
Aalborg University eDepartment of Computer S
ien
eDatabase and Programming Te
hnologies
Title:Server Side LAML FrameworkTopi
:Programming Te
hnologiesProje
t Period:4/2-2002 � 14/6-2002Proje
t Group: Dat6, D601AMikael M. HansenPaw IversenJimmy Jun
kerSupervisor:Kurt NørmarkNumber of appendixes: 2Total number of pages: 143Number of pages in report: 112Number of reports printed: 7

Abstra
t:In this proje
t four problems found in thearea of Web appli
ations development areanalysed. These problems are named theState handling problem, the Validation prob-lem, the Complex forms problem and theReusability problem. Existing work in thearea is analysed. Based on these problemsand the existing solutions three hypothesisare presented as the goal of this proje
t. Dur-ing the design, solutions to the problems aredeveloped. Example Web appli
ations areimplemented to illustrate the usage of the de-signed solutions. Based on these Web appli-
ations we
on
lude on the proje
t. Intro-du
ing the session
on
ept inspired by Big-wig solves the State handling problem. Ad-ditional experien
es are still needed to fullyevaluate the Reusability problem. The Com-plex forms problem is solved by the designedsolution, based on building an obje
t stru
-ture representing an HTML form. The imple-mented solution relies on the session frame-work, but a CGI based solution is
onsid-ered possible. The Input validation problemis solved by relying on the session framework.Validation is made available on both the ob-je
t and the page level. It is
on
luded thatrelying on the session framework have the ad-vantage that validation fun
tions are avail-able when they are needed. This is not the
ase in a CGI solution. Improvements
an bemade on various pla
es in the solution. Thisis re
ommended as future work.
Copyright

 2002, Dat6, D601A.

ResumeI denne rapport præsenterer vi vores arbejde gennem spe
ialet. Dette arbejde ligger i for-længelse af vores Dat5 arbejde. Vi arbejder med Web udviklingen indenfor programmerings-sproget S
heme med LAML bibliotekerne. I modsætning til den gængse måde, hvor �eresprog kombineres for at opnå den ønskede �eksibilitet, tillader en programmatisk tilgangtil Web udvikling, at både præsentation og dynamik foregår i det samme sprog. I løbet afDat5 udviklede vi et modul til Apa
he Web serveren. Dette modul bruges som en del afkonteksten til dette arbejde.Vi begynder med en analyse af nogle ofte forekommende problemer man støder på som Webudvikler. Et af disse problemer er Tilstands håndtering, som består af to delproblemer. Detførste delproblem er data håndtering mellem klient og server. Et andet delproblem omhan-dler kontrol-�owet af en Web applikation. Mulige løsninger der �ndes i dag bliver analyseretog vurderet. Det andet ofte forekommende problem i Web udvikling er Input validering. Derer to alternativer som oftest bruges. Enten klient side validering ved hjælp af JavaS
ript ellerserver side validering ved hjælp af det sprog som Web applikationen er skrevet i. Fordele ogulemper ved de to alternativer overvejes og vurderes. Det tredje problem der analyseres ogbeskrives er problemet med opbygningen af Komplekse strukturer på serveren, samt manglenaf samme struktur når den har været vist til klienten. Det sidste problem der bliver behandleter Genbrugeligheds problemet. Som udvikler er man vant til en vis grad af genbrugelighed,men primært på funktionalitet niveau. Ved fremkomsten af side
entrerede teknologier somPHP, ASP og JSP er en lille grad af genbrugelighed blevet kutyme, men det er ikke nogetder �nder sted i stor stil. Ønsket om en øget grad af genbrugelighed er fremsat.Efter præsentation og gennemgang af problemerne kigger vi nærmere på relateret arbejde.Formålet med dette er todelt. Både at �nde inspiration til løsninger til problemerne, og �ndeteknologier som allerede har løst dele af problemerne. På baggrund af analysen af problemerog det relaterede arbejde, fremsættes et antal hypoteser, der ligger til grund for det viderearbejde.Efter analysen præsenteres designet, hvor vi med udgangspunkt i det enkelte problem præsen-terer vores overvejelser omkring dette problem. Ud over overvejelser præsenterer vi også dendesignede løsning som skal ligge til grund for en implementation. Vi begynder med prob-lemet omkring Tilstands håndtering. Vi præsenterer tre forskellige løsninger, og konkretvælges at designe en løsning inspireret af Bigwig. Denne løsning involverer introduktionaf et primitiv der pauser evalueringen af Web applikationen når en side vises til klienten.Løsningen involverer også introduktionen af et primitiv der introdu
ere et leksikalsk s
ope iet program. Disse to primitiver er den del af sessions begrebet som også medfører en løsning

iitil Genbrugeligheds problemet.Til behandling af problemet omkring Komplekse strukturer, overvejes både en tilgangsvinkelder involverer spe
i�kation af nestede lister, samt introduktion af et indlejret domæne spe
i-�kt sprog til løsning af problemet. Da vi �nder en objekt orienteret tilgangsvinkel til prob-lemet er den bedste, designes en løsning baseret på objekt orienterede prin
ipper. Compositedesign patternet bruges som inspiration til introduktion af forskellige klasser, der repræsen-tere forskellige elementer i en objekt struktur. Denne objekt struktur indeholder mulighedfor asso
iering af en præsentation med det enkelte objekt i strukturen. Ydermere kan denindeholde data som er asso
ieret med de enkelte objekter i strukturen. Slutteligt behandlesproblemet omkring Input validering. Server side validering betragtes som den rigtige vejfrem, selvom visse ulemper �ndes. Derfor designes en løsning til validerings problemet derpasser sammen med resten af den designede løsning. Dette tillader validering både på enkeltesider, samt på komplekse strukturer.Dernæst præsenteres overvejelser og problemer som vi har arbejdet med på det lave niveau(omkring server modulet) i forbindelse med implementationen. På det lave niveau kommervi også med enkelte anbefalinger for teknologier som vi mener kan bruges til en endelig im-plementation. Nogle begrænsninger bliver tru�et, for at forhindre at vores arbejde skulleskifte fokus fra det høje niveau (S
heme, LAML) til det lave niveau (Apa
he/C). Efter-følgende introdu
eres nogle proof of
on
ept applikationer, hvilket illustrerer og motivererden designede løsning. Disse bliver gennemgået for at give læseren en forståelse af den im-plementerede løsning. På baggrund af erfaringer med disse præsenteres vores overvejelsermed hensyn til brugbarheden af den designede løsning. Anbefalinger, og ting der efter voresmening skal laves anderledes, bliver gennemgået og diskuteret, så videre arbejde indenfordette område kan drage nytte af vores arbejde.Slutteligt konkluderes der på de fremsatte hypoteser og de designede løsninger. Vi vur-derer i hvor høj grad vi har opfyldt vores mål for dette projekt, og eventuelle afvigelser erforklaret. Vi konkluderer at introduktionen af sessions begrebet, generelt set løser proble-merne med Tilstands håndtering. Introduktionen af et sessions primitiv tillader udviklerenat få et overblik over hele applikationen, da �ere interaktioner med klienten foregår i detsamme leksikalske s
ope ved hjælp af slaml-show primitivet. Genbrugeligheds problemetformodes løst. Vi må konkludere at en længere periode til evaluering at dette er nødvendig.Problemet omkring Komplekse strukturer er løst fornuftigt ved brug af objekt orienteredeprin
ipper. Selvom de objekt orienterede prin
ipper ikke passer godt i konteksten af dettearbejde (S
heme og funktionel programmering) så er det rimeligt let og �eksibelt at arbejdemed objekter til repræsentation af komplekse strukturer. Med hensyn til Input valideringsproblemet så kan vi konkludere, at vi har lavet et validerings apparat der passer godt sam-men med sessions apparatet. At bygge validering på sessions apparatet sikrer, at det at fådata og validere det er en atomar handling, i modsætning til CGI hvor det er to separatehandlinger.

