names an be used diretly.This onludes the detailed desription of the proposed system. In thenext part the urrent implementation of the system is tested, and a onlu-sion onerning the system as a whole is drawn.



Algorithm 11: Outline of the struture of the bu�er generated for theprint_onntrak funtionsprintf(bu�er,�foreah stored variable varId do
getV arName(handler, varId) :%ustate : %s�,foreah stored variable varId do
getV arName(handler, varId)stateid_to_name(stateid));



PART III
Test and Conlusion

Having spent the last part desribing the proposed retargetable PCS systemin detail, this part �nalizes and onludes on the projet. First, in Chapter 7the urrent implementation of the proposed system is tested to ensure thatthe possible performane penalty inurred by the high-level approah of theretargetable system does not hinder any pratial use. With that in plae,Chapter 8 points out a number of diretions for the further development ofthe system and �nally, in Chapter 9, the projet is �nalized with a onlusionon the advantages and drawbaks of the system and its usefulness in general.





Chapter 7Testing The SystemIn order to investigate the feasibility of the proposed system and failitateits urrent and future development, the system desribed in this report hasbeen implemented along with the output generator desribed in the previ-ous hapter1. In this hapter we test the performane of the ode generatedby the Net�lter output generator and through that, indiretly test the or-retness of the implementation in general. The tests involves measuring theperformane of the ode generated by the Net�lter output generator froma PCSL spei�ation of the TCP PCS urrently used by Net�lter. The re-sult is then ompared to the performane of the �native� version thus givinga sense of the performane hit aompanying the retargetable system. InSetion 7.1 we start by desribing the PCS used in the tests and then inSetion 7.2 the atual tests and their results are desribed.7.1 The Protool Conformane Spei�ationThe TCP PCS used by Net�lter is more geared towards the task of trakingthe presumed onnetion state of a stream rather than that of detetingillegal pakets. Beause of this the PCS is very liberal in the kind of pakets itallows and bares little resemblane to the o�ial TCP spei�ation[Pos81b℄.The result is the very large PCS depited in Figure 7.1. Beause of its sizethis PCS provides a good basis for the tests. First of all its size will result inquite a large PCSL spei�ation. This should, in turn, provide a good testfor the usability of the PCSL language. Seondly, the size will result in a lotof ode being generated by the output generator. As a lot of proessing onthe pakets takes plae outside the ode a�eted by the retargetable system,a proportionally small amount of overhead ould easily be overshadowed.Testing on a large PCS with a large amount of ode should inrease this ratiobetween inside and outside proessing and hopefully redue this problem.1For a brief desription of the urrent status of this implementation, see Appendix C.



Testing The System 687.2 Testing the Performane of the Generated CodeThe purpose of the performane tests are to establish how muh of a per-formane penalty is likely to be inurred by the high level approah of theretargetable system. Given the unoptimized state of the Net�lter output gen-erator the results obtained from these tests should provide an upper boundfor that overhead. Therefore, if the results are aeptable we should be ableto onlude that the overhead is manageable.7.2.1 Test SetupThe tests have been performed on a small laboratory network onsisting of 2tra� generators separated by a �rewall and onneted through a Ciso 3500XL gigabit swith. The topology of this network an be seen in Figure 7.2and details on the omputers and their software are listed in Table 7.1.
Figure 7.2. The topology of the network used for the tests.

Proessor: Athlon 2000+NICs: SysKonnet 9821 v. 2.0Kernel: Linux 2.4.20NIC driver: sk98lin v6.04(a) Con�guration of the tra� gen-erators.
Proessor: Athlon 2000+NICs: SysKonnet 9821 v. 2.0Kernel: Linux 2.6.7NIC driver: sk98lin v6.23(b) Con�guration of the �rewall.Table 7.1. Con�gurations of the omputers in the test network.While this setup does not represent any real world senario it should besu�ient as we are only interested in a omparative measure between nativeand the PCSL approah. Furthermore, as we are interested in inreasing theratio between inside and outside proessing, this simple setup is preferableas having only a single stream aross the �rewall redues the proessingrequired by outside parts (table lookups et.).



