
Aalborg University eDepartment of Computer SieneDatabase and Programming Tehnologies
Title:Server Side LAML FrameworkTopi:Programming TehnologiesProjet Period:4/2-2002 � 14/6-2002Projet Group: Dat6, D601AMikael M. HansenPaw IversenJimmy JunkerSupervisor:Kurt NørmarkNumber of appendixes: 2Total number of pages: 143Number of pages in report: 112Number of reports printed: 7

Abstrat:In this projet four problems found in thearea of Web appliations development areanalysed. These problems are named theState handling problem, the Validation prob-lem, the Complex forms problem and theReusability problem. Existing work in thearea is analysed. Based on these problemsand the existing solutions three hypothesisare presented as the goal of this projet. Dur-ing the design, solutions to the problems aredeveloped. Example Web appliations areimplemented to illustrate the usage of the de-signed solutions. Based on these Web appli-ations we onlude on the projet. Intro-duing the session onept inspired by Big-wig solves the State handling problem. Ad-ditional experienes are still needed to fullyevaluate the Reusability problem. The Com-plex forms problem is solved by the designedsolution, based on building an objet stru-ture representing an HTML form. The imple-mented solution relies on the session frame-work, but a CGI based solution is onsid-ered possible. The Input validation problemis solved by relying on the session framework.Validation is made available on both the ob-jet and the page level. It is onluded thatrelying on the session framework have the ad-vantage that validation funtions are avail-able when they are needed. This is not thease in a CGI solution. Improvements an bemade on various plaes in the solution. Thisis reommended as future work.
Copyright 2002, Dat6, D601A.

ResumeI denne rapport præsenterer vi vores arbejde gennem speialet. Dette arbejde ligger i for-længelse af vores Dat5 arbejde. Vi arbejder med Web udviklingen indenfor programmerings-sproget Sheme med LAML bibliotekerne. I modsætning til den gængse måde, hvor �eresprog kombineres for at opnå den ønskede �eksibilitet, tillader en programmatisk tilgangtil Web udvikling, at både præsentation og dynamik foregår i det samme sprog. I løbet afDat5 udviklede vi et modul til Apahe Web serveren. Dette modul bruges som en del afkonteksten til dette arbejde.Vi begynder med en analyse af nogle ofte forekommende problemer man støder på som Webudvikler. Et af disse problemer er Tilstands håndtering, som består af to delproblemer. Detførste delproblem er data håndtering mellem klient og server. Et andet delproblem omhan-dler kontrol-�owet af en Web applikation. Mulige løsninger der �ndes i dag bliver analyseretog vurderet. Det andet ofte forekommende problem i Web udvikling er Input validering. Derer to alternativer som oftest bruges. Enten klient side validering ved hjælp af JavaSript ellerserver side validering ved hjælp af det sprog som Web applikationen er skrevet i. Fordele ogulemper ved de to alternativer overvejes og vurderes. Det tredje problem der analyseres ogbeskrives er problemet med opbygningen af Komplekse strukturer på serveren, samt manglenaf samme struktur når den har været vist til klienten. Det sidste problem der bliver behandleter Genbrugeligheds problemet. Som udvikler er man vant til en vis grad af genbrugelighed,men primært på funktionalitet niveau. Ved fremkomsten af side entrerede teknologier somPHP, ASP og JSP er en lille grad af genbrugelighed blevet kutyme, men det er ikke nogetder �nder sted i stor stil. Ønsket om en øget grad af genbrugelighed er fremsat.Efter præsentation og gennemgang af problemerne kigger vi nærmere på relateret arbejde.Formålet med dette er todelt. Både at �nde inspiration til løsninger til problemerne, og �ndeteknologier som allerede har løst dele af problemerne. På baggrund af analysen af problemerog det relaterede arbejde, fremsættes et antal hypoteser, der ligger til grund for det viderearbejde.Efter analysen præsenteres designet, hvor vi med udgangspunkt i det enkelte problem præsen-terer vores overvejelser omkring dette problem. Ud over overvejelser præsenterer vi også dendesignede løsning som skal ligge til grund for en implementation. Vi begynder med prob-lemet omkring Tilstands håndtering. Vi præsenterer tre forskellige løsninger, og konkretvælges at designe en løsning inspireret af Bigwig. Denne løsning involverer introduktionaf et primitiv der pauser evalueringen af Web applikationen når en side vises til klienten.Løsningen involverer også introduktionen af et primitiv der introduere et leksikalsk sope iet program. Disse to primitiver er den del af sessions begrebet som også medfører en løsning

iitil Genbrugeligheds problemet.Til behandling af problemet omkring Komplekse strukturer, overvejes både en tilgangsvinkelder involverer spei�kation af nestede lister, samt introduktion af et indlejret domæne spei-�kt sprog til løsning af problemet. Da vi �nder en objekt orienteret tilgangsvinkel til prob-lemet er den bedste, designes en løsning baseret på objekt orienterede prinipper. Compositedesign patternet bruges som inspiration til introduktion af forskellige klasser, der repræsen-tere forskellige elementer i en objekt struktur. Denne objekt struktur indeholder mulighedfor assoiering af en præsentation med det enkelte objekt i strukturen. Ydermere kan denindeholde data som er assoieret med de enkelte objekter i strukturen. Slutteligt behandlesproblemet omkring Input validering. Server side validering betragtes som den rigtige vejfrem, selvom visse ulemper �ndes. Derfor designes en løsning til validerings problemet derpasser sammen med resten af den designede løsning. Dette tillader validering både på enkeltesider, samt på komplekse strukturer.Dernæst præsenteres overvejelser og problemer som vi har arbejdet med på det lave niveau(omkring server modulet) i forbindelse med implementationen. På det lave niveau kommervi også med enkelte anbefalinger for teknologier som vi mener kan bruges til en endelig im-plementation. Nogle begrænsninger bliver tru�et, for at forhindre at vores arbejde skulleskifte fokus fra det høje niveau (Sheme, LAML) til det lave niveau (Apahe/C). Efter-følgende introdueres nogle proof of onept applikationer, hvilket illustrerer og motivererden designede løsning. Disse bliver gennemgået for at give læseren en forståelse af den im-plementerede løsning. På baggrund af erfaringer med disse præsenteres vores overvejelsermed hensyn til brugbarheden af den designede løsning. Anbefalinger, og ting der efter voresmening skal laves anderledes, bliver gennemgået og diskuteret, så videre arbejde indenfordette område kan drage nytte af vores arbejde.Slutteligt konkluderes der på de fremsatte hypoteser og de designede løsninger. Vi vur-derer i hvor høj grad vi har opfyldt vores mål for dette projekt, og eventuelle afvigelser erforklaret. Vi konkluderer at introduktionen af sessions begrebet, generelt set løser proble-merne med Tilstands håndtering. Introduktionen af et sessions primitiv tillader udviklerenat få et overblik over hele applikationen, da �ere interaktioner med klienten foregår i detsamme leksikalske sope ved hjælp af slaml-show primitivet. Genbrugeligheds problemetformodes løst. Vi må konkludere at en længere periode til evaluering at dette er nødvendig.Problemet omkring Komplekse strukturer er løst fornuftigt ved brug af objekt orienteredeprinipper. Selvom de objekt orienterede prinipper ikke passer godt i konteksten af dettearbejde (Sheme og funktionel programmering) så er det rimeligt let og �eksibelt at arbejdemed objekter til repræsentation af komplekse strukturer. Med hensyn til Input valideringsproblemet så kan vi konkludere, at vi har lavet et validerings apparat der passer godt sam-men med sessions apparatet. At bygge validering på sessions apparatet sikrer, at det at fådata og validere det er en atomar handling, i modsætning til CGI hvor det er to separatehandlinger.

PrefaeThis report douments our Dat6 semester projet at the Department of Computer Siene,Aalborg University, Denmark. The Dat6 semester is the semester where we omplete ourmaster thesis. Preparatory work for the master thesis is our Dat5 projet, where we workedin the area of Web appliation development using LAML.Report Conventions:Throughout this report all referenes to the bibliography are shown as [referene℄. Speialonepts are written in abbreviation followed by a full length name in parenthesis, the �rsttime enountered. Through the remainder of the report the abbreviation is used. Referenesto �gures and tables are written like x.y where x is the number of the hapter and y is thenumber of �gure or table in the given hapter. E.g. Figure 2.3 is �gure three in haptertwo. Text in �gures are written in a speial font to make it distinguishable from the normaltext. An example of this font is this sentene. When referring to spei� ontents of �gures anitali notation is used, like this sentene. Itali notation is also used when referring to thenamed problems throughout the report. Primitives that are part of the SLAML frameworkare written in this font to distinguish them from the rest of the text. Throughout thereport the word he, will refer to he or she. A gray box is used to give the implementationonsiderations regarding the various primitives in the design. The ontents of this is targetedat the reader familiar with Sheme. The �rst time a primitive is introdued a parenthesiswill follow with a page number. This page number refers to the page in the SLAML referene- in Appendix A - ontaining a detailed desription of the primitive.The projet period began February 4, 2002 and lasted to June 14, 2002.Aalborg University, June 14, 2002.
Mikael M. Hansen Paw Iversen

Jimmy Junker

Contents
1 Analysis 31.1 Problems in Web Development . 31.1.1 State Handling . 51.1.2 Input Validation . 101.1.3 Complex Forms . 141.1.4 Reusability . 181.1.5 Summary . 191.2 Approahes to Web Development . 201.3 Related Work . 211.3.1 Bigwig . 221.3.2 WASH/CGI . 241.3.3 PAKCS/HTML . 281.3.4 Summary . 301.4 Problem De�nition . 312 Design 332.1 Session Framework . 342.1.1 Design Considerations . 352.1.2 Design of the Session Framework in SLAML 382.1.3 Flow of a Session in SLAML . 422.1.4 Example of the SLAML Session Framework 432.1.5 Solution to the State Handling Problem 442.1.6 Solution to the Reusability Problem 452.2 Complex Forms Framework . 452.2.1 Design Considerations . 452.2.2 Design of the Complex Forms Framework in SLAML 532.2.3 Complex Forms Framework in SLAML 552.2.4 Objet Oriented Programming in Sheme 572.2.5 Creating, Presenting and Updating Objet Strutures 592.2.6 Example of the Complex Forms Framework 662.2.7 Solution to Complex Forms Problem 682.3 Validation Framework . 692.3.1 Design of the Validation Framework in SLAML 702.3.2 Flow of Validation . 722.3.3 Example of Validation Framework . 742.3.4 Solution to Input Validation Problem 77

vi CONTENTS2.4 Summary . 773 Example Appliations 793.1 Guess a Number Appliation . 793.1.1 Objets, Layout, Chek Funtions and Pages 803.1.2 Flow and the Session De�nition . 823.2 Student Class Example . 843.2.1 Overview of the Appliation . 853.2.2 Use of the Session Conept . 883.2.3 Use of Complex Forms . 913.2.4 Use of Validation . 943.3 Summary . 954 Re�etion 974.1 Enountered Problems . 974.1.1 New Apahe Module . 984.1.2 Handling Data on the Server . 994.2 Current Limitations . 1004.2.1 Mod_laml Limitations . 1014.2.2 HTML Elements . 1014.2.3 Error Messages . 1024.2.4 Validation on slaml-element and slaml-form-element 1024.3 SLAML Framework . 1034.3.1 Session Framework . 1034.3.2 Complex Forms Framework . 1044.3.3 Validation Framework . 1054.4 Summary . 1065 Conlusion 1075.1 Future Work . 111A SLAML Referene 113A.1 Session Framework . 113A.2 Objet Framework . 117A.2.1 Classes . 117A.2.2 Conveniene Funtionality . 120A.2.3 Funtionality for Generating HTML 122A.2.4 Message Parsing Funtions . 124B Small Example 129

IntrodutionThe task of developing Web appliations has beome more important during the reent years,as the use of Web appliations has beome more ommon. Following the inrease in use ofWeb appliations, fous has inreased on inventing tehnologies and praties for improvingthe e�ieny of a Web appliation developer. At the same time fous on expanding thepossibilities of the tehnologies used today has inreased. This ongoing task of improving,and expanding the possibilities in the domain of Web appliations development is possiblyone of the fastest growing areas in omputer siene today.Some of the most interesting tendenies in Web appliations development is the use ofXML[W3C02a℄ as a uniform way of sharing and distributing data. Other important aspetsof the �elds of Web appliations development is the J2EE[In01℄ arhiteture introdued bySun Mirosystems. J2EE inludes several new tehnologies that are intended to aid Webappliations developers in their task of reating Web appliations.Apart from the mainstream tendenies people work on various nihes that better suit theirneeds. Nihes that rely on more speialized tehnologies for Web development. Examplesof suh nihes is the Bigwig language, or the WASH/CGI library[Pet℄ for Haskell[JO02℄.Another nihe is introdued by Kurt Nørmark, as he has reated the LAML libraries[lam01℄for the Sheme programming language[KCR+98℄. This is done sine he �nds that the fun-tional paradigm �ts well into the development of Web appliations[Nør00℄. Furthermore thesyntatial nature of lisp languages �t well with Web developmentDuring the preparatory work[MPJ02℄ for this master thesis we worked in the area of Webappliations written in LAML. Server side LAML (SLAML) was introdued, as the possi-bility to exeute LAML appliations on the server without using CGI. This was ahieved byreating an Apahe server module, whih we named mod_laml. mod_laml allow exeutingWeb appliation written in Sheme using the LAML libraries roughly twie as fast as it isdone by relying on CGI[gi01℄. The work onduted during the preparatory work for thisthesis was mainly on a low level. Most of the work onsisted of reating the Apahe module,inluding various features often present in an Apahe server module. A seond aspet ofthe preparatory work was to disover new ideas and priniples that help to make Web de-velopment easier. We onluded that we would ondut a further analysis of some of theseonepts and possibly implement them using mod_laml. As a ontinuation of this strategy,the fous has been shifted from the low level to a higher level, namely from the C level tothe Sheme level. In this projet we fous on providing new aspets into the area of Webappliations development by using mod_laml as the basis for further development relyingon Sheme and the LAML libraries.

2 CONTENTSThis projet addresses some of the often enountered problems in Web appliations devel-opment relying on todays tehnologies. This is done in four steps. First, often enounteredproblems when working with Web development are found. Seond, analysis of the prob-lems and possible solutions are onduted, while at the same time onsidering aspets ofnew tehnologies used for Web appliations development. Third, solutions to the problemsare disussed and designed to integrate with the ontext reated and motivated during ourpreparatory work for this master thesis. Fourth, a number of example Web appliationsare developed to illustrate the solutions to the problems in Web appliations development.The example appliations are used as the motivation for disussions and re�etion on theproblems, their solution and reommendations for further development in the area of Webappliations development in LAML and mod_laml are presented last.

1
Analysis

Contents1.1 Problems in Web Development 31.2 Approahes to Web Development 201.3 Related Work . 211.4 Problem De�nition . 31In this hapter an analysis of problems related to Web development are onduted. Next isan introdution to di�erent approahes to Web development. Following this is an analysisof work related the problems desribed. The solutions used in related work - in the areaof session based approahes - are presented and disussed. Finally a problem de�nitioninluding hypothesis regarding the goals of this projet is presented.1.1 Problems in Web DevelopmentWe onluded our previous work with the fat, that we will attempt to make Web develop-ment easier for the developer. Making Web development easier for the developer, is doneby introduing abstrations in the language used for development, and by introduing toolsthat supports the developer when solving often enountered problems. This setion presentsproblems that are enountered when developing Web appliations. Four problems have beenidenti�ed based on our knowledge with the development of Web appliations, and they are:1. State handling2. Input validation3. Complex forms4. Reusability

4 CHAPTER 1. ANALYSISThe following will give a short introdution to the problems. In addition eah of the prob-lems are presented and disussed in greater detail in its own setion, see Setion 1.1.1, 1.1.2,1.1.3 and 1.1.4.The �rst problem (State handling), is based on the harateristis that a Web appliationmust underlay the stateless nature of the HTTP protool. An appliation build on CGI,atually exist of an amount of small �appliations�. Eah small �appliation� orresponds tothe exeution of a single CGI sript, whih results in the presentation of a single page. Thisobservation is build on the fat that the proessing of a single request to a CGI based Webappliation orresponds to exeution of one CGI sript. The developer of Web appliationswill be aware that more requests orresponds to more CGI sripts. He will therefore have toonentrate on the development of many small �appliations� that must interat with eahother, instead of fousing on the whole Web appliation as one unit. If data and informationabout state must survive more requests, it must be handled expliit by the developer. Thereason for this is the stateless nature of the HTTP protool. The need to expliit handle dataand information about state is seen as a problem. This problem is named State handling,and it is disussed in greater detail in Setion 1.1.1.The seond problem is named Input validation and is about validating data submitted by alient. When a lient submits data to a CGI sript, it has to be validated in order for thedata to be valid in the ontext it is used. The problem is present beause all data submittedto a sript is reeived as strings. Sine not all operations are done on strings (e.g. addingtwo numbers), it is often neessary to perform heks on the input from the user. This isin most ases done expliitly by the developer. However, validation imposes problems, sinethe validation proess is error prone if the developer is not systemati. Input validation isdisussed in greater detail in Setion 1.1.2.The third problem is related to the way data is strutured in HTML. When writing CGIsripts, data an be plaed in data strutures to raise the level of abstration. This is doneby using primitives available in the programming language used to write the CGI sript(e.g. arrays, tree strutures, hash tables). A similar struture an be modeled as layout inHTML (an array of reords an e.g. be modeled as a table with eah reord presented as arow), but a problem exist when data is reeived from the lient. The developer an presentomplex strutures in HTML forms, with respet to layout, but when data is reeived fromthe lient, the data strutures are lost. This is the ase, sine information from an HTMLform is enoded as a string ontaining key/value pairs. The relation between rereation oflarge and omplex strutures and forms based on a key/value pairs, is seen as a problem. Wehave named this problem Complex forms and it is disussed in further detail in Setion 1.1.3.The fourth problem onsidered is the problem of reusability of program units that are largerthan one page. In CGI, the developer an reate funtionality, whih an reate parts (oftensingle pages) to a Web appliation. However, in order to reuse a whole Web appliation, allpages related must be inluded. The problem is that a Web appliation in CGI is not equalto a single unit, but instead a series of pages. We see the lak of onsidering an appliationas a single unit as a problem, whih we have named the Reusability problem. Reusability is

1.1. PROBLEMS IN WEB DEVELOPMENT 5disussed in Setion 1.1.4.To summarize, four problems - State handling, Input validation, Complex forms and Reusabil-ity - that are present when developing large Web appliations have been identi�ed. Thefollowing setions spei�es the problems in greater details and gives examples that presentsthe nature of the spei� problem. Current solutions to the problems will be presented, butonsiderations and hoies regarding the solutions are presented in the Design hapter (seeChapter 2).1.1.1 State HandlingWhen a developer uses the CGI protool to write Web appliation, di�ulties regarding theCGI protool arises. The main problem with the CGI protool is that it is stateless (beauseof the stateless nature of the underlying HTTP protool). This means that state informationhave to be handled expliit by the developer in order to maintain state. A seond problem isthat the CGI protool ditates that a program written using CGI must end after a responseis send to the lient. There is no possibility of writing the Web appliation as one programand rely on the interations with a user returning ontrol to the surrounding ode, as it isdone in non-Web related programming. This has some onsequenes that are explained inthis setion.The State handling problem an be divided into two subproblems. The subproblems arepresented below. After the presentation of the two subproblems, urrent solutions are pre-sented.1. Data �ow handling2. Control �ow handlingData �ow handling onerns the need for the developer to expliit handle the data (values)already reeived from the lient. Consider an appliation, that onsists of three pages. The�rst two pages eah take an input, and the third page presents the input entered. Sine theHTTP protool is stateless, the data from the �rst page must expliit be stored - or sentto the next page - by the developer. This is needed for the data to be present after therequest to the seond page, so it is available when the third page is presented. The problemis illustrated in Figure 1.1.

6 CHAPTER 1. ANALYSIS

A = 1

Server Client

CGI

CGI

CGI

3

2

1

Request

Get A

Get B

B = 2

Show A and B
A = ??
B = 2

HTML

HTML

HTML

A?

B?

Figure 1.1: The Data �ow handling problem. Sine eah of the CGI sripts are handled asa single request, the data annot �survive� more requests. In this example, the A value is notpresent after the response from the seond CGI sript (CGI 2).The Control �ow handling problem is also (like Data �ow handling) related to the statelessnature of the HTTP protool. Figure 1.2 presents an example, where multiple hoies anbe made through the exeution of a Web appliation. When the appliation is running,it is not possible to determine the urrent position, of all the positions in the appliation.Considering the �gure, it is e.g. not possible to determine if D has been visited if the urrentpage is C. The reason for this is, that eah page is presented by the exeution of a singlesript, and eah sript terminates after eah request. This means, that eah page is presentedwithout returning to the spei� point in the appliation from where it was alled. Informa-tion needed to maintain the interation between the di�erent parts of the appliation, musttherefore be handled expliitly by the developer. This is typially done by assoiating thenext sript to be invoked with a button or a link on the urrent page.

1.1. PROBLEMS IN WEB DEVELOPMENT 7

DONE

A

D

E

B

C

Figure 1.2: Eah node in the tree represents a page (e.g. a single CGI sript) and an edgesymbols a possible seletion. The olletion of all the pages is the entire appliation and a paththrough the tree struture, represents a possible exeution of the appliation.The two subproblems related to State handling have been presented. Current solutions tothese problems are presented and disussed in the following.Current Solutions to Data Flow HandlingThe Data �ow handling problem an be solved by either storing the data on the lient oron the server. The two alternatives are presented in Figure 1.3, whih is based on Figure 1.1.
A = 1

(B)

Server Client

CGI

CGI

CGI

3

2

1

Request

Get A

Show A and B
A = 1
B = 2

HTML

HTML

HTML

A?

B?
A = 1, Get B

A = 1, B = 2

A = 1

Storage

AGet

AStore

A = 1

Server Client

CGI

CGI

CGI

3

2

1

Request

Get A

Get B

B = 2

Show A and B

B = 2

HTML

HTML

HTML

A?

B?

A = 1

(A)Figure 1.3: (A) relies on the possibility to make data persistent on the server, whereas (B) sendsdata to the lient.

8 CHAPTER 1. ANALYSISThe solution presented in Figure 1.3 (A) relies on the possibility to store data on the server.This an e.g. be in �les on the loal server's �lesystem. However, it must be possible todistinguish between the di�erent lients. If this is not possible, the information stored onthe server, annot be related to a spei� lient. Many page entered approahes to Webdevelopment (PHP [The02℄, JSP [SM02℄, ASP[asp01℄ et.) let the developer speify whihvariables must be aessible at a later point in the dialog with the lient. The lient is givenan id to identify it from the other lients. The id is the only information sent to the lient atthe end of eah request (by storing it in a hidden input element in a way desribed later).All the registered variables are serialized and written to a �le on the server without thedeveloper having to know about it.A problem with the solution presented in Figure 1.3 (A), is that the lient an stop hisinterations with the server and bookmark the urrent page. After a while (minutes, hours,days or even longer) a lient an return - by using the bookmark - in order to omplete theappliation one left. There is no way to determine how long the lient will be �idle� in theexeution of the appliation, or if the lient will ever return. If the lient never returns, datarelated to the interations with the server will take up spae even if it is never used. If largeappliations are running on a Web server, storing never used informations is a problem, thatmust be onsidered.Figure 1.3 (B) presents a solution to Data �ow handling, where data is send to the lientin hidden input elements when needed later. This means, that data an be extrated fromthe HTML page in the same way as data from other input elements. The only di�ereneis that data in hidden input elements are not shown in the layout of the HTML page. Ifmany values are needed at a later point, it is a umbersome task for the developer to reatea hidden input element for eah value. Persistent.pm [Pra02℄ is a Perl module that angenerate URL strings or hidden input elements from variable names. In this way the dataan be sent to the lient and bak in the normal way, but the developer just has an easiertask of doing it. We �nd this abstration useful, sine the developer an aess the values inthe variables, without the need to handle the data from the HTML form expliit.Sending data to the lient in hidden input elements is a problem, sine the data is aessibleto the lient. It is not presented on the HTML page, but it is present in the page soure.A lient an modify the values in the hidden input elements and submit them. This anresult in the server reeiving unexpeted or invalid information. Seurity is also an issuehere. Imagine that the developer hanges the unique id whih identi�es the lient (reatedto distinguish between lients, so data an be stored on the server). If a lient guesses (orknows) the unique id of another lient, it an pretend to be that lient. This allows aessto information not related the lients own interations with the server.Current Solutions to Control Flow HandlingThis setion presents two solutions to handle the �ow in a Web appliation. The �rst solutionis based on primitives in the programming language used. The entire appliation (or largerparts of it) is plaed in a single �le, and when a request is reeived, a variable (maintained

1.1. PROBLEMS IN WEB DEVELOPMENT 9by the developer) determines whih page to show. Figure 1.4 shows how a ond speial formfrom Sheme an be used for this.(ond((string=? page "page1")(display(html..(input 'name "page" 'type "HIDDEN" 'value "page2"))))((string=? page "page2")(display(html..(input 'name "page" 'type "HIDDEN" 'value "page3"))));et)Figure 1.4: An example of how the ond speial form from Sheme an be used to ontrol the�ow of a CGI program. page is a string extrated from the HTML form. The "page1","page2" and "page3" strings are used to determine the parts of the appliation andis maintained by the developer.By using the above solution, the developer has overview of all pages (and the �ow betweenthem) in the Web appliation. However, if a large appliation is reated, the gathering of allpages in the same �le, will make it di�ult for the developer to maintain the overview. Thisis the ase, both beause of the amount of lines of ode present in the �le, but also beausethere exists no grouping of pages whih are related to a spei� part of the appliation. Inan online bookstore, for instane, the login page is not related to the page where a user ansearh for a spei� book.The seond solution to the ontrol �ow problem is to rely on the ation attribute from theHTML form element. Instead of plaing the appliation in a single �le, it is plaed in a num-ber of �les (e.g. one �le for eah page in the appliation). The pages an then - by using theation attribute of the HTML form element - be linked together. The onnetions betweenthe pages presented in Figure 1.2 an then be establish if page A (a single �le) ontains aform element that links to page B. It will look like:(form 'ation "B.gi" ...)Page B must then ontain two form elements: one that links to page C and one that linksto page D. By following this pattern, the entire onnetion between pages shown in Figure1.2 an be reated.

10 CHAPTER 1. ANALYSISThe linking between individual sripts allows the developer to reate a splitting of the ap-pliation (e.g. one sript per page). The �ow of the program is di�ult to maintain, sine itrequires the developer to open various �les in order to follow a spei� series of ations (one�le has a referene to one or more of the other �les related to the appliation, whih againhas one or more referenes et.).In this setion approahes to the two subproblems of the State handling problem, namelythe Data �ow handling and the Control �ow handling problem were presented. The Datahandling problem an be solved by storing the data on either the server or the lient. TheControl �ow handling problem an be solved by using primitives in the language or by linkingsmall appliations together using the ation attribute of HTML form elements. The nextsetion fous on the Input validation problem and possible solutions to it.1.1.2 Input ValidationIn this setion the Input validation problem is analyzed. In order to get information froma lient in a Web appliation, input elements are used. These input elements are added toan HTML page by using HTML elements - often the HTML input element (others, likethe textarea element, an also be onsidered input elements). There exists ten di�erenttypes of the HTML input element [W3C02b℄, and the ontent of eah element is in HTMLhandled as textual input. This means, that the representation of all values - regardless ofthe input type - are string values when extrated from an HTML form.To see the problem with the lak of types in HTML, onsider the following example, whihonsists of two HTML pages with HTML input elements (see Figure 1.5). The HTML inputelements are reated in basially the same way (the name attribute will di�er):(input 'type "TEXT" 'value "" 'size "5" 'name "a")As seen, the type of the HTML input element used is TEXT. This means, that text inputelements are used to gather information about numbers. In this example, the �rst pagetakes two �numbers� as input, and it ontains a submit input element (Figure 1.5 (A)). Theseond page presents the sum of the two �numbers� entered in the �rst page (Figure 1.5 (B)).

1.1. PROBLEMS IN WEB DEVELOPMENT 11
2010

Number A Number B

This page calculates two
numbers! Enter them below
and press submit

30

Result

This page calculates the
sum of the two numbers
entered on the previous page.

Calculate two numbers!

Submit

Calculate two numbers!

