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SYNOPSIS:

Over the years the need for a more power-
ful firewall classification scheme to supple-
ment stateless packet classification has be-
come apparent. As a response to this de-
mand Stateful Inspection (SI) was devel-
oped. While significantly more powerful,
this scheme has a number of inherent dis-
advantages. One of the most predominant
ones being its inherent dependence on cus-
tom made protocol conformance specifica-
tions against which the inspected streams
can be checked.

Currently, ST capable firewalls implement
these specifications by hard-coding them
into the firewall using the generic language
used to implement the rest of the firewall.
While simple, this approach however has a
number of disadvantages in terms of com-
plexity and subsequently in terms of the
correctness of the implemented specifica-
tions. In effect this complexity means that
the risk of errors present in these spec-
ifications is considerable and as a result
the overall level of security imposed by the
firewall might be decreased.

In this report we propose, implement, and
test a system capable of easing the task of
specifying and implementing protocol con-
formance specifications. Using this sys-
tem the risk of errors should therefore be
reduced and as a result the general level
of security should be increased. This is
achieved through the introduction of re-
targetable specifications which can be re-
used across different firewall implementa-
tions while at the same time be imple-
mented using a custom made language.
This way, more effort can be put into
the development and testing of one shared
specification, as opposed to its complete
reimplementation on each available fire-
wall.
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Preface

This report documents the Master’s Thesis by Lars R. Olsen written un-
der the research unit of Distributed Systems and Semantics at the Depart-
ment of Computer Science at Aalborg University. The project is concerned
with stateful inspections dependence on custom made protocol conformance
specifications, working as overlays against which the inspected streams are
checked. To reduce this dependency this report proposes, implements, and
tests a system capable of easing the creation and implementation of such
specifications, while at the same time making them retargetable so that they
can be reused across different firewalls.

The report assumes that the reader has elementary knowledge about
basic networking concepts such as packets, routing, the TCP/IP protocol
suite, and firewalls in general. It is split into 3 parts. The first, being
the introduction, motivates the project, gives an introduction to the current
practices in the implementation of stateful inspection, and describes how
protocol conformance specifications are currently created for these. With
that in place, a system capable of easing the creation of specifications for
these implementations is then proposed. In the second part this system is
then described in detail. Finally, in the third part, an implementation of the
proposed system is tested and a conclusion concerning the advantages and
drawbacks of the proposal is drawn.

A homepage containing this report as well as the implementation of the
proposed system is located at the following address:

hitp://www.cs.aau.dk/~Iro/rpcs

Lars Riis Olsen






PART I

Introduction

This part provides an introduction to the project. It starts by motivating
the project in Chapter 1; what is stateful inspection, which improvements
does it offer compared to stateless packet classification, and which deficien-
cies in the current way of creating and implementing specifications for it do
we want to alleviate. With that in place, Chapter 2 provides a more detailed
introduction to stateful inspection and describes how it is implemented and
performed by current firewalls. With an outset in this description, some of
the problems introduced by stateful inspection are described and our pro-
posal to alleviate some of these problems is introduced. Finally, with this
introduction in place, the part concludes with a definition of the final scope
and goals of the project.






Chapter 1

Motivation

Over the past decade the Internet has grown tremendously. From including
only 213 hosts in 1981, it has grown to consist of approximately 233 million
hosts as of January 2004[Sur04]. This dramatic increase illustrates the de-
velopment of the Internet, from a small set of interconnected computers used
for scientific and military purposes only, to the general purpose, commercial
network that it is today.

A result of this dramatic growth is an equal increase in the demand for
technologies to protect and control its users. The firewall is one such technol-
ogy. A firewall is essentially a selective router which works by intercepting
and examining select parts of the protocol headers of all packets sent through
it. Based on this examination, commonly known as classification, the packet
is either blocked or let through, thereby allowing the firewall administrator
to control the traffic passing through it. To further maximize the control,
firewalls are usually deployed to act as gateways between networks, thereby
allowing for the examination of all traffic passing between them. An example
of this setup can be seen in Figure 1.1. Needless to say the effectiveness of

Network 1 Network 2
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IP_SRC=11.0.0.

Drop

Figure 1.1. A firewall acting as a gateway between two networks has received two packets. It
has been configured to only accept packets with an IP source protocol header field of 10.*.* *.
This means that Packet 1 has been allowed to pass whereas packet 2 has been dropped and
therefore removed from the network.
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the firewall depends on its ability to classify the intercepted packets. The
first firewalls, now referred to as stateless firewalls relied solely on a stateless
classification scheme where all packets are classified independently from each
other. While fast and simple this scheme however has a number of serious
limitations. One of the most predominant ones is the fact that, using this
scheme, basing the classification on mutable header fields' such as sequence
numbers and TCP flags, rarely makes much sense. The result is that the
classification in stateless firewalls most often can only be based on a small
portion of the packet (the immutable fields), thereby neglecting a lot of in-
formation that could otherwise be used to sharpen the classification. An
example of the consequences of this limitation is the ACK ping attack which
allows an attacker to determine whether an IP address is in use, even though
the potential host would placed behind a stateless firewall[tW00]. Where a
traditional ping works by sending an ICMP type 8 packet to the address in
question[Pos81a|, the ACK ping attack works by sending an unsolicited TCP
ACK packet (a TCP packet with the ACK flag set) to the victim. If the ad-
dress is in use, the victim, realizing that the packet is illegal, responds with
an RST packet|Pos81b]| ultimately telling the attacker that the address is in
use. Where a stateless firewall can easily be made to drop all ICMP type 8
packets, thereby disallowing the traditional ping, it has no way of telling the
unsolicited packet from a solicited one. The result is that stateless firewalls
are not capable of protecting against such attacks as simply dropping all
ACK or RST packets would disrupt legal traffic as well. From this example
it should therefore be clear that this classification scheme is inadequate and
a new, more powerful scheme, is needed.

Stateful Inspection (SI) is one such scheme. It distinguishes itself from
the stateless approach in that it incorporates the notion of packet streams,
thus making it possible to classify each packet in the context of the stream
to which it belongs. In other words, it is capable of behaving very much
like the hosts it is trying to protect. It works by storing information about
the state of the packet streams existing across the firewall. Every time
a packet arrives it is classified using this stored information and a user-
defined Protocol Conformance Specification (PCS) specifying a number of
requirements that must be met by streams of the type in question (e.g. TCP
streams)?. As the requirements of the PCS can be made to differ depending
on the state of the stream, the inspection can therefore be made stateful by
storing the state of the stream in-between inspection of the packets. Based
on how the contents of the packet matches the requirements specified for
the state in question, a result of the inspection can be obtained (e.g. ok or
invalid) and used in the final classification of the packet. Through the use of

!Protocol header fields whose correctness depend on the state of the packet stream to
which the packet belongs.

“Note that there is no universally accepted name for these specifications but that we
will refer to them as protocol conformance specifications.
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this scheme it is therefore possible for the firewall to base the classification
on the state of the stream which in turn enables it to base the classification
on mutable fields as well. As a result, through the use of SI, it is possible to
protect against state dependent attacks such as ACK Ping as it can easily
be established that the unsolicited packet does not belong to any existing
stream.

While the introduction of SI clearly increases capabilities of the firewall
it also brings about a number of inherent disadvantages. First of all it adds
a considerable amount of complexity to the firewall. While SI is conceptu-
ally fairly simple, its implementation involves the handling of a number of
complex issues such as the efficient storing of information and the imple-
mentation of the PCSs. As added complexity always increases the risk of
errors being made during development, this factor essentially decreases the
overall level of security imposed by the firewall. One of the most significant
sources of this added degree of complexity is the fact that ST requires at least
one PCS to be devised and implemented for each supported type of stream
(TCP, UDP, etc)?. In the case of stateless firewalls, adding support for a new
type of protocol/packet was simply a matter of getting access to the fields in
that packets protocol header(s). For SI on the other hand, the incorporation
of the notion of streams means that a specialized PCS must be developed
as well. In current firewalls these specifications, which often span several
hundred lines of code, are implemented using the same general purpose lan-
guage used to implement the rest of the firewall[Hom04|[Fil04]. As can be
seen from the time and effort gone into implementing PCSs for the currently
available open source firewalls the result is that adding new PCSs is often a
tedious and complicated task. Furthermore, when implementing PCSs using
general purpose languages a lot of time is usually spent paying attention
to issues not related to the behavior of the streams (avoidance of pointer
errors etc.). As firewalls are first and foremost about providing security, and
complexity always serves to increase the risk of errors, this approach to the
implementation of PCSs is by no means ideal. This project aims to solve
this problem by developing a new and more reliable way of implementing
PCSs.

1.1 Project Goals

The goal of this project is to increase the flexibility and security of SI. This
goal is achieved through the development of a retargetable PCS specifica-
tion system that allows the developer to write the PCSs in a custom made,
protocol-oriented, and firewall independent language. This language hides,
to the behavior of a protocol, unimportant issues such as the storing and

3More than one if you for reasons of security, performance etc. are not content with
using the same PCS for all streams of the same type.
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retrieving of state information. Doing so, it allows the PCS developer to
stop thinking about these issues and instead allows him to focus on what is
important - the intended behavior of the packet streams. Secondly, being
protocol-oriented means that the language is made exclusively for the task
of specifying PCSs. Most notably this means that the language does not
contain any unnecessary constructs that can complicate the task at hand.
Furthermore, the language being firewall independent allows for the develop-
ment of compilers that can compile PCSs written in the language into code
usable by current and future firewalls. This way different firewalls can reuse
the same PCS implementation, thus making it possible to focus on perfecting
this single implementation as opposed to manually porting it to the different
firewalls. This in turn should strengthen the quality of the PCS and thereby
increase the overall level of security imposed by the firewall. Finally, the
system eases the job of developers of new firewalls, as all that is needed to
add a wide range of PCSs, is to make a compiler for the developed firewall.

Having briefly introduced and motivated the project the next chapter will
provide a more in-depth description of SI and its strengths and weaknesses.
With this description in place, the proposed retargetable PCS creation sys-
tem will then be introduced, and the final scope of the project defined.



Chapter 2

Stateful Inspection and its
Inherent Problems

In the previous chapter it was described how SI, while useful and concep-
tually simple, has a number of inherent disadvantages when it comes to
implementing it. In order to make it clear why this is so, and to further
clarify the purpose of the proposed retargetable PCS system, this chapter
provides a more in-depth introduction to SI. To fully understand this intro-
duction, one however first need to attain an understanding of the conceptual
architecture of a firewall, how it works, and how it goes about incorporat-
ing classification schemes such as SI and stateless packet classification. In
Section 2.1 a brief introduction to firewalls and their conceptual architecture
is therefore given. Then, in Section 2.2 a more thorough introduction to SI
and how it is performed is provided. Over the course of that description,
the problems surrounding its implementation should become clear, and in
Section 2.3 these problems will then be described in greater detail. In Sec-
tion 2.4 we give a short description to how PCSs are implemented in some
current day firewalls, and then in Section 2.5 a more detailed introduction to
our retargetable PCS system which aims to ease this task, is given. Finally,
in Section 2.6 the introduction is concluded by the definition of the final
scope of the project.

2.1 The Conceptual Architecture of a Firewall

A firewall can, in short, be described as an advanced selective router. That is,
a device which receives packets on a network interface, removes those which
are not allowed to pass, and forwards the rest to their proper destination.
Exactly which packets are allowed to pass and which are to be blocked is
defined in a set of rules created by the administrator of the firewall. More
specifically, these rules are created by specifying a number of properties
that a class of packets must comply with, along with a description of what
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must happen to packets belonging to this class. The properties that can
be specified depend on the capabilities of the firewall and the following rule
illustrates this:

rule IP__ SRC=10.0.** TP_ PROTO=6 -a ACCEPT

This rule, which is typical for a stateless firewall, defines a class consisting
of all packets with the IP_SRC field set to 10.0.*.* and the IP_PROTO
field set to 6 (TCP). Furthermore it specifies that all packets belonging to
this class must be accepted, thereby allowing all traffic that adheres to these
properties to pass through the firewall. As previously described stateless
firewalls are restricted to classify all packets independently. More precisely,
we define stateless packet classification as performed by the stateless firewalls
as follows:

Definition 1 (Stateless Packet Classification)
The task of classifying packets based solely on the contents of the pro-
tocol headers of the packet.

Using this definition implies that only properties concerning the contents
of the packets can be specified as properties of the individual classes. SI on
the other hand allows for a more high level view. An example of this can
be seen in the following rule, which is typical for a firewall capable of using
both SI as well as the stateless packet classification:

rule IP__ SRC=10.0.*.* IP_ PROTO=6 -pcs=MyPCS SI=0OK -a ACCEPT

The difference in this rule compared to the strictly stateless example, is the
addition of a new property specifying that the packet, when checked against
the MyPCS PCS, must result in SI returning OK. This way it is no longer
sufficient for the TCP packets to have an IP_ SRC field of 10.0.*.*. as they
now must also make the MyPCS PCS return OK. Given a PCS that checks
for the correct use of the TCP flags, this rule would therefore protect against
all ACK Ping attacks with packets containing an IP_ SRC field of 10.0.*.*.
With this in mind we define SI as follows:

Definition 2 (Stateful Inspection)

The task of tracking the state of a stream, and based upon this state,
checking its packets against a predefined PCS and subsequently returning
the inspection result to the rest of the firewall for further classification.

where a stream is defined as a sequence of related packets, or more specifically
as follows:
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Definition 3 (Stream)
A sequence of packets related by some relation defined by a protocol
used by the packets.

With this short description of how a firewall is configured using proper-
ties and classes in place, the conceptual architecture of a firewall can now be
described. This conceptual architecture can be seen in Figure 2.1. In this

Firewall
Firewall Core

Properties Properties

Stateless
Packet
Classificatiol

Accepted
Stateful Packets

Inspection

Figure 2.1. The conceptual architecture of a firewall where the Firewall Core is responsible for
the reception, final classification, and forwarding of packets. Similarly, the Properties modules
are responsible for extracting the values of properties from those packets.

architecture the Firewall Core is responsible for the reception, final clas-
sification, and forwarding of packets. The classification itself is performed
through the use of a number of Properties modules which each have a num-
ber of properties they can check. For a stateless module this would simply
be the values of the different fields in the header, whereas it for an SI module
would be the result of the inspection given a specified PCS. Through the use
of these modules, it is then the job of the firewall core to retrieve the values of
the appropriate properties and determine which rule they match. In relation
to this architecture, the task of adding a PCS can therefore be seen either
as the task of making an entirely new properties module specifically for this
PCS or as the task of extending an existing module with a new property for
the new PCS. As it will soon be clear, in this conceptual design, the idea of
creating the proposed retargetable PCS system can be seen as the task of
developing a retargetable SI properties module capable of being configured,
using a protocol oriented language, to return property values reflecting the
specified PCS.

