Aalborg University

Department of Computer Science

Database and Programming Technologies

Title:
Server Side LAML Framework

Topic:
Programming Technologies

Project Period:
4/2-2002 — 14/6-2002

Project Group: Dat6, D601A
Mikael M. Hansen
Paw Iversen
Jimmy Juncker

Supervisor:
Kurt Ngrmark

Number of appendixes: 2
Total number of pages: 143
Number of pages in report: 112

Number of reports printed: 7

Abstract:

In this project four problems found in the
area. of Web applications development are
analysed. These problems are named the
State handling problem, the Validation prob-
lem, the Complex forms problem and the
Reusability problem. Existing work in the
area is analysed. Based on these problems
and the existing solutions three hypothesis
are presented as the goal of this project. Dur-
ing the design, solutions to the problems are
developed. Example Web applications are
implemented to illustrate the usage of the de-
signed solutions. Based on these Web appli-
cations we conclude on the project. Intro-
ducing the session concept inspired by Big-
wig solves the State handling problem. Ad-
ditional experiences are still needed to fully
evaluate the Reusability problem. The Com-
plex forms problem is solved by the designed
solution, based on building an object struc-
ture representing an HTML form. The imple-
mented solution relies on the session frame-
work, but a CGI based solution is consid-
ered possible. The Input validation problem
is solved by relying on the session framework.
Validation is made available on both the ob-
ject and the page level. It is concluded that
relying on the session framework have the ad-
vantage that validation functions are avail-
able when they are needed. This is not the
case in a CGI solution. Improvements can be
made on various places in the solution. This
is recommended as future work.

Copyright (© 2002, Dat6, D601A.

Resume

I denne rapport praesenterer vi vores arbejde gennem specialet. Dette arbejde ligger i for-
lzengelse af vores Datb arbejde. Vi arbejder med Web udviklingen indenfor programmerings-
sproget Scheme med LAML bibliotekerne. I modsatning til den gaengse made, hvor flere
sprog kombineres for at opna den gnskede fleksibilitet, tillader en programmatisk tilgang
til Web udvikling, at bade praesentation og dynamik foregar i det samme sprog. I Igbet af
Datb udviklede vi et modul til Apache Web serveren. Dette modul bruges som en del af
konteksten til dette arbejde.

Vi begynder med en analyse af nogle ofte forekommende problemer man stgder pa som Web
udvikler. Et af disse problemer er Tilstands hdndtering, som bestar af to delproblemer. Det
fgrste delproblem er data handtering mellem klient og server. Et andet delproblem omhan-
dler kontrol-flowet af en Web applikation. Mulige lgsninger der findes i dag bliver analyseret
og vurderet. Det andet ofte forekommende problem i Web udvikling er Input validering. Der
er to alternativer som oftest bruges. Enten klient side validering ved hjalp af JavaScript eller
server side validering ved hjeelp af det sprog som Web applikationen er skrevet i. Fordele og
ulemper ved de to alternativer overvejes og vurderes. Det tredje problem der analyseres og
beskrives er problemet med opbygningen af Komplekse strukturer pa serveren, samt manglen
af samme struktur nar den har vaeret vist til klienten. Det sidste problem der bliver behandlet
er Genbrugeligheds problemet. Som udvikler er man vant til en vis grad af genbrugelighed,
men primaert pa funktionalitet niveau. Ved fremkomsten af side centrerede teknologier som
PHP, ASP og JSP er en lille grad af genbrugelighed blevet kutyme, men det er ikke noget
der finder sted i stor stil. @Onsket om en gget grad af genbrugelighed er fremsat.

Efter praesentation og gennemgang af problemerne kigger vi naermere pa relateret arbejde.
Formalet med dette er todelt. Bade at finde inspiration til lgsninger til problemerne, og finde
teknologier som allerede har lgst dele af problemerne. Pa baggrund af analysen af problemer
og det relaterede arbejde, fremsattes et antal hypoteser, der ligger til grund for det videre
arbejde.

Efter analysen praesenteres designet, hvor vi med udgangspunkt i det enkelte problem praesen-
terer vores overvejelser omkring dette problem. Ud over overvejelser prasenterer vi ogsa den
designede lgsning som skal ligge til grund for en implementation. Vi begynder med prob-
lemet omkring Tilstands handtering. Vi praesenterer tre forskellige lgsninger, og konkret
veelges at designe en lgsning inspireret af Bigwig. Denne lgsning involverer introduktion
af et primitiv der pauser evalueringen af Web applikationen nar en side vises til klienten.
Lgsningen involverer ogsa introduktionen af et primitiv der introducere et leksikalsk scope i
et program. Disse to primitiver er den del af sessions begrebet som ogsa medfgrer en lgsning

II

til Genbrugeligheds problemet.

Til behandling af problemet omkring Komplekse strukturer, overvejes bade en tilgangsvinkel
der involverer specifikation af nestede lister, samt introduktion af et indlejret domaene speci-
fikt sprog til lgsning af problemet. Da vi finder en objekt orienteret tilgangsvinkel til prob-
lemet er den bedste, designes en lgsning baseret pa objekt orienterede principper. Composite
design patternet bruges som inspiration til introduktion af forskellige klasser, der reprasen-
tere forskellige elementer i en objekt struktur. Denne objekt struktur indeholder mulighed
for associering af en praesentation med det enkelte objekt i strukturen. Ydermere kan den
indeholde data som er associeret med de enkelte objekter i strukturen. Slutteligt behandles
problemet omkring Input validering. Server side validering betragtes som den rigtige vej
frem, selvom visse ulemper findes. Derfor designes en lgsning til validerings problemet der
passer sammen med resten af den designede lgsning. Dette tillader validering bade pa enkelte
sider, samt pa komplekse strukturer.

Dernaest praesenteres overvejelser og problemer som vi har arbejdet med pa det lave niveau
(omkring server modulet) i forbindelse med implementationen. Pa det lave niveau kommer
vi ogsa med enkelte anbefalinger for teknologier som vi mener kan bruges til en endelig im-
plementation. Nogle begreensninger bliver truffet, for at forhindre at vores arbejde skulle
skifte fokus fra det hgje niveau (Scheme, LAML) til det lave niveau (Apache/C). Efter-
fglgende introduceres nogle proof of concept applikationer, hvilket illustrerer og motiverer
den designede lgsning. Disse bliver gennemgaet for at give laeseren en forstaelse af den im-
plementerede lgsning. Pa baggrund af erfaringer med disse praesenteres vores overvejelser
med hensyn til brugbarheden af den designede lgsning. Anbefalinger, og ting der efter vores
mening skal laves anderledes, bliver gennemgaet og diskuteret, sa videre arbejde indenfor
dette omrade kan drage nytte af vores arbejde.

Slutteligt konkluderes der pa de fremsatte hypoteser og de designede lgsninger. Vi vur-
derer i hvor hgj grad vi har opfyldt vores mal for dette projekt, og eventuelle afvigelser er
forklaret. Vi konkluderer at introduktionen af sessions begrebet, generelt set lgser proble-
merne med Tilstands handtering. Introduktionen af et sessions primitiv tillader udvikleren
at fa et overblik over hele applikationen, da flere interaktioner med klienten foregar i det
samme leksikalske scope ved hjalp af slaml-show primitivet. Genbrugeligheds problemet
formodes lgst. Vi ma konkludere at en laengere periode til evaluering at dette er ngdvendig.
Problemet omkring Komplekse strukturer er lgst fornuftigt ved brug af objekt orienterede
principper. Selvom de objekt orienterede principper ikke passer godt i konteksten af dette
arbejde (Scheme og funktionel programmering) sa er det rimeligt let og fleksibelt at arbejde
med objekter til repraesentation af komplekse strukturer. Med hensyn til Input validerings
problemet sa kan vi konkludere, at vi har lavet et validerings apparat der passer godt sam-
men med sessions apparatet. At bygge validering pa sessions apparatet sikrer, at det at fa
data og validere det er en atomar handling, i modsatning til CGI hvor det er to separate
handlinger.

Preface

This report documents our Dat6 semester project at the Department of Computer Science,
Aalborg University, Denmark. The Dat6 semester is the semester where we complete our
master thesis. Preparatory work for the master thesis is our Datb project, where we worked
in the area of Web application development using LAML.

Report Conventions:

Throughout this report all references to the bibliography are shown as [reference|. Special
concepts are written in abbreviation followed by a full length name in parenthesis, the first
time encountered. Through the remainder of the report the abbreviation is used. References
to figures and tables are written like x.y where x is the number of the chapter and y is the
number of figure or table in the given chapter. E.g. Figure 2.3 is figure three in chapter
two. Text in figures are written in a special font to make it distinguishable from the normal
text. An example of this font is this sentence. When referring to specific contents of figures an
italic notation is used, like this sentence. Italic notation is also used when referring to the
named problems throughout the report. Primitives that are part of the SLAML framework
are written in this font to distinguish them from the rest of the text. Throughout the
report the word he, will refer to he or she. A gray box is used to give the implementation
considerations regarding the various primitives in the design. The contents of this is targeted
at the reader familiar with Scheme. The first time a primitive is introduced a parenthesis
will follow with a page number. This page number refers to the page in the SLAML reference
- in Appendix A - containing a detailed description of the primitive.

The project period began February 4, 2002 and lasted to June 14, 2002.

Aalborg University, June 14, 2002.

Mikael M. Hansen Paw Iversen

Jimmy Juncker

Contents

1 Analysis 3
1.1 Problems in Web Development 3
1.1.1 State Handling 5t

1.1.2 Input Validation, 10
1.1.3 Complex Forms 14

1.1.4 Reusability 18

1.1.5 Summary 19

1.2 Approaches to Web Development 20
1.3 Related Work 21
1.3.1 Bigwig e 22

1.3.2 WASH/CGI 24
1.3.3 PAKCS/HTMLo 28
1.3.4 Summary 30

1.4 Problem Definition 31
2 Design 33
2.1 Session Framework 34
2.1.1 Design Considerations 35
2.1.2 Design of the Session Framework in SLAML 38
2.1.3 Flow of a Session in SLAML 42
2.1.4 Example of the SLAML Session Framework 43
2.1.5 Solution to the State Handling Problem 44
2.1.6 Solution to the Reusability Problem 45

2.2 Complex Forms Framework 45
2.2.1 Design Considerations 45
2.2.2 Design of the Complex Forms Framework in SLAML 53
2.2.3 Complex Forms Framework in SLAML 55
2.2.4 Object Oriented Programming in Scheme o7
2.2.5 Creating, Presenting and Updating Object Structures 59
2.2.6 Example of the Complex Forms Framework 66
2.2.7 Solution to Complex Forms Problem 68

2.3 Validation Framework 69
2.3.1 Design of the Validation Framework in SLAML 70
2.3.2 Flow of Validation 72
2.3.3 Example of Validation Framework 74
2.3.4 Solution to Input Validation Problem 7

VI CONTENTS
2.4 SUMMATY o e e 7

3 Example Applications 79
3.1 Guess a Number Application oL 79
3.1.1 Objects, Layout, Check Functions and Pages 80

3.1.2 Flow and the Session Definition 82

3.2 Student Class Example 84
3.2.1 Overview of the Application 85

3.2.2 Use of the Session Concept 88

3.2.3 Use of Complex Forms 91

3.2.4 Use of Validation 94

3.3 SUMMATY o o e e 95

4 Reflection 97
4.1 Encountered Problems 97
4.1.1 New Apache Module 98

4.1.2 Handling Data on the Server 99

4.2 Current Limitations. e 100
4.2.1 Mod_laml Limitations 101

4.2.2 HTML Elements 101

4.2.3 Error Messageso 102

4.2.4 Validation on slaml-element and slaml-form-element 102

4.3 SLAML Framework e 103
4.3.1 Session Framework 103

4.3.2 Complex Forms Framework 104

4.3.3 Validation Framework 105

4.4 Summary . .o 106

5 Conclusion 107
5.1 Future Work e 111

A SLAML Reference 113
A.1 Session Framework 113
A.2 Object Framework 117
A2.1 Classes e 117

A.2.2 Convenience Functionality 120

A.2.3 Functionality for Generating HTML 122

A.2.4 Message Parsing Functions 124

B Small Example 129

Introduction

The task of developing Web applications has become more important during the recent years,
as the use of Web applications has become more common. Following the increase in use of
Web applications, focus has increased on inventing technologies and practices for improving
the efficiency of a Web application developer. At the same time focus on expanding the
possibilities of the technologies used today has increased. This ongoing task of improving,
and expanding the possibilities in the domain of Web applications development is possibly
one of the fastest growing areas in computer science today.

Some of the most interesting tendencies in Web applications development is the use of
XML[W3C02a] as a uniform way of sharing and distributing data. Other important aspects
of the fields of Web applications development is the J2EE[Inc01| architecture introduced by
Sun Microsystems. J2EE includes several new technologies that are intended to aid Web
applications developers in their task of creating Web applications.

Apart from the mainstream tendencies people work on various niches that better suit their
needs. Niches that rely on more specialized technologies for Web development. Examples
of such niches is the Bigwig language, or the WASH/CGI library|[Pet| for Haskell[JOO02].
Another niche is introduced by Kurt Nermark, as he has created the LAML libraries|[lam01]
for the Scheme programming language[KCR™98|. This is done since he finds that the func-
tional paradigm fits well into the development of Web applications|Negr00|. Furthermore the
syntactical nature of lisp languages fit well with Web development

During the preparatory work|[MPJ02| for this master thesis we worked in the area of Web
applications written in LAML. Server side LAML (SLAML) was introduced, as the possi-
bility to execute LAML applications on the server without using CGI. This was achieved by
creating an Apache server module, which we named mod _laml. mod laml allow executing
Web application written in Scheme using the LAML libraries roughly twice as fast as it is
done by relying on CGI[cgiO1]. The work conducted during the preparatory work for this
thesis was mainly on a low level. Most of the work consisted of creating the Apache module,
including various features often present in an Apache server module. A second aspect of
the preparatory work was to discover new ideas and principles that help to make Web de-
velopment easier. We concluded that we would conduct a further analysis of some of these
concepts and possibly implement them using mod laml. As a continuation of this strategy,
the focus has been shifted from the low level to a higher level, namely from the C level to
the Scheme level. In this project we focus on providing new aspects into the area of Web
applications development by using mod laml as the basis for further development relying
on Scheme and the LAML libraries.

2 CONTENTS

This project addresses some of the often encountered problems in Web applications devel-
opment relying on todays technologies. This is done in four steps. First, often encountered
problems when working with Web development are found. Second, analysis of the prob-
lems and possible solutions are conducted, while at the same time considering aspects of
new technologies used for Web applications development. Third, solutions to the problems
are discussed and designed to integrate with the context created and motivated during our
preparatory work for this master thesis. Fourth, a number of example Web applications
are developed to illustrate the solutions to the problems in Web applications development.
The example applications are used as the motivation for discussions and reflection on the
problems, their solution and recommendations for further development in the area of Web
applications development in LAML and mod laml are presented last.

Analysis

Contents
1.1 Problems in Web Development 3
1.2 Approaches to Web Development 20
1.3 Related Work oo o i it i i e 21
1.4 Problem Definition 00000 31

In this chapter an analysis of problems related to Web development are conducted. Next is
an introduction to different approaches to Web development. Following this is an analysis
of work related the problems described. The solutions used in related work - in the area
of session based approaches - are presented and discussed. Finally a problem definition
including hypothesis regarding the goals of this project is presented.

1.1 Problems in Web Development

We concluded our previous work with the fact, that we will attempt to make Web develop-
ment easier for the developer. Making Web development easier for the developer, is done
by introducing abstractions in the language used for development, and by introducing tools
that supports the developer when solving often encountered problems. This section presents
problems that are encountered when developing Web applications. Four problems have been
identified based on our knowledge with the development of Web applications, and they are:

1. State handling
2. Input validation
3. Complex forms

4. Reusability

4 CHAPTER 1. ANALYSIS

The following will give a short introduction to the problems. In addition each of the prob-
lems are presented and discussed in greater detail in its own section, see Section 1.1.1, 1.1.2,
1.1.3 and 1.1.4.

The first problem (State handling), is based on the characteristics that a Web application
must underlay the stateless nature of the HT'TP protocol. An application build on CGI,
actually exist of an amount of small “applications”. Each small “application” corresponds to
the execution of a single CGI script, which results in the presentation of a single page. This
observation is build on the fact that the processing of a single request to a CGI based Web
application corresponds to execution of one CGI script. The developer of Web applications
will be aware that more requests corresponds to more CGI scripts. He will therefore have to
concentrate on the development of many small “applications” that must interact with each
other, instead of focusing on the whole Web application as one unit. If data and information
about state must survive more requests, it must be handled explicit by the developer. The
reason for this is the stateless nature of the HT'TP protocol. The need to explicit handle data
and information about state is seen as a problem. This problem is named State handling,
and it is discussed in greater detail in Section 1.1.1.

The second problem is named Input validation and is about validating data submitted by a
client. When a client submits data to a CGI script, it has to be validated in order for the
data to be valid in the context it is used. The problem is present because all data submitted
to a script is received as strings. Since not all operations are done on strings (e.g. adding
two numbers), it is often necessary to perform checks on the input from the user. This is
in most cases done explicitly by the developer. However, validation imposes problems, since
the validation process is error prone if the developer is not systematic. Input validation is
discussed in greater detail in Section 1.1.2.

The third problem is related to the way data is structured in HTML. When writing CGI
scripts, data can be placed in data structures to raise the level of abstraction. This is done
by using primitives available in the programming language used to write the CGI script
(e.g. arrays, tree structures, hash tables). A similar structure can be modeled as layout in
HTML (an array of records can e.g. be modeled as a table with each record presented as a
row), but a problem exist when data is received from the client. The developer can present
complex structures in HTML forms, with respect to layout, but when data is received from
the client, the data structures are lost. This is the case, since information from an HTML
form is encoded as a string containing key/value pairs. The relation between recreation of
large and complex structures and forms based on a key/value pairs, is seen as a problem. We
have named this problem Complex forms and it is discussed in further detail in Section 1.1.3.

The fourth problem considered is the problem of reusability of program units that are larger
than one page. In CGI, the developer can create functionality, which can create parts (often
single pages) to a Web application. However, in order to reuse a whole Web application, all
pages related must be included. The problem is that a Web application in CGI is not equal
to a single unit, but instead a series of pages. We see the lack of considering an application
as a single unit as a problem, which we have named the Reusability problem. Reusability is

1.1. PROBLEMS IN WEB DEVELOPMENT 5)

discussed in Section 1.1.4.

To summarize, four problems - State handling, Input validation, Complex forms and Reusabil-
ity - that are present when developing large Web applications have been identified. The
following sections specifies the problems in greater details and gives examples that presents
the nature of the specific problem. Current solutions to the problems will be presented, but
considerations and choices regarding the solutions are presented in the Design chapter (see
Chapter 2).

1.1.1 State Handling

When a developer uses the CGI protocol to write Web application, difficulties regarding the
CGI protocol arises. The main problem with the CGI protocol is that it is stateless (because
of the stateless nature of the underlying HTTP protocol). This means that state information
have to be handled explicit by the developer in order to maintain state. A second problem is
that the CGI protocol dictates that a program written using CGI must end after a response
is send to the client. There is no possibility of writing the Web application as one program
and rely on the interactions with a user returning control to the surrounding code, as it is
done in non-Web related programming. This has some consequences that are explained in
this section.

The State handling problem can be divided into two subproblems. The subproblems are
presented below. After the presentation of the two subproblems, current solutions are pre-
sented.

1. Data flow handling

2. Control flow handling

Data flow handling concerns the need for the developer to explicit handle the data (values)
already received from the client. Consider an application, that consists of three pages. The
first two pages each take an input, and the third page presents the input entered. Since the
HTTP protocol is stateless, the data from the first page must explicit be stored - or sent
to the next page - by the developer. This is needed for the data to be present after the
request to the second page, so it is available when the third page is presented. The problem
is illustrated in Figure 1.1.

6 CHAPTER 1. ANALYSIS

Server Client
~ ‘
cal Request
1 ;
- Y
Get A HTML
A?
L]
—_————————
CGlI A=1
2
- o Y
Get B HTML
B?
L]
B S EEE—
CGl B=2
3 .
R |
Show A and B HTML
A=7??
B=2

Figure 1.1: The Data flow handling problem. Since each of the CGI scripts are handled as
a single request, the data cannot “survive” more requests. In this example, the A value is not
present after the response from the second CGI script (CGI 2).

The Control flow handling problem is also (like Data flow handling) related to the stateless
nature of the HTTP protocol. Figure 1.2 presents an example, where multiple choices can
be made through the execution of a Web application. When the application is running,
it is not possible to determine the current position, of all the positions in the application.
Considering the figure, it is e.g. not possible to determine if D has been visited if the current
page is C. The reason for this is, that each page is presented by the execution of a single
script, and each script terminates after each request. This means, that each page is presented
without returning to the specific point in the application from where it was called. Informa-
tion needed to maintain the interaction between the different parts of the application, must
therefore be handled explicitly by the developer. This is typically done by associating the
next script to be invoked with a button or a link on the current page.

1.1. PROBLEMS IN WEB DEVELOPMENT 7

Figure 1.2: Each node in the tree represents a page (e.g. a single CGI script) and an edge
symbols a possible selection. The collection of all the pages is the entire application and a path
through the tree structure, represents a possible execution of the application.

The two subproblems related to State handling have been presented. Current solutions to
these problems are presented and discussed in the following.

Current Solutions to Data Flow Handling

The Data flow handling problem can be solved by either storing the data on the client or
on the server. The two alternatives are presented in Figure 1.3, which is based on Figure 1.1.

Server Client Server Client
cal Request cal Request
1 1
Y Y
GetA HTML Get A HTML
A? A?
[1
cal A=1 cal A=1
s 2
Y Y
A=1 GetB HTML A=1,GetB HTML
?
Storage B? B?
] 1
\ CGlI B=2 CGl A=1,B=2
Get A 3 3
Y Y
Show A and B HTML Show A and B HTML
A=1 A=1
B=2 B=2
(A) (B)

Figure 1.3: (A) relies on the possibility to make data persistent on the server, whereas (B) sends
data to the client.

8 CHAPTER 1. ANALYSIS

The solution presented in Figure 1.3 (A) relies on the possibility to store data on the server.
This can e.g. be in files on the local server’s filesystem. However, it must be possible to
distinguish between the different clients. If this is not possible, the information stored on
the server, cannot be related to a specific client. Many page centered approaches to Web
development (PHP [The02], JSP [SM02], ASP[asp01] etc.) let the developer specify which
variables must be accessible at a later point in the dialog with the client. The client is given
an id to identify it from the other clients. The id is the only information sent to the client at
the end of each request (by storing it in a hidden input element in a way described later).
All the registered variables are serialized and written to a file on the server without the
developer having to know about it.

A problem with the solution presented in Figure 1.3 (A), is that the client can stop his
interactions with the server and bookmark the current page. After a while (minutes, hours,
days or even longer) a client can return - by using the bookmark - in order to complete the
application once left. There is no way to determine how long the client will be “idle” in the
execution of the application, or if the client will ever return. If the client never returns, data
related to the interactions with the server will take up space even if it is never used. If large
applications are running on a Web server, storing never used informations is a problem, that
must be considered.

Figure 1.3 (B) presents a solution to Data flow handling, where data is send to the client
in hidden input elements when needed later. This means, that data can be extracted from
the HTML page in the same way as data from other input elements. The only difference
is that data in hidden input elements are not shown in the layout of the HTML page. If
many values are needed at a later point, it is a cumbersome task for the developer to create
a hidden input element for each value. Persistent.pm [Pra02] is a Perl module that can
generate URL strings or hidden input elements from variable names. In this way the data
can be sent to the client and back in the normal way, but the developer just has an easier
task of doing it. We find this abstraction useful, since the developer can access the values in
the variables, without the need to handle the data from the HTML form explicit.

Sending data to the client in hidden input elements is a problem, since the data is accessible
to the client. It is not presented on the HTML page, but it is present in the page source.
A client can modify the values in the hidden input elements and submit them. This can
result in the server receiving unexpected or invalid information. Security is also an issue
here. Tmagine that the developer changes the unique id which identifies the client (created
to distinguish between clients, so data can be stored on the server). If a client guesses (or
knows) the unique id of another client, it can pretend to be that client. This allows access
to information not related the clients own interactions with the server.

Current Solutions to Control Flow Handling

This section presents two solutions to handle the flow in a Web application. The first solution
is based on primitives in the programming language used. The entire application (or larger
parts of it) is placed in a single file, and when a request is received, a variable (maintained

1.1. PROBLEMS IN WEB DEVELOPMENT 9

by the developer) determines which page to show. Figure 1.4 shows how a cond special form
from Scheme can be used for this.

(cond

((string=7 page "pagel")
(display
(html

(input ’name "page" ’type "HIDDEN" ’value "page2"))))
((string=7 page "page2")
(display

(html

(input ’name "page" ’type "HIDDEN" ’value "page3"))))
setc

)

Figure 1.4: An example of how the cond special form from Scheme can be used to control the
flow of a CGI program. page is a string extracted from the HTML form. The "pagel”,
"page2" and "page3" strings are used to determine the parts of the application and
is maintained by the developer.

By using the above solution, the developer has overview of all pages (and the flow between
them) in the Web application. However, if a large application is created, the gathering of all
pages in the same file, will make it difficult for the developer to maintain the overview. This
is the case, both because of the amount of lines of code present in the file, but also because
there exists no grouping of pages which are related to a specific part of the application. In
an online bookstore, for instance, the login page is not related to the page where a user can
search for a specific book.

The second solution to the control flow problem is to rely on the action attribute from the
HTML form element. Instead of placing the application in a single file, it is placed in a num-
ber of files (e.g. one file for each page in the application). The pages can then - by using the
action attribute of the HI'ML form element - be linked together. The connections between
the pages presented in Figure 1.2 can then be establish if page A (a single file) contains a
form element that links to page B. It will look like:

(form ’action "B.cgi" ...)

Page B must then contain two form elements: one that links to page C' and one that links
to page D. By following this pattern, the entire connection between pages shown in Figure
1.2 can be created.

10 CHAPTER 1. ANALYSIS

The linking between individual scripts allows the developer to create a splitting of the ap-
plication (e.g. one script per page). The flow of the program is difficult to maintain, since it
requires the developer to open various files in order to follow a specific series of actions (one
file has a reference to one or more of the other files related to the application, which again
has one or more references etc.).

In this section approaches to the two subproblems of the State handling problem, namely
the Data flow handling and the Control flow handling problem were presented. The Data
handling problem can be solved by storing the data on either the server or the client. The
Control flow handling problem can be solved by using primitives in the language or by linking
small applications together using the action attribute of HIML form elements. The next
section focus on the Input validation problem and possible solutions to it.

1.1.2 Input Validation

In this section the Input validation problem is analyzed. In order to get information from
a client in a Web application, input elements are used. These input elements are added to
an HTML page by using HTML elements - often the HTML input element (others, like
the textarea element, can also be considered input elements). There exists ten different
types of the HTML input element [W3C02b|, and the content of each element is in HTML
handled as textual input. This means, that the representation of all values - regardless of
the input type - are string values when extracted from an HTML form.

To see the problem with the lack of types in HTML, consider the following example, which
consists of two HTML pages with HTML input elements (see Figure 1.5). The HTML input
elements are created in basically the same way (the name attribute will differ):

(input ’type "TEXT" ’value "" ’size "5" ’name "a")

As seen, the type of the HTML input element used is TEXT. This means, that text input
elements are used to gather information about numbers. In this example, the first page
takes two “numbers” as input, and it contains a submit input element (Figure 1.5 (A)). The
second page presents the sum of the two “numbers” entered in the first page (Figure 1.5 (B)).

PROBLEMS IN WEB DEVELOPMENT

11

Calculate two numbers!

This page calculates two
numbers! Enter them below
and press submit

Calculate two numbers!

This page calculates the
sum of the two numbers
entered on the previous page.

Number A Number B Result
. wo] [0]
_ Submit_|
(A) (B)

Figure 1.5: An example of input fields. The sum of the two numbers entered in (A) is presented

in (B).

The problem in this example, is that it cannot be assured, that the client enters numbers in
the input elements on the first page. Since information from the input elements are handled
as strings, the client can enter e.g. "asdf” as the first number. This gives the developer of a
Web application the need to perform checks on input, since it will not - in the example used
- make sense to add a string to a number.

On the basic HTML/CGI level, there is no way of checking for specific input types. If
validation is needed, the developer must use other technologies. The validation part of an
application can be handled on two different levels; on the client or on the server.

Generally, validating input on the client side will mean faster validation. The reason is, that
data will stay on the client until it is valid. If validation is handled by the server, input must
be send between client and server, until it has been validated. A problem with client side
validation is, that a specific technology (such as JavaScript[Net02]) must be present on the
client. If the technology is not present, a validation will not be accomplished. With server
side validation, however, it is not required for the client to have specific technologies present.
Instead, technologies present on the server are used for validation.

Client Side Validation

Often used technologies for client side validation are JavaScript! and JScript|Mic02b]| (we
focus on JavaScript), which are scripting languages developed by Netscape and Microsoft,
respectively. Both are standardized as ECHMAScript[ECHO02]|, which is a standard for script-
ing in a host environment. JavaScript can be used inside HTML documents, and the Web
browser will execute the script immediately or at a later event (e.g. when a client submits

1Server side JavaScript exist, but when we use the term JavaScript we mean client side only

12 CHAPTER 1. ANALYSIS

an HTML form or changes the content in an input element). This gives the developer many
possibilities, and one of them is validation of input elements. The first page from the ex-
ample above, is shown in Figure 1.6, with JavaScript included (body text and layout is not
included).