(A) (B)Figure 1.5: An example of input �elds. The sum of the two numbers entered in (A) is presentedin (B).The problem in this example, is that it annot be assured, that the lient enters numbers inthe input elements on the �rst page. Sine information from the input elements are handledas strings, the lient an enter e.g. "asdf" as the �rst number. This gives the developer of aWeb appliation the need to perform heks on input, sine it will not - in the example used- make sense to add a string to a number.On the basi HTML/CGI level, there is no way of heking for spei� input types. Ifvalidation is needed, the developer must use other tehnologies. The validation part of anappliation an be handled on two di�erent levels; on the lient or on the server.Generally, validating input on the lient side will mean faster validation. The reason is, thatdata will stay on the lient until it is valid. If validation is handled by the server, input mustbe send between lient and server, until it has been validated. A problem with lient sidevalidation is, that a spei� tehnology (suh as JavaSript[Net02℄) must be present on thelient. If the tehnology is not present, a validation will not be aomplished. With serverside validation, however, it is not required for the lient to have spei� tehnologies present.Instead, tehnologies present on the server are used for validation.Client Side ValidationOften used tehnologies for lient side validation are JavaSript1 and JSript[Mi02b℄ (wefous on JavaSript), whih are sripting languages developed by Netsape and Mirosoft,respetively. Both are standardized as ECHMASript[ECH02℄, whih is a standard for sript-ing in a host environment. JavaSript an be used inside HTML douments, and the Webbrowser will exeute the sript immediately or at a later event (e.g. when a lient submits1Server side JavaSript exist, but when we use the term JavaSript we mean lient side only

12 CHAPTER 1. ANALYSISan HTML form or hanges the ontent in an input element). This gives the developer manypossibilities, and one of them is validation of input elements. The �rst page from the ex-ample above, is shown in Figure 1.6, with JavaSript inluded (body text and layout is notinluded).<html><head><title>Calulate two numbers!</title><sript type="text/javasript">funtion hekNumbers() {var anum = doument.sum.a.value //value from 'a' input fieldvar bnum = doument.sum.b.value //value from 'b' input field//hek if any is not a number .. '10' is the radixif (isNaN(parseInt(anum, 10)) || isNaN(parseInt(bnum, 10))) {alert("You must enter valid numbers!"); //Show error alertreturn false; //the user must try again}elsereturn true; //aepted .. ontinue}</sript></head><body><!-- body text and layout is not inluded! --><form name="sum" type="GET" onSubmit="return hekNumbers()"'ation="result.html"><input type="text" value="" size="5" maxlength="5" name="a"><input type="text" value="" size="5" maxlength="5" name="b"><input type="submit" value="submit"></form></body></html>Figure 1.6: An example of input validation in JavaSript. The result page is not alled unlessthe information entered is validated as numbers.As seen in the �gure, the input elements are plaed inside a form element. This makes itpossible to speify in the JavaSript (inluded in the sript element), whih values thatare of interest (as it is done in the �rst two lines of the hekNumbers funtion). Theexample also shows, that there is a problem related to the need to master two tehnologies;a sripting language with a C/Java like syntax together with HTML. Another problem withJavaSript is, that some funtionality di�ers between di�erent browsers (e.g. Netsape andMS Internet Explorer). This means, that some funtionality must be browser spei� andtherefore written twie.Server Side ValidationLeaving input validation as a server task, means that input from the lient is sent to theserver in order to be validated. If the input is not valid, appropriate errors messages must

1.1. PROBLEMS IN WEB DEVELOPMENT 13be presented. There is no speial tehnology used for server side validation (like JavaSriptis used for lient side). Instead, the programming language used to generate the HTMLontent is also used for validation (like VBSript [Mi02℄ in ASP, Java[In02b℄ in JSP et).The following example is implemented in JSP, and is - like the lient side validation example -an implementation of the �rst page in the initial example. The idea is, that we are interestedin reating a loop between server and lient, that runs until the lient submits valid input.Suh a loop an be reated by using a wrapper page, whih performs the needed validation.If the input is valid, the lient is direted to the next page. Otherwise, the lient is sendbak to the original page, so input values an be entered again. Another possibility is toembed the validation into the presentation. The latter is used in the example, whih an beseen on Figure 1.72.<html><head><title>Calulate two numbers!</title></head><body><form ation="" name="sum" method="GET"><%// if parameter is not present, getParameter returns nullString astring = request.getParameter("a");String bstring = request.getParameter("b");// the initial request (no paramters exist), will result in both being nullif (astring == null || bstring == null); //dont do anythingelse {try {int anum = Integer.parseInt(astring);int bnum = Integer.parseInt(bstring);response.sendRediret("result.html?a="+anum+"&b="+bnum);} ath (NumberFormatExeption e) {%> You must enter valid numbers!<% } // end of try-ath}%><input type="text" value="" size="5" maxlength="5" name="a"><input type="text" value="" size="5" maxlength="5" name="b"><input type="submit" value="submit"></form></body></html>Figure 1.7: An example of server side validation. Here the server side language is embedded inthe page.2The example is very basi, and no spei� strengths from JSP are used.

14 CHAPTER 1. ANALYSISAs seen on this �gure, the error message and the validation are embedded in the HTML.Speial tags are used - <% and %> - to esape from HTML into the programming languageused (Java in this example). The server onverts the entire page into a small Java program,whih is exeuted when requested (and ompiled at the very �rst request). The appropriateHTML page is then reated by a series of System.out statements. Just as with lient sidevalidation, the developer must master both a programming language and HTML. However,the programming language available on the server, will in most ases be more omprehensivethan the sripting language used for lient side validation.This setion has presented two di�erent approahes to the Input validation problem. The�rst is lient side validation whih requires speial tehnology on the lient. The seond isserver side validation, where the programming language for generating Web pages are usedto perform hek on the input from the user. Client side validation yields faster evaluation,but the lient an disable the funtionality, that validates the input. In order to performserver side validation, a lient/server loop must be maintained by the developer. However,server side validation ensures validation of lient data. The next Setion presents the Com-plex forms problem.1.1.3 Complex FormsIn this setion the Complex forms problem is disussed. The problem onerning omplexforms exists whenever the developer has a omplex struture, that it is of interest to get�lled with data entered by a lient. The struture an be presented as layout in HTML (anexample is given in Figure 1.9). After the lient has entered the information wanted, theHTML form is submitted. When the information is submitted it is onverted to a key/valuepairs string. This makes it di�ult to rereate the struture as it was presented on theHTML page. The reason for this is, that the string does not ontain any information aboutomposition of elements in the struture, but only information about values from the basiinput elements in the HTML form.Consider the following example of a person struture, whih must be �lled with informationfrom the lient.The person struture an be onsidered a reord struture from the Sheme programminglanguage. As seen, the person has nested reords, like e.g. the street-name. A street-name ispart of a street, whih again is part of an address, whih again is part of a person. In orderto get suh a struture �lled with information from the lient, the developer must ompletetwo steps:1. Present the struture in an HTML form2. Reonstrut the struture from a key/value pairs stringThe �rst step - presenting the struture in a omplex form - an be handled by using HTMLelements. Various possibilities exist, like labels, input elements, various fonts, tables et.

1.1. PROBLEMS IN WEB DEVELOPMENT 15(person(name(first-name "")(last-name ""))(address(ountry "")(ity(ity-name "")(postal-number ""))(street(street-name "")(house-number "")))(email "")(phone "")(age "")) Figure 1.8: A struture representing a person.The address part from the struture shown in Figure 1.8 an be presented in an HTMLtable like illustrated in Figure 1.9.(table(tr (enter "Address")(td "Country" (br) (input 'type "TEXT" 'name "ountry") 'align "enter")(td(table(tr (enter "City")(td "City-name" (br)(input 'type "TEXT" 'name "ity-name") 'align "enter")(td "postal-number" (br)(input 'type "TEXT" 'name "postal-number") 'align "enter"))'border "1"))(td(table(tr (enter "Street")(td "Street-name" (br)(input 'type "TEXT" 'name "street-name") 'align "enter")(td "House-number" (br)(input 'type "TEXT" 'name "house-number") 'align "enter"))'border "1")))'border "1")Figure 1.9: The HTML layout of an address from a person reord.

16 CHAPTER 1. ANALYSISBy writing tables inside tables, the developer an reate a tree presentation of the personstruture. Eah of the leafs are input elements, that the lient an �ll with information.The di�ulties emerges when the developer reeives the form information submitted by thelient and must reonstrut the person struture (the seond step). Consider the entireperson being build in a similar way as the address part. When the lient presses the submitbutton, the information from the input elements are gathered in a key/value pairs string.All information from the HTML form will be the string (// is added as a line break forreadability):first-name=nik&last-name=hansen&ountry=denmark&ity-name=thy&postal-number=1234& //street-name=highroad&house-number=42&email=nik%40freemail.om&phone=12345678&age=42And as an assoiation list in Sheme:(urlparms (age . "42") (phone . "12345678") (email . "nik%40freemail.om") //(house-number . "42") (street-name . "highroad") (postal-number. "1234") //(ity-name . "thy") (ountry . "denmark") (last-name . "hansen") //(first-name . "nik"))All the basi information from the input elements are present in the data from the HTMLform reeived, but there are no information telling the developer anything about the stru-ture. The following setion, will present possible ways to handle the rereation of the omplexstruture.Rebuilding the StrutureWhen form parameters are submitted by the lient, all information about the omposition ofthe elements are lost. There are e.g. no information telling, that the �rst-name and the last-name are atually parts of the omposite element name in the person struture. Informationabout the omposition ould be handled by hidden input elements in the HTML form. Tosolve this, a hidden input element named name, whih has the value �rst-name+last-namean be reated. The information from the hidden input elements are inluded in the infor-mation from a submitted HTML form, so the hidden input element name will result in thestring name=�rst-name+last-name when reeived from the lient. This tells the developerthe value of name, but it will be on the same level as all the other information from the input�elds. This means, that the only way to distinguish between the information representinglient input and information representing struture, is the key (name in this example) in thereeived data from the HTML form.To rereate the struture on behalf of a parameter string, where information about the stru-ture is mixed with data from the lient is di�ult. First, the developer must know the namesof all the keys representing the struture, in order to rebuild it. Seond, the developer mustbe sure, that names related to a �data� input element are not in on�it with names relatedto a hidden input �struture� element. Third, funtions that reate omplex strutures onbehalf of strings must be reated.

1.1. PROBLEMS IN WEB DEVELOPMENT 17Instead of giving eah part of the struture its own hidden input element, the entire struturean be stored in a single hidden input element. This requires the developer to �rst reatea �template� of the struture, and then plae it in a hidden input element when the HTMLform element is reated. The person struture an e.g. be plaed in a hidden input elementnamed form-struture. When the data from the HTML form are submitted, the developeronly needs to �nd the value of the form-struture key in order to have a representation ofthe struture. When having the struture at hand, it an be updated with the data from thelient. Using this way of handling HTML forms, the developer is required to perform threesteps. These steps are illustrated in Figure 1.10.
3E

2D

D E

A

B C

D E

A

B C

c=1&d=2&e=3

31 2

C 1

B

A

HTML page

Figure 1.10: In step (1) the developer reates the struture wanted. Step (2) presents a similarstruture as an HTML form. The struture reated in step (1) is stored in a hidden inputelement (the dashed box in the bottom of (2)). In step (3) the struture is extrated from theHTML form, and updated with the values entered by the lient.The struture template from step (1) - in Figure 1.10 - an be the person struture alreadypresented. By doing the layout in HTML as done in Figure 1.9 and storing the personstruture in a hidden input element, step (2) an be ahieved. Updating the struture (step(3)) is done by �rst extrating the struture, and then in turn handle eah key in the datafrom the HTML form. If a key is present in the struture, update the struture with thekeys value. Otherwise ontinue to the next key. The above two alternatives (hidden infor-mation about the omposition or the entire struture) are self ontained, sine informationabout the struture are available in the data reeived from the lient. Instead of storing theentire struture in a hidden input element, a referene to the template an be stored (likestruture=person). This an be handled in the same way, as data are stored on the server.This results in the struture not being self ontained, as it annot be reonstruted from thedata reeived from the lient. Information about the struture is needed from the server.When reating an HTML form based on a template or diretly in the language, it is di�ultto see the relation between the representation of the struture and the struture itself. Arelation is made, if funtions that an reate an HTML form on behalf of a struture exists.

18 CHAPTER 1. ANALYSISIt is then a spei� struture that is presented as an HTML form, and if the struture ismodi�ed, it is mirrored in the HTML form. A similar relation is ahieved if the developerhas the possibility to speify the HTML layout of a struture, e.g. by speifying the layoutof eah of the elements.The Complex forms problem was presented in this setion. First, it was seen, how informa-tion about a struture an be stored in hidden input elements. This allows the developer torereate the struture presented as an HTML form, and �ll it with the data entered by thelient. Instead of rereating a struture on behalf of information in hidden input elements,it was presented how the developer an work with a �template� of a struture. The latterapproah onsisted of three steps, namely reating, representing and updating a struture.1.1.4 ReusabilityDuring the advanes in programming tehnologies the onepts of modularity and reusabilityhas beome natural to developers. A developer will have an instint that ensures reusabilityof some of the ode by applying modularity to it. During the programming task the de-veloper need funtionality that performs a spei� task, be it extrating data from a datastruture, or perform omputations, based on a ertain algorithm. Rather than reatingthe funtionality on the spot a funtion is written, that - based on parameters - performsthe omputation and returns a result. By the use of this funtion reusability emerges. Thefuntion an be used again in di�erent ontexts, where that partiular funtionality is needed.This is the reusability that developers has beome austomed to, namely reusability in termsof general purpose funtionality. The same amount of reusability has not been introduedin Web development, when not onsidering general purpose funtionality. It is of interest,that ideas and onepts as modularity and reusability from non-Web development an beused in Web development. Likewise, is the priniple of information hiding - often employedin relation to the module onept - of interest.Often a Web developer reates a funtion that performs a task and thus use this funtionas an abstration over more detailed ations. An example is e.g. writing a funtion thatoutputs a header of an HTML page. This kind of reusability is on parts of pages. Reusabilityin terms of pages does also exist, in tehnologies suh as PHP and ASP - see Setion 1.2 -due to the template like nature of the pages developed. It is interesting to onsider if it ispossible to extend this kind of reusability to entire sequenes of interations with a lient(inspired by sessions in Bigwig). Imagine a situation where a number of pages have beendeveloped for one Web appliation, but on the next projet the developer needs some pagesthat represents the same task. Most likely the developer will opy the prior made pages andedit them to ful�ll the needs in the urrent projet.An example of a series of pages that is subjet to modularization is a login sequene. Anumber of pages responsible for getting redentials from the lient, or if the lient does nothave any, then o�er the opportunity to reeive redentials, by performing a registration ofthe lient. This is funtionality that is appliable in many Web appliations. Imagine the

1.1. PROBLEMS IN WEB DEVELOPMENT 19developer having de�ned a module and having de�ned a �exible interfae - in terms of pa-rameters - to the module. Then the developer an use that module, speifying the values forthe various parameters.In this setion the Reusability problem has been disussed. This problem is related the inter-est of introduing some of the programming onepts only present in non-Web development.The possibility to de�ne a series of pages as a module is sought, sine it allows the developerto reuse a module in di�erent ontexts. The module an be reated to take parameters,whih e.g. speify information about the layout of the pages it inludes. Creating modulesalso makes for information hiding possible.1.1.5 SummarySetion 1.1 introdued four problems in Web development. These are the State handling,Input validation, Complex forms and Reusability problems. The State handling problem issplit into two sub-problems, namely Data �ow handling and Control �ow handling. TheData �ow handling problem, onerns the need for the developer to handle data reeivedfrom the lient expliitly, in order for data to survive multiple interations. This an be done,by storing the data in hidden input elements, or storing data on the servers �lesystem. TheControl �ow handling problem is the problem, that onerns the need to maintain the in-terations between server and lient. Possible solutions to maintain information about theinterations were presented. The �rst is to use primitives from the programming language,like the ond speial form in Sheme. Another possibility is to use the ation attribute onthe HTML form element. Both sub-problems in the State handling problem, are rooted inthe stateless nature of the HTTP protool.The Input validation problem is related the need to validate data from the lient. Valida-tion an be handled on the lient or on the server. If validation is handled on the server,a lient/server loop must be maintained. However, server side validation ensures that datasubmitted by the lient is validated. This is not neessarily the ase with lient side vali-dation, sine the lient an disable the tehnology used for validation. Suh a tehnology ise.g. JavaSript. Validation on the lient yields faster validation, sine it is not needed tomaintain a lient/server loop, whih uses bandwidth.A Web developer an present a omplex struture in an HTML form, by using HTML ele-ments. Information about this struture is lost, when the lient submits the data entered inthe HTML form. This is seen as a problem, whih is named the Complex forms problem.Possible solutions to how the struture presented as an HTML form an be rebuild afterthe HTML form is submitted are presented. The HTML form struture an be spei�edin hidden input elements (by speifying information about the omposition of the indi-vidual elements) or by using a �template� approah. Three steps must be performed if thetemplate approah is used. These are reating, presenting and updating a omplex struture.The �nal problem presented is the Reusability problem. It is of interest, that the developeran de�ne series of pages as a module. By letting the module take parameters, the pages

20 CHAPTER 1. ANALYSISit represents an be ustomized in the way de�ned by the developer. Suh a ustomizationan e.g. be a style sheet.1.2 Approahes to Web DevelopmentDuring the preparatory work we found related work that might hold a solution to some ofthe problems just analyzed. We adapt the line of thought presented by Bigwig, that Webdevelopment an be divided into three di�erent approahes or paradigms; namely the sript-entered, page-entered and the session-entered approah. The sript-entered approah isby Bigwig haraterized as follows:"The sript-entered approah builds diretly on top of the plain, stateless HTTP/CGIprotool. A Web servie is de�ned by a olletion of loosely related sripts. Asript is exeuted upon request from a lient, reeiving form data as input andproduing HTML as output before terminating. Individual requests are tied to-gether by expliitly inserting appropriate links to other sripts in the reply pages."[CAM02℄In the sript-entered approah the individual sripts are in fous. Normally traditionallanguages are used for writing the sripts, i.e. not languages written or reated espeiallyfor this purpose. Examples of these languages inlude Perl and C. It is the program odethat is the essential part here, HTML is written as the output from the sript. Thereforethe HTML pages are generated in a top-down manner using print-like statements, requiringthe developer to be more strutured in his development style. One of the disadvantages bythis is the lak of �exibility in the generation of the pages. For example one the HTMLtitle element has been written it is to late to write the head element.Aording to Bigwig the page-entered approah onsiders Web development in quite adi�erent manner:"The page-entered approah is overed by language suh as ASP, PHP, and JSP,where the dynami ode is embedded in the HTML pages. In a sense, this is theinverse of the sript-entered languages where HTML fragments are embeddedin the program ode. When a lient requests a page, a speialized Web serverinterprets the embedded ode, whih typially produes additional HTML snippetswhile aessing a shared database. In the ase of JSP, implementations work byompiling eah JSP page into a servlet using a simple transformation." [CAM02℄In the page-entered approah, the Web developer designs the page layout with graphiset. The parts of the page where dynamis are needed, the developer esapes the design orHTML and writes the program that generates the wanted dynamis. This make the Webdevelopment proess more foused toward the design of the �nal look of the page, unlike thesript-entered approah whih is more like non-Web programming. It helps to inrease theoverview of the Web development for the developer if only small amounts of dynamis areneeded. But if a page is �lled with program fragments it lutters the developers overview in

1.3. RELATED WORK 21the same way as the sript-entered approah does. Therefore there is a trade o� betweensimpliity and dynamis in this approah. It is often simple pages that are written in thisstyle. The developer still has to expliit link various pages together to reate the illusion ofoherene between a number of pages. The page-entered approah to Web development alsointrodues sessions. This is done, by maintaining a global state, whih ontains informationabout data reeived from lients. This is e.g. done by PHP [The02℄.Aording to Bigwig there is in the session-entered approah a oherene of the individualpages shown to the lient. The developer writes a session as one program, that enapsulatesthe presentation of the individual pages. This program is exeuted and represents the session."A servie is here viewed as a olletion of distint sessions that aess someshared data. A lient may initiate a session thread, whih is oneptually a proessrunning on the server. Interation with the lient is viewed as remote proedurealls from the server, as known from lassial onstrution of distributed systemsbut with the roles reversed." [CAM02℄By writing the entire interation between the server and the lient as one program the de-veloper obtains a better overview of the development proess. Writing several pages as partof a session (a program) it is possible to share data between the individual pages withouthaving to expliitly transfer the data between the individual pages.This setion has presented three di�erent approahes to Web development, namely the sript-entered, the page-entered and the session-entered approah. It is hosen, that fous isplaed on the session-entered approah to Web development, when solutions to the fourproblems - State handling, Input validation, Complex forms and Reusability - are designed.The reason for this is, that a session introdues enapsulation of pages, whih is a solutionto the Reusability problem. Eah session is then equal to a module of pages. If a module anbe ustomized with parameters (e.g. a style sheet) when ativated, it an be used in variousontexts. Furthermore, does a session represent the �ow of pages in the Web appliationand allows for lient data to be shared between pages. Handling data and �ow in a Webappliation, are the two subproblems in the State handling problem. This means, that asession onept in Web development solves both the Reusability and the State handlingproblem. To identify possible approahes to session-entered Web development, the nextsetion presents work related to sessions.1.3 Related WorkBased on the problems presented, related work in the area of Web development has beenanalyzed, to �nd existing solutions to problems similar to those desribed in Setion 1.1.There exists few examples of tehnologies that relies on the session entered approah toWeb development. Bigwig, and its anestor Mawl[DJ01℄ were the �rst enountered. Mawlwill not be disussed, sine Bigwig overs the same aspets as Mawl in relation to ourproblems. WASH/CGI also adhere to the session entered approah to Web development

22 CHAPTER 1. ANALYSISand it does so with basis in the funtional language Haskell. Furthermore, a library3 alledPAKCS/HTML for the language Curry[Mi02a℄, is analyzed. PAKCS/HTML is shippedwith the PAKCS Curry implementation[Han02℄ and implements sessions as an optimizationof plain CGI. These tehnologies are analyzed in the following setions, to unover theirrelation to the session entered approah to Web development and to �nd ideas usable inthe ontext of our problems.1.3.1 BigwigThe session onept - and the session-entered approah to Web development, whih is themotivating fator behind the session onept - was originally presented by the Mawl lan-guage. In essene both Mawl and Bigwig handles sessions the same way. They operatewith the session-entered approah to Web development as an alternative to the page andsript-entered approah. An important fator behind the session-entered approah is thatthe developer thinks in sessions (whole series of interations with the lient) rather thanindividual pages that makes up a whole appliation. Furthermore these interations arewritten as one large program sine this gives a better overview of the development proessand therefore helps to produe more strutured and oherent Web appliations. The reasonfor this is, that the developer has the overview to spend more time on the �ow of the appli-ation, rather than linking the individual pages together.Bigwig is a framework that rely on ompilation and stati heks, rather than what is nor-mally used in Web programming, namely interpretation. Compiling the Web servie enablestype heking and stati analysis whih ensures - to some degree - the orretness of theservie. Bigwig rely on stati type heking, beause it athes many of the errors thatotherwise our at run-time. Bigwig is a C and Java-like skeleton language that binds to-gether a number of domain spei� languages. Servies written in Bigwig an by the ompilerbe translated into standard Web tehnologies suh as HTML, CGI, JavaSript, Java appletsand elements of HTTP. Bigwig see the use of only standard tehnologies as an advantage asthese do not require speial language support from the lient.A session in Bigwig is part of a servie. The Web developer writes a servie and reates anumber of sessions as part of this servie. A servie orresponds essentially to a sequentialprogram. The Web developer therefore writes a servie as any other program and inludessessions as part of this program. For an example of this pratie see Figure 1.11. A servieis reated whih ontains de�nitions of HTML pages, here the Please and Greeting HTMLpages. It also ontains sessions, here the Hello session whih shows the Please HTML pageto the lient and reeives the name entered by the lient in the string variable s. Next theGreeting HTML page is shown with the just reeived data (plaed in s) as part of the page.Notie the show funtion used to display the page. This funtion takes the page and showsit to the lient. The program is ontinued like show is a normal proedure all.3We will refer to this as PAKCS/HTML. The atual name is not known but when downloading thePACKS Curry system the library is inluded as HTML.

1.3. RELATED WORK 23servie {html Please = <html> Please state Your name:<input type=text name=handle> </html>;html Greeting = <html>Hello <[moniker℄>, how are you?</html>;session Hello() {string s;show Please reieve[s=handle℄;show Greating<[moniker=s℄>;}}Figure 1.11: An example of how a servie and a session are related and how a program is writtenin Bigwig [CAM02℄.Using sessions in Web development makes the ommuniation between the lient - and theserver running the session - roughly similar to remote proedure alls (see [AB84℄), or asBigwig state it:"Communiation is performed by showing the lient an HTML page, whih im-pliitly is made into a form with an appropriate URL return address. Whilethe lient browses the given doument, the session thread is suspended on theserver. Eventually the lient submits the form, whih auses the session threadto be resumed and any form data entered by the lient to be reeived into programvariables." [CAM02℄To get a better understanding of this way of handling sessions, Figure 1.12 illustrates thelient and the session thread during the �ow of a session. The session begins with the lientrequesting the URL mathing the session. The session thread omputes the session until the�rst page is shown to the lient. Then the session thread is suspended and goes idle on theserver. The lient reeives the page and submits data. When the lient is done the resultof the page is send bak to the server. One the server reeives the result it reinvokes thesession thread and the omputation is ontinued.

Thread suspended

session

html

begin

session

html

begin

Server

html PLease

PLease

<input type=text name=var

</html>

show Greating reciece

show greating

}

 String s;

}

service {

html Greating = <html> Hello

session hello() {

Client

Figure 1.12: An illustration of the �ow of a Bigwig session[CAM02℄.

24 CHAPTER 1. ANALYSISThe servie onept as introdued by Bigwig makes it possible to share data between theindividual sessions that belongs to a given servie. This is ahieved by reating variableset. with the shared modi�er. The ability to share data between sessions allows sessions toommuniate with eah other.Bigwig see a problem in the limitation that all ommuniation between the lient and theserver must be handled by presenting and submitting pages with HTML forms. Their ex-ample is a hat room. In a hat room the lient reeives new messages without having toreload the page. Therefore Bigwig has reated the onept of seslets. Basially seslets is alimited session running on the lient with permission to ontat the server. This seslet anthen be used to ontat the server and retrieve new messages in the hat forum at a regularinterval.Bigwig also introdue a onept, that is used when validating input. They have namedthis Powerforms[BMRS01℄, whih is a delarative way of handling validation. The developerspei�es valid input to an input element and the validity of the input element is ensuredby a JavaSript that is reated automatially.A number of interesting ideas has been used in Bigwig, some of whih will be used to solvethe problems desribed in Setion 1.1. The most notieable is the idea of sessions. Bigwigrelies on the session onept for two things. First it is an entirely di�erent way to developWeb appliations, a way that more resembles non-Web development than CGI development.The seond bene�t with sessions is the ability to introdue persistene on the server, thuseliminating the need for sending data between the lient and the server, for the data to beavailable at a later time during the session. To introdue funtionality - in the form of theshow ommand - that represents sending a page to the lient and reeive data submitted,seems like a good idea. This an help to oneptualize the interative nature of Web appli-ation for the developer.Bigwig have problems regarding stepping bak and bookmarking a page in a session. Theproblem is that if any of these two event happens, the session is started from the beginning.The reason for this behavior is that Bigwig sees it as dangerous to step bak in a session,sine some ations might hange the state and this state hange is hard - if not impossible- to undo. Example of suh ations are �le writing and database updates. However, ouropinion is that stepping bak in a session an by dangerous, but reasonable to support. Thereason is that the bak button supports an explorative nature, when the lient is browsing theappliation. If a bak button instead is a link on the Web page, it is sometimes umbersometo �nd.1.3.2 WASH/CGIAnother session entered approah is WASH/CGI. WASH/CGI is a library - for Haskell -providing help when developingWeb appliations. Programs written in WASH/CGI are om-piled. WASH/CGI onsiders the session onept as a struture that improves the overviewof the Web development proess, and it onsiders a session in the following way:

1.3. RELATED WORK 25"A session is a dynamially evolving sequene of ask and io ations (in the CGImonad). Eah of these ations queries the external world, either by displaying aform on a Web browser or by performing and IO ation, and reeives a response."[Pet℄
Just as with Mawl and Bigwig the Web developer thinks of sessions, when developing Webappliations. Like Bigwig, WASH/CGI uses a primitive for displaying a page to the lient.WASH/CGI relies on the ask funtion all - just as Bigwig relies on the show funtion - toask and reeive data from the lient.WASH/CGI does not suspend the proess on the server - like Bigwig does it - when a pageis send to the lient. Instead exeution of WASH/CGI appliations are ended after a pagehas been shown to the lient, as done in traditional CGI programming. Therefore some wayof reeiving the data and resume exeution of the session with the appropriate data has tobe used. To remember the data already asked from the lient a list, alled inparm, is used.One a session is invoked and exeuted, it heks if the data asked for, are already present inthe inparm list, and if so, the lient is not asked for it again. Instead the data in the list isused. The data in the inparm list are stored with an assoiation to the individual ask. Thismeans, that the data reeived from eah interation with the lient, are added the inparmlist. Thus the inparm list ontains all data already reeived from the lient, and thereforeats as a session status. Persistene of this list is obtained by passing the list data witheah page shown to the lient in the form of a hidden HTML input element. This resultsin the entire session being omputed up to the point of the page that is requested, at eahrequest. It seems to be a waste of time to start the appliation from the beginning everytime. But sine the data needed from the lient is retrieved from the inparm list, the timeused to ompute the page to be shown next time is minimal. Not only data from the lientare stored in the inparm list, but also IO ations are stored in the list, sine these must beundone if the lient steps bak in the omputation.Figure 1.13 illustrates the steps taken in exeution of a WASH/CGI appliation. The lientrequests a WASH/CGI appliation whih is exeuted. The appliation ontains three in-terations (one page for eah interation) with the lient. First the inparm list is hekedto determine if Page1 is already present. If not, Page1 is shown to the lient. Sine theappliation has just been started, inparm is empty, and Page1 is shown to the lient. Thelient enters data on the page and submits it to the appliation on the server. The serverstarts the appliation again and assoiates the data reeived from the lient with an entryin the inparm list for Page1. The inparm list is heked to determine if it ontains the datafor Page1. This time it does and the next step is taken. Again the inparm list is heked tosee if it ontains an entry assoiated with Page2. It ontinues like this until the end of theappliation or the lient stops submitting pages.

26 CHAPTER 1. ANALYSIS
Page1

Page 1

Page 3

Page 2

Page 1

Page 3

Page 2

Server Client
Request

Is Page1 present in inparm?

Is Page2 present in inparm?

No

No

Yes

Yes

Yes Page2

inparm: Page1

Is Page1 present in inparm?

Request

Response

Response

Application

Application

Figure 1.13: An illustration of the usage of the inparm list in WASH/CGI.Having the inparm list present in every page sent to the lient and relying on it when reestab-lishing the state of the session, it is possible to step bak in a session. This works sine thelient pressing the bak button results in re-sending an old form and the server reestablishingthe state from the inparm list present in this page.WASH/CGI inludes interesting work involving HTML forms. WASH/CGI relies on anabstration in the form of funtions to generate HTML. It also has funtions to generateHTML form and input elements. The funtion that generates the HTML form automatiallysets the appropriate entype, method and ation attributes on the form element. Theentype attribute is used to speify the enoding of the ontents of the HTML form when it issend to the server. The method attribute is used to identify whether the GET or POST methodis used when submitting the HTML form. The ation attributes spei�es the funtionalitythat reeive the data from the HTML form. By setting these attributes automatially theWeb developer is alleviated from this responsibility, and it is ensured that the attributesare always orret. The funtion used for generating HTML input elements - e.g. textualinputs, hek boxes et. - returns a handle to the input element. This handle ontains -one the page ontaining the input element has been shown to the lient - the value enteredinto the input element. The developer an then aess this data using either the value or thestring funtion returning the parsed value or the unparsed value respetively. To assoiatethese handles with the data entered by the lient, the submit input element - whih isgenerated from a funtion as any other HTML element - is used. It is de�ned by passing it

1.3. RELATED WORK 27funtionality whih is ativated one the submit button is pressed. This ation assoiatesthe data entered by the lient with the handlers reeived when de�ning the input elements.The funtion generating the input elements automatially provides naming. It also has ameans for presenting default values based on a log of previously reeived input.
handle1
handle2

ask

function

value2

value1

Server Client

value1

You entered:

value2

string{handle1}

string{handle2}

You entered:

}

tell
function (handle1, handle2) {

Figure 1.14: An illustration of form handling using all bak funtions and handlers in WASH/CGI.Figure 1.14 illustrates how HTML forms are handled in WASH/CGI. First the developerspei�es an HTML page and states - for eah input element - that the values entered intothis input element is assoiated with a given handler, here handle1 and handle2. Next thedeveloper assoiates a all bak funtion - here funtion - with the ation of the submitinput element. Then the page is shown to the lient with the ask funtion. The lient entersdata into the HTML form and presses the button. This results in the data being submittedto the server. When the server reeives the data from the HTML form it ativates the allbak funtion funtion and the handles are passed as parameter to this funtion. The allbak funtion extrat the values from the handlers with the string funtion and presentsthem - with tell - to the lient in a new HTML page.WASH/CGI does not provide a solution to the problem with omplex strutures as it isnot possible to reeive the data from an HTML form in a de�ned struture. It is possibleto represent a struture at the lient, sine the developer an onstrut omplex struturesbased on HTML elements, but the struture does not survive an interation with the lient.Relying on a list to ontain the data already reeived from the lient, allows for a simulationof the session resuming its omputation from the point it stopped, when sending a page tothe lient.