2.2 Stateful Inspection

In Chapter 1 it was briefly described how SI classifies packets in the context
of their streams, thereby allowing for stricter and more protective firewalls.
Throughout this section a more thorough description of SI is given. We start
by providing a more in-depth introduction to the concept of the PCS.
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2.2.1 The Protocol Conformance Specification

The PCS is essentially the configuration which defines how SI should behave.
It defines, given the reception of any packet of the type for which the PCS
was made, and knowledge about the state which the stream is currently in,
the property value to be returned to the firewall core as well as the new
state of the stream. The PCS can therefore be seen as a state machine
and Figure 2.2, which shows a graphical illustration of a PCS capable of
detecting the ACK Ping attack described in Chapter 1, illustrates this. In

Default Property Valu Stream Key
Invalid Pairl | Pair2 |

IP_SRC IP_DST

TCP_SRCPORJTCP_DSTPOR

TCP_SYN=1 TCP_SYN=1 TCP_SYN=0
TCP_ACK=0 TCP_ACK=1 TCP_ACK=1
Closed TCP_FIN=0 TCP_FIN=0 SYN ACK TCP_FIN=0

return Seen original
Ok 1205 Ok

TCP_SYN=0 . TCP_SYN=0
TCP_ACK=1 Original\ tcp-ack=0
TCP_FIN=1 FIN Seen| TCP_FIN=1
regjkm First on%Eal
120 sec

TCP_SYN=0
TCP_ACK=1 =
TCP_FIN=1 TCP_FIN=1

relum g
2t on%lEa\

Original

120 sec

Established
Sdays

TCP_SYN=0 - TCP_SYN=0 TCP_SYN=0 R TCP_SYN=0
TCP_ACK=1 Original TCP_ACK=0 alf Closd  TCPZACK=1 eturn\ 1cp-ACK=0
TCP_FIN=1 FIN Seen\, TCP_FIN=1 TCP_FIN=1 FIN Seen) TCP_FIN=1

orighnal Last e Return orgml First e
120sec 120 sec 120 sec

Figure 2.2. A simplified PCS which checks for the correct use of the TCP- SYN, ACK, and
FIN flags and thereby capable of detecting the ACK Ping attack. For a description of the
meaning of TCP_SYN, TCP_ACK and TCP_FIN, see Appendix A.

this representation the nodes represent the basic states that the stream can
be in. The italic numbers written inside these nodes are the timeout values
specifying the amount of time that may pass between the reception of two
packets before a timeout occurs. Similarly, the edges (called transitions)
describe how a stream can pass between these states. The labels written
above the transitions are the requirements, from now on referred to as guards,
that must be satisfied by the received packet in order for the stream to
go from one state to another. Furthermore, the labels written below the
transitions specify which direction the packet must have relative to the first
packet of the stream. In the PCS of Figure 2.2 Original means that it must
be flowing in the same direction as the first, whereas return means that
it must flow in the opposite direction. The last labels, written below the
directions, specify the property value of the inspection. Finally, in the upper
right corner, two additional entities are shown. The default property value,
which specify the property value to be returned for packets not satisfying
any of the explicitly specified transitions, and the stream key, which specifies
the fields used to identify packets belonging to the same stream.

With the specification in Figure 2.2 it should be clear that an ACK Ping
attack can be detected as no state information exists about the stream of the
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unsolicited packet. As a result, the packet is checked against the transitions
emerging from the closed (Closed) state. As the PCS specifies that the
property value Invalid is to be returned if the first packet is not a SYN
packet, the firewall administrator can protect against ACK Ping attacks by
blocking packets returning this value. For an example of how to create a
PCS for streams utilizing the TCP/IP protocol, see Example 2.2.1.

Example 2.2.1 (Simplified PCS for the TCP /IP Protocol Suite)
TCP is a connection-oriented protocol and therefore by definition goes
through a series of states when opening and closing a connection. For the
sake of simplicity this example focuses only on the set up phase. In Fig-
ure 7.1(a), a transition system showing the states that a TCP/IP connec-
tion can pass through during this part of the protocol, can be seen[Pos81b].

Stream Key
TCP_SRCPOR]TCP_DSTPORT
Default Result TCP. SVNfO

TCP_SYN=1
onmial TCPTACK=0
Transition &

””””””””””””” TCP_SYN=0

TCP_SYN=0
TCPTACK=1 “ACK-=

TCPTACK=1

rov SYNACK

Established

H Closed Established }»576;;;{ Timeout

5days

snd SYN

(a) A transition system depicting the (b) A PCS checking the part of the
states through which a TCP/IP con- TCP protocol shown in Figure 7.1(a).
nection can pass while being set up.

Figure 2.3. Transition system for part of the TCP protocol(a) and a corresponding PCS(b).

As that figure shows, a connection is initialized by first sending a SYN
packet. The receiving host must then return a SYNACK packet in order
to indicate that the first packet has been received. In the event that both
hosts try to open a connection at the same time, that is they both send a
SYN packet, each host must return an ACK packet to the other before they
can both enter the Established state. Furthermore, timeouts can occur in
all open states. An example of this is the SYN Sent state. In the event
that a packet brings the stream into this state a new SYNACK must arrive
within 2 minutes. If this does not happen, a timeout occurs and the stream
ceases to exist. Finally, the stream key for TCP is made up of the source
and destination socket pairs with each pair being an IP address and a port
number. That is, if two packets both have the same values stored in these
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fields they are identified as belonging to the same stream.

With this short description of the first states of the TCP protocol, it
is possible to make a PCS that ensures that TCP/IP connections are set
up correctly. A graphical illustration of such a PCS, using the previously
described notation, can be seen in Figure 7.1(b). As can be seen from that
specification any new connection must be initiated by a SYN packet for
New to be returned to the firewall core. Furthermore, it can also be seen
that this packet brings the connection into the SYN Sent state. From here
two things can happen. Either a return SYNACK or a return SYN packet
is intercepted. In the former case, the connection enters the SYNACK
Sent state where a further ACK packet will bring the connection into the
FEstablished state. In the latter case, which is the situation where both
hosts simultaneously try to open a connection, a further two ACK packets
must be sent before the connection can finally be established. By dropping
all packets returning Inwalid the specifications of the Figure 7.1(a) can
therefore be upheld. Similarly, by dropping New packets from a network,
the establishment of connections by users on this network can be prevented.

2.2.2 Performing the Inspection

With the PCS in place it is possible to perform the actual inspection. Cur-
rently several different approaches to doing this exists. The most widely
used is Table Based Stateful Inspection[JSCO02| which is used by most open
source firewalls|Fil04|[Hom04| and built around a table (the state table) in
which the state of all streams currently being inspected is stored. Whenever
a packet is received, the state table is consulted for state information about
the stream to which the packet belongs, and the packet can subsequently
be inspected. The pseudo-code for the InspectPacket function, as shown in
Algorithm 1, shows how this is done.

As can be seen from this outline the first task upon receiving a packet is
to perform a lookup in the state table to determine whether any information
is stored about the stream of the packet. Based upon the outcome of this
lookup two things can happen:

Information is found: If information about the stream is found, this in-
formation tells which state the stream was in prior to the reception
of the new packet. With this information the content of the packet is
then checked against the constraints of the transitions emerging from
this state. When a transition whose constraints are satisfied by the
packet is found, the property value associated with that transition is
delivered to the firewall core. Depending on whether the firewall ends
up accepting the packet two things can then happen. If the packet
is accepted, the state table is updated to reflect the changes brought
by the packet. On the other hand, if the packet is dropped, the state
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Algorithm 1: Outline of the Inspect Packet function

Data : packet to be inspected
state info < LookupStreamInTable(packet);
if state info found then
foreach transition in PCS emerging from stored state do
if content of packet satisfies transition constraints then
if property value associated with the transition causes the
firewall to accept the packet then
if new state is a closed state then
‘ delete state info;
else
| update state info;

else
foreach transition in PCS emerging from closed state do
if content of packet satisfies transition constraints then
if property value associated with the transition causes the
firewall to accept the packet then
if new state is an open state then
L | create state info for new stream;

information remains unchanged to reflect the fact that the packet will
never reach its final destination.

No information is found: If the lookup yields no information it must be
assumed that the received packet is the first in a new stream. In this
case the contents of the packet is therefore checked against the transi-
tions emerging from the closed state. When a matching transition is
found its associated property value is passed on to the firewall core.
As was the case for when state information was found, two things can
then happen. If the firewall chooses to accept the packet the afore-
mentioned transition is checked to see if it points to an open state. If
it does, a new entry is added to the state table to reflect the arrival of
this new stream. If on the other hand the firewall chooses to block the
packet no entry is added regardless of the new state.

With respect to timeouts these are handled in a slightly different manner.
Where the InspectPacket function checked the received packets against the
transitions in the specification, timeouts only occur when no packets have
been received for a predefined amount of time. The normal procedure in
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table based SI is therefore to periodically check the status of all streams
in the state table. If a stream is found for which no packets have been
received within the predefined amount of time, the stream has timed out
and the entry is deleted. The outline of the TimeoutHandler function shown
in Algorithm 2 illustrates this.

Algorithm 2: Outline of the Timeout Handler function

while true do
foreach stream in state table do
if stream has timed out then
L | delete state info for stream;

wait X seconds;

2.3 Design Problems Introduced by Stateful Inspec-
tion

With the more detailed description of SI in place, we now turn our attention
to a description of some of the problems introduced by it. Some of the most
predominant ones will be described next.

2.3.1 Adds a Considerable Amount of Complexity to the
Firewall

From the description in the previous section it should be clear that perform-
ing SI is a relatively complicated task. Inevitably the introduction of SI into
an otherwise stateless firewall therefore leads to an increase in the complexity
of the firewall. As complexity always increases the risk of errors being made
during design and implementation, this is a serious problem. The following
paragraphs describe, from a design and implementation point of view, some
of the origins of this added complexity.

Fast storage and access to stream information: The key aspect differ-
entiating SI from stateless packet classification is SIs ability to view the
packets in the context of the streams to which they belong. For this to
be possible the firewall needs to be able to store, update, and access
information about this context. As should be clear from the outline
of the InspectPacket function this information needs to be accessed at
least once for every intercepted packet. For these operations not to
incur to great a performance penalty, it is therefore paramount to the
performance of the firewall, that they can be performed in a fast and
efficient manner.
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State information needs to be kept consistent: With the ability to store
information comes the need to keep it consistent with the stream it
represents. In particular, this means that two packets belonging to
the same stream can not be inspected at the same time as the code
in-between the table lookup and the table update is a critical region.
That is, if two packets from the same stream are in this section at
the same time, the latter is likely to take outset in a wrong state, and
therefore likely to be wrongfully inspected.

Secondly, there is the issue of coordinating the operations of the In-
spectPacket and TimeoutHandler functions. As was described in Sec-
tion 2.2.2 the normal procedure is to periodically traverse the entire
state table in the search for timed out streams. But what if the Time-
outHandler encounters a stream that appears to have timed out only
because a packet which arrived within time is still in the previously
mentioned critical region. In this situation the connection has clearly
not timed out and the stream information should not be deleted.

Both of the above issues can obviously be dealt with through the use
of a number of locks. However, as with most multi-threading, the
solution and its implementation can quickly become complex when the
previously mentioned performance requirements are also taken into
account.

Fast access to protocol conformance specifications: Aswith the state
table a PCS is accessed every time a packet is received. While the spec-
ification does not change during the operation of the firewall, a fast way
of accessing it is still needed.

Efficient handling of timeouts: While the code needed to deal with time-
outs is not very different from that needed for the inspection of packets,
it still puts a considerable strain on the state table. Where the Inspect-
Packet function requires a state table with fast access to a single table,
the TimeoutHandler requires fast traversal of all entries. As a result, a
datastructure capable of performing well in both situations, while still
allowing for a great deal of concurrency, is needed.

2.3.2 Keeping SI Up-to-date With New Protocols is a Te-
dious and Error Prone Task

As each PCS is specific to one type of stream at least one PCS is needed for
each type of stream supported by the firewall. This means that in order to
perform SI on a large number of stream types, you either need an easy way of
adding new specifications, or otherwise spend a lot of time adding these. The
latter approach however raises a number of issues. First of all it is not likely
to be a very feasible long term solution as new protocols and hence new types



Stateful Inspection and its Inherent Problems 16

of streams frequently appear. Secondly, it raises some concerns with regard
to the overall security of the firewall. The problem arises with the fact that
with each new PCS the amount of code making up the firewall increases.
As it is a widely recognized fact that in relation to security, simplicity is a
virtue[ea03|[ea02], it is a good idea to make the addition of new specifications
as easy as possible. This need is further increased by the fact that one
PCS for each type of stream might not be enough to suit all needs. An
example of this is the PCS for the detection of ACK Ping attacks described
in Section 2.2.1. While this specification is indeed capable of detecting such
attacks, it does not deal with e.g. the incorrect use of the sequence number
fields. Where the specification may therefore be sufficient in some areas of
use, it may equally as well be totally insufficient in others. On the other hand,
more comprehensive PCSs may in some situations be to strict or indulge to
great a performance penalty, and may therefore for some purposes be equally
unsuitable. As a result, several PCSs for the same type of stream is likely to
be needed.

However, one key factor somewhat easing the need for new PCSs is to be
found in the layered layout of the TCP/IP reference model[CK74|. Because
of this model, all streams simultaneously make use of several different pro-
tocols. In relation to SI this makes it possible to divide these protocols into
two groups, each with their own distinct properties. The first group make up
the network and transport layer protocols. These protocols are character-
ized by being few in numbers and hardly ever changing. The second group
comprises the application layer protocols, and where only a few network and
transport layer protocols exists, new application layer protocols appear on
a regular basis. A way of countering the need for many PCSs would there-
fore be to limit the support to include network and transport layer protocols
only. This approach however has one major drawback. While only allowing
for ST on network and transport layer protocols is certainly an improvement
over the strictly stateless approach, its effect is still limited compared to the
full approach where support for all the protocols of the packet is provided.
No matter which solution is chosen there is however nothing eliminating the
need for easy way of adding new PCSs.

2.4 Current Practices in the Implementation of State-
ful Inspection

This section provides an introduction to how two currently available fire-
walls implement SI and try to deal with the previously described problems.
It starts by describing the simplest and least flexible approach (used by
OpenBSD PF|[Fil04]), before moving onto the more flexible approach used
by the Linuz Netfilter[Hom04] firewall. Finally, a description of some of the
general limitations of the current practices will be given.
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2.4.1 OpenBSD PF

The implementation of SI in PF has a very monolithic architecture where
focus has been put on immediate simplicity as opposed to flexibility and
extendability. This means that while its architecture and code tends to be
relatively simple, the task of adding new PCSs is comparatively harder. This
is most clearly visible in the fact that the firewall provides no functionality
for easing the task of adding new PCSs. An example of this is the lack of
a built-in state table implementation that automatically handles issues such
as performance and concurrency. The result is that the implementor of new
specifications is forced to handle these issues himself. Arguably, this is prob-
ably also one of the reasons why only very few PCSs have been added to this
firewall. Finally, all specifications must be written in C, thereby as described
in Chapter 1, further increasing the risk of errors in their implementation.

2.4.2 Linux Netfilter

In Netfilter, contrary to what was the case with PF, flexibility and modular-
ity has been a major design goal in all aspects of the development process.
This particularly shows in its SI implementation which provides the PCS
developer with a number of built-in modules that can be used to efficiently
store information, handle concurrency issues etc. While the Netfilter firewall
might ease the task of storing state information it does however nothing to
make the actual specification of the protocol any easier'. This, along with
the code integrating it with the built-in modules still has to be written in C.
However, in comparison to PF, the addition of these built-in modules is still
a big improvement. Furthermore, as these modules are used by virtually all
PCSs and are integral parts of the ST subsystem, the number of bugs in these
modules is likely to be small. By using these modules, the PCS developer
can therefore stop focusing on these issues and instead concentrate more on
actual behavior of the stream.

With regards to the protocols supported by Netfilter, the effects of the
modular architecture are clear. As of writing, Netfilter ships with several
different PCSs for the most commonly used network and transport layer
protocols as well as PCSs for a wide range of application layer protocols.

2.4.3 Limitations in Current Practices

Although the two firewalls approach to the implementation of SI differ, there
is one problem they both share - the job of adding new PCSs is a tedious
and unstructured process containing a mix of dealing with the behavior of
the stream, as well as writing code integrating it with the firewall. While
Netfilter clearly constitutes an improvement over PF it is still insufficient.

'In Netfilter PCSs are referred to as connection tracking helpers
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Most of this stems from the fact the specifications must still be written in C
and that this language is simply not designed for this. This makes the task
unnecessarily complicated and can be the cause of errors which have nothing
to do with the behavior of the streams (pointer errors etc.). Because firewalls
are intended to provide security, and many of them (especially hardware
firewalls used by private users) are not easily upgradeable once they have
been deployed, it is important that they are free of errors. Writing PCSs in
general purpose languages is therefore overkill and not a feasible approach.
Furthermore, as correctness is paramount to the overall level of security it
would be a considerable improvement if it was possible to formally prove
the correctness of the PCSs. As proving the correctness of code written in
complex languages such as C is generally a very tedious task, this is yet
another reason why the current practices are insufficient.

2.5 The Proposed Solution - Retargetable Protocol
Conformance Specifications

Having described the different problems involved in performing SI and de-
termined the limitation of the current practices, our proposal to a solution
to the problem of adding PCSs will now be introduced. We start by giving
a brief outline of the proposal thereby describing its core features.