Prefa
eThis report do
uments our Dat6 semester proje
t at the Department of Computer S
ien
e,Aalborg University, Denmark. The Dat6 semester is the semester where we
omplete ourmaster thesis. Preparatory work for the master thesis is our Dat5 proje
t, where we workedin the area of Web appli
ation development using LAML.Report Conventions:Throughout this report all referen
es to the bibliography are shown as [referen
e℄. Spe
ial
on
epts are written in abbreviation followed by a full length name in parenthesis, the �rsttime en
ountered. Through the remainder of the report the abbreviation is used. Referen
esto �gures and tables are written like x.y where x is the number of the
hapter and y is thenumber of �gure or table in the given
hapter. E.g. Figure 2.3 is �gure three in
haptertwo. Text in �gures are written in a spe
ial font to make it distinguishable from the normaltext. An example of this font is this senten
e. When referring to spe
i�

ontents of �gures anitali
 notation is used, like this senten
e. Itali
 notation is also used when referring to thenamed problems throughout the report. Primitives that are part of the SLAML frameworkare written in this font to distinguish them from the rest of the text. Throughout thereport the word he, will refer to he or she. A gray box is used to give the implementation
onsiderations regarding the various primitives in the design. The
ontents of this is targetedat the reader familiar with S
heme. The �rst time a primitive is introdu
ed a parenthesiswill follow with a page number. This page number refers to the page in the SLAML referen
e- in Appendix A -
ontaining a detailed des
ription of the primitive.The proje
t period began February 4, 2002 and lasted to June 14, 2002.Aalborg University, June 14, 2002.
Mikael M. Hansen Paw Iversen

Jimmy Jun
ker

Contents
1 Analysis 31.1 Problems in Web Development . 31.1.1 State Handling . 51.1.2 Input Validation . 101.1.3 Complex Forms . 141.1.4 Reusability . 181.1.5 Summary . 191.2 Approa
hes to Web Development . 201.3 Related Work . 211.3.1 Bigwig . 221.3.2 WASH/CGI . 241.3.3 PAKCS/HTML . 281.3.4 Summary . 301.4 Problem De�nition . 312 Design 332.1 Session Framework . 342.1.1 Design Considerations . 352.1.2 Design of the Session Framework in SLAML 382.1.3 Flow of a Session in SLAML . 422.1.4 Example of the SLAML Session Framework 432.1.5 Solution to the State Handling Problem 442.1.6 Solution to the Reusability Problem 452.2 Complex Forms Framework . 452.2.1 Design Considerations . 452.2.2 Design of the Complex Forms Framework in SLAML 532.2.3 Complex Forms Framework in SLAML 552.2.4 Obje
t Oriented Programming in S
heme 572.2.5 Creating, Presenting and Updating Obje
t Stru
tures 592.2.6 Example of the Complex Forms Framework 662.2.7 Solution to Complex Forms Problem 682.3 Validation Framework . 692.3.1 Design of the Validation Framework in SLAML 702.3.2 Flow of Validation . 722.3.3 Example of Validation Framework . 742.3.4 Solution to Input Validation Problem 77

vi CONTENTS2.4 Summary . 773 Example Appli
ations 793.1 Guess a Number Appli
ation . 793.1.1 Obje
ts, Layout, Che
k Fun
tions and Pages 803.1.2 Flow and the Session De�nition . 823.2 Student Class Example . 843.2.1 Overview of the Appli
ation . 853.2.2 Use of the Session Con
ept . 883.2.3 Use of Complex Forms . 913.2.4 Use of Validation . 943.3 Summary . 954 Re�e
tion 974.1 En
ountered Problems . 974.1.1 New Apa
he Module . 984.1.2 Handling Data on the Server . 994.2 Current Limitations . 1004.2.1 Mod_laml Limitations . 1014.2.2 HTML Elements . 1014.2.3 Error Messages . 1024.2.4 Validation on slaml-element and slaml-form-element 1024.3 SLAML Framework . 1034.3.1 Session Framework . 1034.3.2 Complex Forms Framework . 1044.3.3 Validation Framework . 1054.4 Summary . 1065 Con
lusion 1075.1 Future Work . 111A SLAML Referen
e 113A.1 Session Framework . 113A.2 Obje
t Framework . 117A.2.1 Classes . 117A.2.2 Convenien
e Fun
tionality . 120A.2.3 Fun
tionality for Generating HTML 122A.2.4 Message Parsing Fun
tions . 124B Small Example 129

Introdu
tionThe task of developing Web appli
ations has be
ome more important during the re
ent years,as the use of Web appli
ations has be
ome more
ommon. Following the in
rease in use ofWeb appli
ations, fo
us has in
reased on inventing te
hnologies and pra
ti
es for improvingthe e�
ien
y of a Web appli
ation developer. At the same time fo
us on expanding thepossibilities of the te
hnologies used today has in
reased. This ongoing task of improving,and expanding the possibilities in the domain of Web appli
ations development is possiblyone of the fastest growing areas in
omputer s
ien
e today.Some of the most interesting tenden
ies in Web appli
ations development is the use ofXML[W3C02a℄ as a uniform way of sharing and distributing data. Other important aspe
tsof the �elds of Web appli
ations development is the J2EE[In
01℄ ar
hite
ture introdu
ed bySun Mi
rosystems. J2EE in
ludes several new te
hnologies that are intended to aid Webappli
ations developers in their task of
reating Web appli
ations.Apart from the mainstream tenden
ies people work on various ni
hes that better suit theirneeds. Ni
hes that rely on more spe
ialized te
hnologies for Web development. Examplesof su
h ni
hes is the Bigwig language, or the WASH/CGI library[Pet℄ for Haskell[JO02℄.Another ni
he is introdu
ed by Kurt Nørmark, as he has
reated the LAML libraries[lam01℄for the S
heme programming language[KCR+98℄. This is done sin
e he �nds that the fun
-tional paradigm �ts well into the development of Web appli
ations[Nør00℄. Furthermore thesynta
ti
al nature of lisp languages �t well with Web developmentDuring the preparatory work[MPJ02℄ for this master thesis we worked in the area of Webappli
ations written in LAML. Server side LAML (SLAML) was introdu
ed, as the possi-bility to exe
ute LAML appli
ations on the server without using CGI. This was a
hieved by
reating an Apa
he server module, whi
h we named mod_laml. mod_laml allow exe
utingWeb appli
ation written in S
heme using the LAML libraries roughly twi
e as fast as it isdone by relying on CGI[
gi01℄. The work
ondu
ted during the preparatory work for thisthesis was mainly on a low level. Most of the work
onsisted of
reating the Apa
he module,in
luding various features often present in an Apa
he server module. A se
ond aspe
t ofthe preparatory work was to dis
over new ideas and prin
iples that help to make Web de-velopment easier. We
on
luded that we would
ondu
t a further analysis of some of these
on
epts and possibly implement them using mod_laml. As a
ontinuation of this strategy,the fo
us has been shifted from the low level to a higher level, namely from the C level tothe S
heme level. In this proje
t we fo
us on providing new aspe
ts into the area of Webappli
ations development by using mod_laml as the basis for further development relyingon S
heme and the LAML libraries.

2 CONTENTSThis proje
t addresses some of the often en
ountered problems in Web appli
ations devel-opment relying on todays te
hnologies. This is done in four steps. First, often en
ounteredproblems when working with Web development are found. Se
ond, analysis of the prob-lems and possible solutions are
ondu
ted, while at the same time
onsidering aspe
ts ofnew te
hnologies used for Web appli
ations development. Third, solutions to the problemsare dis
ussed and designed to integrate with the
ontext
reated and motivated during ourpreparatory work for this master thesis. Fourth, a number of example Web appli
ationsare developed to illustrate the solutions to the problems in Web appli
ations development.The example appli
ations are used as the motivation for dis
ussions and re�e
tion on theproblems, their solution and re
ommendations for further development in the area of Webappli
ations development in LAML and mod_laml are presented last.

1
Analysis

Contents1.1 Problems in Web Development 31.2 Approa
hes to Web Development 201.3 Related Work . 211.4 Problem De�nition . 31In this
hapter an analysis of problems related to Web development are
ondu
ted. Next isan introdu
tion to di�erent approa
hes to Web development. Following this is an analysisof work related the problems des
ribed. The solutions used in related work - in the areaof session based approa
hes - are presented and dis
ussed. Finally a problem de�nitionin
luding hypothesis regarding the goals of this proje
t is presented.1.1 Problems in Web DevelopmentWe
on
luded our previous work with the fa
t, that we will attempt to make Web develop-ment easier for the developer. Making Web development easier for the developer, is doneby introdu
ing abstra
tions in the language used for development, and by introdu
ing toolsthat supports the developer when solving often en
ountered problems. This se
tion presentsproblems that are en
ountered when developing Web appli
ations. Four problems have beenidenti�ed based on our knowledge with the development of Web appli
ations, and they are:1. State handling2. Input validation3. Complex forms4. Reusability