<html>
<head>
<title>Calculate two numbers!</title>
<script type="text/javascript">
function checkNumbers() {
var anum = document.sum.a.value //value from ’a’ input field
var bnum = document.sum.b.value //value from ’b’ input field

//check if any is not a number .. ’10’ is the radix

if (isNaN(parseInt(anum, 10)) || isNaN(parseInt(bnum, 10))) {
alert ("You must enter valid numbers!"); //Show error alert
return false; //the user must try again

}
else
return true; //accepted .. continue

}
</script>
</head>
<body>
<!-- body text and layout is not included! -->

<form name="sum" type="GET" onSubmit="return checkNumbers()"
’action="result.html">

<input type="text" value="" size="5" maxlength="5" name="a">
<input type="text" value="" size="5" maxlength="5" name="b">
<input type="submit" value="submit'">
</form>

</body>

</html>

Figure 1.6: An example of input validation in JavaScript. The result page is not called unless
the information entered is validated as numbers.

As seen in the figure, the input elements are placed inside a form element. This makes it
possible to specify in the JavaScript (included in the script element), which values that
are of interest (as it is done in the first two lines of the checkNumbers function). The
example also shows, that there is a problem related to the need to master two technologies;
a scripting language with a C/Java like syntax together with HTML. Another problem with
JavaScript is, that some functionality differs between different browsers (e.g. Netscape and
MS Internet Explorer). This means, that some functionality must be browser specific and
therefore written twice.

Server Side Validation

Leaving input validation as a server task, means that input from the client is sent to the
server in order to be validated. If the input is not valid, appropriate errors messages must

1.1. PROBLEMS IN WEB DEVELOPMENT 13

be presented. There is no special technology used for server side validation (like JavaScript
is used for client side). Instead, the programming language used to generate the HTML
content is also used for validation (like VBScript [Mic02¢| in ASP, Java|Inc02b] in JSP etc).

The following example is implemented in JSP, and is - like the client side validation example -
an implementation of the first page in the initial example. The idea is, that we are interested
in creating a loop between server and client, that runs until the client submits valid input.
Such a loop can be created by using a wrapper page, which performs the needed validation.
If the input is valid, the client is directed to the next page. Otherwise, the client is send
back to the original page, so input values can be entered again. Another possibility is to
embed the validation into the presentation. The latter is used in the example, which can be
seen on Figure 1.7%.

<html>
<head>
<title>Calculate two numbers!</title>
</head>
<body>
<form action="" name="sum" method="GET">
<%
// if parameter is not present, getParameter returns null
String astring = request.getParameter("a");
String bstring = request.getParameter("b");
// the initial request (no paramters exist), will result in both being null
if (astring == null || bstring == null)
; //dont do anything
else {
try {
int anum = Integer.parselnt(astring);
int bnum = Integer.parselnt(bstring);
response.sendRedirect ("result.html?a="+anum+"&b="+bnum) ;
} catch (NumberFormatException e) {

%>
You must enter valid numbers!
<h
} // end of try-catch
}
%>
<input type="text" value="" size="5" maxlength="5" name="a">
<input type="text" value="" size="5" maxlength="5" name="b">
<input type="submit" value="submit'">
</form>
</body>
</html>

Figure 1.7: An example of server side validation. Here the server side language is embedded in
the page.

2The example is very basic, and no specific strengths from JSP are used.

14 CHAPTER 1. ANALYSIS

As seen on this figure, the error message and the validation are embedded in the HTML.
Special tags are used - <% and %> - to escape from HTML into the programming language
used (Java in this example). The server converts the entire page into a small Java program,
which is executed when requested (and compiled at the very first request). The appropriate
HTML page is then created by a series of System.out statements. Just as with client side
validation, the developer must master both a programming language and HTML. However,
the programming language available on the server, will in most cases be more comprehensive
than the scripting language used for client side validation.

This section has presented two different approaches to the Input validation problem. The
first is client side validation which requires special technology on the client. The second is
server side validation, where the programming language for generating Web pages are used
to perform check on the input from the user. Client side validation yields faster evaluation,
but the client can disable the functionality, that validates the input. In order to perform
server side validation, a client/server loop must be maintained by the developer. However,
server side validation ensures validation of client data. The next Section presents the Com-
plex forms problem.

1.1.3 Complex Forms

In this section the Complex forms problem is discussed. The problem concerning complex
forms exists whenever the developer has a complex structure, that it is of interest to get
filled with data entered by a client. The structure can be presented as layout in HTML (an
example is given in Figure 1.9). After the client has entered the information wanted, the
HTML form is submitted. When the information is submitted it is converted to a key/value
pairs string. This makes it difficult to recreate the structure as it was presented on the
HTML page. The reason for this is, that the string does not contain any information about
composition of elements in the structure, but only information about values from the basic
input elements in the HTML form.

Consider the following example of a person structure, which must be filled with information
from the client.

The person structure can be considered a record structure from the Scheme programming
language. As seen, the person has nested records, like e.g. the street-name. A street-name is
part of a street, which again is part of an address, which again is part of a person. In order
to get such a structure filled with information from the client, the developer must complete
two steps:

1. Present the structure in an HTML form

2. Reconstruct the structure from a key/value pairs string

The first step - presenting the structure in a complex form - can be handled by using HTML
elements. Various possibilities exist, like labels, input elements, various fonts, tables etc.

1.1. PROBLEMS IN WEB DEVELOPMENT

15

(person
(name
(first-name "")
(last-name ""))
(address
(country "")
(city
(city-name "")
(postal-number "'"))
(street
(street-name "")
(house-number ""))

)
(email "")
(phone " u)
(age n l|)

)

Figure 1.8: A structure representing a person.

The address part from the structure shown in Figure 1.8 can be presented in an HTML

table like illustrated in Figure 1.9.

(table
(tr (center "Address")

(td "Country" (br) (input ’type "TEXT" ’name "country") ’align "center")

(td
(table
(tr (center "City")
(td "City-name" (br)
(input ’type "TEXT" ’name
(td "postal-number" (br)
(input ’type "TEXT" ’name
)
‘border "1")
)
(td
(table
(tr (center "Street")
(td "Street-name" (br)
(input ’type "TEXT" ’name
(td "House-number" (br)
(input ’type "TEXT" ’name

)
’border "1")
)
)
’border "1")

Figure 1.9: The HTML layout of an address from a person record.

"city-name") ’align "center")

"postal-number") ’align "center")

"street-name") ’align "center")

"house-number") ’align "center")

16 CHAPTER 1. ANALYSIS

By writing tables inside tables, the developer can create a tree presentation of the person
structure. Each of the leafs are input elements, that the client can fill with information.

The difficulties emerges when the developer receives the form information submitted by the
client and must reconstruct the person structure (the second step). Consider the entire
person being build in a similar way as the address part. When the client presses the submit
button, the information from the input elements are gathered in a key/value pairs string.
All information from the HTML form will be the string (// is added as a line break for
readability):

first-name=nick&last-name=hansen&country=denmark&city-name=thy&postal-number=1234& //
street-name=highroad&house-number=42%email=nick’40freemail.com&phone=12345678&age=42

And as an association list in Scheme:

(urlparms (age . "42") (phone . "12345678") (email . "nick}),40freemail.com") //
(house-number . "42") (street-name . "highroad") (postal-number. "1234") //
(city-name . "thy") (country . "denmark") (last-name . "hansen") //
(first-name . "nick"))

All the basic information from the input elements are present in the data from the HTML
form received, but there are no information telling the developer anything about the struc-
ture. The following section, will present possible ways to handle the recreation of the complex
structure.

Rebuilding the Structure

When form parameters are submitted by the client, all information about the composition of
the elements are lost. There are e.g. no information telling, that the first-name and the last-
name are actually parts of the composite element name in the person structure. Information
about the composition could be handled by hidden input elements in the HTML form. To
solve this, a hidden input element named name, which has the value first-name-+last-name
can be created. The information from the hidden input elements are included in the infor-
mation from a submitted HTML form, so the hidden input element name will result in the
string name=first-name+last-name when received from the client. This tells the developer
the value of name, but it will be on the same level as all the other information from the input
fields. This means, that the only way to distinguish between the information representing
client input and information representing structure, is the key (name in this example) in the
received data from the HTML form.

To recreate the structure on behalf of a parameter string, where information about the struc-
ture is mixed with data from the client is difficult. First, the developer must know the names
of all the keys representing the structure, in order to rebuild it. Second, the developer must
be sure, that names related to a “data” input element are not in conflict with names related
to a hidden input “structure” element. Third, functions that create complex structures on
behalf of strings must be created.

1.1. PROBLEMS IN WEB DEVELOPMENT 17

Instead of giving each part of the structure its own hidden input element, the entire structure
can be stored in a single hidden input element. This requires the developer to first create
a “template” of the structure, and then place it in a hidden input element when the HTML
form element is created. The person structure can e.g. be placed in a hidden input element
named form-structure. When the data from the HTML form are submitted, the developer
only needs to find the value of the form-structure key in order to have a representation of
the structure. When having the structure at hand, it can be updated with the data from the
client. Using this way of handling HTML forms, the developer is required to perform three
steps. These steps are illustrated in Figure 1.10.

HTML page
° A Q
oLl
[o
\B 1
|
() (e 2 5 (o) (o)
o[z]

|22y,
ORO [) @
!

,,,,,,,, c=1&d=2&e=3

Figure 1.10: In step (1) the developer creates the structure wanted. Step (2) presents a similar
structure as an HTML form. The structure created in step (1) is stored in a hidden input
element (the dashed box in the bottom of (2)). In step (3) the structure is extracted from the
HTML form, and updated with the values entered by the client.

The structure template from step (1) - in Figure 1.10 - can be the person structure already
presented. By doing the layout in HTML as done in Figure 1.9 and storing the person
structure in a hidden input element, step (2) can be achieved. Updating the structure (step
(3)) is done by first extracting the structure, and then in turn handle each key in the data
from the HTML form. If a key is present in the structure, update the structure with the
keys value. Otherwise continue to the next key. The above two alternatives (hidden infor-
mation about the composition or the entire structure) are self contained, since information
about the structure are available in the data received from the client. Instead of storing the
entire structure in a hidden input element, a reference to the template can be stored (like
structure=person). This can be handled in the same way, as data are stored on the server.
This results in the structure not being self contained, as it cannot be reconstructed from the
data received from the client. Information about the structure is needed from the server.

When creating an HTML form based on a template or directly in the language, it is difficult
to see the relation between the representation of the structure and the structure itself. A
relation is made, if functions that can create an HTML form on behalf of a structure exists.

18 CHAPTER 1. ANALYSIS

It is then a specific structure that is presented as an HTML form, and if the structure is
modified, it is mirrored in the HTML form. A similar relation is achieved if the developer
has the possibility to specify the HTML layout of a structure, e.g. by specifying the layout
of each of the elements.

The Complex forms problem was presented in this section. First, it was seen, how informa-
tion about a structure can be stored in hidden input elements. This allows the developer to
recreate the structure presented as an HTML form, and fill it with the data entered by the
client. Instead of recreating a structure on behalf of information in hidden input elements,
it was presented how the developer can work with a “template” of a structure. The latter
approach consisted of three steps, namely creating, representing and updating a structure.

1.1.4 Reusability

During the advances in programming technologies the concepts of modularity and reusability
has become natural to developers. A developer will have an instinct that ensures reusability
of some of the code by applying modularity to it. During the programming task the de-
veloper need functionality that performs a specific task, be it extracting data from a data
structure, or perform computations, based on a certain algorithm. Rather than creating
the functionality on the spot a function is written, that - based on parameters - performs
the computation and returns a result. By the use of this function reusability emerges. The
function can be used again in different contexts, where that particular functionality is needed.

This is the reusability that developers has become accustomed to, namely reusability in terms
of general purpose functionality. The same amount of reusability has not been introduced
in Web development, when not considering general purpose functionality. It is of interest,
that ideas and concepts as modularity and reusability from non-Web development can be
used in Web development. Likewise, is the principle of information hiding - often employed
in relation to the module concept - of interest.

Often a Web developer creates a function that performs a task and thus use this function
as an abstraction over more detailed actions. An example is e.g. writing a function that
outputs a header of an HTML page. This kind of reusability is on parts of pages. Reusability
in terms of pages does also exist, in technologies such as PHP and ASP - see Section 1.2 -
due to the template like nature of the pages developed. It is interesting to consider if it is
possible to extend this kind of reusability to entire sequences of interactions with a client
(inspired by sessions in Bigwig). Imagine a situation where a number of pages have been
developed for one Web application, but on the next project the developer needs some pages
that represents the same task. Most likely the developer will copy the prior made pages and
edit them to fulfill the needs in the current project.

An example of a series of pages that is subject to modularization is a login sequence. A
number of pages responsible for getting credentials from the client, or if the client does not
have any, then offer the opportunity to receive credentials, by performing a registration of
the client. This is functionality that is applicable in many Web applications. Imagine the

1.1. PROBLEMS IN WEB DEVELOPMENT 19

developer having defined a module and having defined a flexible interface - in terms of pa-
rameters - to the module. Then the developer can use that module, specifying the values for
the various parameters.

In this section the Reusability problem has been discussed. This problem is related the inter-
est of introducing some of the programming concepts only present in non-Web development.
The possibility to define a series of pages as a module is sought, since it allows the developer
to reuse a module in different contexts. The module can be created to take parameters,
which e.g. specify information about the layout of the pages it includes. Creating modules
also makes for information hiding possible.

1.1.5 Summary

Section 1.1 introduced four problems in Web development. These are the State handling,
Input validation, Complex forms and Reusability problems. The State handling problem is
split into two sub-problems, namely Data flow handling and Control flow handling. The
Data flow handling problem, concerns the need for the developer to handle data received
from the client explicitly, in order for data to survive multiple interactions. This can be done,
by storing the data in hidden input elements, or storing data on the servers filesystem. The
Control flow handling problem is the problem, that concerns the need to maintain the in-
teractions between server and client. Possible solutions to maintain information about the
interactions were presented. The first is to use primitives from the programming language,
like the cond special form in Scheme. Another possibility is to use the action attribute on
the HTML form element. Both sub-problems in the State handling problem, are rooted in
the stateless nature of the HTTP protocol.

The Input validation problem is related the need to validate data from the client. Valida-
tion can be handled on the client or on the server. If validation is handled on the server,
a client/server loop must be maintained. However, server side validation ensures that data
submitted by the client is validated. This is not necessarily the case with client side vali-
dation, since the client can disable the technology used for validation. Such a technology is
e.g. JavaScript. Validation on the client yields faster validation, since it is not needed to
maintain a client/server loop, which uses bandwidth.

A Web developer can present a complex structure in an HTML form, by using HTML ele-
ments. Information about this structure is lost, when the client submits the data entered in
the HTML form. This is seen as a problem, which is named the Complex forms problem.
Possible solutions to how the structure presented as an HTML form can be rebuild after
the HTML form is submitted are presented. The HTML form structure can be specified
in hidden input elements (by specifying information about the composition of the indi-
vidual elements) or by using a “template” approach. Three steps must be performed if the
template approach is used. These are creating, presenting and updating a complex structure.

The final problem presented is the Reusability problem. It is of interest, that the developer
can define series of pages as a module. By letting the module take parameters, the pages

20 CHAPTER 1. ANALYSIS

it represents can be customized in the way defined by the developer. Such a customization
can e.g. be a style sheet.

1.2 Approaches to Web Development

During the preparatory work we found related work that might hold a solution to some of
the problems just analyzed. We adapt the line of thought presented by Bigwig, that Web
development can be divided into three different approaches or paradigms; namely the script-
centered, page-centered and the session-centered approach. The script-centered approach is
by Bigwig characterized as follows:

"The script-centered approach builds directly on top of the plain, stateless HTTP/CGI
protocol. A Web service is defined by a collection of loosely related scripts. A
seript is executed upon request from a client, receiving form data as input and
producing HTML as output before terminating. Individual requests are tied to-
gether by explicitly inserting appropriate links to other scripts in the reply pages.”
[CAMO2|

In the script-centered approach the individual scripts are in focus. Normally traditional
languages are used for writing the scripts, i.e. not languages written or created especially
for this purpose. Examples of these languages include Perl and C. It is the program code
that is the essential part here, HTML is written as the output from the script. Therefore
the HTML pages are generated in a top-down manner using print-like statements, requiring
the developer to be more structured in his development style. One of the disadvantages by
this is the lack of flexibility in the generation of the pages. For example once the HTML
title element has been written it is to late to write the head element.

According to Bigwig the page-centered approach considers Web development in quite a
different manner:

"The page-centered approach is covered by language such as ASP, PHP, and JSP,
where the dynamic code is embedded in the HTML pages. In a sense, this is the
wverse of the script-centered languages where HTML fragments are embedded
wn the program code. When a client requests a page, a specialized Web server
interprets the embedded code, which typically produces additional HTML snippets
while accessing a shared database. In the case of JSP, implementations work by
compiling each JSP page into a servlet using a simple transformation." [CAMO02|

In the page-centered approach, the Web developer designs the page layout with graphics
etc. The parts of the page where dynamics are needed, the developer escapes the design or
HTML and writes the program that generates the wanted dynamics. This make the Web
development process more focused toward the design of the final look of the page, unlike the
script-centered approach which is more like non-Web programming. It helps to increase the
overview of the Web development for the developer if only small amounts of dynamics are
needed. But if a page is filled with program fragments it clutters the developers overview in

1.3. RELATED WORK 21

the same way as the script-centered approach does. Therefore there is a trade off between
simplicity and dynamics in this approach. It is often simple pages that are written in this
style. The developer still has to explicit link various pages together to create the illusion of
coherence between a number of pages. The page-centered approach to Web development also
introduces sessions. This is done, by maintaining a global state, which contains information
about data received from clients. This is e.g. done by PHP [The02].

According to Bigwig there is in the session-centered approach a coherence of the individual
pages shown to the client. The developer writes a session as one program, that encapsulates
the presentation of the individual pages. This program is executed and represents the session.

"A service is here viewed as a collection of distinct sessions that access some
shared data. A client may initiate a session thread, which is conceptually a process
running on the server. Interaction with the client is viewed as remote procedure
calls from the server, as known from classical construction of distributed systems
but with the roles reversed." [CAMO2]

By writing the entire interaction between the server and the client as one program the de-
veloper obtains a better overview of the development process. Writing several pages as part
of a session (a program) it is possible to share data between the individual pages without
having to explicitly transfer the data between the individual pages.

This section has presented three different approaches to Web development, namely the script-
centered, the page-centered and the session-centered approach. It is chosen, that focus is
placed on the session-centered approach to Web development, when solutions to the four
problems - State handling, Input validation, Complex forms and Reusability - are designed.
The reason for this is, that a session introduces encapsulation of pages, which is a solution
to the Reusability problem. Each session is then equal to a module of pages. If a module can
be customized with parameters (e.g. a style sheet) when activated, it can be used in various
contexts. Furthermore, does a session represent the flow of pages in the Web application
and allows for client data to be shared between pages. Handling data and flow in a Web
application, are the two subproblems in the State handling problem. This means, that a
session concept in Web development solves both the Reusability and the State handling
problem. To identify possible approaches to session-centered Web development, the next
section presents work related to sessions.

1.3 Related Work

Based on the problems presented, related work in the area of Web development has been
analyzed, to find existing solutions to problems similar to those described in Section 1.1.
There exists few examples of technologies that relies on the session centered approach to
Web development. Bigwig, and its ancestor Mawl[DJ01]| were the first encountered. Mawl
will not be discussed, since Bigwig covers the same aspects as Mawl in relation to our
problems. WASH/CGI also adhere to the session centered approach to Web development

22 CHAPTER 1. ANALYSIS

and it does so with basis in the functional language Haskell. Furthermore, a library® called
PAKCS/HTML for the language Curry[Mic02al, is analyzed. PAKCS/HTML is shipped
with the PAKCS Curry implementation|Han02] and implements sessions as an optimization
of plain CGI. These technologies are analyzed in the following sections, to uncover their
relation to the session centered approach to Web development and to find ideas usable in
the context of our problems.

1.3.1 Bigwig

The session concept - and the session-centered approach to Web development, which is the
motivating factor behind the session concept - was originally presented by the Mawl lan-
guage. In essence both Mawl and Bigwig handles sessions the same way. They operate
with the session-centered approach to Web development as an alternative to the page and
script-centered approach. An important factor behind the session-centered approach is that
the developer thinks in sessions (whole series of interactions with the client) rather than
individual pages that makes up a whole application. Furthermore these interactions are
written as one large program since this gives a better overview of the development process
and therefore helps to produce more structured and coherent Web applications. The reason
for this is, that the developer has the overview to spend more time on the flow of the appli-
cation, rather than linking the individual pages together.

Bigwig is a framework that rely on compilation and static checks, rather than what is nor-
mally used in Web programming, namely interpretation. Compiling the Web service enables
type checking and static analysis which ensures - to some degree - the correctness of the
service. Bigwig rely on static type checking, because it catches many of the errors that
otherwise occur at run-time. Bigwig is a C and Java-like skeleton language that binds to-
gether a number of domain specific languages. Services written in Bigwig can by the compiler
be translated into standard Web technologies such as HTML, CGI, JavaScript, Java applets
and elements of HT'TP. Bigwig see the use of only standard technologies as an advantage as
these do not require special language support from the client.

A session in Bigwig is part of a service. The Web developer writes a service and creates a
number of sessions as part of this service. A service corresponds essentially to a sequential
program. The Web developer therefore writes a service as any other program and includes
sessions as part of this program. For an example of this practice see Figure 1.11. A service
is created which contains definitions of HTML pages, here the Please and Greeting HTML
pages. It also contains sessions, here the Hello session which shows the Please HTML page
to the client and receives the name entered by the client in the string variable s. Next the
Greeting HTML page is shown with the just received data (placed in s) as part of the page.
Notice the show function used to display the page. This function takes the page and shows
it to the client. The program is continued like show is a normal procedure call.

3We will refer to this as PAKCS/HTML. The actual name is not known but when downloading the
PACKS Curry system the library is included as HTML.

1.3. RELATED WORK 23

service {
html Please = <html> Please state Your name:
<input type=text name=handle> </html>;
html Greeting = <html>Hello <[moniker]>, how are you?</html>;
session Hello() {
string s;
show Please recieve[s=handle];
show Greating<[moniker=s]>;
}
}

Figure 1.11: An example of how a service and a session are related and how a program is written
in Bigwig [CAMO02].

Using sessions in Web development makes the communication between the client - and the
server running the session - roughly similar to remote procedure calls (see [AB84]), or as
Bigwig state it:

"Communication is performed by showing the client an HTML page, which im-
plicitly is made into a form with an appropriate URL return address. While
the client browses the given document, the session thread is suspended on the
server. Eventually the client submits the form, which causes the session thread
to be resumed and any form data entered by the client to be received into program

variables. " [CAMO2]

To get a better understanding of this way of handling sessions, Figure 1.12 illustrates the
client and the session thread during the flow of a session. The session begins with the client
requesting the URL matching the session. The session thread computes the session until the
first page is shown to the client. Then the session thread is suspended and goes idle on the
server. The client receives the page and submits data. When the client is done the result
of the page is send back to the server. Once the server receives the result it reinvokes the
session thread and the computation is continued.

Client

Figure 1.12: An illustration of the flow of a Bigwig session[CAMO02].

24 CHAPTER 1. ANALYSIS

The service concept as introduced by Bigwig makes it possible to share data between the
individual sessions that belongs to a given service. This is achieved by creating variables
etc. with the shared modifier. The ability to share data between sessions allows sessions to
communicate with each other.

Bigwig see a problem in the limitation that all communication between the client and the
server must be handled by presenting and submitting pages with HTML forms. Their ex-
ample is a chat room. In a chat room the client receives new messages without having to
reload the page. Therefore Bigwig has created the concept of seslets. Basically seslets is a
limited session running on the client with permission to contact the server. This seslet can
then be used to contact the server and retrieve new messages in the chat forum at a regular
interval.

Bigwig also introduce a concept, that is used when validating input. They have named
this Powerforms[BMRSO01]|, which is a declarative way of handling validation. The developer
specifies valid input to an input element and the validity of the input element is ensured
by a JavaScript that is created automatically.

A number of interesting ideas has been used in Bigwig, some of which will be used to solve
the problems described in Section 1.1. The most noticeable is the idea of sessions. Bigwig
relies on the session concept for two things. First it is an entirely different way to develop
Web applications, a way that more resembles non-Web development than CGI development.
The second benefit with sessions is the ability to introduce persistence on the server, thus
eliminating the need for sending data between the client and the server, for the data to be
available at a later time during the session. To introduce functionality - in the form of the
show command - that represents sending a page to the client and receive data submitted,
seems like a good idea. This can help to conceptualize the interactive nature of Web appli-
cation for the developer.

Bigwig have problems regarding stepping back and bookmarking a page in a session. The
problem is that if any of these two event happens, the session is started from the beginning.
The reason for this behavior is that Bigwig sees it as dangerous to step back in a session,
since some actions might change the state and this state change is hard - if not impossible
- to undo. Example of such actions are file writing and database updates. However, our
opinion is that stepping back in a session can by dangerous, but reasonable to support. The
reason is that the back button supports an explorative nature, when the client is browsing the

application. If a back button instead is a link on the Web page, it is sometimes cumbersome
to find.

1.3.2 WASH/CGI

Another session centered approach is WASH/CGI. WASH/CGI is a library - for Haskell -
providing help when developing Web applications. Programs written in WASH/CGI are com-
piled. WASH/CGI considers the session concept as a structure that improves the overview
of the Web development process, and it considers a session in the following way:

1.3. RELATED WORK 25

"A session is a dynamically evolving sequence of ask and %o actions (in the CGI
monad). Fach of these actions queries the external world, either by displaying a
form on a Web browser or by performing and IO action, and receives a response.”
[Pet]

Just as with Mawl and Bigwig the Web developer thinks of sessions, when developing Web
applications. Like Bigwig, WASH/CGI uses a primitive for displaying a page to the client.
WASH/CGI relies on the ask function call - just as Bigwig relies on the show function - to
ask and receive data from the client.

WASH/CGI does not suspend the process on the server - like Bigwig does it - when a page
is send to the client. Instead execution of WASH/CGI applications are ended after a page
has been shown to the client, as done in traditional CGI programming. Therefore some way
of receiving the data and resume execution of the session with the appropriate data has to
be used. To remember the data already asked from the client a list, called inparm, is used.
Once a session is invoked and executed, it checks if the data asked for, are already present in
the inparm list, and if so, the client is not asked for it again. Instead the data in the list is
used. The data in the inparm list are stored with an association to the individual ask. This
means, that the data received from each interaction with the client, are added the inparm
list. Thus the inparm list contains all data already received from the client, and therefore
acts as a session status. Persistence of this list is obtained by passing the list data with
each page shown to the client in the form of a hidden HTML input element. This results
in the entire session being computed up to the point of the page that is requested, at each
request. It seems to be a waste of time to start the application from the beginning every
time. But since the data needed from the client is retrieved from the inparm list, the time
used to compute the page to be shown next time is minimal. Not only data from the client
are stored in the inparm list, but also IO actions are stored in the list, since these must be
undone if the client steps back in the computation.

Figure 1.13 illustrates the steps taken in execution of a WASH/CGI application. The client
requests a WASH/CGI application which is executed. The application contains three in-
teractions (one page for each interaction) with the client. First the inparm list is checked
to determine if Pagel is already present. If not, Pagel is shown to the client. Since the
application has just been started, inparm is empty, and Pagel is shown to the client. The
client enters data on the page and submits it to the application on the server. The server
starts the application again and associates the data received from the client with an entry
in the inparm list for Pagel. The inparm list is checked to determine if it contains the data
for Pagel. This time it does and the next step is taken. Again the inparm list is checked to
see if it contains an entry associated with Page2. It continues like this until the end of the
application or the client stops submitting pages.

26 CHAPTER 1. ANALYSIS

Server Client
(m--------------------------- Request
|
I /
' | Application i
| Is Pagel present in inparrﬁ?
| Bl . Response
. : No]
| : Yes | T
3 v ! i »Pagelw
N S
|
| I
| I
|
|
: I
: ‘
| I
| I
|
I
| |
.| Application| inparm: Pagel !
I
| Is Pagel present in inparﬁ?
| Yes |
| : I
I :
| ' —_
! ‘ Is Page2 present in inparm? Response
T P
| : No I s
! " Yes | i Page2i
! v o T
|
| \
|
| I
I
I
I

Figure 1.13: An illustration of the usage of the inparm list in WASH/CGI.

Having the inparm list present in every page sent to the client and relying on it when reestab-
lishing the state of the session, it is possible to step back in a session. This works since the
client pressing the back button results in re-sending an old form and the server reestablishing
the state from the inparm list present in this page.

WASH/CGI includes interesting work involving HTML forms. WASH/CGI relies on an
abstraction in the form of functions to generate HTML. It also has functions to generate
HTML form and input elements. The function that generates the HTML form automatically
sets the appropriate enctype, method and action attributes on the form element. The
enctype attribute is used to specify the encoding of the contents of the HTML form when it is
send to the server. The method attribute is used to identify whether the GET or POST method
is used when submitting the HTML form. The action attributes specifies the functionality
that receive the data from the HTML form. By setting these attributes automatically the
Web developer is alleviated from this responsibility, and it is ensured that the attributes
are always correct. The function used for generating HTML input elements - e.g. textual
inputs, check boxes etc. - returns a handle to the input element. This handle contains -
once the page containing the input element has been shown to the client - the value entered
into the input element. The developer can then access this data using either the value or the
string function returning the parsed value or the unparsed value respectively. To associate
these handles with the data entered by the client, the submit input element - which is
generated from a function as any other HTML element - is used. It is defined by passing it

1.3. RELATED WORK 27

functionality which is activated once the submit button is pressed. This action associates
the data entered by the client with the handlers received when defining the input elements.
The function generating the input elements automatically provides naming. It also has a
means for presenting default values based on a log of previously received input.