69 7.2 Testing the Performane of the Generated Code7.2.2 Tra� and Test DataThe tests were performed using Iperf v2.0.1 as this tool is apable of produ-ing bidiretional tra� and allows for the entire test to be performed using asingle stream. In aordane with the reommendations of RFC1944[BM96℄the tests were onduted using a number of di�erent frame sizes - 56, 128,512, and 1518 bytes. During these tests a sequene of pakets, all belong-ing to the same stream, are sent aross the �rewall. This stream will ausethe �rewall, upon the arrival of the �rst paket, to store information aboutthat stream. Throughout the rest of the test that information will then beused in the inspetion proess. This way the task of adding this informa-tion is performed only one and the onsequent table lookups are simpli�ed.As desribed above the result is that the ratio between inside and outsideproessing is inreased thus giving a more aurate piture of the overhead.Finally, the �rewall is on�gured using only a single rule. This way the timespent traversing the rule lists are also minimized. For the tests the followingrule is used:iptables -A FORWARD -p tp -m state �state NEW,ESTABLISHED,INVALID -j aept7.2.3 Test ProedureAll tests are onduted by �rst learing the rule-set of the �rewall and thenon�guring it with the previously desribed rule. Upon ompletion of thistask the Iperf server is initiated on Tra� generator 2 using the options: -s-P 1. Finally, the Iperf lient is initiated on Tra� generator 1 using theoptions: - tra�_generator_1 -l frame_size -t 300 -i 5. Upon ompletionthe average of the throughput measurements reported by Iperf is alulatedand noted as the result of the test.7.2.4 Results and ConlusionsThe results of the tests an be seen in Table 7.2. As an be seen from theseFramesize (bytes) 64 128 512 1518No SI (Mbps) 340 543 579 579Native (Mbps) 337 492 499 499Native Overhead (%) 1 9 14 14Retargetable (Mbps) 336 493 495 498Retargetable Overhead (%) 1 9 15 14Table 7.2. Results of the performane tests.numbers the overhead inurred by the retargetable approah is negligibleand within 1% of the native version. It an therefore be onluded that any



Testing The System 70overhead inurred by the generated ode is overshadowed by the rest of thepaket proessing ode. As a result we an onlude that the performaneof the generated output does not hinder the pratial use of the system.Furthermore, this an be onluded despite the preliminary status of theintermediate representation and the output generator. Given the negligibleoverhead it is therefore doubtful whether any signi�ant inrease in perfor-mane would be gained from improving these two omponents. Using thetests we an therefore also onlude, that from a pratial point of view, theurrent states of these omponents are quite su�ient.
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7.2TestingthePerformaneoftheGeneratedCode
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Figure 7.1. The TCP PCS used for testing the system.
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Chapter 8Further DevelopmentAs desribed in the introdution this projet is, to our knowledge, the �rstone to deal with the development of a retargetable PCS system. As a result,the system presented in this report is by no means omplete. In this hapterwe point out a number of diretions for further developing the onept.8.1 Support For Appliation Layer ProtoolsThis projet has been limited to support for TCP and UDP streams only.As desribed in Chapter 2 most tra� also uses an appliation layer pro-tool (e.g. HTTP, FTP). An obvious improvement would therefore be toextend the urrent system with the apability of representing PCSs for suhprotools. The task involved in this would amount to the reation of a newspeialization of the protool onformane model. Presumably the biggesthange ompared to the TCP/UDP speialization would be the retrieval ofinformation from the pakets. Where TCP and UDP use �xed size �eldsto store the relevant header information, some appliation layer protoolsuse variable sized �elds. An example of this is FTP. Where IPv4 stores thehost addresses in 32 bit �elds, the FTP protool stores suh information inplain ASCII. The result is that it no longer su�es simply to look at a �xedpart of the paket as the addresses 10.0.0.1 and 10.0.0.10 take up 8 and 9bytes respetively. To make things even worse, the information stored afterthese two addresses is shifted aordingly. This means that you no longerhave onstant time aess to the information stored in the pakets. In otherwords, if you want to get to some information towards the end of the FTPheader you are fored to parse the entire header up to that point. In ef-fet this means that a more �exible, than the urrent way of speifying andaessing suh �elds, is needed.