2.5.1 Outline of the Proposal

One of the main problems haunting todays implementations of SI is their
lack of a simple specialized language designed solely for the task of specifying
PCSs. We propose the development of such a language. The main advantage
will be that such a language can be made to perfectly hide all issues not
directly related to the specification of the PCS. Secondly, having a language
that is simple and tailored towards the specification of PCSs should reduce
the risk of bugs being present in the final specification. Furthermore, as the
behavior of a protocol remains the same no matter in which firewall it is
inspected, the language can be kept independent of any particular firewall.
The result is that a PCS written in this language can be seen as a universal
specification whose deployment is no longer confined to any single firewall.
In effect, such a language would therefore allow for the development of a
fully retargetable PCS creation system that can be used by current and
future firewalls. All that is left to the developer of the firewall is to develop
a compiler capable of transforming the universal specifications into code
usable by his particular firewall. This way, the same tried and tested PCSs
can be reused across different firewalls thereby further strengthening their
quality and easing the task of adding them. Finally, the language can be
tailored towards easing the task of formally proving the correctness of the
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specifications. This way, the system will not only ease the implementation
of the PCSs, but also make it easier to verify their correctness. In turn, this
should thereby reduce the risk of having to issue expensive fixes to already
deployed firewalls as a result of erroneous software.

2.5.2 The Architecture of the Proposed System

In Figure 2.4 the three phases involved in transforming a universal specifica-
tion written in the firewall independent language, into the final code usable
by a particular firewall, can be seen. The approach is simple and fairly
similar to what is used by other compilers. That is, the universal specifica-
tion is parsed into an intermediate representation from which the different
outputs are generated. Using this approach code reuse can be maximized
as the implementation created for phases 1 and 2 remains the same for all
output generators. This way, all that is left to the firewall developer is to
create an output generator for his particular firewall (which itself is a fairly
simple task). Finally, as the system is not bound to any specific program-
ming language, the entire system along with the output generators can be
implemented in a more high level language which, in turn, should ease the
development process.

Phase 1 Phase 2 I Phase 3

I
Native Firewall Code

Output Generatofs
| PF

Universal Specification | Firewall Independent Optimization

Firewall Independent and Protocol parser Intermediate Representation
Oriented Specification Languag )

Netfilter

IPFilter

1
1
'
1
|
/
l |

Figure 2.4. The three phases involved in transforming a PCS written in the firewall independent
language into code usable by a firewall.

The first step in the process depicted in Figure 2.4 is the firewall inde-
pendent and protocol oriented language. The first task in the development
of this language is to determine what it must be able to represent. That is,
what makes up a PCS, which protocols must it be able to represent, and
what is needed in order to specify the intended behavior of these protocols.
The result of this analysis is the development of a minimal model capable of
representing the specifications, and the development of a language capable of
representing this model. The next step is to develop an intermediate repre-
sentation upon which firewall independent optimizations can be performed,
and from which the final output can be generated. Doing so, the key issue
is to figure out which optimizations are feasible to perform, and in which
data structure the intermediate representation should be stored. The final



step in the transformation is to generate the actual output. This task is per-
formed by output generators provided by the firewall developers. The job
of these generators is to transform the optimized specification stored in the
intermediate representation, into something usable by the different firewalls.

2.6 Project Description

The goal of this project is to design, implement, and test the model and
accompanying retargetable PCS system described in the previous section.
As this, to our knowledge is the first project dealing with this issue, we will
narrow its focus and limit the system to the support of PCSs for TCP/IP
and UDP/IP only. The reason for choosing these protocols is mainly due to
their widespread use as the basis for most of todays Internet traffic/Tra01].

As described in Section 2.5 the development of the proposed system in-
cludes the design and implementation of the following components:

e Phase 1
— A model capable of representing protocol conformance specifica-

tions for the TCP/IP and UDP/IP protocol suites.

— A firewall independent and protocol oriented language with an
expressive power equivalent to that of the aforementioned model.

— A parser capable of turning PCSs written in the previously men-
tioned language into a parse tree acting as an interface between
the parser and the intermediate representation.

e Phase 2

— An intermediate representation capable of optimizing and storing
the PCS.

— An API for use by the output generators, capable of providing
access to PCSs stored in the intermediate representation.

e Phase 3

— To be able to test the proposed system and facilitate its current
and future development an output generator for the Netfilter[Hom04|
firewall is needed.



PART II

The Proposed System

Having briefly introduced the proposed system this part describes, in detail,
the different parts of that system. As described in relation to the architec-
ture a number of steps are involved in transforming the PCS written in the
firewall independent language into code usable by the individual firewalls.
To reflect this architecture this part contains a separate chapter for each of
these steps. As a result, Chapter 3 describes the underlying minimal model
capable of representing PCSs for the TCP/IP and UDP/IP protocol suites,
and developed to act as the foundation for the retargetable system. With
that foundation in place, Chapter 4 describes the protocol oriented language
developed to be capable of representing that model. With the language in
place Chapter 5 concerns the development of the intermediate representation
and the corresponding API from which the final output can be generated.
Finally, Chapter 6 is concerned with output generation process and provides
a hands-on example of how an output can be generated using the aforemen-
tioned API.






Chapter 3

The Underlying Model

This chapter describes the model underlying the proposed system. To in-
crease flexibility, while at the same time building a solid foundation for the
final system, the development of this model was split into two phases. In
Section 3.1 the behavior and different pieces of basic functionality needed in
a PCS is described, and an abstract model, the protocol conformance model
(PCM), which captures this behavior and functionality is defined. Through
the creation of this abstract model we aim to create a common foundation
which, depending on how it is specialized, can be made to represent PCSs for
various current and future protocols. Finally, and in tune with this approach,
Section 3.2 presents such a specialization capable of representing TCP and
UDP PCSs. Throughout the rest of the report, this specialization is then
used as the basis for the current version of proposed system.

3.1 The Protocol Conformance Model

As should be clear from the PCSs described and illustrated in the previous
chapters, the behavior of a protocol, and hence the streams using them, can
be described using an automaton. The PCM is therefore a formal definition
of the key concepts of the automaton described in those chapters, combined
with a definition of the environment in which it operates'. We begin by
describing and defining the major components in this environment.

3.1.1 The Environment

The two elements in the environment in which SI, and therefore the PCSs,
operates are those of hosts and streams. In this environment it is the respon-
sibility of the SI system to inspect the contents of the packets and return a

!The automaton used in the previous chapters is itself heavily inspired by that of timed
automata[AD94].
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result to the firewall core. As all packets using the same protocols are usu-
ally divided into the same predefined number of parts (each part containing
a particular piece of information, IP_ SRC, TCP_SRCPORT etc.), a packet
can be seen as a predefined set of variables whose valuation depend on the
content of the inspected packet. In the PCM the packets checked against
the PCS can therefore be defined in terms of such variables:

Definition 4 (Packet Variables)

A finite non-empty set of bounded variables PV contained within all
packets assumed to belong to streams of the type being inspected. The
value of a packet variable v € PV as stored in the packet p is denoted

po(v,p)-

A natural consequence of this definition is that only packets with a valuation
for each packet variable, can ever be presented to the PCS. As will later be
clear this is an essential property as it ensures that all packets, presented
to the PCS and legal within the framework of the PCM, can be successfully
inspected.

3.1.1.1 Streams

The second influencing element in the environment is the streams. As pre-
viously defined, these are sequences of packets logically bound together at
each host using a relation defined by one of the protocols of the stream. In
the PCM this relation is modeled by the abstract concept of the stream key
which is defined as follows:

Definition 5 (Stream Key)
The relation used to relate packets belonging to the same stream to each
other.

In tune with the previous description of SI, it is in the PCM the responsibility
of the SI system, using the stream key, to investigate any received packet
and find the stream to which it is seems to belong. Upon completion of this
task it is then checked against the PCS and an inspection result is identified.

3.1.2 The Protocol Conformance Specification

The second part of the PCM is the model of the PCS itself. As previously
described, this part can be modeled using an automaton where state change
can occur either as the result of a packet being received, or as the result
of a timeout. In the former case a result is returned to the firewall core
signifying the outcome of the inspection. Depending on the final classification
performed by the firewall two things can happen. If the packet is allowed to
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pass, the state information for that stream is updated to reflect the reception
of that packet. On the other hand, if the packet is blocked, no updates
occur and the packet is simply ignored. To model this behavior a number of
different entities need to be incorporated into the automaton of the PCM.
The following sections describe and define these entities.

3.1.2.1 Locations and Transitions

Being an automaton the PCS, as modeled in the PCM, consists of a number
of locations and transitions. The locations (of the set L) model the basic
states in which the inspected streams can be. As was the case for the sample
PCSs described in Chapter 2, two different types of locations exists. The
first location in any PCS is the closed location which represents the state
where no packets have been received and therefore no information is stored.
Similarly, the open locations are the locations representing the intermediate
states where information is stored.

Concerning transitions two types, with differing semantics, exists - update
transitions and ignore transitions. The update transitions (UT) are the
traditional transitions used whenever the final acceptance of a packet means
that the state information needs to be updated. Ignore transitions (IT) on
the other hand are self-loops used whenever the acceptance of a packet must
not lead to that information being updated (at the very least an update
transition will reset the timeout timer). A scenario where ignore transitions
are useful is in situations where an invalid packet has been received. In the
event that the firewall, regardless of this, chooses to accept the packet it
could be useful for ST system to simply ignore the packet and assume that
it will be ignored by the receiving host. Had a traditional update transition
been used, essential information such as the timeout timer would have been
updated and no longer been consistent with the stream.

3.1.2.2 State Information

To keep track of the state of a stream in-between inspections, state informa-
tion needs to be stored. In the PCM this capability is made possible through
the introduction of a number of stored variables. These variables are defined
as follows:

Definition 6 (Stored Variables)

A finite set of bounded variables SV stored by the SI system for each
stream being inspected using the particular PCS. The value of a stored
variable v € SV is denoted sv(v).




The Underlying Model 26

3.1.2.3 Constraints on Transitions

An essential part in the functionality of a PCS is the ability to vary the result
of an inspection based upon the contents of the received packets. In the PCM
this functionality is implemented by allowing for a number of constraints
to be placed on the transitions of the automaton. As firewalls, by their
very nature assume the role of intermediary observers, two different types
of constraints are needed - direction constraints and content constraints. To
simplify the final system, while at the same time stressing that direction
and content constraints, at least conceptually, are two different types of
constraints, these are kept as separate entities in the model. The first type
of constraints, the direction constraints, are defined as follows:

Definition 7 (Direction Constraints)

Constraints on the direction of the received packet. Being assigned to
all transitions not emerging from the closed location, the set of possible
directions is denoted D and the direction constraint associated with a
transition t € UT U IT is denoted dc(t). Similarly the direction of the
packet p is denoted dir(p).

Similarly, the constraints on the content of the packet, referred to as the
guards, are defined as follows:

Definition 8 (Guards)
Constraints over the stored and packet variables G C SV U PV, assigned
to a transition t € UT U IT and obeying the following rules: Letting
emit(x) denote the location from where the transition x € UT U IT is
going out, it must for the guards grd(t) associated with the transition
t, never be the case that 3t' € UT U IT where emit(t)=emit(t’) and
dir(t)=dir(t’) and where the following holds:

= grd(H)n = grd(¥) # {2}
where |= p denotes the set of all tuples over the values of the stored and
packet variables that satisfy the guards p € G. Finally, there must for
any packet p, from all locations L and directions D, be a transition whose
guards are satisfied by the values of the packet variables of the packet.

As can be seen from this definition all guards must adhere to two basic
rules. First of all it must never be the case that the guards assigned to two
transitions cause these transitions overlap. If this property was to fail the
PCS would become non-deterministic and unable to return a distinct result
to the firewall core. Secondly, there must always be an enabled transition for
any given packet that, by the stream key, is considered part of the stream. As
the result returned to the firewall core depends entirely on which transition is
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taken, the PCS could, without this requirement, be presented with a packet
to which it has no response.

3.1.2.4 Updating the State Information

Upon taking a transition it must be possible to update the state information
stored for the stream. To fulfill this requirement variable assignments can be
placed on update transitions throughout the PCS. This way, when an update
transition is traversed, the stored variables can be updated to reflect this. To
ease the formalization of the model, the assignments on all transitions going
to the closed location are predefined to assign to the stored variables, their
initial value. More specifically these assignments, referred to as updates, are
defined as follows:

Definition 9 (Updates)

Assignments to the stored variables. Associated with update transitions,
the updates are performed whenever the transition to which they are as-
signed is taken. The set of possible updates is denoted U and finally,
the updates associated with transitions going to the closed location are
predefined to reset all stored variables to their initial values.

3.1.2.5 Specifying the Inspection Result

The next concept in the model is that of property values. As previously
described these are used to specify the result to be returned to the firewall
core. In the PCM this is done by assigning a property value to each transition
and returning it whenever that transition is taken. In the PCM the property
value is defined as follows:

Definition 10 (Property Value)
A walue assigned to each transition t € UT U IT and returned to the

firewall core whenever that transition is taken. The set of property values
15 denoted V.

3.1.2.6 Timeouts

The final part of the automaton is the functionality used to model timeouts.
For this, two component are needed - the clock and the timeout value. The
clock, which is used to keep track of the time elapsed since the reception of
the last accepted packet, is defined as follows:
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Definition 11 (Clock)
A wariable C, ranging over Z*, whose value v(C) is incremented by 1
each time a second passes and the stream is in an open location.

The timeout value, that is, the amount of time allowed to pass before a
timeout occurs is a value assigned to each open location. More formally it
is defined as follows:

Definition 12 (Timeout Value)

A wvalue x € Z assigned to each open location. Given a location, this
value defines the amount of time that may elapse between the reception
of two accepted packets.

With the definitions of the individual components in place the final automa-
ton, named the protocol conformance automaton, can be formally defined.
In Definition 13 this formal definition can be seen:

Definition 13 (Protocol Conformance Automaton)
A protocol conformance automaton (PCA) is a tuple (L, ly, tval, C, UT,
IT, de, grd, upd, pval) where:

L, is a finite non-empty set of locations.

lo € L, is the closed location that is used when no state information is
stored.

tval : L\ {lo} — Z™", is a function which labels each open location with
a timeout value.

C, is a clock.
UT CLxL\{(lg,lo)}, is a set of update transitions.

IT C L x L, is a set of ignore transitions where for any two connected
locations I,1' € L then 1 =1".

de: (UTUIT)\{lo} x L — D, is a function which labels each transi-
tion mot going from ly with a direction constraint.

grd : UTUIT — G, is a function which assigns to each transition a
number of guards of the type, and obeying the rules defined in Def-
inition 8.

upd : UT — U, 1is a function which assigns to each update transition not
going to ly a number of updates.
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pval : UT UIT — V, is a function which assigns a property value to each
transition.

Having defined the environment and the syntax of the PCA, the semantics
of this automaton can now be defined.

3.1.3 Semantics of Protocol Conformance Automata

The semantics of the PCA, and thus the behavior of a PCS, is defined in
the form of a transition system (.S, sg, —). In this system S is a set of states
where each state is a triple (I,v,¢) with [ being a location, v a valuation of
the stored variables, and t a valuation of the clock. sg is the initial state
(lp, vo,to), where the clock and all stored variables are zero. Finally, — is
the transition relation defining how to move between the states. To capture
the differences in the transitions incurred by the absence of directions on
transitions emerging from the closed location, and the absence of a timeout
value on the closed location, the transition relation defines two different
types of update and ignore transitions. The open transitions are transitions
not emerging from closed location, whereas the closed transitions all emerge
from this location. Specifically, the transition system underlying a PCA is
defined as follows, where |= is a satisfaction relation between a valuation of
packet variables, stored variables, and the set of guards G:

Definition 14 (Transition System Underlying a PCA)

The transition system associated with the protocol conformance automa-
ton A, denoted M(A) is defined as (S, sg, —) where:

S ={(l,v,t) € (L\{lp}) x sv(SV) xv(C) | t < tval(l)}

so = (lp,vo, to) where tg =0 and vo(z) =0 for all x € SV

the transition relation —C S x ({uo, uc,i0,ic} x VU{t}UZT) x S is defined by the rules :
1 <“§§§£5> s (Lot) 25 (I0°,0) if the following conditions hold:
a. e = (LI’) € UT and 1 #
b. a packet p is received
c. pu(PV,p), v = grd(e)
d. the return of the property value o € V' associated with the
transition e, will allow the packet to pass through the firewall

e. v’ is the valuation of SV after applying upd(e) to v
[t < tval(l)
g. dir(p) = dc(e)
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2 (ﬁfjjjj) : (lo,vo,t0) =5 ('0,¢) if the following conditions hold:

a. (lo,I’) € UT
b. rules 1.b, 1.c, 1.d and 1.e hold

2 (ﬁ;g;ﬂ s (L) fog (L,v,t) if the following conditions hold:

a. (L) € IT and 1 # Iy
b. rules 1.b, 1.c, 1.d, 1.f, and 1.g hold

2 (gzzgg) = (lo,vo,t0) ey (lo,v0,t0) if the following conditions hold:

a. (lo,lo) e IT
b. rules 1.b, 1.c, and 1.d hold

3 (timeout): (I,0,t) LN (lo,v0,t0) if the following conditions hold:

a. | 7£ lo
b. t = tval(l)

4 (delay): (I,v,t) 4, (L, t+d) for any positive integer d, if the following
conditions hold:

a. l 7é lo
b. t+d < tval(l)

c. no packet is received

3.1.4 Depicting the Protocol Conformance Model

For depicting the protocol conformance model we use the following conven-
tions. With regards to the PCA, circles denote locations and timeout values
are written inside these circles. Update transitions are represented using
arrows and ignore transitions are denoted using dotted arrows. The guards
and updates associated with the update transitions are written above or to
the right of the arrows where as direction constraints and property values are
written below or to the left. Furthermore, the closed location is depicted us-
ing a double lined circle. Finally, for the sake of clarity the different locations
are given a name which is written inside the circle.