Server Client

ask ___ _-

handlel<- -
handle2 < -
function - - - &

function (handlel, handle2) {
tell --->
You entered:

string{handlel}
string{handle2}

You entered:
valuel
value2

Figure 1.14: An illustration of form handling using call back functions and handlers in WASH/CGlI.

Figure 1.14 illustrates how HTML forms are handled in WASH/CGI. First the developer
specifies an HTML page and states - for each input element - that the values entered into
this input element is associated with a given handler, here handlel and handle2. Next the
developer associates a call back function - here function - with the action of the submit
input element. Then the page is shown to the client with the ask function. The client enters
data into the HTML form and presses the button. This results in the data being submitted
to the server. When the server receives the data from the HTML form it activates the call
back function function and the handles are passed as parameter to this function. The call
back function extract the values from the handlers with the string function and presents
them - with tell - to the client in a new HTML page.

WASH/CGI does not provide a solution to the problem with complex structures as it is
not possible to receive the data from an HTML form in a defined structure. It is possible
to represent a structure at the client, since the developer can construct complex structures
based on HTML elements, but the structure does not survive an interaction with the client.
Relying on a list to contain the data already received from the client, allows for a simulation
of the session resuming its computation from the point it stopped, when sending a page to
the client.

28 CHAPTER 1. ANALYSIS

1.3.3 PAKCS/HTML

By relying on the mixed paradigm language Curry, Michael Hanus describes in [Han01] how
solutions to the problems with the plain CGI approach to Web development can be solved.
This is done by implementing a library for the Curry language. Curry is described as a
mixed paradigm language and its constituents include elements from the functional, the
logical and the concurrent programming paradigm. When used for Web development the
developer does not write the HTML code as text strings in print-like statements in the lan-
guage. Rather Web programming with PAKCS/HTML is done by relying on an abstraction
layer above plain CGI, where HTTML documents are constructed using a specific HTML data
type representing the HTML (also referred to as an HTML expression). A wrapper function
is responsible for translating the HTML data type to a textual representation, when the
page is shown to the client. The introduction of this abstraction above plain CGI introduces
a number of benefits which are described in the following.

The wrapper function is responsible for more than constructing the textual representation
of the HTML data type. The wrapper function is also responsible for retrieving the data
entered into HTML forms by the client. This is done by introducing elements of an abstract
data type that the developer can use when constructing the HI'ML page. The idea is that
the developer can specify an element of the abstract data type, and use a logical variable
that is part of the data structure as reference to an input element in the HTML page. In-
troducing a logical variable as reference to the input element is done, since the variable is
not instantiated until after the HTML page has been shown to the client. A logical variable
is a way to express the delayed instantiation of a variable. When the HTML expression is
processed by the wrapper, the textual representation is generated. At the same time, the
wrapper instantiates variables, which are used as references to the input elements on the
HTML page. When the client submits the HTML form, the data from the input elements
are associated with the variables instantiated by the wrapper. Data from the HTML form
can then be accessed by using the variables.

Another element of the abstraction is that the program that generates the HTML form -
which is shown to the client - is also the program that is activated when the client submits
the form and the wrapper has done its work. This allows a sequence of interactions to take
place based on the control abstractions of the Curry language. The idea is to associate
an event handler with each submit input element that is shown to the client. Once the
wrapper has received the data from the HTML form, it activates this event handler passing
a CGI environment as parameter. The CGI environment is a mapping from the names of
the input elements present in the HTML form to the strings entered by the client. By
requiring an event handler to return a new HTML page, containing a new HTML form, the
concept of sessions has raised. The result of executing the event handler is to show a new
page to the client. This allows nesting of event handler and thereby series of interactions
can be obtained. This resembles the session-centered approach to Web development, since
the developer is able to specify the entire interaction between the client and the server, as
one large program.

1.3. RELATED WORK 29

It is also possible to obtain the session-centered approach to Web development without re-
lying on nesting of event handlers. Since the various control structures of the entire Curry
language is available the developer can rely on these. For example, the developer might rely
on recursion to repeatedly show a page until the client has entered the correct data. Or a
select statement can be used to determine - on basis of just received data - which page to
show next.

For an illustration of how the interactions between the client and server is handled in
PAKCS/HTML see Figure 1.15. The interaction begins with the evaluation of a function
- here function - on request from the client. The entire box surrounding everything in
the server is considered the session that the client activates. The server then executes the
function function, which generates an HTML page containing two text input elements and
a submit input element (here the hatched box on the figure). As seen the two text input
elements are associated with the logical variables (here logical var and logical wvarl). The
generated HTML page is shown to the client, filled with data and submitted again. After
this, the event handler associated with the submit button (here eventHandler) is activated
and an environment (here env) is passed as parameter. The event handler then generates
an HTML page containing the values entered by the client. These values are obtained by
applying the environment on the logical variables. The resulting HTML page is shown to
the client and the session is terminated.

Server Client
-
function{ ____-o
logical_var- - - ->| 3

logical_vart - - > | 3
eventHandler - ->| W

}

eventHandler (env) { _~
You entered:
(env logical_var)
(env logical_varl

You entered:
valuel

value2

Figure 1.15: An illustration of handling an HTML form using event handlers and logical variables
in PAKCS/HTML.

A problem with traditional CGI programming is the lack of state on the server due to the
stateless nature of the HT'TP protocol. Normally this is solved by placing the state on the

30 CHAPTER 1. ANALYSIS

client either in cookies[DL02| or hidden input elements. In PAKCS/HTML this is solved
in a simpler way. Since the entire interaction consists of nesting of event handlers, there
cannot be two pages/event handler on the outer level. There must be one function which
is responsible for the first interaction with the client, and the functionality representing fol-
lowing interactions must be nested inside it.

A number of interesting ideas has been used in this work. The idea of having a wrapper
function decoding the parameters from the client and making them available is beneficial.
However, it is not possible to have structure on the data, since the value of each input
element is mapped to the value of a variable in the programming language. This means,
that no information about the composition of input elements are maintained. Furthermore,
it is impossible to uniquely identify the value of variable to be equal to the value entered in
a specific input element. The reason for this is, that the same name can be used to identify
input elements in different HTML forms.

The idea of allowing control structures of the Curry language to be used when developing a
series of interactions seems natural, as it resembles non-Web related programming. However,
sessions in PAKCS/HTML is different from sessions in Bigwig, as there cannot be more
than one top-level function. Initially an execution of an application is done on request
from a client by locating the appropriate script (the one that generates the first page in
the application) and execute it. But the following executions in the application is done by
calling the associated event handler (the one bound to the submit button that the client
presses). Therefore, placing two functions in the same script, does not result in both being
executed. Placing several functions on the top-level might be beneficial, since it introduces
an overview of the flow of the application. The developer can specify a number of functions
and rely on these being evaluated one by one, until the session terminates.

1.3.4 Summary

Section 1.3 introduced work related to the session-centered approach to Web development.
This was done, since a session concept solves two of the four problems identified, namely
the State handling and the Reusability problem. The related work analyzed were Bigwig,
WASH/CGI and PACKS/HTML. Bigwig introduce sessions by a primitive in the language.
This primitive results in a lexical scope forming an encapsulation of a sequence of pages.
WASH/CGI and PACKS/HTML uses a nested handler approach to specify the sequence of
pages represented by a session.

A third approach was found in the page-centered approach to Web development, namely
sessions by global state. This approach was identified in Section 1.2.

1.4. PROBLEM DEFINITION 31

1.4 Problem Definition

Following the analysis four problems in Web development exists. These are: the State han-
dling problem, the Complex forms problem, the Input validation problem and the Reusability
problem. These problems are formulated as three hypotheses.

The first problem is State handling, which - during analysis of related work - have been seen
dealt with by Bigwig, WASH/CGI and PAKCS/HTML. We expect to solve the State han-
dling problem and Reusability problem, by introducing a session concept inspired by Bigwig.
The reason is, that it is possible to let interactions with a client, happen in the same lexical
scope. This makes it possible to let interactions with a client share data. This is the solution
to the State handling problem. The Reusability problem is solved since this lexical scope
can be activated and thereby do interactions with a client. Because of the lexical scope, it
is possible to regard more than one interaction with a client as a unit. This is formulated in
the following hypothesis:

Hypothesis 1:

A session-centered approach to Web development in SLAML solves the
State handling problem of a Web application. Furthermore, a session
concept makes access to several HTML pages as a single unit possible.

This hypothesis is general and three problems are included in it. These three are the Control
flow handling, the Data flow handling problem and the Reusability problem. To be more pre-
cise, the hypothesis is spelled out in three sub-hypotheses, each involving one of the subjects.

With respect to control flow:

Hypothesis 1.1:

The Control flow handling problem is solved by introducing a session
concept, where a primaitive in the language displays an HTML page to
a client and returns as a regular function.

With respect to data flow:

Hypothesis 1.2:

The Data flow handling problem 1is solved by introducing a session
concept to SLAML, where interactions inside the same lexical scope
(sesston) can share data.

With respect to reusability:

Hypothesis 1.3:

32 CHAPTER 1. ANALYSIS

The Reusability problem is solved by introducing a session primaitive
that can activate a series of interactions with a client and rely on
parameters at call time.

The Compler forms problem is the second problem discussed. A developer will benefit
from having a framework that when constructing complex data structures on the server can
present them to the client as an HTML form and update them with data from the client.

This lead to the second hypothesis.

Hypothesis 2:

It 1s possible to construct a framework that helps the developer to build,
present and update complex structures.

The last problem is the Input validation problem. By construction a validation framework,
validation of data from the client is done simple. This is formulated in the third hypothesis.

Hypothesis 3:

It is possible to construct a validation framework that helps the devel-
oper to validate data from the client.

Relying on mod laml, a session-centered approach to Web development in SLAML will be
developed. This framework is called the SLAML framework. As a part of the SLAML frame-
work is the session framework and a solution to the Complex forms problem. Furthermore,
a validation framework that fit within the SLAML framework will be developed.

Contents
2.1 Session Framework i i e e e e e e e e e e 34
2.2 Complex Forms Framework 45
2.3 Validation Framework ¢ i i i i e e e e e . 69
2.4 SUMMATY .« ¢ v v v bttt e et e e e e e e e e e e e e e 7

In this chapter three main sections discusses and presents the decisions made in the de-
sign phase of this project. The first section explains how the session concept is designed
and what alternatives are possible. The second section explains the design of the exten-
sions to the session framework to make construction, presentation and updating of complex
structures possible. Last is the design of validation of data in the SLAML session framework.

Throughout this chapter new primitives are introduced and explained. For a complete
description of the primitives a reference to Appendix A is given. To get a complete under-
standing of each primitive the reader is requested to consult this appendix. Furthermore
we use a number of concepts, throughout the rest of this report. In the following box it is
described what we mean by these concept.

34 CHAPTER 2. DESIGN

Attribute: By attribute we mean a key/value pair consisting of a name and a string.
An example is type = "TEXT" from an HTML input element. The whole is addressed
as the attribute. type is addressed as the attribute name, and TEXT as the attribute value.

Elements: An element refers to an element as it is known from the SGML family of
languages. An element consists of content and attributes. An example is; <element

attributes-name attribute-value ..> Contents </element>.

Content: Content refers to everything inside a double tagged element. The contents of
one element can be other elements.

Tag: By tag we refer to a symbol from Scheme present in a list. L.e. a tagged list is a list
containing a symbol as the first element.

Primitive: By a primitive we refer to the name binding of a function or a special form.

Form parameters: Is the term used for the data entered by the client into an HTML
form and submitted to the server.

The overall goal of this chapter is to present and discuss the constructed framework that
solves the problems presented in the problem definition in Section 1.4. Furthermore, the
framework is designed to work in a server context where mod laml is used as an implemen-
tation platform. Therefore, it is not necessary that the framework fits with CGI. Part of
the context of this project is Scheme and the LAML libraries. Therefore the solutions will
adhere to the XML like syntax used in LAML. But as the framework makes use of sending
functions as parameters to other functions, XML syntax will not always be possible. Where
the syntax of XML is not followed directly a notice will explain why it is chosen to deviate
from the LAML syntax.

2.1 Session Framework

In the problem definition (see Section 1.4) a hypothesis is presented regarding the use of
sessions to solve the problems of State handling and Reusability. Three sub-hypotheses are
presented to expand the first hypothesis. The sub-hypothesis state that introducing a session
concept can solve the Data flow handling problem as well as the Control flow handling prob-
lem. Furthermore, allowing sessions to rely on parameters, sessions can solve the Reusability
problem. The goal is to design a session concept in SLAML that solves the problems from
the three sub-hypotheses and thereby the first hypothesis.

In this section the design of the session concept in SLAML is explained. First is considera-
tions regarding the design of sessions in SLAML. Second, choices made regarding the design

2.1. SESSION FRAMEWORK 35

is explained. Third, the flow of a session is explained, followed by an example.

2.1.1 Design Considerations

Three ways of constructing the session concept is found in related work (see Section 1.3).

Sessions by Global State: This is the approach used by various page centered approaches
to Web development. This includes PHP, ASP and JSP. Roughly a session is defined
by a global state associated with a client.

Sessions by Nesting Event Handlers: This approach to sessions is to nest event hand-
lers thereby achieving a session concept. Event handlers are nested by letting one event
handler present a page containing a reference to another event handler.

Sessions as Lexical Scopes: This approach relies on lexical scope rules of the language
to represent a session. All interactions taking place in the same lexical scope (session)
share data.

These three approaches for constructing sessions are explained in details in the following
sections. Each of the three approaches are discussed in relation to data flow and control
flow.

Sessions by Global State

This is the concept of sessions used when most page centered approaches implements ses-
sions. In this approach sessions are achieved by maintaining a global state on the server,
so interactions with a client can access shared data. In this way the scripts can share data
across invocations. The global state can be located on either the server or the client. The
maintenance of the global state is often handled in the language. The consequence of using
this strategy is that all pages share the same data. This means that there is no way of
securing the data from other pages that must access the data (unless it is done explicitly by
the programmer).

This approach to sessions is illustrated in Figure 2.1. Here it is seen that four requests
from a client all accesses the same global state. If a new page is requested by the client,
this request can access the global state as the others. In this approach it is not possible
to protect the global state from being accessed by e.g. Page 1 and Page 2. There exists
no encapsulation to indicate that the global state must only be accessible from Page 3 and
Page j. This is the first problem with this solution. There exists solutions where the client
- based on an unique id (session id) - can get access or is denied access to global state. This
is usually done by associating the global state with the session id. The second problem is
that the flow of the application is spread across several scripts. The flow of the entire appli-
cation is not placed centrally, allowing the developer to quickly overview the session. Rather
the flow of the application is represented by the activation of various smaller parts one by one.

36 CHAPTER 2. DESIGN

Server Clien

Page 1

Resporise

Request

Page 2

Response

ffffffffffffff /

Global state

Request

Page 3

Response

Request

Page 4

Resporise

Figure 2.1: An example of how global state is used to share data between interactions with a
client.

Introducing global state on the server results in increased requirements for the server in terms
of memory. The amount of memory required depends on the amount of clients using the
server. It does not increase drastically since session state is moved to disk after an amount
of time. Regarding disk space there is increased requirements so there must be an expire
time for session state. It is hard to determine the amount of time that a session must be on
disk before it is expired. It is advisable to run the server with the sessions in a period (for
example six months) and during this time gather statistics about the usage of the sessions
on disk. This provides sufficient information to make a qualified decision.

Sessions by Nesting Event Handlers

The event handling approach to sessions is the approach used in WASH/CGI (see Section
1.3.2) and PACKS/HTML (see Section 1.3.3). The idea is to let the submit button in an
HTML form on an HTML page be associated with an event handler. When the HTML form
is submitted, the event handler is called. In this way it is possible to create an interaction
sequence by letting the called event handler generate a new HTML form and associate this
HTML form with another event handler. This makes it possible to share data among pages
as these can be sent as parameters to the called event handlers. As the WASH/CGI and
PACKS/HTML solutions rely on the CGI protocol, the script being executed as part of the
application program has to end after having processed the request. The parameters have
to be send with the response to the client, for them to be available at the next page. Fur-
thermore, the flow of the application is spread across several event handlers. It is therefore

2.1. SESSION FRAMEWORK 37

difficult to get an overview of a whole session.

This approach is illustrated in Figure 2.2. Here it is seen how the submission of one HTML
form activates another event handler.

Server Client

Request

Page 1

Event handler 1
Response Form 1

Submit

Request

Page 2

Response
Event handler 2 Form 2

Submit

Request

Page 3

Event handler 3
Response

Figure 2.2: An example of how nested event handlers is used to do interactions with a client.

Sessions as Lexical Scopes

An interaction sequence in Bigwig is encapsulated in a session. A session is a lexical scope
where interactions that are performed inside the same scope share data. This makes it pos-
sible for the developer to see which interactions with the client, that share data. This is not
possible when a session is implemented as global state, due to the lack of a central overview
of the entire application. Likewise it is not possible when event handlers are used for ses-
sions. The reason is that the interactions with a client is not gathered at one place, but
spread across event handlers. In Bigwig sessions can be defined inside a service. A service
defines a lexical scope that consists of sessions. The reason for introducing the service is to
encapsulate related sessions. Two sessions defined inside the same service can interact with
each other and share data. Sessions in different services cannot interfere with each other or
share data.

In Figure 2.3, this approach to sessions is shown. Here it is seen that the program is continued
from the place where it left with the last response. In Figure 2.3 it is shown that Pagel and
Page2 share data. In the same way it is illustrated that Page? and Pagej share data. The
pages in the figure represents interactions with the client. There are two essential things
to be noted from this figure. First, interactions in one session cannot access data from

38 CHAPTER 2. DESIGN

other sessions. Second, interactions within the same session share data and the flow of the
interactions with the client are placed in the same program file.

Server Client
- Request
Service
Response :
Show pagel ; Pagel
Request : '
' Pagel and Page
i share data
' Response '
Show page2 T Page2
Request 1
2 sessions
Response
Show page3 :
Request i Page3
I
I
| Page3 and Page
I
. Response ! share data
Show page4
Request Page4

Figure 2.3: An example of how lexical scope is used to interact with a client.

Introducing sessions as a lexical scope requires more server processes. Since several interac-
tions with a client is conducted as part of the activation of one SLAML session, the evaluation
of such a session takes longer. Thereby it will use a server process for a longer period of
time. A need for more server processes results in increased requirements for CPU power
and memory usage. The amount of extra CPU power and memory usage needed can be
determined by considering the amount presently used for a server process.

2.1.2 Design of the Session Framework in SLAML

In the above, three different session concepts have been discussed. It is decided to base
the session concept in SLAML on the session concept from Bigwig (i.e. a new primitive
encapsulate the interactions with a client by the use of lexical scope). The main reason
for this is that the developer is able to see the whole flow of a session. Another reason for
choosing Bigwig’s concept of sessions, is that the developer is able to share data between the
encapsulated interactions with the client. This gives the developer a better overview of a
session. The reason for not choosing the approach found in WASH/CGI and PACKS/HTML
is that the flow of an application is not expressed as clearly in these approaches as in session
as lexical scope. The idea of having the flow of a session in one encapsulation - rather than
as global state or separate event handlers - makes it explicit which pages share data.

Sessions in SLAML

In order to encapsulate an interaction sequence with a client, a new primitive is constructed.
This primitive is called slaml-session (page 113), inspired by the session primitive in Big-
wig. Interactions inside the same slaml-session can share data, by using variables in

2.1. SESSION FRAMEWORK 39

Scheme. The lexical scope inside a session represents the flow of an interaction with a client.
In order to activate a slaml-session, the slaml-activate-session (page 115) primitive
is used. slaml-activate-session activates a session, and thereby starts the interaction
with the client.

In some cases it is necessary to send parameters to a slaml-session. Imagine a session
where the name of the person - who is logged in - is placed on the top of each page in a
session. In such an example the possibility of sending parameters to a session is a great
advantage. To obtain flexibility on a session, as is needed for sessions to be reusable, it is
important that sessions can take parameters. Parameters are passed to slaml-sessions in
the way seen in Figure 2.4

(slaml-activate-session
(slaml-session (sessionparm)

;contents of the session
) ’sessionparm person-name

)

Figure 2.4: An illustration of how a slaml-session is declared and activated.

In this example person-name is passed to the slaml-session. Declaration of a slaml-session
is also shown in Figure 2.4. A slaml-session always takes one parameter. Parame-
ters can be send to a slaml-session by evaluating slaml-activate-session with the
sessionparm attribute. The attribute value is the parameter passed to the activated ses-
sion. A slaml-session returns the last expression evaluated in the session. The reason for
this is, that this is how return values are specified in Scheme. Sessions in the language are
first class objects allowing the same possibilities with sessions as with functions.

40 CHAPTER 2. DESIGN

Client Interaction in SLAML

In order to interact with a client a primitive is needed to show a page to the client and
return the data from the client. In Bigwig this is done by the primitive called show. In
SLAML this primitive is called slaml-show (page 115). What slaml-show does is to send a
page to the client and receive the data submitted - by the client - from that page. The data
returned from the client is passed as a list of key/value pairs. When slaml-show returns
with a request from the client, the slaml-session is continued from the place where the
slaml-show that showed the page to the client is issued.

A page in SLAML is represented by a primitive called slaml-page (page 114). slaml-page
must take one argument and return the HTML string to be presented to the client. This can
be done by writing the HT'ML string manually. But a more appropriate way is to use the
html convenience function from the LAML mirror available from [lam01] for generating the
HTML string. A slaml-page can be written as a lambda function from Scheme, since this
allows for passing parameters to the page. Parameters are however not passed in this way.
Instead parameters to a page are passed as a list. This list is specified with the pageparm
attribute - with an associated parameter list - to the slaml-show primitive. The reason for
passing parameters in this way, is that this makes it possible to send more parameters by
wrapping them in a list. The reason for using the slaml-page rather than a lambda is to
get a better understanding of a program. A developer seeing a slaml-page is less in doubt
of the nature of the function than if it was a lambda function. For an example consider the
following:

(slaml-show
(slaml-page (pageparm)

(html

(head (title "The title"))

(body
"The page parameter: " (car pageparm)
(br)

)
)

) ’pageparm (list "Parameter one" "Parameter two"))

Figure 2.5: An example of how a slaml-page is declared and shown.

In this example it is seen how a slaml-page is shown to the client. Notice the slaml-page
which takes a list of parameters. How data is returned from the client is discussed in Section
2.1.3.

To allow for defining sessions and pages in SLAML two new primitives are introduced.
slaml-define-session (page 114) is used to define sessions. Likewise slaml-define-page
(page 114) is used to define pages. Both of these primitives are similar to the define primi-
tive in Scheme. They have been created to allow the developer to better differentiate between
the definition of pages or sessions and functions. This is useful if the developer has written

2.1. SESSION FRAMEWORK 41

a large program. As soon as the slaml-define-page or slaml-define-session is seen the
developer is not in doubt of what is being defined.

SLAML Sessions Compared With Bigwig

Comparing this idea with the session concept in Bigwig, one difference is that Bigwig has a
service layer - represented by the service primitive - that encapsulates one or more sessions.
This service layer is not introduced as a primitive in SLAML, because a service in SLAML
is represented by the entry point (represented by a single file) to an application initially
requested by a client. This means that if sessions wants to share data they must be defined
in the file representing the entry point.

Activation of sessions in Bigwig can be done in two different ways. Either by requesting a
service containing the session to be executed, or by passing a parameter in the URL indi-
cating the name of the session to be activated. When a service is activated it is explicitly
stated in the service which session to start. When the session is passed as URL parameter
each session - defined inside a service - can be activated individually. Only the first approach
is supported by SLAML, the second is not. The latter approach requires accounting on the
server of the sessions available to clients.

In Bigwig the show primitive is used to show an HTML page to a client, and a similar prim-
itive is present in SLAML (slaml-show). The session primitive (slaml-session) is similar
to session in Bigwig. However, the way that values are received from the input elements
in an HTML form, is different. In Bigwig the developer specifies which variables the form
parameters must be bound to. In SLAML all value are returned in a list, which contains
key /value pairs of the attribute names and the attribute values entered by the client. The

42 CHAPTER 2. DESIGN

reason for choosing this solution is that when handling large forms, it is cumbersome to
specify all the relations between variables in a program and the input elements in an HTML
form. Another and more important reason for this solution has to do with the way SLAML
handle complex forms. Complex forms are described in Section 2.2.

2.1.3 Flow of a Session in SLAML

In this section the flow of sessions in SLAML is described. This is illustrated in Figure 2.6.

Server Client
Service
Request
- T
|
Response L
slaml-show PageL : Pagel
Request '
I I
' ———————— | Pageland Page
! i share data
' Response ' !
slaml-show Page2 ! Page2 !
Request |
two slaml-sessions| '
Lo———---———-—-—-—-—-—-—-—-.
REELEEEEEEEEELELE S
Response L
slaml-show Page3- ~ Page3
' Request !
| I
i | Page3 and Page
Response L | share data
slaml-show Page4 ! i
Request ' Page4
I

Figure 2.6: An illustration of the flow of two slaml-session’s, each containing two
slaml-show's.

When the client requests a SLAML program it is activated and evaluated. In the example
in Figure 2.6 the SLAML program contains two slaml-sessions. Here the first session is
activated and Pagel is shown to the client with the slaml-show primitive. The client can
then send a new request to the server (by submitting the form on the HTML page), and the
SLAML program will continue from where it was left when the last response was send to
the client (the slaml-show primitive returns control to the surrounding program). Follow-
ing this, Page2 is shown to the client in a similar manner. Once control is returned from
the slaml-show the first session is ended. Control is returned to the SLAML program and
the second session is activated. This flow of control gives the developer the possibility to
view several interactions (a session) with a client as one program rather than small separate
programs.

The data - from a submitted HTML form - belongs to the lexical scope that the slaml-show
was issued in. This gives an overview of the data flow in a program, as the data from a
page is returned to the same place in the program flow as the page was send from. This
gives the possibility to issue a slaml-show as a way to get data from the client. In this way
the slaml-show function can be compared to other functions in the program. Whenever

2.1. SESSION FRAMEWORK 43

the developer needs data from the client to proceed the calculation, the client is asked for
data and the evaluation can resume. As the developer builds the HTML page to show to
the client, it is known what data is returned from the user.

2.1.4 Example of the SLAML Session Framework

In this section a small example of the session framework is presented and explained. Ad-
ditional and more complex examples are presented and discussed in Chapter 3. Figure 2.7
shows an example of how the various elements in the session framework are used.

(slaml-define-session
simple-session
(slaml-session (sessionparm)
(let* (
(simple-pagel
(slaml-page
(pageparm)
(html
(head (title "The page 1 title"))
(body
"The page parameter: " pageparm (br)
"The session parameter: " sessionparm (br)
(form
(input ’type "TEXT" ’name '"inputdata")
(input ’type "SUBMIT")
)))))
(pagel-data
(slaml-show
simple-pagel
’pageparm "Parameter to pagel"))
)
(slaml-show
(slaml-page (pageparm)

(html
(head (title "The page 2 title"))
(body
"The page parameter: " pageparm (br)
"The session parameter: " sessionparm (br)

"Data from pagel before is: "
(slaml-formparms-key->value ’inputdata pagel-data)
)

)
) ’pageparm "Parameter to page2"))))

(slaml-activate-session

simple-session
’sessionparm "Parameter to session")

Figure 2.7: An example of using the elements in the session framework.

44 CHAPTER 2. DESIGN

This example shows a simple session. The session defined is named simple-session and is
activated in the last expression. Note that parameters are passed to simple-session as spe-
cified by the ’sessionparm attribute. When the session is activated, it starts by binding
a slaml-page expression to simple-pagel. simple-pagel represents an HTML page with
information about the session parameter, the page parameter and it contains one input ele-
ment. The next step in the evaluation is to show the simple-pagel page, and bind the data
returned to the variable called pagel-data. Notice that simple-pagel is passed a parameter
specified by the ’pageparm attribute to the slaml-show function. The last thing done is
to show a slaml-page that also takes a parameter. On this page the page parameter, the
session parameter and the value that is entered on simple-pagel are shown. Notice the use
of the slaml-formparm-key->value (page 117), which is used for extracting the value of
the inputdata attribute from the pagel-data list.

2.1.5 Solution to the State Handling Problem

In this section it is discussed how sessions in SLAML solve the State handling and the
Reusability problem discussed in Section 1.1.1 and Section 1.1.4. The reason for introducing
the session concept in SLAML, is to solve these problems.

Solution to the Control Flow Handling Problem

The solution to the Control flow handling problem is inspired by Bigwig and the ideas
introduced there, where it is a primitive in the language that presents a page to a client. This
primitive is called slaml-show in SLAML. Furthermore Bigwig inspired us to let program
control return to the place in the program where the slaml-show primitive is activated. This
results in the developer being able to see the flow of an application in the program code of
the application. As a primitive is introduced to show a page and return data from the client,
the program continues from the place in the program where the slaml-show primitive is
activated. A slaml-show in the program can be considered as any other function in terms
of understanding the program. It is a function that is evaluated and returns the result of
the evaluation, which is a list containing the information received from the client.

Solution to the Data Flow Handling Problem

The Data flow handling problem is solved along with the Control flow handling problem, as
parameters already received from the client can remain on the server. The only parameter
handling that is necessary is to ask the client for data and receive the parameters. Once the
parameters have reached the server they exist when the next request comes from the client.
This means that the chosen solution relies on storing state on the server side. This results
in easier parameter handling than in CGI. The reason is that the developer does not need
explicitly to send all the parameters to the client and receive them on the server to maintain
state. There is also problems with this solution as it requires space on the server for storing

2.2. COMPLEX FORMS FRAMEWORK 45

the state. Furthermore there is a security concerns to be considered when storing the state
on the server. It must not be possible for one client to access the state of another client.