Further Development 748.2 Graphial Front-End for the PCSL LanguageAs an be seen from the TCP PCS used in the test hapter the PCSs easilybeome quite large. The result is that the number of lines needed to im-plement any useful PCS quikly adds up. While eah line in itself is simpleand straight-forward, one an quikly get lost in the large amount of almostidential transitions. To ounter this problem, and thereby make it eveneasier to write PCSs, we propose the development of a graphial front-endto the PCSL language. The purpose of this front-end is to allow the user todesribe PCSs using the same graphial representation used in this report.From this representation the front-end an generate the appropriate odethereby hiding the PCSL language from the user. Examples of this oneptare UppAal[LPY97℄ and YAGCS[ea01℄ whih both provide graphial front-ends for an underlying textual language. In Figure 8.1 a sreenshot of theUppAal GUI an be seen. The main advantage of suh a tool is that it

Figure 8.1. The formal veri�ation tool UppAal whose GUI is essentially a graphial frontendfor speifying models in the xta language.tends to inrease the readability of the spei�ation thereby easing the taskof reating and maintaining it.Important to note however is that the need for suh a tool should notin any way be seen as a sign of a weakness in the system presented in thisreport. The fat that it is possible to make suh a graphial front-end is atestament to the ontributions of the system.



Chapter 9ConlusionWith the introdution of SI the task of developing and maintaining a �rewallhas beome harder and more omplex. One of the main reasons for this is SIsinherent dependene on protool onformane spei�ations against whihthe inspeted streams an be heked. In urrent implementations of SI thesespei�ations are hard oded into the SI subsystem using the same generilanguage used to implement the rest of the �rewall. Unfortunately, thisapproah has the disadvantage that the spei�ations are prone to ontainingerrors as these generi languages are not very well suited for the task. As�rewalls are primarily meant to provide seurity, and errors tend to lessenseurity, this is by no means an ideal approah. Furthermore, as the softwareof many �rewalls is not easily upgradeable one they have been deployed, theneed for a system that minimizes the risk of errors is apparent.In this projet we proposed, developed, implemented, and tested suha system. This system, whih introdues the notion of retargetable PCSs,allows the �rewall developer to implement PCSs in a �rewall independentmanner using a ustom made, protool oriented language. This way, theimplementation of the PCS is simpli�ed and the hane of it being orretinreased.The proposal has inluded the development of a number of omponents.First, an abstrat model, the protool onformane model, enompassing thefuntionality needed in a PCS was made. This provided a ommon foun-dation for urrent and future versions of the system. With that foundationin plae, a speialization apable of representing PCSs for streams of two ofthe most ommonly used protools - TCP and UDP, was made. The ba-sis of this speialization was an investigation of the requirements of a widerange of urrently available TCP and UDP PCSs. This ensured that, eventhough it is impossible to de�nitively determine the expressive power neededto represent every possible TCP and UDP PCS, this speialization has theexpressive power to represent most, if not all, urrent and future PCSs forthese protools. This way, the major potential drawbak assoiated with a



Conlusion 76less than touring omplete model was alleviated.Having ompleted the model and thus reated the foundation for the re-targetable PCSs, a system apable of transforming these spei�ations intousable ode was made. This inluded the development of a simple languageapable of expressing the speialized model as well as an intermediate rep-resentation apable of storing the retargetable PCSs.Finally, through the evaluation of an implementation of the proposedsystem, we have shown that the amount of performane overhead inurredby the retargetable approah is negligible. This is despite the fat that verylittle optimization was performed on the retargetable PCS by the interme-diate representation and the Net�lter output generator. Based on this wean therefore onlude, that also in pratie, the use of retargetable spei-�ations is a feasible approah and that the system and its aompanyingimplementation is fully usable.



Appendix AHeader Fields Symbol Table
This appendix ontains a list of the di�erent �elds in the headers of the IP,UDP, and TCP protools along with the symbol by whih they are referenedin this report and the urrent implementation of the system.Symbol DesriptionIP_VERSION VersionIP_IHL Internet Header LengthIP_TOS Type of ServieIP_TOTLEN Total LengthIP_ID Identi�ationIP_FRAG Fragment O�setIP_TTL Time To LiveIP_PROTOCOL ProtoolIP_CHECKSUM CheksumIP_SRC Soure IP AddressIP_DST Destination IP AddressTable A.1. IP Fields

Symbol DesriptionUDP_SRCPORT Soure PortUDP_DSTPORT Destination PortUDP_LEN LengthUDP_CHECKSUM CheksumTable A.2. UDP Fields