An example of this graphical representation of the PCM can be seen in
Figure 3.1. In this example a stream can get into location A if a packet satis-
fying guard; is received, and no information about the stream of the packet is
stored. From there two things can happen: either a packet satisfying guardas,
guards, or guard, and have the appropriate direction is received within 60
seconds, or else a timeout occurs. In the former case where a packet satisfies
guards, the stream remains in location A, the stored information is updated
according to updates, and the clock is reset. In the case where guardy is sat-
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Figure 3.1. Graphical representation of a PCS specified in the PCM.

isfied, the stream enters the closed location and all information about it is
deleted. Similarly, in the case where guards is satisfied by a packet traveling
in directiony, the property value Invalid is returned and all information,
including the clock, is left unchanged. Finally, in the latter case where no
packets are received, the stream times out and effectively enters the closed
state where the stored information as well as the clock is reset.

Having defined the abstract version of the underlying model it can now
be specialized towards the towards the task of representing PCSs for TCP
and UDP streams. Most notably, this means that abstract concepts such as
packet variables, stream key, and guards must be specialized so that they
represent what is needed by these protocols.

3.2 The TCP/UDP Specialization

The parts of the PCM which need to be specialized for it to be capable of
representing PCSs for TCP and UDP streams are packet variables, stream
key, stored variables, direction constraints, guards, and updates. An example
of the need for a specialization can be seen in the definition of guards. In
the PCM a guard is defined merely as a constraint over the set of stored and
packet variables. But what does this mean in terms of representing PCSs for
TCP and UDP streams?. That is, what must be possible to use as guards
when creating PCSs for these streams. As the answer to this question, along
with similar questions for the other parts, depends on the protocol being
inspected, and on what the PCS is supposed to check, this question has
no exact and final answer. In an attempt to overcome this problem a wide
range of existing PCSs for these protocols have therefore been investigated.
Using the knowledge gained from this investigation, the PCM has then be
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specialized to a point where it is sufficiently concrete to be used a the basis
for the universal language, while at the same time still expressive enough to
represent the investigated PCSs. Through the examination of PCSs that are
complicated and in widespread use, we thereby hope to be able to represent
most, if not all, PCSs one may want to make.

In the following section the reference PCS used as a basis for the special-
ization will be briefly described?. Following this description we conclude on
the requirements of that PCS and formally define the specialized model.

3.2.1 The Reference Protocol Conformance Specification

The PCS used as a reference for what must be representable by the special-
ization is a PCS which checks TCP streams for their correct use of flags and
sequence numbers|Roo|. The reason for using this as the reference is that it
appears to be the most comprehensive, while at the same time being one of
the most widely used PCSs around?. The sequence number part essentially
places an upper and a lower bound on the TCP_SEQ and TCP_ACKSEQ
fields. That is, the values of these fields must always fall within the window
defined by these bounds.

In an environment where packets are sent between hosts A and B and the
firewall F' is placed in between, the reference PCS defines the upper bound
on the TCP_SEQ field as follows:

TCP _SEQp+TCP _LEN, < maac{TCPiACKSEQB + max(TCP_WINSIZEg, 1)} (3.1)

where the notation Xy denotes the value of the variable X in a packet
sent by Y and seen by F. Using that notation the constraint signifies that
the sum of the TCP_SEQ and TCP_LEN fields in any packet sent by A,
must never exceed the maximum value of the sum of the TCP_SEQ and
TCP _ACK fields from packets sent by B and seen by F. Finally, the term
max(TCP_WINg,1) denotes the maximum value of the two arguments and
is used in the special case where the window of host B needs to be re-probed
after its annunciation of a zero sized window. In the same environment, and
using the same notation, the lower bound for the TCP _SEQ field is defined
as follows:

TCP_SEQa + max{max(TCP_WINB, 1)} > max{TCP_SEQA + TCP_LENA} (3.2)

Similarly, with respect to the TCP_ ACKSEQ field, the upper bound is
defined as follows:

TCP_ACKSEQ4 < maz{TCP_SEQ + TCP_LEN} (3.3)

%Several other PCSs for both TCP and UDP streams have been investigated but none
brought about any additional requirements.
3Most open source firewalls (PF, Netfilter, IPFilter etc.) implement it.
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Finally, the lower bound for the TCP _ACKSEQ field is defined as follows:
TCP_ACKSEQ4 + MAXACKWINDOW > mcm{TC'PiSEQB + TC’PiLENB} (3.4)

where MAXACKWINDOW is as a user-defined constant slightly larger than
the largest possible TCP window size.

To implement the 4 constraint the reference PCS proposes to use 3 stored
variables for each of the two hosts. These are: X.td end, X.td_mazxend,
and X.td _mazwin where X denotes either of the two hosts. X.td end is
used to hold the maximum value of maz{TCP_SEQx + TCP_ LENx} as
used in constraints 3.2, 3.3, and 3.4 where as X.td_maxzend holds the value of
TCP_ ACKSEQx +max{TCP_WINx,1} as used by constraint 3.1. Fi-
nally, X.td_mazwin is used to hold the value of maxz{maxz(TCP_WINx,1)}.
With regards to the flag checking part of the PCS, it simply enforces the rules
defined in RFC793[Pos81b], and is therefore a superset of the PCS previously
shown in Figure 2.3(b).

3.2.2 The Specialized Protocol Conformance Model

From the reference PCS several things becomes clear with regards to the
abstract concepts which need to be specialized. First of all, it is clear that
the set of packet variables should be defined as set of all fields present in
the headers of the inspected protocols. The reason for this is obvious as all
information used by these protocols is present within the protocol headers.
Secondly, it should be noted that the TCP protocol makes use of two types of
header fields - normal fields (e.g. TCP_WIN and TCP_SYN) and sequence
number fields (TCP_SEQ and TCP _ACKSEQ). The normal fields are nor-
mal bounded variables where as the sequence number fields are used for sim-
ulating unbounded behavior in the otherwise bounded variables|EB96|. As
the semantics of sequence number arithmetics (as prescribed by RFC1982)
requires these two types to be kept separate, the PCMs definition of packet
variables can be specialized to the following:

Definition 15 (Packet Variables for TCP and UDP Streams)
The set of packet variables PV for TCP and UDP streams is the set
of fields in the protocol headers of the packets of the type of stream for
which the PCS was made. The set PV is divided into two subsets, PSV
which is the set of sequence number fields and PNV which is the set of
normal fields. For these sets the following must hold: PSV U PNV =
PV and PSV N PNV ={@}

Concerning the specialization of the stream key, TCP and UDP relate packets
by matching the contents of a few predefined fields. If two packets share the
same content in these fields they are said to belong to the same stream. To
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reflect this, the stream key for TCP and UDP streams is defined in terms of
a pair of tuples capable of holding these predefined fields.

Definition 16 (Stream Key for TCP and UDP Streams)

A pair of ordered n-tuples a = (ay,az,...,a,) and b = (by,ba,... by)
over the set of packet variables PV. Two packets p and p' are con-
sidered to belong to the same stream if either pv(a;,p) = pv(a;,p') A
po(bi, p) = pv(bi,p') or pu(ai,p) = pv(bi,p') A pu(bi,p) = pv(ai,p’), for
i=1,2,...,n.

With regards to stored variables the reference PCS stores either the values
of the fields, or the result of an expression over the set of packet and stored
variables. As a packet variable is now defined as a set of fields and as a field
is essentially a bounded variable over the domain Z* with a lower bound 0,
and an upper bound of 2#%% — 1 the definition of stored variables can be
specialized to the following:

Definition 17 (Stored Variables for TCP and UDP Streams)
The set of stored wvariables SV for TCP and UDP streams is a set of
bounded variables over Z*. The set SV is divided into two subsets, where
SNV is the set of stored normal variables and SSV is the set of stored
sequence number variables. Letting ub(a) denote the upper bound for
the variable a € SNV U SSV, then for any wvariable x € SNV the
following must hold: ub(x) = 2 — 1 for i € {1,2,...,32}. Similarly,
for any variable y € SSV the following must hold: ub(y) = 2 — 1 for
i € {8,16,32}. Finally, for the sets SNV and SSV the following must
hold: SSV USNV =SV and SSVNSNV = {o}

With regards to the direction constraints for TCP and UDP streams the
direction of packets in these streams are seen relative to the first packet of
the stream to which they belong. Furthermore, the direction depends on
the values stored within the fields making up the stream key. In tune with
the definition of the stream key for TCP and UDP streams, this type of
constraint is therefore specialized to the following:

Definition 18 (Direction Constraints for TCP and UDP Streams)

Either original or return, the direction of a TCP or UDP packet is seen
relative to the first packet of the stream. A received packet p is said to
be flowing in the original direction if for the first packet of the stream
p’ the following holds with regards to the tuples a and b in the stream
key: pu(a;,p) = pv(a;,p’) A pv(bi,p) = pv(b,p'), fori = 1,2,...,n.
Similarly a packet is flowing in the return direction if the following
holds: pv(a;,p) = pv(bi,p') A pv(bi,p) = pv(a;,p’), fori=1,2,...,n.
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In the PCM the set of guards is defined as a set of constraints over the set of
packet variables and stored variables. With the specialization of these two
sets this abstract concept can be specialized as well.

As explained in the description of the reference PCS, this PCS speci-
fies a window for the sequence numbers. It therefore uses guards that are
boolean expressions over expressions on the members of the sets of packet
variables, stored variables, and positive integer constants. Based on this,
and RFC1982s definition of sequence number arithmetics, we specialize the
set of guards to the following:

Definition 19 (Guards for TCP and UDP Streams)

For the set NEXP of expressions over the sets PNV USNV , and for the
set SEXP of expressions over the sets PSV USSV | the set of gquards for
TCP and UDP streams is defined according to the following grammar:

G:= G NGy |la~b|x~y|true

where a,b € NEXP, z,y € SEXP, and ~€ {<,<,>,>,=}

where true represents the guard that is always true. Furthermore, with an
outset in the reference PCS, we define the set NEXP to be the set of expres-
sions over normal variables using the common operators. More specifically,
we define it as follows:

Definition 20 (Set of Expressions Over Normal Variables)
The set NEXP of expressions over normal variables is defined according
to the following grammar:

¢pu=dlalb| ()] (2)(Pr~ ¢2)
where dec Z", 2 {1,2,...,32}, a€ SNV, b PNV, and
N€{+7_7*7/7//}

Important to notice from this definition is the structure of the expressions
over the basic elements, positive integer values, packet variables, and stored
variables. As can be seen, expressions are augmented with a bit value (z)
specifying the size of the domain in which the evaluation of the expression is
to be made. This is especially useful when operating with expressions over
different sized variables. Later, in Definition 22, the exact meaning of this
bit value will be defined.

Finally, in terms of the set SEX P of expressions over sequence number
variables we define this in accordance with the rules of RFC1982:
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Definition 21 (Set of Expressions Over Sequence Number Variables)
The set SEX P of expressions over sequence number variables is defined
according to the following grammar:

pu==zlylrxtaly+ta
where x € SSV, y € PSV, anda € NEXP

With regards to the semantics of these two sets, the natural semantics of
expressions over normal variables is defined as follows:

Definition 22 (Evaluation of Expressions over Normal Variables)
The natural semantics for the evaluation of expressions over normal vari-
ables is defined as follows:

[num] s+ d —, n where n = N[d]
[varg,] st a —, n where n = sv(a)

[varp,] s Fb—4 n where n = pu(b,p) and p is the packet being inspected

sEd—q
[parent] ;’_w)ﬁ

ladd) S=o=ef e Dar SEEmets ahere v = (v1 + v2) mod 27

[mult] sE¢1—av1  sEgo—ava  Fz—gvs where v = ('Ul * ,02) mod 2v3

sH(2)(d1%¢p2)—qv
- sEp1—a sEpo— 4 F2— o V3 o
[divf] == Zﬁ(z)‘s(%j@)fav =—22 where v = | |mod 2%

; g1 —a sEga—a Fz—qu: = :
[dive] =22 :ﬁ(z)z(bl/z/%;’iav === where v =[] mod 2%

sk@p1—qv skpa—qv Fz— v v >va—gtt
[subl] P1—av1 P2—av2 a3 12>U2—g

SF(2)(d1—P2)—av where v = (v; —vg) mod 2

Fp1—a Fpo—q Fz— g va >vg— 3
[subs] = $12av1 s fﬁ(z){(};ﬁ@z)ﬁa? vzva=afl phere v =29 — vy + 20,

Similarly, based upon RFC1982 the semantics of sequence number expres-
sions is defined as follows:

Definition 23 (Evaluation of Sequence Number Expressions)
Letting size(a) denote the number of bits assigned to the variable a €
PSVUSSV, the natural semantics for the evaluation of sequence number
expressions from the set SEXP is as follows:

[varg,| s Fx —, n where n = sv(x)
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[Uarpv] sty —, n wheren =pu(y,p) and p is the packet being inspected

stx—,v1  sta—qva size(x)—1
[add] o2 0=e2 where 2 > vy

and v = (v1 + v2) mod 257%¢(*)

sby—avi  sta—avs size(y)—1
[add,) P — where 2 > vy

and v = (v1 + v2) mod 25%°W)

With the syntax and semantics of the elements making up a guard in place,
the semantics for the evaluation of guards is defined as follows:

Definition 24 (Evaluation of Guards for TCP and UDP Streams)
Letting size(a) denote the number of bits assigned to the variable a €
PSVUSSV, the natural semantics for the evaluation of guards for TCP
and UDP streams is as follows:

sEG1—= gttt sEGa—gtt
[andt] SFGl/\GQHgtt

land] % where i € {1,2}

[gtnt] SF“HS,“_Z;b_S):i’f“”Q where vy > vy
(9tny] sm?,ﬁé’;b_f:;?“” where v < vy
leqnt] sm?,“_zl:b j:??av? where v1 = vy
leqn ] sm‘s’,‘_‘;’;b _f:;’]?“” where v| # v9

[gtst] Sw?,ﬁ?>yi:¥7””v2 where size(x) = size(y)

vy <v2 A v2 —v1 > gsize(z)—1
and v ,
vl > ve A v — v < 28tze(@)—1

[gts ] skx—gv1  sky—gzva

where size(z) = size(y)

sFx>y—gff
vl <va A vy — vy > 2size(z)—1
and - v _
v > vy A v —uv2 < gsize(z)—1
ska—zv1  skb—vo _
leqst] e — where vi = vy

sta—zv1  skEb—gv2
leqs ] o T where vy # vy

[true] s b true —g4 tt
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Important to note from this definition is the slight difference in the seman-
tics of the comparison of sequence number variables as opposed to what
is prescribed by RFC1982. Where the RFC leaves it free for any imple-
mentation to decide on the outcome of comparisons between values where
z —y = 2%%¢(®)~1 the above semantics defines such comparisons to true.
This alternate definition is needed as the original definition would introduce
ambiguity into the final model. The new definition has been chosen as it
matches the semantics of the implementation currently used by both Linux
and OpenBSD.