2.1.6 Solution to the Reusability Problem

The problem of being unable to reuse a number of related pages as one unit has been solved
by introducing sessions as first class objects. In SLAML it is possible to define a session and
later activate it, thereby allowing the developer to activate a session on demand. This means
that the developer is able to execute a number of pages following each other and receive data
from the session. Being able to receive information from a session on the same level as it is
possible from a page means that there are little difference between invoking a session and
a page to return some data. As an example the developer can freely choose to develop a
session or a page to receive some specific data from the client.

2.2 Complex Forms Framework

As presented in the Analysis (see Section 1.1.3) there is no good solution to maintain data
in a complex structure when it has been send to the client. This lead us to our hypothesis:

Hypothesis 2:

It 1s possible to construct a framework that helps the developer to build,
present and update complex structures.

Three possible ways of representing an HTML form as a complex structure has been identi-
fied:

1. A data structure
2. A language
3. A paradigm

A nested lists approach is used to represent a complex structure as a data structure. To repre-
sent a complex structure as a language, an embedded domain specific language is considered.
Last, an object oriented approach is used to represent the paradigm way of representing a
complex structure. Each approach is presented in the following section. Note that the fol-
lowing section serves as a presentation of possible solutions to the Complex forms problem.
The decisions made in order to design the actual solution to the Complex forms problem are
presented in Section 2.2.2.

2.2.1 Design Considerations

In this section, solutions to how a complex structure can be created in order to be represented
as an HTML form are considered. The solution must fit well in the context of this project,
namely Scheme, LAML and mod laml. Recall that the Complex forms problem is split into
three steps (see Figure 1.10 on page 17). These steps are:

46 CHAPTER 2. DESIGN

1. Creating the complex structure
2. Representing the complex structure as an HTML form

3. Updating the complex structure with data from the client

Creating a complex structure means, that the developer creates a complex structure in the
programming language. This is the structure, that it is of interest to get filled with data
from the client. Representing the complex structure as an HTML form is the second step.
This is done, in order to receive the data from the client. The third step, updating, is where
the complex structure is updated with the information from the HTML form. Updating the
complex structure is done on behalf of the form parameters, which are placed in a key/value
pairs string. Each of the three possible ways of handling an HTML form - nested lists,
embedded domain specific language and object orientation - is considered in relation to the
three steps, that makes up the Complex forms problem. These are the steps just presented,
namely creating, representing and updating.

Nested List Approach

This first approach relies on lists in Scheme. The reason for considering a nested list ap-
proach, is that both data and program are represented as lists in Scheme. This means,
that a developer working with Scheme, is familiar with lists and list syntax. Furthermore,
any first-class value can be a list element, so there are only few requirements to list elements.

The first step in the Complex forms problem, concerns the creation of the complex structure
in the programming language used (Scheme in the context of this project). The person
structure from Section 1.1.3, is in the following written by the use of nested lists:

(person
(name
(first-name "")
(last-name ""))
(address
(country "")
(city
(city-name "")
(postal-number ""))
(street
(street-name "")
(house-number "")))
(email "")
(phone " u)
(age " u)
)

This is an example of a nested list structure, which it is of interest to get filled with infor-
mation from the client. Three types of elements exists in the list; symbols, other lists and
strings. The strings represent the values filled into the HTML form by the client. The strings

2.2. COMPLEX FORMS FRAMEWORK 47

are empty (""), since the nested list structure has not been filled with information from the
client. The symbols (the first element in each of the lists) are used to specify information
about the other elements in the list. E.g. the symbol name indicates, that the following ele-
ments in the list, makes up a name. Using symbols, strings and lists as elements, a complex
structure can be created.

The next step in solving the Complex forms problem is to represent the nested list structure
as an HTML form. To make the task of getting the HT ML string representation of a nested
list structure simple, a function is used. This function takes the nested list structure as a
parameter, and returns the HTML form representation. However, there are no elements in
any of the nested lists in the person structure, that specifies how the structure is represented
as an HTML form. Two possible ways in handling the HTML layout of a nested list structure
have been identified. These are, layout by:

1. attributes

2. a style sheet

Layout specified by attributes, means that the HTML layout information about the differ-
ent lists in the nested list structure is added as attributes to a list. Consider the list tagged
city-name (the list, which has the symbol city-name as the first element). By adding an
attribute named type, the HTML representation of city-name can be specified. E.g. does
(city-name ‘type "TEXT") specify, that the city-name list must be presented as an HTML
input element of the type TEXT. By specifying a type attribute to all of the lists, HTML
layout information is embedded in the nested list structure. Since HTML layout information
is embedded in the nested lists, the nested list structure is mixed with data and information
about the HTML layout.

By using a style sheet instead of attributes to specify the HTML layout of a nested list
structure, the nested list structure is separated from the HTML layout information. The
style sheet is defined external to the nested list structure; e.g. in another list. The style
sheet list, can be an association list, where each symbol from the nested list structure is as-
sociated HTML layout information. This means, that the list tagged city-name has an entry
in the association list. This entry looks like (city-name . "text-input”). Using a style sheet
supports separation between data and layout, since the data is represented in the nested list
structure whereas layout is specified in an external style sheet list.

The last step in the Complex forms problem is to update the nested list structure with the
information received from the HTML form. In order to update a nested list structure with
data from an HTML form, both the structure and the data from the client must be present
at the server. Because of the session framework already designed, the Scheme environment
will survive interactions with the client. This means, that the nested list structure does not
need to be stored in an hidden HTML element or on the servers file system, in order to be
present after a request. By comparing the keys - in the key/value pairs received from the
client - with the names in the nested list structure, the nested list structure is updated with

48 CHAPTER 2. DESIGN

the values. This task is handled by a function, and when given a nested list structure and
the corresponding form parameters, the function returns the updated nested list structure.

A great advantage with the nested list approach is, that much functionality for doing list
manipulation is present in the Scheme programming language. This covers functionality to
get the head and the tail of a list (car and cdr respectively) together with functionality
that supports creating and extending lists (like 1ist, cons, append, map and length). This
functionality helps the developer to create and work with lists.

A problem with the nested lists approach is the way HTML layout is handled. The HTML
layout information is specified by type information, which is used by the function that gen-
erates the HTML layout. This makes it impossible for the developer to specify a customized
HTML layout, e.g. specify that the input elements must be placed in an HTML table.
The reason this is a problem, is that a type does not contain information about the relation
between elements. Instead, type information is only related to a single element.

Embedded Domain Specific Language

Instead of using a nested list approach to solve the Complex forms problem, an embedded
domain specific language can be used. This approach is inspired by the paper, “Little Lan-
guages and their Programming Environment” [CGKF02|. A domain specific language, is a
programming language, that is developed to solve problems in an specific domain. In the
context, of this project, the domain is complex structures and HTML forms. The problem
in this domain, is the Complex forms problem. That a language is embedded, means that it
is implemented inside another language (a host language). This means, that the interpreter
in the embedded language can rely on features in the host language when it is implemented.
The embedded domain specific language used to solve the Complex forms problem, is named
sfl (Small Form Language), and the host language is Scheme. sfl is in the following consid-
ered in relation to creating, representing and updating a complex structure.

To create a structure by using sfl, means to write a program in sfl. A sfl program must
be interpreted by the sfl interpreter. Therefore, a primitive must exist in Scheme, which
escapes from the Scheme interpreter into the interpreter for sfi. This primitive is named
sfl, and an example of how to write a program in sfi is presented below:

(let ((complex-structure
(sfl
(sfl-collection "person"

(sfl-collection "name"
(sfl-text-input "first-name")
(sfl-text-input "last-name")

)

(sfl-collection "address"
(sfl-text-input "country")
(sfl-collection "city"

(sfl-text-input "city-name")
(sfl-text-input "postal-number")

2.2. COMPLEX FORMS FRAMEWORK 49

)

(sfl-collection "street"
(sfl-text-input "street-name")
(sfl-text-input "house-number")

)

)
(sfl-checkbox-input "email")
(sfl-checkbox-input "phone")
(sfl-text-input "age")

2D

;complex-structure can now be used

The above example is in the following discussed in relation to the syntax, the return value
and the primitives in sfl. The syntax of a sfi program, is similar to the list syntax used in
Scheme. Alternatively a syntax with infix notation (instead of Scheme’s prefix) and curly
brackets (instead of parenthesis) can be used. However, no reason for changing the syntax
is seen. It will only be an irritating requirement, that the developer must change syntax
in the middle of a Scheme program. However, another syntax indicates that the developer
is using sfl, but this can easily be seen because of Scheme’s prefix notation (the first word
encountered when using sfl is the sf1 primitive). Since a sfl program is embedded in a
Scheme program, the surrounding Scheme program expects to get a return value from sfi. In
the above example, this value is stored in a variable named complez-structure. As the name
- complex-structure - indicate, a complex structure is returned from a sfl program. This
complex structure can be a nested list structure or an abstract syntax tree. The primitives
in sfl are discussed in the following, in relation to the HTML representation.

Specifying the HTML representation of a complex structure programmed in sfl, is done
by using the primitives in sfl. In the nested list approach the developer has to specify
HTML layout of the nested list structure, by the use of attributes or a style sheet. In
sfl, the HTML layout information is indicated by the names of the primitives. E.g., the
primitive slt-checkbox-input indicates, that an email (from the example above) is an HTML
input element of the CHECK type. However, the sfl-collection primitive, does not specify any
information about HTML layout. A solution to this problem, is to extend the interpreter
in sfl, to recognize LAML like functions. This means, that there is a mapping between sfi
primitives, and LAML mirror functions. E.g. sfl-br maps to the br mirror function in LAML.
The reason for adding sfl to the names of the LAML mirror functions, is to specify that it
is not possible to use LAML - and Scheme - functions directly in the embedded language.
The following example illustrates how a sfi-collection can be presented as an HTML table,
if the HTML layout specification is embedded:

(sfl

(sfl-collection "street"
(sfl-table

(sfl-tr

(sfl-td

50 CHAPTER 2. DESIGN

(sfl-collection "city"
(sfl-text-input "city-name")
(sfl-br)

(sfl-text-input "postal-number")
)

Since HTML layout information is not connected to the way the complex structure is repre-
sented in Scheme, the return type from sfl is changed. Both the HTML layout information
and the complex structure is present in the sfl program. Therefore, a sfi program returns
the complex structure (without HTML layout information) and its HTML representation.

Updating a complex structure returned from a sfl program, is handled in the same way
as with the nested list approach. Recall, that this was done by sending both the complex
structure and the form parameters to an update function. This function returns a complex
structure, containing the values from the form parameters.

An advantage with an embedded domain specific language, is that a language is created to
solve a specific problem. In this project the problem is the Complex forms problem. The
introduction of specific primitives allows the developer to use special designed functionality,
which has the purpose of creating a complex structure. This makes it possibility to specify
collections of elements, but also information about the HTML layout of the structure. A
problem with the embedded language approach is, that the same embedded program can-
not be changed after it has been evaluated. This results in the impossibility to change the
complex structure created by the embedded program. Another problem is, that the HTML
layout is included in the embedded program. If the embedded program is large, it makes
it difficult for developer to maintain the overview of what is HTML layout information and
what is structure.

The possibility to specify the HTML layout by using LAML like functions, is an advantage
in relation to the nested list approach. In the nested list approach, the developer cannot
customize the HTML layout relation between the different elements, since HTML layout is
specified by type information. However, a nested list structure can be bound to a variable
in the Scheme environment, which allows the developer to manipulate the structure when
wanted. This is not possible in the embedded language approach, since a variable bound to
an embedded program will result in the variable being set to the return value of the program.
Thus the structure (in the form of a program) cannot be manipulated when wanted.

Object Oriented Approach

Instead of creating a structure as nested lists or in an embedded language, an object struc-
ture can be created. Just as with the other approaches, an object structure must contain
information about the composition of elements. Such a structure can be handled with the

2.2. COMPLEX FORMS FRAMEWORK ol

Composite Design Pattern[ERRJ95]|, as this is used to represent part whole hierarchies. An
example of an object structure based on the Composite Design Pattern is seen in Figure 2.8.
Two types of classes exist in the Composite Design Pattern, namely the composite and the
leaf class.

N

[aLeaf] [aLeaf] [aComposite] [aLeaf]

e

[aleaf] [aleaf]

Figure 2.8: An example of an object structure based on the Composite Design Pattern[ERRJ95].
aComposite is an instance of the composite class, and aleaf is an instance of the leaf class.

A composite object can represent a collection of composite and leaf objects, like a sfi-
collection from the embedded language approach can represent other collections or basic
elements. A leaf cannot represent other objects, but instead represent the basic entity in the
structure. Here a composite structure is used to represent an HTML form, so a leaf must
represent a single HTML input element.

With the classes introduced, it is possible to create an object structure, which must be filled
with data from a client. Such an object structure, is created by linking objects together.
This is done by using nested constructors, when the objects are created. Each name in the
following example, corresponds to the initialization of an object.

(aComposite (aLeaf) (alLeaf) (aComposite (alLeaf) (alLeaf)) (alLeaf))

The above is an initialization of the object structure presented in Figure 2.8. The root
element has four children, where one is a composite object and the others are leafs. The
composite child has two children, which are leafs. The relation between the objects in the
above object structure is specified at initialization time, namely by the use of constructors.
An object structure can also be specified by message passing. This approach is cumbersome,
since all the objects must be linked together by passing individual objects as arguments to
functions on other objects. An example is presented below.

(define root (aComposite))

(add (aLeaf) root)
(add (aLeaf) root)

52 CHAPTER 2. DESIGN

The add function takes two objects as argument, and the first argument is added as a child
of the second. aLeaf returns a leaf object, and aComposite returns a composite object. As
seen in the above example, it is more comprehensive to create an object structure in this way,
than if a constructor is used. To create the same object structure by using a constructor,
the developer writes: (aComposite (aLeaf) (aLeaf)).

To create an HTML form representation of the object structure, a function that recursively
traverses the object structure and performs the layout is used. On behalf of the type of an
object (a composite or a leaf), it is determined how an object is presented in an HTML form.
To represent the various types of HI'ML input elements, specialization is used on the leaf
objects. This allows the leaf object to map to an HTML input element. By using the object
types to determine the way an object is presented as HT'ML layout, it is not possible to
perform HTML layout on composite objects. The reason for this is, that a composite object
does not map to an HTML element. A solution to this problem is to specify HTML layout
as a property of an object. This allows the developer to specify HTML layout of a composite
object. When the HTML representation of the object structure is created, the HTML layout
property on each object is considered instead of the type of the object. However, it is only
leaf objects, that can be represented as HTML input elements in an HTML form.

Updating the object structure is done on behalf of the form parameters. By the introduc-
tion of the session framework, the object structure is present on the server after a request
has finished. The information from the form parameters are added the object structure by
setting it on the individual object. When information from the object structure is needed,
the value of the data property can be obtained from the individual objects.

When using the object oriented approach the developer is given two possible ways of creating
an object structure. This can be done by using message passing or the constructor. This
allows the developer to create some of the structure by using the constructor, and afterward
add elements when wanted by using the message passing mechanism. This is e.g. benefi-
cial, when the object structure is extended with more objects after is has been created and
used. Furthermore, the developer is not forced to include HTML layout information when
specifying the object structure. This information can be created external, and added the
individual objects afterward. This allows a separation between HTML layout specification
and the creation of the object structure.

In the nested list approach, it is possible to modify the nested list structure by using functions
available in the Scheme language. This is not possible in the object oriented approach, since
object oriented programming is not supported by standard Scheme. However, by specifying
the HTML layout property on the classes, it is possible to customize the HT'ML layout. This
is also possible in the embedded domain specific language approach, but not in the nested
list approach.

2.2. COMPLEX FORMS FRAMEWORK 53

2.2.2 Design of the Complex Forms Framework in SLAML

It is chosen to use an object oriented approach in the complex form framework. This might
seem odd, as Scheme is mainly a functional language. The reason for choosing the object
oriented approach is that it allows for division of specification of the layout and specification
of the structure. This division allows for easy addition or removal of objects representing
elements in the object structure. This means that it is easy to modify and reuse the structure
throughout an application.

The reason for not choosing the domain specific language, is that once the embedded inter-
preter returns a result it is impossible to mutate this result to fit into another page. The
flexibility to continue to use the complex structure throughout the application is not present.
Another reason is that when the embedded interpreter is constructed, it needs access to the
LAML functionality. However LAML functionality is not accessible from the embedded
interpreter unless the interpreter is told how to handle it. There are two possibilities to
support LAML functionality in an embedded interpreter. The first is to mirror the functions
from LAML to the embedded interpreter. This can be done by mapping functions from
the LAML library to the embedded language. Thereby, LAML functionality is available in
the embedded language. The second possibility is to escape from the embedded interpreter
and let the Scheme interpreter handle executing of the LAML functionality. But once the
embedded interpreter is left, the Scheme interpreter do not know how to execute the domain
specific language. Therefore there is a need for having all the domain specific language func-
tionality outside the embedded interpreter, to enter the embedded interpreter again. This
means there is a need for having a mix of functionality both outside the interpreter and
inside the interpreter. By choosing an object oriented approach it is not necessary to escape
to another interpreter to have functionality executed.

This section starts with a presentation of the three steps - creation, presentation and updat-
ing - that are performed, when using the complex forms framework in SLAML. Second is
an introduction of the classes needed in the complex forms framework. Third, is a presen-
tation of how object oriented programming is simulated in Scheme. This is included for the
Scheme interested reader. Fourth, it is presented how creation, presentation and updating
are performed in the complex forms framework in SLAML. Last, is an example of how the
complex forms framework is used.

The steps that are taken when using the complex forms framework are presented in Figure
2.9.

o4 CHAPTER 2. DESIGN

Server Client

Client is shown a

Send representation of graphical representaion |
|

structure to client String representaion

of the structure
Knowledge of !
structure remains
on the server

i
|
Step 2!) |
! A |
A i
B) C ;
\//\ /\\ |
D EN
,,, AR
I I I
Update the object - - Presses the submit button;
! structure with the ! @ @ ! !
! data from client
|
| ()
Step 3,
|
|

eee

Figure 2.9: An illustration of the actions involved in handling the complex form, when presenting
it to the client and updating it with the form parameters from the client.

Step 1 concerns the creation of the object structure. This involves the specification of the re-
lation between the objects and the specification of the HTML layout of the object structure.
Step 2 covers the HTML representation of the object structure as an HTML form. While
the HTML form is being presented to the client, the information about the object structure
is present on the server. Step 3 is related to updating the object structure with the form
parameters received from the client. Recall, that the form parameters, is a key/value pairs
string (an association list in Scheme).

The object model used in the complex forms framework has three classes. The first class is
called slaml-basic-element (page 118) and represents a leaf in an object structure. The
second class is called slaml-element (page 117) and represents a composition of objects.
The last class is called slaml-form-element (page 119) and represents the root object in
an object structure. An instance of the slaml-form-element class is also a composite object.

A reason for only introducing three classes is the focus on the structure rather than HTML
layout, when creating the object structure. This is due to the increased abstraction obtained
by separation of concern between the structure and the HTML layout of the structure. The
reason for focusing on the structure is that layout is only associated with the structure and
not part of the structure. Had focus been equally on layout and structure, the approach used
in DOM[WGO02| might be more appropriate. The reason is that all elements from HTML is
available in DOM and thereby the layout of a page can be created using DOM.

2.2. COMPLEX FORMS FRAMEWORK 1)

Having separated the layout from the presentation the focus is on the classes needed to
create the structure. There are three different expectations to the objects in the object
structure. Since the object structure must be able to receive data, its representation must
be rooted in an HTML form. This first expectation is a class representing the root of the
objects structure. This is represented by the class named slaml-form-element. Since the
structure is created with an expectation of receiving some data from the client, a class must
represent the data from the client. This is the different HTML input elements. Therefore a
class must represent an expectation of data. This class is called slaml-basic-element.

The last expectation regarding the structure is representation of the composite elements.
With the above two classes the root and the leaf of the object structure are covered. A
composite object as seen in the Composite Design Pattern can be used to represent the
composition of several objects. Such an object allow addressing a group of objects as one.
This class is called slaml-element. No additional expectations are present, and therefore
no additional classes are introduced.

Once the structure has been build the layout functionality is created and associated with the
individual object in the structure. In this way the structure is in focus. The presentation is
a property on the individual objects. Each of the three classes are described in more detail
in the following.

2.2.3 Complex Forms Framework in SLAML

To use the Composite Design Pattern to represent the classes in the complex HTML form,
SLAML operates with three classes. These are explained in the following.

Slaml Basic Element Class

The leaf element in SLAML, represents the HTML input elements (see [W3C02d]). In the
complex forms framework, the leaf class is called slaml-basic-element. Documentation
and default values of this class are found in Appendix A.! An object of this type contains the
attributes from the HTML input element (for a complete list see [W3C02d]). This means,
that all attributes of the HTML input element are represented by the slaml-basic-element
class.

As slaml-basic-element corresponds to the HTML input element, the HTML represen-
tation of this element is given. This is the case, since all attributes from the HTML input
element are present as instance variables in the slaml-basic-element class. Therefore, it
is possible to construct an HTML input element from the instance variables available in an
object of the slaml-basic-element type.

!Please note, that the implementation of slaml-basic-element only supports the HTML input element,
so there is no possibility to e.g. represent a textarea with an instance of the slaml-basic-element class.

56 CHAPTER 2. DESIGN

The slaml-basic-element class can be subject to specialization. This is possible since
a slaml-basic-element must represent a number of different HTML elements. Exam-
ples includes submit buttons, input elements, check boxes etc. (for a complete list refer to
[W3C02d]). Two alternatives are considered. Either the developer is provided with a number
of specializations of the slaml-basic-element class, or we provide updateable state on the
objects representing its HTML type.

Providing a number of specializations is disregarded, as the difference between the special-
ized objects is the representation (the HTML input element represent by the objects). But
since presentation is not part of the structure - but rather associated with the individual
elements in the structure - there is no difference between the specialized classes. This sug-
gests that specialization is not applicable. If the structure and the representation has not
been separated the slaml-basic-element class is subject to specialization. An additional
argument for not relying on specialization is that the alternative allows for an already in-
stantiated object to change its HI'ML element type. This mutation makes it easy to change
the HTML element type of objects already inserted into an object structure.

Slaml Element Class

The slaml-element class is the composite class. Objects of the slaml-element type can
contain references to other objects (of the types slaml-basic-element and slaml-element).
This makes it possible to make hierarchies of objects, that represents the structure shown
as an HTML form to the client. This class is used when grouping objects.

The HTML presentation of an object of the slaml-element type, consists of the presentation
of its children. However, it is not satisfactory to present the HTML form as a collection of
HTML input elements. Instead, flexibility is needed to build a specific layout of the HTML
representation of the object structure. Therefore, the HTML layout of a slaml-element is
specified by a template where it is possible to place - in the relation to HTML layout - the
children of the slaml-element as wanted. To represent the template of an object, a function
representing the HTML layout of the slaml-element is created. This function is added as
a property on the slaml-element it represents. The HTML layout function is discussed in
Section 2.2.5.

Slaml Form Element Class

The slaml-form-element class is the root of an object structure in the complex forms
framework. The reason that this class is needed is that the slaml-element class contains no
information about the data related to the HTML form element. This information is present
in the slaml-form-element class. A slaml-form-element cannot be a child of other ob-
jects, and must therefore be the root of an object hierarchy. All the attributes from the
HTML form element are present in the slaml-form-element class.

2.2. COMPLEX FORMS FRAMEWORK o7

The HTML layout specification of a slaml-form-element, is the HTML layout specifica-
tion of its children together with the specification of the HTML form element surrounding
them. This means that the slaml-form-element also consists of properties that specify the
attributes to the HTML form element. This is discussed in further details in Section 2.2.5.

The next section (Section 2.2.4) presents underlying Scheme code, that is needed in order to
simulate object oriented programming in Scheme. This is included for the Scheme interested
reader and can be ignored if simulation of object oriented principles in Scheme is not of
interest.

2.2.4 Object Oriented Programming in Scheme

It is possible to program object oriented in Scheme and different frameworks with support
for object oriented programming in Scheme exists. Some of these frameworks are general
and works with most Scheme systems. Others are written to a specific Scheme system.

Examples of object oriented frameworks that are used with a specific Scheme systems are
Goops (The Guile Object Oriented Programming System)|L.DJ02] and MzScheme’s ob-
ject|[Fla02|. Goops is a framework for the Guile interpreter and is an extension to the
basic Guile interpreter. MzScheme also contains an object framework which is part of the
interpreter. An example of a more general object oriented framework is Meroon [Que02],
which can be used in various Scheme systems.

Another possibility to program object oriented in Scheme is to use functions to represent
classes and objects in Scheme (shown by Kurt Ngrmark [Ngr90]). This approach is the most
portable as it is supported in all Scheme systems. The reason for this is, that it is build on
lambda expressions.

It is chosen to simulate classes and objects in SLAML with functions, as this gives the best
portability. The reason that portability is important, is that LAML is usable in many dif-
ferent Scheme systems and by making SLAML interpreter independent it is possible to use
the SLAML framework on the same Scheme systems that LAML can be used. However,
this approach might not be as efficient as an object system written for a specific Scheme
system. This is not considered a problem as the complex form framework is more a proof of
concept than it is a framework used for production. Another concern is the readability of the
programs written in the SLAML framework. The programs written with pre-made object
systems have a higher syntactical abstraction and therefore the programs are easier to read.
When simulating object orientation this can be achieved by making syntactical abstractions
on top of the simulation. The last problem considered with the chosen approach, is that all
the mechanisms used in object oriented programming (inheritance, message passing, etc.)
has to be implemented when needed. This is not a big problem in the SLAML framework,
as only classes, message passing and a constructor are needed.

In the following it is explained how to define classes and create objects in Scheme. Further-
more it is explained how to use message passing to change the state of objects and how a

58 CHAPTER 2. DESIGN

constructor is used to instantiate objects with others than the default values.

Classes and Objects in Scheme

Classes can be simulated in Scheme, by defining a function from which objects can be
instantiated. When an object is instantiated it returns a function object, that serves as an
interface to the object. An example of a simple class is the following:

(define (test-class)
(letrec ((x 0)
(get-x (lambda () x))
(set-x (lambda (new-x) (set! x new-x)))
(type-of (lambda () ’test-class))
)
(lambda (message)
(cond ((eq? message ’get-x) get-x)
((eq? message ’set-x) set-x)
((eq? message ’type-of) type-of)
(else (error "Message not found"))))))

Here the function test-class represents a class. An instance of the class is instantiated by
evaluating the function. Evaluation of this function makes it return a function object. This
function object serves as an interface to the object. The interface is a dispatcher that can
call methods on the object. This dispatcher is activated by message passing.

Message Passing in Scheme

Once an object is instantiated, its state can be changed by sending messages to it. The
messages that can be send to the object are specified in the dispatcher function, which
serves as an interface to the object. Messages are send to the object in the following way:

(define new-object (test-class))

((new-object ’set-x) 10)

The first thing that happens in this example is that the test-class is instantiated and the re-
sulting dispatcher function is bound to the name new-object. Next, the dispatcher is invoked
with the message set-z. This results in the function associated with the set-z property of
new-object to be returned. This function is evaluated with the value 10 as input. All this
results in creation of an object and setting the x property to the value 10.

It is preferable to create a function (often named send) to send messages to the objects.
The reason this is preferred is that it provides a syntactical abstraction. This results in the
following way to send messages to objects:

(send ’get-x new-object)

2.2. COMPLEX FORMS FRAMEWORK 59

Here the get-r message is send to the object new-object. The result is the same; the function
associated with the get-r property on new-object is returned. It is cumbersome to rely
on message passing to change values on the individual objects. Therefore a constructor
mechanism is created which allows for specifying values at instantiation time.

Instantiation of Objects in Scheme

By creating a constructor it is possible to specify arguments when an object is instantiated.
In SLAML, XML syntax is used when instantiating the objects with others than the default
values. An example is the following:

(define new-object (test-class ’x 10
'y 11))

In this example an object is instantiated and bound to the name new-object. new-object has
two instance variables. One is called z which value is set to 10 at instantiation time. The
other is called y and is assigned the value 771. The reason for choosing this syntax, is that
this is a XML like syntax, which is similar to LAML syntax. Another possible syntax is
to rely on positional parameters, but this is not a good solution if there are many instance
variables in the objects, especially if it is possible to specify all of them at instantiation time.

In this section it is shown that a constructor mechanism is created to allow a flexible in-
stantiation of objects from classes. Message passing is introduced as a way to modify the
individual objects. Furthermore it is illustrated how a function object - returned from a
function representing a class - acts as an object.

2.2.5 Creating, Presenting and Updating Object Structures

In this section it is explained how an object structure from the three basic classes (explained
in Section 2.2.3) is created. Next, is a description of how to add HTML layout to the objects
in the object structure. Last, is described how the object structure is updated with the data
received from the HTML form shown to the client.

Creating an Object Structure

To create an object structure to represent an HTML form, the first thing to do is linking
the objects together. This can be done in two ways. The first is to create all the object in
the object structure and afterward link them together by using message passing. This can
be done by invoking the add method on an object. The add method takes one parameter,
which is the object to add as a child. Another way to create the structure, is to do it at
instantiation time by using the constructor. This is done in the following way:

60

CHAPTER 2. DESIGN

(define person-form
(slaml-form-element
’name "person-composite"
’elements
(slaml-create-obj-1st
(slaml-element
’name '"name-composite"
’elements
(slaml-create-obj-1st
(slaml-basic-element

‘name "first-name-leaf")

(slaml-basic-element

‘name "last-name-leaf")))

(slaml-basic-element
’name "have-car-leaf")
(slaml-basic-element

’name "submit-button-leaf"))))

This expression creates the structure in Figure 2.10 (see page 60). In this example three
things are added to the SLAML elements. The first is the slaml-create-obj-1st (page
121) primitive. This primitive is used to create a list of objects to be added to another
object. The second thing added in this example is the elements attribute. This attribute is
used to specify the children of an object. The list of objects - to be added as children - must
be created with the slaml-create-obj-1st primitive. In this way it is possible to create

an object structure.

person—form

name

have-car

submit—button

first—-name

last-name

Figure 2.10: The person-form hierarchy.

