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SYNOPSIS:Over the years the need for a more power-ful �rewall 
lassi�
ation s
heme to supple-ment stateless pa
ket 
lassi�
ation has be-
ome apparent. As a response to this de-mand Stateful Inspe
tion (SI) was devel-oped. While signi�
antly more powerful,this s
heme has a number of inherent dis-advantages. One of the most predominantones being its inherent dependen
e on 
us-tom made proto
ol 
onforman
e spe
i�
a-tions against whi
h the inspe
ted streams
an be 
he
ked.Currently, SI 
apable �rewalls implementthese spe
i�
ations by hard-
oding theminto the �rewall using the generi
 languageused to implement the rest of the �rewall.While simple, this approa
h however has anumber of disadvantages in terms of 
om-plexity and subsequently in terms of the
orre
tness of the implemented spe
i�
a-tions. In e�e
t this 
omplexity means thatthe risk of errors present in these spe
-i�
ations is 
onsiderable and as a resultthe overall level of se
urity imposed by the�rewall might be de
reased.In this report we propose, implement, andtest a system 
apable of easing the task ofspe
ifying and implementing proto
ol 
on-forman
e spe
i�
ations. Using this sys-tem the risk of errors should therefore beredu
ed and as a result the general levelof se
urity should be in
reased. This isa
hieved through the introdu
tion of re-targetable spe
i�
ations whi
h 
an be re-used a
ross di�erent �rewall implementa-tions while at the same time be imple-mented using a 
ustom made language.This way, more e�ort 
an be put intothe development and testing of one sharedspe
i�
ation, as opposed to its 
ompletereimplementation on ea
h available �re-wall.
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Prefa
eThis report do
uments the Master's Thesis by Lars R. Olsen written un-der the resear
h unit of Distributed Systems and Semanti
s at the Depart-ment of Computer S
ien
e at Aalborg University. The proje
t is 
on
ernedwith stateful inspe
tions dependen
e on 
ustom made proto
ol 
onforman
espe
i�
ations, working as overlays against whi
h the inspe
ted streams are
he
ked. To redu
e this dependen
y this report proposes, implements, andtests a system 
apable of easing the 
reation and implementation of su
hspe
i�
ations, while at the same time making them retargetable so that they
an be reused a
ross di�erent �rewalls.The report assumes that the reader has elementary knowledge aboutbasi
 networking 
on
epts su
h as pa
kets, routing, the TCP/IP proto
olsuite, and �rewalls in general. It is split into 3 parts. The �rst, beingthe introdu
tion, motivates the proje
t, gives an introdu
tion to the 
urrentpra
ti
es in the implementation of stateful inspe
tion, and des
ribes howproto
ol 
onforman
e spe
i�
ations are 
urrently 
reated for these. Withthat in pla
e, a system 
apable of easing the 
reation of spe
i�
ations forthese implementations is then proposed. In the se
ond part this system isthen des
ribed in detail. Finally, in the third part, an implementation of theproposed system is tested and a 
on
lusion 
on
erning the advantages anddrawba
ks of the proposal is drawn.A homepage 
ontaining this report as well as the implementation of theproposed system is lo
ated at the following address:http://www.
s.aau.dk/∼lro/rp
s
Lars Riis Olsen





PART I
Introdu
tion

This part provides an introdu
tion to the proje
t. It starts by motivatingthe proje
t in Chapter 1; what is stateful inspe
tion, whi
h improvementsdoes it o�er 
ompared to stateless pa
ket 
lassi�
ation, and whi
h de�
ien-
ies in the 
urrent way of 
reating and implementing spe
i�
ations for it dowe want to alleviate. With that in pla
e, Chapter 2 provides a more detailedintrodu
tion to stateful inspe
tion and des
ribes how it is implemented andperformed by 
urrent �rewalls. With an outset in this des
ription, some ofthe problems introdu
ed by stateful inspe
tion are des
ribed and our pro-posal to alleviate some of these problems is introdu
ed. Finally, with thisintrodu
tion in pla
e, the part 
on
ludes with a de�nition of the �nal s
opeand goals of the proje
t.





Chapter 1MotivationOver the past de
ade the Internet has grown tremendously. From in
ludingonly 213 hosts in 1981, it has grown to 
onsist of approximately 233 millionhosts as of January 2004[Sur04℄. This dramati
 in
rease illustrates the de-velopment of the Internet, from a small set of inter
onne
ted 
omputers usedfor s
ienti�
 and military purposes only, to the general purpose, 
ommer
ialnetwork that it is today.A result of this dramati
 growth is an equal in
rease in the demand forte
hnologies to prote
t and 
ontrol its users. The �rewall is one su
h te
hnol-ogy. A �rewall is essentially a sele
tive router whi
h works by inter
eptingand examining sele
t parts of the proto
ol headers of all pa
kets sent throughit. Based on this examination, 
ommonly known as 
lassi�
ation, the pa
ketis either blo
ked or let through, thereby allowing the �rewall administratorto 
ontrol the tra�
 passing through it. To further maximize the 
ontrol,�rewalls are usually deployed to a
t as gateways between networks, therebyallowing for the examination of all tra�
 passing between them. An exampleof this setup 
an be seen in Figure 1.1. Needless to say the e�e
tiveness of
Figure 1.1. A �rewall a
ting as a gateway between two networks has re
eived two pa
kets. Ithas been 
on�gured to only a

ept pa
kets with an IP sour
e proto
ol header �eld of 10.*.*.*.This means that Pa
ket 1 has been allowed to pass whereas pa
ket 2 has been dropped andtherefore removed from the network.



Motivation 4the �rewall depends on its ability to 
lassify the inter
epted pa
kets. The�rst �rewalls, now referred to as stateless �rewalls relied solely on a stateless
lassi�
ation s
heme where all pa
kets are 
lassi�ed independently from ea
hother. While fast and simple this s
heme however has a number of seriouslimitations. One of the most predominant ones is the fa
t that, using thiss
heme, basing the 
lassi�
ation on mutable header �elds1 su
h as sequen
enumbers and TCP �ags, rarely makes mu
h sense. The result is that the
lassi�
ation in stateless �rewalls most often 
an only be based on a smallportion of the pa
ket (the immutable �elds), thereby negle
ting a lot of in-formation that 
ould otherwise be used to sharpen the 
lassi�
ation. Anexample of the 
onsequen
es of this limitation is the ACK ping atta
k whi
hallows an atta
ker to determine whether an IP address is in use, even thoughthe potential host would pla
ed behind a stateless �rewall[tW00℄. Where atraditional ping works by sending an ICMP type 8 pa
ket to the address inquestion[Pos81a℄, the ACK ping atta
k works by sending an unsoli
ited TCPACK pa
ket (a TCP pa
ket with the ACK �ag set) to the vi
tim. If the ad-dress is in use, the vi
tim, realizing that the pa
ket is illegal, responds withan RST pa
ket[Pos81b℄ ultimately telling the atta
ker that the address is inuse. Where a stateless �rewall 
an easily be made to drop all ICMP type 8pa
kets, thereby disallowing the traditional ping, it has no way of telling theunsoli
ited pa
ket from a soli
ited one. The result is that stateless �rewallsare not 
apable of prote
ting against su
h atta
ks as simply dropping allACK or RST pa
kets would disrupt legal tra�
 as well. From this exampleit should therefore be 
lear that this 
lassi�
ation s
heme is inadequate anda new, more powerful s
heme, is needed.Stateful Inspe
tion (SI) is one su
h s
heme. It distinguishes itself fromthe stateless approa
h in that it in
orporates the notion of pa
ket streams,thus making it possible to 
lassify ea
h pa
ket in the 
ontext of the streamto whi
h it belongs. In other words, it is 
apable of behaving very mu
hlike the hosts it is trying to prote
t. It works by storing information aboutthe state of the pa
ket streams existing a
ross the �rewall. Every timea pa
ket arrives it is 
lassi�ed using this stored information and a user-de�ned Proto
ol Conforman
e Spe
i�
ation (PCS) spe
ifying a number ofrequirements that must be met by streams of the type in question (e.g. TCPstreams)2. As the requirements of the PCS 
an be made to di�er dependingon the state of the stream, the inspe
tion 
an therefore be made stateful bystoring the state of the stream in-between inspe
tion of the pa
kets. Basedon how the 
ontents of the pa
ket mat
hes the requirements spe
i�ed forthe state in question, a result of the inspe
tion 
an be obtained (e.g. ok orinvalid) and used in the �nal 
lassi�
ation of the pa
ket. Through the use of1Proto
ol header �elds whose 
orre
tness depend on the state of the pa
ket stream towhi
h the pa
ket belongs.2Note that there is no universally a

epted name for these spe
i�
ations but that wewill refer to them as proto
ol 
onforman
e spe
i�
ations.



5 1.1 Proje
t Goalsthis s
heme it is therefore possible for the �rewall to base the 
lassi�
ationon the state of the stream whi
h in turn enables it to base the 
lassi�
ationon mutable �elds as well. As a result, through the use of SI, it is possible toprote
t against state dependent atta
ks su
h as ACK Ping as it 
an easilybe established that the unsoli
ited pa
ket does not belong to any existingstream.While the introdu
tion of SI 
learly in
reases 
apabilities of the �rewallit also brings about a number of inherent disadvantages. First of all it addsa 
onsiderable amount of 
omplexity to the �rewall. While SI is 
on
eptu-ally fairly simple, its implementation involves the handling of a number of
omplex issues su
h as the e�
ient storing of information and the imple-mentation of the PCSs. As added 
omplexity always in
reases the risk oferrors being made during development, this fa
tor essentially de
reases theoverall level of se
urity imposed by the �rewall. One of the most signi�
antsour
es of this added degree of 
omplexity is the fa
t that SI requires at leastone PCS to be devised and implemented for ea
h supported type of stream(TCP, UDP, et
)3. In the 
ase of stateless �rewalls, adding support for a newtype of proto
ol/pa
ket was simply a matter of getting a

ess to the �elds inthat pa
kets proto
ol header(s). For SI on the other hand, the in
orporationof the notion of streams means that a spe
ialized PCS must be developedas well. In 
urrent �rewalls these spe
i�
ations, whi
h often span severalhundred lines of 
ode, are implemented using the same general purpose lan-guage used to implement the rest of the �rewall[Hom04℄[Fil04℄. As 
an beseen from the time and e�ort gone into implementing PCSs for the 
urrentlyavailable open sour
e �rewalls the result is that adding new PCSs is often atedious and 
ompli
ated task. Furthermore, when implementing PCSs usinggeneral purpose languages a lot of time is usually spent paying attentionto issues not related to the behavior of the streams (avoidan
e of pointererrors et
.). As �rewalls are �rst and foremost about providing se
urity, and
omplexity always serves to in
rease the risk of errors, this approa
h to theimplementation of PCSs is by no means ideal. This proje
t aims to solvethis problem by developing a new and more reliable way of implementingPCSs.1.1 Proje
t GoalsThe goal of this proje
t is to in
rease the �exibility and se
urity of SI. Thisgoal is a
hieved through the development of a retargetable PCS spe
i�
a-tion system that allows the developer to write the PCSs in a 
ustom made,proto
ol-oriented, and �rewall independent language. This language hides,to the behavior of a proto
ol, unimportant issues su
h as the storing and3More than one if you for reasons of se
urity, performan
e et
. are not 
ontent withusing the same PCS for all streams of the same type.



Motivation 6retrieving of state information. Doing so, it allows the PCS developer tostop thinking about these issues and instead allows him to fo
us on what isimportant - the intended behavior of the pa
ket streams. Se
ondly, beingproto
ol-oriented means that the language is made ex
lusively for the taskof spe
ifying PCSs. Most notably this means that the language does not
ontain any unne
essary 
onstru
ts that 
an 
ompli
ate the task at hand.Furthermore, the language being �rewall independent allows for the develop-ment of 
ompilers that 
an 
ompile PCSs written in the language into 
odeusable by 
urrent and future �rewalls. This way di�erent �rewalls 
an reusethe same PCS implementation, thus making it possible to fo
us on perfe
tingthis single implementation as opposed to manually porting it to the di�erent�rewalls. This in turn should strengthen the quality of the PCS and therebyin
rease the overall level of se
urity imposed by the �rewall. Finally, thesystem eases the job of developers of new �rewalls, as all that is needed toadd a wide range of PCSs, is to make a 
ompiler for the developed �rewall.Having brie�y introdu
ed and motivated the proje
t the next 
hapter willprovide a more in-depth des
ription of SI and its strengths and weaknesses.With this des
ription in pla
e, the proposed retargetable PCS 
reation sys-tem will then be introdu
ed, and the �nal s
ope of the proje
t de�ned.



Chapter 2Stateful Inspe
tion and itsInherent ProblemsIn the previous 
hapter it was des
ribed how SI, while useful and 
on
ep-tually simple, has a number of inherent disadvantages when it 
omes toimplementing it. In order to make it 
lear why this is so, and to further
larify the purpose of the proposed retargetable PCS system, this 
hapterprovides a more in-depth introdu
tion to SI. To fully understand this intro-du
tion, one however �rst need to attain an understanding of the 
on
eptualar
hite
ture of a �rewall, how it works, and how it goes about in
orporat-ing 
lassi�
ation s
hemes su
h as SI and stateless pa
ket 
lassi�
ation. InSe
tion 2.1 a brief introdu
tion to �rewalls and their 
on
eptual ar
hite
tureis therefore given. Then, in Se
tion 2.2 a more thorough introdu
tion to SIand how it is performed is provided. Over the 
ourse of that des
ription,the problems surrounding its implementation should be
ome 
lear, and inSe
tion 2.3 these problems will then be des
ribed in greater detail. In Se
-tion 2.4 we give a short des
ription to how PCSs are implemented in some
urrent day �rewalls, and then in Se
tion 2.5 a more detailed introdu
tion toour retargetable PCS system whi
h aims to ease this task, is given. Finally,in Se
tion 2.6 the introdu
tion is 
on
luded by the de�nition of the �nals
ope of the proje
t.2.1 The Con
eptual Ar
hite
ture of a FirewallA �rewall 
an, in short, be des
ribed as an advan
ed sele
tive router. That is,a devi
e whi
h re
eives pa
kets on a network interfa
e, removes those whi
hare not allowed to pass, and forwards the rest to their proper destination.Exa
tly whi
h pa
kets are allowed to pass and whi
h are to be blo
ked isde�ned in a set of rules 
reated by the administrator of the �rewall. Morespe
i�
ally, these rules are 
reated by spe
ifying a number of propertiesthat a 
lass of pa
kets must 
omply with, along with a des
ription of what



Stateful Inspe
tion and its Inherent Problems 8must happen to pa
kets belonging to this 
lass. The properties that 
anbe spe
i�ed depend on the 
apabilities of the �rewall and the following ruleillustrates this:rule IP_SRC=10.0.*.* IP_PROTO=6 -a ACCEPTThis rule, whi
h is typi
al for a stateless �rewall, de�nes a 
lass 
onsistingof all pa
kets with the IP_SRC �eld set to 10.0.*.* and the IP_PROTO�eld set to 6 (TCP). Furthermore it spe
i�es that all pa
kets belonging tothis 
lass must be a

epted, thereby allowing all tra�
 that adheres to theseproperties to pass through the �rewall. As previously des
ribed stateless�rewalls are restri
ted to 
lassify all pa
kets independently. More pre
isely,we de�ne stateless pa
ket 
lassi�
ation as performed by the stateless �rewallsas follows:De�nition 1 (Stateless Pa
ket Classi�
ation)The task of 
lassifying pa
kets based solely on the 
ontents of the pro-to
ol headers of the pa
ket.Using this de�nition implies that only properties 
on
erning the 
ontentsof the pa
kets 
an be spe
i�ed as properties of the individual 
lasses. SI onthe other hand allows for a more high level view. An example of this 
anbe seen in the following rule, whi
h is typi
al for a �rewall 
apable of usingboth SI as well as the stateless pa
ket 
lassi�
ation:rule IP_SRC=10.0.*.* IP_PROTO=6 -p
s=MyPCS SI=OK -a ACCEPTThe di�eren
e in this rule 
ompared to the stri
tly stateless example, is theaddition of a new property spe
ifying that the pa
ket, when 
he
ked againstthe MyPCS PCS, must result in SI returning OK. This way it is no longersu�
ient for the TCP pa
kets to have an IP_SRC �eld of 10.0.*.*. as theynow must also make the MyPCS PCS return OK. Given a PCS that 
he
ksfor the 
orre
t use of the TCP �ags, this rule would therefore prote
t againstall ACK Ping atta
ks with pa
kets 
ontaining an IP_SRC �eld of 10.0.*.*.With this in mind we de�ne SI as follows:De�nition 2 (Stateful Inspe
tion)The task of tra
king the state of a stream, and based upon this state,
he
king its pa
kets against a prede�ned PCS and subsequently returningthe inspe
tion result to the rest of the �rewall for further 
lassi�
ation.where a stream is de�ned as a sequen
e of related pa
kets, or more spe
i�
allyas follows:



9 2.2 Stateful Inspe
tionDe�nition 3 (Stream)A sequen
e of pa
kets related by some relation de�ned by a proto
olused by the pa
kets.With this short des
ription of how a �rewall is 
on�gured using proper-ties and 
lasses in pla
e, the 
on
eptual ar
hite
ture of a �rewall 
an now bedes
ribed. This 
on
eptual ar
hite
ture 
an be seen in Figure 2.1. In this
Network 1 Network 2

Packets
Incoming Stateless

Packet
Classification

Firewall Core

...

Firewall

Properties

Stateful
Inspection

Properties
Accepted
PacketsFigure 2.1. The 
on
eptual ar
hite
ture of a �rewall where the Firewall Core is responsible forthe re
eption, �nal 
lassi�
ation, and forwarding of pa
kets. Similarly, the Properties modulesare responsible for extra
ting the values of properties from those pa
kets.ar
hite
ture the Firewall Core is responsible for the re
eption, �nal 
las-si�
ation, and forwarding of pa
kets. The 
lassi�
ation itself is performedthrough the use of a number of Properties modules whi
h ea
h have a num-ber of properties they 
an 
he
k. For a stateless module this would simplybe the values of the di�erent �elds in the header, whereas it for an SI modulewould be the result of the inspe
tion given a spe
i�ed PCS. Through the useof these modules, it is then the job of the �rewall 
ore to retrieve the values ofthe appropriate properties and determine whi
h rule they mat
h. In relationto this ar
hite
ture, the task of adding a PCS 
an therefore be seen eitheras the task of making an entirely new properties module spe
i�
ally for thisPCS or as the task of extending an existing module with a new property forthe new PCS. As it will soon be 
lear, in this 
on
eptual design, the idea of
reating the proposed retargetable PCS system 
an be seen as the task ofdeveloping a retargetable SI properties module 
apable of being 
on�gured,using a proto
ol oriented language, to return property values re�e
ting thespe
i�ed PCS.2.2 Stateful Inspe
tionIn Chapter 1 it was brie�y des
ribed how SI 
lassi�es pa
kets in the 
ontextof their streams, thereby allowing for stri
ter and more prote
tive �rewalls.Throughout this se
tion a more thorough des
ription of SI is given. We startby providing a more in-depth introdu
tion to the 
on
ept of the PCS.