Finally, with regards to updates, building upon the separation of normal and
sequence number variables, we specialize them to the following:

Definition 25 (Updates for TCP and UDP Streams)
The set of updates U for TCP and UDP streams is defined as generated
by the following grammar:

Ui=a:=b|x:=y | UU

where a € SNV, be NEXP,x € SSV, and ye SEXP

where their semantics is defined as follows:

Definition 26 (Evaluation of Updates for TCP and UDP Streams)
The set of updates U for TCP and UDP streams is defined as generated
by the following grammar:

[a$Snorm] (a :=b,s) — s[a — v] where s-b—,v

[asSseq] (z:=y,s) — s[x — v] where sty —,v

(Ur,s)—s" (Ua,s")—s'
(U1U2,8)—s’

[comp]

This concludes the development of the model underlying the proposed
system. With that in place, the stream oriented and firewall independent
language capable of representing the specialized model can now be devised.



Chapter 4

The Protocol Oriented
Language

Having concluded on the requirements for the description of PCSs for TCP
and UDP streams, and having devised a model encapsulating those require-
ments, the protocol oriented language can now be created. In the following
section that language, named PCSL for Protocol Conformance Specification
Language, will be described.

4.1 The PCSL Language

The PCSL language is a strongly typed, declarative language inspired by
the ta language|LPY97]| used by the formal verification tool UPPAAL to
describe an extended version of timed automata. This chapter will describe
the PCSL language through the use of a simple example. Included in that
example will be a graphical illustration of a PCS and the corresponding
PCSL code describing it. From this example the abstract syntax of the
different constructs in the language, and how they fit into the previously
described model, will be described!. With regards to the formal semantics
of the language we refer to the definition of the specialized PCM as the
semantics of all significant constructs are already defined there. As a result
the language is merely a way of describing these constructs in a textual
way, and formally defining the semantics of the complete language would
therefore be superfluous. With that said, the graphical representation of
the example PCS used throughout this chapter can be seen in Figure 4.1.
Similarly, the corresponding PCSL code used to describe this PCS can be
seen in Table 4.1. As can be seen from the figure, this rather naive PCS
is capable of detecting SYN floods against a single non-existent host. More
specifically, if more than 50 SYN packets are sent through the firewall within

'For a full listing of the concrete and abstract syntax of the PCSL language as well as
a formal description of its type system, see Appendix B.
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Figure 4.1. The PCS generated by the PCSL specification in Table 4.1.

defpropvalue Invalid; 25 guard TCP_SYN == 1,
26 packetcount < 50;
packetnorm IP_SRC 32; 27 update packetcount := (6)(packetcount + 1);
packetnorm IP_DST 32; 28 propvalue Ok;
packetnorm TCP_SRCPORT 16; 29 3}
packetnorm TCP_DSTPORT 16; 30
packetnorm TCP_SYN 1; 31 itrans A -> A {
32 direction original;
storednorm packetcount 6; 33 guard TCP_SYN == 0;
34 propvalue NotSyn;
keyitem IP_SRC , IP_DST; 35 3
keyitem TCP_SRCPORT , TCP_DSTPORT; 36
37 utrans A -> Closed {
clocation Closed; 38 direction return;
olocation A 60; 39 propvalue Closing;
40 ¥
utrans Closed -> A { 41
guard TCP_SYN == 1; 42 utrans A -> Closed {
update packetcount := 1; 43 direction original;
propvalue New; 44 guard TCP_SYN == 1,
3 45 packetcount >= 50;
46 propvalue Flood;
utrans A -> A { 47 ¥

direction original;

Table 4.1. The PCSL code generating the PCS shown in Figure 4.1.

a timeframe of 60 seconds, and no return packet is received, the property
value Flood is returned to the firewall core. If on the other hand a reply to
one of the packets is received, the Closing value is returned and the tracking
of the stream is terminated.

4.1.1 The Overall Structure of the PCSL Language

As can be seen from the syntax in Table 4.2 a PCSL specification consists
of 5 basic parts. These are, default property value declaration, variable dec-
larations, stream key declaration, location declarations, and transition decla-
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rations.

1. Syntactic categories
PCS € Protocol Con formance Speci fications
DD € Default property value declaration
VD € Variable declarations
SD € Stream key declaration
LD € Location declarations
TD € Transition declarations
2. Definitions
PCS = DD VD SD LD TD
Table 4.2. The 5 parts of any PCSL specification.

In the following sections, with an outset in the example, the purpose and
syntax of each part is described.

4.1.2 Default Property Value Declaration

The first part of any PCSL specification (line 1 in Table 4.1) is a construct
used to simplify the code needed to describe a specification. As described
in the previous chapter, for a PCS to be legal, it must contain an enabled
transition for every possible packet to which it may be presented. This way,
no matter which packet is received by the firewall, the ST system will always
be able to take a transition and thereby return a result. To ease the task
of adding these transitions the default property value has been introduced.
Instead of adding a lot of ignore transition covering all the packets that
are to be ignored by the firewall, this default value can be used to specify
which value must be returned when no transition is enabled. This way,
the developer is left with declaring the transitions for the special cases and
can leave the rest to the default value. An example of the benefits of this
construct can be seen in the example PCS (Figure 4.1) where the ignore
transition emerging from the Closed location is not explicitly declared in
the PCSL code. Instead, it is merely a result of the default property value
being Invalid. This way, the declaration of a lot of trivial transitions can be
omitted. The syntax for the specification of the default property value can
be seen in Table 4.3.

4.1.3 Variable Declarations

The next part in a PCSL specification is the declaration of the variables
used throughout the PCS. In the example code this part spans the lines
from 3 to 9, and as can be seen from the syntax depicted in Table 4.4, a
variable declaration consists of 3 parts. The first part is the variable type
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1. Syntactic categories
DD € Default property value declarations
p € Property values

2. Definitions
DD := defpropvalue p;

Table 4.3. Abstract syntax for the declaration of the default property value.

1. Syntactic categories
V D € Variable declarations
sn € Stored normal variables
ss € Stored sequence number variables
pn € Packet normal fields
ps € Packet Sequence number fields
n € Numerals
2. Definitions

VD ::= storednorm sn n; | storedseq ss n; | packetnorm pn n;
| packetseq ps n; | VD1 VD,

Table 4.4. Syntax for variable declarations.

where the name of each type should speak for itself. The second part is the
name of the variable. For stored variables the name is, as in other languages,
simply a way of identifying the variable for use later in the code. For packet
variables on the other hand it acts as an interface to the fields in the inspected
packets. In Appendix A the name-to-field mapping table used by the system
can seen. As an example of this system, when naming a packet variable
TCP_SYN, it means that this variable must always contain the value of the
SYN field in the received TCP packets. This way, all information stored
in the headers of the packet can be accessed using the appropriate variable
names. The final part of the declaration is the number of bits assigned to
hold the variable. As defined in the specialized PCM (Definition 15), all
variables are bounded variables over Z* with a lower bound of 0. The upper
bound however varies from variable to variable and therefore needs to be
declared. An example of such a declaration can be seen in line 5 where the
packet variable TCP_SRCPORT has been declared with an upper bound of
65535.

4.1.4 Stream Key Declaration

The next part, which covers lines 11 and 12, is the declaration of the stream
key. The syntax for this part can be seen in Table 4.5. As described in
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1. Syntactic categories
SD € Stream key declaration
pn € Packet normal fields
ps € Packet sequence number fields
VLIST € Variable lists
2. Definitions

SD := keypair VLIST ;| SD1 SDy
VLIST = pn,pn|ps, ps

Table 4.5. Syntax for stream key declarations.

the model (Definition 16) the stream key is made up of two tuples of packet
variables. As also described in that definition, every member in each tuple
is paired with a member in the other tuple, and depending upon how the
contents of these pairings match up, the direction of the packet relative
to the stream can be determined. In PCSL these two tuples and pairings
are specified using the keypair construct which is made up of two comma
separated parts. In this respect the first part specifies a member in tuple A,
whereas the second part specifies its corresponding pairing in tuple B. Using
this syntax it is thereby always assured that the tuples are of the same size,
while at the same time assuring for the easy specification of e.g. the two
socket pairs used by TCP/IP streams.

4.1.5 Location Declarations

The fourth part is the declaration of locations. In the example PCS this part
covers lines 14 and 15 and its syntax can be seen in Table 4.6. As can be

1. Syntactic categories

LD € location declarations

cl € Closed locations

ol € Open locations

n € Numerals

CLD € Closed location declarations

OLD € Open location declarations
2. Definitions

LD = CLD; OLD;

CLD ::= clocation cl

OLD ::= olocation ol n | OLDy ; OLD,

Table 4.6. Syntax for location declarations.
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seen from that syntax this part is itself split into separate 2 parts. The first
part is for the declaration of the closed location and consists of the reserved
word clocation and a name for that location. The second part is a sequence of
declarations of open locations with each declaration consisting of the reserved
word olocation along with a location name and a timeout value. The timeout
value corresponds to the timeout value in the PCM and describes how many
seconds may pass before a timeout occurs. In the example 2 locations are
declared. The closed location is named Closed, where as the open location
is named A. Finally, the timeout value for the open location is 60 seconds.

4.1.6 Transition Declarations

The final and most dominating part is the specification of the transitions.
This part spans from line 17 onto the end of the example and its syntax can
be seen in Table 4.7.

1. Syntactic categories
TD € Transition declarations
pn € Packet normal fields
ps € Packet sequence number fields
sn € Stored normal variables
ss € Stored sequence number variables
cl € Closed locations
ol € Open locations
n € Numerals
p € Property values
D € Directions
GD € Guard declarations
G € Guards
UD € Update declarations
U € Updates
PD € Property value declatations
NEXP € Normal expressions
SEXP € Sequence number expressions
BOP € Boolean operators
AOP € Arithmetic operators
2. Definitions
TD :=itrans cl -> cl {GD PD}
| itrans ol -> ol {D GD PD}
| utrans cl -> ol {GD UD PD}
| utrans ol -> ol {D GD UD PD}

continued on the next page
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continued from the previous page

| utrans ol -> ¢l {D GD PD}

| TDy TDo
D ::= direction original; | direction return;
PD ::= propvalue p;

GD := guard G; | €

G @= NEXP BOP NEXP | SEXP BOP SEXP | Gy , Gy
NEXP == n|sn|pn| (n)(NEXP AOP NEXP) | (NEXP)
BOP = <|>|<=|>=]|==

SEXP := ps+ NEXP | ss+ NEXP

AOP = + |- 1*1/1//

UD := update U; | ¢

U = sn:= NEXP |ss:=SEXP |U;, U,

Table 4.7. Syntax for transition declarations.

As can be seen from this syntax the declaration of transitions is fairly straight
forward and built around the grammar defined in the previous chapter. In
tune with the definitions of the model two types of transitions exists, update
and ¢gnore. To reflect this, every declaration begins with one of the reserved
words, utrans or itrans, signifying the type of the transition. Following this
reserved word are the names of the locations that are to be connected and
a block of declarations assigning constraints, updates, and a property value
to the transition. Furthermore, as can be seen from the example the syntax
of the guards and updates is equal to that of the model, with the exception
of the true guard being left out and represented by leaving out the guard
declaration. Finally, to ensure that no two transitions have overlapping
constraints, and thereby ensuring that the rules defined in relation to guards
in the underlying model are upheld, precedence is given to the transitions
in the order they are declared. Specifically, this means that in the event
that the reception of a packet causes two transitions to be enabled, the top
most transition as declared in the PCSL code is chosen. While it is possible
to explicitly check that no transitions are overlapping it is an NP-complete
problem and this simple approach of giving precedence is therefore used
instead.

This concludes the description of the language capable of representing
the functionality of the specialized protocol conformance model. In the next
chapter the intermediate representation capable of storing, optimizing, and
offering the PCS to the output generators, will be described.
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Chapter 5

The Intermediate
Representation

As described in Chapter 2 the role of the intermediate representation is two-
fold. First of all it is the place in which firewall independent optimizations are
performed, and secondly, it is in charge of providing the output generators
with an easy-to-use interface (the output generator API), giving them access
to the PCSs. In the first two sections we analyze what is required from the
intermediate representation to represent PCSL specifications, and describe
how the current implementation of the system meets those requirements.
With that in place, Section 5.3 gives a brief introduction to the interface
currently offered to the output generators'.

5.1 Requirements to the Intermediate Representa-
tion

As should be clear from the previous chapters the transitions are the cor-
nerstones of any PCS. The property value to be returned, the updates to
be applied, and the new state of the stream, are all factors determined by
the transitions. Because of this, the intermediate representation, and hence
the requirements to it, can be split into two parts - the requirements to the
representation of transitions and the requirements to the representation of
everything else. With regards to the transitions the intermediate represen-
tation should meet the following requirements:

Should make it easy to find the enabled transition: A major part in
performing SI is the task of determining which transition is enabled by
a given packet. To make it easier for the output generators to create
an output capable of doing this, the information provided through

'For a complete description of the output generator APT see the documentation ac-
companying the current implementation.
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the output generator API should be structured in a way that easily
accommodates this task. As a result, to ease the implementation of
this API, the intermediate representation should store the information
regarding the constraints on the transitions, in a way that eases this.

Should reduce the amount of guard checks needed: This requirement
relates to the fact that the intermediate representation is the place
where firewall independent optimizations are performed. As an exten-
sion to the last requirement the task of finding the enabled transition
should therefore be made as efficient as possible. From a firewall inde-
pendent point of view, efficiency is mainly influenced by the number of
guards which needs to be checked before the right transition is found.
As a result, the intermediate representation should optimize the PCS
to minimize this number of guard checks.

Should retain the C like syntax used for guards and updates: This
final requirement relates to how the individual pieces of information in
the transitions must be represented. As the vast majority of current
firewalls are implemented in C and most output generators therefore
are likely to generate C code, the structure of the information given
to them by the output generator API should ease the generation of C
code. Consequently, the intermediate representation should retain the
C-like syntax of the guards and updates in the PCSL language and
refrain from compiling them into another syntax.

Finally, concerning the representation of the rest of the PCS only one
requirement exist. As most output generators must generate C code, the
output generator API should be geared towards supporting this. To ease
the task of implementing that API the intermediate representation should
therefore store this part of the PCS in a way that simplifies this.

5.2 The Current Intermediate Representation

The intermediate representation currently used in the retargetable PCS cre-
ation system is fairly simple. The reason for this being that this version
of the implementation serves mainly as a test and development platform
for the retargetable concept. In terms of the intermediate representation,
focus has therefore been put on meeting the requirements concerning the
ease of finding the enabled transition and creating a stable output generator
API. Because of this, the description provided in this report regarding the
structure of the intermediate representation is rather brief.
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5.2.1 Representing Transitions

Currently transitions are represented using decision diagrams (one for each
location and direction) in which the guards associated with the different
transitions are encoded. In Figure 5.1 examples of these diagrams, along with
the code for the transitions they represent, can be seen. The advantages of

1 defpropvalue Invalid; 10 itrans X -> Y { 19 propvalue Ok;

2 ...snip... 11 direction original; 20 3

3 12 guard z==10; 21

4 utrans X -> Y { 13 propvalue Flood; 22  utrans X -> Y {

5 direction original; 14 } 23 direction return;
6 guard x==y, z<4; 15 24 guard x>y, z>8;
7 update x:=(4)(x+y); 16 utrans X -> Y { 25 update x:=z;

8 propvalue Flood; 17 direction return; 26 propvalue Ok;

9 3 18 guard x>y, z<=10; 27 3}

(a) The PCSL code generating the PCS shown in Figure 4.1.

false

[
ignore
[10] Invalid

[0,10]

update p update
x:=(4)(x+y) ot LX N update X:=z
location=y |gno.re \gnore location=y, location=y
Ok Invalid| | Flood Ok Ok
(b) The decision diagram representing (¢) The decision diagram representing
the original transitions in Figure 5.1a. the return transitions in Figure 5.1a.