The third thing added to the example is the name attribute. This attribute sets the name
instance variable of the object. This serves to access an object once it is added as a child
to another object. If the name attribute is not present, there is no way of identifying the
object and discriminate it from other children with the same parent. Therefore, by giving

2.2. COMPLEX FORMS FRAMEWORK 61

all objects of the same parent different names, this property is used to refer to a specific
object. This is used when the HTML layout information is added to the objects. If the child
objects have no names it is impossible to tell which element is to be placed where in the
layout. This is conducted later in this section.

The last thing described in this section is the id of an object. An id is set on the objects
of the type slaml-basic-element. The id on an object serves as the name attribute of the
HTML input element when the object is presented - in an HTML form - to the client. The
reason for having the id is to associate each HTML input element with an object of the type
slaml-basic-element. The difference between the id property and the name property of an
object is that the name is used when the programmer refers to an given child of a parent in
the program. The id is used when the input from the user is placed in the object structure in
order to update it. By letting each of the leaf objects in the object structure have an unique
id and let the same id represent the name of an input element in HT'ML, it is possible to tra-
verse the object structure and place the client data in the object structure. This is done by
comparing the name of the HTML input element with the id attribute on the object. If they
match, the data from the HTML input element is placed as data in the matching leaf object.

The id can be set by hand when the object is created. If no id attribute is specified when the
object is created, an object is given a unique id. The reason for letting the developer change
the unique id is that sometimes it is convenient to access the form parameters directly by
name instead of using the objects to access them. This is not possible if the name attribute
in the HTML element cannot be changed. And as the id property of an object corresponds
to the name attribute on an HTML input element, it is necessary to allow the developer to
change the id.

Adding HTML Layout to Object Structures

After the object structure is build, the HTML layout is added. This is done by associating
a template to each object. The template represents the HTML layout of the object it is
associated to. This means that a way to specify HTML layout information on each of the
three classes in the SLAML framework must be present. This is discussed in the following.

Templates for the composite classes (slaml-element and slaml-form-element) are speci-
fied as a function. The reason for using functions to represent templates is that functions
can return an HTML string representing the HTML layout of a given node in the object
structure. Furthermore, it is possible to send parameters to the function telling which node
in the structure to do layout on. This node serves as the parent node and by referring to
the names of the children it is possible to place them in the layout. Beside this a function
can contain additional HTML information and thereby represent more than the layout of
the children. It can also contain HTML elements used for formatting the HTML form layout.

Another possibility is to let the HT'ML layout be represented by a list of children and let
the order of the list be the order in which the elements are presented in the HTML form. In

62 CHAPTER 2. DESIGN

this approach there can be no additional formatting of the children in the composite nodes
of the structure. Therefore the first approach is chosen.

For the leaf class (slaml-basic-element) the layout is represented by setting attributes on
leaf objects. The reason is that the leaf objects represents an HTML input element and
there can be no HTML layout inside an HTML input element as it is a single tag. Therefore,
all formatting information is the surrounding of these elements and this layout information
is present in the composite elements.

Another possibility is to let each slaml-basic-element have a template associated to it
as done with slaml-element and slaml-form-element. Then the developer will need to
specify a template for the leaf elements and associate the HTML layout with a leaf node in
the object structure. The first approach is chosen since it requires less associations between
templates and nodes. The reason is that the leafs are self contained as the instance variables
of the objects specifies the HTML layout.

A layout function for the name-composite object from the object structure on page 60 is
presented in the following.

(define name-layout
(slaml-layout (self args)
(table
(tr (td "Name" ’colspan "2"))
(tr (td "First name")
(td (slaml-do-layout-child self "first-name-leaf")))
(tr (td "Last name")
(td (slaml-do-layout-child self "last-name-leaf'")))
’border "1")))

Figure 2.11: An example of a slaml-layout function.

In this example the slaml-layout (page 123) primitive is introduced. slaml-layout can
be thought of as a lambda expression. A slaml-layout takes two arguments. The first
parameter is a reference to the object to which this HTML layout function is associated.
The second parameter can be send to the layout function when it is activated (when the
slaml-do-layout-child (page 122) or slaml-do-layout (page 122) is called). To associate
a layout function with an object the layout attribute is used at instantiation time.

(slaml-element
’name "name-composite"
’elements
(slaml-create-obj-1st
(slaml-basic-element
‘name "first-name-leaf")
(slaml-basic-element
‘name "last-name-leaf"))

2.2. COMPLEX FORMS FRAMEWORK 63

’layout name-layout
’layoutparm "simple string")

In this way the name-composite is specified to be presented by the slaml-layout function
bound to the name name-layout. When the name-layout is called it is passed the string "sim-
ple string” as its second parameter. This is done by including the attribute layoutparm in
the instantiation of the object. This parameter is not used in the slaml-layout function in
Figure 2.11.

In Figure 2.11 a function called slaml-do-layout-child - performing the HTML layout
- is introduced. Since a composite element like name-composite is responsible for layout
of its children, it needs a primitive to express this. This is done by the function called
slaml-do-layout-child. This function takes two arguments. The first is a reference to
the object in which the child is located. In the example in Figure 2.11 this is self. The
second parameter is a string representing the name of the child to layout. The return value
of slaml-do-layout-child is a string representing the HTML layout of a given child.

Asaslaml-form-element must represent an HTML form it needs more than a slaml-layout
function to present itself. Besides a slaml-layout function, a slaml-form-element also
needs attributes specifying the various properties (see [W3C02¢|), to be able to represent
itself. These attributes can be set on the slaml-form-element object at instantiation time.

To present an object of the slaml-basic-element type, the value of its type variable must
be set. The reason is that this attribute specifies what type of HTML input element the
object is representing (examples include hidden, text and password. For a complete list refer
to [W3C02¢]). In Figure 2.10 the submit-button is of type submit and the have-car is of
type checkbox. This can be specified in the following way.

(slaml-basic-element
’name "have-car-leaf"
’type "CHECKBOX")

(slaml-basic-element
’name "submit-button-leaf"
>type "SUBMIT")

When the HTML layout has been specified for each element the HTML layout on the root
object is activated in order to generate the HTML layout for the children. The HTML layout
functionality of the root object is activated by the function called slaml-do-layout. This
function takes one argument, which is the root object of the object structure to present.
slaml-do-layout returns a string representation of the HTML form, which can be a part
of an HTML page, as shown in the following.

(slaml-show
(slaml-page (parm)
(html

64 CHAPTER 2. DESIGN

(head (title "A title"))
(body
(slaml-do-layout person-form)))))

Here a slaml-page is presented where the person-form is included in the body of the page.

In this section it is described how a slaml-layout function is associated with each object
of the types; slaml-element and slaml-form-element. This function allow generation of
a flexible HTML representation of the individual objects. It is furthermore explained how
the functions slaml-do-layout and slaml-do-layout-child is used in a slaml-layout
function to activate the layout functionality on child objects.

Updating Object Structures

When the object structure is presented to the client as an HTML form the client can fill data
in the HTML input elements. As explained, the HTML input elements in the HTML form
represents the slaml-basic-elements at the server. When the client submits the HTML
form, key/value pairs are returned to the server. These key/value pairs are used to update
the object structure. As each of the HTML input elements has a unique id as name - and
the slaml-basic-elements has the same ids - the object structure can be traversed and
the values entered by the client can be assigned to the structure. This is done by using the
function called slaml-update-object! (page 123). This function takes two parameters.
The first is the root of the object structure, presented to the client. The second parameter
is the key/value pairs returned from the client. Given these two parameters, the object
structure is updated with the values from the request and the developer can then query the
objects for data.

To allow operation on list structures rather than object structures, the slaml-update-object!
returns a list representing the object structure as a tagged list. The reason for returning
a list when the object structure is updated is that lists are the general data structure in
Scheme. The resulting list structure is shown here.

(slaml-form-element
(obj-name . person-composite)
(slaml-basic-element
(submit-button-leaf . ""))
(slaml-basic-element
(have-car-leaf . ""))
(slaml-element
(obj-name . name-composite)
(slaml-basic-element

(last-name-leaf . "my last name"))
(slaml-basic-element
(first-name-leaf . "my first name"))))

This example shows the list structure returned from slaml-update-object! given the
person-composite object as first parameter and the key /value pairs - returned from slaml-show

2.2. COMPLEX FORMS FRAMEWORK 65

- as second parameter.

The list structure returned from slaml-update-object! represents the object structure
with person-composite as root element. The list is tagged with the name of the type of each of
the three classes in the SLAML framework. The slaml-form-element and slaml-element
tagged list structures consist of a key/value pair list as the first element. The key is o0bj-
name and the value is the name of the object that is represented by this list. The rest of
the list is the children of this object. These can be of the types slaml-basic-element and
slaml-element.

The slaml-basic-element list structure consist of a key/value pair, where the key is the
name of the object that the list represents. The value of the list is the string entered into
the HTML input element by the client.

The list is tagged with the type of object that the list structure represents. It is not always
satisfactory to use the type of the object as the tag. The reason is that the first symbol in
a tagged list specifies the type of the content of the list. And as the content of the list is
more than an element in SLAML, it is beneficial to allow the developer to specify a custom
tag. This is done by introducing a property named tagtype to the object structure. This is
illustrated in the following.

(define person-form
(slaml-form-element ’name '"person-composite"
’tagtype "person"
action ""
’elements
(slaml-create-obj-1st
(slaml-element ’name "name-composite"
’tagtype "name"
’elements
(slaml-create-obj-1st
(slaml-basic-element ’name "first-name-leaf"
’tagtype "first-name")
(slaml-basic-element ’name "last-name-leaf"
’tagtype "last-name"))
’layout name-layout)
(slaml-basic-element ’name "have-car-leaf"
’tagtype "have-car"
>type "CHECKBOX")
(slaml-basic-element ’name "submit-button-leaf"
’tagtype "submit-button"
’type "SUBMIT"))
’layout person-layout))

Figure 2.12: Creation of the person-composite object structure with a tagtype for each object.

In Figure 2.12 it is specified that the list representing the person-composite object must be
tagged with person. The name-composite must be tagged with name and so forth. The

66 CHAPTER 2. DESIGN

resulting list is seen in the following.

(person
(obj-name . person-composite)
(submit-button
(submit-button-leaf . ""))
(have-car
(have-car-leaf . ""))
(name
(obj-name . name-composite)
(last-name

(last-name-leaf . "my last name"))
(first-name
(first-name-leaf . "my first name"))))

This list is tagged in the way specified, and thereby the tagging is more specific than in the
case where no custom tagging is used.

2.2.6 Example of the Complex Forms Framework

In this section an example of how to use the complex forms framework in SLAML is shown
and explained. The example presents the use of the principles already introduced and will
therefore not be described in all details. The example is split into three steps. First is the
binding of slaml-layout functions to names. Second is the creation of the object structure
and third is the presentation and updating. A larger example of the complex forms frame-
work can be seen in Chapter 3.

The first thing done is to define two layout functions, which represents the HT'ML layout of
person-form and name-composite.

(define person-layout
(slaml-layout (self args)
(table
(tr (td "Person Information" ’colspan "2"))
(tr (td (slaml-do-layout-child self "name-composite")))
(tr (td (string-append "Do you have a car?"
(slaml-do-layout-child self "have-car-leaf"))))
(tr (td (slaml-do-layout-child self "submit-button-leaf")))
’border "1")))

(define name-layout
(slaml-layout (self args)
(table
(tr (td "Name" ’colspan "2"))
(tr (td "First name")
(td (slaml-do-layout-child self "first-name-leaf")))
(tr (td "Last name")

2.2. COMPLEX FORMS FRAMEWORK 67

(td (slaml-do-layout-child self "last-name-leaf")))
’border "1")))

The HTML layout of the person-form is the HTML layout of the two composite objects
in the HTML form (person-composite and name-composite). The first layout is the HTML
layout of the person-form. This layout is bound to the name person-layout in the above ex-
ample. The person-form object is responsible for doing HTML layout of the name-composite,
have-car-leaf and submit-button-leaf objects. The second layout function is the layout func-
tion for the name-composite object. This layout is bound to the name name-layout. The
name-composite object is responsible for doing HTML layout on the first-name-leaf and
last-name-leaf.

The HTML presentation of the person-form is shown in Figure 2.13.

I:I| A___ Mozilla {Build ID: 2002031008} |)(
File Edit \iew Search Go Bookmarks Tag

¢ &+ I{} L @ % |http:.l'.ﬂuca]hast.f~pawsi.ﬂa
ﬂ‘ Harme | @Bmkmarks

Person Information |

Mame |

First name

L ast name

Do you have acar? [T |
Submit Query |

M Document: Done ...|
T e

Figure 2.13: Screen shot of the complex HTML form example

The next step is to build the person-form object structure to present to the client. The ob-
ject structure is seen in Figure 2.12 (on page 65). This figure shows how the object structure
is build and that it is bound to the name person-form. The layout is also added to the object
structure, by the use of the layout attribute. Next step is to present the object structure
to the client. This is shown in the following.

(define page-data
(slaml-update-object!
person-form
(slaml-show

(slaml-page (parm)
(html
(head (title "A title"))

68 CHAPTER 2. DESIGN

(body
(slaml-do-layout person-form)))))))

(slaml-show
(slaml-page (parm)
(html
(head (title "A title"))
(body
(table
(tr (td "Name" ’colspan "2"))
(tr (td "First-name")
(td (get-first-name-from-form page-data)))
(tr (td "Last-name")
(td (get-last-name-from-form page-data)))
(tr (td "Car ?")
(td (get-have-car-from-form page-data))))))))

The first thing that happens in the above is that the HTML page with person-form is
shown to the client. When the client submits the HTML form, the person-form is updated
by the function slaml-update-object!, which returns a tagged list representing the ob-
ject structure. This list is bound to the name page-data. The last thing that happens is
that page-data is shown on a new HTML page. The declaration of the selector functions
called: get-first-name-from-form, get-last-name-from-form, and get-have-car-from-form are
not shown in this example. They are used to get data from the tagged list returned from
slaml-update-object!.

2.2.7 Solution to Complex Forms Problem

In this section it is discussed how the SLAML complex form framework solves the Complex
forms problem discussed in Section 1.1.3. The Complezx forms problem is divided in three
parts. The first concerns building the complex structure the second concerns presenting the
complex structure and the last concerns updating the complex structure with data from the
client.

Building the complex structure is done by creating objects using a constructor mechanism.
By adding objects to other objects an object structure is build. The individual object in this
structure contains a reference to its children. This object structure represents the HTML
form that is to be presented to the client. A message passing mechanism is developed which
allow activation of methods on the individual objects. This function is named slaml-send.

Presenting the complex structure is done by assigning the individual object a layout func-
tion that is responsible for generating the HTML representation of that particular ob-
ject. These layout functions are created with the slaml-layout function. A function
is introduced, which can activate the layout functions on its children. This is named
slaml-do-layout-child. A special function named slaml-do-layout, is used to activate
the layout function on the root element.

2.3. VALIDATION FRAMEWORK 69

Updating the complex structure is done by invoking slaml-update-object! with the root
object and the form parameters received for the client as parameters. This inserts the
data entered by the client into the appropriate objects in the object structure. As an ad-
ditional feature a nested list representation of the object structure is returned from the
slaml-update-object function.

This gives the developer possibility to perform the three steps in the Complex forms problem.

2.3 Validation Framework

As shown in the analysis, input validation is not supported directly in HTML/CGI. Tt is of
interest to build validation into the SLAML framework. Giving the developer the possibility
to write validating functions in the same language as the HTML is generated, makes it
possible to remove the need of external technologies. The design of validation is made on
behalf of hypothesis three, from the problems definition:

Hypothesis 3:

It is possible to construct a validation framework that helps the devel-
oper to validate data from the client.

The goal is to give the developer the possibility to use a validation framework together with
the SLAML session framework. In this validation framework, two possible levels of validation
have been identified.

1. Page level

2. Object level

Page level validation is related to validation of a slaml-page, which is presented to a client
by using the slaml-show function. Object level validation is related to validation of the
composite and non-composite objects presented in the solution to the Complex forms prob-
lem. The reason for introducing validation on both the object level as well as the page level
is the independent nature of the two frameworks. A developer relying on the complex form
framework does not have to use the session framework and vice versa. If validation is not
supported on both levels, then validation is impossible in some situations. In the following
the design of the validation framework is presented. The considererations regarding the
design are presented as alternatives to the actual solutions. The reason for not including
a considerations section as in the rest of the design is, that much of the design is given,
since it is almost dictated by the session framework and the complex forms framework, how
the validation framework must be designed. This is the case, since we aim for consistent
approaches among the different frameworks.

70 CHAPTER 2. DESIGN

2.3.1 Design of the Validation Framework in SLAML

The following presents the choices made, regarding the design of the validation framework.
Each of the two levels is handled individually. However, a general decision concerning client
side or server side validation has been taken. The validation on both levels is handled on
the server. Two reasons exist for this choice. First, the needed technology (Scheme) is not
available as a scripting language that can be executed by the browser. Second, client side
validation does not ensure HTML form input to be validated. We are aware, that server side
validation can become a problem regarding bandwidth usage if many users are interested in
validating information at the same time. A solution to this problem can be to validate input
on both the server and client as it is done with Powerforms in Bigwig.

Page Level Design

It has been decided, that validation of a page, is done by extending the slaml-show function.
The reason for not using a declarative manner as done by Powerforms, is that Powerforms
relies on already defined “types”. A declarative fashion of specifying valid types does not fit
well in a weakly typed functional oriented programming language as Scheme. Powerforms
also rely on JavaScript for evaluation, since a format is translated to JavaScript. Translating
Scheme code to JavaScript seems to comprehensive, to allow client side input validation.

Extending slaml-show means, that if a slaml-page must be validated according to a check
function, slaml-show must be called in the following way:

(slaml-show a-page ’check check-page)

The check attribute specifies, that the check-page function must be used to validate the
page a-page. Here the syntax differs from XML like syntax, since check-page is a function
and not a string. All HTML form information from the presented page (a-page) must be
validated with the check function called check-page. For the check function to validate the
data returned from a-page it must take the data as parameter. Before the form parameters
are used as an argument to the check function, they are converted to a key/value pairs list.
The slaml-formparms-key->value (page 117) can be used to extract the value of a key
given the form parameters.

If a check function is specified with the check attribute to slaml-show, it returns the value
returned by the check function. This gives the developer the flexibility to define the return
value from slaml-show, which means, that a check function is not necessary limited to return
#t/#f (true or false). The following is an example of a check function, which verifies that a
number is between two values (iname is the name of the input element) which are specified
by the developer.

(define (is-between? form-parms limits)
(let ((num (slaml-formparms-key->value ’iname form-parms))
(min (get-min limits))
(max (get-max limits)))

2.3. VALIDATION FRAMEWORK 71

(cond

((not-a-num? num) #f)

((and (< (string->number num) min) (> (string->number num) max)) num)
(else #£))))

As seen the check function takes two parameters, the form parameters and an additional pa-
rameter (a list with two numbers, named limits). The check function first extracts the value
entered in the HTML input element named iname with the slaml-formparms-key->value
function and stores it in the num variable. Furthermore, the minimum and maximum values
are needed. These are extract from the limits parameter (the parameter specified by the
developer), by using the get-min and get-maz functions. The values returned from these
functions are stored in the variables min and mazx, respectively. The actual validation is
handled in the cond special form: if num is not a number or not between min and mazx, #£
is returned. Otherwise the value from the HTML input element is returned.

Parameters to check functions are specified in a similar way, as parameters to a slaml-page
or a slaml-session, namely by specifying an attribute with the parameter as value. In
the page level validation framework, the attribute is named checkparm. To activate the
is-between? check function with 50 as the minimum value, and 100 as maximum, the values
are wrappend in a list and specified as the value of the checkparm attribute:

(slaml-show a-page ’check is-between? ’checkparm (list 50 100))

This example illustrates how a check function take parameters. An example of how to use
check functions on the page level is presented in Section 2.3.3. This example also presents
how validation of dependencies is performed.

Object Level Design

Concerning validation of a complex form created by using the complex forms framework, two
alternatives are considered. The first possible solution is to give the whole object structure to
a function and let this function traverse the object structure to validate the object structure.
In this approach the developer need to traverse the objects structure explicitly in order to
validate the structure. The second, and the chosen solution is to add a check property to all
the classes. This allows performing validation on each object in the structure and thereby
the object level validation framework fits well with the complex structure represented by the
objects. In this solution the traversing of the object structure is done implicitly by letting
each node in the object structure be responsible for validating itself and the subtree it con-
sists of.

The decision to extend the objects with information about validation, means that all types
of objects must have functionality to set and get a check function. Furthermore, each class
must contain a property (named valid) specifying if the object is valid. The attribute value
used for the valid property is either #t or #f. The valid property value is determined by
the check function assigned to the object. The default value is #t. Functionality to set
(slaml-set-valid (page 125)) and get (slaml-get-valid (page 125)) the valid property

72 CHAPTER 2. DESIGN

also exist. This allows the developer to query each object for the status of the validation
performed on the object. Instead of using message passing when assigning information about
validation to objects, the constructor is extended to allow this.

A check function can be assigned to an object by using message passing or by using the
constructor. By using the constructor it is done as follows:

(slaml-element ’name "obj-name" ’check check-func)

In this example it is stated that the slaml-element named obj-name must be checked with
the function bound to the name check-func. When this object is returned and has been
updated the valid instance variable is set to #t if the validation went well and #f if the
object data was invalid according to check-func.

Since check functions are used to set the valid property on objects, there are requirements

to the check functions. They must always return either #t of #f, whereas a check function
on the page level does not have requirements to the return value. Likewise, a check function
used on the object level, must always take exactly one parameter. If the object is of the
type slaml-basic-element, the parameter will be the string entered in the correspond-
ing input element in the HTML form. If the object is either a slaml-form-element or a
slaml-element, the parameter is a list containing the children. slaml-get-element-from-list
is a function that can extract an object from the list on behalf of a name.

To see an example of validation on the object level, consult Section 2.3.3.

2.3.2 Flow of Validation

This section will in turn present flow of both the page level validation as well as objects level
validation.

Page Level Flow

The flow of the page level validation contains two steps. First, get the form parameters from
the client. Second, validate the parameters according to the check function. This flow is
presented in Figure 2.14.

2.3. VALIDATION FRAMEWORK 73

slaml-show i
S i ”””””””””””””” . Server . Client

abed JNLH uy

|
: (let (formparms (slaml-create—parm-Ist (slaml-get-args)))

| (check (slaml-get-checkfunc-parm args)))

I (if check

: (check formparms (slaml-get-checkparm—parm args))
|

|

|

|

formparms

Figure 2.14: This figure presents two steps from the slaml-show function. slaml-display
presents the string representation of a page to the client. The call to slaml-display will cause
the evaluation to pause, until a new request is issued by the client.

Showing a page to the client, means that the application pauses on the server. The applica-
tion will wait until the client submits information (Step one on Figure 2.14). The first thing
done in Step two, is to create a key/value pairs list containing the form parameters (done
with the call: (slaml-create-parm-ist (slaml-get-args))). The form parameters are stored in
the variable formparms. Next, the check function is extracted from the optional parame-
ters to slaml-show and stored in the variable check. This is done, by using the function
slaml-get-checkfunc-parm, which returns the value of the check attribute and #f if none
was specified. If check is false (the false branch in the if expression), formparms is re-
turned. If a check function is specified (the true branch in the if expression), the check
function is called with the return value of (slaml-get-checkparm-parm args) as a parameter.
slaml-get-checkparm-parm returns the value of the checkparm attribute, and the empty
list if none is specified. Recall, that the checkparm attribute is used to specify parameters
to the check function, when slaml-show is called. All this means, that if a check function
is specified when slaml-show is called, slaml-show returns the return value from the check
function. Otherwise, slaml-show returns the form parameters.

Object Level Flow

Before an object structure can be validated, the objects in the structure must be assigned
validation functions and the related form parameters must be present. Assigning validation
functions to objects is done by message passing or by the constructor mechanism when the
object structure is instantiated. In order to get the form parameters related to an object

74 CHAPTER 2. DESIGN

structure, a page where the structure is represented as an HTML form must be presented
to a client. This is done by calling slaml-show with the page containing the related HTML
form as a parameter. When the client submits the HTML form, the form parameters are
returned from slaml-show. These form parameters can then be used to update the object
structure. This is done, by calling slaml-update-object! with the object structure and the
form parameters as parameters. slaml-update-object! activates the validation functions
in relation to the object structure. This means, that a check function on an object of
the slaml-basic-element type is activated with the value entered in the related input
element. Furthermore, a check function on a composite object (slaml-form-element or
slaml-element) is activated with the objects children. This means, that a composite object
is responsible for validating the subtree it represents. By setting the valid property of
each object in the object structure to the return value of its associated validation function,
the entire object structure is validated. Furthermore, information about the validation is
added to the individual elements in the list returned from slaml-update-object!. This
means, that it can be determined if an object is valid, by either searching the list returned
from slaml-update-object! or by querying the individual object for the value of its valid

property.

2.3.3 Example of Validation Framework

This section gives a small example on how to use validation on the page level and the
object level. The scenario used in the examples is a single HTML page containing two input
elements. The value entered in both elements must be numbers, and the value entered in
the second input element must be the double of the value entered in the first. This yield
for validation on single input elements, but also validation on the dependencies between the
input elements. Additional examples can be found in Chapter 3.

Page Level Validation Example

The first thing done, is to create the HTML page (named enter-double) with the input
elements. There are three input elements (two textual input elements and one submit
input element) inside a form:

(slaml-define-page enter-double
(slaml-page (parms)
(html
(head (title "Number test"))
(body
(form ’action
(p "Enter a value:")
(input ’type "text" ’name '"valuel')
(p "Enter the double:")
(input ’type "text" ’name "value2")
(input ’type "submit")
))) ; end html

))

2.3. VALIDATION FRAMEWORK 75

To check, if the values entered in the input elements are numbers, a function called is-number?
is created. This function is called from the validation function (named double-value?), that
is assigned to the enter-double page.

(define (is-number? str)
(integer? (string->number str)))

(define (double-value? form-parms extra)
(let ((vall (slaml-formparms-key->value ’valuel form-parms))
(val2 (slaml-formparms-key->value ’value2 form-parms)))
(if (and (is-number? vall) (is-number? val2))
(let ((numl (string->number vall))
(num2 (string->number val2)))
(if (equal? num2 (+ numl numl))
form-parms
#f ;not the double size
)
)
#f ;not both numbers)))

(slaml-show enter-double ’check double-value?)

The double-value? function takes the form parameters as input (and the additional second
input, which is not used here). The values entered in the two input elements are extracted,
and stored in local variables (vall and wval2). It is verified if each of the two values are
numbers. If not, #f is returned. Otherwise, the dependency is checked. If the number
entered in the second input element is not the double of the number entered in the first, #f
is returned. If the dependency is fulfilled, the form parameters are returned.

Object Level Validation Example

This section will describe how validation is handled on the object level. The is-number?
function from the previous example is used in this example also. The object structure consists
of a slaml-form-element which has three slaml-basic-elements as children. Two of the
basic elements are text input elements, and the third is a submit button.

76 CHAPTER 2. DESIGN

(define double-form
(slaml-form-element
’layout (slaml-layout (parm)
(string-append
(p "Enter a value: ") (slaml-do-layout-child parm "valuel")
(p "Enter the double: ") (slaml-do-layout-child parm "value2")
(slaml-do-layout-child "send-button")))
’check check-structure-double?
action ""
’elements (slaml-create-obj-1st
(slaml-basic-element ’name "valuel"
’check is-number?)
(slaml-basic-element ’name "value2"
’check is-number?)
(slaml-basic-element
>type "SUBMIT"))))

Figure 2.15: Creating the object structure. Notice, that a check attribute is used to specify the
check function - here is-number? - when an object is created.

As shown in Figure 2.15, two of the slaml-basic-elements are assigned a check function.
This is done by the is-number? function from the page level validation example. There is
also assigned a check function to the slaml-form-element, namely check-structure-double?.
This function has the responsibility to validate the dependency between the children. The
creation of the last check function and the presentation of the page is presented below:

(define (check-structure-double? children)
(let ((objl (slaml-get-element-from-list children "valuel"))
(obj2 (slaml-get-element-from-list children "value2")))
(if (not (and (slaml-get-valid objl) (slaml-get-valid obj2)))
#f ;they are not both numbers!
(let ((numl (string->number (slaml-get-data obji)))
(num2 (string->number (slaml-get-data obj2)))
(equal? num2 (+ numl numi)))))))

(slaml-update-object! double-form
(slaml-show
(slaml-page (parms)
(html
(head (title "Number test"))
(body
(slaml-do-layout double-form))))))

Figure 2.16: The definition of the check-structure-double? function and the presentation of the
structure to the client. Recall, that slaml-show returns the form parameters, and
that slaml-update-object! takes the object to update and the form parameters
as input.

The check-structure-double? function takes the children element list as argument. It first
extracts the object representation of the two input elements. These objects are stored

2.4. SUMMARY 7

in the local variables obj1 and obj2. Next, it is checked if the data entered in the in-
put elements (validated by the is-number? function) are numbers. This is done, by using
the slaml-get-valid function, which returns the value of the valid property from an
object (recall, that the value of the valid property is determined by the check function
on the object, and it is set when slaml-update-object! is called). If either is invalid,
#f is returned. Otherwise the data (the values entered in the input elements) from the
slaml-basic-elements are extracted with the slaml-get-data (page 127) function, and it
is checked if the value from input element two is the double of the value from input element
one.