28 CHAPTER 1. ANALYSIS1.3.3 PAKCS/HTMLBy relying on the mixed paradigm language Curry, Mihael Hanus desribes in [Han01℄ howsolutions to the problems with the plain CGI approah to Web development an be solved.This is done by implementing a library for the Curry language. Curry is desribed as amixed paradigm language and its onstituents inlude elements from the funtional, thelogial and the onurrent programming paradigm. When used for Web development thedeveloper does not write the HTML ode as text strings in print-like statements in the lan-guage. Rather Web programming with PAKCS/HTML is done by relying on an abstrationlayer above plain CGI, where HTML douments are onstruted using a spei� HTML datatype representing the HTML (also referred to as an HTML expression). A wrapper funtionis responsible for translating the HTML data type to a textual representation, when thepage is shown to the lient. The introdution of this abstration above plain CGI introduesa number of bene�ts whih are desribed in the following.The wrapper funtion is responsible for more than onstruting the textual representationof the HTML data type. The wrapper funtion is also responsible for retrieving the dataentered into HTML forms by the lient. This is done by introduing elements of an abstratdata type that the developer an use when onstruting the HTML page. The idea is thatthe developer an speify an element of the abstrat data type, and use a logial variablethat is part of the data struture as referene to an input element in the HTML page. In-troduing a logial variable as referene to the input element is done, sine the variable isnot instantiated until after the HTML page has been shown to the lient. A logial variableis a way to express the delayed instantiation of a variable. When the HTML expression isproessed by the wrapper, the textual representation is generated. At the same time, thewrapper instantiates variables, whih are used as referenes to the input elements on theHTML page. When the lient submits the HTML form, the data from the input elementsare assoiated with the variables instantiated by the wrapper. Data from the HTML forman then be aessed by using the variables.Another element of the abstration is that the program that generates the HTML form -whih is shown to the lient - is also the program that is ativated when the lient submitsthe form and the wrapper has done its work. This allows a sequene of interations to takeplae based on the ontrol abstrations of the Curry language. The idea is to assoiatean event handler with eah submit input element that is shown to the lient. One thewrapper has reeived the data from the HTML form, it ativates this event handler passinga CGI environment as parameter. The CGI environment is a mapping from the names ofthe input elements present in the HTML form to the strings entered by the lient. Byrequiring an event handler to return a new HTML page, ontaining a new HTML form, theonept of sessions has raised. The result of exeuting the event handler is to show a newpage to the lient. This allows nesting of event handler and thereby series of interationsan be obtained. This resembles the session-entered approah to Web development, sinethe developer is able to speify the entire interation between the lient and the server, asone large program.

1.3. RELATED WORK 29It is also possible to obtain the session-entered approah to Web development without re-lying on nesting of event handlers. Sine the various ontrol strutures of the entire Currylanguage is available the developer an rely on these. For example, the developer might relyon reursion to repeatedly show a page until the lient has entered the orret data. Or aselet statement an be used to determine - on basis of just reeived data - whih page toshow next.For an illustration of how the interations between the lient and server is handled inPAKCS/HTML see Figure 1.15. The interation begins with the evaluation of a funtion- here funtion - on request from the lient. The entire box surrounding everything inthe server is onsidered the session that the lient ativates. The server then exeutes thefuntion funtion, whih generates an HTML page ontaining two text input elements anda submit input element (here the hathed box on the �gure). As seen the two text inputelements are assoiated with the logial variables (here logial_var and logial_var1). Thegenerated HTML page is shown to the lient, �lled with data and submitted again. Afterthis, the event handler assoiated with the submit button (here eventHandler) is ativatedand an environment (here env) is passed as parameter. The event handler then generatesan HTML page ontaining the values entered by the lient. These values are obtained byapplying the environment on the logial variables. The resulting HTML page is shown tothe lient and the session is terminated.

value1

You entered:

value2

Server

function {

logical_var

eventHandler

}

}

logical_var1

eventHandler (env) {

You entered:
(env logical_var)
(env logical_var1)

value2

value1

Client

Figure 1.15: An illustration of handling an HTML form using event handlers and logial variablesin PAKCS/HTML.A problem with traditional CGI programming is the lak of state on the server due to thestateless nature of the HTTP protool. Normally this is solved by plaing the state on the

30 CHAPTER 1. ANALYSISlient either in ookies[DL02℄ or hidden input elements. In PAKCS/HTML this is solvedin a simpler way. Sine the entire interation onsists of nesting of event handlers, thereannot be two pages/event handler on the outer level. There must be one funtion whihis responsible for the �rst interation with the lient, and the funtionality representing fol-lowing interations must be nested inside it.A number of interesting ideas has been used in this work. The idea of having a wrapperfuntion deoding the parameters from the lient and making them available is bene�ial.However, it is not possible to have struture on the data, sine the value of eah inputelement is mapped to the value of a variable in the programming language. This means,that no information about the omposition of input elements are maintained. Furthermore,it is impossible to uniquely identify the value of variable to be equal to the value entered ina spei� input element. The reason for this is, that the same name an be used to identifyinput elements in di�erent HTML forms.The idea of allowing ontrol strutures of the Curry language to be used when developing aseries of interations seems natural, as it resembles non-Web related programming. However,sessions in PAKCS/HTML is di�erent from sessions in Bigwig, as there annot be morethan one top-level funtion. Initially an exeution of an appliation is done on requestfrom a lient by loating the appropriate sript (the one that generates the �rst page inthe appliation) and exeute it. But the following exeutions in the appliation is done byalling the assoiated event handler (the one bound to the submit button that the lientpresses). Therefore, plaing two funtions in the same sript, does not result in both beingexeuted. Plaing several funtions on the top-level might be bene�ial, sine it introduesan overview of the �ow of the appliation. The developer an speify a number of funtionsand rely on these being evaluated one by one, until the session terminates.1.3.4 SummarySetion 1.3 introdued work related to the session-entered approah to Web development.This was done, sine a session onept solves two of the four problems identi�ed, namelythe State handling and the Reusability problem. The related work analyzed were Bigwig,WASH/CGI and PACKS/HTML. Bigwig introdue sessions by a primitive in the language.This primitive results in a lexial sope forming an enapsulation of a sequene of pages.WASH/CGI and PACKS/HTML uses a nested handler approah to speify the sequene ofpages represented by a session.A third approah was found in the page-entered approah to Web development, namelysessions by global state. This approah was identi�ed in Setion 1.2.

1.4. PROBLEM DEFINITION 311.4 Problem De�nitionFollowing the analysis four problems in Web development exists. These are: the State han-dling problem, the Complex forms problem, the Input validation problem and the Reusabilityproblem. These problems are formulated as three hypotheses.The �rst problem is State handling, whih - during analysis of related work - have been seendealt with by Bigwig, WASH/CGI and PAKCS/HTML. We expet to solve the State han-dling problem and Reusability problem, by introduing a session onept inspired by Bigwig.The reason is, that it is possible to let interations with a lient, happen in the same lexialsope. This makes it possible to let interations with a lient share data. This is the solutionto the State handling problem. The Reusability problem is solved sine this lexial sopean be ativated and thereby do interations with a lient. Beause of the lexial sope, itis possible to regard more than one interation with a lient as a unit. This is formulated inthe following hypothesis:Hypothesis 1:A session-entered approah to Web development in SLAML solves theState handling problem of a Web appliation. Furthermore, a sessiononept makes aess to several HTML pages as a single unit possible.This hypothesis is general and three problems are inluded in it. These three are the Control�ow handling, the Data �ow handling problem and the Reusability problem. To be more pre-ise, the hypothesis is spelled out in three sub-hypotheses, eah involving one of the subjets.With respet to ontrol �ow:Hypothesis 1.1:The Control �ow handling problem is solved by introduing a sessiononept, where a primitive in the language displays an HTML page toa lient and returns as a regular funtion.With respet to data �ow:Hypothesis 1.2:The Data �ow handling problem is solved by introduing a sessiononept to SLAML, where interations inside the same lexial sope(session) an share data.With respet to reusability:Hypothesis 1.3:

32 CHAPTER 1. ANALYSISThe Reusability problem is solved by introduing a session primitivethat an ativate a series of interations with a lient and rely onparameters at all time.The Complex forms problem is the seond problem disussed. A developer will bene�tfrom having a framework that when onstruting omplex data strutures on the server anpresent them to the lient as an HTML form and update them with data from the lient.This lead to the seond hypothesis.Hypothesis 2:It is possible to onstrut a framework that helps the developer to build,present and update omplex strutures.The last problem is the Input validation problem. By onstrution a validation framework,validation of data from the lient is done simple. This is formulated in the third hypothesis.Hypothesis 3:It is possible to onstrut a validation framework that helps the devel-oper to validate data from the lient.Relying on mod_laml, a session-entered approah to Web development in SLAML will bedeveloped. This framework is alled the SLAML framework. As a part of the SLAML frame-work is the session framework and a solution to the Complex forms problem. Furthermore,a validation framework that �t within the SLAML framework will be developed.

2
Design

Contents2.1 Session Framework . 342.2 Complex Forms Framework . 452.3 Validation Framework . 692.4 Summary . 77In this hapter three main setions disusses and presents the deisions made in the de-sign phase of this projet. The �rst setion explains how the session onept is designedand what alternatives are possible. The seond setion explains the design of the exten-sions to the session framework to make onstrution, presentation and updating of omplexstrutures possible. Last is the design of validation of data in the SLAML session framework.Throughout this hapter new primitives are introdued and explained. For a ompletedesription of the primitives a referene to Appendix A is given. To get a omplete under-standing of eah primitive the reader is requested to onsult this appendix. Furthermorewe use a number of onepts, throughout the rest of this report. In the following box it isdesribed what we mean by these onept.

34 CHAPTER 2. DESIGNAttribute: By attribute we mean a key/value pair onsisting of a name and a string.An example is type = "TEXT" from an HTML input element. The whole is addressedas the attribute. type is addressed as the attribute name, and TEXT as the attribute value.Elements: An element refers to an element as it is known from the SGML family oflanguages. An element onsists of ontent and attributes. An example is; <elementattributes-name attribute-value ..> Contents </element>.Content: Content refers to everything inside a double tagged element. The ontents ofone element an be other elements.Tag: By tag we refer to a symbol from Sheme present in a list. I.e. a tagged list is a listontaining a symbol as the �rst element.Primitive: By a primitive we refer to the name binding of a funtion or a speial form.Form parameters: Is the term used for the data entered by the lient into an HTMLform and submitted to the server.The overall goal of this hapter is to present and disuss the onstruted framework thatsolves the problems presented in the problem de�nition in Setion 1.4. Furthermore, theframework is designed to work in a server ontext where mod_laml is used as an implemen-tation platform. Therefore, it is not neessary that the framework �ts with CGI. Part ofthe ontext of this projet is Sheme and the LAML libraries. Therefore the solutions willadhere to the XML like syntax used in LAML. But as the framework makes use of sendingfuntions as parameters to other funtions, XML syntax will not always be possible. Wherethe syntax of XML is not followed diretly a notie will explain why it is hosen to deviatefrom the LAML syntax.2.1 Session FrameworkIn the problem de�nition (see Setion 1.4) a hypothesis is presented regarding the use ofsessions to solve the problems of State handling and Reusability. Three sub-hypotheses arepresented to expand the �rst hypothesis. The sub-hypothesis state that introduing a sessiononept an solve the Data �ow handling problem as well as the Control �ow handling prob-lem. Furthermore, allowing sessions to rely on parameters, sessions an solve the Reusabilityproblem. The goal is to design a session onept in SLAML that solves the problems fromthe three sub-hypotheses and thereby the �rst hypothesis.In this setion the design of the session onept in SLAML is explained. First is onsidera-tions regarding the design of sessions in SLAML. Seond, hoies made regarding the design

2.1. SESSION FRAMEWORK 35is explained. Third, the �ow of a session is explained, followed by an example.2.1.1 Design ConsiderationsThree ways of onstruting the session onept is found in related work (see Setion 1.3).Sessions by Global State: This is the approah used by various page entered approahesto Web development. This inludes PHP, ASP and JSP. Roughly a session is de�nedby a global state assoiated with a lient.Sessions by Nesting Event Handlers: This approah to sessions is to nest event hand-lers thereby ahieving a session onept. Event handlers are nested by letting one eventhandler present a page ontaining a referene to another event handler.Sessions as Lexial Sopes: This approah relies on lexial sope rules of the languageto represent a session. All interations taking plae in the same lexial sope (session)share data.These three approahes for onstruting sessions are explained in details in the followingsetions. Eah of the three approahes are disussed in relation to data �ow and ontrol�ow.Sessions by Global StateThis is the onept of sessions used when most page entered approahes implements ses-sions. In this approah sessions are ahieved by maintaining a global state on the server,so interations with a lient an aess shared data. In this way the sripts an share dataaross invoations. The global state an be loated on either the server or the lient. Themaintenane of the global state is often handled in the language. The onsequene of usingthis strategy is that all pages share the same data. This means that there is no way ofseuring the data from other pages that must aess the data (unless it is done expliitly bythe programmer).This approah to sessions is illustrated in Figure 2.1. Here it is seen that four requestsfrom a lient all aesses the same global state. If a new page is requested by the lient,this request an aess the global state as the others. In this approah it is not possibleto protet the global state from being aessed by e.g. Page 1 and Page 2. There existsno enapsulation to indiate that the global state must only be aessible from Page 3 andPage 4. This is the �rst problem with this solution. There exists solutions where the lient- based on an unique id (session id) - an get aess or is denied aess to global state. Thisis usually done by assoiating the global state with the session id. The seond problem isthat the �ow of the appliation is spread aross several sripts. The �ow of the entire appli-ation is not plaed entrally, allowing the developer to quikly overview the session. Ratherthe �ow of the appliation is represented by the ativation of various smaller parts one by one.

36 CHAPTER 2. DESIGN
Page 1

Request

Response

Request

Response

Request

Response

Request

Response

Page 2

Page 3

Page 4

Global state

Server Client

Figure 2.1: An example of how global state is used to share data between interations with alient.Introduing global state on the server results in inreased requirements for the server in termsof memory. The amount of memory required depends on the amount of lients using theserver. It does not inrease drastially sine session state is moved to disk after an amountof time. Regarding disk spae there is inreased requirements so there must be an expiretime for session state. It is hard to determine the amount of time that a session must be ondisk before it is expired. It is advisable to run the server with the sessions in a period (forexample six months) and during this time gather statistis about the usage of the sessionson disk. This provides su�ient information to make a quali�ed deision.Sessions by Nesting Event HandlersThe event handling approah to sessions is the approah used in WASH/CGI (see Setion1.3.2) and PACKS/HTML (see Setion 1.3.3). The idea is to let the submit button in anHTML form on an HTML page be assoiated with an event handler. When the HTML formis submitted, the event handler is alled. In this way it is possible to reate an interationsequene by letting the alled event handler generate a new HTML form and assoiate thisHTML form with another event handler. This makes it possible to share data among pagesas these an be sent as parameters to the alled event handlers. As the WASH/CGI andPACKS/HTML solutions rely on the CGI protool, the sript being exeuted as part of theappliation program has to end after having proessed the request. The parameters haveto be send with the response to the lient, for them to be available at the next page. Fur-thermore, the �ow of the appliation is spread aross several event handlers. It is therefore

2.1. SESSION FRAMEWORK 37di�ult to get an overview of a whole session.This approah is illustrated in Figure 2.2. Here it is seen how the submission of one HTMLform ativates another event handler.
Submit

Form 1

Submit

Form 2

Event handler 1

Event handler 3

Request

Page 1

Event handler 2

Page 2

Page 3

Response

Response

Request

Request

ClientServer

Response

Figure 2.2: An example of how nested event handlers is used to do interations with a lient.Sessions as Lexial SopesAn interation sequene in Bigwig is enapsulated in a session. A session is a lexial sopewhere interations that are performed inside the same sope share data. This makes it pos-sible for the developer to see whih interations with the lient, that share data. This is notpossible when a session is implemented as global state, due to the lak of a entral overviewof the entire appliation. Likewise it is not possible when event handlers are used for ses-sions. The reason is that the interations with a lient is not gathered at one plae, butspread aross event handlers. In Bigwig sessions an be de�ned inside a servie. A serviede�nes a lexial sope that onsists of sessions. The reason for introduing the servie is toenapsulate related sessions. Two sessions de�ned inside the same servie an interat witheah other and share data. Sessions in di�erent servies annot interfere with eah other orshare data.In Figure 2.3, this approah to sessions is shown. Here it is seen that the program is ontinuedfrom the plae where it left with the last response. In Figure 2.3 it is shown that Page1 andPage2 share data. In the same way it is illustrated that Page3 and Page4 share data. Thepages in the �gure represents interations with the lient. There are two essential thingsto be noted from this �gure. First, interations in one session annot aess data from

38 CHAPTER 2. DESIGNother sessions. Seond, interations within the same session share data and the �ow of theinterations with the lient are plaed in the same program �le.
Page1 and Page2

share data

Page3

Show page4

Show page3

Show page2

Show page1 Page1

Page2
Request

Request

Response

Page3 and Page4
share data

Page4

Response

Request

Response

Request

Response

Request

Service

Server Client

2 sessions

Figure 2.3: An example of how lexial sope is used to interat with a lient.Introduing sessions as a lexial sope requires more server proesses. Sine several intera-tions with a lient is onduted as part of the ativation of one SLAML session, the evaluationof suh a session takes longer. Thereby it will use a server proess for a longer period oftime. A need for more server proesses results in inreased requirements for CPU powerand memory usage. The amount of extra CPU power and memory usage needed an bedetermined by onsidering the amount presently used for a server proess.2.1.2 Design of the Session Framework in SLAMLIn the above, three di�erent session onepts have been disussed. It is deided to basethe session onept in SLAML on the session onept from Bigwig (i.e. a new primitiveenapsulate the interations with a lient by the use of lexial sope). The main reasonfor this is that the developer is able to see the whole �ow of a session. Another reason forhoosing Bigwig's onept of sessions, is that the developer is able to share data between theenapsulated interations with the lient. This gives the developer a better overview of asession. The reason for not hoosing the approah found in WASH/CGI and PACKS/HTMLis that the �ow of an appliation is not expressed as learly in these approahes as in sessionas lexial sope. The idea of having the �ow of a session in one enapsulation - rather thanas global state or separate event handlers - makes it expliit whih pages share data.Sessions in SLAMLIn order to enapsulate an interation sequene with a lient, a new primitive is onstruted.This primitive is alled slaml-session (page 113), inspired by the session primitive in Big-wig. Interations inside the same slaml-session an share data, by using variables in

2.1. SESSION FRAMEWORK 39Sheme. The lexial sope inside a session represents the �ow of an interation with a lient.In order to ativate a slaml-session, the slaml-ativate-session (page 115) primitiveis used. slaml-ativate-session ativates a session, and thereby starts the interationwith the lient.In some ases it is neessary to send parameters to a slaml-session. Imagine a sessionwhere the name of the person - who is logged in - is plaed on the top of eah page in asession. In suh an example the possibility of sending parameters to a session is a greatadvantage. To obtain �exibility on a session, as is needed for sessions to be reusable, it isimportant that sessions an take parameters. Parameters are passed to slaml-sessions inthe way seen in Figure 2.4(slaml-ativate-session(slaml-session (sessionparm);ontents of the session) 'sessionparm person-name) Figure 2.4: An illustration of how a slaml-session is delared and ativated.In this example person-name is passed to the slaml-session. Delaration of a slaml-sessionis also shown in Figure 2.4. A slaml-session always takes one parameter. Parame-ters an be send to a slaml-session by evaluating slaml-ativate-session with thesessionparm attribute. The attribute value is the parameter passed to the ativated ses-sion. A slaml-session returns the last expression evaluated in the session. The reason forthis is, that this is how return values are spei�ed in Sheme. Sessions in the language are�rst lass objets allowing the same possibilities with sessions as with funtions.Implementation slaml-ativate-session is implemented as a funtion that extratssession parameters for the optional attributes to slaml-ative-session. The slaml-sessionwhih is required as a parameter to slaml-ativate-session is exeuted with the optionalsession parameters if any where supplied. slaml-ativate-session is de�ned as follows:(define (slaml-ativate-session sessionfun . args)(let ((parms (slaml-get-sessionparm-parm args)))(sessionfun parms)))It always takes one parameter and possible more. First is extrats the session parame-ters from the optional parameters. Then it ativates the sessionfun with the optionalparameters.

40 CHAPTER 2. DESIGNClient Interation in SLAMLIn order to interat with a lient a primitive is needed to show a page to the lient andreturn the data from the lient. In Bigwig this is done by the primitive alled show. InSLAML this primitive is alled slaml-show (page 115). What slaml-show does is to send apage to the lient and reeive the data submitted - by the lient - from that page. The datareturned from the lient is passed as a list of key/value pairs. When slaml-show returnswith a request from the lient, the slaml-session is ontinued from the plae where theslaml-show that showed the page to the lient is issued.A page in SLAML is represented by a primitive alled slaml-page (page 114). slaml-pagemust take one argument and return the HTML string to be presented to the lient. This anbe done by writing the HTML string manually. But a more appropriate way is to use thehtml onveniene funtion from the LAML mirror available from [lam01℄ for generating theHTML string. A slaml-page an be written as a lambda funtion from Sheme, sine thisallows for passing parameters to the page. Parameters are however not passed in this way.Instead parameters to a page are passed as a list. This list is spei�ed with the pageparmattribute - with an assoiated parameter list - to the slaml-show primitive. The reason forpassing parameters in this way, is that this makes it possible to send more parameters bywrapping them in a list. The reason for using the slaml-page rather than a lambda is toget a better understanding of a program. A developer seeing a slaml-page is less in doubtof the nature of the funtion than if it was a lambda funtion. For an example onsider thefollowing:(slaml-show(slaml-page (pageparm)(html(head (title "The title"))(body"The page parameter: " (ar pageparm)(br)))) 'pageparm (list "Parameter one" "Parameter two"))Figure 2.5: An example of how a slaml-page is delared and shown.In this example it is seen how a slaml-page is shown to the lient. Notie the slaml-pagewhih takes a list of parameters. How data is returned from the lient is disussed in Setion2.1.3.To allow for de�ning sessions and pages in SLAML two new primitives are introdued.slaml-define-session (page 114) is used to de�ne sessions. Likewise slaml-define-page(page 114) is used to de�ne pages. Both of these primitives are similar to the define primi-tive in Sheme. They have been reated to allow the developer to better di�erentiate betweenthe de�nition of pages or sessions and funtions. This is useful if the developer has written

2.1. SESSION FRAMEWORK 41a large program. As soon as the slaml-define-page or slaml-define-session is seen thedeveloper is not in doubt of what is being de�ned.Implementation The slaml-show primitive is implemented as a funtion that ativatesa primitive in the mod_laml server module. This primitive - named slaml-display -handles the ommuniation with the lient. One ontrol is returned from this primitive,slaml-show ativates a funtion that generates a key/value pairs list of the form parametersreeived from the lient. The implementation of slaml-show is shown in the following.Note that funtionality for validation is also inluded in this implementation. Validation isdesribed in Setion 2.3.(define (slaml-show pagefun . args)(slaml-display (pagefun (slaml-get-pageparm-parm args)))(let ((parms (slaml-reate-parm-lst (slaml-get-args)))(hek (slaml-get-hekfun-parm args)))(if hek(hek parms (slaml-get-hekparm-parm args))parms)))SLAML Sessions Compared With BigwigComparing this idea with the session onept in Bigwig, one di�erene is that Bigwig has aservie layer - represented by the servie primitive - that enapsulates one or more sessions.This servie layer is not introdued as a primitive in SLAML, beause a servie in SLAMLis represented by the entry point (represented by a single �le) to an appliation initiallyrequested by a lient. This means that if sessions wants to share data they must be de�nedin the �le representing the entry point.Ativation of sessions in Bigwig an be done in two di�erent ways. Either by requesting aservie ontaining the session to be exeuted, or by passing a parameter in the URL indi-ating the name of the session to be ativated. When a servie is ativated it is expliitlystated in the servie whih session to start. When the session is passed as URL parametereah session - de�ned inside a servie - an be ativated individually. Only the �rst approahis supported by SLAML, the seond is not. The latter approah requires aounting on theserver of the sessions available to lients.In Bigwig the show primitive is used to show an HTML page to a lient, and a similar prim-itive is present in SLAML (slaml-show). The session primitive (slaml-session) is similarto session in Bigwig. However, the way that values are reeived from the input elementsin an HTML form, is di�erent. In Bigwig the developer spei�es whih variables the formparameters must be bound to. In SLAML all value are returned in a list, whih ontainskey/value pairs of the attribute names and the attribute values entered by the lient. The

42 CHAPTER 2. DESIGNreason for hoosing this solution is that when handling large forms, it is umbersome tospeify all the relations between variables in a program and the input elements in an HTMLform. Another and more important reason for this solution has to do with the way SLAMLhandle omplex forms. Complex forms are desribed in Setion 2.2.2.1.3 Flow of a Session in SLAMLIn this setion the �ow of sessions in SLAML is desribed. This is illustrated in Figure 2.6.
Request

Request

Request

Request

Request

Response

Response

Response

Response

Page1 and Page2
share data

share data
Page3 and Page4

two slaml−sessions

slaml−show Page1

slaml−show Page2

slaml−show Page3

slaml−show Page4

ClientServer

Page1

Page2

Page3

Page4

Service

Figure 2.6: An illustration of the �ow of two slaml-session's, eah ontaining twoslaml-show's.When the lient requests a SLAML program it is ativated and evaluated. In the examplein Figure 2.6 the SLAML program ontains two slaml-sessions. Here the �rst session isativated and Page1 is shown to the lient with the slaml-show primitive. The lient anthen send a new request to the server (by submitting the form on the HTML page), and theSLAML program will ontinue from where it was left when the last response was send tothe lient (the slaml-show primitive returns ontrol to the surrounding program). Follow-ing this, Page2 is shown to the lient in a similar manner. One ontrol is returned fromthe slaml-show the �rst session is ended. Control is returned to the SLAML program andthe seond session is ativated. This �ow of ontrol gives the developer the possibility toview several interations (a session) with a lient as one program rather than small separateprograms.The data - from a submitted HTML form - belongs to the lexial sope that the slaml-showwas issued in. This gives an overview of the data �ow in a program, as the data from apage is returned to the same plae in the program �ow as the page was send from. Thisgives the possibility to issue a slaml-show as a way to get data from the lient. In this waythe slaml-show funtion an be ompared to other funtions in the program. Whenever

2.1. SESSION FRAMEWORK 43the developer needs data from the lient to proeed the alulation, the lient is asked fordata and the evaluation an resume. As the developer builds the HTML page to show tothe lient, it is known what data is returned from the user.2.1.4 Example of the SLAML Session FrameworkIn this setion a small example of the session framework is presented and explained. Ad-ditional and more omplex examples are presented and disussed in Chapter 3. Figure 2.7shows an example of how the various elements in the session framework are used.(slaml-define-sessionsimple-session(slaml-session (sessionparm)(let* ((simple-page1(slaml-page(pageparm)(html(head (title "The page 1 title"))(body"The page parameter: " pageparm (br)"The session parameter: " sessionparm (br)(form(input 'type "TEXT" 'name "inputdata")(input 'type "SUBMIT"))))))(page1-data(slaml-showsimple-page1'pageparm "Parameter to page1")))(slaml-show(slaml-page (pageparm)(html(head (title "The page 2 title"))(body"The page parameter: " pageparm (br)"The session parameter: " sessionparm (br)"Data from page1 before is: "(slaml-formparms-key->value 'inputdata page1-data)))) 'pageparm "Parameter to page2"))))(slaml-ativate-sessionsimple-session'sessionparm "Parameter to session")Figure 2.7: An example of using the elements in the session framework.