Header Fields Symbol Table 78Symbol DesriptionTCP_SRCPORT Soure PortTCP_DSTPORT Destination PortTCP_SEQ Sequene NumberTCP_ACKSEQ Aknowledgment NumberTCP_DOFF Data O�setTCP_FIN FIN FlagTCP_SYN SYN FlagTCP_RST RST FlagTCP_PSH PSH FlagTCP_ACK ACK FlagTCP_URG URG FlagTCP_ECE ECE FlagTCP_CWR CWR FlagTCP_WINSIZE Window SizeTCP_CHECKSUM CheksumTCP_URGPTR Urgent PointerTable A.3. TCP Fields



Appendix BThe PCSL LanguageB.1 Abstrat SyntaxThe abstrat syntax of the PCSL language is as follows:1. Syntati ategories
V D ∈ V ariable declarations

SD ∈ Stream key declarations

LD ∈ Location declarations

TD ∈ Transitions

p ∈ Property values

sn ∈ Stored normal variables

pn ∈ Packet normal fields

ps ∈ Packet Sequence number fields

n ∈ Numerals

V LIST ∈ V ariable lists

cl ∈ Closed locations

OLD ∈ Open location declarations

ol ∈ Open locations

p ∈ Property values

D ∈ Directions

GD ∈ Guard declarations

G ∈ Guards

UD ∈ Update declarations

U ∈ Updates

PD ∈ Property value declatations

NEXP ∈ Normal expressions

BOP ∈ Boolean operators

AOP ∈ Arithmetic operators

CLD ∈ Closed location declarations

ss ∈ Stored sequence number variables

SEXP ∈ Sequence number expressions

DD ∈ Default property value declarations

PCS ∈ Protocol Conformance Specifications2. De�nitions
PCS ::= DD V D SD LD TD

DD ::= defpropvalue p;
V D ::= storednorm sn n; | storedseq ss n; | paketnorm pn n;

| paketseq ps n; | V D1 V D2
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SD ::= keypair V LIST ; | SD1 SD2

V LIST ::= pn , pn | ps , ps
LD ::= CLD; OLD;
CLD ::= loation cl
OLD ::= oloation ol n | OLD1 ; OLD2

TD ::= itrans cl -> cl {GD PD}
| itrans ol -> ol {D GD PD}
| utrans cl -> ol {GD UD PD}
| utrans ol -> ol {D GD UD PD}
| utrans ol -> cl {D GD PD}
| TD1 TD2

D ::= diretion original; | diretion return;
PD ::= propvalue p;
GD ::= guard G; | ǫ
G ::= NEXP BOP NEXP | SEXP BOP SEXP | G1 , G2

NEXP ::= n | sn | pn | (n)(NEXP AOP NEXP ) | (NEXP )
BOP ::= < | > | <= | >= | ==
SEXP ::= ps + NEXP | ss + NEXP
AOP ::= + | - | * | / | //
UD ::= update U ; | ǫ
U ::= sn := NEXP | ss :=SEXP | U1 , U2B.2 Conrete SyntaxThe following listing shows the onrete syntax for the PCSL language:Alpha → a | . . . | z | A | . . . | ZDigit → 0 | . . . | 9Num → Digit | Num DigitAlphaNum → Alpha | NumIdent → Alpha | Ident AlphaNumStart → Dd Vd Sd Ld TdDd → defpropvalue IdentVd → Vd VariableType Ident Num ; | ǫVariableType → storednorm | paketnorm | storedseq | paketseqSd → Sd keypair Vlist ; | ǫVlist → Ident , IdentLd → Cld OldCld → losed loation Ident ;Old → Old open loation Ident Num ; | ǫ