4 CHAPTER 1. ANALYSISThe following will give a short introdu
tion to the problems. In addition ea
h of the prob-lems are presented and dis
ussed in greater detail in its own se
tion, see Se
tion 1.1.1, 1.1.2,1.1.3 and 1.1.4.The �rst problem (State handling), is based on the
hara
teristi
s that a Web appli
ationmust underlay the stateless nature of the HTTP proto
ol. An appli
ation build on CGI,a
tually exist of an amount of small �appli
ations�. Ea
h small �appli
ation�
orresponds tothe exe
ution of a single CGI s
ript, whi
h results in the presentation of a single page. Thisobservation is build on the fa
t that the pro
essing of a single request to a CGI based Webappli
ation
orresponds to exe
ution of one CGI s
ript. The developer of Web appli
ationswill be aware that more requests
orresponds to more CGI s
ripts. He will therefore have to
on
entrate on the development of many small �appli
ations� that must intera
t with ea
hother, instead of fo
using on the whole Web appli
ation as one unit. If data and informationabout state must survive more requests, it must be handled expli
it by the developer. Thereason for this is the stateless nature of the HTTP proto
ol. The need to expli
it handle dataand information about state is seen as a problem. This problem is named State handling,and it is dis
ussed in greater detail in Se
tion 1.1.1.The se
ond problem is named Input validation and is about validating data submitted by a
lient. When a
lient submits data to a CGI s
ript, it has to be validated in order for thedata to be valid in the
ontext it is used. The problem is present be
ause all data submittedto a s
ript is re
eived as strings. Sin
e not all operations are done on strings (e.g. addingtwo numbers), it is often ne
essary to perform
he
ks on the input from the user. This isin most
ases done expli
itly by the developer. However, validation imposes problems, sin
ethe validation pro
ess is error prone if the developer is not systemati
. Input validation isdis
ussed in greater detail in Se
tion 1.1.2.The third problem is related to the way data is stru
tured in HTML. When writing CGIs
ripts, data
an be pla
ed in data stru
tures to raise the level of abstra
tion. This is doneby using primitives available in the programming language used to write the CGI s
ript(e.g. arrays, tree stru
tures, hash tables). A similar stru
ture
an be modeled as layout inHTML (an array of re
ords
an e.g. be modeled as a table with ea
h re
ord presented as arow), but a problem exist when data is re
eived from the
lient. The developer
an present
omplex stru
tures in HTML forms, with respe
t to layout, but when data is re
eived fromthe
lient, the data stru
tures are lost. This is the
ase, sin
e information from an HTMLform is en
oded as a string
ontaining key/value pairs. The relation between re
reation oflarge and
omplex stru
tures and forms based on a key/value pairs, is seen as a problem. Wehave named this problem Complex forms and it is dis
ussed in further detail in Se
tion 1.1.3.The fourth problem
onsidered is the problem of reusability of program units that are largerthan one page. In CGI, the developer
an
reate fun
tionality, whi
h
an
reate parts (oftensingle pages) to a Web appli
ation. However, in order to reuse a whole Web appli
ation, allpages related must be in
luded. The problem is that a Web appli
ation in CGI is not equalto a single unit, but instead a series of pages. We see the la
k of
onsidering an appli
ationas a single unit as a problem, whi
h we have named the Reusability problem. Reusability is

1.1. PROBLEMS IN WEB DEVELOPMENT 5dis
ussed in Se
tion 1.1.4.To summarize, four problems - State handling, Input validation, Complex forms and Reusabil-ity - that are present when developing large Web appli
ations have been identi�ed. Thefollowing se
tions spe
i�es the problems in greater details and gives examples that presentsthe nature of the spe
i�
 problem. Current solutions to the problems will be presented, but
onsiderations and
hoi
es regarding the solutions are presented in the Design
hapter (seeChapter 2).1.1.1 State HandlingWhen a developer uses the CGI proto
ol to write Web appli
ation, di�
ulties regarding theCGI proto
ol arises. The main problem with the CGI proto
ol is that it is stateless (be
auseof the stateless nature of the underlying HTTP proto
ol). This means that state informationhave to be handled expli
it by the developer in order to maintain state. A se
ond problem isthat the CGI proto
ol di
tates that a program written using CGI must end after a responseis send to the
lient. There is no possibility of writing the Web appli
ation as one programand rely on the intera
tions with a user returning
ontrol to the surrounding
ode, as it isdone in non-Web related programming. This has some
onsequen
es that are explained inthis se
tion.The State handling problem
an be divided into two subproblems. The subproblems arepresented below. After the presentation of the two subproblems,
urrent solutions are pre-sented.1. Data �ow handling2. Control �ow handlingData �ow handling
on
erns the need for the developer to expli
it handle the data (values)already re
eived from the
lient. Consider an appli
ation, that
onsists of three pages. The�rst two pages ea
h take an input, and the third page presents the input entered. Sin
e theHTTP proto
ol is stateless, the data from the �rst page must expli
it be stored - or sentto the next page - by the developer. This is needed for the data to be present after therequest to the se
ond page, so it is available when the third page is presented. The problemis illustrated in Figure 1.1.

6 CHAPTER 1. ANALYSIS

A = 1

Server Client

CGI

CGI

CGI

3

2

1

Request

Get A

Get B

B = 2

Show A and B
A = ??
B = 2

HTML

HTML

HTML

A?

B?

Figure 1.1: The Data �ow handling problem. Sin
e ea
h of the CGI s
ripts are handled asa single request, the data
annot �survive� more requests. In this example, the A value is notpresent after the response from the se
ond CGI s
ript (CGI 2).The Control �ow handling problem is also (like Data �ow handling) related to the statelessnature of the HTTP proto
ol. Figure 1.2 presents an example, where multiple
hoi
es
anbe made through the exe
ution of a Web appli
ation. When the appli
ation is running,it is not possible to determine the
urrent position, of all the positions in the appli
ation.Considering the �gure, it is e.g. not possible to determine if D has been visited if the
urrentpage is C. The reason for this is, that ea
h page is presented by the exe
ution of a singles
ript, and ea
h s
ript terminates after ea
h request. This means, that ea
h page is presentedwithout returning to the spe
i�
 point in the appli
ation from where it was
alled. Informa-tion needed to maintain the intera
tion between the di�erent parts of the appli
ation, musttherefore be handled expli
itly by the developer. This is typi
ally done by asso
iating thenext s
ript to be invoked with a button or a link on the
urrent page.

1.1. PROBLEMS IN WEB DEVELOPMENT 7

DONE

A

D

E

B

C

Figure 1.2: Ea
h node in the tree represents a page (e.g. a single CGI s
ript) and an edgesymbols a possible sele
tion. The
olle
tion of all the pages is the entire appli
ation and a paththrough the tree stru
ture, represents a possible exe
ution of the appli
ation.The two subproblems related to State handling have been presented. Current solutions tothese problems are presented and dis
ussed in the following.Current Solutions to Data Flow HandlingThe Data �ow handling problem
an be solved by either storing the data on the
lient oron the server. The two alternatives are presented in Figure 1.3, whi
h is based on Figure 1.1.
A = 1

(B)

Server Client

CGI

CGI

CGI

3

2

1

Request

Get A

Show A and B
A = 1
B = 2

HTML

HTML

HTML

A?

B?
A = 1, Get B

A = 1, B = 2

A = 1

Storage

AGet

AStore

A = 1

Server Client

CGI

CGI

CGI

3

2

1

Request

Get A

Get B

B = 2

Show A and B

B = 2

HTML

HTML

HTML

A?

B?

A = 1

(A)Figure 1.3: (A) relies on the possibility to make data persistent on the server, whereas (B) sendsdata to the
lient.

8 CHAPTER 1. ANALYSISThe solution presented in Figure 1.3 (A) relies on the possibility to store data on the server.This
an e.g. be in �les on the lo
al server's �lesystem. However, it must be possible todistinguish between the di�erent
lients. If this is not possible, the information stored onthe server,
annot be related to a spe
i�

lient. Many page
entered approa
hes to Webdevelopment (PHP [The02℄, JSP [SM02℄, ASP[asp01℄ et
.) let the developer spe
ify whi
hvariables must be a

essible at a later point in the dialog with the
lient. The
lient is givenan id to identify it from the other
lients. The id is the only information sent to the
lient atthe end of ea
h request (by storing it in a hidden input element in a way des
ribed later).All the registered variables are serialized and written to a �le on the server without thedeveloper having to know about it.A problem with the solution presented in Figure 1.3 (A), is that the
lient
an stop hisintera
tions with the server and bookmark the
urrent page. After a while (minutes, hours,days or even longer) a
lient
an return - by using the bookmark - in order to
omplete theappli
ation on
e left. There is no way to determine how long the
lient will be �idle� in theexe
ution of the appli
ation, or if the
lient will ever return. If the
lient never returns, datarelated to the intera
tions with the server will take up spa
e even if it is never used. If largeappli
ations are running on a Web server, storing never used informations is a problem, thatmust be
onsidered.Figure 1.3 (B) presents a solution to Data �ow handling, where data is send to the
lientin hidden input elements when needed later. This means, that data
an be extra
ted fromthe HTML page in the same way as data from other input elements. The only di�eren
eis that data in hidden input elements are not shown in the layout of the HTML page. Ifmany values are needed at a later point, it is a
umbersome task for the developer to
reatea hidden input element for ea
h value. Persistent.pm [Pra02℄ is a Perl module that
angenerate URL strings or hidden input elements from variable names. In this way the data
an be sent to the
lient and ba
k in the normal way, but the developer just has an easiertask of doing it. We �nd this abstra
tion useful, sin
e the developer
an a

ess the values inthe variables, without the need to handle the data from the HTML form expli
it.Sending data to the
lient in hidden input elements is a problem, sin
e the data is a

essibleto the
lient. It is not presented on the HTML page, but it is present in the page sour
e.A
lient
an modify the values in the hidden input elements and submit them. This
anresult in the server re
eiving unexpe
ted or invalid information. Se
urity is also an issuehere. Imagine that the developer
hanges the unique id whi
h identi�es the
lient (
reatedto distinguish between
lients, so data
an be stored on the server). If a
lient guesses (orknows) the unique id of another
lient, it
an pretend to be that
lient. This allows a

essto information not related the
lients own intera
tions with the server.Current Solutions to Control Flow HandlingThis se
tion presents two solutions to handle the �ow in a Web appli
ation. The �rst solutionis based on primitives in the programming language used. The entire appli
ation (or largerparts of it) is pla
ed in a single �le, and when a request is re
eived, a variable (maintained