Figure 5.1. A partial PCSL specification and the decision diagrams representing its transitions.

using decision diagrams are many. First of all they ease the task of picking
the right transition as this becomes merely a matter of traversing a tree.
Secondly, as the terminals can hold all the information associated with the
transition they represent, generating code for picking the right transitions
becomes comparatively simple. As a result, this task amounts to nothing
more than traversing the diagram and generating conditional statements for
each node. Upon arriving at a terminal the actions associated with that node
can be performed and the packet has then been inspected. Using decision
diagrams therefore enables the intermediate representation to meet the first
requirement described in the previous section. Another reason for using
decision diagrams is to be found in the way they ease the task of optimizing
the PCS as prescribed by requirement 2. As all transitions applicant to
a single packet are encoded in the same diagram, minimizing the number
of guard checks amounts to nothing more than reducing the diagram thus
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potentially reducing its height?.

5.2.1.1 The Decision Diagram

For the purpose of representing the transitions of the PCSL language a new
type of decision diagram had to be created. The reason for this being that
none of the investigated diagrams could properly handle the potentially over-
lapping transitions of the PCSL language, while at the same time allowing
for the use of (boolean) expressions over variables as the test associated with
each non-terminal. The result was a new type of diagram which, as should
be clear from Figure 5.1, lends its basic structure from the intermediate rep-
resentation of BPF+[ABGY99] and its nodes from that of BDDs[FMY97] and
IDDs[ST98]. The diagram has two distinguishing features. First of all the
tests associated with its non-terminals are capable of mirroring the guards of
the specialized PCM. This way it meets the aforementioned requirement of
being able to retain the syntax of the guards of the PCSL language. Secondly,
it incorporates the priorization of transitions defined in PCSL. This allows
for the construction of the diagram without having to go through the costly
process of identifying and altering any overlapping guards. The result is that
the time complexity of the construction process is linear to the number of
guard elements being encoded, thus allowing for the fast transformation of
PCSs from PCSL code to the final output?.

Constructing the Diagram

The construction of the diagram is a two phase process. In the first phase an
intermediate boolean diagram for the guards of each transition to be included
in the final diagram is created. These diagrams are constructed using the
recursive CreatelD algorithm outlined in Algorithm 3, and examples of these
diagrams can be seen in Figure 5.2. This construction algorithm, which
takes as input a list of the guard elements to be represented and returns the
corresponding boolean diagram, has three parts. If the input list is empty,
all non-terminal nodes have been created and the “true” terminal is returned.
If it is not empty, two things can happen depending on the guard element
at the head of the input list. Either the element is a boolean comparison of
two variables (or expressions containing variables) in which case a boolean
node with the partitions “true” and “false” is created. On the other hand, if
the list head contains a comparison of a variable/expression and an integer

’Due to the experimental status of the implementation only a very limited amount of
optimization is performed on the diagrams. Well known predicate elimination techniques
similar to those described in [ABG99]| could however be applied.

3Tt should be noted that the current diagram is very limited in the logic it is able
to represent, but that it is perfectly capable of representing that of the guards in the
specialized model.
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5.2 The Current Intermediate Representation

[0,9 [10]

11,15]

False || True

(a) Intermediate dia- (b) Intermediate dia-
gram for the guard gram for the guard
x==y, z<4. z==10.

Figure 5.2. The intermediate boolean diagrams for the diagram depicted in Figure 5.1b.

Algorithm 3: Outline of the Createl D algorithm

Data : list of guard elements
Result: diagram for guard element list
if empty list then

| return “true” terminal;

if list head contains comparison of two variables then

node < boolean node;

child(node, "true”) = CreatelD(consecutive list elements);
child(node, "false”) = “false” terminal;

else
node «+ valuation node;
child(node, satisfied interval) = CreateID(consecutive list elements);
foreach unsatisfied interval ¢ do
| child(node, i) = “false” terminal;

return node;

constant, a valuation node with the corresponding intervals as partitions is
created.

Upon completing the first phase the different intermediate diagrams need

to be merged. This is done using the Append algorithm outlined in Algo-
rithm 4. This algorithm takes as input two diagrams (A and B) and
merges them, so that in cases of overlaps, the transition(s) of diagram A are
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Algorithm 4: Outline of the Append algorithm

Data : diagram A, diagram B
Result: new diagram

if A is a “false” terminal then
| return B;

if A is a “true” terminal then
| return A;

if A—B then
Mutually decompose A and B into their greatest common intervals;

foreach resulting interval i do
| child(A,i) = Append(child(A,i), child(B,i));

else
foreach interval i of A do
| child(A,i) = Append(child(A,i), B);

return A;

preferred. It ensures this property by only attaching the B diagram (or parts
of it) to the intervals pointing to the “false” terminals in the A diagram. This
way, only if the transitions represented by the first diagram are unsatisfiable,
will the transition of the next diagram be considered. An example of this
can be seen in Figure 5.1b where diagram B has replaced the “false” terminal
pointed to by the X ==Y node in diagram A. By merging the diagrams in
the order of their priority in the PCSL specification the final diagram can
therefore be created.

Having described how the current implementation internally represent
the important parts of the PCS, the next section provides a description of
the output generator API offered by the intermediate representation.

5.3 The Output Generator API

The output generator API is a C interface containing 33 functions split into
5 groups, with each group making available different parts of the PCS. In
this section the basic principles behind these groups along with the functions
they encompass are described?.

5.3.1 The Initialization Group

The initialization group contains only one function.

*For a complete description of the output generator API see the electronic documen-
tation accompanying the current implementation.
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rpcshandler *procSpec(char *pcs)

It takes as input a PCS written in the PCSL language, processes it, and
returns to the caller a rpeshandler to an instance of the intermediate repre-
sentation created for that PCS. With an instance of the intermediate repre-
sentation in place, it is then the purpose of the functions in the rest of API,
to give access to the information stored within that instance.

5.3.2 The Variable Group

The variable group contains the functions needed to obtain information
about the variables declared in the PCS. They are as follows:

int getNumVars (rpcshandler *handler)
varType getVarType(rpcshandler *handler, int varId)
int getVarSize(rpcshandler *handler, int varId)

char  *getVarName(rpcshandler *handler, int varId)

Common for all of them is that they as their first parameter take a rpc-
shandler as returned by procSpec(). Secondly, each individual variable is
indexed and accessed using its own unique varld taken from the pool of in-
tegers between 0 and get NumVars() — 1. Using this function, all variables
can therefore be identified and information such as type (eg. packetnorm),
varsize (the number of bits assigned to the variable), and name can be
determined.

5.3.3 The Stream Key Group

As the name suggests the stream key group is home to the functions needed to
obtain information about the stream key defined in the PCS. The functions
in this group are as follows:

int  getNumKeyPairs(rpcshandler *handler)
char *getPairVariable(rpcshandler *handler, int pairId, pEl mode)

As was the case with the variables, each keypair is accessed using its own
unique Id. Using these Ids, the get PairVariable() can be used to obtain the
names of the variables used in the different keypairs by specifying the mode
parameter (either TUPLE A or TUPLE_B) which describes which part of
the keypair that should be returned.

5.3.4 The Location Group

The fourth group is the location group. This group encompasses all the
functions needed to obtain information about the locations declared in the
PCS. The functions contained within this group are as follows:
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int getNumLocations (rpcshandler *handler)

locType getLocType(rpcshandler *handler, int locId)
char xgetLocName (rpcshandler *handler, int locId)
int getTimeout (rpcshandler *handler, int locId)

The functions in the location group are conceptually very similar to those
found in the variable and key groups. As was the case with variables and
keys, the individual locations are indexed and accessed using their own
unique Id’s, and using the different functions in the group, information such
as type (open or closed), timeout value, and finally the name of the location,
can be obtained.

5.3.5 The Transition Group

The last and largest group is the transition group. This group is itself split
into 3 subgroups. The functions in the first subgroup are used to get hold
of the different decision diagrams created from the transitions in the PCS.
They are as follows:

dd *getClosed(rpcshandler *handler)
dd *getOpen(rpcshandler *handler, int locId, directions dir)

As no direction constraints are associated with transitions emerging from
the closed location, the getClosed() function takes as its only input the
rpcshandler representing the PCS in question. getOpen(), on the other hand,
takes as input also a location Id along with a direction, and returns the
corresponding decision diagram as described in Section 5.2.1.
The second subgroup holds the functions needed to traverse the transition

decision diagrams returned by the above functions. They are as follows:

nType getNodeType(rpcshandler xhandler, dd *ddNode)

uint  getNumPartitions(rpcshandler *handler, dd *ddNode)

uint  getLBound(rpcshandler *handler, dd *ddNode, uint partId)

uint  getUBound(rpcshandler *handler, dd *ddNode, uint partId)

dd getNextNode (rpcshandler *handler, dd *ddNode, uint partId)

apTree *getGuardAPTree(rpcshandler *handler, dd *ddNode)

gType getGuardType(rpcshandler *handler, apTree *aptNode)

To traverse the diagram 5 different functions are available. getNodeType()
is used to determine the type of a node in the diagram (non-terminal or
terminal) and similarly getNumPartitions() returns the number of associ-
ated partitions. As with the previous groups the unique partlds can then
be used to obtain the upper and lower bound of the partitions using the
getLBound() and getUBound(). Finally, an abstract parse tree encoding the
test associated with a given node can be obtained using the getGuardAP-
Tree() function. Furthermore, to obtain the type of the guard represented
by that tree (boolean or expression), and thereby determine whether the
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node storing it in the decision diagram is a boolean or expressional node,
getGuardType() can be used. Finally, to traverse the abstract parse tree, the
following 4 functions are available and the specifics to how they correspond
to the different constructs of the language can be found in the electronic
documentation accompanying the current implementation:

apTree xgetTokenName (apTree *aptNode)

apTree *getFirstChild(apTree *aptNode)

apTree *getSecondChild(apTree *aptNode)
apTree *getThirdChild(apTree *aptNode)

As should be clear from the name getTokenName is used to get the name of a
node in the abstract parse tree. Depending on the outcome of this function a
number of children are assigned to the node thereby making up the structure
of the tree. These children can subsequently be obtained through the use of
the 3 get*Child function.

The third and last subgroup contain the functions needed to obtain the
information stored in the terminals of the decision diagram. They are as
follows:

tType *getTransType(rpcshandler *handler, dd *ddTerminal)

int getNumUpds (rpcshandler *handler, dd *ddTerminal)

int getUpdVar (rpcshandler *handler, dd *ddTerminal, int updId)
apTree *getUpdAPTree(rpcshandler *handler, dd *ddTerminal, int updId)
int getNewLoc (rpcshandler *handler, dd *ddTerminal)

char *getPropValue(rpcshandler *handler, dd *ddTerminal)

From their names the purpose of each of these functions should be clear. As
previously described, associated with each terminal is a number of updates
(possible 0). Using the three functions getNumUpds(), getUpdVar(), and
getUpdAPTree() these updates can be obtained in a way similar to what was
the case with guards in the previous subsection. Finally, the getTransType(),
getNewLoc(), and getPropValue() functions can be used to get the type of
the transition (ignore or update), the location to which the transition points,
and finally the property value associated with the transition in question.

This concludes the description of the requirements to the intermediate
description, the intermediate representation used by the current implemen-
tation of the retargetable PCS system, and the output generator API. In
the next chapter, an example as to how to use this API to create a simple
output generator for the Netfilter firewall will be given.
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Chapter 6

Output Generation

This chapter describes the output generation phase of the proposed system.
As described in Section 2.5.2 this is the phase where the PCS, obtained from
the intermediate representation, is transformed into something usable by a
particular firewall. Obviously, as what is usable by one firewall is most likely
useless to everything else, the development of these generators is left entirely
to the firewall developers wanting to use the system. However, to give the
reader a feel for the process involved in making such a generator, this chapter
describes the design and implementation of a sample output generator for
a slightly modified version Netfilter'. In Section 6.1 a brief introduction
to the SI part of this firewall is given thus making it clear what needs to
be produced by the generator. With that in place, Section 6.2 provides a
description of the actual generator.

6.1 Adding Protocol Conformance Specifications to
Netfilter

As described in Section 2.4.2 Netfilter is an open-source firewall where a lot of
infrastructure has been added to ease the development of new functionality.
Due to this added infrastructure, adding an additional PCS to the firewall
amounts to implementing a C interface of 6 functions and creating a table
entry struct specifying the variables to be stored in the state table.

As described in Section 2.2.2 table based SI works by storing the state
information in a table. Whenever a packet is received, a lookup is performed
to determine whether information is stored about the stream of the packet.
If a matching entry is found the information stored in this entry is used in the
inspection of the packet. If not, the packet is checked against the transitions

! Currently SI does not distinguish between the packets that are to be blocked and
those that are to be accepted. As a result the state table is updated regardless of the
future of the packet. To circumvent this, a few minor alterations have been made to the
standard firewall, thus in effect, easing the development of the generator.
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emerging from the closed state of the PCS. In Netfilter this inspection process
is carried out using a number of functions, each with their own well defined
area of responsibility. By implementing these functions a new PCS can
therefore be added to the firewall. More specifically, the process that the
ST subsystem goes through whenever a packet is received can be seen in
Algorithms 5 and 6, where the functions to be implemented for each PCS
are written in italic. In Netfilter the InspectPacket function listed in

Algorithm 5: Outline of the Netfilter Inspect Packet function

Data : packet to be inspected

entry < LookupStreamInTable(packet);

if entry found then

‘ packet(entry, packet, direction);

else
entry «— create empty entry;
pkt_to_tuple(buf fer,entry);
invert tuple(buf fer,entry);
new(entry, packet);

Algorithm 5 is used to perform the actual inspection. Depending on whether
the packet is eventually accepted or dropped it is then the responsibility of
the Commit function listed in Algorithm 6 to apply the updates to the state
table?.

Algorithm 6: Outline of the Netfilter Commit function

Data : packet to be inspected
if packet is to be accepted then
if packet->delete then
‘ DeleteEntryFromTable(packet);
else
| tableEntryForPacket=packet->updatedEntry;

As can be seen from the InspectPacket function the first function to be
used is the packet function which has the following prototype:

int packet(struct ip_conntrack *ct, struct iphdr *iph, size_t len,
enum ip_conntrack_info ctinfo)

>The introduction of the Commit function is one of the modifications made to the
standard firewall.
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This function is called whenever a packet for whose stream, an entry in the
state table exists. With the entry, packet, and the direction as parameters,
it is the job of this function to perform the actual inspection. To make it
possible to delay the actual updating of the state table until it has been
determined whether the packet is to be accepted or not, the updates are
written into a temporary table entry struct attached to the packet along
with the property value of the satisfied transition. Just before the packet
is either accepted or dropped the updates can then be applied using the
Commyt function.

Next, is the pkt_to tuple function:

int pkt_to_tuple(const void *datah, size_t datalen,
struct ip_conntrack_tuple *tuple)

As can be seen from the listing this function is called after an empty ta-
ble entry has been created. Given the packet and the new entry it is the
responsibility of this function to extract from the packet, the values of the
variables making up the stream key, and write them in the new entry. When
performing lookups in the table the values of these stored variables can then
be used to identify the appropriate entry.

The third function in the interface is invert tuple:

int invert_tuple(struct ip_conntrack_tuple *tuple,
const struct ip_conntrack_tuple *orig)

The purpose of this function is very similar to that of pkt to tuple. As
with that function, inwvert tuple is used to fill the fields used to store the
stream key. However, where the previous function simply extracted the
values from the packet, this function stores an inverted version of those
variables such that they reflect how they would look had the packet been
flowing in the return direction. This way, the direction of a received packet
can be determined simply by checking which version of the stream key is
matched by the packet.

The fourth and final function used by InspectPacket is the new function.
Its prototype looks as follows:

int new(struct ip_conntrack *conntrack, struct iphdr *iph,
size_t len)

As with the packet function this function is responsible for performing the
actual inspection. However, as can be seen from InspectPacket this function
is called upon the reception of the first packet in a stream. Apart from this,
the responsibilities of packet and new are the same.

In addition to the 4 functions used by InspectPacket, two secondary func-
tions used to print the content of the state table entry must also be imple-
mented. The prototype of the first function is as follows:
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unsigned int print_tuple(char *buffer,
struct ip_conntrack_tuple *tuple)

The purpose of this function is to print the contents of the stream key into
the buffer provided in the parameter list. This buffer is then used to provide
the user with information about the streams flowing across the firewall.