81 B.3 Type SystemTd → Td TransType Ident -> Ident { D GD UD PD }TransType → itrans | utransD → diretion original | diretion returnGd → guard G ; | ǫPd → propvalue Ident ;G → Exp Bop Exp | G , Exp Bop ExpExp → Num | Ident | ( Num ) ( Exp ) | ( Exp )Bop → == | < | <= | > | >=Aop → + | - | * | / | //Ud → update U ; | ǫU → Ident := Exp | U , Ident := ExpB.3 Type SystemUsing the notation of [Car97℄ the judgments of the formalized type systemof PCSL are as follows:
Γ ⊢ ⋄ Γ is a well-formed environment
Γ ⊢ A A is a well-formed type in Γ
Γ ⊢M : A M is a well-formed term of type A in Γ
Γ ⊢ A <: B A is a subtype of B in Γ
Γ ⊢ D ∴ S D is a well-formed delaration of signature S in Γ
Γ ⊢ DD DD is a well-formed default property value delaration in Γ
Γ ⊢ SD SD is a well-formed keypair delaration in Γ
Γ ⊢ D D is a well-formed diretion delaration in Γ
Γ ⊢ GD GD is a well-formed guard delaration in Γ
Γ ⊢ U U is a well-formed update element in Γ
Γ ⊢ UD UD is a well-formed update in Γ
Γ ⊢ PD PD is a well-formed property value delaration in Γ
Γ ⊢ TD TD is a well-formed transition delaration in ΓWith respet to the type rules a few additions are made to the notation of[Car97℄ to ease their desription. This due to eah variable being delaredwith a bitsize denoting its upper bound. Beause these bounds in�uenehow the variable an be used in guards, assignments et. two variables withthe di�ering upper bounds are seen to be of di�erent types. In this view thelanguage ontains a large number of types, most of them being variationsof the �basi� types paketnorm, paketseq, storednorm, and storedseq. Toavoid having to de�ne and deal with eah of these individually the followingnotation is used : BasicType · #bits where #bits is the number of bitsassigned to the variable and BasicType is the type it is a variation of. Usingthis notation packetnorm · 6 would be the type of a variable delared with



The PCSL Language 82type packetnorm and the number of bits set to 6. With this in mind thefollowing table shows the type rules of the PCSL language:(Env ∅) (Env M)
∅ ⊢ ⋄

Γ⊢A M /∈dom(Γ)
Γ,M :A⊢⋄(Type Bool) (Type Clo) (Type Olo) (Type Propval)

Γ⊢⋄
Γ⊢Bool

Γ⊢⋄
Γ⊢Clocation

Γ⊢⋄
Γ⊢Olocation

Γ⊢⋄
Γ⊢Propvalue(Type Paketnorm) (Type Paketseq)

Γ⊢⋄
Γ⊢Packetnorm·n (n = 1, 2, . . . , 32)

Γ⊢⋄
Γ⊢Packetseq·n (n = 8, 16, 32)(Type Storednorm) (Type Storedseq)

Γ⊢⋄
Γ⊢Storednorm·n (n = 1, 2, . . . , 32)

Γ⊢⋄
Γ⊢Storedseq·n (n = 8, 16, 32)(Type Norm) (Type Seq)

Γ⊢⋄
Γ⊢Norm·n (n = 1, 2, . . . , 32)

Γ⊢⋄
Γ⊢Seq·n (n = 8, 16, 32)(Sub Re�) (Sub Trans) (Sub Subsumption)

Γ⊢A
Γ⊢A<:A

Γ⊢A<:B Γ⊢B<:C
Γ⊢A<:C

Γ⊢a:A Γ⊢A<:B
Γ⊢a:B(Sub Snorm) (Sub Pnorm)

Γ⊢Storednorm·x Γ⊢Norm·y
Γ⊢Storednorm·x<:Norm·y (x ≤ y)

Γ⊢Packetnorm·x Γ⊢Norm·y
Γ⊢Packetnorm·x<:Norm·y (x ≤ y)(Sub Sseq) (Sub Pseq)

Γ⊢Storedseq·x Γ⊢Seq·y
Γ⊢Storedseq·x<:Seq·y (x ≤ y)

Γ⊢Packetseq·x Γ⊢Seq·y
Γ⊢Packetseq·x<:Seq·y (x ≤ y)(PCS)

∅⊢DD ∅⊢V D∴(V :A) V :A⊢SD∴(S:B) V :A,S:B⊢LD∴(L:C) V :A,S:B,L:C⊢TD
∅⊢DD V D SD LD TD(Defpropval) (VDel Sequene)