1.1. PROBLEMS IN WEB DEVELOPMENT 9by the developer) determines whi
h page to show. Figure 1.4 shows how a
ond spe
ial formfrom S
heme
an be used for this.(
ond((string=? page "page1")(display(html..(input 'name "page" 'type "HIDDEN" 'value "page2"))))((string=? page "page2")(display(html..(input 'name "page" 'type "HIDDEN" 'value "page3"))));et
)Figure 1.4: An example of how the
ond spe
ial form from S
heme
an be used to
ontrol the�ow of a CGI program. page is a string extra
ted from the HTML form. The "page1","page2" and "page3" strings are used to determine the parts of the appli
ation andis maintained by the developer.By using the above solution, the developer has overview of all pages (and the �ow betweenthem) in the Web appli
ation. However, if a large appli
ation is
reated, the gathering of allpages in the same �le, will make it di�
ult for the developer to maintain the overview. Thisis the
ase, both be
ause of the amount of lines of
ode present in the �le, but also be
ausethere exists no grouping of pages whi
h are related to a spe
i�
 part of the appli
ation. Inan online bookstore, for instan
e, the login page is not related to the page where a user
ansear
h for a spe
i�
 book.The se
ond solution to the
ontrol �ow problem is to rely on the a
tion attribute from theHTML form element. Instead of pla
ing the appli
ation in a single �le, it is pla
ed in a num-ber of �les (e.g. one �le for ea
h page in the appli
ation). The pages
an then - by using thea
tion attribute of the HTML form element - be linked together. The
onne
tions betweenthe pages presented in Figure 1.2
an then be establish if page A (a single �le)
ontains aform element that links to page B. It will look like:(form 'a
tion "B.
gi" ...)Page B must then
ontain two form elements: one that links to page C and one that linksto page D. By following this pattern, the entire
onne
tion between pages shown in Figure1.2
an be
reated.

10 CHAPTER 1. ANALYSISThe linking between individual s
ripts allows the developer to
reate a splitting of the ap-pli
ation (e.g. one s
ript per page). The �ow of the program is di�
ult to maintain, sin
e itrequires the developer to open various �les in order to follow a spe
i�
 series of a
tions (one�le has a referen
e to one or more of the other �les related to the appli
ation, whi
h againhas one or more referen
es et
.).In this se
tion approa
hes to the two subproblems of the State handling problem, namelythe Data �ow handling and the Control �ow handling problem were presented. The Datahandling problem
an be solved by storing the data on either the server or the
lient. TheControl �ow handling problem
an be solved by using primitives in the language or by linkingsmall appli
ations together using the a
tion attribute of HTML form elements. The nextse
tion fo
us on the Input validation problem and possible solutions to it.1.1.2 Input ValidationIn this se
tion the Input validation problem is analyzed. In order to get information froma
lient in a Web appli
ation, input elements are used. These input elements are added toan HTML page by using HTML elements - often the HTML input element (others, likethe textarea element,
an also be
onsidered input elements). There exists ten di�erenttypes of the HTML input element [W3C02b℄, and the
ontent of ea
h element is in HTMLhandled as textual input. This means, that the representation of all values - regardless ofthe input type - are string values when extra
ted from an HTML form.To see the problem with the la
k of types in HTML,
onsider the following example, whi
h
onsists of two HTML pages with HTML input elements (see Figure 1.5). The HTML inputelements are
reated in basi
ally the same way (the name attribute will di�er):(input 'type "TEXT" 'value "" 'size "5" 'name "a")As seen, the type of the HTML input element used is TEXT. This means, that text inputelements are used to gather information about numbers. In this example, the �rst pagetakes two �numbers� as input, and it
ontains a submit input element (Figure 1.5 (A)). These
ond page presents the sum of the two �numbers� entered in the �rst page (Figure 1.5 (B)).

1.1. PROBLEMS IN WEB DEVELOPMENT 11
2010

Number A Number B

This page calculates two
numbers! Enter them below
and press submit

30

Result

This page calculates the
sum of the two numbers
entered on the previous page.

Calculate two numbers!

Submit

Calculate two numbers!

(A) (B)Figure 1.5: An example of input �elds. The sum of the two numbers entered in (A) is presentedin (B).The problem in this example, is that it
annot be assured, that the
lient enters numbers inthe input elements on the �rst page. Sin
e information from the input elements are handledas strings, the
lient
an enter e.g. "asdf" as the �rst number. This gives the developer of aWeb appli
ation the need to perform
he
ks on input, sin
e it will not - in the example used- make sense to add a string to a number.On the basi
 HTML/CGI level, there is no way of
he
king for spe
i�
 input types. Ifvalidation is needed, the developer must use other te
hnologies. The validation part of anappli
ation
an be handled on two di�erent levels; on the
lient or on the server.Generally, validating input on the
lient side will mean faster validation. The reason is, thatdata will stay on the
lient until it is valid. If validation is handled by the server, input mustbe send between
lient and server, until it has been validated. A problem with
lient sidevalidation is, that a spe
i�
 te
hnology (su
h as JavaS
ript[Net02℄) must be present on the
lient. If the te
hnology is not present, a validation will not be a

omplished. With serverside validation, however, it is not required for the
lient to have spe
i�
 te
hnologies present.Instead, te
hnologies present on the server are used for validation.Client Side ValidationOften used te
hnologies for
lient side validation are JavaS
ript1 and JS
ript[Mi
02b℄ (wefo
us on JavaS
ript), whi
h are s
ripting languages developed by Nets
ape and Mi
rosoft,respe
tively. Both are standardized as ECHMAS
ript[ECH02℄, whi
h is a standard for s
ript-ing in a host environment. JavaS
ript
an be used inside HTML do
uments, and the Webbrowser will exe
ute the s
ript immediately or at a later event (e.g. when a
lient submits1Server side JavaS
ript exist, but when we use the term JavaS
ript we mean
lient side only

12 CHAPTER 1. ANALYSISan HTML form or
hanges the
ontent in an input element). This gives the developer manypossibilities, and one of them is validation of input elements. The �rst page from the ex-ample above, is shown in Figure 1.6, with JavaS
ript in
luded (body text and layout is notin
luded).<html><head><title>Cal
ulate two numbers!</title><s
ript type="text/javas
ript">fun
tion
he
kNumbers() {var anum = do
ument.sum.a.value //value from 'a' input fieldvar bnum = do
ument.sum.b.value //value from 'b' input field//
he
k if any is not a number .. '10' is the radixif (isNaN(parseInt(anum, 10)) || isNaN(parseInt(bnum, 10))) {alert("You must enter valid numbers!"); //Show error alertreturn false; //the user must try again}elsereturn true; //a

epted ..
ontinue}</s
ript></head><body><!-- body text and layout is not in
luded! --><form name="sum" type="GET" onSubmit="return
he
kNumbers()"'a
tion="result.html"><input type="text" value="" size="5" maxlength="5" name="a"><input type="text" value="" size="5" maxlength="5" name="b"><input type="submit" value="submit"></form></body></html>Figure 1.6: An example of input validation in JavaS
ript. The result page is not
alled unlessthe information entered is validated as numbers.As seen in the �gure, the input elements are pla
ed inside a form element. This makes itpossible to spe
ify in the JavaS
ript (in
luded in the s
ript element), whi
h values thatare of interest (as it is done in the �rst two lines of the
he
kNumbers fun
tion). Theexample also shows, that there is a problem related to the need to master two te
hnologies;a s
ripting language with a C/Java like syntax together with HTML. Another problem withJavaS
ript is, that some fun
tionality di�ers between di�erent browsers (e.g. Nets
ape andMS Internet Explorer). This means, that some fun
tionality must be browser spe
i�
 andtherefore written twi
e.Server Side ValidationLeaving input validation as a server task, means that input from the
lient is sent to theserver in order to be validated. If the input is not valid, appropriate errors messages must

1.1. PROBLEMS IN WEB DEVELOPMENT 13be presented. There is no spe
ial te
hnology used for server side validation (like JavaS
riptis used for
lient side). Instead, the programming language used to generate the HTML
ontent is also used for validation (like VBS
ript [Mi
02
℄ in ASP, Java[In
02b℄ in JSP et
).The following example is implemented in JSP, and is - like the
lient side validation example -an implementation of the �rst page in the initial example. The idea is, that we are interestedin
reating a loop between server and
lient, that runs until the
lient submits valid input.Su
h a loop
an be
reated by using a wrapper page, whi
h performs the needed validation.If the input is valid, the
lient is dire
ted to the next page. Otherwise, the
lient is sendba
k to the original page, so input values
an be entered again. Another possibility is toembed the validation into the presentation. The latter is used in the example, whi
h
an beseen on Figure 1.72.<html><head><title>Cal
ulate two numbers!</title></head><body><form a
tion="" name="sum" method="GET"><%// if parameter is not present, getParameter returns nullString astring = request.getParameter("a");String bstring = request.getParameter("b");// the initial request (no paramters exist), will result in both being nullif (astring == null || bstring == null); //dont do anythingelse {try {int anum = Integer.parseInt(astring);int bnum = Integer.parseInt(bstring);response.sendRedire
t("result.html?a="+anum+"&b="+bnum);}
at
h (NumberFormatEx
eption e) {%> You must enter valid numbers!<% } // end of try-
at
h}%><input type="text" value="" size="5" maxlength="5" name="a"><input type="text" value="" size="5" maxlength="5" name="b"><input type="submit" value="submit"></form></body></html>Figure 1.7: An example of server side validation. Here the server side language is embedded inthe page.2The example is very basi
, and no spe
i�
 strengths from JSP are used.