The slaml-update-object! function updates the double-form object, and activates all
the check functions assigned to the objects. To validate the HTML form according to the
dependencies, slaml-get-valid is called with double-form as the argument. This will return
the valid attribute set by check-structure-double?.

2.3.4 Solution to Input Validation Problem

In this section it is discussed how the validation framework solves the Input validation prob-
lem described in Section 1.1.2. The Input validation problem is considered on two levels, the
page level and the object level.

Page level validation is done by supplying a validation function as parameter to a slaml-show.
The validation function must be supplied as the attribute value to the attribute named check.
The validation function must always accept two parameters. The first is the form parameters
entered by the client. The second is an additional parameter which can be supplied by using
the checkparm attribute with the slaml-show function. The value of the additional param-
eter is the value of the checkparm attribute, and the empty list if none is specified. The
return value of the validation function on this level can be freely decided by the developer
and is returned by slaml-show.

Object level validation is done by adding validation functionality to each object. A validation
function on the object level must take one parameter. A valid property containing the status
of the validation is introduced on the classes in the complex forms framework. The validation
is performed once the object structure is updated with the form parameters. This is done
with the slaml-update-object! function. It is a requirement that the validation function
on this level returns a #t or #f value indicating if the data is valid.

2.4 Summary

In this chapter the design of the solutions to the problems mentioned in Section 1.1 is con-
ducted. Three sections are presented which each corresponds to a hypothesis.

During the design of the SLAML session framework it is decided to base the SLAML session
framework on the session concept from Bigwig (sessions as lexical scope), as this makes the

78 CHAPTER 2. DESIGN

developer able to see the entire flow of a session. A primitive, slaml-session, is introduced
to create a session. Another primitive, slaml-show, is introduced to show a slaml-page
to the client. The control flow of the application is maintained as the data entered by the
client is returned from the slaml-show primitive. Activation of a session is done with the
slaml-activate-session primitive.

During the design of the complex forms framework it is decided to rely on object orienta-
tion, as this allows flexible mutation of the complex structure. Three different classes are
introduced to represent objects in the object structure. These are slaml-form-element,
slaml-element and slaml-basic-element. A constructor mechanism is created to allow a
flexible instantiation of the classes. Layout concerns of the object structure is handled by
assigning layout functionality to the individual objects in the object structure. This layout
functionality must be created with the slaml-layout primitive. Representing the object
structure to the client is done by activating the assigned layout functionality on each object
in the structure. Once the client submits the form - representing the object structure - the
data are associated with the individual objects in the object structure. This association is
done with the function slaml-update-object!. The individual object can be queried for
the value of its data instance variable.

Design of the validation framework is divided into two levels, page level and object level.
This makes validation available on both the complex forms framework and the session frame-
work. On the page level a validation function is passed to the slaml-show primitive as the
value of the check attribute. A validation function must take two parameters. The first is
the form parameters entered by the client. The second is an additional parameter which can
be supplied by passing the checkparm attribute to the slaml-show primitive. On the object
level validation functions are written using the slaml-check function. They are associated
with the individual objects in the object structure. A slaml-check function on the object
level must always take one parameter, namely the string value entered by the client associ-
ated with the particular object. The return value must always be #t or #f. Validation is
performed when slaml-update-object! is used to update the object structure.

This has resulted in three different frameworks solving the problems mentioned in Section
1.1.

Example Applications

Contents
3.1 Guess a Number Application 79
3.2 Student Class Example 84
3.3 SUMMATrY . . v v v v v v e 95

This chapter introduces two applications, which use the SLAML framework (designed and
implemented to solve the problems identified during the analysis see Chapter 1). Reflections
are made after the presentation of each application. The first application is a “Guess a
number” application. The second example presented, is a “Student class” application.

3.1 Guess a Number Application

The first application implemented in order to show, how the SLAML framework can be used,
is “Guess a number”. The idea behind the application is that a client must guess a random
number. When a client enters a guess that is invalid, a hint is shown to help the client. Since
validation is done on the server, a client/server loop is maintained, until the client enters
the correct number. The application is divided into two parts. The first part presents the
way, that objects, layout, check functions and pages are defined and handled. The second
presents the definition of a session, and the flow of the application is described. The code
presented in this section is almost complete; the definition of two - almost static - pages and
a single validation function is not included. The entire implementation of the application
is found in Appendix B. For readability, all functions, objects and pages are defined globally.

80 CHAPTER 3. EXAMPLE APPLICATIONS

3.1.1 Objects, Layout, Check Functions and Pages

The "Guess a number" application consists of three pages. First a welcome page, second the
game loop page and third the end page. The three pages are presented in Figure 3.1.

" Ele Edit Yiew Seach Go Bookmarks Tasks Help Debug O 7 Eile Ec Bookmarks Tasks Hep Debug O 7 Eile Edit View Search Go Hookmarks Issks Help Debug O
g e e e
Enter your first guess
Welcome to guess a number... . Congrats
Enter your guess
This application is written in SLAML. Fa You made it in 2 guesses!
Guess
“You must guess a number between 1 and 100
continue
% Eb ~2 ED |DocumentDone(0076sec.| |=p=gf % b 2 ED | DocumentDons(0078sec.| —geel % b 2 ED | DocumentDons(059sec.| —geel

(A) (B) (©)

Figure 3.1: The three pages in the “Guess a number” application. Page (A) is the welcome page.
Page (B) is the page, where the client can enter a guess. The top of the page, presents a hint,
or the text shown in (B) (if it is the first time the page is shown). The last page - (C) - presents
the number of guesses used, when the correct number has been guessed.

The first and last page are simple and does not use objects to represent structure. The
game loop page (Page B) consists of two parts. One part that gives the client a hint to help
perform the next guess, and one part that contains the HTML input element and a submit
button. The definition of the guess loop page, is seen in Figure 3.2.

(slaml-define-page guess-page
(slaml-page (guess-information)

(html
(head (title "Guess a number!"))
(body
(get-hint guess-information)
(hr)

(slaml-do-layout guess-form)))))

Figure 3.2: The definition of the guess loop page. The page takes a single parameter - guess-
information- which is used when getting a hint (the get-hint function). guess-
information is a list, which contains the guess made by the client, the number of
guesses used and the right number to guess.

This page builds up the two parts needed. The first part (the hint) is created with a
call to get-hint and the second part (the input elements) is done by doing the layout of
guess-form. guess-form is an object of the type slaml-form-element, which consists of a
slaml-element, which again consists of two slaml-basic-elements. The creation of the
object structure is seen in Figure 3.3. General for all the objects used, is that they are
assigned a tagtype. The tagtype is used when the objects in the structure are updated with
the data entered by the client (after a request). Similar, all objects are given a name. The

3.1. GUESS A NUMBER APPLICATION 81

reason for giving the objects a name, is to identify them when the HTML layout function-
ality is specified. This is shown later.

(define guess-input
(slaml-basic-element
’check slaml-is-integer?
’name "input-field"
’tagtype "input-field-guess"))

(define submit-guess-button
(slaml-basic-element
’name "submit-button"
’tagtype "submit-button-guess"
’type "SUBMIT"
’value "Guess"))

(define guess-composite
(slaml-element
’layout guess-composite-layout
’elements (slaml-create-obj-lst guess-input submit-guess-button)
’name "guess-composite"
’tagtype "guess-composite"))

(define guess-form
(slaml-form-element
’layout guess-form-layout
’name "guessform"
action ""
’method "GET"
’tagtype '"guess-form"
’elements (slaml-create-obj-1lst guess-composite)))

Figure 3.3: The creation of the object structure. Notice, that the slaml-basic-element named
input-field is assigned a check function named slaml-is-integer?. Recall, that func-
tions, objects and pages are defined global for readability.

The first object created - guess-input - represents the HTML input element on the second
page in the application (see Figure 3.1 (B)). The default value of the type property on the
slaml-basic-element class is TEXT. Since the type of the HTML input element must be
TEXT, the type is not specified when guess-input is instantiated, as TEXT is the default value.
guess-input is assigned a check function named slaml-is-integer? (see Appendix B for its
definition), which verifies if the value entered in the HTML input element is an integer.
Next, the submit button is created. Like the guess-input object, the submit-guess-button
is of the type slaml-basic-element. A composite object of the type slaml-element is
created, and it is used to represent the two basic elements. A layout function - guess-
composite-layout - is assigned to the object (the layout functions are shown later). The
two basic elements are added to the guess-composite object. The elements must be gath-
ered, by using the slaml-create-obj-1st function. The guess-composite object is added

82 CHAPTER 3. EXAMPLE APPLICATIONS

to the root object, which is named guess-form. A layout function (guess-form-layout) is
also added to the guess-form object. Even though the guess-form object is only added a
single child (guess-composite), slaml-create-obj-1st is used. The reason for this, is that
slaml-create-obj-1st adds a special tag to the list of elements it returns.

In order to present the object structure in an HTML form, it is needed to specify the
layout of the individual objects in the structure. Layout functions have been created to
the guess-form and the guess-composite object. The following presents the layout functions
quess-composite-layout and guess-form-layout, which are the layout of the guess-composite
and guess-form objects respectively:

(define guess-form-layout
(slaml-layout (self parms)
(slaml-do-layout-child self "guess-composite")))

(define guess-composite-layout
(slaml-layout (self parm)
(string-append
"Enter your guess:"
(table
(tr (td (slaml-do-layout-child self "input-field")))
(tr (td (slaml-do-layout-child self "submit-button")))))))

The purpose of the guess-form-layout, is to activate the HT'ML layout function on its child.
As seen, the name of the child object (set in Figure 3.3) is used to specify which child to
layout. The guess-composite-layout layout function, specifies that the input element and
the submit button are placed in an HTML table.

The following section presents the second part of the “Guess a number” application. This
includes the definition of the session used in the application.

3.1.2 Flow and the Session Definition

The flow of the application is modeled as a session containing three steps. One step handling
the presentation of each of the pages defined. The definition of the guess session is seen in
Figure 3.4.

3.1. GUESS A NUMBER APPLICATION 83

(slaml-define-session guess-session
(slaml-session (session-param)
(slaml-show start-game) ;say hello - step one
(letrec ((guess-loop
(lambda (guess guesses right-number)
(if (equal? guess right-number)
guesses ; Return the number of guesses used
(let
((obj-struct
(slaml-update-object! guess-form
(slaml-show
guess-page ’pageparm (list guess guesses right-number))))
)
(if (slaml-get-valid guess-input)
(guess-loop
(string->number
(slaml-get-data guess-input)) (+ 1 guesses) right-number)
(guess-loop
NaN (+ 1 guesses) right-number)
)
)))))
(let* ((right-number (get-random-number))
(guesses (guess-loop 0 O right-number)) ;do loop - step two
)

(slaml-show end-game ’pageparm guesses) ;say bye - step three
guesses ; return the number of guesses used

)

);end letrec

))

(slaml-activate-session guess-session) ; it starts

Figure 3.4: The definition of the guess-session. The name guess-session is bound to a session
that is created with the slaml-session primitive.

The guess-session is activated with the primitive slaml-activate-session, and as seen, the
session takes a single parameter (it must always take exactly one parameter). The parameter
to a session must be specified when the session is activated (with slaml-activate-session).
This is not done in this example, so session-param is equal to the empty list. The first thing
done in the session, is to call slaml-show with start-game as parameter. The page shown is
the hello page (bound to start-game) and as seen, the page is given no parameters. Next, is
the definition of the guess-loop function. The guess-loop takes three arguments: the guess,
the number of guesses and the right number the client must guess. The first thing done in
the loop, is to check if the client has made the right guess. If this is the case, the number
of guesses is returned. If the client has not made the right guess, the guess-form object
structure is updated with the information gained from showing the guess-page (already pre-
sented in Figure 3.2) and the object structure is stored in a variable named obj-struct. All
information needed to present the page (create the hint to the client), are send as parameters
to the page. The page can only take one parameter (specified with the pageparm attribute),

84 CHAPTER 3. EXAMPLE APPLICATIONS

so the information is wrapped inside a list. None of the information used to maintain the
loop is needed to be send to the client in hidden fields, but are instead handled as variables
and parameters as shown.

A check function is assigned to the guess-input object, and after the object structure has
been updated (by the slaml-update-object! function), it is asked if an object is valid
according to its check function. This is done on the guess-input object, to see if the client
entered a number. If this is the case, the game loop is called, with the entered number, the
number of guesses increased by one and the right number. Else, the game loop is called with
NaN - Not a Number - as a guess (NaN is bound to the value -1), the number of guesses
increased by one and the right number, as arguments.

After the definition of the loop, a local variable named right-number, holding the random
generated number (in the example it is generated by the function get-random-number), is
created. Another variable - guesses - is set to represent the return value of a call to the
guess-loop. The call to the loop means, that a number of interactions with the client is
carried out. After the right number is guessed (the loop returns), the final page (end-game)
is presented. The number of guesses used is send as a parameter to the page. The session
returns the number of guesses used.

As shown in the example, information and functions needed to handle the flow of the session
is maintained and defined locally to the session. This allows for encapsulation (in the form
of lexical scope) of functionality and information. If needed, all the pages, objects and help
functions (seen in Appendix B) can be created locally to the session (in a similar way as it
is done with the guess-loop). The session can be loaded when the server is started (as it can
be done with all libraries), and can be activated whenever wanted, by performing the call:
(slaml-activate-session guess-session).

In the example, a validation function is added to the guess-input object. It is somewhat
comprehensive to first create a validation function, add it to the object and ask the object
if it is valid, when only a single HTML input element exist on the HTML page. Since the
only information from the guess-page is the value entered in the input element, page level
validation can be used. This eliminates the need to query an object to determine if the
input is a number. However, it is still our opinion that object level validation is beneficial
when more than a single input element exist on the HTML page. The reason for this is,
that a page level validation function gets complex (many if and cond statements), if it must
validate many input values.

3.2 Student Class Example

To show that the SLAML framework is applicable in real world applications, a large exam-
ple application (about 1000 lines of code) is developed. This application is described in this
section. The application is not described in every detail but instead an overview is given
of the system. The reason is that the software is large and giving a detailed description of

3.2. STUDENT CLASS EXAMPLE 85

the whole application, is not necessary to understand how the SLAML framework is used in
this application. The places where the SLAML framework is used, is described in details to
give an indication of the usability of the SLAML framework in this application. The entire
source code of the program is found in the folder ExampleApplications/StudentClass on the
CD distributed with this report.

3.2.1 Overview of the Application

The application is a student class registration application. In this application it is possible
for teachers to add new courses to a list of courses. Furthermore, students are able to select
the courses they want to attend from the list of all courses. Each student have a profile,
where details about the presentation of the pages for the student is set. Last, a calendar is
available where a course can be scheduled.

Flow of the Application
The flow of the Student class application is seen in Figure 3.5.

Start

l

Login screen

Teacher?

If teacher If student

Teacher menu Student Menu

|
| | | | |

Show a Add new course Add to/remove Edit profile Exit
course calendar from course

l l

Show calendar Goodbye page ||

Figure 3.5: The flow of the Student class application.

86 CHAPTER 3. EXAMPLE APPLICATIONS

The application starts with a login screen where the user is asked for username and password.
If the username and password is incorrect, the login screen is shown again. If the username
and password is correct, the type of user is examined. There exist two types of users in the
application, students and teachers. The difference between these two types lays in what they
are allowed to do. The next step in the application is to see if the user who is logged in, is
a teacher. If this is the case, the teachers menu is shown, otherwise the students menu is
shown. Teachers are shown a menu with five items:

e Edit profile
e Add to/remove from course

Add new course

Show a course calendar

e Exit
Students are shown a menu with three items:

e Edit profile
e Add to/remove from course

e Lxit

As it is seen the two menus are the same, except that a teacher has two additional menu
items (Add new course and Show a course calendar). Depending on which item is chosen in
the menus, a new page is shown where an HTML form is present. In the following each of
the menus are described.

The first menu item is Edit profile. Here the user can change his profile, this includes the
background color, the welcome message and the title. The Edit profile page has three input
elements in the HTML form, and the page is shown in Figure 3.6.

EI‘ This is the title.__ - Mozilla {Build ID: 2002031008} |X
Fle Edit View Sewch Go Bookmarks Tasks Help Debuy G4

&+ @ [@nttpsnocainosti-pawsitlassischool. slam Tpagesecit-r ¥ @ & + G

M Home ‘@Emkmarks

Here you can set your configuration...

our background-color I‘White
our welcome-message Welcome
Your title his is the fitle...

Set your configuration! |

H 5y =1 A |Dpocument: Done (0.207 sess) ﬁ@

Figure 3.6: Edit profile page from Student class application.

3.2. STUDENT CLASS EXAMPLE

87

The next menu item is Add to/remove from course. Here the user can specify which courses
to attend. All the courses in the application are available and a checked check box indicates
if the user wishes to attend a given course. The Add to/remove from course page is shown

in Figure 3.7.

Ell This is the title._. - Mozilla {Build ID: 2002031008}

[x

File Ecit \ew Search Go Bookmarks Tasks Help Debug Q4

&+ @ [@ntinznacahostpavsicissschoal skl page=actc-rend] €, B + G

£ Home| Epockmarks

Chose the courses you want ?

Teachers username || Teacher nate || Course name YesNo
jjuncker Jimmy Juncker | Scheme lecture]
pawsi Faw [versen Jawa lecture =
mhansen Mikael Hansen || C lecture =
normark Kurt Nermark || Other lectures =
normark Kurt Narmark || Other lectures =
normark Kurt Narmark || Other lectures =
normark Kurt Ngrmark || Other lectures =
|
% El =1 (3 | Document: Done (0379 sees) ﬁﬂ

Figure 3.7: Add to/remove from course page from Student class application.

The third menu item is only available to teachers and is called Add new course. Here teachers
can add a course to the list of already existing courses. The details that are needed to create
a new course, is shown in an HTML form on this page. The teacher then enters information
about the new course. When the submit button is pressed, the course is added to the list of
courses. This page is shown in Figure 3.8.

=] This is the title__ - Mozilla {Build ID:

[x

He Edit Mew Seach Go Bookmarks Tasks Help Debug G4

&y G @ v Ha 8+

A Home | Baokmerks

Add a course

Teacher info Name of the course;

i ;

(| M ame The id of the teacher: I—

! 'mflmy Juncher Numnber of modules: I_

2 |Mikael Hansen

8 |[Paw Iversen ‘The place where it is held:

4—| Kurt Ngrmark Minimum of students: I—

Student numbers:
Maximum of students: |_

Anunique id for the course: I—

Submit Query

H =, =f [|Dowment: Done (0376 secs) |
— |

Figure 3.8: Add new course page from Student class application.

The fourth menu item is also available only to teachers and is called Show a course calendar.
The only purpose for this calendar is as a demonstration of the use of complex HTML forms,
where more than one item of the same type is shown on a page. Therefore this calendar do

88 CHAPTER 3. EXAMPLE APPLICATIONS

not update the global state in the program, neither is the calendar associated to a specific
course. This interaction consists of two pages. The first page shows a calendar consisting of
check boxes. Here it is possible to mark days in a calendar. This page is shown in Figure
3.9.

Ell This_..__. - Mozilla {Build ID: 2002031008} |X
File Edit Wiew Search Go Bookmarks Tasks H

<# + E{) = @ % |http:mocaJhostvapawsi.fclass.fscjl
ﬂHome | @Bonkmarks

L. wieek |2, week|3. week[4. wesk|

Mo 7 =
Tu &
We [T
Th &
Fr &
2a [T
=u T

‘ Submit calendar ‘

M Docurnent: Dore ..
I [|

mEmAmAmAAA
mEAmAmAmAAA

-
-
-
-
-
-

|

Figure 3.9: Show course calendar page from Student class application.

When the submit button on this page is pressed a new page is shown where the days - that
was marked on the previous - is marked in a new calendar. This page is shown in Figure
3.10.

Dl This is the title.... - Mozilla {Build ID: 2002031008} ‘X
Bie Edit View Seaeh Go Bookmerks [wske Help Debug QA
Ed @ [@nttosnocanosy-pavsitiassischoolskmiskni-nun®] €) +
A Home | E Bookmarks
weekl week? week3 weekd
Mo Mo Mo Mo
. T i ™
We We We We
Th T [| Th
Fr Fr Fr Fr
Sa Sa sa [| ==
Su Su Su su [
Continue
% 5 =4 [|Dpocument: Dane (0327 secs) =i
e ———— |

Figure 3.10: Show calendar page from Student class application.

3.2.2 Use of the Session Concept

In this section it is explained how the session concept is used in the Student Class application.
This application contains five sessions:

e main-session

3.2. STUDENT CLASS EXAMPLE 89

login-session

student-session

teacher-session

e cxit-session

The flow of the sessions is illustrated in Figure 3.11. main-session is the first session activated
when the application is started. main-session is responsible for activating the login-session.
login-session is the session asking for the username and password and returning a record with
the data representing this user. student-session and teacher-session are almost identical.
Depending on the type of user (teacher or student) one of the sessions is started once the
user has logged in. The reason for having two sessions that are nearly identical, is to show
that it is possible to have two sessions and on behalf of the type of the user, choose which
session to activate. The last session is called ezit-session and is activated when a user logs
out. It shows a goodbye page and activates main-session again.

b

login—session

show username/password page
recieve username and password

is username and password valid

main-session yes

no

activate login—session V

type of person:
student $ teacher—session
activate student-sessior student-session
show general-menu-page
teacher . . "
. X if next-page == edit—profile
activate teacher—sessior show general-menu-page show edit-profile page
if next-page == edit-profile update "database”
show edit—profile page activate teacher-session

update "database"

- X if next-page == add-to/from—course
activate student-session

show add-to/from—-course page
if next-page == add-to/from—course update "database”
show add-to/from—course page, activate teacher-session
update "database"
activate student-session

if next-page == add-course
show add-course page

if next-page == exit update "database"

activate exit session activate teacher—session

if next-page == show-course-calengd
—¢ show build-a-course—calendar page

show show-course—calendar page
exit-session activate teacher-session

if next-page == exit
activate exit-session

show goodbye page

activate main—session

Figure 3.11: The session flow of the Student class application.

In the following login-session and student-session are explained.

90 CHAPTER 3. EXAMPLE APPLICATIONS

Login-session

The first session that is discussed is the login-session. The login-session illustrates the
usefulness of using recursive sessions. Furthermore it shows how a session can be used to
return a value.

(slaml-define-session
login-session
(slaml-session (lst)

(let ((app-user
(slaml-show

login-page
’check login-check
’checkparm people-1lst))) ; check if the person is valid
; this is page level validation
(if app-user ; is the user valid 7
app-user ; yes : return the users information

(slaml-activate-session login-session))))) ; no : reactivate the login-session

The login-session shows login-page to the client. If the user enters an non-valid username
or password, the login-page return #£f else it return the record structure - named app-user -
for the person with the currently entered username and password. This is done with a check
function, that is explained later. The last if expression in the login-session, checks if a valid
username and password is entered. If it is a valid user, the users record is returned from the
session. If it is not a valid user (the login-page returned #£) the login-session is activated
again. This illustrated the usefulness of recursion of sessions.

Student-session

Other sessions that make use of recursion are student-session and teacher-session. Further-
more these sessions rely on session parameters. The session parameter is used to send a
person record to the session and in this way make it possible to customize the layout of the
pages as specified in the users profile. The student-session and the teacher-session are also
used to show the right page based on the link in the teacher-menu or student-menu. Each
of the links in the menu is created as follows:

(a "Edit profile" ’href "7page=edit-profile-page")

The href attribute sets the page url parameter to the value of the next page to display. As
the student-session and teacher-session are alike, only the student-session is shown.

3.2. STUDENT CLASS EXAMPLE 91

(slaml-define-session
student-session ; the student-session
(slaml-session (1lst)
(let* ((app-person (car 1lst))
(next-page (slaml-formparms-key->value ; show general-menu-page
’page ; and get the "page'" parameter
(slaml-show
general-menu-page
‘pageparm (list app-person))))) ; show the menu page for the student
(cond ; based on the page parameter submitted choose a page
((string=7 "edit-profile-page" next-page) ; edit profile
;'"'show the edit-profile-page"
;'"when the form is submitted, update the configuration"
;"activate the student session again"

)

((string=7 "add-remove-page" next-page) ; add to or remove from course page
;'"'show the add-remove-page"
;'"when the form is submitted, update the course list"
;'"activate the student session again"

)
((string=7 "exit" next-page) ; the exit session
;"activate the exit session")))))

Figure 3.12: The definition of student-session.

In the above example some of the code has been replaced with text. This is done to make
it easier to read. This example shows the definition of the student-session. In this example
next-page is bound to the value of the page form parameter (from the link in the menu),
which is set by the link in the general-menu-page. Based on the page parameter the wanted
action is performed (edit profile, add to/remove from courses or exit). After each action is
performed, the student-session is activated again. This approach looks like the approach
taken in CGI, but this is necessary to branch to the right action. This approach differs
however from the CGI approach as here it is explicitly stated to restart the session. This is
discussed in details in Section 4.3.

3.2.3 Use of Complex Forms

Complex HTML forms are used in four places in the application (Edit profile, Add to/remove
from course, Add new course and Show a course calendar). In this section it is shown how
complex HTML forms are used on Add new course page and Show a course calendar page.
The reason for choosing these two is that these are the two most complex HTML forms in
the application.

92 CHAPTER 3. EXAMPLE APPLICATIONS

Add New Course

When adding a course to the list of courses, it is necessary to specify all the entries in a
course record. A course record structure look as follows:

(course

(name . "Scheme lecture")

(teacher . "1")

(modules . "5")

(place . "E0-001")

(student-info (min-students . "2") (max-students . "10"))
(id . "a1"))

The first entry is the name of the course. This is the string shown on the Add to/remove
from course page. The next entry is the teacher entry, which specifies the id of the teacher
that will be teaching the course. modules specifies how many modules (lessons) the course
consists of. place, is the name of the place where the course is held. student-info is a new
record structure, specifying what the minimum and the maximum number of students are
for this course. Last is the id of the course, this is a unique id used to relate courses to
students.

To present a form where these informations can be entered, a complex form is build. The
reason for building a form to handle the new course is that the course record structure is
build to match the list returned from the slaml-update-object! function. This makes it
easy to mutate the global list - where all courses are present - to include the new course.
When the list is returned from slaml-update-object! it is made to fit the course record
shown above and it is then added to the global list of courses. This makes it easy to add
new courses to the list of courses.

Show a Course Calendar

Another place where a complex HTML form is used, is in the Show a course calendar page.
This HTML form consists of four weeks where each week consists of seven days. To generate
a week object with seven days a function is used.

(define (create-course-calendar-days-objects) ; creates a week

(slaml-create-obj-1st

(slaml-basic-element

’value "present'" ’tagtype "day" ’name "Mo" ’type "CHECKBOX")
(slaml-basic-element

’value "present" ’tagtype "day" ’name "Tu" ’type "CHECKBOX")
(slaml-basic-element

’value "present" ’tagtype "day" ’name "We" ’type "CHECKBOX")
(slaml-basic-element

’value "present" ’tagtype "day" ’name "Th" ’type "CHECKBOX")
(slaml-basic-element

’value "present'" ’tagtype "day
(slaml-basic-element

’value "present" ’tagtype "day" ’name "Sa" ’type "CHECKBOX")

’name "Fr" ’type "CHECKBOX")

3.2. STUDENT CLASS EXAMPLE 93

(slaml-basic-element
’value "present" ’tagtype "day" ’name "Su" ’type "CHECKBOX")))

This function takes no parameters, but returns an object-list (which is a tagged list used
inside the objects to represent references to other objects) of seven slaml-basic-elements
representing a week. The reason for using a function instead of binding the list to a name,
is that a new instances of the week is needed. As it is seen each day is tagged with day
and the name of the objects are the names of the days of a week. The reason for tagging
the list with day is that thereby it is possible to specify that each of the lists returned from
slaml-update-object! represents a day. The list representing one week is then added to
each of the four weeks in the calendar HTML form.

(define create-course-calendar-weeks-object ; a month of objects
(slaml-create-obj-1st
(slaml-element
’name "weekl1"
’tagtype "week"
’elements (create-course-calendar-days-objects)
’layout week-layout
)
(slaml-element
’name "week2"
’tagtype "week"
’elements (create-course-calendar-days-objects)
’layout week-layout
)
(slaml-element
’name "week3"
’tagtype "week"
’elements (create-course-calendar-days-objects)
’layout week-layout
)
(slaml-element
’name "week4"
’tagtype "week"
’elements (create-course-calendar-days-objects)
’layout week-layout)))

Here the weeks are tagged with week and the name of the objects are the name of the
weeks (here weekl, week2, week3 and weekj). To get the elements (days) for each week,
the create-course-calendar-days-objects function is called. The list representing four weeks is
bound to the name create-course-calendar-weeks-object as only four weeks are needed in the
application. The list representing four weeks can now be added as elements to the calendar
HTML form.

(define course-calendar-form ; calendar form
(slaml-form-element
action ""
’elements (append
create-course-calendar-weeks-object

94 CHAPTER 3. EXAMPLE APPLICATIONS

(1ist (slaml-basic-element
’name "submit-button"
’tagtype "submit-button"
’type "SUBMIT"
’value "Submit calendar'")))
’layout month-layout))

Here it is seen that the new slaml-form-element is bound to the name course-calendar-
form. Furthermore a submit button is added to the HTML form. The course-calendar-form
is then shown to the client which checks the check boxes that represents the days where a
course is held. When the HTML form is submitted, the data returned from the HTML form
is used to update the course-calendar-form object structure. How this is done is illustrated
in the following.