Stateful Inspe
tion and its Inherent Problems 102.2.1 The Proto
ol Conforman
e Spe
i�
ationThe PCS is essentially the 
on�guration whi
h de�nes how SI should behave.It de�nes, given the re
eption of any pa
ket of the type for whi
h the PCSwas made, and knowledge about the state whi
h the stream is 
urrently in,the property value to be returned to the �rewall 
ore as well as the newstate of the stream. The PCS 
an therefore be seen as a state ma
hineand Figure 2.2, whi
h shows a graphi
al illustration of a PCS 
apable ofdete
ting the ACK Ping atta
k des
ribed in Chapter 1, illustrates this. In
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TCP_DSTPORT

Pair 1 Pair 2
Stream KeyDefault Property Value

Invalid

TCP_SRCPORT
IP_DSTIP_SRC

120 sec120 sec

120 sec

60 sec 120 sec

Established
5 days

120 sec

120 sec

120 sec

Closed

Figure 2.2. A simpli�ed PCS whi
h 
he
ks for the 
orre
t use of the TCP- SYN, ACK, andFIN �ags and thereby 
apable of dete
ting the ACK Ping atta
k. For a des
ription of themeaning of TCP_SYN, TCP_ACK and TCP_FIN, see Appendix A.this representation the nodes represent the basi
 states that the stream 
anbe in. The itali
 numbers written inside these nodes are the timeout valuesspe
ifying the amount of time that may pass between the re
eption of twopa
kets before a timeout o

urs. Similarly, the edges (
alled transitions)des
ribe how a stream 
an pass between these states. The labels writtenabove the transitions are the requirements, from now on referred to as guards,that must be satis�ed by the re
eived pa
ket in order for the stream togo from one state to another. Furthermore, the labels written below thetransitions spe
ify whi
h dire
tion the pa
ket must have relative to the �rstpa
ket of the stream. In the PCS of Figure 2.2 Original means that it mustbe �owing in the same dire
tion as the �rst, whereas return means thatit must �ow in the opposite dire
tion. The last labels, written below thedire
tions, spe
ify the property value of the inspe
tion. Finally, in the upperright 
orner, two additional entities are shown. The default property value,whi
h spe
ify the property value to be returned for pa
kets not satisfyingany of the expli
itly spe
i�ed transitions, and the stream key, whi
h spe
i�esthe �elds used to identify pa
kets belonging to the same stream.With the spe
i�
ation in Figure 2.2 it should be 
lear that an ACK Pingatta
k 
an be dete
ted as no state information exists about the stream of the



11 2.2 Stateful Inspe
tionunsoli
ited pa
ket. As a result, the pa
ket is 
he
ked against the transitionsemerging from the 
losed (Closed) state. As the PCS spe
i�es that theproperty value Invalid is to be returned if the �rst pa
ket is not a SYNpa
ket, the �rewall administrator 
an prote
t against ACK Ping atta
ks byblo
king pa
kets returning this value. For an example of how to 
reate aPCS for streams utilizing the TCP/IP proto
ol, see Example 2.2.1.Example 2.2.1 (Simpli�ed PCS for the TCP/IP Proto
ol Suite)TCP is a 
onne
tion-oriented proto
ol and therefore by de�nition goesthrough a series of states when opening and 
losing a 
onne
tion. For thesake of simpli
ity this example fo
uses only on the set up phase. In Fig-ure 7.1(a), a transition system showing the states that a TCP/IP 
onne
-tion 
an pass through during this part of the proto
ol, 
an be seen[Pos81b℄.
rcv SYN,ACK

−−
snd ACK

rcv SYNACK

1 min

2 min

To the rest of protocol
specification

snd ACK
rcv SYN

5 days

Timeout
Transition

Normal 
Transition

SYN
Sent

SYN
Received

snd SYN,ACK
−−

snd SYN

EstablishedClosed Timeout

rcv SYN

(a) A transition system depi
ting thestates through whi
h a TCP/IP 
on-ne
tion 
an pass while being set up.
To the rest

of the protocol
specification
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Established

5 days

ACK
Wait 2

1 min

ACK
Wait 1

1 min

SYN
Sent
1 min

Simultaneus
Open

1 min

TCP_RST=0
TCP_FIN=0
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TCP_ACK=1
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TCP_FIN=0

TCP_SYN=0
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(b) A PCS 
he
king the part of theTCP proto
ol shown in Figure 7.1(a).Figure 2.3. Transition system for part of the TCP proto
ol(a) and a 
orresponding PCS(b).As that �gure shows, a 
onne
tion is initialized by �rst sending a SYNpa
ket. The re
eiving host must then return a SYNACK pa
ket in orderto indi
ate that the �rst pa
ket has been re
eived. In the event that bothhosts try to open a 
onne
tion at the same time, that is they both send aSYN pa
ket, ea
h host must return an ACK pa
ket to the other before they
an both enter the Established state. Furthermore, timeouts 
an o

ur inall open states. An example of this is the SYN Sent state. In the eventthat a pa
ket brings the stream into this state a new SYNACK must arrivewithin 2 minutes. If this does not happen, a timeout o

urs and the stream
eases to exist. Finally, the stream key for TCP is made up of the sour
eand destination so
ket pairs with ea
h pair being an IP address and a portnumber. That is, if two pa
kets both have the same values stored in these
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tion and its Inherent Problems 12�elds they are identi�ed as belonging to the same stream.With this short des
ription of the �rst states of the TCP proto
ol, itis possible to make a PCS that ensures that TCP/IP 
onne
tions are setup 
orre
tly. A graphi
al illustration of su
h a PCS, using the previouslydes
ribed notation, 
an be seen in Figure 7.1(b). As 
an be seen from thatspe
i�
ation any new 
onne
tion must be initiated by a SYN pa
ket forNew to be returned to the �rewall 
ore. Furthermore, it 
an also be seenthat this pa
ket brings the 
onne
tion into the SYN Sent state. From heretwo things 
an happen. Either a return SYNACK or a return SYN pa
ketis inter
epted. In the former 
ase, the 
onne
tion enters the SYNACKSent state where a further ACK pa
ket will bring the 
onne
tion into theEstablished state. In the latter 
ase, whi
h is the situation where bothhosts simultaneously try to open a 
onne
tion, a further two ACK pa
ketsmust be sent before the 
onne
tion 
an �nally be established. By droppingall pa
kets returning Invalid the spe
i�
ations of the Figure 7.1(a) 
antherefore be upheld. Similarly, by dropping New pa
kets from a network,the establishment of 
onne
tions by users on this network 
an be prevented.2.2.2 Performing the Inspe
tionWith the PCS in pla
e it is possible to perform the a
tual inspe
tion. Cur-rently several di�erent approa
hes to doing this exists. The most widelyused is Table Based Stateful Inspe
tion[JSCO02℄ whi
h is used by most opensour
e �rewalls[Fil04℄[Hom04℄ and built around a table (the state table) inwhi
h the state of all streams 
urrently being inspe
ted is stored. Whenevera pa
ket is re
eived, the state table is 
onsulted for state information aboutthe stream to whi
h the pa
ket belongs, and the pa
ket 
an subsequentlybe inspe
ted. The pseudo-
ode for the Inspe
tPa
ket fun
tion, as shown inAlgorithm 1, shows how this is done.As 
an be seen from this outline the �rst task upon re
eiving a pa
ket isto perform a lookup in the state table to determine whether any informationis stored about the stream of the pa
ket. Based upon the out
ome of thislookup two things 
an happen:Information is found: If information about the stream is found, this in-formation tells whi
h state the stream was in prior to the re
eptionof the new pa
ket. With this information the 
ontent of the pa
ket isthen 
he
ked against the 
onstraints of the transitions emerging fromthis state. When a transition whose 
onstraints are satis�ed by thepa
ket is found, the property value asso
iated with that transition isdelivered to the �rewall 
ore. Depending on whether the �rewall endsup a

epting the pa
ket two things 
an then happen. If the pa
ketis a

epted, the state table is updated to re�e
t the 
hanges broughtby the pa
ket. On the other hand, if the pa
ket is dropped, the state
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tionAlgorithm 1: Outline of the InspectPacket fun
tionData : pa
ket to be inspe
tedstate info ← LookupStreamInTable(pa
ket);if state info found thenforea
h transition in PCS emerging from stored state doif 
ontent of pa
ket satis�es transition 
onstraints thenif property value asso
iated with the transition 
auses the�rewall to a

ept the pa
ket thenif new state is a 
losed state thendelete state info;elseupdate state info;elseforea
h transition in PCS emerging from 
losed state doif 
ontent of pa
ket satis�es transition 
onstraints thenif property value asso
iated with the transition 
auses the�rewall to a

ept the pa
ket thenif new state is an open state then
reate state info for new stream;
information remains un
hanged to re�e
t the fa
t that the pa
ket willnever rea
h its �nal destination.No information is found: If the lookup yields no information it must beassumed that the re
eived pa
ket is the �rst in a new stream. In this
ase the 
ontents of the pa
ket is therefore 
he
ked against the transi-tions emerging from the 
losed state. When a mat
hing transition isfound its asso
iated property value is passed on to the �rewall 
ore.As was the 
ase for when state information was found, two things 
anthen happen. If the �rewall 
hooses to a

ept the pa
ket the afore-mentioned transition is 
he
ked to see if it points to an open state. Ifit does, a new entry is added to the state table to re�e
t the arrival ofthis new stream. If on the other hand the �rewall 
hooses to blo
k thepa
ket no entry is added regardless of the new state.With respe
t to timeouts these are handled in a slightly di�erent manner.Where the Inspe
tPa
ket fun
tion 
he
ked the re
eived pa
kets against thetransitions in the spe
i�
ation, timeouts only o

ur when no pa
kets havebeen re
eived for a prede�ned amount of time. The normal pro
edure in
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tion and its Inherent Problems 14table based SI is therefore to periodi
ally 
he
k the status of all streamsin the state table. If a stream is found for whi
h no pa
kets have beenre
eived within the prede�ned amount of time, the stream has timed outand the entry is deleted. The outline of the TimeoutHandler fun
tion shownin Algorithm 2 illustrates this.Algorithm 2: Outline of the T imeoutHandler fun
tionwhile true doforea
h stream in state table doif stream has timed out thendelete state info for stream;wait X se
onds;2.3 Design Problems Introdu
ed by Stateful Inspe
-tionWith the more detailed des
ription of SI in pla
e, we now turn our attentionto a des
ription of some of the problems introdu
ed by it. Some of the mostpredominant ones will be des
ribed next.2.3.1 Adds a Considerable Amount of Complexity to theFirewallFrom the des
ription in the previous se
tion it should be 
lear that perform-ing SI is a relatively 
ompli
ated task. Inevitably the introdu
tion of SI intoan otherwise stateless �rewall therefore leads to an in
rease in the 
omplexityof the �rewall. As 
omplexity always in
reases the risk of errors being madeduring design and implementation, this is a serious problem. The followingparagraphs des
ribe, from a design and implementation point of view, someof the origins of this added 
omplexity.Fast storage and a

ess to stream information: The key aspe
t di�er-entiating SI from stateless pa
ket 
lassi�
ation is SIs ability to view thepa
kets in the 
ontext of the streams to whi
h they belong. For this tobe possible the �rewall needs to be able to store, update, and a

essinformation about this 
ontext. As should be 
lear from the outlineof the Inspe
tPa
ket fun
tion this information needs to be a

essed atleast on
e for every inter
epted pa
ket. For these operations not toin
ur to great a performan
e penalty, it is therefore paramount to theperforman
e of the �rewall, that they 
an be performed in a fast ande�
ient manner.



15 2.3 Design Problems Introdu
ed by Stateful Inspe
tionState information needs to be kept 
onsistent: With the ability to storeinformation 
omes the need to keep it 
onsistent with the stream itrepresents. In parti
ular, this means that two pa
kets belonging tothe same stream 
an not be inspe
ted at the same time as the 
odein-between the table lookup and the table update is a 
riti
al region.That is, if two pa
kets from the same stream are in this se
tion atthe same time, the latter is likely to take outset in a wrong state, andtherefore likely to be wrongfully inspe
ted.Se
ondly, there is the issue of 
oordinating the operations of the In-spe
tPa
ket and TimeoutHandler fun
tions. As was des
ribed in Se
-tion 2.2.2 the normal pro
edure is to periodi
ally traverse the entirestate table in the sear
h for timed out streams. But what if the Time-outHandler en
ounters a stream that appears to have timed out onlybe
ause a pa
ket whi
h arrived within time is still in the previouslymentioned 
riti
al region. In this situation the 
onne
tion has 
learlynot timed out and the stream information should not be deleted.Both of the above issues 
an obviously be dealt with through the useof a number of lo
ks. However, as with most multi-threading, thesolution and its implementation 
an qui
kly be
ome 
omplex when thepreviously mentioned performan
e requirements are also taken intoa

ount.Fast a

ess to proto
ol 
onforman
e spe
i�
ations: As with the statetable a PCS is a

essed every time a pa
ket is re
eived. While the spe
-i�
ation does not 
hange during the operation of the �rewall, a fast wayof a

essing it is still needed.E�
ient handling of timeouts: While the 
ode needed to deal with time-outs is not very di�erent from that needed for the inspe
tion of pa
kets,it still puts a 
onsiderable strain on the state table. Where the Inspe
t-Pa
ket fun
tion requires a state table with fast a

ess to a single table,the TimeoutHandler requires fast traversal of all entries. As a result, adatastru
ture 
apable of performing well in both situations, while stillallowing for a great deal of 
on
urren
y, is needed.2.3.2 Keeping SI Up-to-date With New Proto
ols is a Te-dious and Error Prone TaskAs ea
h PCS is spe
i�
 to one type of stream at least one PCS is needed forea
h type of stream supported by the �rewall. This means that in order toperform SI on a large number of stream types, you either need an easy way ofadding new spe
i�
ations, or otherwise spend a lot of time adding these. Thelatter approa
h however raises a number of issues. First of all it is not likelyto be a very feasible long term solution as new proto
ols and hen
e new types
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tion and its Inherent Problems 16of streams frequently appear. Se
ondly, it raises some 
on
erns with regardto the overall se
urity of the �rewall. The problem arises with the fa
t thatwith ea
h new PCS the amount of 
ode making up the �rewall in
reases.As it is a widely re
ognized fa
t that in relation to se
urity, simpli
ity is avirtue[ea03℄[ea02℄, it is a good idea to make the addition of new spe
i�
ationsas easy as possible. This need is further in
reased by the fa
t that onePCS for ea
h type of stream might not be enough to suit all needs. Anexample of this is the PCS for the dete
tion of ACK Ping atta
ks des
ribedin Se
tion 2.2.1. While this spe
i�
ation is indeed 
apable of dete
ting su
hatta
ks, it does not deal with e.g. the in
orre
t use of the sequen
e number�elds. Where the spe
i�
ation may therefore be su�
ient in some areas ofuse, it may equally as well be totally insu�
ient in others. On the other hand,more 
omprehensive PCSs may in some situations be to stri
t or indulge togreat a performan
e penalty, and may therefore for some purposes be equallyunsuitable. As a result, several PCSs for the same type of stream is likely tobe needed.However, one key fa
tor somewhat easing the need for new PCSs is to befound in the layered layout of the TCP/IP referen
e model[CK74℄. Be
auseof this model, all streams simultaneously make use of several di�erent pro-to
ols. In relation to SI this makes it possible to divide these proto
ols intotwo groups, ea
h with their own distin
t properties. The �rst group make upthe network and transport layer proto
ols. These proto
ols are 
hara
ter-ized by being few in numbers and hardly ever 
hanging. The se
ond group
omprises the appli
ation layer proto
ols, and where only a few network andtransport layer proto
ols exists, new appli
ation layer proto
ols appear ona regular basis. A way of 
ountering the need for many PCSs would there-fore be to limit the support to in
lude network and transport layer proto
olsonly. This approa
h however has one major drawba
k. While only allowingfor SI on network and transport layer proto
ols is 
ertainly an improvementover the stri
tly stateless approa
h, its e�e
t is still limited 
ompared to thefull approa
h where support for all the proto
ols of the pa
ket is provided.No matter whi
h solution is 
hosen there is however nothing eliminating theneed for easy way of adding new PCSs.2.4 Current Pra
ti
es in the Implementation of State-ful Inspe
tionThis se
tion provides an introdu
tion to how two 
urrently available �re-walls implement SI and try to deal with the previously des
ribed problems.It starts by des
ribing the simplest and least �exible approa
h (used byOpenBSD PF [Fil04℄), before moving onto the more �exible approa
h usedby the Linux Net�lter [Hom04℄ �rewall. Finally, a des
ription of some of thegeneral limitations of the 
urrent pra
ti
es will be given.



17 2.4 Current Pra
ti
es in the Implementation of StatefulInspe
tion2.4.1 OpenBSD PFThe implementation of SI in PF has a very monolithi
 ar
hite
ture wherefo
us has been put on immediate simpli
ity as opposed to �exibility andextendability. This means that while its ar
hite
ture and 
ode tends to berelatively simple, the task of adding new PCSs is 
omparatively harder. Thisis most 
learly visible in the fa
t that the �rewall provides no fun
tionalityfor easing the task of adding new PCSs. An example of this is the la
k ofa built-in state table implementation that automati
ally handles issues su
has performan
e and 
on
urren
y. The result is that the implementor of newspe
i�
ations is for
ed to handle these issues himself. Arguably, this is prob-ably also one of the reasons why only very few PCSs have been added to this�rewall. Finally, all spe
i�
ations must be written in C, thereby as des
ribedin Chapter 1, further in
reasing the risk of errors in their implementation.2.4.2 Linux Net�lterIn Net�lter, 
ontrary to what was the 
ase with PF, �exibility and modular-ity has been a major design goal in all aspe
ts of the development pro
ess.This parti
ularly shows in its SI implementation whi
h provides the PCSdeveloper with a number of built-in modules that 
an be used to e�
ientlystore information, handle 
on
urren
y issues et
. While the Net�lter �rewallmight ease the task of storing state information it does however nothing tomake the a
tual spe
i�
ation of the proto
ol any easier1. This, along withthe 
ode integrating it with the built-in modules still has to be written in C.However, in 
omparison to PF, the addition of these built-in modules is stilla big improvement. Furthermore, as these modules are used by virtually allPCSs and are integral parts of the SI subsystem, the number of bugs in thesemodules is likely to be small. By using these modules, the PCS developer
an therefore stop fo
using on these issues and instead 
on
entrate more ona
tual behavior of the stream.With regards to the proto
ols supported by Net�lter, the e�e
ts of themodular ar
hite
ture are 
lear. As of writing, Net�lter ships with severaldi�erent PCSs for the most 
ommonly used network and transport layerproto
ols as well as PCSs for a wide range of appli
ation layer proto
ols.2.4.3 Limitations in Current Pra
ti
esAlthough the two �rewalls approa
h to the implementation of SI di�er, thereis one problem they both share - the job of adding new PCSs is a tediousand unstru
tured pro
ess 
ontaining a mix of dealing with the behavior ofthe stream, as well as writing 
ode integrating it with the �rewall. WhileNet�lter 
learly 
onstitutes an improvement over PF it is still insu�
ient.1In Net�lter PCSs are referred to as 
onne
tion tra
king helpers