14 CHAPTER 1. ANALYSISAs seen on this �gure, the error message and the validation are embedded in the HTML.Spe
ial tags are used - <% and %> - to es
ape from HTML into the programming languageused (Java in this example). The server
onverts the entire page into a small Java program,whi
h is exe
uted when requested (and
ompiled at the very �rst request). The appropriateHTML page is then
reated by a series of System.out statements. Just as with
lient sidevalidation, the developer must master both a programming language and HTML. However,the programming language available on the server, will in most
ases be more
omprehensivethan the s
ripting language used for
lient side validation.This se
tion has presented two di�erent approa
hes to the Input validation problem. The�rst is
lient side validation whi
h requires spe
ial te
hnology on the
lient. The se
ond isserver side validation, where the programming language for generating Web pages are usedto perform
he
k on the input from the user. Client side validation yields faster evaluation,but the
lient
an disable the fun
tionality, that validates the input. In order to performserver side validation, a
lient/server loop must be maintained by the developer. However,server side validation ensures validation of
lient data. The next Se
tion presents the Com-plex forms problem.1.1.3 Complex FormsIn this se
tion the Complex forms problem is dis
ussed. The problem
on
erning
omplexforms exists whenever the developer has a
omplex stru
ture, that it is of interest to get�lled with data entered by a
lient. The stru
ture
an be presented as layout in HTML (anexample is given in Figure 1.9). After the
lient has entered the information wanted, theHTML form is submitted. When the information is submitted it is
onverted to a key/valuepairs string. This makes it di�
ult to re
reate the stru
ture as it was presented on theHTML page. The reason for this is, that the string does not
ontain any information about
omposition of elements in the stru
ture, but only information about values from the basi
input elements in the HTML form.Consider the following example of a person stru
ture, whi
h must be �lled with informationfrom the
lient.The person stru
ture
an be
onsidered a re
ord stru
ture from the S
heme programminglanguage. As seen, the person has nested re
ords, like e.g. the street-name. A street-name ispart of a street, whi
h again is part of an address, whi
h again is part of a person. In orderto get su
h a stru
ture �lled with information from the
lient, the developer must
ompletetwo steps:1. Present the stru
ture in an HTML form2. Re
onstru
t the stru
ture from a key/value pairs stringThe �rst step - presenting the stru
ture in a
omplex form -
an be handled by using HTMLelements. Various possibilities exist, like labels, input elements, various fonts, tables et
.

1.1. PROBLEMS IN WEB DEVELOPMENT 15(person(name(first-name "")(last-name ""))(address(
ountry "")(
ity(
ity-name "")(postal-number ""))(street(street-name "")(house-number "")))(email "")(phone "")(age "")) Figure 1.8: A stru
ture representing a person.The address part from the stru
ture shown in Figure 1.8
an be presented in an HTMLtable like illustrated in Figure 1.9.(table(tr (
enter "Address")(td "Country" (br) (input 'type "TEXT" 'name "
ountry") 'align "
enter")(td(table(tr (
enter "City")(td "City-name" (br)(input 'type "TEXT" 'name "
ity-name") 'align "
enter")(td "postal-number" (br)(input 'type "TEXT" 'name "postal-number") 'align "
enter"))'border "1"))(td(table(tr (
enter "Street")(td "Street-name" (br)(input 'type "TEXT" 'name "street-name") 'align "
enter")(td "House-number" (br)(input 'type "TEXT" 'name "house-number") 'align "
enter"))'border "1")))'border "1")Figure 1.9: The HTML layout of an address from a person re
ord.

16 CHAPTER 1. ANALYSISBy writing tables inside tables, the developer
an
reate a tree presentation of the personstru
ture. Ea
h of the leafs are input elements, that the
lient
an �ll with information.The di�
ulties emerges when the developer re
eives the form information submitted by the
lient and must re
onstru
t the person stru
ture (the se
ond step). Consider the entireperson being build in a similar way as the address part. When the
lient presses the submitbutton, the information from the input elements are gathered in a key/value pairs string.All information from the HTML form will be the string (// is added as a line break forreadability):first-name=ni
k&last-name=hansen&
ountry=denmark&
ity-name=thy&postal-number=1234& //street-name=highroad&house-number=42&email=ni
k%40freemail.
om&phone=12345678&age=42And as an asso
iation list in S
heme:(urlparms (age . "42") (phone . "12345678") (email . "ni
k%40freemail.
om") //(house-number . "42") (street-name . "highroad") (postal-number. "1234") //(
ity-name . "thy") (
ountry . "denmark") (last-name . "hansen") //(first-name . "ni
k"))All the basi
 information from the input elements are present in the data from the HTMLform re
eived, but there are no information telling the developer anything about the stru
-ture. The following se
tion, will present possible ways to handle the re
reation of the
omplexstru
ture.Rebuilding the Stru
tureWhen form parameters are submitted by the
lient, all information about the
omposition ofthe elements are lost. There are e.g. no information telling, that the �rst-name and the last-name are a
tually parts of the
omposite element name in the person stru
ture. Informationabout the
omposition
ould be handled by hidden input elements in the HTML form. Tosolve this, a hidden input element named name, whi
h has the value �rst-name+last-name
an be
reated. The information from the hidden input elements are in
luded in the infor-mation from a submitted HTML form, so the hidden input element name will result in thestring name=�rst-name+last-name when re
eived from the
lient. This tells the developerthe value of name, but it will be on the same level as all the other information from the input�elds. This means, that the only way to distinguish between the information representing
lient input and information representing stru
ture, is the key (name in this example) in there
eived data from the HTML form.To re
reate the stru
ture on behalf of a parameter string, where information about the stru
-ture is mixed with data from the
lient is di�
ult. First, the developer must know the namesof all the keys representing the stru
ture, in order to rebuild it. Se
ond, the developer mustbe sure, that names related to a �data� input element are not in
on�i
t with names relatedto a hidden input �stru
ture� element. Third, fun
tions that
reate
omplex stru
tures onbehalf of strings must be
reated.

1.1. PROBLEMS IN WEB DEVELOPMENT 17Instead of giving ea
h part of the stru
ture its own hidden input element, the entire stru
ture
an be stored in a single hidden input element. This requires the developer to �rst
reatea �template� of the stru
ture, and then pla
e it in a hidden input element when the HTMLform element is
reated. The person stru
ture
an e.g. be pla
ed in a hidden input elementnamed form-stru
ture. When the data from the HTML form are submitted, the developeronly needs to �nd the value of the form-stru
ture key in order to have a representation ofthe stru
ture. When having the stru
ture at hand, it
an be updated with the data from the
lient. Using this way of handling HTML forms, the developer is required to perform threesteps. These steps are illustrated in Figure 1.10.
3E

2D

D E

A

B C

D E

A

B C

c=1&d=2&e=3

31 2

C 1

B

A

HTML page

Figure 1.10: In step (1) the developer
reates the stru
ture wanted. Step (2) presents a similarstru
ture as an HTML form. The stru
ture
reated in step (1) is stored in a hidden inputelement (the dashed box in the bottom of (2)). In step (3) the stru
ture is extra
ted from theHTML form, and updated with the values entered by the
lient.The stru
ture template from step (1) - in Figure 1.10 -
an be the person stru
ture alreadypresented. By doing the layout in HTML as done in Figure 1.9 and storing the personstru
ture in a hidden input element, step (2)
an be a
hieved. Updating the stru
ture (step(3)) is done by �rst extra
ting the stru
ture, and then in turn handle ea
h key in the datafrom the HTML form. If a key is present in the stru
ture, update the stru
ture with thekeys value. Otherwise
ontinue to the next key. The above two alternatives (hidden infor-mation about the
omposition or the entire stru
ture) are self
ontained, sin
e informationabout the stru
ture are available in the data re
eived from the
lient. Instead of storing theentire stru
ture in a hidden input element, a referen
e to the template
an be stored (likestru
ture=person). This
an be handled in the same way, as data are stored on the server.This results in the stru
ture not being self
ontained, as it
annot be re
onstru
ted from thedata re
eived from the
lient. Information about the stru
ture is needed from the server.When
reating an HTML form based on a template or dire
tly in the language, it is di�
ultto see the relation between the representation of the stru
ture and the stru
ture itself. Arelation is made, if fun
tions that
an
reate an HTML form on behalf of a stru
ture exists.