The last function is the print_ conntrack function:

unsigned int print_conntrack(char *buffer,
struct ip_conntrack *conntrack)

Similar to print_tuple this function is responsible for printing information
about the values stored in the state table entry to the given buffer. However,
contrary to that function print conntrack is responsible for printing the
values of any additional variables not already covered by print_ tuple.

The last piece of the interface to be implemented is the table entry struct.
As previously described this struct declares the variables that are to be stored
within each entry in the state table. It is to instantiations of this struct
updates are made using the packet and new functions.

6.2 The Netfilter Output Generator

Having identified the interface which needs to be implemented the output
generator can now be created. As this generator is responsible for mapping
the different constructs of the protocol conformance model to the operations
of Netfilter using the above mentioned interface, the output generator will
be described in that order.

6.2.1 Stored Variables

The code for generating the table entry struct, thereby mapping the stored
variables of the PCM to a PCS in Netfilter firewall, is fairly straight forward.
An outline of the code capable of generating this struct can be seen in Algo-
rithm 73.  As can be seen from this outline a variable is simply declared for
each stored variable in the PCS. To achieve the bounded behavior defined for
variables in the model, each variable is declared to the exact size specified in
the PCS. As a result the normal integer primitives are used for variables of
size 8,16, and 32 whereas bit-fields are used for everything else. Finally, as
can be seen from the last line of the outline an additional integer is declared
to be used for storing the location Id. This variable can then be used by the
new and packet functions to track the location of the stream.

3The handler parameter in the output generator API calls has been left out for brevity.
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Algorithm 7: Outline of the generate entry struct function

foreach stored variable varld do
if getVarSize(varld) != 8,16 or 32 then
‘ declare bit-field of size getVarSize(varld)
else
| declare unsigned int of size getVarSize(varld)

declare location variable integer

6.2.2 Stream Key

As previously described the code for implementing the stream key in Netfilter
is split over two functions, pkt to_tuple and invert packet. As the current
system, and Netfilter on the transport layer level, currently only supports
streams utilizing the TCP and UDP protocols, and as the stream keys for
these protocols are always the same, the code for generating these functions
is trivial. An outline of this code is shown in Algorithm 8.  As can be seen

Algorithm 8: Outline of the generate_ streamkey function

foreach stream keypair do
switch packet variable type do
case TCP packet variable
generate pkt_to_tuple function for TCP
generate invert tuple function for TCP
| exit generator

o

ase UDP packet variable
generate pkt_to_tuple function for UDP
generate invert tuple function for UDP
| exit generator

otherwise
L continue

from this outline the stream key generator simply traverses the keypairs
specified in the PCS. As Netfilter handles all network layer parts of the
stream key transparently, pairs related to this layer are simply ignored and
the traversal continues. Eventually, upon reaching a TCP or UDP stream
key pair (identified on the prefix of the variable) the code corresponding to
that protocol is generated and the generation stops.
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6.2.3 Transitions and Locations

In terms of mapping transitions and determining which transition to take for
a given packet, this is done in very much the same way described in relation
to the intermediate representation. As previously described two functions
need to be implemented, new and packet. An outline of the generator for
the mew function can be seen in Figure 9. Initially called with the root

Algorithm 9: Outline of the generate_ new function

Data : ddNode from the getClosed diagram
switch getNode Type(ddNode) do

case NON-TERMINAL

foreach partld association with ddNode do

generate conditional for partition partld
generate_new(getNextNode(ddNode, partld));

case TERMINAL

if getTransType(ddNode) == UPDATE then
foreach update associated with terminal do
| generate update code

generate code for updating location variable
generate code for updating timeout value

| generate code for returning associated property value

of the diagram returned by the getClosed function, this recursive function is
capable of traversing this diagram and generate the new function. It does
this by first determining the type of the node in the diagram. In case of
it being a terminal, the type of the transition represented by this terminal
determines what happens next. If it is an update transition, code for each
associated update is generated along with code for updating the location
and timeout values. Finally, regardless of the transition type, code for re-
turning the property returned by getPropVal is generated. In case of the
given node being a non-terminal, conditional statements for each partition
are generated. Upon completion of the generation for each partition, the
generate_new function is then called with the child of that partition.

With regards to the code for the packet function, the generator just
described can be reused. However, instead of calling it with the getClosed
diagram, packet requires it to be called with each diagram associated with
the open locations. Similarly, conditionals for checking the location variable
along with the direction of the received packet must be generated as well.
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As previously described Netfilters PCS interface contains an additional two
functions, print_tuple and print_conntrack. The purpose of these are to
print the contents of a given table entry to a buffer which can subsequently
be displayed in a /proc entry. The first function, print_tuple, is responsible
for printing the contents of the non-IP parts of the stream key. An outline
of the structure of the generated buffer can be seen in Figure 10. Because

Algorithm 10: Outline of the structure of the buffer generated for the
print_tuple function

sprintf(buffer*
foreach stream keypair pairld do
if getPairVariable(pairld, TUPLE A) != “IP_*” then
getPairVariable(pairld, TUPLE _A) :%u
L get PairVariable(pairld, TUPLE B) :%u

b2
foreach stream keypair pairld do
if getPairVariable(pairld, TUPLE A) != “IP_*” then
, getPairVariable(pairld, TUPLE A) ,
L getPairVariable(pairld, TUPLE B)

)5

Netfilter handles all network layer stream key information transparently the
generator simply picks out the non-IP pairs of the stream key. For each
variable the name along with its value is then printed to the buffer.

With regards to the buffer generated for the print conntrack function
this is very similar to what just described. However, where the print tuple
buffer printed the value of the stream key variables this buffer prints the
names and values of the stored variables. An outline of the structure of this
buffer can be seen in Algorithm 11.  As can be seen from this outline the
buffer is generated simply by traversing the stored variables of the PCS. As
the generator for the table entry struct declared these variables using the
same names as in the PCS these names can be used directly.

This concludes the detailed description of the proposed system. In the
next part the current implementation of the system is tested, and a conclu-
sion concerning the system as a whole is drawn.



Algorithm 11: Outline of the structure of the buffer generated for the
print_conntrack function

sprintf(buffer*
foreach stored variable varld do
| getVarName(handler,varld) :%u

state : %s”,
foreach stored variable varld do
| getVarName(handler,varld)

stateid to name(stateid)

)5




PART III

Test and Conclusion

Having spent the last part describing the proposed retargetable PCS system
in detail, this part finalizes and concludes on the project. First, in Chapter 7
the current implementation of the proposed system is tested to ensure that
the possible performance penalty incurred by the high-level approach of the
retargetable system does not hinder any practical use. With that in place,
Chapter 8 points out a number of directions for the further development of
the system and finally, in Chapter 9, the project is finalized with a conclusion
on the advantages and drawbacks of the system and its usefulness in general.






Chapter 7

Testing The System

In order to investigate the feasibility of the proposed system and facilitate
its current and future development, the system described in this report has
been implemented along with the output generator described in the previ-
ous chapter!'. In this chapter we test the performance of the code generated
by the Netfilter output generator and through that, indirectly test the cor-
rectness of the implementation in general. The tests involves measuring the
performance of the code generated by the Netfilter output generator from
a PCSL specification of the TCP PCS currently used by Netfilter. The re-
sult is then compared to the performance of the “native” version thus giving
a sense of the performance hit accompanying the retargetable system. In
Section 7.1 we start by describing the PCS used in the tests and then in
Section 7.2 the actual tests and their results are described.

7.1 The Protocol Conformance Specification

The TCP PCS used by Netfilter is more geared towards the task of tracking
the presumed connection state of a stream rather than that of detecting
illegal packets. Because of this the PCS is very liberal in the kind of packets it
allows and bares little resemblance to the official TCP specification|Pos81b].
The result is the very large PCS depicted in Figure 7.1. Because of its size
this PCS provides a good basis for the tests. First of all its size will result in
quite a large PCSL specification. This should, in turn, provide a good test
for the usability of the PCSL language. Secondly, the size will result in a lot
of code being generated by the output generator. As a lot of processing on
the packets takes place outside the code affected by the retargetable system,
a proportionally small amount of overhead could easily be overshadowed.
Testing on a large PCS with a large amount of code should increase this ratio
between inside and outside processing and hopefully reduce this problem.

'For a brief description of the current status of this implementation, see Appendix C.
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7.2 Testing the Performance of the Generated Code

The purpose of the performance tests are to establish how much of a per-
formance penalty is likely to be incurred by the high level approach of the
retargetable system. Given the unoptimized state of the Netfilter output gen-
erator the results obtained from these tests should provide an upper bound
for that overhead. Therefore, if the results are acceptable we should be able
to conclude that the overhead is manageable.

7.2.1 Test Setup

The tests have been performed on a small laboratory network consisting of 2
traffic generators separated by a firewall and connected through a Cisco 3500
XL gigabit switch. The topology of this network can be seen in Figure 7.2
and details on the computers and their software are listed in Table 7.1.

(Traffic Generatmj<_> <_’(Traffic Generator)
1 2

= ] Gbps

Firewall

Figure 7.2. The topology of the network used for the tests.

Processor: Athlon 2000+ Processor: Athlon 2000+

NICs: SysKonnect 9821 v. 2.0 NICs: SysKonnect 9821 v. 2.0
Kernel: Linux 2.4.20 Kernel: Linux 2.6.7

NIC driver: sk98lin v6.04 NIC driver: sk98lin v6.23

(a) Configuration of the traffic gen- (b) Configuration of the firewall.
erators.

Table 7.1. Configurations of the computers in the test network.

While this setup does not represent any real world scenario it should be
sufficient as we are only interested in a comparative measure between native
and the PCSL approach. Furthermore, as we are interested in increasing the
ratio between inside and outside processing, this simple setup is preferable
as having only a single stream across the firewall reduces the processing
required by outside parts (table lookups etc.).
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7.2.2 Traffic and Test Data

The tests were performed using Iperf v2.0.1 as this tool is capable of produc-
ing bidirectional traffic and allows for the entire test to be performed using a
single stream. In accordance with the recommendations of RFC1944|BM96|
the tests were conducted using a number of different frame sizes - 56, 128,
512, and 1518 bytes. During these tests a sequence of packets, all belong-
ing to the same stream, are sent across the firewall. This stream will cause
the firewall, upon the arrival of the first packet, to store information about
that stream. Throughout the rest of the test that information will then be
used in the inspection process. This way the task of adding this informa-
tion is performed only once and the consequent table lookups are simplified.
As described above the result is that the ratio between inside and outside
processing is increased thus giving a more accurate picture of the overhead.
Finally, the firewall is configured using only a single rule. This way the time
spent traversing the rule lists are also minimized. For the tests the following
rule is used:

iptables -A FORWARD -p tcp -m state —state NEW,ESTABLISHED,INVALID -j accept

7.2.3 Test Procedure

All tests are conducted by first clearing the rule-set of the firewall and then
configuring it with the previously described rule. Upon completion of this
task the Iperf server is initiated on Traffic generator 2 using the options: -s
-P 1. Finally, the Iperf client is initiated on Traffic generator 1 using the
options: -c traffic_generator 1 -l frame_ size -t 300 -1 5. Upon completion
the average of the throughput measurements reported by Iperf is calculated
and noted as the result of the test.

7.2.4 Results and Conclusions

The results of the tests can be seen in Table 7.2. As an be seen from these

I Framesize (bytes) | 64 | 128 | 512 | 1518 ||
I No SI (Mbps) | 340 | 543 | 579 | 579 ||
Native (Mbps) 337 | 492 | 499 | 499
Native Overhead (%) 1 9 14 14
Retargetable (Mbps) 336 | 493 | 495 | 498
Retargetable Overhead (%) 1 9 15 14

Table 7.2. Results of the performance tests.

numbers the overhead incurred by the retargetable approach is negligible
and within 1% of the native version. It can therefore be concluded that any



Testing The System 70

overhead incurred by the generated code is overshadowed by the rest of the
packet processing code. As a result we can conclude that the performance
of the generated output does not hinder the practical use of the system.
Furthermore, this can be concluded despite the preliminary status of the
intermediate representation and the output generator. Given the negligible
overhead it is therefore doubtful whether any significant increase in perfor-
mance would be gained from improving these two components. Using the
tests we can therefore also conclude, that from a practical point of view, the
current states of these components are quite sufficient.
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Chapter 8

Further Development

As described in the introduction this project is, to our knowledge, the first
one to deal with the development of a retargetable PCS system. As a result,
the system presented in this report is by no means complete. In this chapter
we point out a number of directions for further developing the concept.

8.1 Support For Application Layer Protocols

This project has been limited to support for TCP and UDP streams only.
As described in Chapter 2 most traffic also uses an application layer pro-
tocol (e.g. HTTP, FTP). An obvious improvement would therefore be to
extend the current system with the capability of representing PCSs for such
protocols. The task involved in this would amount to the creation of a new
specialization of the protocol conformance model. Presumably the biggest
change compared to the TCP/UDP specialization would be the retrieval of
information from the packets. Where TCP and UDP use fixed size fields
to store the relevant header information, some application layer protocols
use variable sized fields. An example of this is FTP. Where IPv4 stores the
host addresses in 32 bit fields, the FTP protocol stores such information in
plain ASCII. The result is that it no longer suffices simply to look at a fixed
part of the packet as the addresses 10.0.0.1 and 10.0.0.10 take up 8 and 9
bytes respectively. To make things even worse, the information stored after
these two addresses is shifted accordingly. This means that you no longer
have constant time access to the information stored in the packets. In other
words, if you want to get to some information towards the end of the FTP
header you are forced to parse the entire header up to that point. In ef-
fect this means that a more flexible, than the current way of specifying and
accessing such fields, is needed.
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8.2 Graphical Front-End for the PCSL Language

As can be seen from the TCP PCS used in the test chapter the PCSs easily
become quite large. The result is that the number of lines needed to im-
plement any useful PCS quickly adds up. While each line in itself is simple
and straight-forward, one can quickly get lost in the large amount of almost
identical transitions. To counter this problem, and thereby make it even
easier to write PCSs, we propose the development of a graphical front-end
to the PCSL language. The purpose of this front-end is to allow the user to
describe PCSs using the same graphical representation used in this report.
From this representation the front-end can generate the appropriate code
thereby hiding the PCSL language from the user. Examples of this concept
are UPPAAL[LPY97] and YAGCS[ea01] which both provide graphical front-
ends for an underlying textual language. In Figure 8.1 a screenshot of the
UpPAAL GUI can be seen. The main advantage of such a tool is that it

.1l - UPPAAL
Flle Templates View Queries Options Help

Bamaaeas@-o

System Editor | Simutar | verifier |

£ C:/uppaal-3.4.6/dema/2doors.

Marne: [Door Parameters: | intf0,1] activated, urgert chan pushed, closedt, closed2

Ushed?
clasedtd activated: =true
T

{;} K}/ 0sedl!
K i T wait
closed2?
closedt!
£0..close €. Ghening
/KD =5 \.} =6

e

Figure 8.1. The formal verification tool UPPAAL whose GUI is essentially a graphical frontend
for specifying models in the zta language.

tends to increase the readability of the specification thereby easing the task
of creating and maintaining it.

Important to note however is that the need for such a tool should not
in any way be seen as a sign of a weakness in the system presented in this
report. The fact that it is possible to make such a graphical front-end is a
testament to the contributions of the system.
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Conclusion

With the introduction of SI the task of developing and maintaining a firewall
has become harder and more complex. One of the main reasons for this is SIs
inherent dependence on protocol conformance specifications against which
the inspected streams can be checked. In current implementations of SI these
specifications are hard coded into the SI subsystem using the same generic
language used to implement the rest of the firewall. Unfortunately, this
approach has the disadvantage that the specifications are prone to containing
errors as these generic languages are not very well suited for the task. As
firewalls are primarily meant to provide security, and errors tend to lessen
security, this is by no means an ideal approach. Furthermore, as the software
of many firewalls is not easily upgradeable one they have been deployed, the
need for a system that minimizes the risk of errors is apparent.

In this project we proposed, developed, implemented, and tested such
a system. This system, which introduces the notion of retargetable PCSs,
allows the firewall developer to implement PCSs in a firewall independent
manner using a custom made, protocol oriented language. This way, the
implementation of the PCS is simplified and the chance of it being correct
increased.