Stateful Inspe
tion and its Inherent Problems 18Most of this stems from the fa
t the spe
i�
ations must still be written in Cand that this language is simply not designed for this. This makes the taskunne
essarily 
ompli
ated and 
an be the 
ause of errors whi
h have nothingto do with the behavior of the streams (pointer errors et
.). Be
ause �rewallsare intended to provide se
urity, and many of them (espe
ially hardware�rewalls used by private users) are not easily upgradeable on
e they havebeen deployed, it is important that they are free of errors. Writing PCSs ingeneral purpose languages is therefore overkill and not a feasible approa
h.Furthermore, as 
orre
tness is paramount to the overall level of se
urity itwould be a 
onsiderable improvement if it was possible to formally provethe 
orre
tness of the PCSs. As proving the 
orre
tness of 
ode written in
omplex languages su
h as C is generally a very tedious task, this is yetanother reason why the 
urrent pra
ti
es are insu�
ient.2.5 The Proposed Solution - Retargetable Proto
olConforman
e Spe
i�
ationsHaving des
ribed the di�erent problems involved in performing SI and de-termined the limitation of the 
urrent pra
ti
es, our proposal to a solutionto the problem of adding PCSs will now be introdu
ed. We start by givinga brief outline of the proposal thereby des
ribing its 
ore features.2.5.1 Outline of the ProposalOne of the main problems haunting todays implementations of SI is theirla
k of a simple spe
ialized language designed solely for the task of spe
ifyingPCSs. We propose the development of su
h a language. The main advantagewill be that su
h a language 
an be made to perfe
tly hide all issues notdire
tly related to the spe
i�
ation of the PCS. Se
ondly, having a languagethat is simple and tailored towards the spe
i�
ation of PCSs should redu
ethe risk of bugs being present in the �nal spe
i�
ation. Furthermore, as thebehavior of a proto
ol remains the same no matter in whi
h �rewall it isinspe
ted, the language 
an be kept independent of any parti
ular �rewall.The result is that a PCS written in this language 
an be seen as a universalspe
i�
ation whose deployment is no longer 
on�ned to any single �rewall.In e�e
t, su
h a language would therefore allow for the development of afully retargetable PCS 
reation system that 
an be used by 
urrent andfuture �rewalls. All that is left to the developer of the �rewall is to developa 
ompiler 
apable of transforming the universal spe
i�
ations into 
odeusable by his parti
ular �rewall. This way, the same tried and tested PCSs
an be reused a
ross di�erent �rewalls thereby further strengthening theirquality and easing the task of adding them. Finally, the language 
an betailored towards easing the task of formally proving the 
orre
tness of the



192.5 The Proposed Solution - Retargetable Proto
ol Conforman
eSpe
i�
ationsspe
i�
ations. This way, the system will not only ease the implementationof the PCSs, but also make it easier to verify their 
orre
tness. In turn, thisshould thereby redu
e the risk of having to issue expensive �xes to alreadydeployed �rewalls as a result of erroneous software.2.5.2 The Ar
hite
ture of the Proposed SystemIn Figure 2.4 the three phases involved in transforming a universal spe
i�
a-tion written in the �rewall independent language, into the �nal 
ode usableby a parti
ular �rewall, 
an be seen. The approa
h is simple and fairlysimilar to what is used by other 
ompilers. That is, the universal spe
i�
a-tion is parsed into an intermediate representation from whi
h the di�erentoutputs are generated. Using this approa
h 
ode reuse 
an be maximizedas the implementation 
reated for phases 1 and 2 remains the same for alloutput generators. This way, all that is left to the �rewall developer is to
reate an output generator for his parti
ular �rewall (whi
h itself is a fairlysimple task). Finally, as the system is not bound to any spe
i�
 program-ming language, the entire system along with the output generators 
an beimplemented in a more high level language whi
h, in turn, should ease thedevelopment pro
ess.
Firewall Independent and Protocol
Oriented Specification Language

PF

Netfilter

.

.

.

Firewall Independent Optimization

Intermediate RepresentationParser

Universal Specification

Output Generators

Phase 3Phase 2Phase 1

Native Firewall Code

IPFilterFigure 2.4. The three phases involved in transforming a PCS written in the �rewall independentlanguage into 
ode usable by a �rewall.The �rst step in the pro
ess depi
ted in Figure 2.4 is the �rewall inde-pendent and proto
ol oriented language. The �rst task in the developmentof this language is to determine what it must be able to represent. That is,what makes up a PCS, whi
h proto
ols must it be able to represent, andwhat is needed in order to spe
ify the intended behavior of these proto
ols.The result of this analysis is the development of a minimal model 
apable ofrepresenting the spe
i�
ations, and the development of a language 
apable ofrepresenting this model. The next step is to develop an intermediate repre-sentation upon whi
h �rewall independent optimizations 
an be performed,and from whi
h the �nal output 
an be generated. Doing so, the key issueis to �gure out whi
h optimizations are feasible to perform, and in whi
hdata stru
ture the intermediate representation should be stored. The �nal



step in the transformation is to generate the a
tual output. This task is per-formed by output generators provided by the �rewall developers. The jobof these generators is to transform the optimized spe
i�
ation stored in theintermediate representation, into something usable by the di�erent �rewalls.2.6 Proje
t Des
riptionThe goal of this proje
t is to design, implement, and test the model anda

ompanying retargetable PCS system des
ribed in the previous se
tion.As this, to our knowledge is the �rst proje
t dealing with this issue, we willnarrow its fo
us and limit the system to the support of PCSs for TCP/IPand UDP/IP only. The reason for 
hoosing these proto
ols is mainly due totheir widespread use as the basis for most of todays Internet tra�
[Tra01℄.As des
ribed in Se
tion 2.5 the development of the proposed system in-
ludes the design and implementation of the following 
omponents:
• Phase 1� A model 
apable of representing proto
ol 
onforman
e spe
i�
a-tions for the TCP/IP and UDP/IP proto
ol suites.� A �rewall independent and proto
ol oriented language with anexpressive power equivalent to that of the aforementioned model.� A parser 
apable of turning PCSs written in the previously men-tioned language into a parse tree a
ting as an interfa
e betweenthe parser and the intermediate representation.
• Phase 2� An intermediate representation 
apable of optimizing and storingthe PCS.� An API for use by the output generators, 
apable of providinga

ess to PCSs stored in the intermediate representation.
• Phase 3� To be able to test the proposed system and fa
ilitate its 
urrentand future development an output generator for the Net�lter[Hom04℄�rewall is needed.



PART II
The Proposed System

Having brie�y introdu
ed the proposed system this part des
ribes, in detail,the di�erent parts of that system. As des
ribed in relation to the ar
hite
-ture a number of steps are involved in transforming the PCS written in the�rewall independent language into 
ode usable by the individual �rewalls.To re�e
t this ar
hite
ture this part 
ontains a separate 
hapter for ea
h ofthese steps. As a result, Chapter 3 des
ribes the underlying minimal model
apable of representing PCSs for the TCP/IP and UDP/IP proto
ol suites,and developed to a
t as the foundation for the retargetable system. Withthat foundation in pla
e, Chapter 4 des
ribes the proto
ol oriented languagedeveloped to be 
apable of representing that model. With the language inpla
e Chapter 5 
on
erns the development of the intermediate representationand the 
orresponding API from whi
h the �nal output 
an be generated.Finally, Chapter 6 is 
on
erned with output generation pro
ess and providesa hands-on example of how an output 
an be generated using the aforemen-tioned API.





Chapter 3The Underlying ModelThis 
hapter des
ribes the model underlying the proposed system. To in-
rease �exibility, while at the same time building a solid foundation for the�nal system, the development of this model was split into two phases. InSe
tion 3.1 the behavior and di�erent pie
es of basi
 fun
tionality needed ina PCS is des
ribed, and an abstra
t model, the proto
ol 
onforman
e model(PCM), whi
h 
aptures this behavior and fun
tionality is de�ned. Throughthe 
reation of this abstra
t model we aim to 
reate a 
ommon foundationwhi
h, depending on how it is spe
ialized, 
an be made to represent PCSs forvarious 
urrent and future proto
ols. Finally, and in tune with this approa
h,Se
tion 3.2 presents su
h a spe
ialization 
apable of representing TCP andUDP PCSs. Throughout the rest of the report, this spe
ialization is thenused as the basis for the 
urrent version of proposed system.3.1 The Proto
ol Conforman
e ModelAs should be 
lear from the PCSs des
ribed and illustrated in the previous
hapters, the behavior of a proto
ol, and hen
e the streams using them, 
anbe des
ribed using an automaton. The PCM is therefore a formal de�nitionof the key 
on
epts of the automaton des
ribed in those 
hapters, 
ombinedwith a de�nition of the environment in whi
h it operates1. We begin bydes
ribing and de�ning the major 
omponents in this environment.3.1.1 The EnvironmentThe two elements in the environment in whi
h SI, and therefore the PCSs,operates are those of hosts and streams. In this environment it is the respon-sibility of the SI system to inspe
t the 
ontents of the pa
kets and return a1The automaton used in the previous 
hapters is itself heavily inspired by that of timedautomata[AD94℄.
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ore. As all pa
kets using the same proto
ols are usu-ally divided into the same prede�ned number of parts (ea
h part 
ontaininga parti
ular pie
e of information, IP_SRC, TCP_SRCPORT et
.), a pa
ket
an be seen as a prede�ned set of variables whose valuation depend on the
ontent of the inspe
ted pa
ket. In the PCM the pa
kets 
he
ked againstthe PCS 
an therefore be de�ned in terms of su
h variables:De�nition 4 (Pa
ket Variables)A �nite non-empty set of bounded variables PV 
ontained within allpa
kets assumed to belong to streams of the type being inspe
ted. Thevalue of a pa
ket variable v ∈ PV as stored in the pa
ket p is denotedpv(v,p).A natural 
onsequen
e of this de�nition is that only pa
kets with a valuationfor ea
h pa
ket variable, 
an ever be presented to the PCS. As will later be
lear this is an essential property as it ensures that all pa
kets, presentedto the PCS and legal within the framework of the PCM, 
an be su

essfullyinspe
ted.3.1.1.1 StreamsThe se
ond in�uen
ing element in the environment is the streams. As pre-viously de�ned, these are sequen
es of pa
kets logi
ally bound together atea
h host using a relation de�ned by one of the proto
ols of the stream. Inthe PCM this relation is modeled by the abstra
t 
on
ept of the stream keywhi
h is de�ned as follows:De�nition 5 (Stream Key)The relation used to relate pa
kets belonging to the same stream to ea
hother.In tune with the previous des
ription of SI, it is in the PCM the responsibilityof the SI system, using the stream key, to investigate any re
eived pa
ketand �nd the stream to whi
h it is seems to belong. Upon 
ompletion of thistask it is then 
he
ked against the PCS and an inspe
tion result is identi�ed.3.1.2 The Proto
ol Conforman
e Spe
i�
ationThe se
ond part of the PCM is the model of the PCS itself. As previouslydes
ribed, this part 
an be modeled using an automaton where state 
hange
an o

ur either as the result of a pa
ket being re
eived, or as the resultof a timeout. In the former 
ase a result is returned to the �rewall 
oresignifying the out
ome of the inspe
tion. Depending on the �nal 
lassi�
ationperformed by the �rewall two things 
an happen. If the pa
ket is allowed to



25 3.1 The Proto
ol Conforman
e Modelpass, the state information for that stream is updated to re�e
t the re
eptionof that pa
ket. On the other hand, if the pa
ket is blo
ked, no updateso

ur and the pa
ket is simply ignored. To model this behavior a number ofdi�erent entities need to be in
orporated into the automaton of the PCM.The following se
tions des
ribe and de�ne these entities.3.1.2.1 Lo
ations and TransitionsBeing an automaton the PCS, as modeled in the PCM, 
onsists of a numberof lo
ations and transitions. The lo
ations (of the set L) model the basi
states in whi
h the inspe
ted streams 
an be. As was the 
ase for the samplePCSs des
ribed in Chapter 2, two di�erent types of lo
ations exists. The�rst lo
ation in any PCS is the 
losed lo
ation whi
h represents the statewhere no pa
kets have been re
eived and therefore no information is stored.Similarly, the open lo
ations are the lo
ations representing the intermediatestates where information is stored.Con
erning transitions two types, with di�ering semanti
s, exists - updatetransitions and ignore transitions. The update transitions (UT) are thetraditional transitions used whenever the �nal a

eptan
e of a pa
ket meansthat the state information needs to be updated. Ignore transitions (IT) onthe other hand are self-loops used whenever the a

eptan
e of a pa
ket mustnot lead to that information being updated (at the very least an updatetransition will reset the timeout timer). A s
enario where ignore transitionsare useful is in situations where an invalid pa
ket has been re
eived. In theevent that the �rewall, regardless of this, 
hooses to a

ept the pa
ket it
ould be useful for SI system to simply ignore the pa
ket and assume thatit will be ignored by the re
eiving host. Had a traditional update transitionbeen used, essential information su
h as the timeout timer would have beenupdated and no longer been 
onsistent with the stream.3.1.2.2 State InformationTo keep tra
k of the state of a stream in-between inspe
tions, state informa-tion needs to be stored. In the PCM this 
apability is made possible throughthe introdu
tion of a number of stored variables. These variables are de�nedas follows:De�nition 6 (Stored Variables)A �nite set of bounded variables SV stored by the SI system for ea
hstream being inspe
ted using the parti
ular PCS. The value of a storedvariable v ∈ SV is denoted sv(v).



The Underlying Model 263.1.2.3 Constraints on TransitionsAn essential part in the fun
tionality of a PCS is the ability to vary the resultof an inspe
tion based upon the 
ontents of the re
eived pa
kets. In the PCMthis fun
tionality is implemented by allowing for a number of 
onstraintsto be pla
ed on the transitions of the automaton. As �rewalls, by theirvery nature assume the role of intermediary observers, two di�erent typesof 
onstraints are needed - dire
tion 
onstraints and 
ontent 
onstraints. Tosimplify the �nal system, while at the same time stressing that dire
tionand 
ontent 
onstraints, at least 
on
eptually, are two di�erent types of
onstraints, these are kept as separate entities in the model. The �rst typeof 
onstraints, the dire
tion 
onstraints, are de�ned as follows:De�nition 7 (Dire
tion Constraints)Constraints on the dire
tion of the re
eived pa
ket. Being assigned toall transitions not emerging from the 
losed lo
ation, the set of possibledire
tions is denoted D and the dire
tion 
onstraint asso
iated with atransition t ∈ UT ∪ IT is denoted d
(t). Similarly the dire
tion of thepa
ket p is denoted dir(p).Similarly, the 
onstraints on the 
ontent of the pa
ket, referred to as theguards, are de�ned as follows:De�nition 8 (Guards)Constraints over the stored and pa
ket variables G ⊆ SV ∪PV , assignedto a transition t ∈ UT ∪ IT and obeying the following rules: Letting
emit(χ) denote the lo
ation from where the transition χ ∈ UT ∪ IT isgoing out, it must for the guards grd(t) asso
iated with the transitiont, never be the 
ase that ∃t′ ∈ UT ∪ IT where emit(t)=emit(t') anddir(t)=dir(t') and where the following holds:

|= grd(t)∩ |= grd(t′) 6= {∅}where |= ρ denotes the set of all tuples over the values of the stored andpa
ket variables that satisfy the guards ρ ∈ G. Finally, there must forany pa
ket p, from all lo
ations L and dire
tions D, be a transition whoseguards are satis�ed by the values of the pa
ket variables of the pa
ket.As 
an be seen from this de�nition all guards must adhere to two basi
rules. First of all it must never be the 
ase that the guards assigned to twotransitions 
ause these transitions overlap. If this property was to fail thePCS would be
ome non-deterministi
 and unable to return a distin
t resultto the �rewall 
ore. Se
ondly, there must always be an enabled transition forany given pa
ket that, by the stream key, is 
onsidered part of the stream. Asthe result returned to the �rewall 
ore depends entirely on whi
h transition is
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ol Conforman
e Modeltaken, the PCS 
ould, without this requirement, be presented with a pa
ketto whi
h it has no response.3.1.2.4 Updating the State InformationUpon taking a transition it must be possible to update the state informationstored for the stream. To ful�ll this requirement variable assignments 
an bepla
ed on update transitions throughout the PCS. This way, when an updatetransition is traversed, the stored variables 
an be updated to re�e
t this. Toease the formalization of the model, the assignments on all transitions goingto the 
losed lo
ation are prede�ned to assign to the stored variables, theirinitial value. More spe
i�
ally these assignments, referred to as updates, arede�ned as follows:De�nition 9 (Updates)Assignments to the stored variables. Asso
iated with update transitions,the updates are performed whenever the transition to whi
h they are as-signed is taken. The set of possible updates is denoted U and �nally,the updates asso
iated with transitions going to the 
losed lo
ation areprede�ned to reset all stored variables to their initial values.3.1.2.5 Spe
ifying the Inspe
tion ResultThe next 
on
ept in the model is that of property values. As previouslydes
ribed these are used to spe
ify the result to be returned to the �rewall
ore. In the PCM this is done by assigning a property value to ea
h transitionand returning it whenever that transition is taken. In the PCM the propertyvalue is de�ned as follows:De�nition 10 (Property Value)A value assigned to ea
h transition t ∈ UT ∪ IT and returned to the�rewall 
ore whenever that transition is taken. The set of property valuesis denoted V.3.1.2.6 TimeoutsThe �nal part of the automaton is the fun
tionality used to model timeouts.For this, two 
omponent are needed - the 
lo
k and the timeout value. The
lo
k, whi
h is used to keep tra
k of the time elapsed sin
e the re
eption ofthe last a

epted pa
ket, is de�ned as follows:



The Underlying Model 28De�nition 11 (Clo
k)A variable C, ranging over ZZ
∗, whose value v(C) is in
remented by 1ea
h time a se
ond passes and the stream is in an open lo
ation.The timeout value, that is, the amount of time allowed to pass before atimeout o

urs is a value assigned to ea
h open lo
ation. More formally itis de�ned as follows:De�nition 12 (Timeout Value)A value x ∈ ZZ

+ assigned to ea
h open lo
ation. Given a lo
ation, thisvalue de�nes the amount of time that may elapse between the re
eptionof two a

epted pa
kets.With the de�nitions of the individual 
omponents in pla
e the �nal automa-ton, named the proto
ol 
onforman
e automaton, 
an be formally de�ned.In De�nition 13 this formal de�nition 
an be seen:De�nition 13 (Proto
ol Conforman
e Automaton)A proto
ol 
onforman
e automaton (PCA) is a tuple (L, l0, tval, C, UT ,
IT , dc, grd, upd, pval) where:
L, is a �nite non-empty set of lo
ations.
l0 ∈ L, is the 
losed lo
ation that is used when no state information isstored.
tval : L \ {l0} → ZZ

+, is a fun
tion whi
h labels ea
h open lo
ation witha timeout value.
C, is a 
lo
k.
UT ⊆ L× L \ {(l0, l0)}, is a set of update transitions.
IT ⊆ L× L, is a set of ignore transitions where for any two 
onne
tedlo
ations l, l′ ∈ L then l = l′.
dc : (UT ∪ IT ) \ {l0} × L→ D, is a fun
tion whi
h labels ea
h transi-tion not going from l0 with a dire
tion 
onstraint.
grd : UT ∪ IT → G, is a fun
tion whi
h assigns to ea
h transition anumber of guards of the type, and obeying the rules de�ned in Def-inition 8.
upd : UT → U, is a fun
tion whi
h assigns to ea
h update transition notgoing to l0 a number of updates.
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ol Conforman
e Model
pval : UT ∪ IT → V, is a fun
tion whi
h assigns a property value to ea
htransition.Having de�ned the environment and the syntax of the PCA, the semanti
sof this automaton 
an now be de�ned.3.1.3 Semanti
s of Proto
ol Conforman
e AutomataThe semanti
s of the PCA, and thus the behavior of a PCS, is de�ned inthe form of a transition system (S, s0,→). In this system S is a set of stateswhere ea
h state is a triple (l, v, t) with l being a lo
ation, v a valuation ofthe stored variables, and t a valuation of the 
lo
k. s0 is the initial state