Γ⊢⋄
Γ⊢defpropvalue p ; Γ⊢V D1 ∴ (M :A) Γ,M :A ⊢ V D2

Γ⊢V D1 V D2(VDel Snorm) (VDel Sseq)
Γ,sn:Storednorm·n⊢⋄

Γ⊢storednorm sn n; ∴ (sn:Storednorm·n)
Γ,ss:Storedseq·n⊢⋄

Γ⊢storedseq ss n; ∴ (ss:Storedseq·n)(VDel Pnorm) (VDel Pseq)
Γ,pn:Packetnorm·n⊢⋄

Γ⊢paketnorm pn n; ∴ (pn:Packetnorm·n)
Γ,ps:Packetseq·n⊢⋄

Γ⊢paketseq ps n; ∴ (ps:Packetseq·n)(Keypair Sequene) (Keypair)
Γ⊢SD1 Γ⊢SD2

Γ⊢SD1 SD2

Γ⊢I1:A Γ⊢I2:A A∈{Packetnorm·n,Packetseq·n}
Γ⊢keypair I1, I2 ;(VDel Cold) (LDel Clo)

Γ⊢CLD ∴ (M :A) Γ,M :A ⊢ OLD
Γ⊢CLD OLD

Γ,cl:Clocation⊢⋄
Γ⊢loation cl ; ∴ (cl:Clocation)



83 B.3 Type System(LDel Olo) (LDel Sequene)
Γ,ol:Olocation⊢⋄

Γ⊢oloation ol ; ∴ (ol:Olocation)
Γ⊢OLD1 ∴ (M :A) Γ,M :A ⊢ OLD2

Γ⊢OLD1 OLD2(Trans Ill)
Γ⊢cl1:Clocation Γ⊢cl2:Clocation Γ⊢GD Γ⊢PD

Γ⊢itrans cl1 -> cl2 {GD PD}(Trans Iolol)
Γ⊢ol1:Olocation Γ⊢ol2:Olocation Γ⊢D Γ⊢GD Γ⊢PD

Γ⊢itrans ol1 -> ol2 {D GD PD}(Trans Ulol)
Γ⊢cl:Clocation Γ⊢ol:Olocation Γ⊢GD Γ⊢UD Γ⊢PD

Γ⊢utrans cl -> ol {GD UD PD}(Trans Uolol)
Γ⊢ol1:Olocation Γ⊢ol2:Olocation Γ⊢D Γ⊢GD Γ⊢UD Γ⊢PD

Γ⊢utrans ol1 -> ol2 {D GD UD PD}(Trans Uoll) (Trans Sequene)
Γ⊢ol:Olocation Γ⊢cl:Clocation Γ⊢D Γ⊢GD Γ⊢PD

Γ⊢utrans ol -> cl {D GD PD} Γ⊢TD1 Γ⊢TD2
Γ⊢TD1 TD2(Dir Orig) (Dir Ret) (Propval) (Guard)

Γ⊢⋄
Γ⊢diretion original; Γ⊢⋄

Γ⊢diretion return; Γ⊢⋄
Γ⊢propvalue p ; Γ⊢G:Bool

Γ⊢guard G ;(Guardeln) (Guard Sequene)
Γ⊢NEXP1:Norm·a Γ⊢NEXP2:Norm·b

Γ⊢NEXP1 ∼ NEXP2 : Bool ∼= {<, >, <=, >=, ==}
Γ⊢G1: Bool Γ⊢G2: Bool

Γ⊢G1 , G2 : Bool(Guardels) (Numeral)
Γ⊢SEXP1:Seq·a Γ⊢SEXP2:Seq·a

Γ⊢SEXP1 ∼ SEXP2 : Bool ∼= {<, >, <=, >=, ==}
Γ⊢A A=Norm·⌈log2(n+1)⌉

Γ⊢n : A(Nexp) (Paren)
Γ⊢NEXP1:Norm·a Γ⊢NEXP2:Norm·b n∈{1,2,...,32}

Γ⊢(n)(NEXP1 ∼ NEXP2) : Norm· n
Γ⊢NEXP :A

Γ⊢(NEXP ) : A(Sexp) (Update) (Updateel)
Γ⊢sv:Seq·a Γ⊢NEXP :Norm·b

Γ⊢sv + NEXP : Seq·a (a ≥ b
2
)