44 CHAPTER 2. DESIGNThis example shows a simple session. The session de�ned is named simple-session and isativated in the last expression. Note that parameters are passed to simple-session as spe-i�ed by the 'sessionparm attribute. When the session is ativated, it starts by bindinga slaml-page expression to simple-page1. simple-page1 represents an HTML page withinformation about the session parameter, the page parameter and it ontains one input ele-ment. The next step in the evaluation is to show the simple-page1 page, and bind the datareturned to the variable alled page1-data. Notie that simple-page1 is passed a parameterspei�ed by the 'pageparm attribute to the slaml-show funtion. The last thing done isto show a slaml-page that also takes a parameter. On this page the page parameter, thesession parameter and the value that is entered on simple-page1 are shown. Notie the useof the slaml-formparm-key->value (page 117), whih is used for extrating the value ofthe inputdata attribute from the page1-data list.2.1.5 Solution to the State Handling ProblemIn this setion it is disussed how sessions in SLAML solve the State handling and theReusability problem disussed in Setion 1.1.1 and Setion 1.1.4. The reason for introduingthe session onept in SLAML, is to solve these problems.Solution to the Control Flow Handling ProblemThe solution to the Control �ow handling problem is inspired by Bigwig and the ideasintrodued there, where it is a primitive in the language that presents a page to a lient. Thisprimitive is alled slaml-show in SLAML. Furthermore Bigwig inspired us to let programontrol return to the plae in the program where the slaml-show primitive is ativated. Thisresults in the developer being able to see the �ow of an appliation in the program ode ofthe appliation. As a primitive is introdued to show a page and return data from the lient,the program ontinues from the plae in the program where the slaml-show primitive isativated. A slaml-show in the program an be onsidered as any other funtion in termsof understanding the program. It is a funtion that is evaluated and returns the result ofthe evaluation, whih is a list ontaining the information reeived from the lient.Solution to the Data Flow Handling ProblemThe Data �ow handling problem is solved along with the Control �ow handling problem, asparameters already reeived from the lient an remain on the server. The only parameterhandling that is neessary is to ask the lient for data and reeive the parameters. One theparameters have reahed the server they exist when the next request omes from the lient.This means that the hosen solution relies on storing state on the server side. This resultsin easier parameter handling than in CGI. The reason is that the developer does not needexpliitly to send all the parameters to the lient and reeive them on the server to maintainstate. There is also problems with this solution as it requires spae on the server for storing

2.2. COMPLEX FORMS FRAMEWORK 45the state. Furthermore there is a seurity onerns to be onsidered when storing the stateon the server. It must not be possible for one lient to aess the state of another lient.2.1.6 Solution to the Reusability ProblemThe problem of being unable to reuse a number of related pages as one unit has been solvedby introduing sessions as �rst lass objets. In SLAML it is possible to de�ne a session andlater ativate it, thereby allowing the developer to ativate a session on demand. This meansthat the developer is able to exeute a number of pages following eah other and reeive datafrom the session. Being able to reeive information from a session on the same level as it ispossible from a page means that there are little di�erene between invoking a session anda page to return some data. As an example the developer an freely hoose to develop asession or a page to reeive some spei� data from the lient.2.2 Complex Forms FrameworkAs presented in the Analysis (see Setion 1.1.3) there is no good solution to maintain datain a omplex struture when it has been send to the lient. This lead us to our hypothesis:Hypothesis 2:It is possible to onstrut a framework that helps the developer to build,present and update omplex strutures.Three possible ways of representing an HTML form as a omplex struture has been identi-�ed:1. A data struture2. A language3. A paradigmA nested lists approah is used to represent a omplex struture as a data struture. To repre-sent a omplex struture as a language, an embedded domain spei� language is onsidered.Last, an objet oriented approah is used to represent the paradigm way of representing aomplex struture. Eah approah is presented in the following setion. Note that the fol-lowing setion serves as a presentation of possible solutions to the Complex forms problem.The deisions made in order to design the atual solution to the Complex forms problem arepresented in Setion 2.2.2.2.2.1 Design ConsiderationsIn this setion, solutions to how a omplex struture an be reated in order to be representedas an HTML form are onsidered. The solution must �t well in the ontext of this projet,namely Sheme, LAML and mod_laml. Reall that the Complex forms problem is split intothree steps (see Figure 1.10 on page 17). These steps are:

46 CHAPTER 2. DESIGN1. Creating the omplex struture2. Representing the omplex struture as an HTML form3. Updating the omplex struture with data from the lientCreating a omplex struture means, that the developer reates a omplex struture in theprogramming language. This is the struture, that it is of interest to get �lled with datafrom the lient. Representing the omplex struture as an HTML form is the seond step.This is done, in order to reeive the data from the lient. The third step, updating, is wherethe omplex struture is updated with the information from the HTML form. Updating theomplex struture is done on behalf of the form parameters, whih are plaed in a key/valuepairs string. Eah of the three possible ways of handling an HTML form - nested lists,embedded domain spei� language and objet orientation - is onsidered in relation to thethree steps, that makes up the Complex forms problem. These are the steps just presented,namely reating, representing and updating.Nested List ApproahThis �rst approah relies on lists in Sheme. The reason for onsidering a nested list ap-proah, is that both data and program are represented as lists in Sheme. This means,that a developer working with Sheme, is familiar with lists and list syntax. Furthermore,any �rst-lass value an be a list element, so there are only few requirements to list elements.The �rst step in the Complex forms problem, onerns the reation of the omplex struturein the programming language used (Sheme in the ontext of this projet). The personstruture from Setion 1.1.3, is in the following written by the use of nested lists:(person(name(first-name "")(last-name ""))(address(ountry "")(ity(ity-name "")(postal-number ""))(street(street-name "")(house-number "")))(email "")(phone "")(age ""))This is an example of a nested list struture, whih it is of interest to get �lled with infor-mation from the lient. Three types of elements exists in the list; symbols, other lists andstrings. The strings represent the values �lled into the HTML form by the lient. The strings

2.2. COMPLEX FORMS FRAMEWORK 47are empty (""), sine the nested list struture has not been �lled with information from thelient. The symbols (the �rst element in eah of the lists) are used to speify informationabout the other elements in the list. E.g. the symbol name indiates, that the following ele-ments in the list, makes up a name. Using symbols, strings and lists as elements, a omplexstruture an be reated.The next step in solving the Complex forms problem is to represent the nested list strutureas an HTML form. To make the task of getting the HTML string representation of a nestedlist struture simple, a funtion is used. This funtion takes the nested list struture as aparameter, and returns the HTML form representation. However, there are no elements inany of the nested lists in the person struture, that spei�es how the struture is representedas an HTML form. Two possible ways in handling the HTML layout of a nested list struturehave been identi�ed. These are, layout by:1. attributes2. a style sheetLayout spei�ed by attributes, means that the HTML layout information about the di�er-ent lists in the nested list struture is added as attributes to a list. Consider the list taggedity-name (the list, whih has the symbol ity-name as the �rst element). By adding anattribute named type, the HTML representation of ity-name an be spei�ed. E.g. does(ity-name 'type "TEXT") speify, that the ity-name list must be presented as an HTMLinput element of the type TEXT. By speifying a type attribute to all of the lists, HTMLlayout information is embedded in the nested list struture. Sine HTML layout informationis embedded in the nested lists, the nested list struture is mixed with data and informationabout the HTML layout.By using a style sheet instead of attributes to speify the HTML layout of a nested liststruture, the nested list struture is separated from the HTML layout information. Thestyle sheet is de�ned external to the nested list struture; e.g. in another list. The stylesheet list, an be an assoiation list, where eah symbol from the nested list struture is as-soiated HTML layout information. This means, that the list tagged ity-name has an entryin the assoiation list. This entry looks like (ity-name . "text-input"). Using a style sheetsupports separation between data and layout, sine the data is represented in the nested liststruture whereas layout is spei�ed in an external style sheet list.The last step in the Complex forms problem is to update the nested list struture with theinformation reeived from the HTML form. In order to update a nested list struture withdata from an HTML form, both the struture and the data from the lient must be presentat the server. Beause of the session framework already designed, the Sheme environmentwill survive interations with the lient. This means, that the nested list struture does notneed to be stored in an hidden HTML element or on the servers �le system, in order to bepresent after a request. By omparing the keys - in the key/value pairs reeived from thelient - with the names in the nested list struture, the nested list struture is updated with

48 CHAPTER 2. DESIGNthe values. This task is handled by a funtion, and when given a nested list struture andthe orresponding form parameters, the funtion returns the updated nested list struture.A great advantage with the nested list approah is, that muh funtionality for doing listmanipulation is present in the Sheme programming language. This overs funtionality toget the head and the tail of a list (ar and dr respetively) together with funtionalitythat supports reating and extending lists (like list, ons, append, map and length). Thisfuntionality helps the developer to reate and work with lists.A problem with the nested lists approah is the way HTML layout is handled. The HTMLlayout information is spei�ed by type information, whih is used by the funtion that gen-erates the HTML layout. This makes it impossible for the developer to speify a ustomizedHTML layout, e.g. speify that the input elements must be plaed in an HTML table.The reason this is a problem, is that a type does not ontain information about the relationbetween elements. Instead, type information is only related to a single element.Embedded Domain Spei� LanguageInstead of using a nested list approah to solve the Complex forms problem, an embeddeddomain spei� language an be used. This approah is inspired by the paper, �Little Lan-guages and their Programming Environment� [CGKF02℄. A domain spei� language, is aprogramming language, that is developed to solve problems in an spei� domain. In theontext of this projet, the domain is omplex strutures and HTML forms. The problemin this domain, is the Complex forms problem. That a language is embedded, means that itis implemented inside another language (a host language). This means, that the interpreterin the embedded language an rely on features in the host language when it is implemented.The embedded domain spei� language used to solve the Complex forms problem, is nameds� (Small Form Language), and the host language is Sheme. s� is in the following onsid-ered in relation to reating, representing and updating a omplex struture.To reate a struture by using s�, means to write a program in s�. A s� program mustbe interpreted by the s� interpreter. Therefore, a primitive must exist in Sheme, whihesapes from the Sheme interpreter into the interpreter for s�. This primitive is namedsfl, and an example of how to write a program in s� is presented below:(let ((omplex-struture(sfl(sfl-olletion "person"(sfl-olletion "name"(sfl-text-input "first-name")(sfl-text-input "last-name"))(sfl-olletion "address"(sfl-text-input "ountry")(sfl-olletion "ity"(sfl-text-input "ity-name")(sfl-text-input "postal-number")

2.2. COMPLEX FORMS FRAMEWORK 49)(sfl-olletion "street"(sfl-text-input "street-name")(sfl-text-input "house-number")))(sfl-hekbox-input "email")(sfl-hekbox-input "phone")(sfl-text-input "age")))));omplex-struture an now be used)The above example is in the following disussed in relation to the syntax, the return valueand the primitives in s�. The syntax of a s� program, is similar to the list syntax used inSheme. Alternatively a syntax with in�x notation (instead of Sheme's pre�x) and urlybrakets (instead of parenthesis) an be used. However, no reason for hanging the syntaxis seen. It will only be an irritating requirement, that the developer must hange syntaxin the middle of a Sheme program. However, another syntax indiates that the developeris using s�, but this an easily be seen beause of Sheme's pre�x notation (the �rst wordenountered when using s� is the sfl primitive). Sine a s� program is embedded in aSheme program, the surrounding Sheme program expets to get a return value from s�. Inthe above example, this value is stored in a variable named omplex-struture. As the name- omplex-struture - indiate, a omplex struture is returned from a s� program. Thisomplex struture an be a nested list struture or an abstrat syntax tree. The primitivesin s� are disussed in the following, in relation to the HTML representation.Speifying the HTML representation of a omplex struture programmed in s�, is doneby using the primitives in sfl. In the nested list approah the developer has to speifyHTML layout of the nested list struture, by the use of attributes or a style sheet. Ins�, the HTML layout information is indiated by the names of the primitives. E.g., theprimitive slt-hekbox-input indiates, that an email (from the example above) is an HTMLinput element of the CHECK type. However, the s�-olletion primitive, does not speify anyinformation about HTML layout. A solution to this problem, is to extend the interpreterin s�, to reognize LAML like funtions. This means, that there is a mapping between s�primitives, and LAML mirror funtions. E.g. s�-br maps to the brmirror funtion in LAML.The reason for adding s� to the names of the LAML mirror funtions, is to speify that itis not possible to use LAML - and Sheme - funtions diretly in the embedded language.The following example illustrates how a s�-olletion an be presented as an HTML table,if the HTML layout spei�ation is embedded:(sfl..(sfl-olletion "street"(sfl-table(sfl-tr(sfl-td

50 CHAPTER 2. DESIGN(sfl-olletion "ity"(sfl-text-input "ity-name")(sfl-br)(sfl-text-input "postal-number"))))))..)Sine HTML layout information is not onneted to the way the omplex struture is repre-sented in Sheme, the return type from sfl is hanged. Both the HTML layout informationand the omplex struture is present in the s� program. Therefore, a s� program returnsthe omplex struture (without HTML layout information) and its HTML representation.Updating a omplex struture returned from a s� program, is handled in the same wayas with the nested list approah. Reall, that this was done by sending both the omplexstruture and the form parameters to an update funtion. This funtion returns a omplexstruture, ontaining the values from the form parameters.An advantage with an embedded domain spei� language, is that a language is reated tosolve a spei� problem. In this projet the problem is the Complex forms problem. Theintrodution of spei� primitives allows the developer to use speial designed funtionality,whih has the purpose of reating a omplex struture. This makes it possibility to speifyolletions of elements, but also information about the HTML layout of the struture. Aproblem with the embedded language approah is, that the same embedded program an-not be hanged after it has been evaluated. This results in the impossibility to hange theomplex struture reated by the embedded program. Another problem is, that the HTMLlayout is inluded in the embedded program. If the embedded program is large, it makesit di�ult for developer to maintain the overview of what is HTML layout information andwhat is struture.The possibility to speify the HTML layout by using LAML like funtions, is an advantagein relation to the nested list approah. In the nested list approah, the developer annotustomize the HTML layout relation between the di�erent elements, sine HTML layout isspei�ed by type information. However, a nested list struture an be bound to a variablein the Sheme environment, whih allows the developer to manipulate the struture whenwanted. This is not possible in the embedded language approah, sine a variable bound toan embedded program will result in the variable being set to the return value of the program.Thus the struture (in the form of a program) annot be manipulated when wanted.Objet Oriented ApproahInstead of reating a struture as nested lists or in an embedded language, an objet stru-ture an be reated. Just as with the other approahes, an objet struture must ontaininformation about the omposition of elements. Suh a struture an be handled with the

2.2. COMPLEX FORMS FRAMEWORK 51Composite Design Pattern[ERRJ95℄, as this is used to represent part whole hierarhies. Anexample of an objet struture based on the Composite Design Pattern is seen in Figure 2.8.Two types of lasses exist in the Composite Design Pattern, namely the omposite and theleaf lass.
aCompositeaLeaf

aLeaf aLeaf

aLeafaLeaf

aComposite

Figure 2.8: An example of an objet struture based on the Composite Design Pattern[ERRJ95℄.aComposite is an instane of the omposite lass, and aLeaf is an instane of the leaf lass.A omposite objet an represent a olletion of omposite and leaf objets, like a s�-olletion from the embedded language approah an represent other olletions or basielements. A leaf annot represent other objets, but instead represent the basi entity in thestruture. Here a omposite struture is used to represent an HTML form, so a leaf mustrepresent a single HTML input element.With the lasses introdued, it is possible to reate an objet struture, whih must be �lledwith data from a lient. Suh an objet struture, is reated by linking objets together.This is done by using nested onstrutors, when the objets are reated. Eah name in thefollowing example, orresponds to the initialization of an objet.(aComposite (aLeaf) (aLeaf) (aComposite (aLeaf) (aLeaf)) (aLeaf))The above is an initialization of the objet struture presented in Figure 2.8. The rootelement has four hildren, where one is a omposite objet and the others are leafs. Theomposite hild has two hildren, whih are leafs. The relation between the objets in theabove objet struture is spei�ed at initialization time, namely by the use of onstrutors.An objet struture an also be spei�ed by message passing. This approah is umbersome,sine all the objets must be linked together by passing individual objets as arguments tofuntions on other objets. An example is presented below.(define root (aComposite))(add (aLeaf) root)(add (aLeaf) root)

52 CHAPTER 2. DESIGNThe add funtion takes two objets as argument, and the �rst argument is added as a hildof the seond. aLeaf returns a leaf objet, and aComposite returns a omposite objet. Asseen in the above example, it is more omprehensive to reate an objet struture in this way,than if a onstrutor is used. To reate the same objet struture by using a onstrutor,the developer writes: (aComposite (aLeaf) (aLeaf)).To reate an HTML form representation of the objet struture, a funtion that reursivelytraverses the objet struture and performs the layout is used. On behalf of the type of anobjet (a omposite or a leaf), it is determined how an objet is presented in an HTML form.To represent the various types of HTML input elements, speialization is used on the leafobjets. This allows the leaf objet to map to an HTML input element. By using the objettypes to determine the way an objet is presented as HTML layout, it is not possible toperform HTML layout on omposite objets. The reason for this is, that a omposite objetdoes not map to an HTML element. A solution to this problem is to speify HTML layoutas a property of an objet. This allows the developer to speify HTML layout of a ompositeobjet. When the HTML representation of the objet struture is reated, the HTML layoutproperty on eah objet is onsidered instead of the type of the objet. However, it is onlyleaf objets, that an be represented as HTML input elements in an HTML form.Updating the objet struture is done on behalf of the form parameters. By the introdu-tion of the session framework, the objet struture is present on the server after a requesthas �nished. The information from the form parameters are added the objet struture bysetting it on the individual objet. When information from the objet struture is needed,the value of the data property an be obtained from the individual objets.When using the objet oriented approah the developer is given two possible ways of reatingan objet struture. This an be done by using message passing or the onstrutor. Thisallows the developer to reate some of the struture by using the onstrutor, and afterwardadd elements when wanted by using the message passing mehanism. This is e.g. bene�-ial, when the objet struture is extended with more objets after is has been reated andused. Furthermore, the developer is not fored to inlude HTML layout information whenspeifying the objet struture. This information an be reated external, and added theindividual objets afterward. This allows a separation between HTML layout spei�ationand the reation of the objet struture.In the nested list approah, it is possible to modify the nested list struture by using funtionsavailable in the Sheme language. This is not possible in the objet oriented approah, sineobjet oriented programming is not supported by standard Sheme. However, by speifyingthe HTML layout property on the lasses, it is possible to ustomize the HTML layout. Thisis also possible in the embedded domain spei� language approah, but not in the nestedlist approah.

2.2. COMPLEX FORMS FRAMEWORK 532.2.2 Design of the Complex Forms Framework in SLAML
It is hosen to use an objet oriented approah in the omplex form framework. This mightseem odd, as Sheme is mainly a funtional language. The reason for hoosing the objetoriented approah is that it allows for division of spei�ation of the layout and spei�ationof the struture. This division allows for easy addition or removal of objets representingelements in the objet struture. This means that it is easy to modify and reuse the struturethroughout an appliation.The reason for not hoosing the domain spei� language, is that one the embedded inter-preter returns a result it is impossible to mutate this result to �t into another page. The�exibility to ontinue to use the omplex struture throughout the appliation is not present.Another reason is that when the embedded interpreter is onstruted, it needs aess to theLAML funtionality. However LAML funtionality is not aessible from the embeddedinterpreter unless the interpreter is told how to handle it. There are two possibilities tosupport LAML funtionality in an embedded interpreter. The �rst is to mirror the funtionsfrom LAML to the embedded interpreter. This an be done by mapping funtions fromthe LAML library to the embedded language. Thereby, LAML funtionality is available inthe embedded language. The seond possibility is to esape from the embedded interpreterand let the Sheme interpreter handle exeuting of the LAML funtionality. But one theembedded interpreter is left, the Sheme interpreter do not know how to exeute the domainspei� language. Therefore there is a need for having all the domain spei� language fun-tionality outside the embedded interpreter, to enter the embedded interpreter again. Thismeans there is a need for having a mix of funtionality both outside the interpreter andinside the interpreter. By hoosing an objet oriented approah it is not neessary to esapeto another interpreter to have funtionality exeuted.This setion starts with a presentation of the three steps - reation, presentation and updat-ing - that are performed, when using the omplex forms framework in SLAML. Seond isan introdution of the lasses needed in the omplex forms framework. Third, is a presen-tation of how objet oriented programming is simulated in Sheme. This is inluded for theSheme interested reader. Fourth, it is presented how reation, presentation and updatingare performed in the omplex forms framework in SLAML. Last, is an example of how theomplex forms framework is used.The steps that are taken when using the omplex forms framework are presented in Figure2.9.

54 CHAPTER 2. DESIGN

B

A

C

D E

Update the object
structure with the
data from client

B

A

C

D E

Knowledge of
structure remains
on the server

Client is shown a
graphical representaion

B

D E

C

A

HTML page

B D E

B

A

C

D E

String representaion
of the structure

Presses the submit button

Server Client

Client enters data

Step 1

Step 2

Step 3

Send representation of
structure to client

Create object structure

Figure 2.9: An illustration of the ations involved in handling the omplex form, when presentingit to the lient and updating it with the form parameters from the lient.Step 1 onerns the reation of the objet struture. This involves the spei�ation of the re-lation between the objets and the spei�ation of the HTML layout of the objet struture.Step 2 overs the HTML representation of the objet struture as an HTML form. Whilethe HTML form is being presented to the lient, the information about the objet strutureis present on the server. Step 3 is related to updating the objet struture with the formparameters reeived from the lient. Reall, that the form parameters, is a key/value pairsstring (an assoiation list in Sheme).The objet model used in the omplex forms framework has three lasses. The �rst lass isalled slaml-basi-element (page 118) and represents a leaf in an objet struture. Theseond lass is alled slaml-element (page 117) and represents a omposition of objets.The last lass is alled slaml-form-element (page 119) and represents the root objet inan objet struture. An instane of the slaml-form-element lass is also a omposite objet.A reason for only introduing three lasses is the fous on the struture rather than HTMLlayout, when reating the objet struture. This is due to the inreased abstration obtainedby separation of onern between the struture and the HTML layout of the struture. Thereason for fousing on the struture is that layout is only assoiated with the struture andnot part of the struture. Had fous been equally on layout and struture, the approah usedin DOM[WG02℄ might be more appropriate. The reason is that all elements from HTML isavailable in DOM and thereby the layout of a page an be reated using DOM.

2.2. COMPLEX FORMS FRAMEWORK 55Having separated the layout from the presentation the fous is on the lasses needed toreate the struture. There are three di�erent expetations to the objets in the objetstruture. Sine the objet struture must be able to reeive data, its representation mustbe rooted in an HTML form. This �rst expetation is a lass representing the root of theobjets struture. This is represented by the lass named slaml-form-element. Sine thestruture is reated with an expetation of reeiving some data from the lient, a lass mustrepresent the data from the lient. This is the di�erent HTML input elements. Therefore alass must represent an expetation of data. This lass is alled slaml-basi-element.The last expetation regarding the struture is representation of the omposite elements.With the above two lasses the root and the leaf of the objet struture are overed. Aomposite objet as seen in the Composite Design Pattern an be used to represent theomposition of several objets. Suh an objet allow addressing a group of objets as one.This lass is alled slaml-element. No additional expetations are present, and thereforeno additional lasses are introdued.One the struture has been build the layout funtionality is reated and assoiated with theindividual objet in the struture. In this way the struture is in fous. The presentation isa property on the individual objets. Eah of the three lasses are desribed in more detailin the following.2.2.3 Complex Forms Framework in SLAMLTo use the Composite Design Pattern to represent the lasses in the omplex HTML form,SLAML operates with three lasses. These are explained in the following.Slaml Basi Element ClassThe leaf element in SLAML, represents the HTML input elements (see [W3C02d℄). In theomplex forms framework, the leaf lass is alled slaml-basi-element. Doumentationand default values of this lass are found in Appendix A.1 An objet of this type ontains theattributes from the HTML input element (for a omplete list see [W3C02d℄). This means,that all attributes of the HTML input element are represented by the slaml-basi-elementlass.As slaml-basi-element orresponds to the HTML input element, the HTML represen-tation of this element is given. This is the ase, sine all attributes from the HTML inputelement are present as instane variables in the slaml-basi-element lass. Therefore, itis possible to onstrut an HTML input element from the instane variables available in anobjet of the slaml-basi-element type.1Please note, that the implementation of slaml-basi-element only supports the HTML input element,so there is no possibility to e.g. represent a textarea with an instane of the slaml-basi-element lass.

56 CHAPTER 2. DESIGNThe slaml-basi-element lass an be subjet to speialization. This is possible sinea slaml-basi-element must represent a number of di�erent HTML elements. Exam-ples inludes submit buttons, input elements, hek boxes et. (for a omplete list refer to[W3C02d℄). Two alternatives are onsidered. Either the developer is provided with a numberof speializations of the slaml-basi-element lass, or we provide updateable state on theobjets representing its HTML type.Providing a number of speializations is disregarded, as the di�erene between the speial-ized objets is the representation (the HTML input element represent by the objets). Butsine presentation is not part of the struture - but rather assoiated with the individualelements in the struture - there is no di�erene between the speialized lasses. This sug-gests that speialization is not appliable. If the struture and the representation has notbeen separated the slaml-basi-element lass is subjet to speialization. An additionalargument for not relying on speialization is that the alternative allows for an already in-stantiated objet to hange its HTML element type. This mutation makes it easy to hangethe HTML element type of objets already inserted into an objet struture.Slaml Element ClassThe slaml-element lass is the omposite lass. Objets of the slaml-element type anontain referenes to other objets (of the types slaml-basi-element and slaml-element).This makes it possible to make hierarhies of objets, that represents the struture shownas an HTML form to the lient. This lass is used when grouping objets.The HTML presentation of an objet of the slaml-element type, onsists of the presentationof its hildren. However, it is not satisfatory to present the HTML form as a olletion ofHTML input elements. Instead, �exibility is needed to build a spei� layout of the HTMLrepresentation of the objet struture. Therefore, the HTML layout of a slaml-element isspei�ed by a template where it is possible to plae - in the relation to HTML layout - thehildren of the slaml-element as wanted. To represent the template of an objet, a funtionrepresenting the HTML layout of the slaml-element is reated. This funtion is added asa property on the slaml-element it represents. The HTML layout funtion is disussed inSetion 2.2.5.Slaml Form Element ClassThe slaml-form-element lass is the root of an objet struture in the omplex formsframework. The reason that this lass is needed is that the slaml-element lass ontains noinformation about the data related to the HTML form element. This information is presentin the slaml-form-element lass. A slaml-form-element annot be a hild of other ob-jets, and must therefore be the root of an objet hierarhy. All the attributes from theHTML form element are present in the slaml-form-element lass.

2.2. COMPLEX FORMS FRAMEWORK 57The HTML layout spei�ation of a slaml-form-element, is the HTML layout spei�a-tion of its hildren together with the spei�ation of the HTML form element surroundingthem. This means that the slaml-form-element also onsists of properties that speify theattributes to the HTML form element. This is disussed in further details in Setion 2.2.5.The next setion (Setion 2.2.4) presents underlying Sheme ode, that is needed in order tosimulate objet oriented programming in Sheme. This is inluded for the Sheme interestedreader and an be ignored if simulation of objet oriented priniples in Sheme is not ofinterest.2.2.4 Objet Oriented Programming in ShemeIt is possible to program objet oriented in Sheme and di�erent frameworks with supportfor objet oriented programming in Sheme exists. Some of these frameworks are generaland works with most Sheme systems. Others are written to a spei� Sheme system.Examples of objet oriented frameworks that are used with a spei� Sheme systems areGoops (The Guile Objet Oriented Programming System)[LDJ02℄ and MzSheme's ob-jet[Fla02℄. Goops is a framework for the Guile interpreter and is an extension to thebasi Guile interpreter. MzSheme also ontains an objet framework whih is part of theinterpreter. An example of a more general objet oriented framework is Meroon [Que02℄,whih an be used in various Sheme systems.Another possibility to program objet oriented in Sheme is to use funtions to representlasses and objets in Sheme (shown by Kurt Nørmark [Nør90℄). This approah is the mostportable as it is supported in all Sheme systems. The reason for this is, that it is build onlambda expressions.It is hosen to simulate lasses and objets in SLAML with funtions, as this gives the bestportability. The reason that portability is important, is that LAML is usable in many dif-ferent Sheme systems and by making SLAML interpreter independent it is possible to usethe SLAML framework on the same Sheme systems that LAML an be used. However,this approah might not be as e�ient as an objet system written for a spei� Shemesystem. This is not onsidered a problem as the omplex form framework is more a proof ofonept than it is a framework used for prodution. Another onern is the readability of theprograms written in the SLAML framework. The programs written with pre-made objetsystems have a higher syntatial abstration and therefore the programs are easier to read.When simulating objet orientation this an be ahieved by making syntatial abstrationson top of the simulation. The last problem onsidered with the hosen approah, is that allthe mehanisms used in objet oriented programming (inheritane, message passing, et.)has to be implemented when needed. This is not a big problem in the SLAML framework,as only lasses, message passing and a onstrutor are needed.In the following it is explained how to de�ne lasses and reate objets in Sheme. Further-more it is explained how to use message passing to hange the state of objets and how a

58 CHAPTER 2. DESIGNonstrutor is used to instantiate objets with others than the default values.Classes and Objets in ShemeClasses an be simulated in Sheme, by de�ning a funtion from whih objets an beinstantiated. When an objet is instantiated it returns a funtion objet, that serves as aninterfae to the objet. An example of a simple lass is the following:(define (test-lass)(letre ((x 0)(get-x (lambda () x))(set-x (lambda (new-x) (set! x new-x)))(type-of (lambda () 'test-lass)))(lambda (message)(ond ((eq? message 'get-x) get-x)((eq? message 'set-x) set-x)((eq? message 'type-of) type-of)(else (error "Message not found"))))))Here the funtion test-lass represents a lass. An instane of the lass is instantiated byevaluating the funtion. Evaluation of this funtion makes it return a funtion objet. Thisfuntion objet serves as an interfae to the objet. The interfae is a dispather that anall methods on the objet. This dispather is ativated by message passing.Message Passing in ShemeOne an objet is instantiated, its state an be hanged by sending messages to it. Themessages that an be send to the objet are spei�ed in the dispather funtion, whihserves as an interfae to the objet. Messages are send to the objet in the following way:(define new-objet (test-lass))((new-objet 'set-x) 10)The �rst thing that happens in this example is that the test-lass is instantiated and the re-sulting dispather funtion is bound to the name new-objet. Next, the dispather is invokedwith the message set-x. This results in the funtion assoiated with the set-x property ofnew-objet to be returned. This funtion is evaluated with the value 10 as input. All thisresults in reation of an objet and setting the x property to the value 10.It is preferable to reate a funtion (often named send) to send messages to the objets.The reason this is preferred is that it provides a syntatial abstration. This results in thefollowing way to send messages to objets:(send 'get-x new-objet)

2.2. COMPLEX FORMS FRAMEWORK 59Here the get-x message is send to the objet new-objet. The result is the same; the funtionassoiated with the get-x property on new-objet is returned. It is umbersome to relyon message passing to hange values on the individual objets. Therefore a onstrutormehanism is reated whih allows for speifying values at instantiation time.Instantiation of Objets in ShemeBy reating a onstrutor it is possible to speify arguments when an objet is instantiated.In SLAML, XML syntax is used when instantiating the objets with others than the defaultvalues. An example is the following:(define new-objet (test-lass 'x 10'y 11))In this example an objet is instantiated and bound to the name new-objet. new-objet hastwo instane variables. One is alled x whih value is set to 10 at instantiation time. Theother is alled y and is assigned the value 11. The reason for hoosing this syntax, is thatthis is a XML like syntax, whih is similar to LAML syntax. Another possible syntax isto rely on positional parameters, but this is not a good solution if there are many instanevariables in the objets, espeially if it is possible to speify all of them at instantiation time.In this setion it is shown that a onstrutor mehanism is reated to allow a �exible in-stantiation of objets from lasses. Message passing is introdued as a way to modify theindividual objets. Furthermore it is illustrated how a funtion objet - returned from afuntion representing a lass - ats as an objet.2.2.5 Creating, Presenting and Updating Objet StruturesIn this setion it is explained how an objet struture from the three basi lasses (explainedin Setion 2.2.3) is reated. Next, is a desription of how to add HTML layout to the objetsin the objet struture. Last, is desribed how the objet struture is updated with the datareeived from the HTML form shown to the lient.Creating an Objet StrutureTo reate an objet struture to represent an HTML form, the �rst thing to do is linkingthe objets together. This an be done in two ways. The �rst is to reate all the objet inthe objet struture and afterward link them together by using message passing. This anbe done by invoking the add method on an objet. The add method takes one parameter,whih is the objet to add as a hild. Another way to reate the struture, is to do it atinstantiation time by using the onstrutor. This is done in the following way:

60 CHAPTER 2. DESIGN(define person-form(slaml-form-element'name "person-omposite"'elements(slaml-reate-obj-lst(slaml-element'name "name-omposite"'elements(slaml-reate-obj-lst(slaml-basi-element'name "first-name-leaf")(slaml-basi-element'name "last-name-leaf")))(slaml-basi-element'name "have-ar-leaf")(slaml-basi-element'name "submit-button-leaf"))))This expression reates the struture in Figure 2.10 (see page 60). In this example threethings are added to the SLAML elements. The �rst is the slaml-reate-obj-lst (page121) primitive. This primitive is used to reate a list of objets to be added to anotherobjet. The seond thing added in this example is the elements attribute. This attribute isused to speify the hildren of an objet. The list of objets - to be added as hildren - mustbe reated with the slaml-reate-obj-lst primitive. In this way it is possible to reatean objet struture.

last−namefirst−name

person−form

name submit−buttonhave−car

Figure 2.10: The person-form hierarhy.The third thing added to the example is the name attribute. This attribute sets the nameinstane variable of the objet. This serves to aess an objet one it is added as a hildto another objet. If the name attribute is not present, there is no way of identifying theobjet and disriminate it from other hildren with the same parent. Therefore, by giving

2.2. COMPLEX FORMS FRAMEWORK 61all objets of the same parent di�erent names, this property is used to refer to a spei�objet. This is used when the HTML layout information is added to the objets. If the hildobjets have no names it is impossible to tell whih element is to be plaed where in thelayout. This is onduted later in this setion.The last thing desribed in this setion is the id of an objet. An id is set on the objetsof the type slaml-basi-element. The id on an objet serves as the name attribute of theHTML input element when the objet is presented - in an HTML form - to the lient. Thereason for having the id is to assoiate eah HTML input element with an objet of the typeslaml-basi-element. The di�erene between the id property and the name property of anobjet is that the name is used when the programmer refers to an given hild of a parent inthe program. The id is used when the input from the user is plaed in the objet struture inorder to update it. By letting eah of the leaf objets in the objet struture have an uniqueid and let the same id represent the name of an input element in HTML, it is possible to tra-verse the objet struture and plae the lient data in the objet struture. This is done byomparing the name of the HTML input element with the id attribute on the objet. If theymath, the data from the HTML input element is plaed as data in the mathing leaf objet.The id an be set by hand when the objet is reated. If no id attribute is spei�ed when theobjet is reated, an objet is given a unique id. The reason for letting the developer hangethe unique id is that sometimes it is onvenient to aess the form parameters diretly byname instead of using the objets to aess them. This is not possible if the name attributein the HTML element annot be hanged. And as the id property of an objet orrespondsto the name attribute on an HTML input element, it is neessary to allow the developer tohange the id.Adding HTML Layout to Objet StruturesAfter the objet struture is build, the HTML layout is added. This is done by assoiatinga template to eah objet. The template represents the HTML layout of the objet it isassoiated to. This means that a way to speify HTML layout information on eah of thethree lasses in the SLAML framework must be present. This is disussed in the following.Templates for the omposite lasses (slaml-element and slaml-form-element) are spei-�ed as a funtion. The reason for using funtions to represent templates is that funtionsan return an HTML string representing the HTML layout of a given node in the objetstruture. Furthermore, it is possible to send parameters to the funtion telling whih nodein the struture to do layout on. This node serves as the parent node and by referring tothe names of the hildren it is possible to plae them in the layout. Beside this a funtionan ontain additional HTML information and thereby represent more than the layout ofthe hildren. It an also ontain HTML elements used for formatting the HTML form layout.Another possibility is to let the HTML layout be represented by a list of hildren and letthe order of the list be the order in whih the elements are presented in the HTML form. In

62 CHAPTER 2. DESIGNthis approah there an be no additional formatting of the hildren in the omposite nodesof the struture. Therefore the �rst approah is hosen.For the leaf lass (slaml-basi-element) the layout is represented by setting attributes onleaf objets. The reason is that the leaf objets represents an HTML input element andthere an be no HTML layout inside an HTML input element as it is a single tag. Therefore,all formatting information is the surrounding of these elements and this layout informationis present in the omposite elements.Another possibility is to let eah slaml-basi-element have a template assoiated to itas done with slaml-element and slaml-form-element. Then the developer will need tospeify a template for the leaf elements and assoiate the HTML layout with a leaf node inthe objet struture. The �rst approah is hosen sine it requires less assoiations betweentemplates and nodes. The reason is that the leafs are self ontained as the instane variablesof the objets spei�es the HTML layout.A layout funtion for the name-omposite objet from the objet struture on page 60 ispresented in the following.(define name-layout(slaml-layout (self args)(table(tr (td "Name" 'olspan "2"))(tr (td "First name")(td (slaml-do-layout-hild self "first-name-leaf")))(tr (td "Last name")(td (slaml-do-layout-hild self "last-name-leaf")))'border "1")))Figure 2.11: An example of a slaml-layout funtion.In this example the slaml-layout (page 123) primitive is introdued. slaml-layout anbe thought of as a lambda expression. A slaml-layout takes two arguments. The �rstparameter is a referene to the objet to whih this HTML layout funtion is assoiated.The seond parameter an be send to the layout funtion when it is ativated (when theslaml-do-layout-hild (page 122) or slaml-do-layout (page 122) is alled). To assoiatea layout funtion with an objet the layout attribute is used at instantiation time.(slaml-element'name "name-omposite"'elements(slaml-reate-obj-lst(slaml-basi-element'name "first-name-leaf")(slaml-basi-element'name "last-name-leaf"))

2.2. COMPLEX FORMS FRAMEWORK 63'layout name-layout'layoutparm "simple string")In this way the name-omposite is spei�ed to be presented by the slaml-layout funtionbound to the name name-layout. When the name-layout is alled it is passed the string "sim-ple string" as its seond parameter. This is done by inluding the attribute layoutparm inthe instantiation of the objet. This parameter is not used in the slaml-layout funtion inFigure 2.11.In Figure 2.11 a funtion alled slaml-do-layout-hild - performing the HTML layout- is introdued. Sine a omposite element like name-omposite is responsible for layoutof its hildren, it needs a primitive to express this. This is done by the funtion alledslaml-do-layout-hild. This funtion takes two arguments. The �rst is a referene tothe objet in whih the hild is loated. In the example in Figure 2.11 this is self. Theseond parameter is a string representing the name of the hild to layout. The return valueof slaml-do-layout-hild is a string representing the HTML layout of a given hild.As a slaml-form-element must represent an HTML form it needs more than a slaml-layoutfuntion to present itself. Besides a slaml-layout funtion, a slaml-form-element alsoneeds attributes speifying the various properties (see [W3C02℄), to be able to representitself. These attributes an be set on the slaml-form-element objet at instantiation time.To present an objet of the slaml-basi-element type, the value of its type variable mustbe set. The reason is that this attribute spei�es what type of HTML input element theobjet is representing (examples inlude hidden, text and password. For a omplete list referto [W3C02℄). In Figure 2.10 the submit-button is of type submit and the have-ar is oftype hekbox. This an be spei�ed in the following way.(slaml-basi-element'name "have-ar-leaf"'type "CHECKBOX")(slaml-basi-element'name "submit-button-leaf"'type "SUBMIT")When the HTML layout has been spei�ed for eah element the HTML layout on the rootobjet is ativated in order to generate the HTML layout for the hildren. The HTML layoutfuntionality of the root objet is ativated by the funtion alled slaml-do-layout. Thisfuntion takes one argument, whih is the root objet of the objet struture to present.slaml-do-layout returns a string representation of the HTML form, whih an be a partof an HTML page, as shown in the following.(slaml-show(slaml-page (parm)(html

64 CHAPTER 2. DESIGN(head (title "A title"))(body(slaml-do-layout person-form)))))Here a slaml-page is presented where the person-form is inluded in the body of the page.In this setion it is desribed how a slaml-layout funtion is assoiated with eah objetof the types; slaml-element and slaml-form-element. This funtion allow generation ofa �exible HTML representation of the individual objets. It is furthermore explained howthe funtions slaml-do-layout and slaml-do-layout-hild is used in a slaml-layoutfuntion to ativate the layout funtionality on hild objets.Updating Objet StruturesWhen the objet struture is presented to the lient as an HTML form the lient an �ll datain the HTML input elements. As explained, the HTML input elements in the HTML formrepresents the slaml-basi-elements at the server. When the lient submits the HTMLform, key/value pairs are returned to the server. These key/value pairs are used to updatethe objet struture. As eah of the HTML input elements has a unique id as name - andthe slaml-basi-elements has the same ids - the objet struture an be traversed andthe values entered by the lient an be assigned to the struture. This is done by using thefuntion alled slaml-update-objet! (page 123). This funtion takes two parameters.The �rst is the root of the objet struture, presented to the lient. The seond parameteris the key/value pairs returned from the lient. Given these two parameters, the objetstruture is updated with the values from the request and the developer an then query theobjets for data.To allow operation on list strutures rather than objet strutures, the slaml-update-objet!returns a list representing the objet struture as a tagged list. The reason for returninga list when the objet struture is updated is that lists are the general data struture inSheme. The resulting list struture is shown here.(slaml-form-element(obj-name . person-omposite)(slaml-basi-element(submit-button-leaf . ""))(slaml-basi-element(have-ar-leaf . ""))(slaml-element(obj-name . name-omposite)(slaml-basi-element(last-name-leaf . "my last name"))(slaml-basi-element(first-name-leaf . "my first name"))))This example shows the list struture returned from slaml-update-objet! given theperson-omposite objet as �rst parameter and the key/value pairs - returned from slaml-show

2.2. COMPLEX FORMS FRAMEWORK 65- as seond parameter.The list struture returned from slaml-update-objet! represents the objet struturewith person-omposite as root element. The list is tagged with the name of the type of eah ofthe three lasses in the SLAML framework. The slaml-form-element and slaml-elementtagged list strutures onsist of a key/value pair list as the �rst element. The key is obj-name and the value is the name of the objet that is represented by this list. The rest ofthe list is the hildren of this objet. These an be of the types slaml-basi-element andslaml-element.The slaml-basi-element list struture onsist of a key/value pair, where the key is thename of the objet that the list represents. The value of the list is the string entered intothe HTML input element by the lient.The list is tagged with the type of objet that the list struture represents. It is not alwayssatisfatory to use the type of the objet as the tag. The reason is that the �rst symbol ina tagged list spei�es the type of the ontent of the list. And as the ontent of the list ismore than an element in SLAML, it is bene�ial to allow the developer to speify a ustomtag. This is done by introduing a property named tagtype to the objet struture. This isillustrated in the following.(define person-form(slaml-form-element 'name "person-omposite"'tagtype "person"'ation ""'elements(slaml-reate-obj-lst(slaml-element 'name "name-omposite"'tagtype "name"'elements(slaml-reate-obj-lst(slaml-basi-element 'name "first-name-leaf"'tagtype "first-name")(slaml-basi-element 'name "last-name-leaf"'tagtype "last-name"))'layout name-layout)(slaml-basi-element 'name "have-ar-leaf"'tagtype "have-ar"'type "CHECKBOX")(slaml-basi-element 'name "submit-button-leaf"'tagtype "submit-button"'type "SUBMIT"))'layout person-layout))Figure 2.12: Creation of the person-omposite objet struture with a tagtype for eah objet.In Figure 2.12 it is spei�ed that the list representing the person-omposite objet must betagged with person. The name-omposite must be tagged with name and so forth. The

66 CHAPTER 2. DESIGNresulting list is seen in the following.(person(obj-name . person-omposite)(submit-button(submit-button-leaf . ""))(have-ar(have-ar-leaf . ""))(name(obj-name . name-omposite)(last-name(last-name-leaf . "my last name"))(first-name(first-name-leaf . "my first name"))))This list is tagged in the way spei�ed, and thereby the tagging is more spei� than in thease where no ustom tagging is used.2.2.6 Example of the Complex Forms FrameworkIn this setion an example of how to use the omplex forms framework in SLAML is shownand explained. The example presents the use of the priniples already introdued and willtherefore not be desribed in all details. The example is split into three steps. First is thebinding of slaml-layout funtions to names. Seond is the reation of the objet strutureand third is the presentation and updating. A larger example of the omplex forms frame-work an be seen in Chapter 3.The �rst thing done is to de�ne two layout funtions, whih represents the HTML layout ofperson-form and name-omposite.(define person-layout(slaml-layout (self args)(table(tr (td "Person Information" 'olspan "2"))(tr (td (slaml-do-layout-hild self "name-omposite")))(tr (td (string-append "Do you have a ar?"(slaml-do-layout-hild self "have-ar-leaf"))))(tr (td (slaml-do-layout-hild self "submit-button-leaf")))'border "1")))(define name-layout(slaml-layout (self args)(table(tr (td "Name" 'olspan "2"))(tr (td "First name")(td (slaml-do-layout-hild self "first-name-leaf")))(tr (td "Last name")

2.2. COMPLEX FORMS FRAMEWORK 67(td (slaml-do-layout-hild self "last-name-leaf")))'border "1")))The HTML layout of the person-form is the HTML layout of the two omposite objetsin the HTML form (person-omposite and name-omposite). The �rst layout is the HTMLlayout of the person-form. This layout is bound to the name person-layout in the above ex-ample. The person-form objet is responsible for doing HTML layout of the name-omposite,have-ar-leaf and submit-button-leaf objets. The seond layout funtion is the layout fun-tion for the name-omposite objet. This layout is bound to the name name-layout. Thename-omposite objet is responsible for doing HTML layout on the �rst-name-leaf andlast-name-leaf.The HTML presentation of the person-form is shown in Figure 2.13.

Figure 2.13: Sreen shot of the omplex HTML form exampleThe next step is to build the person-form objet struture to present to the lient. The ob-jet struture is seen in Figure 2.12 (on page 65). This �gure shows how the objet strutureis build and that it is bound to the name person-form. The layout is also added to the objetstruture, by the use of the layout attribute. Next step is to present the objet strutureto the lient. This is shown in the following.(define page-data(slaml-update-objet!person-form(slaml-show(slaml-page (parm)(html(head (title "A title"))

68 CHAPTER 2. DESIGN(body(slaml-do-layout person-form)))))))(slaml-show(slaml-page (parm)(html(head (title "A title"))(body(table(tr (td "Name" 'olspan "2"))(tr (td "First-name")(td (get-first-name-from-form page-data)))(tr (td "Last-name")(td (get-last-name-from-form page-data)))(tr (td "Car ?")(td (get-have-ar-from-form page-data))))))))The �rst thing that happens in the above is that the HTML page with person-form isshown to the lient. When the lient submits the HTML form, the person-form is updatedby the funtion slaml-update-objet!, whih returns a tagged list representing the ob-jet struture. This list is bound to the name page-data. The last thing that happens isthat page-data is shown on a new HTML page. The delaration of the seletor funtionsalled: get-�rst-name-from-form, get-last-name-from-form, and get-have-ar-from-form arenot shown in this example. They are used to get data from the tagged list returned fromslaml-update-objet!.2.2.7 Solution to Complex Forms ProblemIn this setion it is disussed how the SLAML omplex form framework solves the Complexforms problem disussed in Setion 1.1.3. The Complex forms problem is divided in threeparts. The �rst onerns building the omplex struture the seond onerns presenting theomplex struture and the last onerns updating the omplex struture with data from thelient.Building the omplex struture is done by reating objets using a onstrutor mehanism.By adding objets to other objets an objet struture is build. The individual objet in thisstruture ontains a referene to its hildren. This objet struture represents the HTMLform that is to be presented to the lient. A message passing mehanism is developed whihallow ativation of methods on the individual objets. This funtion is named slaml-send.Presenting the omplex struture is done by assigning the individual objet a layout fun-tion that is responsible for generating the HTML representation of that partiular ob-jet. These layout funtions are reated with the slaml-layout funtion. A funtionis introdued, whih an ativate the layout funtions on its hildren. This is namedslaml-do-layout-hild. A speial funtion named slaml-do-layout, is used to ativatethe layout funtion on the root element.

2.3. VALIDATION FRAMEWORK 69Updating the omplex struture is done by invoking slaml-update-objet! with the rootobjet and the form parameters reeived for the lient as parameters. This inserts thedata entered by the lient into the appropriate objets in the objet struture. As an ad-ditional feature a nested list representation of the objet struture is returned from theslaml-update-objet funtion.This gives the developer possibility to perform the three steps in the Complex forms problem.2.3 Validation FrameworkAs shown in the analysis, input validation is not supported diretly in HTML/CGI. It is ofinterest to build validation into the SLAML framework. Giving the developer the possibilityto write validating funtions in the same language as the HTML is generated, makes itpossible to remove the need of external tehnologies. The design of validation is made onbehalf of hypothesis three, from the problems de�nition:Hypothesis 3:It is possible to onstrut a validation framework that helps the devel-oper to validate data from the lient.The goal is to give the developer the possibility to use a validation framework together withthe SLAML session framework. In this validation framework, two possible levels of validationhave been identi�ed.1. Page level2. Objet levelPage level validation is related to validation of a slaml-page, whih is presented to a lientby using the slaml-show funtion. Objet level validation is related to validation of theomposite and non-omposite objets presented in the solution to the Complex forms prob-lem. The reason for introduing validation on both the objet level as well as the page levelis the independent nature of the two frameworks. A developer relying on the omplex formframework does not have to use the session framework and vie versa. If validation is notsupported on both levels, then validation is impossible in some situations. In the followingthe design of the validation framework is presented. The onsidererations regarding thedesign are presented as alternatives to the atual solutions. The reason for not inludinga onsiderations setion as in the rest of the design is, that muh of the design is given,sine it is almost ditated by the session framework and the omplex forms framework, howthe validation framework must be designed. This is the ase, sine we aim for onsistentapproahes among the di�erent frameworks.

70 CHAPTER 2. DESIGN2.3.1 Design of the Validation Framework in SLAMLThe following presents the hoies made, regarding the design of the validation framework.Eah of the two levels is handled individually. However, a general deision onerning lientside or server side validation has been taken. The validation on both levels is handled onthe server. Two reasons exist for this hoie. First, the needed tehnology (Sheme) is notavailable as a sripting language that an be exeuted by the browser. Seond, lient sidevalidation does not ensure HTML form input to be validated. We are aware, that server sidevalidation an beome a problem regarding bandwidth usage if many users are interested invalidating information at the same time. A solution to this problem an be to validate inputon both the server and lient as it is done with Powerforms in Bigwig.Page Level DesignIt has been deided, that validation of a page, is done by extending the slaml-show funtion.The reason for not using a delarative manner as done by Powerforms, is that Powerformsrelies on already de�ned �types�. A delarative fashion of speifying valid types does not �twell in a weakly typed funtional oriented programming language as Sheme. Powerformsalso rely on JavaSript for evaluation, sine a format is translated to JavaSript. TranslatingSheme ode to JavaSript seems to omprehensive, to allow lient side input validation.Extending slaml-show means, that if a slaml-page must be validated aording to a hekfuntion, slaml-show must be alled in the following way:(slaml-show a-page 'hek hek-page)The hek attribute spei�es, that the hek-page funtion must be used to validate thepage a-page. Here the syntax di�ers from XML like syntax, sine hek-page is a funtionand not a string. All HTML form information from the presented page (a-page) must bevalidated with the hek funtion alled hek-page. For the hek funtion to validate thedata returned from a-page it must take the data as parameter. Before the form parametersare used as an argument to the hek funtion, they are onverted to a key/value pairs list.The slaml-formparms-key->value (page 117) an be used to extrat the value of a keygiven the form parameters.If a hek funtion is spei�ed with the hek attribute to slaml-show, it returns the valuereturned by the hek funtion. This gives the developer the �exibility to de�ne the returnvalue from slaml-show, whih means, that a hek funtion is not neessary limited to return#t/#f (true or false). The following is an example of a hek funtion, whih veri�es that anumber is between two values (iname is the name of the input element) whih are spei�edby the developer.(define (is-between? form-parms limits)(let ((num (slaml-formparms-key->value 'iname form-parms))(min (get-min limits))(max (get-max limits)))

2.3. VALIDATION FRAMEWORK 71(ond((not-a-num? num) #f)((and (< (string->number num) min) (> (string->number num) max)) num)(else #f))))As seen the hek funtion takes two parameters, the form parameters and an additional pa-rameter (a list with two numbers, named limits). The hek funtion �rst extrats the valueentered in the HTML input element named iname with the slaml-formparms-key->valuefuntion and stores it in the num variable. Furthermore, the minimum and maximum valuesare needed. These are extrat from the limits parameter (the parameter spei�ed by thedeveloper), by using the get-min and get-max funtions. The values returned from thesefuntions are stored in the variables min and max, respetively. The atual validation ishandled in the ond speial form: if num is not a number or not between min and max, #fis returned. Otherwise the value from the HTML input element is returned.Parameters to hek funtions are spei�ed in a similar way, as parameters to a slaml-pageor a slaml-session, namely by speifying an attribute with the parameter as value. Inthe page level validation framework, the attribute is named hekparm. To ativate theis-between? hek funtion with 50 as the minimum value, and 100 as maximum, the valuesare wrappend in a list and spei�ed as the value of the hekparm attribute:(slaml-show a-page 'hek is-between? 'hekparm (list 50 100))This example illustrates how a hek funtion take parameters. An example of how to usehek funtions on the page level is presented in Setion 2.3.3. This example also presentshow validation of dependenies is performed.Objet Level DesignConerning validation of a omplex form reated by using the omplex forms framework, twoalternatives are onsidered. The �rst possible solution is to give the whole objet struture toa funtion and let this funtion traverse the objet struture to validate the objet struture.In this approah the developer need to traverse the objets struture expliitly in order tovalidate the struture. The seond, and the hosen solution is to add a hek property to allthe lasses. This allows performing validation on eah objet in the struture and therebythe objet level validation framework �ts well with the omplex struture represented by theobjets. In this solution the traversing of the objet struture is done impliitly by lettingeah node in the objet struture be responsible for validating itself and the subtree it on-sists of.The deision to extend the objets with information about validation, means that all typesof objets must have funtionality to set and get a hek funtion. Furthermore, eah lassmust ontain a property (named valid) speifying if the objet is valid. The attribute valueused for the valid property is either #t or #f. The valid property value is determined bythe hek funtion assigned to the objet. The default value is #t. Funtionality to set(slaml-set-valid (page 125)) and get (slaml-get-valid (page 125)) the valid property

72 CHAPTER 2. DESIGNalso exist. This allows the developer to query eah objet for the status of the validationperformed on the objet. Instead of using message passing when assigning information aboutvalidation to objets, the onstrutor is extended to allow this.A hek funtion an be assigned to an objet by using message passing or by using theonstrutor. By using the onstrutor it is done as follows:(slaml-element 'name "obj-name" 'hek hek-fun)In this example it is stated that the slaml-element named obj-name must be heked withthe funtion bound to the name hek-fun. When this objet is returned and has beenupdated the valid instane variable is set to #t if the validation went well and #f if theobjet data was invalid aording to hek-fun.Sine hek funtions are used to set the valid property on objets, there are requirementsto the hek funtions. They must always return either #t of #f, whereas a hek funtionon the page level does not have requirements to the return value. Likewise, a hek funtionused on the objet level, must always take exatly one parameter. If the objet is of thetype slaml-basi-element, the parameter will be the string entered in the orrespond-ing input element in the HTML form. If the objet is either a slaml-form-element or aslaml-element, the parameter is a list ontaining the hildren. slaml-get-element-from-listis a funtion that an extrat an objet from the list on behalf of a name.To see an example of validation on the objet level, onsult Setion 2.3.3.
2.3.2 Flow of ValidationThis setion will in turn present �ow of both the page level validation as well as objets levelvalidation.Page Level FlowThe �ow of the page level validation ontains two steps. First, get the form parameters fromthe lient. Seond, validate the parameters aording to the hek funtion. This �ow ispresented in Figure 2.14.

2.3. VALIDATION FRAMEWORK 73
Step one

(slaml−display pagefunc (slaml−get−pageparm−parm args)))))

A
n H

T
M

L page

Server Client
slaml−show

Step two

(if check
 (check formparms (slaml−get−checkparm−parm args))
 formparms

(check (slaml−get−checkfunc−parm args)))
(let (formparms (slaml−create−parm−lst (slaml−get−args)))

)
)

Figure 2.14: This �gure presents two steps from the slaml-show funtion. slaml-displaypresents the string representation of a page to the lient. The all to slaml-display will ausethe evaluation to pause, until a new request is issued by the lient.Showing a page to the lient, means that the appliation pauses on the server. The applia-tion will wait until the lient submits information (Step one on Figure 2.14). The �rst thingdone in Step two, is to reate a key/value pairs list ontaining the form parameters (donewith the all: (slaml-reate-parm-lst (slaml-get-args))). The form parameters are stored inthe variable formparms. Next, the hek funtion is extrated from the optional parame-ters to slaml-show and stored in the variable hek. This is done, by using the funtionslaml-get-hekfun-parm, whih returns the value of the hek attribute and #f if nonewas spei�ed. If hek is false (the false branh in the if expression), formparms is re-turned. If a hek funtion is spei�ed (the true branh in the if expression), the hekfuntion is alled with the return value of (slaml-get-hekparm-parm args) as a parameter.slaml-get-hekparm-parm returns the value of the hekparm attribute, and the emptylist if none is spei�ed. Reall, that the hekparm attribute is used to speify parametersto the hek funtion, when slaml-show is alled. All this means, that if a hek funtionis spei�ed when slaml-show is alled, slaml-show returns the return value from the hekfuntion. Otherwise, slaml-show returns the form parameters.Objet Level FlowBefore an objet struture an be validated, the objets in the struture must be assignedvalidation funtions and the related form parameters must be present. Assigning validationfuntions to objets is done by message passing or by the onstrutor mehanism when theobjet struture is instantiated. In order to get the form parameters related to an objet

74 CHAPTER 2. DESIGNstruture, a page where the struture is represented as an HTML form must be presentedto a lient. This is done by alling slaml-show with the page ontaining the related HTMLform as a parameter. When the lient submits the HTML form, the form parameters arereturned from slaml-show. These form parameters an then be used to update the objetstruture. This is done, by alling slaml-update-objet! with the objet struture and theform parameters as parameters. slaml-update-objet! ativates the validation funtionsin relation to the objet struture. This means, that a hek funtion on an objet ofthe slaml-basi-element type is ativated with the value entered in the related inputelement. Furthermore, a hek funtion on a omposite objet (slaml-form-element orslaml-element) is ativated with the objets hildren. This means, that a omposite objetis responsible for validating the subtree it represents. By setting the valid property ofeah objet in the objet struture to the return value of its assoiated validation funtion,the entire objet struture is validated. Furthermore, information about the validation isadded to the individual elements in the list returned from slaml-update-objet!. Thismeans, that it an be determined if an objet is valid, by either searhing the list returnedfrom slaml-update-objet! or by querying the individual objet for the value of its validproperty.2.3.3 Example of Validation FrameworkThis setion gives a small example on how to use validation on the page level and theobjet level. The senario used in the examples is a single HTML page ontaining two inputelements. The value entered in both elements must be numbers, and the value entered inthe seond input element must be the double of the value entered in the �rst. This yieldfor validation on single input elements, but also validation on the dependenies between theinput elements. Additional examples an be found in Chapter 3.Page Level Validation ExampleThe �rst thing done, is to reate the HTML page (named enter-double) with the inputelements. There are three input elements (two textual input elements and one submitinput element) inside a form:(slaml-define-page enter-double(slaml-page (parms)(html(head (title "Number test"))(body(form 'ation ""(p "Enter a value:")(input 'type "text" 'name "value1")(p "Enter the double:")(input 'type "text" 'name "value2")(input 'type "submit")))) ; end html))

2.3. VALIDATION FRAMEWORK 75To hek, if the values entered in the input elements are numbers, a funtion alled is-number?is reated. This funtion is alled from the validation funtion (named double-value?), thatis assigned to the enter-double page.(define (is-number? str)(integer? (string->number str)))(define (double-value? form-parms extra)(let ((val1 (slaml-formparms-key->value 'value1 form-parms))(val2 (slaml-formparms-key->value 'value2 form-parms)))(if (and (is-number? val1) (is-number? val2))(let ((num1 (string->number val1))(num2 (string->number val2)))(if (equal? num2 (+ num1 num1))form-parms#f ;not the double size))#f ;not both numbers)))(slaml-show enter-double 'hek double-value?)The double-value? funtion takes the form parameters as input (and the additional seondinput, whih is not used here). The values entered in the two input elements are extrated,and stored in loal variables (val1 and val2). It is veri�ed if eah of the two values arenumbers. If not, #f is returned. Otherwise, the dependeny is heked. If the numberentered in the seond input element is not the double of the number entered in the �rst, #fis returned. If the dependeny is ful�lled, the form parameters are returned.Objet Level Validation ExampleThis setion will desribe how validation is handled on the objet level. The is-number?funtion from the previous example is used in this example also. The objet struture onsistsof a slaml-form-element whih has three slaml-basi-elements as hildren. Two of thebasi elements are text input elements, and the third is a submit button.