(let ((page-data
(slaml-show
show-course-calendar-page
’pageparm (list app-person))))
(slaml-show
show-course-calendar-result-page
‘pageparm (list app-person page-data))
(slaml-activate-session teacher-session ’sessionparm lst))

First is the show-course-calendar-page shown to the client. The resulting form parameter list
is then bound to the name page-data. The record representing the current user is bound to
the name app-person. The reason for sending this record to all pages is that it contains the
profile of the person. This information is used to e.g. set the background color of the page.
Next step in the application is to show the page bound to the name show-course-calendar-
result-page. This page is given a list containing app-person and page-data as parameter,
as this data is used to build the resulting calendar. Last the teacher-session is activated
again. The [st parameter, which is passed as parameter to the teacher-session is passed as
parameter to the session from which the above example is taken.

3.2.4 Use of Validation

Both page level validation and object level validation is used in the application. Page level
validation is used in the login-session when the login-page is called. Object level validation
is used to check the background color on the Edit profile page. Both of these are explained
in this section.

Login Check

When the login-page is shown, a check function is used to check the username and password
against a list of persons (which each has a username and a password).

3.3. SUMMARY 95

(define login-check ; function used to do page level check on the login form
(lambda (form-parms all-persons-1lst)
(let ((username (slaml-formparms-key->value ’username form-parms))
(password (slaml-formparms-key->value ’password form-parms)))
(check-user-and-password username password (get-persons all-persons-1lst)))))

In the above the check function used with the login-page is seen. It is seen that the form-
parms parameter is asked for the username and password. This is done with the function
slaml-formparms-key->value. The username and the password is bound to the variables
called username and password, respectively. These two values are passed to the function
check-user-and-password, which takes a username, a password and a list of persons as pa-
rameter. Based on these parameters the person that matches the username and password
is returned. If no person matches the username and password, #f if returned. The second
parameter to the login-check function is the list of all persons in the system. login-check
returns what the check-user-and-password returns.

Background Color Check

An example of object level validation is in the Edit profile menu, where the submitted
background color is checked. The reason for checking the background color is that if the
user submits black as the background color the user cannot see the text on the screen as this
is black too. The following check function is used for checking the background color:

(define (check-background-color str)
(not (string=7 str "black")))

This check function is simple, but it is useful since it makes it impossible to select the same
background color as the text color.

Another possibility to this problem is to add a menu to the page where the colors can be
selected from. Thereby, it is unnecessary to do check on this value as it is impossible to
choose a wrong color.

Check on coherence of two input elements is useful in the student-info record structure in
the Add new course page. Here it must always be the case that the minimum number of
students is lower than the maximum number of students. But as validation on objects of
the type slaml-elements is not implemented it is not used in this application.

3.3 Summary

Two applications based on the SLAML framework is discussed in this chapter. First a small
application - “Guess a number” - is discussed. Second, a larger application - “Student class”
- is discussed. Based on the experiences gained during the implementation of these example

96 CHAPTER 3. EXAMPLE APPLICATIONS

applications, the following concludes on usability of the frameworks.

The session framework in SLAML gives the developer the possibility to think of a Web
application as one program. The result is that the flow of the Web application is like the
flow of a non-Web application. This means that the flow of the program is gathered in a
single file. This gives an overview of the flow of the application. That a session encapsulates
interactions with a client means that responsibility can be delegated on a higher level than
a single page. By this we mean that interactions sharing the same responsibility can be
gathered in a session. An example is a login session where more than one page is responsible
for ensuring a user is logged in. By doing this it is possible to access all the pages responsible
for logging the user in, as a unit.

The complex forms framework, gives the developer possibility to create an object structure
on the server and rely on this object structure to query for data returned from the client.
Therefore, the object structure send to the client is also the object structure that is queried
for data. Building the object structure and placing the layout on the objects in the structure
is a considerable amount of work, but once this has been done it is straight forward to update
the object structure and query the objects in the structure for data.

The validation framework is designed to work on both the page level and the object level.
This means that it is possible to do validation when using the complex forms framework as
well as the session framework. The validation framework is not implemented on slaml-element
and slaml-form-element. On the page level the form parameters from the client is send
as parameter to the check function. Thereby, all data from the submitted HTML form can
be checked. This is an advantage since it thereby is possible to build HTML forms without
the complex forms framework and still get the data validated. However, if both the complex
forms framework and the session framework is used it is redundant to check on both the
page level and the object level.

Reflection

Contents
4.1 Encountered Problems iiee.. 97
4.2 Current Limitations &« &« v i i i i i i i e e e e e e e 100
4.3 SLAML Framework @ @ @ i i i i i i ittt teee 103
4.4 SUMMATY + . ¢« v v v v v vttt b e e e e e e e e e e e e e e e 106

In this chapter the reflection of the designed and implemented frameworks are given. This
chapter consists of four sections.

The first section gives an overview of the problems that were encountered during the imple-
mentation of the SLAML framework. These problems are related to the Apache server.

The second section is about the limitations to the implemented framework in relation to
the design. The limitations are concerned with the implementation done in Scheme as well
as limitations by the problems encountered when implementing the session framework in
Apache.

The third section is reflections on the experiences gained when implementing the example
applications (from Chapter 3) with help from the SLAML framework.

Last is a summary where the limitations and reflections are summarized.

4.1 Encountered Problems

During the implementation problems were encountered. These are described in the following
two sections. The nature of the encountered problems is mainly on a low level i.e. involving
mod _laml and the server. The reason for not solving the problems is the decision to place
our focus on Scheme level implementation.c

98 CHAPTER 4. REFLECTION

4.1.1 New Apache Module

During the implementation of the designed solutions a problem concerning mod laml oc-
curred. The reason for this problem is the intended implementation of the slaml-show
primitive. We decided to let the slaml-show primitive halt the evaluation of the SLAML
application and display a page to the client. Upon submission of the page from the client,
the program control is returned to the slaml-show primitive in the SLAML application.

The solution is based on a signal/wait situation in the Apache server. By a signal/wait
situation we mean that once the first request - for a Web application - is handled by the
server, the server will spawn a new thread (named session thread) to run the Scheme program
in. This means that two threads are present in the server after the first request (the Apache
process that handles the request is also seen as a thread, the main thread). This is seen in
Figure 4.1.

Server Client

session thread mai n thread

Spawnsessi on t hr ead
W
4)

Request

(1)

A

2)

(5)
Signal nai read Response

itsession thread

!

¢

(slaml-show ...
(7)

!

ignal sessi on t hread Request
Wait ma hr ead
(6)
Signalnai n thr
ession thread Response

(slaml-show .

Figure 4.1: An illustration of the two threads running in the server and the communication
between them.

To handle requests by using threads, the server module must handle seven steps, which are
explained below. Each number in the following, corresponds to the same number in the
figure:

1. When a client requests a SLAML application, it is handled by the main thread. The
main thread represents the Apache child that receives the request.

2. The main thread checks if the session thread is present (checked by a global state in the
module). Since this is not the case at the first request, the session thread is spawned
and the main thread waits.

4.1. ENCOUNTERED PROBLEMS 99

3. The session thread starts evaluating the Scheme program requested by the client, by
using the embedded interpreter.

4. When the session thread reaches a slaml-show in the application, it signals the main
thread and waits.

5. The main thread sends the page - specified as a parameter to slaml-show - to the
client and ends the request. This results in the main thread going idle.

6. When the client submits the HTML form from the page presented, the main thread
is resumed. Like step 2, the main thread checks if the session thread is present (by
checking the global state in the module). Since this is not the first request to the
application, the session thread is already present. Therefore it is signaled (instead of
spawned) and the main thread waits.

7. When receiving the signal, the session thread resumes its computation. This results
in slaml-show to return the data entered by the client. The steps from step 4 and
forward are continued until the application is ended.

The problem related to this approach is that mod laml is unable to use threads as it uses the
Apache server version 1.3 [apa0l|. We tested the pthread library with mod laml, but were
unable to create threads in mod laml. Additional small modules indicated that threads are
not allowed in a module for the Apache server version 1.3. Version 2.0 of the Apache server
is created to allow better portability and better support for threads, as the process model
in this version is changed. This motivated us to implement a module using threads under
Apache 2.0, and it worked. Therefore we replaced Apache version 1.3 with Apache version
2.0 and created mod_laml for this version of the server.

By using Apache version 2.0 it is possible to use threads in a server module. But it is not
possible to use Apache version 2.0 together with MzScheme. The reason for this is unknown,
but small tests indicates that it is impossible to start a MzScheme interpreter inside Apache
2.0. Therefore we changed the Scheme interpreter to Guile[gui01|. This resulted in creation
of a module containing only the necessary features to perform a proof of concept implemen-
tation of the designed solution to the problems presented during the analysis.

4.1.2 Handling Data on the Server

During the beginning of this semester experiments with handling data sharing on the server
were conducted. This was motivated by two requirements.

First a way to share data between the individual server processes are needed. The reason
is that Apache starts several processes to handle requests from the client. The processes
cannot share data, so if a client sends a request to one process this process must also serve
the following requests for the data to be accessible. This is not the case in Apache, since an
arbitrary process can respond to a request. But if the processes can share data it is unneces-
sary to ensure that a given process always handles requests from a given client. Secondly it

100 CHAPTER 4. REFLECTION

is needed to make sessions persistent, so in case the server restarts it can access the data re-
lated to the sessions. This is impossible if data related to the session is kept in main memory.
Another reason for considering persistence of sessions is the memory usage on the server.
If all sessions are kept in main memory and not moved to disk, the memory requirement
will increase continuously. These two problems are discussed and possible solutions are given.

We found a library that is used by other Apache modules (e.g. mod_ssl [Eng02b]) which
solves the problem of sharing data between processes in an Unix system. The library is
called MM [Eng02a| and is a flexible way to create memory that can be shared between the
various server processes. This is done by creating a memory segment and give each server
process a reference to it. This memory segment is - dependent of the platform - located in
a file on the hard-disk or in main memory, so using this memory segment is not always as
efficient as main memory.

The problem with persistence of sessions is to store the contents of a Scheme environment.
The contents of the embedded Scheme environment is all the name bindings in the current
instance of the interpreter. In general the content is all the information needed to reacti-
vate the Scheme interpreter, as if it has never been deactivated. Making sessions persistent
has been done by Queinnec in [Que]. Queinnec has implemented a server and a Scheme
interpreter in Java, which allows continuations to be stored on the disk. By implementing
both the server and the Scheme interpreter in Java, Queinnec relies on the possibility for
serialization in Java [Inc02a] to store continuations. Serialization allows writing object to
files on disk, and to recreate the objects from the files. Unfortunately this is not possible
when relying on Apache and Guile as these are written in C and serialization is not as easy
in C as it is in Java.

The implementational task of solving data sharing requires a substantial amount of work,
and will place focus of the project on the C level instead of the Scheme level. As focus is on
the Scheme level in this project, it is chosen to rely on a server module where data is kept
in main memory and not written to disk. Therefore it is not considered any further. This
results in a number of limitations which are stated in the following section.

4.2 Current Limitations

In the implemented framework there are limitations in relation to the designed framework.
Some of these limitations are related to the implementation of mod laml. Others are lim-
itations made during work at the Scheme level. Limitations in mod laml are related to
implementation of the slaml-show, sharing data between processes and making Scheme en-
vironments persistent. Limitations in the SLAML framework are made when no new insight
is expected by implementing the facility.

4.2. CURRENT LIMITATIONS 101

4.2.1 Mod laml Limitations

Due to the problems described in Section 4.1 a new implementation of mod laml is made.
It is decided that a basic implementation is sufficient for the purpose of this project. The
module need to be able to evaluate Scheme programs - with slaml-show primitives - on the
server. Since this cannot be done with the old mod laml the solution was to discarding the
module implemented during the preparatory work, and create a new module for the Apache
server version 2.0, using the Guile Scheme interpreter. In the following it is presented what
is lost and what is still present from the old mod laml when using the new mod laml.

In the old module it is possible to load files into mod laml when the server is started and
thereby decrease the execution time spend on the request. This is still possible in the new
mod _laml, but in the new version a Scheme file is used for loading the libraries, whereas
the old version relies on a special configuration file.

In the old version of mod laml it is possible to have as many client connected as the hard-
ware allowed. The reason is that the Scheme environment is cleaned after each request. This
is not possible in the new version of mod laml as information about the sessions are needed
at a later time. Furthermore, since it is not possible to share data between Apache processes,
each client needs its own Apache process. It is impossible to ensure that a client gets the
same Apache process at the next process so only one Apache process can be present at the
server. This is done because it must be ensured the client gets the same Apache process
at the next request. As the Scheme environment in the Apache process is dedicated to one
client, only one client can access the server.

The old version of mod laml has a possibility to use different interpreters. This is not possi-
ble in the new version of mod laml. The reason is that the implementation of this requires
much work on the implementation of Scheme in Apache, and this is not the focus of this
project. But implementing support for more than one interpreter is designed in our Dath
report and can be implemented according to this design.

In order to make the new version of mod laml work with more than one client it is necessary
to make data sharing and data persistence available on the server. This is the first thing
to be done in order make this module usable as a production server. By production server
we mean a server that is stable enough to be used for other than proof of concept applications.

4.2.2 HTML Elements

In the design of the complex forms framework the slaml-basic-element type is created to
represent basic HTML elements, such as the HTML input element. In the implementation
the possible HTML elements are limited to the HTML input element. This is chosen as the
implementation of the additional HTML elements does not bring new insight. To implement
the additional HTML elements a new property on objects of the slaml-basic-element type
indicating the element type of the element, must be added. Possible values for this are:

102 CHAPTER 4. REFLECTION

input
select
textarea

button

Besides introducing the element type property, the functionality of the slaml-basic-element
function must be extended to include possible attributes and default values of the properties
from the new HTML elements. For a complete reference of the elements and the attributes
of the elements please refer to [W3C02b].

The above list contains only a subset of the HTML elements that can appear as part of an
HTML form. The above list is chosen as these are the ones that allows input to be entered
by the client. As an example the HTML label element is also a valid HTML element inside
an HTML form. But it must not be represented as a slaml-basic-element, as it cannot
represent data entered by the client. Instead the HTML label element is part of the layout
functions written on objects of the slaml-form-element and slaml-element types.

We suggest to implement the new elements as a property on the slaml-basic-element
class, indicating the type of the HTML element. An example of a property name can be
element-type. As part of this, functionality on the slaml-basic-element must be extended
to support the attributes present with the new element type.

4.2.3 Error Messages

The initial goal of this project is to help the developer in the development process. Part of this
help, is to provide suitable and precise error messages when an error is encountered. The task
of writing descriptive error messages has not been a design goal for the SLAML framework.
Writing error messages is something that must be done, before software is released. No
special considerations to the quality of the error messages in the current implementation has
been given. This is chosen since the implementation is not intended as a product for release,
but rather as a proof of concept.

4.2.4 Validation on slaml-element and slaml-form-element

A validation framework has been developed for both the session framework and the complex
forms framework, but the implementation of the validation is not complete in the complex
forms framework. Validation on objects of the slaml-element and slaml-form-element
type is not implemented, as it is not necessary to show that validation on the individ-
ual objects is possible. Furthermore, by proving the idea of a validation function on the
objects of the slaml-basic-element type we expect this to work on slaml-element and
slaml-form-element too. Validation on objects of the slaml-element and slaml-form-element
type must be implemented for the validation in the complex forms framework to be complete.

4.3. SLAML FRAMEWORK 103

4.3 SLAML Framework

In this section the experiences with the SLAML framework are considered. The session
framework, complex forms framework and validation framework are reflected upon in turn.
The reflections are based on the experiences gained during the implementation of the “Guess
a number” example and the “Student class” example.

4.3.1 Session Framework

By using the session framework we are able to share data between interactions with a client.
This is seen as a strength compared to a CGI approach, where data sharing is usually done
by sending data between client and server. In the session framework, data is present on the
server when the next request is received. This ensures a decreased use of bandwidth, since
client input are not send between server and client in order to be available at a later point.
However in CGI there is also a possibility to store data on the server, but this has to be
done explicitly by the programmer. Furthermore, CGI applications uses files or databases
for sharing data since data in main memory are lost after a request. Using files to share data
means that the state of the program is accessible from all other scripts in the CGI applica-
tion. In the session framework the data received from an interaction is part of a lexical scope
and thereby protected from other unrelated interactions. Furthermore, the data is kept in
main memory, which means that the programmer does not need to explicitly take care of
storing the client data to disk.

The session framework introduces a new way to view a Web application. As the slaml-show
primitive is used to ask the client for data, the view of an application is turned around. By
this we mean, that in a CGI approach the Web application is mostly programmed in a way
where the client asks the server to generate a page based on input. In the session framework
the server asks the client for data and based on this data, it can continue the evaluation of
the application. By requesting data from the server, the client still has the control of the
application. However, the opposite seems the case from the developers point of view, since
it seems as if the client is asked for data.

From the “Student class” example it is experienced that the flow of the application is more
like non-Web applications (compared to a CGI approach). The reason is, that the next
action to be performed when the client submits data, can be seen in the program. An
example is the menu in the “Student class” example. In the example the menu page is pre-
sented to the client, and based on the link chosen in the menu a branch of the program
is taken. At first sight this looks like the control needed in the CGI approach, where a
cond special form is used to determine the page to show. The difference between the two
approaches is, that it is not possible to maintain an overview of various interactions with
the client in a CGI script. This is possible in the session framework since the slaml-show
returns like a normal function and each slaml-show represents an interaction with the client.

In Bigwig it is possible to activate a session from the URL. This means that a menu like

104 CHAPTER 4. REFLECTION

the one in the “Student class” example, can be constructed of links to new sessions. But
the “Student class” example shows, that when activating a link only one or two pages are
shown in sequence. To make sessions that only consists of one or two pages spreads the
flow of the application. The reason for this is, that it results in a similar approach as CGI,
where a single page in an application corresponds to a single script. In the session approach,
each page then corresponds to a session, which is activated by a link. This approach seems
much like the approach used in WASH/CGI and PACKS/HTML, where event handlers are
associated to submit buttons on an HTML page. Pressing a submit button results in the
presentation of a single page from a Web application. Since an event handler is equal to
a page, which is equal to a single script, the entire application is split into a number of scripts.

4.3.2 Complex Forms Framework

In this section the complex forms framework is compared to a solution based on CGI.

One way to come around the Complex forms problem in CGI, is to use data structures in
the CGI program. Based on these data structures, functions that can take a data struc-
ture as input and return the HTML representation of the structure, must be created by the
developer. In this way each structure needs an associated function to generate the HTML
representation. When data are submitted from the client, a function is needed to recreate
the structure based on a specific key/value pairs string. Therefore it is necessary to send
information to the client specifying what type of structure is submitted (see Section 1.1.3).
This approach means that two functions are needed for each structure. The first is respon-
sible for presenting the structure and the second is responsible for rebuilding the structure.

We can think of two optimizations to this approach. The first is to make a general function
that can take any given structure and create the HTML presentation. Since the function
must contain information about the presentation of each individual structure, it is difficult
- if not impossible - to achieve such general functionality.

Another solution is to build substructures and let two functions handle presentation and
recreation of each substructure. Large complex structures can then be created based on
these substructures. This can be done by combining functions that generate HTML presen-
tation of substructures. By aggregating HTML presentation of substructures, the HTML
presentation of a larger structure is achieved. Recreating a large and complex structure is
done by combining the appropriate recreation functions used on substructures.

In contrast to the CGI solution, the complex forms framework consists of three phases. The
first is to build the object structure. This is similar to building a structure in CGI, except
when programming CGI in Scheme a list structure is more appropriate than the object ori-
ented approach used in the framework. The reason for this is, that in CGI it is comprehensive
to rebuild an object structure after each request, whereas an object structure created in the
framework is persistent (in main memory) and survives interactions with the client. The
next step is to present the structure. In the complex forms framework this is done by adding

4.3. SLAML FRAMEWORK 105

HTML layout to the individual objects and call slaml-do-layout to generate the HTML
representation. In CGI this is done by writing functionality, that based on a specific struc-
ture generates the HTML representation. The last step is to update the object structure.
In the complex forms framework this is done by calling slaml-update-object! with the
received data and the object structure to update. In CGI, this is done by creating a function
that creates a complex structure on behalf of the substructures.

Comparing the CGI approach with the complex forms framework two large differences are
seen. The first is, that in the CGI approach a new function has to be created for each struc-
ture to present. Since the function that presents a structure also contains the HTML layout,
a new function has to be created for each representation of a structure. In the complex
forms framework the layout of the object structure can be changed since it is a property on
the object. Furthermore there are general functionality to generate the layout of an object
structure (slaml-do-layout). The second difference when comparing the complex forms
framework with a CGI approach is recreation of a data structure. In CGI, this is done by
writing a recreation function for each structure. To recreate a structure, the server needs to
know which structure is submitted. This is needed in order to call the right function that
based on data from the client recreates the structure. In the complex forms framework all
this is done by passing the object structure - present on the server - and the data received
from the client to slaml-update-object!. This results in the object structure being up-
dated with the values received from the client. However, if two HTML forms are present on
the same page, information about each structure must also be present. The reason for this
is, that both structures send to the client are present on the server. The problem here is,
that the server does not know which of the two HTML forms is submitted. This information
can be placed on the submit button in the HTML form and based on which submit button
is pressed, the appropriate structure can be send as parameter to slaml-update-object!.

4.3.3 Validation Framework

In this section the experiences with the validation framework are reflected upon. The vali-
dation framework works on both the object level and the page level. Both of these levels are
reflected upon in the following.

On the object level, validation on slaml-basic-element is implemented. This means that
it is possible to add a check function to objects of the slaml-basic-element type and after
the object structure is updated the objects can be queried for their status (valid or invalid).
This gives the developer the possibility to validate the data from the input elements in an
HTML form.

Validation on composite objects has also been designed, but not implemented. Our opinion
is that validation on composite elements is useful since it gives the developer a way to vali-
date the dependencies between elements in the structure. An example is a page where two
lists of input elements are presented. One consists of person names and the other consists
of person emails. In this example it must be ensured, that all persons have an email, i.e.

106 CHAPTER 4. REFLECTION

when data is successful validated, there are an equal amount of names and emails.

Validation on the page level gives the developer possibility to verify that the HTML form
submitted from a page is valid according to a check function. This can also be done in CGI,
since the form parameters from the client can be passed to a validation function defined in
the script. The difference between the CGI approach and the approach in the validation
framework is, that validation of the client data is done as one action in the validation frame-
work. This is possible since the server has knowledge of which function to use for validating
the data returned from the client (it is specified when slaml-show is called).

The approach used in the validation framework, changes the semantics of the slaml-show,
since the returned value from this function indicates if the data received from the client is
valid or not. Thereby slaml-show has a semantic that states: If data is valid according to
the check function return the return value of the check function else return false.

4.4 Summary

This chapter presents the problems encountered during the implementation of the design. A
number of limitations has been presented and described. These are the mod laml module
only being able to handle one client. The slaml-basic-element only representing the
HTML input element. The error messages, not being considered. And finally the lack of
validation on objects of the types slaml-form-element and slaml-element. Based on the
implementation of the two proof of concept applications - described in Chapter 3 - reflections
on the designed solutions to the problems are given. The reflections also includes comparison
with the CGI approach.

Conclusion

The purpose of this project was to continue work made during the preparatory project
(Datb). In the previous project, mod laml was developed, which decreased the evaluation
time of the average LAML script by 45%. Furthermore, existing work in the Web world
was analyzed in order to identify ideas and principles that could be used together with
mod laml. The Datb project concluded, that we wanted to make Web development in
SLAML (Server side LAML in mod laml) “easier”. Therefore, the first task in this project,
was to specify how to do Web development “easier”. To make Web development “easier we
needed to identify often encountered problems in Web development. Therefore the focus of
this project has been to identify problems in Web development and to design and implement
solutions to these problems. Four problems were identified (see Section 1.1):

1. State handling
2. Input validation
3. Complex forms

4. Reusability

The State handling problem had two different aspects, namely Control flow handling and
Data flow handling. During the analysis, the four problems were explained in detail, and
possible solutions to the problems were presented. After the specification of the problems,
the session concept was introduced as a possible solution. Three possible ways of using ses-
sions were identified, and they were presented through an analysis of Bigwig, WASH/CGI
and PACKS/HTML. The Analysis ended in a problem definition, which presented three hy-
potheses. In the following, the results of this project is related to each of these hypotheses.

The first hypothesis is related to two of the identified problems in Web development, namely
State handling and Reusability. The first hypothesis is presented below:

Hypothesis 1:

108 CHAPTER 5. CONCLUSION

A session-centered approach to Web development in SLAML solves the
State handling problem of a Web application. Furthermore, a session
concept makes access to several HTML pages as a single unit possible.

The first hypothesis was split into sub-hypotheses as it includes two problems, namely the
State handling and Reusability problems. Recall, that the State handling problem had two
aspects: Control flow handling and Data flow handling. This resulted in three hypotheses.
The first of the three sub-hypotheses regards the Control flow handling problem and is
presented below:

Hypothesis 1.1:

The Control flow handling problem is solved by introducing a session
concept, where a primitive in the language displays an HTML page to
a client and returns as a regular function.

In this hypothesis we state that the C'ontrol flow problem is solved by introducing a primitive
in the language that can show a page to the client and return control to the program as a reg-
ular function call. This primitive was designed and implemented and is called slaml-show.
This solution is inspired by Bigwig and the primitive in Bigwig called show. In relation to
CGI, this primitive solves the problem that the developer has to take care of the control
flow explicitly (by linking between files or use selection statements) as described in Section
1.1.1. This helps the developer to see a Web application as one application rather than small
“applications” linked together.

In relation to the Control flow problem, The slaml-show primitive is designed and imple-
mented like show is in Bigwig. Therefore slaml-show will have much of the same effect
on SLAML programs as show has on Bigwig programs. This results in simplifying the
interaction with a client. This was much as expected since Bigwig states that:

"...the session concept greatly simplifies the programming of complicated control
flow with multiple client interactions ." [CAMO2]

In our opinion we have solved the Control flow problem, since slaml-show works as a regular
function call in a non-Web application. slaml-show is called when data is needed from the
client and it returns the form parameters to the surrounding program.

Hypothesis 1.2:

The Data flow handling problem is solved by introducing a session
concept to SLAML, where interactions inside the same lexical scope
(session) can share data.

The Data flow handling problem is solved along with the solution to the Control flow prob-
lem. This is so, since the slaml-show primitive ensures that sequential interactions with
a client are performed without the Scheme environment on the server is lost after each in-
teraction. slaml-show was designed and implemented to return the data received from a

109

client, and this data can be stored in variables in the Scheme environment. This means that
the data are present at a later time, and can therefore be used without the developer having
to handle data explicitly (e.g. store it in hidden input elements or on the servers filesystem).

The introduction of the slaml-show, resulted in the developer being able to see a Web ap-
plication as one program and thereby as a non-Web application. This has the effect that all
data received in an application can be bound in the Scheme environment and be available
at a later time. This was expected as this is the case in Bigwig. Since it is possible to
program a SLAML application as a non-Web application, data is present once it is bound
in the Scheme environment.

We mean that the Data flow handling problem is solved, by introducing the slaml-session
primitive. The reason is that this primitive encapsulates interactions with a client and allows
the interactions to share data.

Hypothesis 1.3:

The Reusability problem is solved by introducing a session primitive
that can activate a series of interactions with a client and rely on
parameters at call time.

Reusability has been obtained by implementing a session primitive that relies on parameters.
A slaml-session in the SLAML framework, is a first class object in the Scheme environ-
ment. This fits well with the Scheme language. The slaml-session primitive encapsulates
a number of interactions with the client, represented by slaml-shows. In order to fully
evaluate the level of reusability gained by introducing sessions, a number of general sessions
must be created and evaluated in accordance to the reusability.

We have implemented relatively few applications with the SLAML framework and can there-
fore not conclude if the Reusability problem is solved. However, a slaml-session encap-
sulates more than one interaction with a client and can therefore be used as a module that
can activate interactions with a client. Since a session can take arguments, it is possible to
activate a session in different contexts.

The second hypothesis is related to the Complex forms problem. It includes the three steps
present in the problem:

Hypothesis 2:

It 1s possible to construct a framework that helps the developer to build,
present and update complex structures.

The Complex forms problem was inspired by the need to:

e Build complex data structures on the server.

e Send the data structures to the client as an HTML form and get it filled with data.

110 CHAPTER 5. CONCLUSION

e Receive the data and maintain the data structures.

This is not possible in plain CGI as there is no solution to build an HTML form from a
structure and receive the data in the same structure as it was presented to the client. No
solutions were found that solves this problem. Motivated by this we designed and imple-
mented a framework as part of the SLAML framework, to handle complex forms.

It was chosen to rely on objects to represent data structures. Other alternatives were pre-
sented. These were a embedded domain specific language and a nested list approach. The
reason for choosing an object oriented approach is that it gives a flexibility to easily change
the structure.

Since the session framework is part of the SLAML framework, it was possible to rely on
features from the session framework when the complex forms framework was designed and
implemented. The reason for relying on the session framework in the design and implemen-
tation of the complex forms framework is that sessions makes it possible to store the object
structure on the server and update it with data submitted from the client. However, since
the session framework cannot be used as a production framework (is not stable enough to
run with many clients), there are two possibilities to make the complex forms framework
ready for production. First, the underlying problems of the session framework can be solved
and thereby use the complex forms framework as it is now. Another possibility is to base
the complex forms framework on CGI. Implementing the complex forms framework in a CGI
environment means that it is possible to use the framework without having to install a new
Apache server module.

In our opinion the object oriented approach solves the Complex forms problem. This is so,
since the complex forms framework supports the developer to create, present and update a
complex structure.

The third and final hypothesis, specifies how the Input validation problem was to be solved:

Hypothesis 3:

It is possible to construct a validation framework that helps the devel-
oper to validate data from the client.

This hypothesis stated that it is possible to solve the Input validation problem by construct-
ing a validation framework. Since two frameworks were created (the session framework and
the complex forms framework) to handle data, two approaches to validation existed. In the
session framework the data handling consists of asking the client for data and return the
data to the server. In the complex forms framework the data handling consists of updating
the objects with the data from the client. By supporting validation on both the session
framework and the complex forms framework it is possible to use validation on the two
frameworks independent of each other.