(l0, v0, t0), where the 
lo
k and all stored variables are zero. Finally, → isthe transition relation de�ning how to move between the states. To 
apturethe di�eren
es in the transitions in
urred by the absen
e of dire
tions ontransitions emerging from the 
losed lo
ation, and the absen
e of a timeoutvalue on the 
losed lo
ation, the transition relation de�nes two di�erenttypes of update and ignore transitions. The open transitions are transitionsnot emerging from 
losed lo
ation, whereas the 
losed transitions all emergefrom this lo
ation. Spe
i�
ally, the transition system underlying a PCA isde�ned as follows, where |= is a satisfa
tion relation between a valuation ofpa
ket variables, stored variables, and the set of guards G:De�nition 14 (Transition System Underlying a PCA)The transition system asso
iated with the proto
ol 
onforman
e automa-ton A, denoted M(A) is de�ned as (S, s0,→) where:
S = {(l, v, t) ∈ (L \ {l0})× sv(SV )× v(C) | t ≤ tval(l)}

s0 = (l0, v0, t0) where t0 = 0 and v0(x) = 0 for all x ∈ SV

the transition relation →⊆ S×({uo, uc, io, ic}×V ∪{t}∪ZZ
+)×S is defined by the rules :1 „

update

open

« : (l,v,t) uo,α
−→ (l',v',0) if the following 
onditions hold:a. e = (l,l') ∈ UT and l 6= l0b. a pa
ket p is re
eived
. pv(PV ,p), v |= grd(e)d. the return of the property value α ∈ V asso
iated with thetransition e, will allow the pa
ket to pass through the �rewalle. v′ is the valuation of SV after applying upd(e) to vf. t < tval(l)g. dir(p) = d
(e)
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update

closed

« : (l0,v0,t0) uc,α
−→ (l',v',t') if the following 
onditions hold:a. (l0,l') ∈ UTb. rules 1.b, 1.
, 1.d and 1.e hold2 „

ignore

open

« : (l,v,t) io,α
−→ (l,v,t) if the following 
onditions hold:a. (l,l) ∈ IT and l 6= l0b. rules 1.b, 1.
, 1.d, 1.f, and 1.g hold2 „

ignore

closed

« : (l0,v0,t0) ic,α
−→ (l0,v0,t0) if the following 
onditions hold:a. (l0,l0) ∈ ITb. rules 1.b, 1.
, and 1.d hold3 (timeout): (l,v,t) t

−→ (l0,v0,t0) if the following 
onditions hold:a. l 6= l0b. t = tval(l)4 (delay): (l,v,t) d
−→ (l,v,t+d) for any positive integer d, if the following
onditions hold:a. l 6= l0b. t+d ≤ tval(l)
. no pa
ket is re
eived3.1.4 Depi
ting the Proto
ol Conforman
e ModelFor depi
ting the proto
ol 
onforman
e model we use the following 
onven-tions. With regards to the PCA, 
ir
les denote lo
ations and timeout valuesare written inside these 
ir
les. Update transitions are represented usingarrows and ignore transitions are denoted using dotted arrows. The guardsand updates asso
iated with the update transitions are written above or tothe right of the arrows where as dire
tion 
onstraints and property values arewritten below or to the left. Furthermore, the 
losed lo
ation is depi
ted us-ing a double lined 
ir
le. Finally, for the sake of 
larity the di�erent lo
ationsare given a name whi
h is written inside the 
ir
le.An example of this graphi
al representation of the PCM 
an be seen inFigure 3.1. In this example a stream 
an get into lo
ation A if a pa
ket satis-fying guard1 is re
eived, and no information about the stream of the pa
ket isstored. From there two things 
an happen: either a pa
ket satisfying guard2,

guard3, or guard4 and have the appropriate dire
tion is re
eived within 60se
onds, or else a timeout o

urs. In the former 
ase where a pa
ket satis�es
guard2, the stream remains in lo
ation A, the stored information is updateda

ording to update2, and the 
lo
k is reset. In the 
ase where guard4 is sat-
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ialization
Stream Key
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tion1
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guard2

guard1dire
tion2 dire
tion1Figure 3.1. Graphi
al representation of a PCS spe
i�ed in the PCM.is�ed, the stream enters the 
losed lo
ation and all information about it isdeleted. Similarly, in the 
ase where guard3 is satis�ed by a pa
ket travelingin direction1, the property value Invalid is returned and all information,in
luding the 
lo
k, is left un
hanged. Finally, in the latter 
ase where nopa
kets are re
eived, the stream times out and e�e
tively enters the 
losedstate where the stored information as well as the 
lo
k is reset.Having de�ned the abstra
t version of the underlying model it 
an nowbe spe
ialized towards the towards the task of representing PCSs for TCPand UDP streams. Most notably, this means that abstra
t 
on
epts su
h aspa
ket variables, stream key, and guards must be spe
ialized so that theyrepresent what is needed by these proto
ols.3.2 The TCP/UDP Spe
ializationThe parts of the PCM whi
h need to be spe
ialized for it to be 
apable ofrepresenting PCSs for TCP and UDP streams are pa
ket variables, streamkey, stored variables, dire
tion 
onstraints, guards, and updates. An exampleof the need for a spe
ialization 
an be seen in the de�nition of guards. Inthe PCM a guard is de�ned merely as a 
onstraint over the set of stored andpa
ket variables. But what does this mean in terms of representing PCSs forTCP and UDP streams?. That is, what must be possible to use as guardswhen 
reating PCSs for these streams. As the answer to this question, alongwith similar questions for the other parts, depends on the proto
ol beinginspe
ted, and on what the PCS is supposed to 
he
k, this question hasno exa
t and �nal answer. In an attempt to over
ome this problem a widerange of existing PCSs for these proto
ols have therefore been investigated.Using the knowledge gained from this investigation, the PCM has then be
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ialized to a point where it is su�
iently 
on
rete to be used a the basisfor the universal language, while at the same time still expressive enough torepresent the investigated PCSs. Through the examination of PCSs that are
ompli
ated and in widespread use, we thereby hope to be able to representmost, if not all, PCSs one may want to make.In the following se
tion the referen
e PCS used as a basis for the spe
ial-ization will be brie�y des
ribed2. Following this des
ription we 
on
lude onthe requirements of that PCS and formally de�ne the spe
ialized model.3.2.1 The Referen
e Proto
ol Conforman
e Spe
i�
ationThe PCS used as a referen
e for what must be representable by the spe
ial-ization is a PCS whi
h 
he
ks TCP streams for their 
orre
t use of �ags andsequen
e numbers[Roo℄. The reason for using this as the referen
e is that itappears to be the most 
omprehensive, while at the same time being one ofthe most widely used PCSs around3. The sequen
e number part essentiallypla
es an upper and a lower bound on the TCP_SEQ and TCP_ACKSEQ�elds. That is, the values of these �elds must always fall within the windowde�ned by these bounds.In an environment where pa
kets are sent between hosts A and B and the�rewall F is pla
ed in between, the referen
e PCS de�nes the upper boundon the TCP_SEQ �eld as follows:
TCP_SEQA + TCP_LENA ≤ max

{

TCP_ACKSEQB + max(TCP_WINSIZEB , 1)

} (3.1)where the notation XY denotes the value of the variable X in a pa
ketsent by Y and seen by F . Using that notation the 
onstraint signi�es thatthe sum of the TCP_SEQ and TCP_LEN �elds in any pa
ket sent by A,must never ex
eed the maximum value of the sum of the TCP_SEQ andTCP_ACK �elds from pa
kets sent by B and seen by F. Finally, the term
max(TCP_WINB, 1) denotes the maximum value of the two arguments andis used in the spe
ial 
ase where the window of host B needs to be re-probedafter its annun
iation of a zero sized window. In the same environment, andusing the same notation, the lower bound for the TCP_SEQ �eld is de�nedas follows:
TCP_SEQA + max

{

max(TCP_WINB, 1)

}

≥ max

{

TCP_SEQA + TCP_LENA

} (3.2)Similarly, with respe
t to the TCP_ACKSEQ �eld, the upper bound isde�ned as follows:
TCP_ACKSEQA ≤ max

{

TCP_SEQ + TCP_LEN

} (3.3)2Several other PCSs for both TCP and UDP streams have been investigated but nonebrought about any additional requirements.3Most open sour
e �rewalls (PF, Net�lter, IPFilter et
.) implement it.
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ializationFinally, the lower bound for the TCP_ACKSEQ �eld is de�ned as follows:
TCP_ACKSEQA + MAXACKWINDOW ≥ max

{

TCP_SEQB + TCP_LENB

} (3.4)where MAXACKWINDOW is as a user-de�ned 
onstant slightly larger thanthe largest possible TCP window size.To implement the 4 
onstraint the referen
e PCS proposes to use 3 storedvariables for ea
h of the two hosts. These are: X.td_end, X.td_maxend,and X.td_maxwin where X denotes either of the two hosts. X.td_end isused to hold the maximum value of max{TCP_SEQX + TCP_LENX} asused in 
onstraints 3.2, 3.3, and 3.4 where asX.td_maxend holds the value of
TCP_ACKSEQX + max{TCP_WINX , 1} as used by 
onstraint 3.1. Fi-nally, X.td_maxwin is used to hold the value ofmax{max(TCP_WINX , 1)}.With regards to the �ag 
he
king part of the PCS, it simply enfor
es the rulesde�ned in RFC793[Pos81b℄, and is therefore a superset of the PCS previouslyshown in Figure 2.3(b).3.2.2 The Spe
ialized Proto
ol Conforman
e ModelFrom the referen
e PCS several things be
omes 
lear with regards to theabstra
t 
on
epts whi
h need to be spe
ialized. First of all, it is 
lear thatthe set of pa
ket variables should be de�ned as set of all �elds present inthe headers of the inspe
ted proto
ols. The reason for this is obvious as allinformation used by these proto
ols is present within the proto
ol headers.Se
ondly, it should be noted that the TCP proto
ol makes use of two types ofheader �elds - normal �elds (e.g. TCP_WIN and TCP_SYN) and sequen
enumber �elds (TCP_SEQ and TCP_ACKSEQ). The normal �elds are nor-mal bounded variables where as the sequen
e number �elds are used for sim-ulating unbounded behavior in the otherwise bounded variables[EB96℄. Asthe semanti
s of sequen
e number arithmeti
s (as pres
ribed by RFC1982)requires these two types to be kept separate, the PCMs de�nition of pa
ketvariables 
an be spe
ialized to the following:De�nition 15 (Pa
ket Variables for TCP and UDP Streams)The set of pa
ket variables PV for TCP and UDP streams is the setof �elds in the proto
ol headers of the pa
kets of the type of stream forwhi
h the PCS was made. The set PV is divided into two subsets, PSVwhi
h is the set of sequen
e number �elds and PNV whi
h is the set ofnormal �elds. For these sets the following must hold: PSV ∪ PNV =

PV and PSV ∩ PNV = {∅}Con
erning the spe
ialization of the stream key, TCP and UDP relate pa
ketsby mat
hing the 
ontents of a few prede�ned �elds. If two pa
kets share thesame 
ontent in these �elds they are said to belong to the same stream. To
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t this, the stream key for TCP and UDP streams is de�ned in terms ofa pair of tuples 
apable of holding these prede�ned �elds.De�nition 16 (Stream Key for TCP and UDP Streams)A pair of ordered n-tuples a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)over the set of pa
ket variables PV. Two pa
kets p and p′ are 
on-sidered to belong to the same stream if either pv(ai, p) = pv(ai, p
′) ∧

pv(bi, p) = pv(bi, p
′) or pv(ai, p) = pv(bi, p

′) ∧ pv(bi, p) = pv(ai, p
′), for

i = 1, 2, . . . , n.With regards to stored variables the referen
e PCS stores either the valuesof the �elds, or the result of an expression over the set of pa
ket and storedvariables. As a pa
ket variable is now de�ned as a set of �elds and as a �eldis essentially a bounded variable over the domain ZZ
∗ with a lower bound 0,and an upper bound of 2#bits − 1, the de�nition of stored variables 
an bespe
ialized to the following:De�nition 17 (Stored Variables for TCP and UDP Streams)The set of stored variables SV for TCP and UDP streams is a set ofbounded variables over ZZ

∗. The set SV is divided into two subsets, where
SNV is the set of stored normal variables and SSV is the set of storedsequen
e number variables. Letting ub(a) denote the upper bound forthe variable a ∈ SNV ∪ SSV , then for any variable x ∈ SNV thefollowing must hold: ub(x) = 2i − 1 for i ∈ {1, 2, . . . , 32}. Similarly,for any variable y ∈ SSV the following must hold: ub(y) = 2i − 1 for
i ∈ {8, 16, 32}. Finally, for the sets SNV and SSV the following musthold: SSV ∪ SNV = SV and SSV ∩ SNV = {∅}With regards to the dire
tion 
onstraints for TCP and UDP streams thedire
tion of pa
kets in these streams are seen relative to the �rst pa
ket ofthe stream to whi
h they belong. Furthermore, the dire
tion depends onthe values stored within the �elds making up the stream key. In tune withthe de�nition of the stream key for TCP and UDP streams, this type of
onstraint is therefore spe
ialized to the following:De�nition 18 (Dire
tion Constraints for TCP and UDP Streams)Either original or return, the dire
tion of a TCP or UDP pa
ket is seenrelative to the �rst pa
ket of the stream. A re
eived pa
ket p is said tobe �owing in the original dire
tion if for the �rst pa
ket of the stream
p′ the following holds with regards to the tuples a and b in the streamkey: pv(ai, p) = pv(ai, p

′) ∧ pv(bi, p) = pv(bi, p
′), for i = 1, 2, . . . , n.Similarly a pa
ket is �owing in the return dire
tion if the followingholds: pv(ai, p) = pv(bi, p

′) ∧ pv(bi, p) = pv(ai, p
′), for i = 1, 2, . . . , n.
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ializationIn the PCM the set of guards is de�ned as a set of 
onstraints over the set ofpa
ket variables and stored variables. With the spe
ialization of these twosets this abstra
t 
on
ept 
an be spe
ialized as well.As explained in the des
ription of the referen
e PCS, this PCS spe
i-�es a window for the sequen
e numbers. It therefore uses guards that areboolean expressions over expressions on the members of the sets of pa
ketvariables, stored variables, and positive integer 
onstants. Based on this,and RFC1982s de�nition of sequen
e number arithmeti
s, we spe
ialize theset of guards to the following:De�nition 19 (Guards for TCP and UDP Streams)For the set NEXP of expressions over the sets PNV ∪SNV , and for theset SEXP of expressions over the sets PSV ∪SSV , the set of guards forTCP and UDP streams is de�ned a

ording to the following grammar:
G ::= G1 ∧G2 | a ∼ b | x ∼ y | truewhere a, b ∈ NEXP , x, y ∈ SEXP , and ∼∈ {<,≤, >,≥,=}where true represents the guard that is always true. Furthermore, with anoutset in the referen
e PCS, we de�ne the set NEXP to be the set of expres-sions over normal variables using the 
ommon operators. More spe
i�
ally,we de�ne it as follows:De�nition 20 (Set of Expressions Over Normal Variables)The set NEXP of expressions over normal variables is de�ned a

ordingto the following grammar:
φ ::= d | a | b | (φ) | (z)(φ1 ∼ φ2)where d ∈ ZZ

+, z ∈ {1, 2, . . . , 32}, a ∈ SNV , b ∈ PNV, and
∼ ∈ {+,−, ∗, /, //}Important to noti
e from this de�nition is the stru
ture of the expressionsover the basi
 elements, positive integer values, pa
ket variables, and storedvariables. As 
an be seen, expressions are augmented with a bit value (z )spe
ifying the size of the domain in whi
h the evaluation of the expression isto be made. This is espe
ially useful when operating with expressions overdi�erent sized variables. Later, in De�nition 22, the exa
t meaning of thisbit value will be de�ned.Finally, in terms of the set SEXP of expressions over sequen
e numbervariables we de�ne this in a

ordan
e with the rules of RFC1982:



The Underlying Model 36De�nition 21 (Set of Expressions Over Sequen
e Number Variables)The set SEXP of expressions over sequen
e number variables is de�neda

ording to the following grammar:
φ ::= x | y | x + a | y + awhere x ∈ SSV, y ∈ PSV, and a ∈ NEXPWith regards to the semanti
s of these two sets, the natural semanti
s ofexpressions over normal variables is de�ned as follows:De�nition 22 (Evaluation of Expressions over Normal Variables)The natural semanti
s for the evaluation of expressions over normal vari-ables is de�ned as follows:

[num] s ⊢ d→a n where n = N JdK

[varsv] s ⊢ a→a n where n = sv(a)

[varpv] s ⊢ b→a n where n = pv(b, p) and p is the pa
ket being inspe
ted
[parent] s⊢φ→av

s⊢(φ)→av

[add] s⊢φ1→av1 s⊢φ2→av2 ⊢z→av3

s⊢(z)(φ1+φ2)→av where v = (v1 + v2) mod 2v3

[mult] s⊢φ1→av1 s⊢φ2→av2 ⊢z→av3

s⊢(z)(φ1∗φ2)→av where v = (v1 ∗ v2) mod 2v3

[divf ] s⊢φ1→av1 s⊢φ2→av2 ⊢z→av3

s⊢(z)(φ1/φ2)→av where v = ⌊ v1

v2

⌋mod 2v3

[divc] s⊢φ1→av1 s⊢φ2→av2 ⊢z→av3

s⊢(z)(φ1//φ2)→av where v = ⌈ v1

v2

⌉ mod 2v3

[sub1]
s⊢φ1→av1 s⊢φ2→av2 ⊢z→av3 v1≥v2→gtt

s⊢(z)(φ1−φ2)→av where v = (v1− v2) mod 2v3

[sub2]
s⊢φ1→av1 s⊢φ2→av2 ⊢z→av3 v1≥v2→gff

s⊢(z)(φ1−φ2)→av where v = 2v3 − v2 + 2v1Similarly, based upon RFC1982 the semanti
s of sequen
e number expres-sions is de�ned as follows:De�nition 23 (Evaluation of Sequen
e Number Expressions)Letting size(a) denote the number of bits assigned to the variable a ∈
PSV ∪SSV , the natural semanti
s for the evaluation of sequen
e numberexpressions from the set SEXP is as follows:
[varsv] s ⊢ x→x n where n = sv(x)
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ialization
[varpv] s ⊢ y →x n where n = pv(y, p) and p is the pa
ket being inspe
ted
[adds]

s⊢x→xv1 s⊢a→av2

s⊢x+a→xv where 2size(x)−1 > v2and v = (v1 + v2) mod 2size(x)

[addp]
s⊢y→xv1 s⊢a→av2

s⊢y+a→xv where 2size(y)−1 > v2and v = (v1 + v2) mod 2size(y)With the syntax and semanti
s of the elements making up a guard in pla
e,the semanti
s for the evaluation of guards is de�ned as follows:De�nition 24 (Evaluation of Guards for TCP and UDP Streams)Letting size(a) denote the number of bits assigned to the variable a ∈
PSV ∪SSV , the natural semanti
s for the evaluation of guards for TCPand UDP streams is as follows:
[andt]

s⊢G1→gtt s⊢G2→gtt
s⊢G1∧G2→gtt

[andf ]
s⊢Gi→gff

s⊢G1∧G2→gff where i ∈ {1, 2}

[gtnt]
s⊢a→av1 s⊢b→av2

s⊢a>b→gtt where v1 > v2

[gtnf ] s⊢a→av1 s⊢b→av2
s⊢a>b→gff where v1 ≤ v2

[eqnt]
s⊢a→av1 s⊢b→av2

s⊢a=b→gtt where v1 = v2

[eqnf ] s⊢a→av1 s⊢b→av2
s⊢a=b→gff where v1 6= v2

[gtst]
s⊢x→xv1 s⊢y→xv2

s⊢x>y→gtt where size(x) = size(y)and v1 < v2 ∧ v2 − v1 ≥ 2size(x)−1

∨
v1 > v2 ∧ v1 − v2 ≤ 2size(x)−1

[gtsf ] s⊢x→xv1 s⊢y→xv2

s⊢x>y→gff where size(x) = size(y)and ¬

 

v1 < v2 ∧ v2 − v1 ≥ 2size(x)−1

∨
v1 > v2 ∧ v1 − v2 ≤ 2size(x)−1

!