76 CHAPTER 2. DESIGN(define double-form(slaml-form-element'layout (slaml-layout (parm)(string-append(p "Enter a value: ") (slaml-do-layout-hild parm "value1")(p "Enter the double: ") (slaml-do-layout-hild parm "value2")(slaml-do-layout-hild "send-button")))'hek hek-struture-double?'ation ""'elements (slaml-reate-obj-lst(slaml-basi-element 'name "value1"'hek is-number?)(slaml-basi-element 'name "value2"'hek is-number?)(slaml-basi-element'type "SUBMIT"))))Figure 2.15: Creating the objet struture. Notie, that a hek attribute is used to speify thehek funtion - here is-number? - when an objet is reated.As shown in Figure 2.15, two of the slaml-basi-elements are assigned a hek funtion.This is done by the is-number? funtion from the page level validation example. There isalso assigned a hek funtion to the slaml-form-element, namely hek-struture-double?.This funtion has the responsibility to validate the dependeny between the hildren. Thereation of the last hek funtion and the presentation of the page is presented below:(define (hek-struture-double? hildren)(let ((obj1 (slaml-get-element-from-list hildren "value1"))(obj2 (slaml-get-element-from-list hildren "value2")))(if (not (and (slaml-get-valid obj1) (slaml-get-valid obj2)))#f ;they are not both numbers!(let ((num1 (string->number (slaml-get-data obj1)))(num2 (string->number (slaml-get-data obj2)))(equal? num2 (+ num1 num1)))))))(slaml-update-objet! double-form(slaml-show(slaml-page (parms)(html(head (title "Number test"))(body(slaml-do-layout double-form))))))Figure 2.16: The de�nition of the hek-struture-double? funtion and the presentation of thestruture to the lient. Reall, that slaml-show returns the form parameters, andthat slaml-update-objet! takes the objet to update and the form parametersas input.The hek-struture-double? funtion takes the hildren element list as argument. It �rstextrats the objet representation of the two input elements. These objets are stored

2.4. SUMMARY 77in the loal variables obj1 and obj2. Next, it is heked if the data entered in the in-put elements (validated by the is-number? funtion) are numbers. This is done, by usingthe slaml-get-valid funtion, whih returns the value of the valid property from anobjet (reall, that the value of the valid property is determined by the hek funtionon the objet, and it is set when slaml-update-objet! is alled). If either is invalid,#f is returned. Otherwise the data (the values entered in the input elements) from theslaml-basi-elements are extrated with the slaml-get-data (page 127) funtion, and itis heked if the value from input element two is the double of the value from input elementone.The slaml-update-objet! funtion updates the double-form objet, and ativates allthe hek funtions assigned to the objets. To validate the HTML form aording to thedependenies, slaml-get-valid is alled with double-form as the argument. This will returnthe valid attribute set by hek-struture-double?.2.3.4 Solution to Input Validation ProblemIn this setion it is disussed how the validation framework solves the Input validation prob-lem desribed in Setion 1.1.2. The Input validation problem is onsidered on two levels, thepage level and the objet level.Page level validation is done by supplying a validation funtion as parameter to a slaml-show.The validation funtion must be supplied as the attribute value to the attribute named hek.The validation funtion must always aept two parameters. The �rst is the form parametersentered by the lient. The seond is an additional parameter whih an be supplied by usingthe hekparm attribute with the slaml-show funtion. The value of the additional param-eter is the value of the hekparm attribute, and the empty list if none is spei�ed. Thereturn value of the validation funtion on this level an be freely deided by the developerand is returned by slaml-show.Objet level validation is done by adding validation funtionality to eah objet. A validationfuntion on the objet level must take one parameter. A valid property ontaining the statusof the validation is introdued on the lasses in the omplex forms framework. The validationis performed one the objet struture is updated with the form parameters. This is donewith the slaml-update-objet! funtion. It is a requirement that the validation funtionon this level returns a #t or #f value indiating if the data is valid.2.4 SummaryIn this hapter the design of the solutions to the problems mentioned in Setion 1.1 is on-duted. Three setions are presented whih eah orresponds to a hypothesis.During the design of the SLAML session framework it is deided to base the SLAML sessionframework on the session onept from Bigwig (sessions as lexial sope), as this makes the

78 CHAPTER 2. DESIGNdeveloper able to see the entire �ow of a session. A primitive, slaml-session, is introduedto reate a session. Another primitive, slaml-show, is introdued to show a slaml-pageto the lient. The ontrol �ow of the appliation is maintained as the data entered by thelient is returned from the slaml-show primitive. Ativation of a session is done with theslaml-ativate-session primitive.During the design of the omplex forms framework it is deided to rely on objet orienta-tion, as this allows �exible mutation of the omplex struture. Three di�erent lasses areintrodued to represent objets in the objet struture. These are slaml-form-element,slaml-element and slaml-basi-element. A onstrutor mehanism is reated to allow a�exible instantiation of the lasses. Layout onerns of the objet struture is handled byassigning layout funtionality to the individual objets in the objet struture. This layoutfuntionality must be reated with the slaml-layout primitive. Representing the objetstruture to the lient is done by ativating the assigned layout funtionality on eah objetin the struture. One the lient submits the form - representing the objet struture - thedata are assoiated with the individual objets in the objet struture. This assoiation isdone with the funtion slaml-update-objet!. The individual objet an be queried forthe value of its data instane variable.Design of the validation framework is divided into two levels, page level and objet level.This makes validation available on both the omplex forms framework and the session frame-work. On the page level a validation funtion is passed to the slaml-show primitive as thevalue of the hek attribute. A validation funtion must take two parameters. The �rst isthe form parameters entered by the lient. The seond is an additional parameter whih anbe supplied by passing the hekparm attribute to the slaml-show primitive. On the objetlevel validation funtions are written using the slaml-hek funtion. They are assoiatedwith the individual objets in the objet struture. A slaml-hek funtion on the objetlevel must always take one parameter, namely the string value entered by the lient assoi-ated with the partiular objet. The return value must always be #t or #f. Validation isperformed when slaml-update-objet! is used to update the objet struture.This has resulted in three di�erent frameworks solving the problems mentioned in Setion1.1.

3
Example Appliations

Contents3.1 Guess a Number Appliation . 793.2 Student Class Example . 843.3 Summary . 95This hapter introdues two appliations, whih use the SLAML framework (designed andimplemented to solve the problems identi�ed during the analysis see Chapter 1). Re�etionsare made after the presentation of eah appliation. The �rst appliation is a �Guess anumber� appliation. The seond example presented, is a �Student lass� appliation.3.1 Guess a Number AppliationThe �rst appliation implemented in order to show, how the SLAML framework an be used,is �Guess a number�. The idea behind the appliation is that a lient must guess a randomnumber. When a lient enters a guess that is invalid, a hint is shown to help the lient. Sinevalidation is done on the server, a lient/server loop is maintained, until the lient entersthe orret number. The appliation is divided into two parts. The �rst part presents theway, that objets, layout, hek funtions and pages are de�ned and handled. The seondpresents the de�nition of a session, and the �ow of the appliation is desribed. The odepresented in this setion is almost omplete; the de�nition of two - almost stati - pages anda single validation funtion is not inluded. The entire implementation of the appliationis found in Appendix B. For readability, all funtions, objets and pages are de�ned globally.

80 CHAPTER 3. EXAMPLE APPLICATIONS3.1.1 Objets, Layout, Chek Funtions and PagesThe "Guess a number" appliation onsists of three pages. First a welome page, seond thegame loop page and third the end page. The three pages are presented in Figure 3.1.
(A) (B) (C)Figure 3.1: The three pages in the �Guess a number� appliation. Page (A) is the welome page.Page (B) is the page, where the lient an enter a guess. The top of the page, presents a hint,or the text shown in (B) (if it is the �rst time the page is shown). The last page - (C) - presentsthe number of guesses used, when the orret number has been guessed.The �rst and last page are simple and does not use objets to represent struture. Thegame loop page (Page B) onsists of two parts. One part that gives the lient a hint to helpperform the next guess, and one part that ontains the HTML input element and a submitbutton. The de�nition of the guess loop page, is seen in Figure 3.2.(slaml-define-page guess-page(slaml-page (guess-information)(html(head (title "Guess a number!"))(body(get-hint guess-information)(hr)(slaml-do-layout guess-form)))))Figure 3.2: The de�nition of the guess loop page. The page takes a single parameter - guess-information- whih is used when getting a hint (the get-hint funtion). guess-information is a list, whih ontains the guess made by the lient, the number ofguesses used and the right number to guess.This page builds up the two parts needed. The �rst part (the hint) is reated with aall to get-hint and the seond part (the input elements) is done by doing the layout ofguess-form. guess-form is an objet of the type slaml-form-element, whih onsists of aslaml-element, whih again onsists of two slaml-basi-elements. The reation of theobjet struture is seen in Figure 3.3. General for all the objets used, is that they areassigned a tagtype. The tagtype is used when the objets in the struture are updated withthe data entered by the lient (after a request). Similar, all objets are given a name. The

3.1. GUESS A NUMBER APPLICATION 81reason for giving the objets a name, is to identify them when the HTML layout funtion-ality is spei�ed. This is shown later.(define guess-input(slaml-basi-element'hek slaml-is-integer?'name "input-field"'tagtype "input-field-guess"))(define submit-guess-button(slaml-basi-element'name "submit-button"'tagtype "submit-button-guess"'type "SUBMIT"'value "Guess"))(define guess-omposite(slaml-element'layout guess-omposite-layout'elements (slaml-reate-obj-lst guess-input submit-guess-button)'name "guess-omposite"'tagtype "guess-omposite"))(define guess-form(slaml-form-element'layout guess-form-layout'name "guessform"'ation ""'method "GET"'tagtype "guess-form"'elements (slaml-reate-obj-lst guess-omposite)))Figure 3.3: The reation of the objet struture. Notie, that the slaml-basi-element namedinput-�eld is assigned a hek funtion named slaml-is-integer?. Reall, that fun-tions, objets and pages are de�ned global for readability.The �rst objet reated - guess-input - represents the HTML input element on the seondpage in the appliation (see Figure 3.1 (B)). The default value of the type property on theslaml-basi-element lass is TEXT. Sine the type of the HTML input element must beTEXT, the type is not spei�ed when guess-input is instantiated, as TEXT is the default value.guess-input is assigned a hek funtion named slaml-is-integer? (see Appendix B for itsde�nition), whih veri�es if the value entered in the HTML input element is an integer.Next, the submit button is reated. Like the guess-input objet, the submit-guess-buttonis of the type slaml-basi-element. A omposite objet of the type slaml-element isreated, and it is used to represent the two basi elements. A layout funtion - guess-omposite-layout - is assigned to the objet (the layout funtions are shown later). Thetwo basi elements are added to the guess-omposite objet. The elements must be gath-ered, by using the slaml-reate-obj-lst funtion. The guess-omposite objet is added

82 CHAPTER 3. EXAMPLE APPLICATIONSto the root objet, whih is named guess-form. A layout funtion (guess-form-layout) isalso added to the guess-form objet. Even though the guess-form objet is only added asingle hild (guess-omposite), slaml-reate-obj-lst is used. The reason for this, is thatslaml-reate-obj-lst adds a speial tag to the list of elements it returns.In order to present the objet struture in an HTML form, it is needed to speify thelayout of the individual objets in the struture. Layout funtions have been reated tothe guess-form and the guess-omposite objet. The following presents the layout funtionsguess-omposite-layout and guess-form-layout, whih are the layout of the guess-ompositeand guess-form objets respetively:(define guess-form-layout(slaml-layout (self parms)(slaml-do-layout-hild self "guess-omposite")))(define guess-omposite-layout(slaml-layout (self parm)(string-append"Enter your guess:"(table(tr (td (slaml-do-layout-hild self "input-field")))(tr (td (slaml-do-layout-hild self "submit-button")))))))The purpose of the guess-form-layout, is to ativate the HTML layout funtion on its hild.As seen, the name of the hild objet (set in Figure 3.3) is used to speify whih hild tolayout. The guess-omposite-layout layout funtion, spei�es that the input element andthe submit button are plaed in an HTML table.The following setion presents the seond part of the �Guess a number� appliation. Thisinludes the de�nition of the session used in the appliation.3.1.2 Flow and the Session De�nitionThe �ow of the appliation is modeled as a session ontaining three steps. One step handlingthe presentation of eah of the pages de�ned. The de�nition of the guess session is seen inFigure 3.4.

3.1. GUESS A NUMBER APPLICATION 83(slaml-define-session guess-session(slaml-session (session-param)(slaml-show start-game) ;say hello - step one(letre ((guess-loop(lambda (guess guesses right-number)(if (equal? guess right-number)guesses ; Return the number of guesses used(let((obj-strut(slaml-update-objet! guess-form(slaml-showguess-page 'pageparm (list guess guesses right-number)))))(if (slaml-get-valid guess-input)(guess-loop(string->number(slaml-get-data guess-input)) (+ 1 guesses) right-number)(guess-loopNaN (+ 1 guesses) right-number)))))))(let* ((right-number (get-random-number))(guesses (guess-loop 0 0 right-number)) ;do loop - step two)(slaml-show end-game 'pageparm guesses) ;say bye - step threeguesses ; return the number of guesses used));end letre))(slaml-ativate-session guess-session) ; it startsFigure 3.4: The de�nition of the guess-session. The name guess-session is bound to a sessionthat is reated with the slaml-session primitive.The guess-session is ativated with the primitive slaml-ativate-session, and as seen, thesession takes a single parameter (it must always take exatly one parameter). The parameterto a session must be spei�ed when the session is ativated (with slaml-ativate-session).This is not done in this example, so session-param is equal to the empty list. The �rst thingdone in the session, is to all slaml-show with start-game as parameter. The page shown isthe hello page (bound to start-game) and as seen, the page is given no parameters. Next, isthe de�nition of the guess-loop funtion. The guess-loop takes three arguments: the guess,the number of guesses and the right number the lient must guess. The �rst thing done inthe loop, is to hek if the lient has made the right guess. If this is the ase, the numberof guesses is returned. If the lient has not made the right guess, the guess-form objetstruture is updated with the information gained from showing the guess-page (already pre-sented in Figure 3.2) and the objet struture is stored in a variable named obj-strut. Allinformation needed to present the page (reate the hint to the lient), are send as parametersto the page. The page an only take one parameter (spei�ed with the pageparm attribute),

84 CHAPTER 3. EXAMPLE APPLICATIONSso the information is wrapped inside a list. None of the information used to maintain theloop is needed to be send to the lient in hidden �elds, but are instead handled as variablesand parameters as shown.A hek funtion is assigned to the guess-input objet, and after the objet struture hasbeen updated (by the slaml-update-objet! funtion), it is asked if an objet is validaording to its hek funtion. This is done on the guess-input objet, to see if the liententered a number. If this is the ase, the game loop is alled, with the entered number, thenumber of guesses inreased by one and the right number. Else, the game loop is alled withNaN - Not a Number - as a guess (NaN is bound to the value -1), the number of guessesinreased by one and the right number, as arguments.After the de�nition of the loop, a loal variable named right-number, holding the randomgenerated number (in the example it is generated by the funtion get-random-number), isreated. Another variable - guesses - is set to represent the return value of a all to theguess-loop. The all to the loop means, that a number of interations with the lient isarried out. After the right number is guessed (the loop returns), the �nal page (end-game)is presented. The number of guesses used is send as a parameter to the page. The sessionreturns the number of guesses used.As shown in the example, information and funtions needed to handle the �ow of the sessionis maintained and de�ned loally to the session. This allows for enapsulation (in the formof lexial sope) of funtionality and information. If needed, all the pages, objets and helpfuntions (seen in Appendix B) an be reated loally to the session (in a similar way as itis done with the guess-loop). The session an be loaded when the server is started (as it anbe done with all libraries), and an be ativated whenever wanted, by performing the all:(slaml-ativate-session guess-session).In the example, a validation funtion is added to the guess-input objet. It is somewhatomprehensive to �rst reate a validation funtion, add it to the objet and ask the objetif it is valid, when only a single HTML input element exist on the HTML page. Sine theonly information from the guess-page is the value entered in the input element, page levelvalidation an be used. This eliminates the need to query an objet to determine if theinput is a number. However, it is still our opinion that objet level validation is bene�ialwhen more than a single input element exist on the HTML page. The reason for this is,that a page level validation funtion gets omplex (many if and ond statements), if it mustvalidate many input values.3.2 Student Class ExampleTo show that the SLAML framework is appliable in real world appliations, a large exam-ple appliation (about 1000 lines of ode) is developed. This appliation is desribed in thissetion. The appliation is not desribed in every detail but instead an overview is givenof the system. The reason is that the software is large and giving a detailed desription of

3.2. STUDENT CLASS EXAMPLE 85the whole appliation, is not neessary to understand how the SLAML framework is used inthis appliation. The plaes where the SLAML framework is used, is desribed in details togive an indiation of the usability of the SLAML framework in this appliation. The entiresoure ode of the program is found in the folder ExampleAppliations/StudentClass on theCD distributed with this report.3.2.1 Overview of the AppliationThe appliation is a student lass registration appliation. In this appliation it is possiblefor teahers to add new ourses to a list of ourses. Furthermore, students are able to seletthe ourses they want to attend from the list of all ourses. Eah student have a pro�le,where details about the presentation of the pages for the student is set. Last, a alendar isavailable where a ourse an be sheduled.Flow of the AppliationThe �ow of the Student lass appliation is seen in Figure 3.5.

ExitAdd new course

Login screen

Login ok?

No

Teacher?

Yes No

Teacher menu Student Menu

Show calendar

Start

If teacher If student

Goodbye page

Yes

Edit profile
course calendar

Show a Add to/remove
from course

Figure 3.5: The �ow of the Student lass appliation.

86 CHAPTER 3. EXAMPLE APPLICATIONSThe appliation starts with a login sreen where the user is asked for username and password.If the username and password is inorret, the login sreen is shown again. If the usernameand password is orret, the type of user is examined. There exist two types of users in theappliation, students and teahers. The di�erene between these two types lays in what theyare allowed to do. The next step in the appliation is to see if the user who is logged in, isa teaher. If this is the ase, the teahers menu is shown, otherwise the students menu isshown. Teahers are shown a menu with �ve items:� Edit pro�le� Add to/remove from ourse� Add new ourse� Show a ourse alendar� ExitStudents are shown a menu with three items:� Edit pro�le� Add to/remove from ourse� ExitAs it is seen the two menus are the same, exept that a teaher has two additional menuitems (Add new ourse and Show a ourse alendar). Depending on whih item is hosen inthe menus, a new page is shown where an HTML form is present. In the following eah ofthe menus are desribed.The �rst menu item is Edit pro�le. Here the user an hange his pro�le, this inludes thebakground olor, the welome message and the title. The Edit pro�le page has three inputelements in the HTML form, and the page is shown in Figure 3.6.

Figure 3.6: Edit pro�le page from Student lass appliation.

3.2. STUDENT CLASS EXAMPLE 87The next menu item is Add to/remove from ourse. Here the user an speify whih oursesto attend. All the ourses in the appliation are available and a heked hek box indiatesif the user wishes to attend a given ourse. The Add to/remove from ourse page is shownin Figure 3.7.

Figure 3.7: Add to/remove from ourse page from Student lass appliation.The third menu item is only available to teahers and is alled Add new ourse. Here teahersan add a ourse to the list of already existing ourses. The details that are needed to reatea new ourse, is shown in an HTML form on this page. The teaher then enters informationabout the new ourse. When the submit button is pressed, the ourse is added to the list ofourses. This page is shown in Figure 3.8.

Figure 3.8: Add new ourse page from Student lass appliation.The fourth menu item is also available only to teahers and is alled Show a ourse alendar.The only purpose for this alendar is as a demonstration of the use of omplex HTML forms,where more than one item of the same type is shown on a page. Therefore this alendar do

88 CHAPTER 3. EXAMPLE APPLICATIONSnot update the global state in the program, neither is the alendar assoiated to a spei�ourse. This interation onsists of two pages. The �rst page shows a alendar onsisting ofhek boxes. Here it is possible to mark days in a alendar. This page is shown in Figure3.9.

Figure 3.9: Show ourse alendar page from Student lass appliation.When the submit button on this page is pressed a new page is shown where the days - thatwas marked on the previous - is marked in a new alendar. This page is shown in Figure3.10.

Figure 3.10: Show alendar page from Student lass appliation.3.2.2 Use of the Session ConeptIn this setion it is explained how the session onept is used in the Student Class appliation.This appliation ontains �ve sessions:� main-session

3.2. STUDENT CLASS EXAMPLE 89� login-session� student-session� teaher-session� exit-sessionThe �ow of the sessions is illustrated in Figure 3.11. main-session is the �rst session ativatedwhen the appliation is started. main-session is responsible for ativating the login-session.login-session is the session asking for the username and password and returning a reord withthe data representing this user. student-session and teaher-session are almost idential.Depending on the type of user (teaher or student) one of the sessions is started one theuser has logged in. The reason for having two sessions that are nearly idential, is to showthat it is possible to have two sessions and on behalf of the type of the user, hoose whihsession to ativate. The last session is alled exit-session and is ativated when a user logsout. It shows a goodbye page and ativates main-session again.
login−session

show username/password page

is username and password valid?

recieve username and password

no

yes

teacher−session

if next−page == edit−profile
show edit−profile page
update "database"

update "database"

if next−page == add−course

activate teacher−session

activate teacher−session

show add−course page
update "database"

if next−page == show−course−calendar
show build−a−course−calendar page
show show−course−calendar page

if next−page == exit

activate teacher−session

activate teacher−session

activate exit−session

main−session

activate login−session

type of person:

student

activate student−session

teacher

activate teacher−session

show general−menu−page

if next−page == edit−profile
show edit−profile page
update "database"
activate student−session

if next−page == add−to/from−course
show add−to/from−course page
update "database"
activate student−session

if next−page == exit
activate exit session

student−session

exit−session

activate main−session

show goodbye page

show general−menu−page

if next−page == add−to/from−course
show add−to/from−course page

Figure 3.11: The session �ow of the Student lass appliation.In the following login-session and student-session are explained.

90 CHAPTER 3. EXAMPLE APPLICATIONSLogin-sessionThe �rst session that is disussed is the login-session. The login-session illustrates theusefulness of using reursive sessions. Furthermore it shows how a session an be used toreturn a value.(slaml-define-sessionlogin-session(slaml-session (lst)(let ((app-user(slaml-showlogin-page'hek login-hek'hekparm people-lst))) ; hek if the person is valid; this is page level validation(if app-user ; is the user valid ?app-user ; yes : return the users information(slaml-ativate-session login-session))))) ; no : reativate the login-sessionThe login-session shows login-page to the lient. If the user enters an non-valid usernameor password, the login-page return #f else it return the reord struture - named app-user -for the person with the urrently entered username and password. This is done with a hekfuntion, that is explained later. The last if expression in the login-session, heks if a validusername and password is entered. If it is a valid user, the users reord is returned from thesession. If it is not a valid user (the login-page returned #f) the login-session is ativatedagain. This illustrated the usefulness of reursion of sessions.Student-sessionOther sessions that make use of reursion are student-session and teaher-session. Further-more these sessions rely on session parameters. The session parameter is used to send aperson reord to the session and in this way make it possible to ustomize the layout of thepages as spei�ed in the users pro�le. The student-session and the teaher-session are alsoused to show the right page based on the link in the teaher-menu or student-menu. Eahof the links in the menu is reated as follows:(a "Edit profile" 'href "?page=edit-profile-page")The href attribute sets the page url parameter to the value of the next page to display. Asthe student-session and teaher-session are alike, only the student-session is shown.

3.2. STUDENT CLASS EXAMPLE 91(slaml-define-sessionstudent-session ; the student-session(slaml-session (lst)(let* ((app-person (ar lst))(next-page (slaml-formparms-key->value ; show general-menu-page'page ; and get the "page" parameter(slaml-showgeneral-menu-page'pageparm (list app-person))))) ; show the menu page for the student(ond ; based on the page parameter submitted hoose a page((string=? "edit-profile-page" next-page) ; edit profile;"show the edit-profile-page";"when the form is submitted, update the onfiguration";"ativate the student session again")((string=? "add-remove-page" next-page) ; add to or remove from ourse page;"show the add-remove-page";"when the form is submitted, update the ourse list";"ativate the student session again")((string=? "exit" next-page) ; the exit session;"ativate the exit session")))))Figure 3.12: The de�nition of student-session.In the above example some of the ode has been replaed with text. This is done to makeit easier to read. This example shows the de�nition of the student-session. In this examplenext-page is bound to the value of the page form parameter (from the link in the menu),whih is set by the link in the general-menu-page. Based on the page parameter the wantedation is performed (edit pro�le, add to/remove from ourses or exit). After eah ation isperformed, the student-session is ativated again. This approah looks like the approahtaken in CGI, but this is neessary to branh to the right ation. This approah di�ershowever from the CGI approah as here it is expliitly stated to restart the session. This isdisussed in details in Setion 4.3.
3.2.3 Use of Complex FormsComplex HTML forms are used in four plaes in the appliation (Edit pro�le, Add to/removefrom ourse, Add new ourse and Show a ourse alendar). In this setion it is shown howomplex HTML forms are used on Add new ourse page and Show a ourse alendar page.The reason for hoosing these two is that these are the two most omplex HTML forms inthe appliation.

92 CHAPTER 3. EXAMPLE APPLICATIONSAdd New CourseWhen adding a ourse to the list of ourses, it is neessary to speify all the entries in aourse reord. A ourse reord struture look as follows:(ourse(name . "Sheme leture")(teaher . "1")(modules . "5")(plae . "E0-001")(student-info (min-students . "2") (max-students . "10"))(id . "a1"))The �rst entry is the name of the ourse. This is the string shown on the Add to/removefrom ourse page. The next entry is the teaher entry, whih spei�es the id of the teaherthat will be teahing the ourse. modules spei�es how many modules (lessons) the ourseonsists of. plae, is the name of the plae where the ourse is held. student-info is a newreord struture, speifying what the minimum and the maximum number of students arefor this ourse. Last is the id of the ourse, this is a unique id used to relate ourses tostudents.To present a form where these informations an be entered, a omplex form is build. Thereason for building a form to handle the new ourse is that the ourse reord struture isbuild to math the list returned from the slaml-update-objet! funtion. This makes iteasy to mutate the global list - where all ourses are present - to inlude the new ourse.When the list is returned from slaml-update-objet! it is made to �t the ourse reordshown above and it is then added to the global list of ourses. This makes it easy to addnew ourses to the list of ourses.Show a Course CalendarAnother plae where a omplex HTML form is used, is in the Show a ourse alendar page.This HTML form onsists of four weeks where eah week onsists of seven days. To generatea week objet with seven days a funtion is used.(define (reate-ourse-alendar-days-objets) ; reates a week(slaml-reate-obj-lst(slaml-basi-element'value "present" 'tagtype "day" 'name "Mo" 'type "CHECKBOX")(slaml-basi-element'value "present" 'tagtype "day" 'name "Tu" 'type "CHECKBOX")(slaml-basi-element'value "present" 'tagtype "day" 'name "We" 'type "CHECKBOX")(slaml-basi-element'value "present" 'tagtype "day" 'name "Th" 'type "CHECKBOX")(slaml-basi-element'value "present" 'tagtype "day" 'name "Fr" 'type "CHECKBOX")(slaml-basi-element'value "present" 'tagtype "day" 'name "Sa" 'type "CHECKBOX")

3.2. STUDENT CLASS EXAMPLE 93(slaml-basi-element'value "present" 'tagtype "day" 'name "Su" 'type "CHECKBOX")))This funtion takes no parameters, but returns an objet-list (whih is a tagged list usedinside the objets to represent referenes to other objets) of seven slaml-basi-elementsrepresenting a week. The reason for using a funtion instead of binding the list to a name,is that a new instanes of the week is needed. As it is seen eah day is tagged with dayand the name of the objets are the names of the days of a week. The reason for taggingthe list with day is that thereby it is possible to speify that eah of the lists returned fromslaml-update-objet! represents a day. The list representing one week is then added toeah of the four weeks in the alendar HTML form.(define reate-ourse-alendar-weeks-objet ; a month of objets(slaml-reate-obj-lst(slaml-element'name "week1"'tagtype "week"'elements (reate-ourse-alendar-days-objets)'layout week-layout)(slaml-element'name "week2"'tagtype "week"'elements (reate-ourse-alendar-days-objets)'layout week-layout)(slaml-element'name "week3"'tagtype "week"'elements (reate-ourse-alendar-days-objets)'layout week-layout)(slaml-element'name "week4"'tagtype "week"'elements (reate-ourse-alendar-days-objets)'layout week-layout)))Here the weeks are tagged with week and the name of the objets are the name of theweeks (here week1, week2, week3 and week4). To get the elements (days) for eah week,the reate-ourse-alendar-days-objets funtion is alled. The list representing four weeks isbound to the name reate-ourse-alendar-weeks-objet as only four weeks are needed in theappliation. The list representing four weeks an now be added as elements to the alendarHTML form.(define ourse-alendar-form ; alendar form(slaml-form-element'ation ""'elements (appendreate-ourse-alendar-weeks-objet

94 CHAPTER 3. EXAMPLE APPLICATIONS(list (slaml-basi-element'name "submit-button"'tagtype "submit-button"'type "SUBMIT"'value "Submit alendar")))'layout month-layout))Here it is seen that the new slaml-form-element is bound to the name ourse-alendar-form. Furthermore a submit button is added to the HTML form. The ourse-alendar-formis then shown to the lient whih heks the hek boxes that represents the days where aourse is held. When the HTML form is submitted, the data returned from the HTML formis used to update the ourse-alendar-form objet struture. How this is done is illustratedin the following.(let ((page-data(slaml-showshow-ourse-alendar-page'pageparm (list app-person))))(slaml-showshow-ourse-alendar-result-page'pageparm (list app-person page-data))(slaml-ativate-session teaher-session 'sessionparm lst))First is the show-ourse-alendar-page shown to the lient. The resulting form parameter listis then bound to the name page-data. The reord representing the urrent user is bound tothe name app-person. The reason for sending this reord to all pages is that it ontains thepro�le of the person. This information is used to e.g. set the bakground olor of the page.Next step in the appliation is to show the page bound to the name show-ourse-alendar-result-page. This page is given a list ontaining app-person and page-data as parameter,as this data is used to build the resulting alendar. Last the teaher-session is ativatedagain. The lst parameter, whih is passed as parameter to the teaher-session is passed asparameter to the session from whih the above example is taken.3.2.4 Use of ValidationBoth page level validation and objet level validation is used in the appliation. Page levelvalidation is used in the login-session when the login-page is alled. Objet level validationis used to hek the bakground olor on the Edit pro�le page. Both of these are explainedin this setion.Login ChekWhen the login-page is shown, a hek funtion is used to hek the username and passwordagainst a list of persons (whih eah has a username and a password).