5.1. FUTURE WORK 111

If the validation framework must work under CGI, the validation functions must instead be
handled explicitly by the developer. The reason for this is, that a check function must be
defined in the script where it is used. A solution to this problem, is to create a “validation
library” which is included in all scripts. This library can then consist of collections of vali-
dation functions available.

By extending the objects in the complex forms framework to contain validation functionality,
we have made validation on the object structure possible. This is done by allowing the
developer to define a check function to each of the nodes in an object structure. These
check functions are then activated when the object structure is updated, thus setting the
valid property on the objects in the object structure. Validation in the session framework is
obtained by validating information received from individual interactions with a client. This
is done, by specifying a check function as a parameter to each slaml-show where validation
is wanted.

5.1 Future Work

This last part of the conclusion presents possible areas where focus for future work with the
SLAML framework can be set. In order to use the SLAML framework in a broader context,
it is needed to solve the problems related to the Apache module. If these problems are not
solved, it is not possible to serve more than a single client at a time (see Section 4.2). This
is not adequate for production use.

An aspect of the session concept, has not been considered in detail in this project. This
is related to the possibility to step back in a session. A session consists of an amount of
interactions with a client and we find it beneficial to allow, that a client can go back in a
session to change information entered. Stepping back in a session means that the server
will need to do accounting of how far the individual clients has reached in their sessions.
Furthermore, it is necessary to undo actions performed by the client when the back button
is pressed. This is a subject that can be investigated further.

A problem not considered in details in this project, is the need to make sessions persistent.
This must be considered, since a client can pause the session (stop sending requests) for
an amount of time. It is not known when - or even if - the client returns to continue the
session. The problem with persistent sessions have two aspects. The first is to share the data
between the Apache processes. This is not possible in the current implementation, because
of the Apache process model. This problem can be solved by the MM library, which allows
data to be shared between Apache processes. The other aspect of the persistence problem is
to store sessions to disk. A possible solutions is to make the Scheme environment persistent,
as e.g. done by Christian Queinnec [Que|.

In Bigwig it is possible to access sessions directly by specifying their name as an URL param-
eter. This is done by letting the server have knowledge of all the sessions in a given service.
In the current session framework this is only supported if handled explicit by the developer.

112 CHAPTER 5. CONCLUSION

An example of this is shown in the student-session in the “Student Class” application. The
solution in Bigwig is better since this approach requires no explicit control of the flow by
the developer. Thereby it is possible to access a session by a link on a page.

To use the functionality from the old mod laml it is necessary to implement all the features
again. This includes support for more than one interpreter, registration of which libraries
are loaded and logging facilities etc. This is a suggestion to future work in which the design
from our Datb project can be used.

The last aspect that is considered, is how the use of a session concept changes the developers
view on developing Web applications. This can be examined by performing an analysis of
the difference between an application written in CGI and the same application based on the
session concept. Aspects such as efficiency, lines of code, readability, reusability, develop-
ment time and execution time can also be included here.

SLAML Reference

This appendix presents the primitives from the SLAML library. For each primitive the var-
ious characteristics are presented. The characteristics on each primitive is:

Name The name of the primitive

Description A description of the primitive

Form The form in which the procedure is activated
Returns The return value of the procedure

Required Parameters The required parameters to the procedure
Optional Parameters Optional parameters in form of named parameters

First functionality associated with the session framework are presented. Next functionality
associated with the object framework are presented.

A.1 Session Framework

This section presents the primitives used in the session framework. This includes primitives
for defining pages and sessions as well as primitives for activating sessions and showing pages.

Name:
slaml-session [Special form)|

Description:
A function used to represent a session in SLAML. It is similar to a 1ambda function, taking
one parameter. The body of this function contains the various pages and interactions with
the client.

Form:
(slaml-session (args) body)

Returns:
A function representing the body of the slaml-session.

114 APPENDIX A. SLAML REFERENCE

Required Parameters:

Name Description
args A parameter to be used during the activation of the session.
Name:
slaml-page [Special form|
Description:

A function used to represent a page in SLAML. It is similar to a lambda function with
one parameter. The body of this function must evaluate to a string representation of an
HTML page.

Form:
(slaml-page (args) body)

Returns:
A function representing a HTML page.

Required Parameters:

Name Description
args A parameter to the page.
Name:
slaml-define-page [Special form)|
Description:

A function used to define a slaml-page in the Scheme environment.
Form:

(slaml-define-page name slaml-page)
Returns:

unspecified
Required Parameters:

Name Description
name The name to bind the slaml-page to.
slaml-page The slaml-page to bind to name.

Name:
slaml-define-session [Special form)|
Description:
A function used to define a slaml-session in the Scheme environment.
Form:
(slaml-define-session name slaml-session)
Returns:

A.1. SESSION FRAMEWORK 115

unspecified
Required Parameters:

Name Description
name The name to bind the slaml-session to.
slaml- The slaml-session to bind to name.
session
Name:
slaml-show [Procedure]
Description:

Shows a page to the client and returns form parameters entered by the client. Used in the
programs to ask or query a client for data. Control flow of the applications will return
to the point just after the activation of slaml-show. If a check attribute is supplied
the check function passed as attribute value is activated on the form parameters and the
return value of the validation function becomes the return value of the check function.
Form:
(slaml-show slaml-page . attributes)
Returns:
The data entered by the client, or the return value of the optional validation function.
Required Parameters:

Name Description
slaml-page The page to be shown to the client. The page is created with the
slaml-page primitive. It must be a slaml-page function.

Attributes:
Name Description
check An attribute indicating the validation function to be executed on the

data returned from the client.

pageparm An attribute indicating that parameters are passed to the page. The at-
tribute value is the parameters to be passed. If more than one parameter
is required, the attribute value is send as a list containing the parameters.

Name:
slaml-activate-session [Procedure]
Description:
Activates a session on the current location of the program. The value of the last expression
is returned.
Form:
(slaml-activate-session slaml-session . attributes)
Returns:

116 APPENDIX A. SLAML REFERENCE

The value of the last expression in the slaml-session
Required Parameters:

Name Description
slaml- The session to be activated. The session must be specified with the
session slaml-session primitive.
Attributes:
Name Description

sesstonparm An attribute indicating that a parameter is passed to the slaml-session. If
more than one parameter is required a list of parameters is the attribute

value.
Name:
slaml-create-parm-1st [Procedure]
Description:

A function to create the appropriate representation of the data received from the client,
in an url encoded string. The string containing the keys and values - representing the
contents of the HTML form presented to the client - are processed and a association list
is created.

Form:
(slaml-create-parm-lst form-parameter-string)

Returns:
A list of key/value pairs, tagged with the formparms symbol.

Required Parameters:

Name Description

form- A string in url encoded format
parameter-

string

Name:
slaml-key->value [Procedure]
Description:
A function for searching association lists. Based on a key it extract the associated value.
Form:
(slaml-key->value key a-lst)
Returns:
The value that corresponds to key from a-Ist or #f is key is not found.
Required Parameters:

A.2. OBJECT FRAMEWORK 117

Name Description
key The key to search for in a-Ist. key must be a symbol.
a-lst The list to search for key. The list must be an association list.
Name:
slaml-formparms-key->value [Procedure]
Description:

A function for extracting values associates with a key from a list tagged with formparms.
The list of data entered into an HTML form by a client is returned tagged with the
formparms symbol. If the key is not found, #£f is returned.

Form:
(slaml-formparms-key->value key Ist)

Returns:
The value that corresponds to key from [st or #f if key is not found.

Required Parameters:

Name Description
key The key to search for in [st. key must be a symbol.
[st The association list tagged with formparms to search for key.

A.2 Object Framework

This part of the appendix presents functionality associated with the complex structure frame-
work. First primitives associated with the classes are presented. Next various convenience
functionality are presented. Then functionality for presentational tasks are presented. Fi-
nally a message passing primitive are presented.

A.2.1 Classes

This section describes the functions used to represent the different classes in the complex
forms framework. The complex forms framework consists of functionality for building, pre-
senting and updating complex HTML forms.

Name:
slaml-element [Class]
Description:

118 APPENDIX A. SLAML REFERENCE

The function representing the slaml-element class. slaml-element is used to represent
a composite object. Activating this function will create an object and return a reference
to it.

Form:
(slaml-element . attributes)

Returns:
A reference to the newly created object.

Required Parameters:
None.

Instance Variable:

Name Default Value Description

name "unique name" The name of this object. Must be a string.

layout " The layout function of this object. Must be a
string.

check (lambda (str) #t) The check function associated with this object.

elements () A list of objects rooted in this object.

tagtype "slaml-element" The tag identifying this object. It is used when

the object structure is returned in list format from
the slaml-update-object! function.

Name:
slaml-basic-element [Class|

Description:
The function represents the slaml-basic-element class, which represents basic HTML
elements. It is used to represent HTML elements, e.g. input|W3C02b|. Activating this
function will create an object and return a reference to it. Information present on the
objects that is not related to the particular type, is ignored when dolayout is called. As
an example the mazlength attribute is not used if the type is checkbox.

Form:
(slaml-basic-element . attributes)

Returns:
A reference to the newly created object.

Required Parameters:
None.

Instance Variables:

A.2. OBJECT FRAMEWORK

119

Name Default Value Description

name "unique name" The name of this object. Must be a string.

type "TEXT" The type of input field from HTML [W3C02b|.
Possible values are TEXT, PASSWORD, CHECK-
BOX, RADIO, SUBMIT, RESET, FILE, HID-
DEN, IMAGE, BUTTON. Must be a capitalized
string.

size "15" The size of an textfield. Must be a string.

maxlength """ The maximum length of an textfield. Must be a
string.

checked "false" Indicates whether or not a check box is checked
("true" or "false"). Must be a string.

value " The default contents of this textfield. Must be a
string.

check (lambda (str) #t) The check function associated with this object.

tagtype "slaml-basic-element" The tag identifying this object. It is used when
the object structure is returned in list format from
the slaml-update-object! function. Must be a
string.

Name:
slaml-form-element [Class]
Description:

The function represents the slaml-form-element class, which represent an HTML form.
Activating this function will create an object and return a reference to it. Objects of this
type represents the root element in an object structure.

Form:

(slaml-form-element . attributes)

Returns:

A reference to the newly created object.
Required parameters:

None

Instance Variables:

120 APPENDIX A. SLAML REFERENCE

Name Default Value Description

name "unique name" The name of this object. Must be a string.

action "http://localhost" The action associated with the form. Must be a
string.

method "GET" Method of the action (either GET or POST). Must
be a string.

enctype "application/x-www- The type of the HTML form encoding. Must be a

form-urlencoded" string.

accept- "UNKNOWN" The character-set accepted in the form. Must be

charset a string.

accept "text/html" Accepted content type. Must be a string.

layout " The layout function associated with this object.
Must be a string.

elements () A list of references to other objects, rooted in this
object. It must be a obj-Ist.

tagtype "slaml-form-element" The tagtype identifying this object. It is used

when the object structure is returned in list for-
mat from the slaml-update-object! function,
represent the type of this object. Must be a string.

A.2.2 Convenience Functionality

In this section convenience functionality used to create object structures are described. This
includes functionality for creating objects as well as functionality for creating a list of objects.

Name:

slaml-create-basic-element [Procedure]

Description:

A convenience function used to create an object of the class slaml-basic-element.

slaml-basic-element represents a basic HTML input element [W3C02d].
Form:

(slaml-create-basic-element name)
Returns:

A reference to the newly created object.
Required Parameters:

Name Description
name The name of the object. It must be a string.

A.2. OBJECT FRAMEWORK 121

Name:
slaml-create-element [Procedure]
Description:
Used to create an object of the type slaml-element. slaml-element represents a com-
posite objects used to address a group of objects as one.
Form:
(slaml-create-element name)
Returns:
A reference to the newly created object.
Required Parameters:

Name Description
name The name of the object. It must be a string.
Name:
slaml-create-form-element [Procedure]
Description:

Used to create objects of the type slaml-form-element. slaml-form-element represents
an HTML form. An object of this type must be the top level object in the object structure.
Form:
(slaml-create-form-element name)
Returns:
A reference to the newly created object.
Required Parameters:

Name Description
name The name of the object. It must be a string.
Name:
slaml-create-obj-1st [Procedure]
Description:

A function that given a list of objects returns a list in the format required as the at-
tribute value to the elements attribute. Objects of the types slaml-element and
slaml-form-element has the elements instance variable. The list is tagged with the
slaml-obj-1st symbol.
Form:

(slaml-create-obj-lst . Ist)

Returns:
A specially formatted object list that is used as attribute value to the elements attribute

name when creating SLAML objects.
Required Parameters:

None
Optional Parameters:

122 APPENDIX A. SLAML REFERENCE

Name Description
[st A list of objects that can be included in the special formatted object list
which is returned.

A.2.3 Functionality for Generating HTML

This section includes functionality for presenting the complex structure to the client. It also
includes functionality used for working with the structure once data has been received from
the client.

Name:
slaml-do-layout [Procedure]
Description:
A function that can be used to activate the layout of the object whose reference is passed
as parameter. This function is used when generating the representation of an object.
This function is used when the layout of a slaml-form-element is needed. In contrast
to slaml-do-layout-child, which is used in the slaml-layout functions to do layout
on the specified child.
Form:
(slaml-do-layout obj)
Returns:
A string representing the intended representation of the object in HTML terms.
Required Parameters:

Name Description
obj A reference to an object of the slaml-form-element class, on which the
layout function is to be activated.

Name:
slaml-do-layout-child [Procedure]

Description:
Activate the layout function of a child object to a given parent object. Is used in the
slaml-layout function to call the layout function of other objects. This allows for re-
cursively generating the layout of all objects in the object structure. This function is
used inside slaml-layout functions to call the layout on a specific child. In contrast
slaml-do-layout is used when a slaml-form-element is presented.

Form:
(slaml-do-layout-child parent childname)

A.2. OBJECT FRAMEWORK 123

Returns:
An HTML string of the object with childname present in the parent object.
Required Parameters:

Name Description
parent A reference to the parent object of the object to layout.
childname The name of the child to layout. It must be a string.

Name:
slaml-update-object! [Procedure]

Description:
A function to update the object structure - rooted in 0bj - with the data entered by the
client. This function must be used explicitly to update the object structure. The format
of the parms parameter must be the same format as the data returned by the slaml-show
function. Besides updating the object structure it returns a nested list representation of
the object structure. This list includes the following instance variables from the various

objects as attributes; tagtype, data, valid.
Form:

(slaml-update-object! obj parms)
Returns:

A list representation of the object structure rooted in 0bj.
Required Parameters:

Name Description

obj A reference to the object that is the root of the object structure which
is updated with the data from the client.

parms The form parameters to be inserted into the object structure. Must be

created by slaml-show.

Name:
slaml-layout [Special form)|
Description:
A function used to activate layout functionality in the self object.
This function is equivalent to lambda. Form:
(slaml-layout (self parm) body)
Returns:
A reference to a function representing the layout.
Required Parameters:

124 APPENDIX A. SLAML REFERENCE

Name Description

self The objects that contains this layout function.

parm A parameter to be supplied to the activation of the layout function on
self.

A.2.4 Message Parsing Functions

This section presents the get and set methods implemented for easy access to the objects
instance variables and methods. Common to all of these are that the same functionality can
be achieved by message passing with the slaml-send primitive.

Name:
slaml-send [Procedure]
Description:
A function used to activate functionality in the various objects.
Form:
(slaml-send method obj . parm)
Returns:
The result of evaluating method on obj.
Required Parameters:

Name Description
method The functionality that must be invoked on obj.
obj The objects that contains the method to be activated.

Optional Parameters:

Name Description
parm A parameter to be supplied to the activation of method on obj. Must be
a symbol.
Name:
slaml-get-elements [Procedure]
Description:

A function for extracting the elements lists from the object passed as parameter. The list
returned is tagged with the slaml-obj-1st tag.
Form:
(slaml-get-elements 0bj)
Returns:
The element list of objects rooted in this object.
Required Parameters:

A.2. OBJECT FRAMEWORK 125

Name Description
obj The object to extract the elements list from. Must be a
slaml-form-element or slaml-element.

Name:
slaml-get-name [Procedure]
Description:
A function used to extract the value of the name instance variable from the object passed
as parameter.
Form:
(slaml-get-name o0bj)
Returns:
The value of the name instance variable of o0bj.
Required Parameters:

Name Description
obj The object to extract the value of the name instance variable from as a
string.
Name:
slaml-get-valid [Procedure]
Description:

A function used to extract the value of the valid instance variable. The result is either
#t or #£f, indicating whether the data entered by the client and validated with a supplied
validation function is valid. The valid instance variable is used to indicate whether an
eventual validation on the objects failed.

Form:
(slaml-get-valid obyj)

Returns:
A boolean value

Required Parameters:

Name Description
obj The object to extract the value of the valid instance variable from.
Name:
slaml-set-valid! [Procedure]
Description:

A function for setting the valid instance variable on an object. The valid instance variable
is used to indicate whether an eventual validation on the objects failed.

126 APPENDIX A. SLAML REFERENCE

Form:
(slaml-set-valid! 0bj valid)
Returns:
Nothing
Required Parameters:
Name Description
obj The object to set the walid instance variable on.
valid The value to be set on obj. It must be a Scheme true or false (#t, #£).
Name:
slaml-get-type [Procedure]
Description:

A function for extracting the type of an object. The return value is a string representing
the type of the object. Possible value are check, text, radio etc.
Form:
(slaml-get-type obyj)
Returns:
The type of the object as a string.
Required Parameters:

Name Description
obj The object to extract the value of the type instance variable from. obj
must be of the type slaml-basic-element.

Name:
slaml-get-tagtype [Procedure]

Description:
A function used to extract the values of the tagtype instance variable of an object. The
tagtype is used as identification of the object, when a nested list representation of an
object structure is returned from slaml-update-object!.

Form:
(slaml-get-tagtype obj)

Returns:
The tag type of an object, as a string.

Required Parameters:

Name Description
obj The object to extract the tag type from.

Name:

A.2. OBJECT FRAMEWORK 127

slaml-get-check [Procedure]
Description:
A function used to retrieve the validation function associated with the object passed as
parameter.
Form:
(slaml-get-check 0bj)
Returns:
A reference to a function object.
Required Parameters:

Name Description
obj The object who's check function is wanted.
Name:
slaml-set-data! [Procedure]
Description:

A function to set the data instance variable of the object passed as parameter. The value
set on the data instance variable is the supplied value.

Form:
(slaml-set-data! obj value)
Returns:
Nothing
Required Parameters:
Name Description
obj The objects who’s data instance variable is set to value.
value The value to be set on the data instance variable of obj. It must be a

string value.

Name:
slaml-get-data [Procedure]
Description:
A function used to retrieve the value of the data instance variable.
Form:
(slaml-get-data obj)
Returns:
The value of the data instance variable in obj.
Required Parameters:

Name Description
obj The object who's data value is wanted.

Small Example

This appendix contains the functionality of the “Guess a number” application, presented
in Section 3.1. First various functionality is defined. Then the various objects and their
associated layout functions used in the example are created. This also includes the definition
of three HTML pages. Last is the session in the example.

Utils

The different utilities used in the “Guess a number” application.

;======== Utils to the Guess a number application ============;
(define NaN -1) ;Not a Number

;return 42, since no function exist for generating a random number in Scheme
(define (get-random-number) 42)

(define (slaml-is-integer? str)
(integer? (string->number str))

)

(define (get-guess lst)
(car 1lst)
)

(define (get-guesses 1lst)
(cadr 1st)
)

(define (get-right-number 1lst)
(caddr 1st)
)

(define (get-hint guess-info) ;;checks information in order to set the correct hint
(let ((guess (get-guess guess-info))
(guesses (get-guesses guess-info))

130 APPENDIX B. SMALL EXAMPLE

(right-number (get-right-number guess-info)))
(string-append
(cond
((equal? O guesses) "Enter your first guess.") ;first time, no guess yet
((not (slaml-get-valid guess-input)) "HINT: Try a number next time.")
(else (string-append "HINT: Your guess was: "

(cond
((> guess right-number) "too high... try a lower.")
((< guess right-number) "too low... try a higher.")
)
)
)
)
)
Layout

The definition of the objects and their associate layout functions. This section also presents
the definition of the HTML pages.

(load "utils.slaml")

(define guess-form-layout
(lambda (self parms)
(slaml-do-layout-child self "guess-composite")
)
)

(define guess-composite-layout
(lambda (self parms)
(string-append
"Enter your guess:"
(table
(tr (td (slaml-do-layout-child self "input-field")))
(tr (td (slaml-do-layout-child self "submit-button")))
)
)
)
)

(define guess-input
(slaml-basic-element
’check slaml-is-integer?
’name "input-field"
’tagtype "input-field-guess")
)

(define submit-guess-button
(slaml-basic-element
’name "submit-button"
’tagtype "submit-button-guess"
’type "SUBMIT"
’value "Guess")

131

(define guess-composite
(slaml-element
’layout guess-composite-layout
’elements (slaml-create-obj-1lst guess-input submit-guess-button)
’name "guess-composite"
’tagtype "composite-guess")

)

(define guess-form
(slaml-form-element
’layout guess-form-layout
’name "guessform"
action ""
’method "GET"
’tagtype "guess-form"
’elements (slaml-create-obj-1st guess-composite)
)
)

N Simple pages ;

;say hello
(slaml-define-page start-game
(slaml-page (1st)

(html
(head (title "Guess a number"))
(body (hl "Welcome to guess a number... ")
(p "This application is written in SLAML.")
(hr)
(p "You must guess a number between 1 and 100")
(a "continue" ’href "http://localhost/laml/guess-app/guess-number.slaml")
)
)
)

; say goodbye
(slaml-define-page end-game
(slaml-page (guesses)
(html
(head (title "Guess a number"))
(body (hl "Congratulations")
(p "You made it in " (number->string guesses) "guesses!"))
)
)

(slaml-define-page guess-page
(slaml-page (parameter-list)
(html
(head (title "Guess a number!"))
(body

132 APPENDIX B. SMALL EXAMPLE

(get-hint parameter-list)

(hr)
(slaml-do-layout guess-form)
)
)
)
)
Main

The definition of the session in the example. The final line activates the session.

(load "layout.slaml")

2

;3 Guess a number application

E]

(slaml-define-session guess-session
(slaml-session (session-param)
(slaml-show start-game) ;say hello - step one
(letrec ((guess-loop
(lambda (guess guesses right-number)
(if (equal? guess right-number)
guesses ; Return the number of guesses used
(let
((obj-struct
(slaml-update-object! guess-form
(slaml-show

guess-page ’pageparm (list guess guesses right-number))))

)
(if (slaml-get-valid guess-input)
(guess-loop
(string->number
(slaml-get-data guess-input)) (+ 1 guesses) right-number)
(guess-loop
NaN (+ 1 guesses) right-number)
)
)))))
(let* ((right-number (get-random-number))
(guesses (guess-loop 0 O right-number)) ;do loop - step two
)
(slaml-show end-game ’pageparm guesses) ;say bye - step three
guesses ; return the number of guesses used
) ;end letrec

)))

(slaml-activate-session guess-session) ; it starts

[ABS84|

lapa01]

lasp01]

[BMRS01]

[CAMO02]

[cgiOl]

[CGKF02]

[DJO1]

[DL02|

[ECH02]

[Eng02a]

[Eng02b]

[ERR.J95|

Bibliography

Andrew D. Birrel and Bruce Jay Nelson. Implementing Remote Procedure Calls.
ACM Transactions on Conmputer Systems, 2(1):39-59, 1984.

Apache Homepage. http://www.apache.org/, September 2001.

Introduction to Active Server Pages. http://msdn.microsoft.com/library/
en-us/iisref/html/psdk/asp/iiwaabt.asp, September 2001.

Claus Brabrand, Anders Mgller, Mikkel Ricky, and Michael 1. Schwartzbach.
PowerForms: Declarative Client-Side Form Field Validation. http://www.brics.
dk/bigwig/research/publications/powerform.ps, October 2001.

Claus Brabrand, Anders Mgller, and Michael I. Schwartzbach. The <bigwig>
Project. ACM Transactions on Internet Technology, 2002. It is to appear in the
journal.

The CGI Specification. http://hoohoo.ncsa.uiuc.edu/cgi/interface.html,
November 2001.

John Clements, Paul T. Graunke, Shriram Krishnamurthi, and Matthias
Felleisen. Little Languages and their Programming Environments. http:
//www.cs.rice.edu/CS/PLT/Publications/mw01-cgkf.pdf, May 2002.

David A. Ladd and J. Christopher Ramming. MAWL. http://www.bell-labs.
com/project/MAWL/mawl.html, December 2001.

D. Kristol and L. Montulli. HTTP State Management Mechanism. http:/www.
ietf.org/rfc/rfc2109.txt/, Feburary 2002.

ECHMA. ECHMAScript Language Specification. http://www.ecma.ch/ecmal/
STAND/ECMA-262.HTM, may 2002.

Ralf S. Engelschall. MM Shared Memory Library. http://www.engelschall.
com/sw/mm/, May 2002.

Ralf S. Engelschall. mod_ssl. http://www.modssl.org/, June 2002.

Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
- Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

134 BIBLIOGRAPHY

[Fla02] Matthew Flatt. PLT MzScheme: Language Manual. http://download.
plt-scheme.org/doc/200alphal2/html/mzscheme/, June 2002.

[guiO1] Guile Homepage. http://www.gnu.org/software/guile/guile.html, Septem-
ber 2001.

[Han01] M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the
Third International Symposium on Practical Aspects of Declarative Languages
(PADL’01), pages 76-92. Springer LNCS 1990, 2001.

[Han02] Michael Hanus. The Portland Aachen Kiel Curry System. http://wuw.
informatik.uni-kiel.de/“pakcs/, May 2002.

[Inc01] Sun Microsystems Inc. Java 2 Platform Enterprise Edition. http://java.sun.
com/j2ee, November 2001.

[Inc02a] Sun Microsystems Inc. Java Object Serialization Specification. http://java.
sun.com/j2se/1.4/docs/guide/serialization/spec/serialTOC.
doc.html, June 2002.

[Inc02b] Sun Microsystems Inc. The Source for Java Technology. http://java.sun.com/,
June 2002.

[JO02] John Peterson and Olaf Chitil. The Haskell Home Page. http://www.haskell.
org/, Feburary 2002.

[KCR*98] Richard Kelsey, William Clinger, Jonathan Rees, H. Abelson, H. I Adams IV,
D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman, R. Halstead, C. Hanson,
C. T. Haynes, E. Kohlbecker, D. Oxley, K. M. Pitman, G. J. Rozas, G. L. Steele
Jr., G. J. Sussman, and M. Wand. Revised Report on the Algorithmic Language
Scheme. 1998.

[lam01] The LAML Home Page. http://www.cs.auc.dk/ normark/laml/, August 2001.

[LDJ02| Christian Lynbech, Mikael Djurfeldt, and Niel Jerram. Goops manual. http:
//www.gnu.org/software/goops/goops.html, June 2002.

[MicO2a] Michael Hanus. The Functional Logic Language Curry. http://wuw.
informatik.uni-kiel.de/~curry/, May 2002.

[Mic02b| Microsoft. JScript. http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/script56/html/js566jsoriJScript.asp, June 2002.

[Mic02c] Microsoft Corporation. VBScript. http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/script56/html/vtoriVBScript.asp, May
2002.

[MPJ02] Mikael Hansen, Paw Iversen, and Jimmy Juncker. SLAML - Server side LAML.

Technical report, Aalborg University, 2002.

BIBLIOGRAPHY 135

[Net02]

[Nor90]

[Nor00]

[Pet]

[Pra02|

[Que]

[Que02]

[SMO2]

[The02]

[W3C02a]

[W3C02b)

[W3C02¢]

[W3C02d]

[WG02]

Netscape. JavaScript Developer Central. http://developer.netscape.com/
tech/javascript/index.html, June 2002.

Kurt Ngrmark. Simulation of Object-oriented Concepts and Mechanisms in
Scheme. Technical Report R 90-01, Department of Mathematics and Computer
Science, Institute of Electronic Systems, Aalborg University, January 1990.

Kurt Ngrmark. A Programmatic Approach to WWW Authoring Using Func-
tional Programming. http://www.cs.auc.dk/“normark/laml/papers/old-
programmatic-approach.pdf, November 2000.

Peter Thiemann. WASH/CGI: Server-side Web Scripting with Sessions, Compo-
sitional Forms, and Graphics. http://www.informatik.uni-freiburg.de
/~thiemann/papers/cgi-in-haskell.ps.gz.

Vipul Ved Prakash. Cgi::persistent. http://search.cpan.org/doc/VIPUL/
CGI-Persistent-0.22/1ib/CGI/Persistent.pm, May 2002.

Christian Queinnec. The Influence of Browsers on Evaluators or, Continuations
to Program Web Servers.

Christian Queinnec. Meroon: an Object System in Scheme. http://youpou.
1lip6.fr/queinnec/WWW/Meroon.html, June 2002.

Inc. Sun Microsystems. JavaServer Pages(TM) Technology. http://java.sun.
com/products/jsp/, Feburary 2002.

The PHP Group. Session handling functions. http://www.php.net/manual/en/
ref.session.php, Feburary 2002.

W3C. Extensible Markup Language (XML). http://www.w3.org/XML, June
2002.

W3C. The HTML 4.01 specification. http://www.w3.org/TR/htm1401/, may
2002.

W3C. W3C Recommendation - The form element. http://www.w3.org/TR/
html4/interact/forms.html#h-17.3, June 2002.

W3C. W3C Recommendation - The input element. http://www.w3.org/TR/
html4/interact/forms.html#h-17.4, June 2002.

W3C DOM WG. Document Object Model (DOM). http://www.w3.org/DOM/,
May 2002.