The proposal has included the development of a number of components.
First, an abstract model, the protocol conformance model, encompassing the
functionality needed in a PCS was made. This provided a common foun-
dation for current and future versions of the system. With that foundation
in place, a specialization capable of representing PCSs for streams of two of
the most commonly used protocols - TCP and UDP, was made. The ba-
sis of this specialization was an investigation of the requirements of a wide
range of currently available TCP and UDP PCSs. This ensured that, even
though it is impossible to definitively determine the expressive power needed
to represent every possible TCP and UDP PCS, this specialization has the
expressive power to represent most, if not all, current and future PCSs for
these protocols. This way, the major potential drawback associated with a
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less than touring complete model was alleviated.

Having completed the model and thus created the foundation for the re-
targetable PCSs, a system capable of transforming these specifications into
usable code was made. This included the development of a simple language
capable of expressing the specialized model as well as an intermediate rep-
resentation capable of storing the retargetable PCSs.

Finally, through the evaluation of an implementation of the proposed
system, we have shown that the amount of performance overhead incurred
by the retargetable approach is negligible. This is despite the fact that very
little optimization was performed on the retargetable PCS by the interme-
diate representation and the Netfilter output generator. Based on this we
can therefore conclude, that also in practice, the use of retargetable speci-
fications is a feasible approach and that the system and its accompanying
implementation is fully usable.



Appendix A

Header Fields Symbol Table

This appendix contains a list of the different fields in the headers of the IP,
UDP, and TCP protocols along with the symbol by which they are referenced
in this report and the current implementation of the system.

|| Symbol || Description ||
IP_ VERSION Version
IP THL Internet Header Length
IP_TOS Type of Service
IP TOTLEN Total Length
IP_ID Identification
IP FRAG Fragment Offset
IP_TTL Time To Live
IP PROTOCOL Protocol
IP CHECKSUM Checksum
IP SRC Source IP Address
IP_DST Destination IP Address

Table A.1. IP Fields

|| Symbol || Description ||
UDP_SRCPORT Source Port
UDP_ DSTPORT Destination Port
UDP_LEN Length
UDP CHECKSUM Checksum

Table A.2. UDP Fields
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Symbol

Description

TCP_SRCPORT

Source Port

TCP_DSTPORT

Destination Port

TCP_ SEQ Sequence Number
TCP_ACKSEQ Acknowledgment Number
TCP_ DOFF Data Offset
TCP_FIN FIN Flag
TCP_SYN SYN Flag
TCP_RST RST Flag
TCP_PSH PSH Flag
TCP_ACK ACK Flag
TCP_URG URG Flag
TCP_ECE ECE Flag
TCP_CWR CWR Flag
TCP_WINSIZE Window Size
TCP_ CHECKSUM Checksum

TCP_URGPTIR

Urgent Pointer

Table A.3. TCP Fields



Appendix B

The PCSL Language

B.1 Abstract Syntax

The abstract syntax of the PCSL language is as follows:

1. Syntactic categories

VD € Variable declarations ol € Open locations

SD € Stream key declarations p € Property values

LD € Location declarations D € Directions

TD € Transitions GD € Guard declarations

p € Property values G € Guards

sn € Stored normal variables UD € Update declarations

pn € Packet normal fields U € Updates

ps € Packet Sequence number fields PD € Property value declatations
n € Numerals NEXP € Normal expressions
VLIST € Variable lists BOP € Boolean operators

cl € Closed locations AOP € Arithmetic operators

OLD € Open location declarations  CLD € Closed location declarations
ss € Stored sequence number variables
SEXP € Sequence number expressions
DD € Default property value declarations
PCS € Protocol Con formance Specifications
2. Definitions

pPCS = DD VD SD LD TD

DD ::= defpropvalue p;

VD ::= storednorm sn n; | storedseq ss n; | packetnorm pn n;
| packetseq ps n; | VD1 V Dy
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SD := keypair VLIST ;| SD; SDo

pn, pn | ps, ps
LD = CLD; OLD;

VLIST ::

CLD ::

OLD ::=

= clocation cl
olocation ol n | OLD;y 3 OLDs

TD :=itrans cl -> cl {GD PD}
| itrans ol -> ol {D GD PD}
| utrans ¢l -> ol {GD UD PD}
| utrans ol -> ol {D GD UD PD}
| utrans ol -> ¢l {D GD PD}
| TDy TD,
D := direction original; | direction return;

PD :

:= propvalue p;

GD := guard G; | €
G = NEXP BOP NEXP | SEXP BOP SEXP | Gy , Go

NEXP

BOP ::=
SEXP ::

AOP
UD ::=

w= n|sn|pn| (n)(NEXP AOP NEXP) | (NEXP)
<> <=|>=|==

ps + NEXP | ss + NEXP

n= 4= 1* /)

update U; | €

U = sn:= NEXP |ss:=SEXP |U;, Uy

B.2 Concrete Syntax

The following listing shows the concrete syntax for the PCSL language:

Alpha
Digit

Num
AlphaNum
Ident
Start

Dd

Vd
Variable Type
Sd

Vlist

Ld

Cld

Old

L

al...|z|A]...|Z
Of... ]9

Digit | Num Digit
Alpha | Num

Alpha | Ident AlphaNum

Dd Vd Sd Ld Td

defpropvalue Ildent

Vd VariableType Ident Num ; | €

storednorm | packetnorm | storedseq | packetseq
Sd keypair Vlist ; | €

Ident , Ident

Cld Old

closed location Ident ;

Old open location Ident Num ; | €
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Td —  Td TransType Ident -> Ident { D GD UD PD }
TransType ~ —  itrans | utrans

D — direction original | direction return
Gd — guard G ; | ¢

Pd —  propvalue Ident ;

G —  Ezp Bop Ezp | G , Exp Bop Exp

Ezp —  Num | Ident | ( Num ) ( Ezp ) | ( Ezp )
Bop — =< <=]>]|>=

Aop = H| =]/

Ud — update U ; | €

U —  Ident := Exp | U , Ident := Exp

B.3 Type System

Using the notation of [Car97] the judgments of the formalized type system
of PCSL are as follows:

I'kFo I' is a well-formed environment

I'HA A is a well-formed type in I’

'EM:A M is a well-formed term of type A in '
I'FA<:B Aisasubtypeof BinT

I'ED .. S D isawell-formed declaration of signature S in I"

I'-DD DD is a well-formed default property value declaration in I"
I'=SD SD is a well-formed keypair declaration in I'

I'=D D is a well-formed direction declaration in I"

I'GD GD is a well-formed guard declaration in I"

I'U U is a well-formed update element in I’

'=uUD UD is a well-formed update in I’

I'-PD PD is a well-formed property value declaration in I
I'=TD TD is a well-formed transition declaration in I"

With respect to the type rules a few additions are made to the notation of
[Car97| to ease their description. This due to each variable being declared
with a bitsize denoting its upper bound. Because these bounds influence
how the variable can be used in guards, assignments etc. two variables with
the differing upper bounds are seen to be of different types. In this view the
language contains a large number of types, most of them being variations
of the “basic” types packetnorm, packetseq, storednorm, and storedseq. To
avoid having to define and deal with each of these individually the following
notation is used : BasicType - #bits where #bits is the number of bits
assigned to the variable and BasicType is the type it is a variation of. Using
this notation packetnorm - 6 would be the type of a variable declared with
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type packetnorm and the number of bits set to 6. With this in mind the
following table shows the type rules of the PCSL language:

(Env 0) (Env M)
'FA  Mé¢dom(T)
DFo '\ M:Aro
(Type Bool) (Type Cloc) (Type Oloc) (Type Propval)
I'Ho I'Ho I'o I'o
'+ Bool T'Clocation T'FOlocation T'+Propvalue

(Type Packetnorm)
I'Ho

(Type Packetseq)
T

I'kPacketnorm-n (n=12,...,32) I'FPacketseq-n (n = 8,16,32)
(Type Storednorm) (Type Storedseq)
- Tk B | x-S
T'+Storednorm-n (n=1,2,...,32) T'+Storedseq-n (n =8,16,32)
(Type Norm) (Type Seq)
I'o I'o

TFNormn (n=1,2,...,32) W (n =28,16,32)
(Sub Refl) (Sub Trans) (Sub Subsumption)

I'HA I'CtA<:B T'bB<:C I'Fa:A THA<:B
T'FA<:A T'FA<:C T'ta:B

(Sub Snorm)

T'+Storednorm-x  T'FNorm-y

(Sub Pnorm)

I'Packetnorm-x  T'ENorm-y

I'FStorednorm-z<:Norm-y (z=<y) I'FPacketnorm-x<:Norm-y (<)
(Sub Sseq) (Sub Pseq)
I'HStoredseq-x  T'HSeq- I'FPacketseq-x  I'HSeq-
L Ty (z<y) . qy(mgy)

T'FStoredseq-x<:Seq-y

(PCS)
0-DD OFVD.(V:A)

V:AFSD. (S:B)

T'FPacketseq-x<:Seq-y

V:AS:BFLD. (L:C) V:AS:B,L:C-TD

0-DD VD SD LD TD

(Defpropval)

I'o 'V Dy

(VDecl Sequence)

o (M:A) T,M:A+ VD,

I'+defpropvalue p ;

(VDecl Snorm)
I',sn:Storednorm-nko

'V Dy VDo

(VDecl Sseq)
I',ss:Storedseq-nko

I'Fstorednorm sn nj ..

(VDecl Pnorm)

I',pn: Packetnorm-nko

(sn:Storednorm-n)

T'kstoredseq ss n; .. (ss:Storedseq-n)

(VDecl Pseq)
I',ps: Packetseq-n-o

T'Fpacketnorm pn n; .. (pn:Packetnorm-n)

(Keypair Sequence) (Keypair)

T'Fpacketseq ps nj .. (ps:Packetseq-n)

THSD: THSDo H11:A  THI:A  Ae{Packetnorm-n,Packetseq-n}
I'SDy SD2 I'tkeypair 1, I2 ;
(VDecl Cold) (LDecl Cloc)
THECLD . (M:A) T ,M:At OLD T",cl:Clocationto
I'=CLD OLD T'Fclocation ¢l ;5 .. (cl:Clocation)
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(LDecl Oloc)
I",0l:Olocationto

(LDecl Sequence)
THOLD; .. (M:A)

I,M:A + OLD,

I'Folocation ol ; .'. (ol:Olocation)

(Trans Iclel)

I'Fcli:Clocation  T'kelo:Clocation T'FGD  THPD
T'Hitrans cly -> clo {GD PD}

(Trans Iolol)

T'Foly:Olocation T'Fola:Olocation T'VD THWGD TH=PD
THitrans oly -> ol {D GD PD}

(Trans Uclol)

T'cl:Clocation  T'Fol:Olocation  THGD THUD THPD
Trutrans ¢l -> ol {GD UD PD}

(Trans Uolol)
T'Foly:Olocation  T'Fol2:Olocation T'D THGD THUD

I'rOLD; OLDy

I'=PD

Thutrans oly -> ol {D GD UD PD}

(Trans Uolcl)

(Trans Sequence)

I'Hol:Olocation  T'kcl:Clocation T'HFD THGD THPD I'TDy THFTDo
Thutrans ol -> ¢l {D GD PD} TFT D1 TDo
(Dir Orig) (Dir Ret) (Propval) (Guard)
I'o I'o I'o I'=G:Bool
I'+direction original; I'Hdirection return; I'Fpropvalue p ; I'guard G

(Guardely,,)

I'FENEXPi:Norm-a TI'ENEXPs:Norm:-b
TEFNEXP; ~ NEXPs : Bool

~={< >, <=, >=, ==}

(Guard Sequence)

I'FG1: Bool T'HFGs: Bool
I'G1 , G2 : Bool

(Guardely) (Numeral)

I'ESEXPi:Seq-a  THESEXP:Seq-a THFA  A=Norm-[log2(n+1)]
TFSEXP, ~ SEXDP; : Bool  ~~ {<><=>===} TFn: A

(Nexp) (Paren)

T'ENEXPi:Norm-a THENEXP>:Norm-b n6{1,2,...,32} TFNEXP:A

THn)(NEXP) ~ NEXPs) : Norm- n I'H(NEXP) : A

(Sexp) (Update) (Updateel)

I'sv:Seq-a  THFNEXP:Norm-b S b I'U I'YU;  THUs
TFsv + NEXP : Seqa  @23)  TFupdate U ; U, , Uz

(Updateely,)
T'Fsn:Storednorm-a  TENEXP:Norm:-b

(Updateely)
I'Fss:Storedseq-a

I'FSEXP:Seqg-a

TFon := NEXP (a=b)

I'tss := SEXP
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Appendix C

Current Status of the
Implementation

As should be clear from the report the current implementation of the system
should be seen mainly as an experimental tool used during development,
and as a platform for testing and evaluating the retargetable concept. With
that being said, the implementation is however stable, fully functional, and
the output generator API fully documented'. Currently the following three
output generators exists:

Netfilter Generator: An output generator capable of generating unopti-
mized code for the Netfilter firewall. The specifics of this generator is
described in Chapter 6.

PCS Tllustrator: An output generator capable of depicting a PCSL spec-
ification using the graphical notation described in Section 3.1.4. The
graphical illustration of Netfilters standard TCP PCS depicted in Fig-
ure 7.1 is created using this generator.

Diagram Illustrator: An output generator capable of depicting the deci-
sion diagrams stored by the intermediate representation. The graphical
notation is similar to that of Figure 5.1.

To ease the development of new generators, and in tune with the initial
architecture previously depicted in Chapter 2, phases 1 and 2 have been
implemented as an external library. Using that approach, integrating new
generators with the current implementation is merely a matter of linking
against that library and accessing it using the output generator API. For
an illustration of this relationship between phases 1 and 2 and the output
generators, see Figure C.1.

'For a complete description of the output generator API, see the documentation ac-
companying the implementation.
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Netfilter Generator PCS lllustrator Diagram lllustrator | Current Output Generatol
(nfcodegen) (pcsillustrate) (dddepict) (application name)

RPCS Library Core System

Figure C.1. The relationship between the core of the retargetable system (phases 1 and 2) and
the output generators. Each individual generator makes up its own application and is linked
against the RPCS library which provide access to the system using the output generator API.
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Summary

With the introduction of SI the task of developing and maintaining a firewall
has become harder and more complex. One of the main reasons for this is SIs
inherent dependence on protocol conformance specifications against which
the inspected streams can be checked. In current implementations of SI these
specifications are hard coded into the SI subsystem using the same generic
language used to implement the rest of the firewall. Unfortunately, this
approach has the disadvantage that the specifications are prone to containing
errors as these generic languages are not very well suited for the task. As
firewalls are primarily meant to provide security, and errors tend to lessen
security, this is by no means an ideal approach. Furthermore, as the software
of many firewalls is not easily upgradeable one they have been deployed, the
need for a system that minimizes the risk of errors is apparent.

In this project we have proposed, developed, implemented, and tested
such a system. This system, which introduces the notion of retargetable
PCSs, allows the firewall developer to implement PCSs in a firewall indepen-
dent manner using a custom made, protocol oriented language. This way, the
implementation of the PCS is simplified and the chance of it being correct
is increased.

This proposed system has included the development of a number of com-
ponents. First, an abstract model, the protocol conformance model, encom-
passing the functionality needed in a PCS has been made. This provides
a common foundation for current and future versions of the system. With
that foundation in place, a specialization capable of representing PCSs for
streams of two of the most commonly used protocols - TCP and UDP, has
been created. The basis of this specialization is an investigation of the re-
quirements of a wide range of currently available TCP and UDP PCSs. This
ensures that, even though it is impossible to definitively determine the ex-
pressive power needed to represent every possible TCP and UDP PCS, this
specialization has the expressive power to represent most, if not all, current
and future PCSs for these protocols. This way, the major potential drawback
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associated with a less than touring complete model has been alleviated.

Having completed the model and thus created the foundation for the re-
targetable PCSs, a system capable of transforming these specifications into
usable code has been made. This includes the development of a simple lan-
guage capable of expressing the specialized model as well as an intermediate
representation capable of storing the retargetable PCSs.

Finally, through the evaluation of an implementation of the proposed
system, we have shown that the amount of performance overhead incurred by
the retargetable approach is negligible. This is despite the fact that very little
optimization was performed on the retargetable PCS by the intermediate
representation and the Netfilter output generator. Based on this we therefore
conclude, that also in practice, the use of retargetable specifications is a
feasible approach and that the system and its accompanying implementation
is fully usable.
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