3.3. SUMMARY 95(define login-hek ; funtion used to do page level hek on the login form(lambda (form-parms all-persons-lst)(let ((username (slaml-formparms-key->value 'username form-parms))(password (slaml-formparms-key->value 'password form-parms)))(hek-user-and-password username password (get-persons all-persons-lst)))))In the above the hek funtion used with the login-page is seen. It is seen that the form-parms parameter is asked for the username and password. This is done with the funtionslaml-formparms-key->value. The username and the password is bound to the variablesalled username and password, respetively. These two values are passed to the funtionhek-user-and-password, whih takes a username, a password and a list of persons as pa-rameter. Based on these parameters the person that mathes the username and passwordis returned. If no person mathes the username and password, #f if returned. The seondparameter to the login-hek funtion is the list of all persons in the system. login-hekreturns what the hek-user-and-password returns.Bakground Color ChekAn example of objet level validation is in the Edit pro�le menu, where the submittedbakground olor is heked. The reason for heking the bakground olor is that if theuser submits blak as the bakground olor the user annot see the text on the sreen as thisis blak too. The following hek funtion is used for heking the bakground olor:(define (hek-bakground-olor str)(not (string=? str "blak")))This hek funtion is simple, but it is useful sine it makes it impossible to selet the samebakground olor as the text olor.Another possibility to this problem is to add a menu to the page where the olors an beseleted from. Thereby, it is unneessary to do hek on this value as it is impossible tohoose a wrong olor.Chek on oherene of two input elements is useful in the student-info reord struture inthe Add new ourse page. Here it must always be the ase that the minimum number ofstudents is lower than the maximum number of students. But as validation on objets ofthe type slaml-elements is not implemented it is not used in this appliation.3.3 SummaryTwo appliations based on the SLAML framework is disussed in this hapter. First a smallappliation - �Guess a number� - is disussed. Seond, a larger appliation - �Student lass�- is disussed. Based on the experienes gained during the implementation of these example

96 CHAPTER 3. EXAMPLE APPLICATIONSappliations, the following onludes on usability of the frameworks.The session framework in SLAML gives the developer the possibility to think of a Webappliation as one program. The result is that the �ow of the Web appliation is like the�ow of a non-Web appliation. This means that the �ow of the program is gathered in asingle �le. This gives an overview of the �ow of the appliation. That a session enapsulatesinterations with a lient means that responsibility an be delegated on a higher level thana single page. By this we mean that interations sharing the same responsibility an begathered in a session. An example is a login session where more than one page is responsiblefor ensuring a user is logged in. By doing this it is possible to aess all the pages responsiblefor logging the user in, as a unit.The omplex forms framework, gives the developer possibility to reate an objet strutureon the server and rely on this objet struture to query for data returned from the lient.Therefore, the objet struture send to the lient is also the objet struture that is queriedfor data. Building the objet struture and plaing the layout on the objets in the strutureis a onsiderable amount of work, but one this has been done it is straight forward to updatethe objet struture and query the objets in the struture for data.The validation framework is designed to work on both the page level and the objet level.This means that it is possible to do validation when using the omplex forms framework aswell as the session framework. The validation framework is not implemented on slaml-elementand slaml-form-element. On the page level the form parameters from the lient is sendas parameter to the hek funtion. Thereby, all data from the submitted HTML form anbe heked. This is an advantage sine it thereby is possible to build HTML forms withoutthe omplex forms framework and still get the data validated. However, if both the omplexforms framework and the session framework is used it is redundant to hek on both thepage level and the objet level.

4
ReetionContents4.1 Enountered Problems . 974.2 Current Limitations . 1004.3 SLAML Framework . 1034.4 Summary . 106In this hapter the re�etion of the designed and implemented frameworks are given. Thishapter onsists of four setions.The �rst setion gives an overview of the problems that were enountered during the imple-mentation of the SLAML framework. These problems are related to the Apahe server.The seond setion is about the limitations to the implemented framework in relation tothe design. The limitations are onerned with the implementation done in Sheme as wellas limitations by the problems enountered when implementing the session framework inApahe.The third setion is re�etions on the experienes gained when implementing the exampleappliations (from Chapter 3) with help from the SLAML framework.Last is a summary where the limitations and re�etions are summarized.4.1 Enountered ProblemsDuring the implementation problems were enountered. These are desribed in the followingtwo setions. The nature of the enountered problems is mainly on a low level i.e. involvingmod_laml and the server. The reason for not solving the problems is the deision to plaeour fous on Sheme level implementation.

98 CHAPTER 4. REFLECTION4.1.1 New Apahe ModuleDuring the implementation of the designed solutions a problem onerning mod_laml o-urred. The reason for this problem is the intended implementation of the slaml-showprimitive. We deided to let the slaml-show primitive halt the evaluation of the SLAMLappliation and display a page to the lient. Upon submission of the page from the lient,the program ontrol is returned to the slaml-show primitive in the SLAML appliation.The solution is based on a signal/wait situation in the Apahe server. By a signal/waitsituation we mean that one the �rst request - for a Web appliation - is handled by theserver, the server will spawn a new thread (named session thread) to run the Sheme programin. This means that two threads are present in the server after the �rst request (the Apaheproess that handles the request is also seen as a thread, the main thread). This is seen inFigure 4.1.
session thread

Server Client

Request

Response

Request

Response

session thread main thread

(3) main threadWait
Spawn

Signal main thread
session threadWait

Signal
main threadWait
session thread

Signal main thread
Wait session thread

(slaml−show ...

(slaml−show ...

(4)

(6)

(5)

(1)

(2)

(7)

Figure 4.1: An illustration of the two threads running in the server and the ommuniationbetween them.To handle requests by using threads, the server module must handle seven steps, whih areexplained below. Eah number in the following, orresponds to the same number in the�gure:1. When a lient requests a SLAML appliation, it is handled by the main thread. Themain thread represents the Apahe hild that reeives the request.2. The main thread heks if the session thread is present (heked by a global state in themodule). Sine this is not the ase at the �rst request, the session thread is spawnedand the main thread waits.

4.1. ENCOUNTERED PROBLEMS 993. The session thread starts evaluating the Sheme program requested by the lient, byusing the embedded interpreter.4. When the session thread reahes a slaml-show in the appliation, it signals the mainthread and waits.5. The main thread sends the page - spei�ed as a parameter to slaml-show - to thelient and ends the request. This results in the main thread going idle.6. When the lient submits the HTML form from the page presented, the main threadis resumed. Like step 2, the main thread heks if the session thread is present (byheking the global state in the module). Sine this is not the �rst request to theappliation, the session thread is already present. Therefore it is signaled (instead ofspawned) and the main thread waits.7. When reeiving the signal, the session thread resumes its omputation. This resultsin slaml-show to return the data entered by the lient. The steps from step 4 andforward are ontinued until the appliation is ended.The problem related to this approah is that mod_laml is unable to use threads as it uses theApahe server version 1.3 [apa01℄. We tested the pthread library with mod_laml, but wereunable to reate threads in mod_laml. Additional small modules indiated that threads arenot allowed in a module for the Apahe server version 1.3. Version 2.0 of the Apahe serveris reated to allow better portability and better support for threads, as the proess modelin this version is hanged. This motivated us to implement a module using threads underApahe 2.0, and it worked. Therefore we replaed Apahe version 1.3 with Apahe version2.0 and reated mod_laml for this version of the server.By using Apahe version 2.0 it is possible to use threads in a server module. But it is notpossible to use Apahe version 2.0 together with MzSheme. The reason for this is unknown,but small tests indiates that it is impossible to start a MzSheme interpreter inside Apahe2.0. Therefore we hanged the Sheme interpreter to Guile[gui01℄. This resulted in reationof a module ontaining only the neessary features to perform a proof of onept implemen-tation of the designed solution to the problems presented during the analysis.4.1.2 Handling Data on the ServerDuring the beginning of this semester experiments with handling data sharing on the serverwere onduted. This was motivated by two requirements.First a way to share data between the individual server proesses are needed. The reasonis that Apahe starts several proesses to handle requests from the lient. The proessesannot share data, so if a lient sends a request to one proess this proess must also servethe following requests for the data to be aessible. This is not the ase in Apahe, sine anarbitrary proess an respond to a request. But if the proesses an share data it is unnees-sary to ensure that a given proess always handles requests from a given lient. Seondly it

100 CHAPTER 4. REFLECTIONis needed to make sessions persistent, so in ase the server restarts it an aess the data re-lated to the sessions. This is impossible if data related to the session is kept in main memory.Another reason for onsidering persistene of sessions is the memory usage on the server.If all sessions are kept in main memory and not moved to disk, the memory requirementwill inrease ontinuously. These two problems are disussed and possible solutions are given.We found a library that is used by other Apahe modules (e.g. mod_ssl [Eng02b℄) whihsolves the problem of sharing data between proesses in an Unix system. The library isalled MM [Eng02a℄ and is a �exible way to reate memory that an be shared between thevarious server proesses. This is done by reating a memory segment and give eah serverproess a referene to it. This memory segment is - dependent of the platform - loated ina �le on the hard-disk or in main memory, so using this memory segment is not always ase�ient as main memory.The problem with persistene of sessions is to store the ontents of a Sheme environment.The ontents of the embedded Sheme environment is all the name bindings in the urrentinstane of the interpreter. In general the ontent is all the information needed to reati-vate the Sheme interpreter, as if it has never been deativated. Making sessions persistenthas been done by Queinne in [Que℄. Queinne has implemented a server and a Shemeinterpreter in Java, whih allows ontinuations to be stored on the disk. By implementingboth the server and the Sheme interpreter in Java, Queinne relies on the possibility forserialization in Java [In02a℄ to store ontinuations. Serialization allows writing objet to�les on disk, and to rereate the objets from the �les. Unfortunately this is not possiblewhen relying on Apahe and Guile as these are written in C and serialization is not as easyin C as it is in Java.The implementational task of solving data sharing requires a substantial amount of work,and will plae fous of the projet on the C level instead of the Sheme level. As fous is onthe Sheme level in this projet, it is hosen to rely on a server module where data is keptin main memory and not written to disk. Therefore it is not onsidered any further. Thisresults in a number of limitations whih are stated in the following setion.
4.2 Current LimitationsIn the implemented framework there are limitations in relation to the designed framework.Some of these limitations are related to the implementation of mod_laml. Others are lim-itations made during work at the Sheme level. Limitations in mod_laml are related toimplementation of the slaml-show, sharing data between proesses and making Sheme en-vironments persistent. Limitations in the SLAML framework are made when no new insightis expeted by implementing the faility.

4.2. CURRENT LIMITATIONS 1014.2.1 Mod_laml LimitationsDue to the problems desribed in Setion 4.1 a new implementation of mod_laml is made.It is deided that a basi implementation is su�ient for the purpose of this projet. Themodule need to be able to evaluate Sheme programs - with slaml-show primitives - on theserver. Sine this annot be done with the old mod_laml the solution was to disarding themodule implemented during the preparatory work, and reate a new module for the Apaheserver version 2.0, using the Guile Sheme interpreter. In the following it is presented whatis lost and what is still present from the old mod_laml when using the new mod_laml.In the old module it is possible to load �les into mod_laml when the server is started andthereby derease the exeution time spend on the request. This is still possible in the newmod_laml, but in the new version a Sheme �le is used for loading the libraries, whereasthe old version relies on a speial on�guration �le.In the old version of mod_laml it is possible to have as many lient onneted as the hard-ware allowed. The reason is that the Sheme environment is leaned after eah request. Thisis not possible in the new version of mod_laml as information about the sessions are neededat a later time. Furthermore, sine it is not possible to share data between Apahe proesses,eah lient needs its own Apahe proess. It is impossible to ensure that a lient gets thesame Apahe proess at the next proess so only one Apahe proess an be present at theserver. This is done beause it must be ensured the lient gets the same Apahe proessat the next request. As the Sheme environment in the Apahe proess is dediated to onelient, only one lient an aess the server.The old version of mod_laml has a possibility to use di�erent interpreters. This is not possi-ble in the new version of mod_laml. The reason is that the implementation of this requiresmuh work on the implementation of Sheme in Apahe, and this is not the fous of thisprojet. But implementing support for more than one interpreter is designed in our Dat5report and an be implemented aording to this design.In order to make the new version of mod_laml work with more than one lient it is neessaryto make data sharing and data persistene available on the server. This is the �rst thingto be done in order make this module usable as a prodution server. By prodution serverwe mean a server that is stable enough to be used for other than proof of onept appliations.4.2.2 HTML ElementsIn the design of the omplex forms framework the slaml-basi-element type is reated torepresent basi HTML elements, suh as the HTML input element. In the implementationthe possible HTML elements are limited to the HTML input element. This is hosen as theimplementation of the additional HTML elements does not bring new insight. To implementthe additional HTML elements a new property on objets of the slaml-basi-element typeindiating the element type of the element, must be added. Possible values for this are:

102 CHAPTER 4. REFLECTIONinputselettextareabuttonBesides introduing the element type property, the funtionality of the slaml-basi-elementfuntion must be extended to inlude possible attributes and default values of the propertiesfrom the new HTML elements. For a omplete referene of the elements and the attributesof the elements please refer to [W3C02b℄.The above list ontains only a subset of the HTML elements that an appear as part of anHTML form. The above list is hosen as these are the ones that allows input to be enteredby the lient. As an example the HTML label element is also a valid HTML element insidean HTML form. But it must not be represented as a slaml-basi-element, as it annotrepresent data entered by the lient. Instead the HTML label element is part of the layoutfuntions written on objets of the slaml-form-element and slaml-element types.We suggest to implement the new elements as a property on the slaml-basi-elementlass, indiating the type of the HTML element. An example of a property name an beelement-type. As part of this, funtionality on the slaml-basi-element must be extendedto support the attributes present with the new element type.4.2.3 Error MessagesThe initial goal of this projet is to help the developer in the development proess. Part of thishelp, is to provide suitable and preise error messages when an error is enountered. The taskof writing desriptive error messages has not been a design goal for the SLAML framework.Writing error messages is something that must be done, before software is released. Nospeial onsiderations to the quality of the error messages in the urrent implementation hasbeen given. This is hosen sine the implementation is not intended as a produt for release,but rather as a proof of onept.4.2.4 Validation on slaml-element and slaml-form-elementA validation framework has been developed for both the session framework and the omplexforms framework, but the implementation of the validation is not omplete in the omplexforms framework. Validation on objets of the slaml-element and slaml-form-elementtype is not implemented, as it is not neessary to show that validation on the individ-ual objets is possible. Furthermore, by proving the idea of a validation funtion on theobjets of the slaml-basi-element type we expet this to work on slaml-element andslaml-form-element too. Validation on objets of the slaml-element and slaml-form-elementtype must be implemented for the validation in the omplex forms framework to be omplete.

4.3. SLAML FRAMEWORK 1034.3 SLAML FrameworkIn this setion the experienes with the SLAML framework are onsidered. The sessionframework, omplex forms framework and validation framework are re�eted upon in turn.The re�etions are based on the experienes gained during the implementation of the �Guessa number� example and the �Student lass� example.4.3.1 Session FrameworkBy using the session framework we are able to share data between interations with a lient.This is seen as a strength ompared to a CGI approah, where data sharing is usually doneby sending data between lient and server. In the session framework, data is present on theserver when the next request is reeived. This ensures a dereased use of bandwidth, sinelient input are not send between server and lient in order to be available at a later point.However in CGI there is also a possibility to store data on the server, but this has to bedone expliitly by the programmer. Furthermore, CGI appliations uses �les or databasesfor sharing data sine data in main memory are lost after a request. Using �les to share datameans that the state of the program is aessible from all other sripts in the CGI applia-tion. In the session framework the data reeived from an interation is part of a lexial sopeand thereby proteted from other unrelated interations. Furthermore, the data is kept inmain memory, whih means that the programmer does not need to expliitly take are ofstoring the lient data to disk.The session framework introdues a new way to view a Web appliation. As the slaml-showprimitive is used to ask the lient for data, the view of an appliation is turned around. Bythis we mean, that in a CGI approah the Web appliation is mostly programmed in a waywhere the lient asks the server to generate a page based on input. In the session frameworkthe server asks the lient for data and based on this data, it an ontinue the evaluation ofthe appliation. By requesting data from the server, the lient still has the ontrol of theappliation. However, the opposite seems the ase from the developers point of view, sineit seems as if the lient is asked for data.From the �Student lass� example it is experiened that the �ow of the appliation is morelike non-Web appliations (ompared to a CGI approah). The reason is, that the nextation to be performed when the lient submits data, an be seen in the program. Anexample is the menu in the �Student lass� example. In the example the menu page is pre-sented to the lient, and based on the link hosen in the menu a branh of the programis taken. At �rst sight this looks like the ontrol needed in the CGI approah, where aond speial form is used to determine the page to show. The di�erene between the twoapproahes is, that it is not possible to maintain an overview of various interations withthe lient in a CGI sript. This is possible in the session framework sine the slaml-showreturns like a normal funtion and eah slaml-show represents an interation with the lient.In Bigwig it is possible to ativate a session from the URL. This means that a menu like

104 CHAPTER 4. REFLECTIONthe one in the �Student lass� example, an be onstruted of links to new sessions. Butthe �Student lass� example shows, that when ativating a link only one or two pages areshown in sequene. To make sessions that only onsists of one or two pages spreads the�ow of the appliation. The reason for this is, that it results in a similar approah as CGI,where a single page in an appliation orresponds to a single sript. In the session approah,eah page then orresponds to a session, whih is ativated by a link. This approah seemsmuh like the approah used in WASH/CGI and PACKS/HTML, where event handlers areassoiated to submit buttons on an HTML page. Pressing a submit button results in thepresentation of a single page from a Web appliation. Sine an event handler is equal toa page, whih is equal to a single sript, the entire appliation is split into a number of sripts.4.3.2 Complex Forms FrameworkIn this setion the omplex forms framework is ompared to a solution based on CGI.One way to ome around the Complex forms problem in CGI, is to use data strutures inthe CGI program. Based on these data strutures, funtions that an take a data stru-ture as input and return the HTML representation of the struture, must be reated by thedeveloper. In this way eah struture needs an assoiated funtion to generate the HTMLrepresentation. When data are submitted from the lient, a funtion is needed to rereatethe struture based on a spei� key/value pairs string. Therefore it is neessary to sendinformation to the lient speifying what type of struture is submitted (see Setion 1.1.3).This approah means that two funtions are needed for eah struture. The �rst is respon-sible for presenting the struture and the seond is responsible for rebuilding the struture.We an think of two optimizations to this approah. The �rst is to make a general funtionthat an take any given struture and reate the HTML presentation. Sine the funtionmust ontain information about the presentation of eah individual struture, it is di�ult- if not impossible - to ahieve suh general funtionality.Another solution is to build substrutures and let two funtions handle presentation andrereation of eah substruture. Large omplex strutures an then be reated based onthese substrutures. This an be done by ombining funtions that generate HTML presen-tation of substrutures. By aggregating HTML presentation of substrutures, the HTMLpresentation of a larger struture is ahieved. Rereating a large and omplex struture isdone by ombining the appropriate rereation funtions used on substrutures.In ontrast to the CGI solution, the omplex forms framework onsists of three phases. The�rst is to build the objet struture. This is similar to building a struture in CGI, exeptwhen programming CGI in Sheme a list struture is more appropriate than the objet ori-ented approah used in the framework. The reason for this is, that in CGI it is omprehensiveto rebuild an objet struture after eah request, whereas an objet struture reated in theframework is persistent (in main memory) and survives interations with the lient. Thenext step is to present the struture. In the omplex forms framework this is done by adding

4.3. SLAML FRAMEWORK 105HTML layout to the individual objets and all slaml-do-layout to generate the HTMLrepresentation. In CGI this is done by writing funtionality, that based on a spei� stru-ture generates the HTML representation. The last step is to update the objet struture.In the omplex forms framework this is done by alling slaml-update-objet! with thereeived data and the objet struture to update. In CGI, this is done by reating a funtionthat reates a omplex struture on behalf of the substrutures.Comparing the CGI approah with the omplex forms framework two large di�erenes areseen. The �rst is, that in the CGI approah a new funtion has to be reated for eah stru-ture to present. Sine the funtion that presents a struture also ontains the HTML layout,a new funtion has to be reated for eah representation of a struture. In the omplexforms framework the layout of the objet struture an be hanged sine it is a property onthe objet. Furthermore there are general funtionality to generate the layout of an objetstruture (slaml-do-layout). The seond di�erene when omparing the omplex formsframework with a CGI approah is rereation of a data struture. In CGI, this is done bywriting a rereation funtion for eah struture. To rereate a struture, the server needs toknow whih struture is submitted. This is needed in order to all the right funtion thatbased on data from the lient rereates the struture. In the omplex forms framework allthis is done by passing the objet struture - present on the server - and the data reeivedfrom the lient to slaml-update-objet!. This results in the objet struture being up-dated with the values reeived from the lient. However, if two HTML forms are present onthe same page, information about eah struture must also be present. The reason for thisis, that both strutures send to the lient are present on the server. The problem here is,that the server does not know whih of the two HTML forms is submitted. This informationan be plaed on the submit button in the HTML form and based on whih submit buttonis pressed, the appropriate struture an be send as parameter to slaml-update-objet!.4.3.3 Validation FrameworkIn this setion the experienes with the validation framework are re�eted upon. The vali-dation framework works on both the objet level and the page level. Both of these levels arere�eted upon in the following.On the objet level, validation on slaml-basi-element is implemented. This means thatit is possible to add a hek funtion to objets of the slaml-basi-element type and afterthe objet struture is updated the objets an be queried for their status (valid or invalid).This gives the developer the possibility to validate the data from the input elements in anHTML form.Validation on omposite objets has also been designed, but not implemented. Our opinionis that validation on omposite elements is useful sine it gives the developer a way to vali-date the dependenies between elements in the struture. An example is a page where twolists of input elements are presented. One onsists of person names and the other onsistsof person emails. In this example it must be ensured, that all persons have an email, i.e.

106 CHAPTER 4. REFLECTIONwhen data is suessful validated, there are an equal amount of names and emails.Validation on the page level gives the developer possibility to verify that the HTML formsubmitted from a page is valid aording to a hek funtion. This an also be done in CGI,sine the form parameters from the lient an be passed to a validation funtion de�ned inthe sript. The di�erene between the CGI approah and the approah in the validationframework is, that validation of the lient data is done as one ation in the validation frame-work. This is possible sine the server has knowledge of whih funtion to use for validatingthe data returned from the lient (it is spei�ed when slaml-show is alled).The approah used in the validation framework, hanges the semantis of the slaml-show,sine the returned value from this funtion indiates if the data reeived from the lient isvalid or not. Thereby slaml-show has a semanti that states: If data is valid aording tothe hek funtion return the return value of the hek funtion else return false.4.4 SummaryThis hapter presents the problems enountered during the implementation of the design. Anumber of limitations has been presented and desribed. These are the mod_laml moduleonly being able to handle one lient. The slaml-basi-element only representing theHTML input element. The error messages, not being onsidered. And �nally the lak ofvalidation on objets of the types slaml-form-element and slaml-element. Based on theimplementation of the two proof of onept appliations - desribed in Chapter 3 - re�etionson the designed solutions to the problems are given. The re�etions also inludes omparisonwith the CGI approah.

5
ConlusionThe purpose of this projet was to ontinue work made during the preparatory projet(Dat5). In the previous projet, mod_laml was developed, whih dereased the evaluationtime of the average LAML sript by 45%. Furthermore, existing work in the Web worldwas analyzed in order to identify ideas and priniples that ould be used together withmod_laml. The Dat5 projet onluded, that we wanted to make Web development inSLAML (Server side LAML in mod_laml) �easier�. Therefore, the �rst task in this projet,was to speify how to do Web development �easier�. To make Web development �easier� weneeded to identify often enountered problems in Web development. Therefore the fous ofthis projet has been to identify problems in Web development and to design and implementsolutions to these problems. Four problems were identi�ed (see Setion 1.1):1. State handling2. Input validation3. Complex forms4. ReusabilityThe State handling problem had two di�erent aspets, namely Control �ow handling andData �ow handling. During the analysis, the four problems were explained in detail, andpossible solutions to the problems were presented. After the spei�ation of the problems,the session onept was introdued as a possible solution. Three possible ways of using ses-sions were identi�ed, and they were presented through an analysis of Bigwig, WASH/CGIand PACKS/HTML. The Analysis ended in a problem de�nition, whih presented three hy-potheses. In the following, the results of this projet is related to eah of these hypotheses.The �rst hypothesis is related to two of the identi�ed problems in Web development, namelyState handling and Reusability. The �rst hypothesis is presented below:Hypothesis 1:

108 CHAPTER 5. CONCLUSIONA session-entered approah to Web development in SLAML solves theState handling problem of a Web appliation. Furthermore, a sessiononept makes aess to several HTML pages as a single unit possible.The �rst hypothesis was split into sub-hypotheses as it inludes two problems, namely theState handling and Reusability problems. Reall, that the State handling problem had twoaspets: Control �ow handling and Data �ow handling. This resulted in three hypotheses.The �rst of the three sub-hypotheses regards the Control �ow handling problem and ispresented below:Hypothesis 1.1:The Control �ow handling problem is solved by introduing a sessiononept, where a primitive in the language displays an HTML page toa lient and returns as a regular funtion.In this hypothesis we state that the Control �ow problem is solved by introduing a primitivein the language that an show a page to the lient and return ontrol to the program as a reg-ular funtion all. This primitive was designed and implemented and is alled slaml-show.This solution is inspired by Bigwig and the primitive in Bigwig alled show. In relation toCGI, this primitive solves the problem that the developer has to take are of the ontrol�ow expliitly (by linking between �les or use seletion statements) as desribed in Setion1.1.1. This helps the developer to see a Web appliation as one appliation rather than small�appliations� linked together.In relation to the Control �ow problem, The slaml-show primitive is designed and imple-mented like show is in Bigwig. Therefore slaml-show will have muh of the same e�eton SLAML programs as show has on Bigwig programs. This results in simplifying theinteration with a lient. This was muh as expeted sine Bigwig states that:"...the session onept greatly simpli�es the programming of ompliated ontrol�ow with multiple lient interations ." [CAM02℄In our opinion we have solved the Control �ow problem, sine slaml-show works as a regularfuntion all in a non-Web appliation. slaml-show is alled when data is needed from thelient and it returns the form parameters to the surrounding program.Hypothesis 1.2:The Data �ow handling problem is solved by introduing a sessiononept to SLAML, where interations inside the same lexial sope(session) an share data.The Data �ow handling problem is solved along with the solution to the Control �ow prob-lem. This is so, sine the slaml-show primitive ensures that sequential interations witha lient are performed without the Sheme environment on the server is lost after eah in-teration. slaml-show was designed and implemented to return the data reeived from a

109lient, and this data an be stored in variables in the Sheme environment. This means thatthe data are present at a later time, and an therefore be used without the developer havingto handle data expliitly (e.g. store it in hidden input elements or on the servers �lesystem).The introdution of the slaml-show, resulted in the developer being able to see a Web ap-pliation as one program and thereby as a non-Web appliation. This has the e�et that alldata reeived in an appliation an be bound in the Sheme environment and be availableat a later time. This was expeted as this is the ase in Bigwig. Sine it is possible toprogram a SLAML appliation as a non-Web appliation, data is present one it is boundin the Sheme environment.We mean that the Data �ow handling problem is solved, by introduing the slaml-sessionprimitive. The reason is that this primitive enapsulates interations with a lient and allowsthe interations to share data.Hypothesis 1.3:The Reusability problem is solved by introduing a session primitivethat an ativate a series of interations with a lient and rely onparameters at all time.Reusability has been obtained by implementing a session primitive that relies on parameters.A slaml-session in the SLAML framework, is a �rst lass objet in the Sheme environ-ment. This �ts well with the Sheme language. The slaml-session primitive enapsulatesa number of interations with the lient, represented by slaml-shows. In order to fullyevaluate the level of reusability gained by introduing sessions, a number of general sessionsmust be reated and evaluated in aordane to the reusability.We have implemented relatively few appliations with the SLAML framework and an there-fore not onlude if the Reusability problem is solved. However, a slaml-session enap-sulates more than one interation with a lient and an therefore be used as a module thatan ativate interations with a lient. Sine a session an take arguments, it is possible toativate a session in di�erent ontexts.The seond hypothesis is related to the Complex forms problem. It inludes the three stepspresent in the problem:Hypothesis 2:It is possible to onstrut a framework that helps the developer to build,present and update omplex strutures.The Complex forms problem was inspired by the need to:� Build omplex data strutures on the server.� Send the data strutures to the lient as an HTML form and get it �lled with data.

110 CHAPTER 5. CONCLUSION� Reeive the data and maintain the data strutures.This is not possible in plain CGI as there is no solution to build an HTML form from astruture and reeive the data in the same struture as it was presented to the lient. Nosolutions were found that solves this problem. Motivated by this we designed and imple-mented a framework as part of the SLAML framework, to handle omplex forms.It was hosen to rely on objets to represent data strutures. Other alternatives were pre-sented. These were a embedded domain spei� language and a nested list approah. Thereason for hoosing an objet oriented approah is that it gives a �exibility to easily hangethe struture.Sine the session framework is part of the SLAML framework, it was possible to rely onfeatures from the session framework when the omplex forms framework was designed andimplemented. The reason for relying on the session framework in the design and implemen-tation of the omplex forms framework is that sessions makes it possible to store the objetstruture on the server and update it with data submitted from the lient. However, sinethe session framework annot be used as a prodution framework (is not stable enough torun with many lients), there are two possibilities to make the omplex forms frameworkready for prodution. First, the underlying problems of the session framework an be solvedand thereby use the omplex forms framework as it is now. Another possibility is to basethe omplex forms framework on CGI. Implementing the omplex forms framework in a CGIenvironment means that it is possible to use the framework without having to install a newApahe server module.In our opinion the objet oriented approah solves the Complex forms problem. This is so,sine the omplex forms framework supports the developer to reate, present and update aomplex struture.The third and �nal hypothesis, spei�es how the Input validation problem was to be solved:Hypothesis 3:It is possible to onstrut a validation framework that helps the devel-oper to validate data from the lient.This hypothesis stated that it is possible to solve the Input validation problem by onstrut-ing a validation framework. Sine two frameworks were reated (the session framework andthe omplex forms framework) to handle data, two approahes to validation existed. In thesession framework the data handling onsists of asking the lient for data and return thedata to the server. In the omplex forms framework the data handling onsists of updatingthe objets with the data from the lient. By supporting validation on both the sessionframework and the omplex forms framework it is possible to use validation on the twoframeworks independent of eah other.