[eqst]
s⊢a→xv1 s⊢b→xv2

s⊢a=b→gtt where v1 = v2

[eqsf ] s⊢a→xv1 s⊢b→xv2
s⊢a=b→gff where v1 6= v2

[true] s ⊢ true→g tt



The Underlying Model 38Important to note from this de�nition is the slight di�eren
e in the seman-ti
s of the 
omparison of sequen
e number variables as opposed to whatis pres
ribed by RFC1982. Where the RFC leaves it free for any imple-mentation to de
ide on the out
ome of 
omparisons between values where
x − y = 2size(x)−1, the above semanti
s de�nes su
h 
omparisons to true.This alternate de�nition is needed as the original de�nition would introdu
eambiguity into the �nal model. The new de�nition has been 
hosen as itmat
hes the semanti
s of the implementation 
urrently used by both Linuxand OpenBSD.Finally, with regards to updates, building upon the separation of normal andsequen
e number variables, we spe
ialize them to the following:De�nition 25 (Updates for TCP and UDP Streams)The set of updates U for TCP and UDP streams is de�ned as generatedby the following grammar:

U ::= a := b | x := y | U1U2where a ∈ SNV, b ∈ NEXP, x ∈ SSV, and y ∈ SEXPwhere their semanti
s is de�ned as follows:De�nition 26 (Evaluation of Updates for TCP and UDP Streams)The set of updates U for TCP and UDP streams is de�ned as generatedby the following grammar:
[assnorm] 〈a := b, s〉 → s[a 7→ v] where s ⊢ b→a v

[assseq] 〈x := y, s〉 → s[x 7→ v] where s ⊢ y →x v

[comp] 〈U1,s〉→s′′ 〈U2,s′′〉→s′

〈U1U2,s〉→s′This 
on
ludes the development of the model underlying the proposedsystem. With that in pla
e, the stream oriented and �rewall independentlanguage 
apable of representing the spe
ialized model 
an now be devised.



Chapter 4The Proto
ol OrientedLanguageHaving 
on
luded on the requirements for the des
ription of PCSs for TCPand UDP streams, and having devised a model en
apsulating those require-ments, the proto
ol oriented language 
an now be 
reated. In the followingse
tion that language, named PCSL for Proto
ol Conforman
e Spe
i�
ationLanguage, will be des
ribed.4.1 The PCSL LanguageThe PCSL language is a strongly typed, de
larative language inspired bythe ta language[LPY97℄ used by the formal veri�
ation tool UppAal todes
ribe an extended version of timed automata. This 
hapter will des
ribethe PCSL language through the use of a simple example. In
luded in thatexample will be a graphi
al illustration of a PCS and the 
orrespondingPCSL 
ode des
ribing it. From this example the abstra
t syntax of thedi�erent 
onstru
ts in the language, and how they �t into the previouslydes
ribed model, will be des
ribed1. With regards to the formal semanti
sof the language we refer to the de�nition of the spe
ialized PCM as thesemanti
s of all signi�
ant 
onstru
ts are already de�ned there. As a resultthe language is merely a way of des
ribing these 
onstru
ts in a textualway, and formally de�ning the semanti
s of the 
omplete language wouldtherefore be super�uous. With that said, the graphi
al representation ofthe example PCS used throughout this 
hapter 
an be seen in Figure 4.1.Similarly, the 
orresponding PCSL 
ode used to des
ribe this PCS 
an beseen in Table 4.1. As 
an be seen from the �gure, this rather naive PCSis 
apable of dete
ting SYN �oods against a single non-existent host. Morespe
i�
ally, if more than 50 SYN pa
kets are sent through the �rewall within1For a full listing of the 
on
rete and abstra
t syntax of the PCSL language as well asa formal des
ription of its type system, see Appendix B.
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Stream Key
Tuple B

TCP_SRCPORT
IP_DST

Tuple A
IP_SRC

TCP_DSTPORT

return
true

Closing

TCP_SYN=1
packetcount>=50

original
Flood

New
packetcount:=1
TCP_SYN=1

packetcount:=
(6)(packetcount+1)

TCP_SYN=1
packetcount<50

Invalid

TCP_SYN=0

A

Ok

original
NotSyn

60

original

TCP_SYN=0

Closed

Figure 4.1. The PCS generated by the PCSL spe
i�
ation in Table 4.1.1 defpropvalue Invalid;23 pa
ketnorm IP_SRC 32;4 pa
ketnorm IP_DST 32;5 pa
ketnorm TCP_SRCPORT 16;6 pa
ketnorm TCP_DSTPORT 16;7 pa
ketnorm TCP_SYN 1;89 storednorm pa
ket
ount 6;1011 keyitem IP_SRC , IP_DST;12 keyitem TCP_SRCPORT , TCP_DSTPORT;1314 
lo
ation Closed;15 olo
ation A 60;1617 utrans Closed -> A {18 guard TCP_SYN == 1;19 update pa
ket
ount := 1;20 propvalue New;21 }2223 utrans A -> A {24 dire
tion original;

25 guard TCP_SYN == 1,26 pa
ket
ount < 50;27 update pa
ket
ount := (6)(pa
ket
ount + 1);28 propvalue Ok;29 }3031 itrans A -> A {32 dire
tion original;33 guard TCP_SYN == 0;34 propvalue NotSyn;35 }3637 utrans A -> Closed {38 dire
tion return;39 propvalue Closing;40 }4142 utrans A -> Closed {43 dire
tion original;44 guard TCP_SYN == 1,45 pa
ket
ount >= 50;46 propvalue Flood;47 }Table 4.1. The PCSL 
ode generating the PCS shown in Figure 4.1.a timeframe of 60 se
onds, and no return pa
ket is re
eived, the propertyvalue Flood is returned to the �rewall 
ore. If on the other hand a reply toone of the pa
kets is re
eived, the Closing value is returned and the tra
kingof the stream is terminated.4.1.1 The Overall Stru
ture of the PCSL LanguageAs 
an be seen from the syntax in Table 4.2 a PCSL spe
i�
ation 
onsistsof 5 basi
 parts. These are, default property value de
laration, variable de
-larations, stream key de
laration, lo
ation de
larations, and transition de
la-



41 4.1 The PCSL Languagerations.1. Synta
ti
 
ategories
PCS ∈ Protocol Conformance Specifications

DD ∈ Default property value declaration

V D ∈ V ariable declarations

SD ∈ Stream key declaration

LD ∈ Location declarations

TD ∈ Transition declarations2. De�nitions
PCS ::= DD V D SD LD TDTable 4.2. The 5 parts of any PCSL spe
i�
ation.In the following se
tions, with an outset in the example, the purpose andsyntax of ea
h part is des
ribed.4.1.2 Default Property Value De
larationThe �rst part of any PCSL spe
i�
ation (line 1 in Table 4.1) is a 
onstru
tused to simplify the 
ode needed to des
ribe a spe
i�
ation. As des
ribedin the previous 
hapter, for a PCS to be legal, it must 
ontain an enabledtransition for every possible pa
ket to whi
h it may be presented. This way,no matter whi
h pa
ket is re
eived by the �rewall, the SI system will alwaysbe able to take a transition and thereby return a result. To ease the taskof adding these transitions the default property value has been introdu
ed.Instead of adding a lot of ignore transition 
overing all the pa
kets thatare to be ignored by the �rewall, this default value 
an be used to spe
ifywhi
h value must be returned when no transition is enabled. This way,the developer is left with de
laring the transitions for the spe
ial 
ases and
an leave the rest to the default value. An example of the bene�ts of this
onstru
t 
an be seen in the example PCS (Figure 4.1) where the ignoretransition emerging from the Closed lo
ation is not expli
itly de
lared inthe PCSL 
ode. Instead, it is merely a result of the default property valuebeing Invalid. This way, the de
laration of a lot of trivial transitions 
an beomitted. The syntax for the spe
i�
ation of the default property value 
anbe seen in Table 4.3.4.1.3 Variable De
larationsThe next part in a PCSL spe
i�
ation is the de
laration of the variablesused throughout the PCS. In the example 
ode this part spans the linesfrom 3 to 9, and as 
an be seen from the syntax depi
ted in Table 4.4, avariable de
laration 
onsists of 3 parts. The �rst part is the variable type
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ti
 
ategories
DD ∈ Default property value declarations

p ∈ Property values2. De�nitions
DD ::= defpropvalue p;Table 4.3. Abstra
t syntax for the de
laration of the default property value.1. Synta
ti
 
ategories
V D ∈ V ariable declarations

sn ∈ Stored normal variables

ss ∈ Stored sequence number variables

pn ∈ Packet normal fields

ps ∈ Packet Sequence number fields

n ∈ Numerals2. De�nitions
V D ::= storednorm sn n; | storedseq ss n; | pa
ketnorm pn n;

| pa
ketseq ps n; | V D1 V D2Table 4.4. Syntax for variable de
larations.where the name of ea
h type should speak for itself. The se
ond part is thename of the variable. For stored variables the name is, as in other languages,simply a way of identifying the variable for use later in the 
ode. For pa
ketvariables on the other hand it a
ts as an interfa
e to the �elds in the inspe
tedpa
kets. In Appendix A the name-to-�eld mapping table used by the system
an seen. As an example of this system, when naming a pa
ket variableTCP_SYN, it means that this variable must always 
ontain the value of theSYN �eld in the re
eived TCP pa
kets. This way, all information storedin the headers of the pa
ket 
an be a

essed using the appropriate variablenames. The �nal part of the de
laration is the number of bits assigned tohold the variable. As de�ned in the spe
ialized PCM (De�nition 15), allvariables are bounded variables over Z∗ with a lower bound of 0. The upperbound however varies from variable to variable and therefore needs to bede
lared. An example of su
h a de
laration 
an be seen in line 5 where thepa
ket variable TCP_SRCPORT has been de
lared with an upper bound of65535.4.1.4 Stream Key De
larationThe next part, whi
h 
overs lines 11 and 12, is the de
laration of the streamkey. The syntax for this part 
an be seen in Table 4.5. As des
ribed in
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ti
 
ategories
SD ∈ Stream key declaration

pn ∈ Packet normal fields

ps ∈ Packet sequence number fields

V LIST ∈ V ariable lists2. De�nitions
SD ::= keypair V LIST ; | SD1 SD2

V LIST ::= pn , pn | ps , psTable 4.5. Syntax for stream key de
larations.the model (De�nition 16) the stream key is made up of two tuples of pa
ketvariables. As also des
ribed in that de�nition, every member in ea
h tupleis paired with a member in the other tuple, and depending upon how the
ontents of these pairings mat
h up, the dire
tion of the pa
ket relativeto the stream 
an be determined. In PCSL these two tuples and pairingsare spe
i�ed using the keypair 
onstru
t whi
h is made up of two 
ommaseparated parts. In this respe
t the �rst part spe
i�es a member in tuple A,whereas the se
ond part spe
i�es its 
orresponding pairing in tuple B. Usingthis syntax it is thereby always assured that the tuples are of the same size,while at the same time assuring for the easy spe
i�
ation of e.g. the twoso
ket pairs used by TCP/IP streams.4.1.5 Lo
ation De
larationsThe fourth part is the de
laration of lo
ations. In the example PCS this part
overs lines 14 and 15 and its syntax 
an be seen in Table 4.6. As 
an be1. Synta
ti
 
ategories
LD ∈ location declarations

cl ∈ Closed locations

ol ∈ Open locations

n ∈ Numerals

CLD ∈ Closed location declarations

OLD ∈ Open location declarations2. De�nitions
LD ::= CLD; OLD;
CLD ::= 
lo
ation cl
OLD ::= olo
ation ol n | OLD1 ; OLD2Table 4.6. Syntax for lo
ation de
larations.
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ol Oriented Language 44seen from that syntax this part is itself split into separate 2 parts. The �rstpart is for the de
laration of the 
losed lo
ation and 
onsists of the reservedword 
lo
ation and a name for that lo
ation. The se
ond part is a sequen
e ofde
larations of open lo
ations with ea
h de
laration 
onsisting of the reservedword olo
ation along with a lo
ation name and a timeout value. The timeoutvalue 
orresponds to the timeout value in the PCM and des
ribes how manyse
onds may pass before a timeout o

urs. In the example 2 lo
ations arede
lared. The 
losed lo
ation is named Closed, where as the open lo
ationis named A. Finally, the timeout value for the open lo
ation is 60 se
onds.4.1.6 Transition De
larationsThe �nal and most dominating part is the spe
i�
ation of the transitions.This part spans from line 17 onto the end of the example and its syntax 
anbe seen in Table 4.7.1. Synta
ti
 
ategories
TD ∈ Transition declarations
pn ∈ Packet normal fields
ps ∈ Packet sequence number fields
sn ∈ Stored normal variables
ss ∈ Stored sequence number variables
cl ∈ Closed locations
ol ∈ Open locations
n ∈ Numerals
p ∈ Property values
D ∈ Directions
GD ∈ Guard declarations
G ∈ Guards
UD ∈ Update declarations
U ∈ Updates
PD ∈ Property value declatations
NEXP ∈ Normal expressions
SEXP ∈ Sequence number expressions
BOP ∈ Boolean operators
AOP ∈ Arithmetic operators2. De�nitions
TD ::= itrans cl -> cl {GD PD}

| itrans ol -> ol {D GD PD}
| utrans cl -> ol {GD UD PD}
| utrans ol -> ol {D GD UD PD}
ontinued on the next page
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ontinued from the previous page
| utrans ol -> cl {D GD PD}
| TD1 TD2

D ::= dire
tion original; | dire
tion return;
PD ::= propvalue p;
GD ::= guard G; | ǫ
G ::= NEXP BOP NEXP | SEXP BOP SEXP | G1 , G2

NEXP ::= n | sn | pn | (n)(NEXP AOP NEXP ) | (NEXP )
BOP ::= < | > | <= | >= | ==
SEXP ::= ps + NEXP | ss + NEXP
AOP ::= + | - | * | / | //
UD ::= update U ; | ǫ
U ::= sn := NEXP | ss :=SEXP | U1 , U2Table 4.7. Syntax for transition de
larations.As 
an be seen from this syntax the de
laration of transitions is fairly straightforward and built around the grammar de�ned in the previous 
hapter. Intune with the de�nitions of the model two types of transitions exists, updateand ignore. To re�e
t this, every de
laration begins with one of the reservedwords, utrans or itrans, signifying the type of the transition. Following thisreserved word are the names of the lo
ations that are to be 
onne
ted anda blo
k of de
larations assigning 
onstraints, updates, and a property valueto the transition. Furthermore, as 
an be seen from the example the syntaxof the guards and updates is equal to that of the model, with the ex
eptionof the true guard being left out and represented by leaving out the guardde
laration. Finally, to ensure that no two transitions have overlapping
onstraints, and thereby ensuring that the rules de�ned in relation to guardsin the underlying model are upheld, pre
eden
e is given to the transitionsin the order they are de
lared. Spe
i�
ally, this means that in the eventthat the re
eption of a pa
ket 
auses two transitions to be enabled, the topmost transition as de
lared in the PCSL 
ode is 
hosen. While it is possibleto expli
itly 
he
k that no transitions are overlapping it is an NP-
ompleteproblem and this simple approa
h of giving pre
eden
e is therefore usedinstead.This 
on
ludes the des
ription of the language 
apable of representingthe fun
tionality of the spe
ialized proto
ol 
onforman
e model. In the next
hapter the intermediate representation 
apable of storing, optimizing, ando�ering the PCS to the output generators, will be des
ribed.
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Chapter 5The IntermediateRepresentationAs des
ribed in Chapter 2 the role of the intermediate representation is two-fold. First of all it is the pla
e in whi
h �rewall independent optimizations areperformed, and se
ondly, it is in 
harge of providing the output generatorswith an easy-to-use interfa
e (the output generator API), giving them a

essto the PCSs. In the �rst two se
tions we analyze what is required from theintermediate representation to represent PCSL spe
i�
ations, and des
ribehow the 
urrent implementation of the system meets those requirements.With that in pla
e, Se
tion 5.3 gives a brief introdu
tion to the interfa
e
urrently o�ered to the output generators1.5.1 Requirements to the Intermediate Representa-tionAs should be 
lear from the previous 
hapters the transitions are the 
or-nerstones of any PCS. The property value to be returned, the updates tobe applied, and the new state of the stream, are all fa
tors determined bythe transitions. Be
ause of this, the intermediate representation, and hen
ethe requirements to it, 
an be split into two parts - the requirements to therepresentation of transitions and the requirements to the representation ofeverything else. With regards to the transitions the intermediate represen-tation should meet the following requirements:Should make it easy to �nd the enabled transition: A major part inperforming SI is the task of determining whi
h transition is enabled bya given pa
ket. To make it easier for the output generators to 
reatean output 
apable of doing this, the information provided through1For a 
omplete des
ription of the output generator API see the do
umentation a
-
ompanying the 
urrent implementation.



The Intermediate Representation 48the output generator API should be stru
tured in a way that easilya

ommodates this task. As a result, to ease the implementation ofthis API, the intermediate representation should store the informationregarding the 
onstraints on the transitions, in a way that eases this.Should redu
e the amount of guard 
he
ks needed: This requirementrelates to the fa
t that the intermediate representation is the pla
ewhere �rewall independent optimizations are performed. As an exten-sion to the last requirement the task of �nding the enabled transitionshould therefore be made as e�
ient as possible. From a �rewall inde-pendent point of view, e�
ien
y is mainly in�uen
ed by the number ofguards whi
h needs to be 
he
ked before the right transition is found.As a result, the intermediate representation should optimize the PCSto minimize this number of guard 
he
ks.Should retain the C like syntax used for guards and updates: This�nal requirement relates to how the individual pie
es of information inthe transitions must be represented. As the vast majority of 
urrent�rewalls are implemented in C and most output generators thereforeare likely to generate C 
ode, the stru
ture of the information givento them by the output generator API should ease the generation of C
ode. Consequently, the intermediate representation should retain theC-like syntax of the guards and updates in the PCSL language andrefrain from 
ompiling them into another syntax.Finally, 
on
erning the representation of the rest of the PCS only onerequirement exist. As most output generators must generate C 
ode, theoutput generator API should be geared towards supporting this. To easethe task of implementing that API the intermediate representation shouldtherefore store this part of the PCS in a way that simpli�es this.5.2 The Current Intermediate RepresentationThe intermediate representation 
urrently used in the retargetable PCS 
re-ation system is fairly simple. The reason for this being that this versionof the implementation serves mainly as a test and development platformfor the retargetable 
on
ept. In terms of the intermediate representation,fo
us has therefore been put on meeting the requirements 
on
erning theease of �nding the enabled transition and 
reating a stable output generatorAPI. Be
ause of this, the des
ription provided in this report regarding thestru
ture of the intermediate representation is rather brief.