Γ⊢U
Γ⊢update U ; Γ⊢U1 Γ⊢U2

Γ⊢U1 , U2(Updateeln) (Updateels)
Γ⊢sn:Storednorm·a Γ⊢NEXP :Norm·b

Γ⊢sn := NEXP (a ≥ b)
Γ⊢ss:Storedseq·a Γ⊢SEXP :Seq·a

Γ⊢ss := SEXP
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Appendix CCurrent Status of theImplementationAs should be lear from the report the urrent implementation of the systemshould be seen mainly as an experimental tool used during development,and as a platform for testing and evaluating the retargetable onept. Withthat being said, the implementation is however stable, fully funtional, andthe output generator API fully doumented1. Currently the following threeoutput generators exists:Net�lter Generator: An output generator apable of generating unopti-mized ode for the Net�lter �rewall. The spei�s of this generator isdesribed in Chapter 6.PCS Illustrator: An output generator apable of depiting a PCSL spe-i�ation using the graphial notation desribed in Setion 3.1.4. Thegraphial illustration of Net�lters standard TCP PCS depited in Fig-ure 7.1 is reated using this generator.Diagram Illustrator: An output generator apable of depiting the dei-sion diagrams stored by the intermediate representation. The graphialnotation is similar to that of Figure 5.1.To ease the development of new generators, and in tune with the initialarhiteture previously depited in Chapter 2, phases 1 and 2 have beenimplemented as an external library. Using that approah, integrating newgenerators with the urrent implementation is merely a matter of linkingagainst that library and aessing it using the output generator API. Foran illustration of this relationship between phases 1 and 2 and the outputgenerators, see Figure C.1.1For a omplete desription of the output generator API, see the doumentation a-ompanying the implementation.
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Netfilter Generator
(nfcodegen)

Current Output Generators
(application name)

Diagram Illustrator
(dddepict)

PCS Illustrator
(pcsillustrate)

Core SystemRPCS LibraryFigure C.1. The relationship between the ore of the retargetable system (phases 1 and 2) andthe output generators. Eah individual generator makes up its own appliation and is linkedagainst the RPCS library whih provide aess to the system using the output generator API.



Appendix DSummaryWith the introdution of SI the task of developing and maintaining a �rewallhas beome harder and more omplex. One of the main reasons for this is SIsinherent dependene on protool onformane spei�ations against whihthe inspeted streams an be heked. In urrent implementations of SI thesespei�ations are hard oded into the SI subsystem using the same generilanguage used to implement the rest of the �rewall. Unfortunately, thisapproah has the disadvantage that the spei�ations are prone to ontainingerrors as these generi languages are not very well suited for the task. As�rewalls are primarily meant to provide seurity, and errors tend to lessenseurity, this is by no means an ideal approah. Furthermore, as the softwareof many �rewalls is not easily upgradeable one they have been deployed, theneed for a system that minimizes the risk of errors is apparent.In this projet we have proposed, developed, implemented, and testedsuh a system. This system, whih introdues the notion of retargetablePCSs, allows the �rewall developer to implement PCSs in a �rewall indepen-dent manner using a ustom made, protool oriented language. This way, theimplementation of the PCS is simpli�ed and the hane of it being orretis inreased.This proposed system has inluded the development of a number of om-ponents. First, an abstrat model, the protool onformane model, enom-passing the funtionality needed in a PCS has been made. This providesa ommon foundation for urrent and future versions of the system. Withthat foundation in plae, a speialization apable of representing PCSs forstreams of two of the most ommonly used protools - TCP and UDP, hasbeen reated. The basis of this speialization is an investigation of the re-quirements of a wide range of urrently available TCP and UDP PCSs. Thisensures that, even though it is impossible to de�nitively determine the ex-pressive power needed to represent every possible TCP and UDP PCS, thisspeialization has the expressive power to represent most, if not all, urrentand future PCSs for these protools. This way, the major potential drawbak



Summary 88assoiated with a less than touring omplete model has been alleviated.Having ompleted the model and thus reated the foundation for the re-targetable PCSs, a system apable of transforming these spei�ations intousable ode has been made. This inludes the development of a simple lan-guage apable of expressing the speialized model as well as an intermediaterepresentation apable of storing the retargetable PCSs.Finally, through the evaluation of an implementation of the proposedsystem, we have shown that the amount of performane overhead inurred bythe retargetable approah is negligible. This is despite the fat that very littleoptimization was performed on the retargetable PCS by the intermediaterepresentation and the Net�lter output generator. Based on this we thereforeonlude, that also in pratie, the use of retargetable spei�ations is afeasible approah and that the system and its aompanying implementationis fully usable.
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