5.1. FUTURE WORK 111If the validation framework must work under CGI, the validation funtions must instead behandled expliitly by the developer. The reason for this is, that a hek funtion must bede�ned in the sript where it is used. A solution to this problem, is to reate a �validationlibrary� whih is inluded in all sripts. This library an then onsist of olletions of vali-dation funtions available.By extending the objets in the omplex forms framework to ontain validation funtionality,we have made validation on the objet struture possible. This is done by allowing thedeveloper to de�ne a hek funtion to eah of the nodes in an objet struture. Thesehek funtions are then ativated when the objet struture is updated, thus setting thevalid property on the objets in the objet struture. Validation in the session framework isobtained by validating information reeived from individual interations with a lient. Thisis done, by speifying a hek funtion as a parameter to eah slaml-show where validationis wanted.5.1 Future WorkThis last part of the onlusion presents possible areas where fous for future work with theSLAML framework an be set. In order to use the SLAML framework in a broader ontext,it is needed to solve the problems related to the Apahe module. If these problems are notsolved, it is not possible to serve more than a single lient at a time (see Setion 4.2). Thisis not adequate for prodution use.An aspet of the session onept, has not been onsidered in detail in this projet. Thisis related to the possibility to step bak in a session. A session onsists of an amount ofinterations with a lient and we �nd it bene�ial to allow, that a lient an go bak in asession to hange information entered. Stepping bak in a session means that the serverwill need to do aounting of how far the individual lients has reahed in their sessions.Furthermore, it is neessary to undo ations performed by the lient when the bak buttonis pressed. This is a subjet that an be investigated further.A problem not onsidered in details in this projet, is the need to make sessions persistent.This must be onsidered, sine a lient an pause the session (stop sending requests) foran amount of time. It is not known when - or even if - the lient returns to ontinue thesession. The problem with persistent sessions have two aspets. The �rst is to share the databetween the Apahe proesses. This is not possible in the urrent implementation, beauseof the Apahe proess model. This problem an be solved by the MM library, whih allowsdata to be shared between Apahe proesses. The other aspet of the persistene problem isto store sessions to disk. A possible solutions is to make the Sheme environment persistent,as e.g. done by Christian Queinne [Que℄.In Bigwig it is possible to aess sessions diretly by speifying their name as an URL param-eter. This is done by letting the server have knowledge of all the sessions in a given servie.In the urrent session framework this is only supported if handled expliit by the developer.

112 CHAPTER 5. CONCLUSIONAn example of this is shown in the student-session in the �Student Class� appliation. Thesolution in Bigwig is better sine this approah requires no expliit ontrol of the �ow bythe developer. Thereby it is possible to aess a session by a link on a page.To use the funtionality from the old mod_laml it is neessary to implement all the featuresagain. This inludes support for more than one interpreter, registration of whih librariesare loaded and logging failities et. This is a suggestion to future work in whih the designfrom our Dat5 projet an be used.The last aspet that is onsidered, is how the use of a session onept hanges the developersview on developing Web appliations. This an be examined by performing an analysis ofthe di�erene between an appliation written in CGI and the same appliation based on thesession onept. Aspets suh as e�ieny, lines of ode, readability, reusability, develop-ment time and exeution time an also be inluded here.

A
SLAML RefereneThis appendix presents the primitives from the SLAML library. For eah primitive the var-ious harateristis are presented. The harateristis on eah primitive is:Name The name of the primitiveDesription A desription of the primitiveForm The form in whih the proedure is ativatedReturns The return value of the proedureRequired Parameters The required parameters to the proedureOptional Parameters Optional parameters in form of named parametersFirst funtionality assoiated with the session framework are presented. Next funtionalityassoiated with the objet framework are presented.A.1 Session FrameworkThis setion presents the primitives used in the session framework. This inludes primitivesfor de�ning pages and sessions as well as primitives for ativating sessions and showing pages.Name:slaml-session [Speial form℄Desription:A funtion used to represent a session in SLAML. It is similar to a lambda funtion, takingone parameter. The body of this funtion ontains the various pages and interations withthe lient.Form:(slaml-session (args) body)Returns:A funtion representing the body of the slaml-session.

114 APPENDIX A. SLAML REFERENCERequired Parameters:Name Desriptionargs A parameter to be used during the ativation of the session.Name:slaml-page [Speial form℄Desription:A funtion used to represent a page in SLAML. It is similar to a lambda funtion withone parameter. The body of this funtion must evaluate to a string representation of anHTML page.Form:(slaml-page (args) body)Returns:A funtion representing a HTML page.Required Parameters:Name Desriptionargs A parameter to the page.Name:slaml-define-page [Speial form℄Desription:A funtion used to de�ne a slaml-page in the Sheme environment.Form:(slaml-de�ne-page name slaml-page)Returns:unspei�edRequired Parameters:Name Desriptionname The name to bind the slaml-page to.slaml-page The slaml-page to bind to name.Name:slaml-define-session [Speial form℄Desription:A funtion used to de�ne a slaml-session in the Sheme environment.Form:(slaml-de�ne-session name slaml-session)Returns:

A.1. SESSION FRAMEWORK 115unspei�edRequired Parameters:Name Desriptionname The name to bind the slaml-session to.slaml-session The slaml-session to bind to name.
Name:slaml-show [Proedure℄Desription:Shows a page to the lient and returns form parameters entered by the lient. Used in theprograms to ask or query a lient for data. Control �ow of the appliations will returnto the point just after the ativation of slaml-show. If a hek attribute is suppliedthe hek funtion passed as attribute value is ativated on the form parameters and thereturn value of the validation funtion beomes the return value of the hek funtion.Form:(slaml-show slaml-page . attributes)Returns:The data entered by the lient, or the return value of the optional validation funtion.Required Parameters:Name Desriptionslaml-page The page to be shown to the lient. The page is reated with theslaml-page primitive. It must be a slaml-page funtion.Attributes:Name Desriptionhek An attribute indiating the validation funtion to be exeuted on thedata returned from the lient.pageparm An attribute indiating that parameters are passed to the page. The at-tribute value is the parameters to be passed. If more than one parameteris required, the attribute value is send as a list ontaining the parameters.Name:slaml-ativate-session [Proedure℄Desription:Ativates a session on the urrent loation of the program. The value of the last expressionis returned.Form:(slaml-ativate-session slaml-session . attributes)Returns:

116 APPENDIX A. SLAML REFERENCEThe value of the last expression in the slaml-sessionRequired Parameters:Name Desriptionslaml-session The session to be ativated. The session must be spei�ed with theslaml-session primitive.Attributes:Name Desriptionsessionparm An attribute indiating that a parameter is passed to the slaml-session. Ifmore than one parameter is required a list of parameters is the attributevalue.
Name:slaml-reate-parm-lst [Proedure℄Desription:A funtion to reate the appropriate representation of the data reeived from the lient,in an url enoded string. The string ontaining the keys and values - representing theontents of the HTML form presented to the lient - are proessed and a assoiation listis reated.Form:(slaml-reate-parm-lst form-parameter-string)Returns:A list of key/value pairs, tagged with the formparms symbol.Required Parameters:Name Desriptionform-parameter-string A string in url enoded format
Name:slaml-key->value [Proedure℄Desription:A funtion for searhing assoiation lists. Based on a key it extrat the assoiated value.Form:(slaml-key->value key a-lst)Returns:The value that orresponds to key from a-lst or #f is key is not found.Required Parameters:

A.2. OBJECT FRAMEWORK 117Name Desriptionkey The key to searh for in a-lst. key must be a symbol.a-lst The list to searh for key. The list must be an assoiation list.Name:slaml-formparms-key->value [Proedure℄Desription:A funtion for extrating values assoiates with a key from a list tagged with formparms.The list of data entered into an HTML form by a lient is returned tagged with theformparms symbol. If the key is not found, #f is returned.Form:(slaml-formparms-key->value key lst)Returns:The value that orresponds to key from lst or #f if key is not found.Required Parameters:Name Desriptionkey The key to searh for in lst. key must be a symbol.lst The assoiation list tagged with formparms to searh for key.
A.2 Objet FrameworkThis part of the appendix presents funtionality assoiated with the omplex struture frame-work. First primitives assoiated with the lasses are presented. Next various onvenienefuntionality are presented. Then funtionality for presentational tasks are presented. Fi-nally a message passing primitive are presented.A.2.1 ClassesThis setion desribes the funtions used to represent the di�erent lasses in the omplexforms framework. The omplex forms framework onsists of funtionality for building, pre-senting and updating omplex HTML forms.
Name:slaml-element [Class℄Desription:

118 APPENDIX A. SLAML REFERENCEThe funtion representing the slaml-element lass. slaml-element is used to representa omposite objet. Ativating this funtion will reate an objet and return a refereneto it.Form:(slaml-element . attributes)Returns:A referene to the newly reated objet.Required Parameters:None.Instane Variable:Name Default Value Desriptionname "unique name" The name of this objet. Must be a string.layout "" The layout funtion of this objet. Must be astring.hek (lambda (str) #t) The hek funtion assoiated with this objet.elements () A list of objets rooted in this objet.tagtype "slaml-element" The tag identifying this objet. It is used whenthe objet struture is returned in list format fromthe slaml-update-objet! funtion.

Name:slaml-basi-element [Class℄Desription:The funtion represents the slaml-basi-element lass, whih represents basi HTMLelements. It is used to represent HTML elements, e.g. input[W3C02b℄. Ativating thisfuntion will reate an objet and return a referene to it. Information present on theobjets that is not related to the partiular type, is ignored when dolayout is alled. Asan example the maxlength attribute is not used if the type is hekbox.Form:(slaml-basi-element . attributes)Returns:A referene to the newly reated objet.Required Parameters:None.Instane Variables:

A.2. OBJECT FRAMEWORK 119Name Default Value Desriptionname "unique name" The name of this objet. Must be a string.type "TEXT" The type of input �eld from HTML [W3C02b℄.Possible values are TEXT, PASSWORD, CHECK-BOX, RADIO, SUBMIT, RESET, FILE, HID-DEN, IMAGE, BUTTON. Must be a apitalizedstring.size "15" The size of an text�eld. Must be a string.maxlength "" The maximum length of an text�eld. Must be astring.heked "false" Indiates whether or not a hek box is heked("true" or "false"). Must be a string.value "" The default ontents of this text�eld. Must be astring.hek (lambda (str) #t) The hek funtion assoiated with this objet.tagtype "slaml-basi-element" The tag identifying this objet. It is used whenthe objet struture is returned in list format fromthe slaml-update-objet! funtion. Must be astring.

Name:slaml-form-element [Class℄Desription:The funtion represents the slaml-form-element lass, whih represent an HTML form.Ativating this funtion will reate an objet and return a referene to it. Objets of thistype represents the root element in an objet struture.Form:(slaml-form-element . attributes)Returns:A referene to the newly reated objet.Required parameters:NoneInstane Variables:

120 APPENDIX A. SLAML REFERENCEName Default Value Desriptionname "unique name" The name of this objet. Must be a string.ation "http://loalhost" The ation assoiated with the form. Must be astring.method "GET" Method of the ation (either GET or POST). Mustbe a string.entype "appliation/x-www-form-urlenoded" The type of the HTML form enoding. Must be astring.aept-harset "UNKNOWN" The harater-set aepted in the form. Must bea string.aept "text/html" Aepted ontent type. Must be a string.layout "" The layout funtion assoiated with this objet.Must be a string.elements () A list of referenes to other objets, rooted in thisobjet. It must be a obj-lst.tagtype "slaml-form-element" The tagtype identifying this objet. It is usedwhen the objet struture is returned in list for-mat from the slaml-update-objet! funtion,represent the type of this objet. Must be a string.
A.2.2 Conveniene FuntionalityIn this setion onveniene funtionality used to reate objet strutures are desribed. Thisinludes funtionality for reating objets as well as funtionality for reating a list of objets.Name:slaml-reate-basi-element [Proedure℄Desription:A onveniene funtion used to reate an objet of the lass slaml-basi-element.slaml-basi-element represents a basi HTML input element [W3C02d℄.Form:(slaml-reate-basi-element name)Returns:A referene to the newly reated objet.Required Parameters:Name Desriptionname The name of the objet. It must be a string.

A.2. OBJECT FRAMEWORK 121Name:slaml-reate-element [Proedure℄Desription:Used to reate an objet of the type slaml-element. slaml-element represents a om-posite objets used to address a group of objets as one.Form:(slaml-reate-element name)Returns:A referene to the newly reated objet.Required Parameters:Name Desriptionname The name of the objet. It must be a string.Name:slaml-reate-form-element [Proedure℄Desription:Used to reate objets of the type slaml-form-element. slaml-form-element representsan HTML form. An objet of this type must be the top level objet in the objet struture.Form:(slaml-reate-form-element name)Returns:A referene to the newly reated objet.Required Parameters:Name Desriptionname The name of the objet. It must be a string.Name:slaml-reate-obj-lst [Proedure℄Desription:A funtion that given a list of objets returns a list in the format required as the at-tribute value to the elements attribute. Objets of the types slaml-element andslaml-form-element has the elements instane variable. The list is tagged with theslaml-obj-lst symbol.Form:(slaml-reate-obj-lst . lst)Returns:A speially formatted objet list that is used as attribute value to the elements attributename when reating SLAML objets.Required Parameters:NoneOptional Parameters:

122 APPENDIX A. SLAML REFERENCEName Desriptionlst A list of objets that an be inluded in the speial formatted objet listwhih is returned.
A.2.3 Funtionality for Generating HTMLThis setion inludes funtionality for presenting the omplex struture to the lient. It alsoinludes funtionality used for working with the struture one data has been reeived fromthe lient.Name:slaml-do-layout [Proedure℄Desription:A funtion that an be used to ativate the layout of the objet whose referene is passedas parameter. This funtion is used when generating the representation of an objet.This funtion is used when the layout of a slaml-form-element is needed. In ontrastto slaml-do-layout-hild, whih is used in the slaml-layout funtions to do layouton the spei�ed hild.Form:(slaml-do-layout obj)Returns:A string representing the intended representation of the objet in HTML terms.Required Parameters:Name Desriptionobj A referene to an objet of the slaml-form-element lass, on whih thelayout funtion is to be ativated.Name:slaml-do-layout-hild [Proedure℄Desription:Ativate the layout funtion of a hild objet to a given parent objet. Is used in theslaml-layout funtion to all the layout funtion of other objets. This allows for re-ursively generating the layout of all objets in the objet struture. This funtion isused inside slaml-layout funtions to all the layout on a spei� hild. In ontrastslaml-do-layout is used when a slaml-form-element is presented.Form:(slaml-do-layout-hild parent hildname)

A.2. OBJECT FRAMEWORK 123Returns:An HTML string of the objet with hildname present in the parent objet.Required Parameters:Name Desriptionparent A referene to the parent objet of the objet to layout.hildname The name of the hild to layout. It must be a string.
Name:slaml-update-objet! [Proedure℄Desription:A funtion to update the objet struture - rooted in obj - with the data entered by thelient. This funtion must be used expliitly to update the objet struture. The formatof the parms parameter must be the same format as the data returned by the slaml-showfuntion. Besides updating the objet struture it returns a nested list representation ofthe objet struture. This list inludes the following instane variables from the variousobjets as attributes; tagtype, data, valid.Form:(slaml-update-objet! obj parms)Returns:A list representation of the objet struture rooted in obj.Required Parameters:Name Desriptionobj A referene to the objet that is the root of the objet struture whihis updated with the data from the lient.parms The form parameters to be inserted into the objet struture. Must bereated by slaml-show.
Name:slaml-layout [Speial form℄Desription:A funtion used to ativate layout funtionality in the self objet.This funtion is equivalent to lambda. Form:(slaml-layout (self parm) body)Returns:A referene to a funtion representing the layout.Required Parameters:

124 APPENDIX A. SLAML REFERENCEName Desriptionself The objets that ontains this layout funtion.parm A parameter to be supplied to the ativation of the layout funtion onself.A.2.4 Message Parsing FuntionsThis setion presents the get and set methods implemented for easy aess to the objetsinstane variables and methods. Common to all of these are that the same funtionality anbe ahieved by message passing with the slaml-send primitive.Name:slaml-send [Proedure℄Desription:A funtion used to ativate funtionality in the various objets.Form:(slaml-send method obj . parm)Returns:The result of evaluating method on obj.Required Parameters:Name Desriptionmethod The funtionality that must be invoked on obj.obj The objets that ontains the method to be ativated.Optional Parameters:Name Desriptionparm A parameter to be supplied to the ativation of method on obj. Must bea symbol.Name:slaml-get-elements [Proedure℄Desription:A funtion for extrating the elements lists from the objet passed as parameter. The listreturned is tagged with the slaml-obj-lst tag.Form:(slaml-get-elements obj)Returns:The element list of objets rooted in this objet.Required Parameters:

A.2. OBJECT FRAMEWORK 125Name Desriptionobj The objet to extrat the elements list from. Must be aslaml-form-element or slaml-element.Name:slaml-get-name [Proedure℄Desription:A funtion used to extrat the value of the name instane variable from the objet passedas parameter.Form:(slaml-get-name obj)Returns:The value of the name instane variable of obj.Required Parameters:Name Desriptionobj The objet to extrat the value of the name instane variable from as astring.Name:slaml-get-valid [Proedure℄Desription:A funtion used to extrat the value of the valid instane variable. The result is either#t or #f, indiating whether the data entered by the lient and validated with a suppliedvalidation funtion is valid. The valid instane variable is used to indiate whether aneventual validation on the objets failed.Form:(slaml-get-valid obj)Returns:A boolean valueRequired Parameters:Name Desriptionobj The objet to extrat the value of the valid instane variable from.Name:slaml-set-valid! [Proedure℄Desription:A funtion for setting the valid instane variable on an objet. The valid instane variableis used to indiate whether an eventual validation on the objets failed.

126 APPENDIX A. SLAML REFERENCEForm:(slaml-set-valid! obj valid)Returns:NothingRequired Parameters:Name Desriptionobj The objet to set the valid instane variable on.valid The value to be set on obj. It must be a Sheme true or false (#t, #f).Name:slaml-get-type [Proedure℄Desription:A funtion for extrating the type of an objet. The return value is a string representingthe type of the objet. Possible value are hek, text, radio et.Form:(slaml-get-type obj)Returns:The type of the objet as a string.Required Parameters:Name Desriptionobj The objet to extrat the value of the type instane variable from. objmust be of the type slaml-basi-element.Name:slaml-get-tagtype [Proedure℄Desription:A funtion used to extrat the values of the tagtype instane variable of an objet. Thetagtype is used as identi�ation of the objet, when a nested list representation of anobjet struture is returned from slaml-update-objet!.Form:(slaml-get-tagtype obj)Returns:The tag type of an objet, as a string.Required Parameters:Name Desriptionobj The objet to extrat the tag type from.Name:

A.2. OBJECT FRAMEWORK 127slaml-get-hek [Proedure℄Desription:A funtion used to retrieve the validation funtion assoiated with the objet passed asparameter.Form:(slaml-get-hek obj)Returns:A referene to a funtion objet.Required Parameters:Name Desriptionobj The objet who's hek funtion is wanted.Name:slaml-set-data! [Proedure℄Desription:A funtion to set the data instane variable of the objet passed as parameter. The valueset on the data instane variable is the supplied value.Form:(slaml-set-data! obj value)Returns:NothingRequired Parameters:Name Desriptionobj The objets who's data instane variable is set to value.value The value to be set on the data instane variable of obj. It must be astring value.Name:slaml-get-data [Proedure℄Desription:A funtion used to retrieve the value of the data instane variable.Form:(slaml-get-data obj)Returns:The value of the data instane variable in obj.Required Parameters:Name Desriptionobj The objet who's data value is wanted.

B
Small ExampleThis appendix ontains the funtionality of the �Guess a number� appliation, presentedin Setion 3.1. First various funtionality is de�ned. Then the various objets and theirassoiated layout funtions used in the example are reated. This also inludes the de�nitionof three HTML pages. Last is the session in the example.UtilsThe di�erent utilities used in the �Guess a number� appliation.;======== Utils to the Guess a number appliation ============;(define NaN -1) ;Not a Number;return 42, sine no funtion exist for generating a random number in Sheme(define (get-random-number) 42)(define (slaml-is-integer? str)(integer? (string->number str)))(define (get-guess lst)(ar lst))(define (get-guesses lst)(adr lst))(define (get-right-number lst)(addr lst))(define (get-hint guess-info) ;;heks information in order to set the orret hint(let ((guess (get-guess guess-info))(guesses (get-guesses guess-info))

130 APPENDIX B. SMALL EXAMPLE(right-number (get-right-number guess-info)))(string-append(ond((equal? 0 guesses) "Enter your first guess.") ;first time, no guess yet((not (slaml-get-valid guess-input)) "HINT: Try a number next time.")(else (string-append "HINT: Your guess was: "(ond((> guess right-number) "too high... try a lower.")((< guess right-number) "too low... try a higher."))))))))LayoutThe de�nition of the objets and their assoiate layout funtions. This setion also presentsthe de�nition of the HTML pages.(load "utils.slaml");;====== The objets needed in the Guess a number appliation ==========;(define guess-form-layout(lambda (self parms)(slaml-do-layout-hild self "guess-omposite")))(define guess-omposite-layout(lambda (self parms)(string-append"Enter your guess:"(table(tr (td (slaml-do-layout-hild self "input-field")))(tr (td (slaml-do-layout-hild self "submit-button")))))))(define guess-input(slaml-basi-element'hek slaml-is-integer?'name "input-field"'tagtype "input-field-guess"))(define submit-guess-button(slaml-basi-element'name "submit-button"'tagtype "submit-button-guess"'type "SUBMIT"'value "Guess")

131)(define guess-omposite(slaml-element'layout guess-omposite-layout'elements (slaml-reate-obj-lst guess-input submit-guess-button)'name "guess-omposite"'tagtype "omposite-guess"))(define guess-form(slaml-form-element'layout guess-form-layout'name "guessform"'ation ""'method "GET"'tagtype "guess-form"'elements (slaml-reate-obj-lst guess-omposite)));;======================== Simple pages =============================;;say hello(slaml-define-page start-game(slaml-page (lst)(html(head (title "Guess a number"))(body (h1 "Welome to guess a number... ")(p "This appliation is written in SLAML.")(hr)(p "You must guess a number between 1 and 100")(a "ontinue" 'href "http://loalhost/laml/guess-app/guess-number.slaml"))))); say goodbye(slaml-define-page end-game(slaml-page (guesses)(html(head (title "Guess a number"))(body (h1 "Congratulations")(p "You made it in " (number->string guesses) "guesses!")))))(slaml-define-page guess-page(slaml-page (parameter-list)(html(head (title "Guess a number!"))(body

132 APPENDIX B. SMALL EXAMPLE(get-hint parameter-list)(hr)(slaml-do-layout guess-form)))))MainThe de�nition of the session in the example. The �nal line ativates the session.(load "layout.slaml");;==;; Guess a number appliation;;==(slaml-define-session guess-session(slaml-session (session-param)(slaml-show start-game) ;say hello - step one(letre ((guess-loop(lambda (guess guesses right-number)(if (equal? guess right-number)guesses ; Return the number of guesses used(let((obj-strut(slaml-update-objet! guess-form(slaml-showguess-page 'pageparm (list guess guesses right-number)))))(if (slaml-get-valid guess-input)(guess-loop(string->number(slaml-get-data guess-input)) (+ 1 guesses) right-number)(guess-loopNaN (+ 1 guesses) right-number)))))))(let* ((right-number (get-random-number))(guesses (guess-loop 0 0 right-number)) ;do loop - step two)(slaml-show end-game 'pageparm guesses) ;say bye - step threeguesses ; return the number of guesses used) ;end letre)))(slaml-ativate-session guess-session) ; it starts

Bibliography[AB84℄ Andrew D. Birrel and Brue Jay Nelson. Implementing Remote Proedure Calls.ACM Transations on Conmputer Systems, 2(1):39�59, 1984.[apa01℄ Apahe Homepage. http://www.apahe.org/, September 2001.[asp01℄ Introdution to Ative Server Pages. http://msdn.mirosoft.om/library/en-us/iisref/html/psdk/asp/iiwaabt.asp, September 2001.[BMRS01℄ Claus Brabrand, Anders Møller, Mikkel Riky, and Mihael I. Shwartzbah.PowerForms: Delarative Client-Side Form Field Validation. http://www.bris.dk/bigwig/researh/publiations/powerform.ps, Otober 2001.[CAM02℄ Claus Brabrand, Anders Møller, and Mihael I. Shwartzbah. The <bigwig>Projet. ACM Transations on Internet Tehnology, 2002. It is to appear in thejournal.[gi01℄ The CGI Spei�ation. http://hoohoo.nsa.uiu.edu/gi/interfae.html,November 2001.[CGKF02℄ John Clements, Paul T. Graunke, Shriram Krishnamurthi, and MatthiasFelleisen. Little Languages and their Programming Environments. http://www.s.rie.edu/CS/PLT/Publiations/mw01-gkf.pdf, May 2002.[DJ01℄ David A. Ladd and J. Christopher Ramming. MAWL. http://www.bell-labs.om/projet/MAWL/mawl.html, Deember 2001.[DL02℄ D. Kristol and L. Montulli. HTTP State Management Mehanism. http:/www.ietf.org/rf/rf2109.txt/, Feburary 2002.[ECH02℄ ECHMA. ECHMASript Language Spei�ation. http://www.ema.h/ema1/STAND/ECMA-262.HTM, may 2002.[Eng02a℄ Ralf S. Engelshall. MM Shared Memory Library. http://www.engelshall.om/sw/mm/, May 2002.[Eng02b℄ Ralf S. Engelshall. mod_ssl. http://www.modssl.org/, June 2002.[ERRJ95℄ Eri Gamma, Rihard Helm, Ralph Johnson, and John Vlissides. Design Patterns- Elements of Reusable Objet-Oriented Software. Addison-Wesley, 1995.

134 BIBLIOGRAPHY[Fla02℄ Matthew Flatt. PLT MzSheme: Language Manual. http://download.plt-sheme.org/do/200alpha12/html/mzsheme/, June 2002.[gui01℄ Guile Homepage. http://www.gnu.org/software/guile/guile.html, Septem-ber 2001.[Han01℄ M. Hanus. High-Level Server Side Web Sripting in Curry. In Pro. of theThird International Symposium on Pratial Aspets of Delarative Languages(PADL'01), pages 76�92. Springer LNCS 1990, 2001.[Han02℄ Mihael Hanus. The Portland Aahen Kiel Curry System. http://www.informatik.uni-kiel.de/~paks/, May 2002.[In01℄ Sun Mirosystems In. Java 2 Platform Enterprise Edition. http://java.sun.om/j2ee, November 2001.[In02a℄ Sun Mirosystems In. Java Objet Serialization Spei�ation. http://java.sun.om/j2se/1.4/dos/guide/serialization/spe/serialTOC.do.html, June 2002.[In02b℄ Sun Mirosystems In. The Soure for Java Tehnology. http://java.sun.om/,June 2002.[JO02℄ John Peterson and Olaf Chitil. The Haskell Home Page. http://www.haskell.org/, Feburary 2002.[KCR+98℄ Rihard Kelsey, William Clinger, Jonathan Rees, H. Abelson, H. I Adams IV,D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman, R. Halstead, C. Hanson,C. T. Haynes, E. Kohlbeker, D. Oxley, K. M. Pitman, G. J. Rozas, G. L. SteeleJr., G. J. Sussman, and M. Wand. Revised Report on the Algorithmi LanguageSheme. 1998.[lam01℄ The LAML Home Page. http://www.s.au.dk/~normark/laml/, August 2001.[LDJ02℄ Christian Lynbeh, Mikael Djurfeldt, and Niel Jerram. Goops manual. http://www.gnu.org/software/goops/goops.html, June 2002.[Mi02a℄ Mihael Hanus. The Funtional Logi Language Curry. http://www.informatik.uni-kiel.de/~urry/, May 2002.[Mi02b℄ Mirosoft. JSript. http://msdn.mirosoft.om/library/default.asp?url=/library/en-us/sript56/html/js56jsoriJSript.asp, June 2002.[Mi02℄ Mirosoft Corporation. VBSript. http://msdn.mirosoft.om/library/default.asp?url=/library/en-us/sript56/html/vtoriVBSript.asp, May2002.[MPJ02℄ Mikael Hansen, Paw Iversen, and Jimmy Junker. SLAML - Server side LAML.Tehnial report, Aalborg University, 2002.

BIBLIOGRAPHY 135[Net02℄ Netsape. JavaSript Developer Central. http://developer.netsape.om/teh/javasript/index.html, June 2002.[Nør90℄ Kurt Nørmark. Simulation of Objet-oriented Conepts and Mehanisms inSheme. Tehnial Report R 90-01, Department of Mathematis and ComputerSiene, Institute of Eletroni Systems, Aalborg University, January 1990.[Nør00℄ Kurt Nørmark. A Programmati Approah to WWW Authoring Using Fun-tional Programming. http://www.s.au.dk/~normark/laml/papers/old-programmati-approah.pdf, November 2000.[Pet℄ Peter Thiemann. WASH/CGI: Server-side Web Sripting with Sessions, Compo-sitional Forms, and Graphis. http://www.informatik.uni-freiburg.de/~thiemann/papers/gi-in-haskell.ps.gz.[Pra02℄ Vipul Ved Prakash. Cgi::persistent. http://searh.pan.org/do/VIPUL/CGI-Persistent-0.22/lib/CGI/Persistent.pm, May 2002.[Que℄ Christian Queinne. The In�uene of Browsers on Evaluators or, Continuationsto Program Web Servers.[Que02℄ Christian Queinne. Meroon: an Objet System in Sheme. http://youpou.lip6.fr/queinne/WWW/Meroon.html, June 2002.[SM02℄ In. Sun Mirosystems. JavaServer Pages(TM) Tehnology. http://java.sun.om/produts/jsp/, Feburary 2002.[The02℄ The PHP Group. Session handling funtions. http://www.php.net/manual/en/ref.session.php, Feburary 2002.[W3C02a℄ W3C. Extensible Markup Language (XML). http://www.w3.org/XML, June2002.[W3C02b℄ W3C. The HTML 4.01 spei�ation. http://www.w3.org/TR/html401/, may2002.[W3C02℄ W3C. W3C Reommendation - The form element. http://www.w3.org/TR/html4/interat/forms.html#h-17.3, June 2002.[W3C02d℄ W3C. W3C Reommendation - The input element. http://www.w3.org/TR/html4/interat/forms.html#h-17.4, June 2002.[WG02℄ W3C DOM WG. Doument Objet Model (DOM). http://www.w3.org/DOM/,May 2002.