49 5.2 The Current Intermediate Representation5.2.1 Representing TransitionsCurrently transitions are represented using de
ision diagrams (one for ea
hlo
ation and dire
tion) in whi
h the guards asso
iated with the di�erenttransitions are en
oded. In Figure 5.1 examples of these diagrams, along withthe 
ode for the transitions they represent, 
an be seen. The advantages of1 defpropvalue Invalid;2 ...snip...34 utrans X -> Y {5 dire
tion original;6 guard x==y, z<4;7 update x:=(4)(x+y);8 propvalue Flood;9 }
10 itrans X -> Y {11 dire
tion original;12 guard z==10;13 propvalue Flood;14 }1516 utrans X -> Y {17 dire
tion return;18 guard x>y, z<=10;

19 propvalue Ok;20 }2122 utrans X -> Y {23 dire
tion return;24 guard x>y, z>8;25 update x:=z;26 propvalue Ok;27 }(a) The PCSL 
ode generating the PCS shown in Figure 4.1.
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(b) The de
ision diagram representingthe original transitions in Figure 5.1a.
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(
) The de
ision diagram representingthe return transitions in Figure 5.1a.Figure 5.1. A partial PCSL spe
i�
ation and the de
ision diagrams representing its transitions.using de
ision diagrams are many. First of all they ease the task of pi
kingthe right transition as this be
omes merely a matter of traversing a tree.Se
ondly, as the terminals 
an hold all the information asso
iated with thetransition they represent, generating 
ode for pi
king the right transitionsbe
omes 
omparatively simple. As a result, this task amounts to nothingmore than traversing the diagram and generating 
onditional statements forea
h node. Upon arriving at a terminal the a
tions asso
iated with that node
an be performed and the pa
ket has then been inspe
ted. Using de
isiondiagrams therefore enables the intermediate representation to meet the �rstrequirement des
ribed in the previous se
tion. Another reason for usingde
ision diagrams is to be found in the way they ease the task of optimizingthe PCS as pres
ribed by requirement 2. As all transitions appli
ant toa single pa
ket are en
oded in the same diagram, minimizing the numberof guard 
he
ks amounts to nothing more than redu
ing the diagram thus
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ing its height2.5.2.1.1 The De
ision DiagramFor the purpose of representing the transitions of the PCSL language a newtype of de
ision diagram had to be 
reated. The reason for this being thatnone of the investigated diagrams 
ould properly handle the potentially over-lapping transitions of the PCSL language, while at the same time allowingfor the use of (boolean) expressions over variables as the test asso
iated withea
h non-terminal. The result was a new type of diagram whi
h, as shouldbe 
lear from Figure 5.1, lends its basi
 stru
ture from the intermediate rep-resentation of BPF+[ABG99℄ and its nodes from that of BDDs[FMY97℄ andIDDs[ST98℄. The diagram has two distinguishing features. First of all thetests asso
iated with its non-terminals are 
apable of mirroring the guards ofthe spe
ialized PCM. This way it meets the aforementioned requirement ofbeing able to retain the syntax of the guards of the PCSL language. Se
ondly,it in
orporates the priorization of transitions de�ned in PCSL. This allowsfor the 
onstru
tion of the diagram without having to go through the 
ostlypro
ess of identifying and altering any overlapping guards. The result is thatthe time 
omplexity of the 
onstru
tion pro
ess is linear to the number ofguard elements being en
oded, thus allowing for the fast transformation ofPCSs from PCSL 
ode to the �nal output3.Constru
ting the DiagramThe 
onstru
tion of the diagram is a two phase pro
ess. In the �rst phase anintermediate boolean diagram for the guards of ea
h transition to be in
ludedin the �nal diagram is 
reated. These diagrams are 
onstru
ted using there
ursive CreateID algorithm outlined in Algorithm 3, and examples of thesediagrams 
an be seen in Figure 5.2. This 
onstru
tion algorithm, whi
htakes as input a list of the guard elements to be represented and returns the
orresponding boolean diagram, has three parts. If the input list is empty,all non-terminal nodes have been 
reated and the �true� terminal is returned.If it is not empty, two things 
an happen depending on the guard elementat the head of the input list. Either the element is a boolean 
omparison oftwo variables (or expressions 
ontaining variables) in whi
h 
ase a booleannode with the partitions �true� and �false� is 
reated. On the other hand, ifthe list head 
ontains a 
omparison of a variable/expression and an integer2Due to the experimental status of the implementation only a very limited amount ofoptimization is performed on the diagrams. Well known predi
ate elimination te
hniquessimilar to those des
ribed in [ABG99℄ 
ould however be applied.3It should be noted that the 
urrent diagram is very limited in the logi
 it is ableto represent, but that it is perfe
tly 
apable of representing that of the guards in thespe
ialized model.
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FalseTrue
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[0,3] [4,15]

falsetrue

(a) Intermediate dia-gram for the guardx==y, z<4. TrueFalse

Z

[11,15]

[10][0,9]

(b) Intermediate dia-gram for the guardz==10.Figure 5.2. The intermediate boolean diagrams for the diagram depi
ted in Figure 5.1b.Algorithm 3: Outline of the CreateID algorithmData : list of guard elementsResult: diagram for guard element listif empty list thenreturn �true� terminal ;if list head 
ontains 
omparison of two variables thennode ← boolean node;
hild(node, �true�) = CreateID(
onse
utive list elements);
hild(node, �false�) = �false� terminal;elsenode ← valuation node;
hild(node, satis�ed interval) = CreateID(
onse
utive list elements);forea
h unsatis�ed interval i do
hild(node, i) = �false� terminal;return node;
onstant, a valuation node with the 
orresponding intervals as partitions is
reated.Upon 
ompleting the �rst phase the di�erent intermediate diagrams needto be merged. This is done using the Append algorithm outlined in Algo-rithm 4. This algorithm takes as input two diagrams (A and B) andmerges them, so that in 
ases of overlaps, the transition(s) of diagram A are



The Intermediate Representation 52Algorithm 4: Outline of the Append algorithmData : diagram A, diagram BResult: new diagramif A is a �false� terminal thenreturn B ;if A is a �true� terminal thenreturn A;if A=B thenMutually de
ompose A and B into their greatest 
ommon intervals;forea
h resulting interval i do
hild(A,i) = Append(
hild(A,i), 
hild(B,i));elseforea
h interval i of A do
hild(A,i) = Append(
hild(A,i), B);return A;preferred. It ensures this property by only atta
hing the B diagram (or partsof it) to the intervals pointing to the �false� terminals in the A diagram. Thisway, only if the transitions represented by the �rst diagram are unsatis�able,will the transition of the next diagram be 
onsidered. An example of this
an be seen in Figure 5.1b where diagram B has repla
ed the �false� terminalpointed to by the X == Y node in diagram A. By merging the diagrams inthe order of their priority in the PCSL spe
i�
ation the �nal diagram 
antherefore be 
reated.Having des
ribed how the 
urrent implementation internally representthe important parts of the PCS, the next se
tion provides a des
ription ofthe output generator API o�ered by the intermediate representation.5.3 The Output Generator APIThe output generator API is a C interfa
e 
ontaining 33 fun
tions split into5 groups, with ea
h group making available di�erent parts of the PCS. Inthis se
tion the basi
 prin
iples behind these groups along with the fun
tionsthey en
ompass are des
ribed4.5.3.1 The Initialization GroupThe initialization group 
ontains only one fun
tion.4For a 
omplete des
ription of the output generator API see the ele
troni
 do
umen-tation a

ompanying the 
urrent implementation.



53 5.3 The Output Generator APIrp
shandler *pro
Spe
(
har *p
s)It takes as input a PCS written in the PCSL language, pro
esses it, andreturns to the 
aller a rp
shandler to an instan
e of the intermediate repre-sentation 
reated for that PCS. With an instan
e of the intermediate repre-sentation in pla
e, it is then the purpose of the fun
tions in the rest of API,to give a

ess to the information stored within that instan
e.5.3.2 The Variable GroupThe variable group 
ontains the fun
tions needed to obtain informationabout the variables de
lared in the PCS. They are as follows:int getNumVars(rp
shandler *handler)varType getVarType(rp
shandler *handler, int varId)int getVarSize(rp
shandler *handler, int varId)
har *getVarName(rp
shandler *handler, int varId)Common for all of them is that they as their �rst parameter take a rp
-shandler as returned by procSpec(). Se
ondly, ea
h individual variable isindexed and a

essed using its own unique varId taken from the pool of in-tegers between 0 and getNumV ars()− 1. Using this fun
tion, all variables
an therefore be identi�ed and information su
h as type (eg. pa
ketnorm),
varsize (the number of bits assigned to the variable), and name 
an bedetermined.5.3.3 The Stream Key GroupAs the name suggests the stream key group is home to the fun
tions needed toobtain information about the stream key de�ned in the PCS. The fun
tionsin this group are as follows:int getNumKeyPairs(rp
shandler *handler)
har *getPairVariable(rp
shandler *handler, int pairId, pEl mode)As was the 
ase with the variables, ea
h keypair is a

essed using its ownunique Id. Using these Ids, the getPairV ariable() 
an be used to obtain thenames of the variables used in the di�erent keypairs by spe
ifying the modeparameter (either TUPLE_A or TUPLE_B) whi
h des
ribes whi
h part ofthe keypair that should be returned.5.3.4 The Lo
ation GroupThe fourth group is the lo
ation group. This group en
ompasses all thefun
tions needed to obtain information about the lo
ations de
lared in thePCS. The fun
tions 
ontained within this group are as follows:
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ations(rp
shandler *handler)lo
Type getLo
Type(rp
shandler *handler, int lo
Id)
har *getLo
Name(rp
shandler *handler, int lo
Id)int getTimeout(rp
shandler *handler, int lo
Id)The fun
tions in the lo
ation group are 
on
eptually very similar to thosefound in the variable and key groups. As was the 
ase with variables andkeys, the individual lo
ations are indexed and a

essed using their ownunique Id's, and using the di�erent fun
tions in the group, information su
has type (open or 
losed), timeout value, and �nally the name of the lo
ation,
an be obtained.5.3.5 The Transition GroupThe last and largest group is the transition group. This group is itself splitinto 3 subgroups. The fun
tions in the �rst subgroup are used to get holdof the di�erent de
ision diagrams 
reated from the transitions in the PCS.They are as follows:dd *getClosed(rp
shandler *handler)dd *getOpen(rp
shandler *handler, int lo
Id, dire
tions dir)As no dire
tion 
onstraints are asso
iated with transitions emerging fromthe 
losed lo
ation, the getClosed() fun
tion takes as its only input therp
shandler representing the PCS in question. getOpen(), on the other hand,takes as input also a lo
ation Id along with a dire
tion, and returns the
orresponding de
ision diagram as des
ribed in Se
tion 5.2.1.The se
ond subgroup holds the fun
tions needed to traverse the transitionde
ision diagrams returned by the above fun
tions. They are as follows:nType getNodeType(rp
shandler *handler, dd *ddNode)uint getNumPartitions(rp
shandler *handler, dd *ddNode)uint getLBound(rp
shandler *handler, dd *ddNode, uint partId)uint getUBound(rp
shandler *handler, dd *ddNode, uint partId)dd getNextNode(rp
shandler *handler, dd *ddNode, uint partId)apTree *getGuardAPTree(rp
shandler *handler, dd *ddNode)gType getGuardType(rp
shandler *handler, apTree *aptNode)To traverse the diagram 5 di�erent fun
tions are available. getNodeType()is used to determine the type of a node in the diagram (non-terminal orterminal) and similarly getNumPartitions() returns the number of asso
i-ated partitions. As with the previous groups the unique partIds 
an thenbe used to obtain the upper and lower bound of the partitions using thegetLBound() and getUBound(). Finally, an abstra
t parse tree en
oding thetest asso
iated with a given node 
an be obtained using the getGuardAP-Tree() fun
tion. Furthermore, to obtain the type of the guard representedby that tree (boolean or expression), and thereby determine whether the
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ision diagram is a boolean or expressional node,getGuardType() 
an be used. Finally, to traverse the abstra
t parse tree, thefollowing 4 fun
tions are available and the spe
i�
s to how they 
orrespondto the di�erent 
onstru
ts of the language 
an be found in the ele
troni
do
umentation a

ompanying the 
urrent implementation:apTree *getTokenName(apTree *aptNode)apTree *getFirstChild(apTree *aptNode)apTree *getSe
ondChild(apTree *aptNode)apTree *getThirdChild(apTree *aptNode)As should be 
lear from the name getTokenName is used to get the name of anode in the abstra
t parse tree. Depending on the out
ome of this fun
tion anumber of 
hildren are assigned to the node thereby making up the stru
tureof the tree. These 
hildren 
an subsequently be obtained through the use ofthe 3 get*Child fun
tion.The third and last subgroup 
ontain the fun
tions needed to obtain theinformation stored in the terminals of the de
ision diagram. They are asfollows:tType *getTransType(rp
shandler *handler, dd *ddTerminal)int getNumUpds(rp
shandler *handler, dd *ddTerminal)int getUpdVar(rp
shandler *handler, dd *ddTerminal, int updId)apTree *getUpdAPTree(rp
shandler *handler, dd *ddTerminal, int updId)int getNewLo
(rp
shandler *handler, dd *ddTerminal)
har *getPropValue(rp
shandler *handler, dd *ddTerminal)From their names the purpose of ea
h of these fun
tions should be 
lear. Aspreviously des
ribed, asso
iated with ea
h terminal is a number of updates(possible 0). Using the three fun
tions getNumUpds(), getUpdVar(), andgetUpdAPTree() these updates 
an be obtained in a way similar to what wasthe 
ase with guards in the previous subse
tion. Finally, the getTransType(),getNewLo
(), and getPropValue() fun
tions 
an be used to get the type ofthe transition (ignore or update), the lo
ation to whi
h the transition points,and �nally the property value asso
iated with the transition in question.This 
on
ludes the des
ription of the requirements to the intermediatedes
ription, the intermediate representation used by the 
urrent implemen-tation of the retargetable PCS system, and the output generator API. Inthe next 
hapter, an example as to how to use this API to 
reate a simpleoutput generator for the Net�lter �rewall will be given.
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Chapter 6Output GenerationThis 
hapter des
ribes the output generation phase of the proposed system.As des
ribed in Se
tion 2.5.2 this is the phase where the PCS, obtained fromthe intermediate representation, is transformed into something usable by aparti
ular �rewall. Obviously, as what is usable by one �rewall is most likelyuseless to everything else, the development of these generators is left entirelyto the �rewall developers wanting to use the system. However, to give thereader a feel for the pro
ess involved in making su
h a generator, this 
hapterdes
ribes the design and implementation of a sample output generator fora slightly modi�ed version Net�lter1. In Se
tion 6.1 a brief introdu
tionto the SI part of this �rewall is given thus making it 
lear what needs tobe produ
ed by the generator. With that in pla
e, Se
tion 6.2 provides ades
ription of the a
tual generator.6.1 Adding Proto
ol Conforman
e Spe
i�
ations toNet�lterAs des
ribed in Se
tion 2.4.2 Net�lter is an open-sour
e �rewall where a lot ofinfrastru
ture has been added to ease the development of new fun
tionality.Due to this added infrastru
ture, adding an additional PCS to the �rewallamounts to implementing a C interfa
e of 6 fun
tions and 
reating a tableentry stru
t spe
ifying the variables to be stored in the state table.As des
ribed in Se
tion 2.2.2 table based SI works by storing the stateinformation in a table. Whenever a pa
ket is re
eived, a lookup is performedto determine whether information is stored about the stream of the pa
ket.If a mat
hing entry is found the information stored in this entry is used in theinspe
tion of the pa
ket. If not, the pa
ket is 
he
ked against the transitions1Currently SI does not distinguish between the pa
kets that are to be blo
ked andthose that are to be a

epted. As a result the state table is updated regardless of thefuture of the pa
ket. To 
ir
umvent this, a few minor alterations have been made to thestandard �rewall, thus in e�e
t, easing the development of the generator.
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losed state of the PCS. In Net�lter this inspe
tion pro
essis 
arried out using a number of fun
tions, ea
h with their own well de�nedarea of responsibility. By implementing these fun
tions a new PCS 
antherefore be added to the �rewall. More spe
i�
ally, the pro
ess that theSI subsystem goes through whenever a pa
ket is re
eived 
an be seen inAlgorithms 5 and 6, where the fun
tions to be implemented for ea
h PCSare written in itali
. In Net�lter the Inspe
tPa
ket fun
tion listed inAlgorithm 5: Outline of the Net�lter InspectPacket fun
tionData : pa
ket to be inspe
tedentry ← LookupStreamInTable(pa
ket);if entry found then
packet(entry, packet, direction);elseentry ← 
reate empty entry;
pkt_to_tuple(buffer, entry);
invert_tuple(buffer, entry);
new(entry, packet);Algorithm 5 is used to perform the a
tual inspe
tion. Depending on whetherthe pa
ket is eventually a

epted or dropped it is then the responsibility ofthe Commit fun
tion listed in Algorithm 6 to apply the updates to the statetable2.Algorithm 6: Outline of the Net�lter Commit fun
tionData : pa
ket to be inspe
tedif pa
ket is to be a

epted thenif pa
ket->delete thenDeleteEntryFromTable(pa
ket);elsetableEntryForPa
ket=pa
ket->updatedEntry;As 
an be seen from the Inspe
tPa
ket fun
tion the �rst fun
tion to beused is the pa
ket fun
tion whi
h has the following prototype:int pa
ket(stru
t ip_
onntra
k *
t, stru
t iphdr *iph, size_t len,enum ip_
onntra
k_info 
tinfo)2The introdu
tion of the Commit fun
tion is one of the modi�
ations made to thestandard �rewall.
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ol Conforman
e Spe
i�
ations to Net�lterThis fun
tion is 
alled whenever a pa
ket for whose stream, an entry in thestate table exists. With the entry, pa
ket, and the dire
tion as parameters,it is the job of this fun
tion to perform the a
tual inspe
tion. To make itpossible to delay the a
tual updating of the state table until it has beendetermined whether the pa
ket is to be a

epted or not, the updates arewritten into a temporary table entry stru
t atta
hed to the pa
ket alongwith the property value of the satis�ed transition. Just before the pa
ketis either a

epted or dropped the updates 
an then be applied using theCommit fun
tion.Next, is the pkt_to_tuple fun
tion:int pkt_to_tuple(
onst void *datah, size_t datalen,stru
t ip_
onntra
k_tuple *tuple)As 
an be seen from the listing this fun
tion is 
alled after an empty ta-ble entry has been 
reated. Given the pa
ket and the new entry it is theresponsibility of this fun
tion to extra
t from the pa
ket, the values of thevariables making up the stream key, and write them in the new entry. Whenperforming lookups in the table the values of these stored variables 
an thenbe used to identify the appropriate entry.The third fun
tion in the interfa
e is invert_tuple:int invert_tuple(stru
t ip_
onntra
k_tuple *tuple,
onst stru
t ip_
onntra
k_tuple *orig)The purpose of this fun
tion is very similar to that of pkt_to_tuple. Aswith that fun
tion, invert_tuple is used to �ll the �elds used to store thestream key. However, where the previous fun
tion simply extra
ted thevalues from the pa
ket, this fun
tion stores an inverted version of thosevariables su
h that they re�e
t how they would look had the pa
ket been�owing in the return dire
tion. This way, the dire
tion of a re
eived pa
ket
an be determined simply by 
he
king whi
h version of the stream key ismat
hed by the pa
ket.The fourth and �nal fun
tion used by Inspe
tPa
ket is the new fun
tion.Its prototype looks as follows:int new(stru
t ip_
onntra
k *
onntra
k, stru
t iphdr *iph,size_t len)As with the pa
ket fun
tion this fun
tion is responsible for performing thea
tual inspe
tion. However, as 
an be seen from Inspe
tPa
ket this fun
tionis 
alled upon the re
eption of the �rst pa
ket in a stream. Apart from this,the responsibilities of pa
ket and new are the same.In addition to the 4 fun
tions used by Inspe
tPa
ket, two se
ondary fun
-tions used to print the 
ontent of the state table entry must also be imple-mented. The prototype of the �rst fun
tion is as follows:



Output Generation 60unsigned int print_tuple(
har *buffer,stru
t ip_
onntra
k_tuple *tuple)The purpose of this fun
tion is to print the 
ontents of the stream key intothe bu�er provided in the parameter list. This bu�er is then used to providethe user with information about the streams �owing a
ross the �rewall.The last fun
tion is the print_
onntra
k fun
tion:unsigned int print_
onntra
k(
har *buffer,stru
t ip_
onntra
k *
onntra
k)Similar to print_tuple this fun
tion is responsible for printing informationabout the values stored in the state table entry to the given bu�er. However,
ontrary to that fun
tion print_
onntra
k is responsible for printing thevalues of any additional variables not already 
overed by print_tuple.The last pie
e of the interfa
e to be implemented is the table entry stru
t.As previously des
ribed this stru
t de
lares the variables that are to be storedwithin ea
h entry in the state table. It is to instantiations of this stru
tupdates are made using the pa
ket and new fun
tions.6.2 The Net�lter Output GeneratorHaving identi�ed the interfa
e whi
h needs to be implemented the outputgenerator 
an now be 
reated. As this generator is responsible for mappingthe di�erent 
onstru
ts of the proto
ol 
onforman
e model to the operationsof Net�lter using the above mentioned interfa
e, the output generator willbe des
ribed in that order.6.2.1 Stored VariablesThe 
ode for generating the table entry stru
t, thereby mapping the storedvariables of the PCM to a PCS in Net�lter �rewall, is fairly straight forward.An outline of the 
ode 
apable of generating this stru
t 
an be seen in Algo-rithm 7 3. As 
an be seen from this outline a variable is simply de
lared forea
h stored variable in the PCS. To a
hieve the bounded behavior de�ned forvariables in the model, ea
h variable is de
lared to the exa
t size spe
i�ed inthe PCS. As a result the normal integer primitives are used for variables ofsize 8,16, and 32 whereas bit-�elds are used for everything else. Finally, as
an be seen from the last line of the outline an additional integer is de
laredto be used for storing the lo
ation Id. This variable 
an then be used by thenew and pa
ket fun
tions to tra
k the lo
ation of the stream.3The handler parameter in the output generator API 
alls has been left out for brevity.