18 CHAPTER 1. ANALYSISIt is then a spe
i�
 stru
ture that is presented as an HTML form, and if the stru
ture ismodi�ed, it is mirrored in the HTML form. A similar relation is a
hieved if the developerhas the possibility to spe
ify the HTML layout of a stru
ture, e.g. by spe
ifying the layoutof ea
h of the elements.The Complex forms problem was presented in this se
tion. First, it was seen, how informa-tion about a stru
ture
an be stored in hidden input elements. This allows the developer tore
reate the stru
ture presented as an HTML form, and �ll it with the data entered by the
lient. Instead of re
reating a stru
ture on behalf of information in hidden input elements,it was presented how the developer
an work with a �template� of a stru
ture. The latterapproa
h
onsisted of three steps, namely
reating, representing and updating a stru
ture.1.1.4 ReusabilityDuring the advan
es in programming te
hnologies the
on
epts of modularity and reusabilityhas be
ome natural to developers. A developer will have an instin
t that ensures reusabilityof some of the
ode by applying modularity to it. During the programming task the de-veloper need fun
tionality that performs a spe
i�
 task, be it extra
ting data from a datastru
ture, or perform
omputations, based on a
ertain algorithm. Rather than
reatingthe fun
tionality on the spot a fun
tion is written, that - based on parameters - performsthe
omputation and returns a result. By the use of this fun
tion reusability emerges. Thefun
tion
an be used again in di�erent
ontexts, where that parti
ular fun
tionality is needed.This is the reusability that developers has be
ome a

ustomed to, namely reusability in termsof general purpose fun
tionality. The same amount of reusability has not been introdu
edin Web development, when not
onsidering general purpose fun
tionality. It is of interest,that ideas and
on
epts as modularity and reusability from non-Web development
an beused in Web development. Likewise, is the prin
iple of information hiding - often employedin relation to the module
on
ept - of interest.Often a Web developer
reates a fun
tion that performs a task and thus use this fun
tionas an abstra
tion over more detailed a
tions. An example is e.g. writing a fun
tion thatoutputs a header of an HTML page. This kind of reusability is on parts of pages. Reusabilityin terms of pages does also exist, in te
hnologies su
h as PHP and ASP - see Se
tion 1.2 -due to the template like nature of the pages developed. It is interesting to
onsider if it ispossible to extend this kind of reusability to entire sequen
es of intera
tions with a
lient(inspired by sessions in Bigwig). Imagine a situation where a number of pages have beendeveloped for one Web appli
ation, but on the next proje
t the developer needs some pagesthat represents the same task. Most likely the developer will
opy the prior made pages andedit them to ful�ll the needs in the
urrent proje
t.An example of a series of pages that is subje
t to modularization is a login sequen
e. Anumber of pages responsible for getting
redentials from the
lient, or if the
lient does nothave any, then o�er the opportunity to re
eive
redentials, by performing a registration ofthe
lient. This is fun
tionality that is appli
able in many Web appli
ations. Imagine the

1.1. PROBLEMS IN WEB DEVELOPMENT 19developer having de�ned a module and having de�ned a �exible interfa
e - in terms of pa-rameters - to the module. Then the developer
an use that module, spe
ifying the values forthe various parameters.In this se
tion the Reusability problem has been dis
ussed. This problem is related the inter-est of introdu
ing some of the programming
on
epts only present in non-Web development.The possibility to de�ne a series of pages as a module is sought, sin
e it allows the developerto reuse a module in di�erent
ontexts. The module
an be
reated to take parameters,whi
h e.g. spe
ify information about the layout of the pages it in
ludes. Creating modulesalso makes for information hiding possible.1.1.5 SummarySe
tion 1.1 introdu
ed four problems in Web development. These are the State handling,Input validation, Complex forms and Reusability problems. The State handling problem issplit into two sub-problems, namely Data �ow handling and Control �ow handling. TheData �ow handling problem,
on
erns the need for the developer to handle data re
eivedfrom the
lient expli
itly, in order for data to survive multiple intera
tions. This
an be done,by storing the data in hidden input elements, or storing data on the servers �lesystem. TheControl �ow handling problem is the problem, that
on
erns the need to maintain the in-tera
tions between server and
lient. Possible solutions to maintain information about theintera
tions were presented. The �rst is to use primitives from the programming language,like the
ond spe
ial form in S
heme. Another possibility is to use the a
tion attribute onthe HTML form element. Both sub-problems in the State handling problem, are rooted inthe stateless nature of the HTTP proto
ol.The Input validation problem is related the need to validate data from the
lient. Valida-tion
an be handled on the
lient or on the server. If validation is handled on the server,a
lient/server loop must be maintained. However, server side validation ensures that datasubmitted by the
lient is validated. This is not ne
essarily the
ase with
lient side vali-dation, sin
e the
lient
an disable the te
hnology used for validation. Su
h a te
hnology ise.g. JavaS
ript. Validation on the
lient yields faster validation, sin
e it is not needed tomaintain a
lient/server loop, whi
h uses bandwidth.A Web developer
an present a
omplex stru
ture in an HTML form, by using HTML ele-ments. Information about this stru
ture is lost, when the
lient submits the data entered inthe HTML form. This is seen as a problem, whi
h is named the Complex forms problem.Possible solutions to how the stru
ture presented as an HTML form
an be rebuild afterthe HTML form is submitted are presented. The HTML form stru
ture
an be spe
i�edin hidden input elements (by spe
ifying information about the
omposition of the indi-vidual elements) or by using a �template� approa
h. Three steps must be performed if thetemplate approa
h is used. These are
reating, presenting and updating a
omplex stru
ture.The �nal problem presented is the Reusability problem. It is of interest, that the developer
an de�ne series of pages as a module. By letting the module take parameters, the pages

20 CHAPTER 1. ANALYSISit represents
an be
ustomized in the way de�ned by the developer. Su
h a
ustomization
an e.g. be a style sheet.1.2 Approa
hes to Web DevelopmentDuring the preparatory work we found related work that might hold a solution to some ofthe problems just analyzed. We adapt the line of thought presented by Bigwig, that Webdevelopment
an be divided into three di�erent approa
hes or paradigms; namely the s
ript-
entered, page-
entered and the session-
entered approa
h. The s
ript-
entered approa
h isby Bigwig
hara
terized as follows:"The s
ript-
entered approa
h builds dire
tly on top of the plain, stateless HTTP/CGIproto
ol. A Web servi
e is de�ned by a
olle
tion of loosely related s
ripts. As
ript is exe
uted upon request from a
lient, re
eiving form data as input andprodu
ing HTML as output before terminating. Individual requests are tied to-gether by expli
itly inserting appropriate links to other s
ripts in the reply pages."[CAM02℄In the s
ript-
entered approa
h the individual s
ripts are in fo
us. Normally traditionallanguages are used for writing the s
ripts, i.e. not languages written or
reated espe
iallyfor this purpose. Examples of these languages in
lude Perl and C. It is the program
odethat is the essential part here, HTML is written as the output from the s
ript. Thereforethe HTML pages are generated in a top-down manner using print-like statements, requiringthe developer to be more stru
tured in his development style. One of the disadvantages bythis is the la
k of �exibility in the generation of the pages. For example on
e the HTMLtitle element has been written it is to late to write the head element.A

ording to Bigwig the page-
entered approa
h
onsiders Web development in quite adi�erent manner:"The page-
entered approa
h is
overed by language su
h as ASP, PHP, and JSP,where the dynami

ode is embedded in the HTML pages. In a sense, this is theinverse of the s
ript-
entered languages where HTML fragments are embeddedin the program
ode. When a
lient requests a page, a spe
ialized Web serverinterprets the embedded
ode, whi
h typi
ally produ
es additional HTML snippetswhile a

essing a shared database. In the
ase of JSP, implementations work by
ompiling ea
h JSP page into a servlet using a simple transformation." [CAM02℄In the page-
entered approa
h, the Web developer designs the page layout with graphi
set
. The parts of the page where dynami
s are needed, the developer es
apes the design orHTML and writes the program that generates the wanted dynami
s. This make the Webdevelopment pro
ess more fo
used toward the design of the �nal look of the page, unlike thes
ript-
entered approa
h whi
h is more like non-Web programming. It helps to in
rease theoverview of the Web development for the developer if only small amounts of dynami
s areneeded. But if a page is �lled with program fragments it
lutters the developers overview in