61 6.2 The Net�lter Output GeneratorAlgorithm 7: Outline of the generate_entry_struct fun
tionforea
h stored variable varId doif getVarSize(varId) != 8,16 or 32 thende
lare bit-�eld of size getV arSize(varId)elsede
lare unsigned int of size getV arSize(varId)de
lare lo
ation variable integer6.2.2 Stream KeyAs previously des
ribed the 
ode for implementing the stream key in Net�lteris split over two fun
tions, pkt_to_tuple and invert_pa
ket. As the 
urrentsystem, and Net�lter on the transport layer level, 
urrently only supportsstreams utilizing the TCP and UDP proto
ols, and as the stream keys forthese proto
ols are always the same, the 
ode for generating these fun
tionsis trivial. An outline of this 
ode is shown in Algorithm 8. As 
an be seenAlgorithm 8: Outline of the generate_streamkey fun
tionforea
h stream keypair doswit
h pa
ket variable type do
ase TCP pa
ket variablegenerate pkt_to_tuple fun
tion for TCPgenerate invert_tuple fun
tion for TCPexit generator
ase UDP pa
ket variablegenerate pkt_to_tuple fun
tion for UDPgenerate invert_tuple fun
tion for UDPexit generatorotherwise
ontinuefrom this outline the stream key generator simply traverses the keypairsspe
i�ed in the PCS. As Net�lter handles all network layer parts of thestream key transparently, pairs related to this layer are simply ignored andthe traversal 
ontinues. Eventually, upon rea
hing a TCP or UDP streamkey pair (identi�ed on the pre�x of the variable) the 
ode 
orresponding tothat proto
ol is generated and the generation stops.



Output Generation 626.2.3 Transitions and Lo
ationsIn terms of mapping transitions and determining whi
h transition to take fora given pa
ket, this is done in very mu
h the same way des
ribed in relationto the intermediate representation. As previously des
ribed two fun
tionsneed to be implemented, new and pa
ket. An outline of the generator forthe new fun
tion 
an be seen in Figure 9. Initially 
alled with the rootAlgorithm 9: Outline of the generate_new fun
tionData : ddNode from the getClosed diagramswit
h getNodeType(ddNode) do
ase NON-TERMINALforea
h partId asso
iation with ddNode dogenerate 
onditional for partition partIdgenerate_new(getNextNode(ddNode, partId));
ase TERMINALif getTransType(ddNode) == UPDATE thenforea
h update asso
iated with terminal dogenerate update 
odegenerate 
ode for updating lo
ation variablegenerate 
ode for updating timeout valuegenerate 
ode for returning asso
iated property valueof the diagram returned by the getClosed fun
tion, this re
ursive fun
tion is
apable of traversing this diagram and generate the new fun
tion. It doesthis by �rst determining the type of the node in the diagram. In 
ase ofit being a terminal, the type of the transition represented by this terminaldetermines what happens next. If it is an update transition, 
ode for ea
hasso
iated update is generated along with 
ode for updating the lo
ationand timeout values. Finally, regardless of the transition type, 
ode for re-turning the property returned by getPropVal is generated. In 
ase of thegiven node being a non-terminal, 
onditional statements for ea
h partitionare generated. Upon 
ompletion of the generation for ea
h partition, thegenerate_new fun
tion is then 
alled with the 
hild of that partition.With regards to the 
ode for the pa
ket fun
tion, the generator justdes
ribed 
an be reused. However, instead of 
alling it with the getCloseddiagram, pa
ket requires it to be 
alled with ea
h diagram asso
iated withthe open lo
ations. Similarly, 
onditionals for 
he
king the lo
ation variablealong with the dire
tion of the re
eived pa
ket must be generated as well.



6.2.4 Additional Fun
tionalityAs previously des
ribed Net�lters PCS interfa
e 
ontains an additional twofun
tions, print_tuple and print_
onntra
k. The purpose of these are toprint the 
ontents of a given table entry to a bu�er whi
h 
an subsequentlybe displayed in a /pro
 entry. The �rst fun
tion, print_tuple, is responsiblefor printing the 
ontents of the non-IP parts of the stream key. An outlineof the stru
ture of the generated bu�er 
an be seen in Figure 10. Be
auseAlgorithm 10: Outline of the stru
ture of the bu�er generated for theprint_tuple fun
tionsprintf(bu�er,�forea
h stream keypair pairId doif getPairVariable(pairId, TUPLE_A) != �IP_*� then
getPairV ariable(pairId, TUPLE_A) :%u
getPairV ariable(pairId, TUPLE_B) :%u�forea
h stream keypair pairId doif getPairVariable(pairId, TUPLE_A) != �IP_*� then, getPairV ariable(pairId, TUPLE_A) ,
getPairV ariable(pairId, TUPLE_B));Net�lter handles all network layer stream key information transparently thegenerator simply pi
ks out the non-IP pairs of the stream key. For ea
hvariable the name along with its value is then printed to the bu�er.With regards to the bu�er generated for the print_
onntra
k fun
tionthis is very similar to what just des
ribed. However, where the print_tuplebu�er printed the value of the stream key variables this bu�er prints thenames and values of the stored variables. An outline of the stru
ture of thisbu�er 
an be seen in Algorithm 11. As 
an be seen from this outline thebu�er is generated simply by traversing the stored variables of the PCS. Asthe generator for the table entry stru
t de
lared these variables using thesame names as in the PCS these names 
an be used dire
tly.This 
on
ludes the detailed des
ription of the proposed system. In thenext part the 
urrent implementation of the system is tested, and a 
on
lu-sion 
on
erning the system as a whole is drawn.



Algorithm 11: Outline of the stru
ture of the bu�er generated for theprint_
onntra
k fun
tionsprintf(bu�er,�forea
h stored variable varId do
getV arName(handler, varId) :%ustate : %s�,forea
h stored variable varId do
getV arName(handler, varId)stateid_to_name(stateid));



PART III
Test and Con
lusion

Having spent the last part des
ribing the proposed retargetable PCS systemin detail, this part �nalizes and 
on
ludes on the proje
t. First, in Chapter 7the 
urrent implementation of the proposed system is tested to ensure thatthe possible performan
e penalty in
urred by the high-level approa
h of theretargetable system does not hinder any pra
ti
al use. With that in pla
e,Chapter 8 points out a number of dire
tions for the further development ofthe system and �nally, in Chapter 9, the proje
t is �nalized with a 
on
lusionon the advantages and drawba
ks of the system and its usefulness in general.





Chapter 7Testing The SystemIn order to investigate the feasibility of the proposed system and fa
ilitateits 
urrent and future development, the system des
ribed in this report hasbeen implemented along with the output generator des
ribed in the previ-ous 
hapter1. In this 
hapter we test the performan
e of the 
ode generatedby the Net�lter output generator and through that, indire
tly test the 
or-re
tness of the implementation in general. The tests involves measuring theperforman
e of the 
ode generated by the Net�lter output generator froma PCSL spe
i�
ation of the TCP PCS 
urrently used by Net�lter. The re-sult is then 
ompared to the performan
e of the �native� version thus givinga sense of the performan
e hit a

ompanying the retargetable system. InSe
tion 7.1 we start by des
ribing the PCS used in the tests and then inSe
tion 7.2 the a
tual tests and their results are des
ribed.7.1 The Proto
ol Conforman
e Spe
i�
ationThe TCP PCS used by Net�lter is more geared towards the task of tra
kingthe presumed 
onne
tion state of a stream rather than that of dete
tingillegal pa
kets. Be
ause of this the PCS is very liberal in the kind of pa
kets itallows and bares little resemblan
e to the o�
ial TCP spe
i�
ation[Pos81b℄.The result is the very large PCS depi
ted in Figure 7.1. Be
ause of its sizethis PCS provides a good basis for the tests. First of all its size will result inquite a large PCSL spe
i�
ation. This should, in turn, provide a good testfor the usability of the PCSL language. Se
ondly, the size will result in a lotof 
ode being generated by the output generator. As a lot of pro
essing onthe pa
kets takes pla
e outside the 
ode a�e
ted by the retargetable system,a proportionally small amount of overhead 
ould easily be overshadowed.Testing on a large PCS with a large amount of 
ode should in
rease this ratiobetween inside and outside pro
essing and hopefully redu
e this problem.1For a brief des
ription of the 
urrent status of this implementation, see Appendix C.



Testing The System 687.2 Testing the Performan
e of the Generated CodeThe purpose of the performan
e tests are to establish how mu
h of a per-forman
e penalty is likely to be in
urred by the high level approa
h of theretargetable system. Given the unoptimized state of the Net�lter output gen-erator the results obtained from these tests should provide an upper boundfor that overhead. Therefore, if the results are a

eptable we should be ableto 
on
lude that the overhead is manageable.7.2.1 Test SetupThe tests have been performed on a small laboratory network 
onsisting of 2tra�
 generators separated by a �rewall and 
onne
ted through a Cis
o 3500XL gigabit swit
h. The topology of this network 
an be seen in Figure 7.2and details on the 
omputers and their software are listed in Table 7.1.
Figure 7.2. The topology of the network used for the tests.

Pro
essor: Athlon 2000+NICs: SysKonne
t 9821 v. 2.0Kernel: Linux 2.4.20NIC driver: sk98lin v6.04(a) Con�guration of the tra�
 gen-erators.
Pro
essor: Athlon 2000+NICs: SysKonne
t 9821 v. 2.0Kernel: Linux 2.6.7NIC driver: sk98lin v6.23(b) Con�guration of the �rewall.Table 7.1. Con�gurations of the 
omputers in the test network.While this setup does not represent any real world s
enario it should besu�
ient as we are only interested in a 
omparative measure between nativeand the PCSL approa
h. Furthermore, as we are interested in in
reasing theratio between inside and outside pro
essing, this simple setup is preferableas having only a single stream a
ross the �rewall redu
es the pro
essingrequired by outside parts (table lookups et
.).



69 7.2 Testing the Performan
e of the Generated Code7.2.2 Tra�
 and Test DataThe tests were performed using Iperf v2.0.1 as this tool is 
apable of produ
-ing bidire
tional tra�
 and allows for the entire test to be performed using asingle stream. In a

ordan
e with the re
ommendations of RFC1944[BM96℄the tests were 
ondu
ted using a number of di�erent frame sizes - 56, 128,512, and 1518 bytes. During these tests a sequen
e of pa
kets, all belong-ing to the same stream, are sent a
ross the �rewall. This stream will 
ausethe �rewall, upon the arrival of the �rst pa
ket, to store information aboutthat stream. Throughout the rest of the test that information will then beused in the inspe
tion pro
ess. This way the task of adding this informa-tion is performed only on
e and the 
onsequent table lookups are simpli�ed.As des
ribed above the result is that the ratio between inside and outsidepro
essing is in
reased thus giving a more a

urate pi
ture of the overhead.Finally, the �rewall is 
on�gured using only a single rule. This way the timespent traversing the rule lists are also minimized. For the tests the followingrule is used:iptables -A FORWARD -p t
p -m state �state NEW,ESTABLISHED,INVALID -j a

ept7.2.3 Test Pro
edureAll tests are 
ondu
ted by �rst 
learing the rule-set of the �rewall and then
on�guring it with the previously des
ribed rule. Upon 
ompletion of thistask the Iperf server is initiated on Tra�
 generator 2 using the options: -s-P 1. Finally, the Iperf 
lient is initiated on Tra�
 generator 1 using theoptions: -
 tra�
_generator_1 -l frame_size -t 300 -i 5. Upon 
ompletionthe average of the throughput measurements reported by Iperf is 
al
ulatedand noted as the result of the test.7.2.4 Results and Con
lusionsThe results of the tests 
an be seen in Table 7.2. As an be seen from theseFramesize (bytes) 64 128 512 1518No SI (Mbps) 340 543 579 579Native (Mbps) 337 492 499 499Native Overhead (%) 1 9 14 14Retargetable (Mbps) 336 493 495 498Retargetable Overhead (%) 1 9 15 14Table 7.2. Results of the performan
e tests.numbers the overhead in
urred by the retargetable approa
h is negligibleand within 1% of the native version. It 
an therefore be 
on
luded that any
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urred by the generated 
ode is overshadowed by the rest of thepa
ket pro
essing 
ode. As a result we 
an 
on
lude that the performan
eof the generated output does not hinder the pra
ti
al use of the system.Furthermore, this 
an be 
on
luded despite the preliminary status of theintermediate representation and the output generator. Given the negligibleoverhead it is therefore doubtful whether any signi�
ant in
rease in perfor-man
e would be gained from improving these two 
omponents. Using thetests we 
an therefore also 
on
lude, that from a pra
ti
al point of view, the
urrent states of these 
omponents are quite su�
ient.
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7.2TestingthePerforman
eoftheGeneratedCode
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Figure 7.1. The TCP PCS used for testing the system.
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Chapter 8Further DevelopmentAs des
ribed in the introdu
tion this proje
t is, to our knowledge, the �rstone to deal with the development of a retargetable PCS system. As a result,the system presented in this report is by no means 
omplete. In this 
hapterwe point out a number of dire
tions for further developing the 
on
ept.8.1 Support For Appli
ation Layer Proto
olsThis proje
t has been limited to support for TCP and UDP streams only.As des
ribed in Chapter 2 most tra�
 also uses an appli
ation layer pro-to
ol (e.g. HTTP, FTP). An obvious improvement would therefore be toextend the 
urrent system with the 
apability of representing PCSs for su
hproto
ols. The task involved in this would amount to the 
reation of a newspe
ialization of the proto
ol 
onforman
e model. Presumably the biggest
hange 
ompared to the TCP/UDP spe
ialization would be the retrieval ofinformation from the pa
kets. Where TCP and UDP use �xed size �eldsto store the relevant header information, some appli
ation layer proto
olsuse variable sized �elds. An example of this is FTP. Where IPv4 stores thehost addresses in 32 bit �elds, the FTP proto
ol stores su
h information inplain ASCII. The result is that it no longer su�
es simply to look at a �xedpart of the pa
ket as the addresses 10.0.0.1 and 10.0.0.10 take up 8 and 9bytes respe
tively. To make things even worse, the information stored afterthese two addresses is shifted a

ordingly. This means that you no longerhave 
onstant time a

ess to the information stored in the pa
kets. In otherwords, if you want to get to some information towards the end of the FTPheader you are for
ed to parse the entire header up to that point. In ef-fe
t this means that a more �exible, than the 
urrent way of spe
ifying anda

essing su
h �elds, is needed.



Further Development 748.2 Graphi
al Front-End for the PCSL LanguageAs 
an be seen from the TCP PCS used in the test 
hapter the PCSs easilybe
ome quite large. The result is that the number of lines needed to im-plement any useful PCS qui
kly adds up. While ea
h line in itself is simpleand straight-forward, one 
an qui
kly get lost in the large amount of almostidenti
al transitions. To 
ounter this problem, and thereby make it eveneasier to write PCSs, we propose the development of a graphi
al front-endto the PCSL language. The purpose of this front-end is to allow the user todes
ribe PCSs using the same graphi
al representation used in this report.From this representation the front-end 
an generate the appropriate 
odethereby hiding the PCSL language from the user. Examples of this 
on
eptare UppAal[LPY97℄ and YAGCS[ea01℄ whi
h both provide graphi
al front-ends for an underlying textual language. In Figure 8.1 a s
reenshot of theUppAal GUI 
an be seen. The main advantage of su
h a tool is that it

Figure 8.1. The formal veri�
ation tool UppAal whose GUI is essentially a graphi
al frontendfor spe
ifying models in the xta language.tends to in
rease the readability of the spe
i�
ation thereby easing the taskof 
reating and maintaining it.Important to note however is that the need for su
h a tool should notin any way be seen as a sign of a weakness in the system presented in thisreport. The fa
t that it is possible to make su
h a graphi
al front-end is atestament to the 
ontributions of the system.



Chapter 9Con
lusionWith the introdu
tion of SI the task of developing and maintaining a �rewallhas be
ome harder and more 
omplex. One of the main reasons for this is SIsinherent dependen
e on proto
ol 
onforman
e spe
i�
ations against whi
hthe inspe
ted streams 
an be 
he
ked. In 
urrent implementations of SI thesespe
i�
ations are hard 
oded into the SI subsystem using the same generi
language used to implement the rest of the �rewall. Unfortunately, thisapproa
h has the disadvantage that the spe
i�
ations are prone to 
ontainingerrors as these generi
 languages are not very well suited for the task. As�rewalls are primarily meant to provide se
urity, and errors tend to lessense
urity, this is by no means an ideal approa
h. Furthermore, as the softwareof many �rewalls is not easily upgradeable one they have been deployed, theneed for a system that minimizes the risk of errors is apparent.In this proje
t we proposed, developed, implemented, and tested su
ha system. This system, whi
h introdu
es the notion of retargetable PCSs,allows the �rewall developer to implement PCSs in a �rewall independentmanner using a 
ustom made, proto
ol oriented language. This way, theimplementation of the PCS is simpli�ed and the 
han
e of it being 
orre
tin
reased.The proposal has in
luded the development of a number of 
omponents.First, an abstra
t model, the proto
ol 
onforman
e model, en
ompassing thefun
tionality needed in a PCS was made. This provided a 
ommon foun-dation for 
urrent and future versions of the system. With that foundationin pla
e, a spe
ialization 
apable of representing PCSs for streams of two ofthe most 
ommonly used proto
ols - TCP and UDP, was made. The ba-sis of this spe
ialization was an investigation of the requirements of a widerange of 
urrently available TCP and UDP PCSs. This ensured that, eventhough it is impossible to de�nitively determine the expressive power neededto represent every possible TCP and UDP PCS, this spe
ialization has theexpressive power to represent most, if not all, 
urrent and future PCSs forthese proto
ols. This way, the major potential drawba
k asso
iated with a
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lusion 76less than touring 
omplete model was alleviated.Having 
ompleted the model and thus 
reated the foundation for the re-targetable PCSs, a system 
apable of transforming these spe
i�
ations intousable 
ode was made. This in
luded the development of a simple language
apable of expressing the spe
ialized model as well as an intermediate rep-resentation 
apable of storing the retargetable PCSs.Finally, through the evaluation of an implementation of the proposedsystem, we have shown that the amount of performan
e overhead in
urredby the retargetable approa
h is negligible. This is despite the fa
t that verylittle optimization was performed on the retargetable PCS by the interme-diate representation and the Net�lter output generator. Based on this we
an therefore 
on
lude, that also in pra
ti
e, the use of retargetable spe
i-�
ations is a feasible approa
h and that the system and its a

ompanyingimplementation is fully usable.



Appendix AHeader Fields Symbol Table
This appendix 
ontains a list of the di�erent �elds in the headers of the IP,UDP, and TCP proto
ols along with the symbol by whi
h they are referen
edin this report and the 
urrent implementation of the system.Symbol Des
riptionIP_VERSION VersionIP_IHL Internet Header LengthIP_TOS Type of Servi
eIP_TOTLEN Total LengthIP_ID Identi�
ationIP_FRAG Fragment O�setIP_TTL Time To LiveIP_PROTOCOL Proto
olIP_CHECKSUM Che
ksumIP_SRC Sour
e IP AddressIP_DST Destination IP AddressTable A.1. IP Fields

Symbol Des
riptionUDP_SRCPORT Sour
e PortUDP_DSTPORT Destination PortUDP_LEN LengthUDP_CHECKSUM Che
ksumTable A.2. UDP Fields
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riptionTCP_SRCPORT Sour
e PortTCP_DSTPORT Destination PortTCP_SEQ Sequen
e NumberTCP_ACKSEQ A
knowledgment NumberTCP_DOFF Data O�setTCP_FIN FIN FlagTCP_SYN SYN FlagTCP_RST RST FlagTCP_PSH PSH FlagTCP_ACK ACK FlagTCP_URG URG FlagTCP_ECE ECE FlagTCP_CWR CWR FlagTCP_WINSIZE Window SizeTCP_CHECKSUM Che
ksumTCP_URGPTR Urgent PointerTable A.3. TCP Fields



Appendix BThe PCSL LanguageB.1 Abstra
t SyntaxThe abstra
t syntax of the PCSL language is as follows:1. Synta
ti
 
ategories
V D ∈ V ariable declarations

SD ∈ Stream key declarations

LD ∈ Location declarations

TD ∈ Transitions

p ∈ Property values

sn ∈ Stored normal variables

pn ∈ Packet normal fields

ps ∈ Packet Sequence number fields

n ∈ Numerals

V LIST ∈ V ariable lists

cl ∈ Closed locations

OLD ∈ Open location declarations

ol ∈ Open locations

p ∈ Property values

D ∈ Directions

GD ∈ Guard declarations

G ∈ Guards

UD ∈ Update declarations

U ∈ Updates

PD ∈ Property value declatations

NEXP ∈ Normal expressions

BOP ∈ Boolean operators

AOP ∈ Arithmetic operators

CLD ∈ Closed location declarations

ss ∈ Stored sequence number variables

SEXP ∈ Sequence number expressions

DD ∈ Default property value declarations

PCS ∈ Protocol Conformance Specifications2. De�nitions
PCS ::= DD V D SD LD TD

DD ::= defpropvalue p;
V D ::= storednorm sn n; | storedseq ss n; | pa
ketnorm pn n;

| pa
ketseq ps n; | V D1 V D2
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SD ::= keypair V LIST ; | SD1 SD2

V LIST ::= pn , pn | ps , ps
LD ::= CLD; OLD;
CLD ::= 
lo
ation cl
OLD ::= olo
ation ol n | OLD1 ; OLD2

TD ::= itrans cl -> cl {GD PD}
| itrans ol -> ol {D GD PD}
| utrans cl -> ol {GD UD PD}
| utrans ol -> ol {D GD UD PD}
| utrans ol -> cl {D GD PD}
| TD1 TD2

D ::= dire
tion original; | dire
tion return;
PD ::= propvalue p;
GD ::= guard G; | ǫ
G ::= NEXP BOP NEXP | SEXP BOP SEXP | G1 , G2

NEXP ::= n | sn | pn | (n)(NEXP AOP NEXP ) | (NEXP )
BOP ::= < | > | <= | >= | ==
SEXP ::= ps + NEXP | ss + NEXP
AOP ::= + | - | * | / | //
UD ::= update U ; | ǫ
U ::= sn := NEXP | ss :=SEXP | U1 , U2B.2 Con
rete SyntaxThe following listing shows the 
on
rete syntax for the PCSL language:Alpha → a | . . . | z | A | . . . | ZDigit → 0 | . . . | 9Num → Digit | Num DigitAlphaNum → Alpha | NumIdent → Alpha | Ident AlphaNumStart → Dd Vd Sd Ld TdDd → defpropvalue IdentVd → Vd VariableType Ident Num ; | ǫVariableType → storednorm | pa
ketnorm | storedseq | pa
ketseqSd → Sd keypair Vlist ; | ǫVlist → Ident , IdentLd → Cld OldCld → 
losed lo
ation Ident ;Old → Old open lo
ation Ident Num ; | ǫ



81 B.3 Type SystemTd → Td TransType Ident -> Ident { D GD UD PD }TransType → itrans | utransD → dire
tion original | dire
tion returnGd → guard G ; | ǫPd → propvalue Ident ;G → Exp Bop Exp | G , Exp Bop ExpExp → Num | Ident | ( Num ) ( Exp ) | ( Exp )Bop → == | < | <= | > | >=Aop → + | - | * | / | //Ud → update U ; | ǫU → Ident := Exp | U , Ident := ExpB.3 Type SystemUsing the notation of [Car97℄ the judgments of the formalized type systemof PCSL are as follows:
Γ ⊢ ⋄ Γ is a well-formed environment
Γ ⊢ A A is a well-formed type in Γ
Γ ⊢M : A M is a well-formed term of type A in Γ
Γ ⊢ A <: B A is a subtype of B in Γ
Γ ⊢ D ∴ S D is a well-formed de
laration of signature S in Γ
Γ ⊢ DD DD is a well-formed default property value de
laration in Γ
Γ ⊢ SD SD is a well-formed keypair de
laration in Γ
Γ ⊢ D D is a well-formed dire
tion de
laration in Γ
Γ ⊢ GD GD is a well-formed guard de
laration in Γ
Γ ⊢ U U is a well-formed update element in Γ
Γ ⊢ UD UD is a well-formed update in Γ
Γ ⊢ PD PD is a well-formed property value de
laration in Γ
Γ ⊢ TD TD is a well-formed transition de
laration in ΓWith respe
t to the type rules a few additions are made to the notation of[Car97℄ to ease their des
ription. This due to ea
h variable being de
laredwith a bitsize denoting its upper bound. Be
ause these bounds in�uen
ehow the variable 
an be used in guards, assignments et
. two variables withthe di�ering upper bounds are seen to be of di�erent types. In this view thelanguage 
ontains a large number of types, most of them being variationsof the �basi
� types pa
ketnorm, pa
ketseq, storednorm, and storedseq. Toavoid having to de�ne and deal with ea
h of these individually the followingnotation is used : BasicType · #bits where #bits is the number of bitsassigned to the variable and BasicType is the type it is a variation of. Usingthis notation packetnorm · 6 would be the type of a variable de
lared with



The PCSL Language 82type packetnorm and the number of bits set to 6. With this in mind thefollowing table shows the type rules of the PCSL language:(Env ∅) (Env M)
∅ ⊢ ⋄

Γ⊢A M /∈dom(Γ)
Γ,M :A⊢⋄(Type Bool) (Type Clo
) (Type Olo
) (Type Propval)

Γ⊢⋄
Γ⊢Bool

Γ⊢⋄
Γ⊢Clocation

Γ⊢⋄
Γ⊢Olocation

Γ⊢⋄
Γ⊢Propvalue(Type Pa
ketnorm) (Type Pa
ketseq)

Γ⊢⋄
Γ⊢Packetnorm·n (n = 1, 2, . . . , 32)

Γ⊢⋄
Γ⊢Packetseq·n (n = 8, 16, 32)(Type Storednorm) (Type Storedseq)

Γ⊢⋄
Γ⊢Storednorm·n (n = 1, 2, . . . , 32)

Γ⊢⋄
Γ⊢Storedseq·n (n = 8, 16, 32)(Type Norm) (Type Seq)

Γ⊢⋄
Γ⊢Norm·n (n = 1, 2, . . . , 32)

Γ⊢⋄
Γ⊢Seq·n (n = 8, 16, 32)(Sub Re�) (Sub Trans) (Sub Subsumption)

Γ⊢A
Γ⊢A<:A

Γ⊢A<:B Γ⊢B<:C
Γ⊢A<:C

Γ⊢a:A Γ⊢A<:B
Γ⊢a:B(Sub Snorm) (Sub Pnorm)

Γ⊢Storednorm·x Γ⊢Norm·y
Γ⊢Storednorm·x<:Norm·y (x ≤ y)

Γ⊢Packetnorm·x Γ⊢Norm·y
Γ⊢Packetnorm·x<:Norm·y (x ≤ y)(Sub Sseq) (Sub Pseq)

Γ⊢Storedseq·x Γ⊢Seq·y
Γ⊢Storedseq·x<:Seq·y (x ≤ y)

Γ⊢Packetseq·x Γ⊢Seq·y
Γ⊢Packetseq·x<:Seq·y (x ≤ y)(PCS)

∅⊢DD ∅⊢V D∴(V :A) V :A⊢SD∴(S:B) V :A,S:B⊢LD∴(L:C) V :A,S:B,L:C⊢TD
∅⊢DD V D SD LD TD(Defpropval) (VDe
l Sequen
e)

Γ⊢⋄
Γ⊢defpropvalue p ; Γ⊢V D1 ∴ (M :A) Γ,M :A ⊢ V D2

Γ⊢V D1 V D2(VDe
l Snorm) (VDe
l Sseq)
Γ,sn:Storednorm·n⊢⋄

Γ⊢storednorm sn n; ∴ (sn:Storednorm·n)
Γ,ss:Storedseq·n⊢⋄

Γ⊢storedseq ss n; ∴ (ss:Storedseq·n)(VDe
l Pnorm) (VDe
l Pseq)
Γ,pn:Packetnorm·n⊢⋄

Γ⊢pa
ketnorm pn n; ∴ (pn:Packetnorm·n)
Γ,ps:Packetseq·n⊢⋄

Γ⊢pa
ketseq ps n; ∴ (ps:Packetseq·n)(Keypair Sequen
e) (Keypair)
Γ⊢SD1 Γ⊢SD2

Γ⊢SD1 SD2

Γ⊢I1:A Γ⊢I2:A A∈{Packetnorm·n,Packetseq·n}
Γ⊢keypair I1, I2 ;(VDe
l Cold) (LDe
l Clo
)

Γ⊢CLD ∴ (M :A) Γ,M :A ⊢ OLD
Γ⊢CLD OLD

Γ,cl:Clocation⊢⋄
Γ⊢
lo
ation cl ; ∴ (cl:Clocation)
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l Olo
) (LDe
l Sequen
e)
Γ,ol:Olocation⊢⋄

Γ⊢olo
ation ol ; ∴ (ol:Olocation)
Γ⊢OLD1 ∴ (M :A) Γ,M :A ⊢ OLD2

Γ⊢OLD1 OLD2(Trans I
l
l)
Γ⊢cl1:Clocation Γ⊢cl2:Clocation Γ⊢GD Γ⊢PD

Γ⊢itrans cl1 -> cl2 {GD PD}(Trans Iolol)
Γ⊢ol1:Olocation Γ⊢ol2:Olocation Γ⊢D Γ⊢GD Γ⊢PD

Γ⊢itrans ol1 -> ol2 {D GD PD}(Trans U
lol)
Γ⊢cl:Clocation Γ⊢ol:Olocation Γ⊢GD Γ⊢UD Γ⊢PD

Γ⊢utrans cl -> ol {GD UD PD}(Trans Uolol)
Γ⊢ol1:Olocation Γ⊢ol2:Olocation Γ⊢D Γ⊢GD Γ⊢UD Γ⊢PD

Γ⊢utrans ol1 -> ol2 {D GD UD PD}(Trans Uol
l) (Trans Sequen
e)
Γ⊢ol:Olocation Γ⊢cl:Clocation Γ⊢D Γ⊢GD Γ⊢PD

Γ⊢utrans ol -> cl {D GD PD} Γ⊢TD1 Γ⊢TD2
Γ⊢TD1 TD2(Dir Orig) (Dir Ret) (Propval) (Guard)

Γ⊢⋄
Γ⊢dire
tion original; Γ⊢⋄

Γ⊢dire
tion return; Γ⊢⋄
Γ⊢propvalue p ; Γ⊢G:Bool

Γ⊢guard G ;(Guardeln) (Guard Sequen
e)
Γ⊢NEXP1:Norm·a Γ⊢NEXP2:Norm·b

Γ⊢NEXP1 ∼ NEXP2 : Bool ∼= {<, >, <=, >=, ==}
Γ⊢G1: Bool Γ⊢G2: Bool

Γ⊢G1 , G2 : Bool(Guardels) (Numeral)
Γ⊢SEXP1:Seq·a Γ⊢SEXP2:Seq·a

Γ⊢SEXP1 ∼ SEXP2 : Bool ∼= {<, >, <=, >=, ==}
Γ⊢A A=Norm·⌈log2(n+1)⌉

Γ⊢n : A(Nexp) (Paren)
Γ⊢NEXP1:Norm·a Γ⊢NEXP2:Norm·b n∈{1,2,...,32}

Γ⊢(n)(NEXP1 ∼ NEXP2) : Norm· n
Γ⊢NEXP :A

Γ⊢(NEXP ) : A(Sexp) (Update) (Updateel)
Γ⊢sv:Seq·a Γ⊢NEXP :Norm·b

Γ⊢sv + NEXP : Seq·a (a ≥ b
2
)

Γ⊢U
Γ⊢update U ; Γ⊢U1 Γ⊢U2

Γ⊢U1 , U2(Updateeln) (Updateels)
Γ⊢sn:Storednorm·a Γ⊢NEXP :Norm·b

Γ⊢sn := NEXP (a ≥ b)
Γ⊢ss:Storedseq·a Γ⊢SEXP :Seq·a

Γ⊢ss := SEXP
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Appendix CCurrent Status of theImplementationAs should be 
lear from the report the 
urrent implementation of the systemshould be seen mainly as an experimental tool used during development,and as a platform for testing and evaluating the retargetable 
on
ept. Withthat being said, the implementation is however stable, fully fun
tional, andthe output generator API fully do
umented1. Currently the following threeoutput generators exists:Net�lter Generator: An output generator 
apable of generating unopti-mized 
ode for the Net�lter �rewall. The spe
i�
s of this generator isdes
ribed in Chapter 6.PCS Illustrator: An output generator 
apable of depi
ting a PCSL spe
-i�
ation using the graphi
al notation des
ribed in Se
tion 3.1.4. Thegraphi
al illustration of Net�lters standard TCP PCS depi
ted in Fig-ure 7.1 is 
reated using this generator.Diagram Illustrator: An output generator 
apable of depi
ting the de
i-sion diagrams stored by the intermediate representation. The graphi
alnotation is similar to that of Figure 5.1.To ease the development of new generators, and in tune with the initialar
hite
ture previously depi
ted in Chapter 2, phases 1 and 2 have beenimplemented as an external library. Using that approa
h, integrating newgenerators with the 
urrent implementation is merely a matter of linkingagainst that library and a

essing it using the output generator API. Foran illustration of this relationship between phases 1 and 2 and the outputgenerators, see Figure C.1.1For a 
omplete des
ription of the output generator API, see the do
umentation a
-
ompanying the implementation.
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Netfilter Generator
(nfcodegen)

Current Output Generators
(application name)

Diagram Illustrator
(dddepict)

PCS Illustrator
(pcsillustrate)

Core SystemRPCS LibraryFigure C.1. The relationship between the 
ore of the retargetable system (phases 1 and 2) andthe output generators. Ea
h individual generator makes up its own appli
ation and is linkedagainst the RPCS library whi
h provide a

ess to the system using the output generator API.



Appendix DSummaryWith the introdu
tion of SI the task of developing and maintaining a �rewallhas be
ome harder and more 
omplex. One of the main reasons for this is SIsinherent dependen
e on proto
ol 
onforman
e spe
i�
ations against whi
hthe inspe
ted streams 
an be 
he
ked. In 
urrent implementations of SI thesespe
i�
ations are hard 
oded into the SI subsystem using the same generi
language used to implement the rest of the �rewall. Unfortunately, thisapproa
h has the disadvantage that the spe
i�
ations are prone to 
ontainingerrors as these generi
 languages are not very well suited for the task. As�rewalls are primarily meant to provide se
urity, and errors tend to lessense
urity, this is by no means an ideal approa
h. Furthermore, as the softwareof many �rewalls is not easily upgradeable one they have been deployed, theneed for a system that minimizes the risk of errors is apparent.In this proje
t we have proposed, developed, implemented, and testedsu
h a system. This system, whi
h introdu
es the notion of retargetablePCSs, allows the �rewall developer to implement PCSs in a �rewall indepen-dent manner using a 
ustom made, proto
ol oriented language. This way, theimplementation of the PCS is simpli�ed and the 
han
e of it being 
orre
tis in
reased.This proposed system has in
luded the development of a number of 
om-ponents. First, an abstra
t model, the proto
ol 
onforman
e model, en
om-passing the fun
tionality needed in a PCS has been made. This providesa 
ommon foundation for 
urrent and future versions of the system. Withthat foundation in pla
e, a spe
ialization 
apable of representing PCSs forstreams of two of the most 
ommonly used proto
ols - TCP and UDP, hasbeen 
reated. The basis of this spe
ialization is an investigation of the re-quirements of a wide range of 
urrently available TCP and UDP PCSs. Thisensures that, even though it is impossible to de�nitively determine the ex-pressive power needed to represent every possible TCP and UDP PCS, thisspe
ialization has the expressive power to represent most, if not all, 
urrentand future PCSs for these proto
ols. This way, the major potential drawba
k
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iated with a less than touring 
omplete model has been alleviated.Having 
ompleted the model and thus 
reated the foundation for the re-targetable PCSs, a system 
apable of transforming these spe
i�
ations intousable 
ode has been made. This in
ludes the development of a simple lan-guage 
apable of expressing the spe
ialized model as well as an intermediaterepresentation 
apable of storing the retargetable PCSs.Finally, through the evaluation of an implementation of the proposedsystem, we have shown that the amount of performan
e overhead in
urred bythe retargetable approa
h is negligible. This is despite the fa
t that very littleoptimization was performed on the retargetable PCS by the intermediaterepresentation and the Net�lter output generator. Based on this we therefore
on
lude, that also in pra
ti
e, the use of retargetable spe
i�
ations is afeasible approa
h and that the system and its a

ompanying implementationis fully usable.
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