1.3. RELATED WORK 21the same way as the s
ript-
entered approa
h does. Therefore there is a trade o� betweensimpli
ity and dynami
s in this approa
h. It is often simple pages that are written in thisstyle. The developer still has to expli
it link various pages together to
reate the illusion of
oheren
e between a number of pages. The page-
entered approa
h to Web development alsointrodu
es sessions. This is done, by maintaining a global state, whi
h
ontains informationabout data re
eived from
lients. This is e.g. done by PHP [The02℄.A

ording to Bigwig there is in the session-
entered approa
h a
oheren
e of the individualpages shown to the
lient. The developer writes a session as one program, that en
apsulatesthe presentation of the individual pages. This program is exe
uted and represents the session."A servi
e is here viewed as a
olle
tion of distin
t sessions that a

ess someshared data. A
lient may initiate a session thread, whi
h is
on
eptually a pro
essrunning on the server. Intera
tion with the
lient is viewed as remote pro
edure
alls from the server, as known from
lassi
al
onstru
tion of distributed systemsbut with the roles reversed." [CAM02℄By writing the entire intera
tion between the server and the
lient as one program the de-veloper obtains a better overview of the development pro
ess. Writing several pages as partof a session (a program) it is possible to share data between the individual pages withouthaving to expli
itly transfer the data between the individual pages.This se
tion has presented three di�erent approa
hes to Web development, namely the s
ript-
entered, the page-
entered and the session-
entered approa
h. It is
hosen, that fo
us ispla
ed on the session-
entered approa
h to Web development, when solutions to the fourproblems - State handling, Input validation, Complex forms and Reusability - are designed.The reason for this is, that a session introdu
es en
apsulation of pages, whi
h is a solutionto the Reusability problem. Ea
h session is then equal to a module of pages. If a module
anbe
ustomized with parameters (e.g. a style sheet) when a
tivated, it
an be used in various
ontexts. Furthermore, does a session represent the �ow of pages in the Web appli
ationand allows for
lient data to be shared between pages. Handling data and �ow in a Webappli
ation, are the two subproblems in the State handling problem. This means, that asession
on
ept in Web development solves both the Reusability and the State handlingproblem. To identify possible approa
hes to session-
entered Web development, the nextse
tion presents work related to sessions.1.3 Related WorkBased on the problems presented, related work in the area of Web development has beenanalyzed, to �nd existing solutions to problems similar to those des
ribed in Se
tion 1.1.There exists few examples of te
hnologies that relies on the session
entered approa
h toWeb development. Bigwig, and its an
estor Mawl[DJ01℄ were the �rst en
ountered. Mawlwill not be dis
ussed, sin
e Bigwig
overs the same aspe
ts as Mawl in relation to ourproblems. WASH/CGI also adhere to the session
entered approa
h to Web development

22 CHAPTER 1. ANALYSISand it does so with basis in the fun
tional language Haskell. Furthermore, a library3
alledPAKCS/HTML for the language Curry[Mi
02a℄, is analyzed. PAKCS/HTML is shippedwith the PAKCS Curry implementation[Han02℄ and implements sessions as an optimizationof plain CGI. These te
hnologies are analyzed in the following se
tions, to un
over theirrelation to the session
entered approa
h to Web development and to �nd ideas usable inthe
ontext of our problems.1.3.1 BigwigThe session
on
ept - and the session-
entered approa
h to Web development, whi
h is themotivating fa
tor behind the session
on
ept - was originally presented by the Mawl lan-guage. In essen
e both Mawl and Bigwig handles sessions the same way. They operatewith the session-
entered approa
h to Web development as an alternative to the page ands
ript-
entered approa
h. An important fa
tor behind the session-
entered approa
h is thatthe developer thinks in sessions (whole series of intera
tions with the
lient) rather thanindividual pages that makes up a whole appli
ation. Furthermore these intera
tions arewritten as one large program sin
e this gives a better overview of the development pro
essand therefore helps to produ
e more stru
tured and
oherent Web appli
ations. The reasonfor this is, that the developer has the overview to spend more time on the �ow of the appli-
ation, rather than linking the individual pages together.Bigwig is a framework that rely on
ompilation and stati

he
ks, rather than what is nor-mally used in Web programming, namely interpretation. Compiling the Web servi
e enablestype
he
king and stati
 analysis whi
h ensures - to some degree - the
orre
tness of theservi
e. Bigwig rely on stati
 type
he
king, be
ause it
at
hes many of the errors thatotherwise o

ur at run-time. Bigwig is a C and Java-like skeleton language that binds to-gether a number of domain spe
i�
 languages. Servi
es written in Bigwig
an by the
ompilerbe translated into standard Web te
hnologies su
h as HTML, CGI, JavaS
ript, Java appletsand elements of HTTP. Bigwig see the use of only standard te
hnologies as an advantage asthese do not require spe
ial language support from the
lient.A session in Bigwig is part of a servi
e. The Web developer writes a servi
e and
reates anumber of sessions as part of this servi
e. A servi
e
orresponds essentially to a sequentialprogram. The Web developer therefore writes a servi
e as any other program and in
ludessessions as part of this program. For an example of this pra
ti
e see Figure 1.11. A servi
eis
reated whi
h
ontains de�nitions of HTML pages, here the Please and Greeting HTMLpages. It also
ontains sessions, here the Hello session whi
h shows the Please HTML pageto the
lient and re
eives the name entered by the
lient in the string variable s. Next theGreeting HTML page is shown with the just re
eived data (pla
ed in s) as part of the page.Noti
e the show fun
tion used to display the page. This fun
tion takes the page and showsit to the
lient. The program is
ontinued like show is a normal pro
edure
all.3We will refer to this as PAKCS/HTML. The a
tual name is not known but when downloading thePACKS Curry system the library is in
luded as HTML.

1.3. RELATED WORK 23servi
e {html Please = <html> Please state Your name:<input type=text name=handle> </html>;html Greeting = <html>Hello <[moniker℄>, how are you?</html>;session Hello() {string s;show Please re
ieve[s=handle℄;show Greating<[moniker=s℄>;}}Figure 1.11: An example of how a servi
e and a session are related and how a program is writtenin Bigwig [CAM02℄.Using sessions in Web development makes the
ommuni
ation between the
lient - and theserver running the session - roughly similar to remote pro
edure
alls (see [AB84℄), or asBigwig state it:"Communi
ation is performed by showing the
lient an HTML page, whi
h im-pli
itly is made into a form with an appropriate URL return address. Whilethe
lient browses the given do
ument, the session thread is suspended on theserver. Eventually the
lient submits the form, whi
h
auses the session threadto be resumed and any form data entered by the
lient to be re
eived into programvariables." [CAM02℄To get a better understanding of this way of handling sessions, Figure 1.12 illustrates the
lient and the session thread during the �ow of a session. The session begins with the
lientrequesting the URL mat
hing the session. The session thread
omputes the session until the�rst page is shown to the
lient. Then the session thread is suspended and goes idle on theserver. The
lient re
eives the page and submits data. When the
lient is done the resultof the page is send ba
k to the server. On
e the server re
eives the result it reinvokes thesession thread and the
omputation is
ontinued.

Thread suspended

session

html

begin

session

html

begin

Server

html PLease

PLease

<input type=text name=var

</html>

show Greating reciece

show greating

}

 String s;

}

service {

html Greating = <html> Hello

session hello() {

Client

Figure 1.12: An illustration of the �ow of a Bigwig session[CAM02℄.

24 CHAPTER 1. ANALYSISThe servi
e
on
ept as introdu
ed by Bigwig makes it possible to share data between theindividual sessions that belongs to a given servi
e. This is a
hieved by
reating variableset
. with the shared modi�er. The ability to share data between sessions allows sessions to
ommuni
ate with ea
h other.Bigwig see a problem in the limitation that all
ommuni
ation between the
lient and theserver must be handled by presenting and submitting pages with HTML forms. Their ex-ample is a
hat room. In a
hat room the
lient re
eives new messages without having toreload the page. Therefore Bigwig has
reated the
on
ept of seslets. Basi
ally seslets is alimited session running on the
lient with permission to
onta
t the server. This seslet
anthen be used to
onta
t the server and retrieve new messages in the
hat forum at a regularinterval.Bigwig also introdu
e a
on
ept, that is used when validating input. They have namedthis Powerforms[BMRS01℄, whi
h is a de
larative way of handling validation. The developerspe
i�es valid input to an input element and the validity of the input element is ensuredby a JavaS
ript that is
reated automati
ally.A number of interesting ideas has been used in Bigwig, some of whi
h will be used to solvethe problems des
ribed in Se
tion 1.1. The most noti
eable is the idea of sessions. Bigwigrelies on the session
on
ept for two things. First it is an entirely di�erent way to developWeb appli
ations, a way that more resembles non-Web development than CGI development.The se
ond bene�t with sessions is the ability to introdu
e persisten
e on the server, thuseliminating the need for sending data between the
lient and the server, for the data to beavailable at a later time during the session. To introdu
e fun
tionality - in the form of theshow
ommand - that represents sending a page to the
lient and re
eive data submitted,seems like a good idea. This
an help to
on
eptualize the intera
tive nature of Web appli-
ation for the developer.Bigwig have problems regarding stepping ba
k and bookmarking a page in a session. Theproblem is that if any of these two event happens, the session is started from the beginning.The reason for this behavior is that Bigwig sees it as dangerous to step ba
k in a session,sin
e some a
tions might
hange the state and this state
hange is hard - if not impossible- to undo. Example of su
h a
tions are �le writing and database updates. However, ouropinion is that stepping ba
k in a session
an by dangerous, but reasonable to support. Thereason is that the ba
k button supports an explorative nature, when the
lient is browsing theappli
ation. If a ba
k button instead is a link on the Web page, it is sometimes
umbersometo �nd.1.3.2 WASH/CGIAnother session
entered approa
h is WASH/CGI. WASH/CGI is a library - for Haskell -providing help when developingWeb appli
ations. Programs written in WASH/CGI are
om-piled. WASH/CGI
onsiders the session
on
ept as a stru
ture that improves the overviewof the Web development pro
ess, and it
onsiders a session in the following way:

1.3. RELATED WORK 25"A session is a dynami
ally evolving sequen
e of ask and io a
tions (in the CGImonad). Ea
h of these a
tions queries the external world, either by displaying aform on a Web browser or by performing and IO a
tion, and re
eives a response."[Pet℄
Just as with Mawl and Bigwig the Web developer thinks of sessions, when developing Webappli
ations. Like Bigwig, WASH/CGI uses a primitive for displaying a page to the
lient.WASH/CGI relies on the ask fun
tion
all - just as Bigwig relies on the show fun
tion - toask and re
eive data from the
lient.WASH/CGI does not suspend the pro
ess on the server - like Bigwig does it - when a pageis send to the
lient. Instead exe
ution of WASH/CGI appli
ations are ended after a pagehas been shown to the
lient, as done in traditional CGI programming. Therefore some wayof re
eiving the data and resume exe
ution of the session with the appropriate data has tobe used. To remember the data already asked from the
lient a list,
alled inparm, is used.On
e a session is invoked and exe
uted, it
he
ks if the data asked for, are already present inthe inparm list, and if so, the
lient is not asked for it again. Instead the data in the list isused. The data in the inparm list are stored with an asso
iation to the individual ask. Thismeans, that the data re
eived from ea
h intera
tion with the
lient, are added the inparmlist. Thus the inparm list
ontains all data already re
eived from the
lient, and thereforea
ts as a session status. Persisten
e of this list is obtained by passing the list data withea
h page shown to the
lient in the form of a hidden HTML input element. This resultsin the entire session being
omputed up to the point of the page that is requested, at ea
hrequest. It seems to be a waste of time to start the appli
ation from the beginning everytime. But sin
e the data needed from the
lient is retrieved from the inparm list, the timeused to
ompute the page to be shown next time is minimal. Not only data from the
lientare stored in the inparm list, but also IO a
tions are stored in the list, sin
e these must beundone if the
lient steps ba
k in the
omputation.Figure 1.13 illustrates the steps taken in exe
ution of a WASH/CGI appli
ation. The
lientrequests a WASH/CGI appli
ation whi
h is exe
uted. The appli
ation
ontains three in-tera
tions (one page for ea
h intera
tion) with the
lient. First the inparm list is
he
kedto determine if Page1 is already present. If not, Page1 is shown to the
lient. Sin
e theappli
ation has just been started, inparm is empty, and Page1 is shown to the
lient. The
lient enters data on the page and submits it to the appli
ation on the server. The serverstarts the appli
ation again and asso
iates the data re
eived from the
lient with an entryin the inparm list for Page1. The inparm list is
he
ked to determine if it
ontains the datafor Page1. This time it does and the next step is taken. Again the inparm list is
he
ked tosee if it
ontains an entry asso
iated with Page2. It
ontinues like this until the end of theappli
ation or the
lient stops submitting pages.

26 CHAPTER 1. ANALYSIS
Page1

Page 1

Page 3

Page 2

Page 1

Page 3

Page 2

Server Client
Request

Is Page1 present in inparm?

Is Page2 present in inparm?

No

No

Yes

Yes

Yes Page2

inparm: Page1

Is Page1 present in inparm?

Request

Response

Response

Application

Application

Figure 1.13: An illustration of the usage of the inparm list in WASH/CGI.Having the inparm list present in every page sent to the
lient and relying on it when reestab-lishing the state of the session, it is possible to step ba
k in a session. This works sin
e the
lient pressing the ba
k button results in re-sending an old form and the server reestablishingthe state from the inparm list present in this page.WASH/CGI in
ludes interesting work involving HTML forms. WASH/CGI relies on anabstra
tion in the form of fun
tions to generate HTML. It also has fun
tions to generateHTML form and input elements. The fun
tion that generates the HTML form automati
allysets the appropriate en
type, method and a
tion attributes on the form element. Theen
type attribute is used to spe
ify the en
oding of the
ontents of the HTML form when it issend to the server. The method attribute is used to identify whether the GET or POST methodis used when submitting the HTML form. The a
tion attributes spe
i�es the fun
tionalitythat re
eive the data from the HTML form. By setting these attributes automati
ally theWeb developer is alleviated from this responsibility, and it is ensured that the attributesare always
orre
t. The fun
tion used for generating HTML input elements - e.g. textualinputs,
he
k boxes et
. - returns a handle to the input element. This handle
ontains -on
e the page
ontaining the input element has been shown to the
lient - the value enteredinto the input element. The developer
an then a

ess this data using either the value or thestring fun
tion returning the parsed value or the unparsed value respe
tively. To asso
iatethese handles with the data entered by the
lient, the submit input element - whi
h isgenerated from a fun
tion as any other HTML element - is used. It is de�ned by passing it

1.3. RELATED WORK 27fun
tionality whi
h is a
tivated on
e the submit button is pressed. This a
tion asso
iatesthe data entered by the
lient with the handlers re
eived when de�ning the input elements.The fun
tion generating the input elements automati
ally provides naming. It also has ameans for presenting default values based on a log of previously re
eived input.
handle1
handle2

ask

function

value2

value1

Server Client

value1

You entered:

value2

string{handle1}

string{handle2}

You entered:

}

tell
function (handle1, handle2) {

Figure 1.14: An illustration of form handling using
all ba
k fun
tions and handlers in WASH/CGI.Figure 1.14 illustrates how HTML forms are handled in WASH/CGI. First the developerspe
i�es an HTML page and states - for ea
h input element - that the values entered intothis input element is asso
iated with a given handler, here handle1 and handle2. Next thedeveloper asso
iates a
all ba
k fun
tion - here fun
tion - with the a
tion of the submitinput element. Then the page is shown to the
lient with the ask fun
tion. The
lient entersdata into the HTML form and presses the button. This results in the data being submittedto the server. When the server re
eives the data from the HTML form it a
tivates the
allba
k fun
tion fun
tion and the handles are passed as parameter to this fun
tion. The
allba
k fun
tion extra
t the values from the handlers with the string fun
tion and presentsthem - with tell - to the
lient in a new HTML page.WASH/CGI does not provide a solution to the problem with
omplex stru
tures as it isnot possible to re
eive the data from an HTML form in a de�ned stru
ture. It is possibleto represent a stru
ture at the
lient, sin
e the developer
an
onstru
t
omplex stru
turesbased on HTML elements, but the stru
ture does not survive an intera
tion with the
lient.Relying on a list to
ontain the data already re
eived from the
lient, allows for a simulationof the session resuming its
omputation from the point it stopped, when sending a page tothe
lient.

28 CHAPTER 1. ANALYSIS1.3.3 PAKCS/HTMLBy relying on the mixed paradigm language Curry, Mi
hael Hanus des
ribes in [Han01℄ howsolutions to the problems with the plain CGI approa
h to Web development
an be solved.This is done by implementing a library for the Curry language. Curry is des
ribed as amixed paradigm language and its
onstituents in
lude elements from the fun
tional, thelogi
al and the
on
urrent programming paradigm. When used for Web development thedeveloper does not write the HTML
ode as text strings in print-like statements in the lan-guage. Rather Web programming with PAKCS/HTML is done by relying on an abstra
tionlayer above plain CGI, where HTML do
uments are
onstru
ted using a spe
i�
 HTML datatype representing the HTML (also referred to as an HTML expression). A wrapper fun
tionis responsible for translating the HTML data type to a textual representation, when thepage is shown to the
lient. The introdu
tion of this abstra
tion above plain CGI introdu
esa number of bene�ts whi
h are des
ribed in the following.The wrapper fun
tion is responsible for more than
onstru
ting the textual representationof the HTML data type. The wrapper fun
tion is also responsible for retrieving the dataentered into HTML forms by the
lient. This is done by introdu
ing elements of an abstra
tdata type that the developer
an use when
onstru
ting the HTML page. The idea is thatthe developer
an spe
ify an element of the abstra
t data type, and use a logi
al variablethat is part of the data stru
ture as referen
e to an input element in the HTML page. In-trodu
ing a logi
al variable as referen
e to the input element is done, sin
e the variable isnot instantiated until after the HTML page has been shown to the
lient. A logi
al variableis a way to express the delayed instantiation of a variable. When the HTML expression ispro
essed by the wrapper, the textual representation is generated. At the same time, thewrapper instantiates variables, whi
h are used as referen
es to the input elements on theHTML page. When the
lient submits the HTML form, the data from the input elementsare asso
iated with the variables instantiated by the wrapper. Data from the HTML form
an then be a

essed by using the variables.Another element of the abstra
tion is that the program that generates the HTML form -whi
h is shown to the
lient - is also the program that is a
tivated when the
lient submitsthe form and the wrapper has done its work. This allows a sequen
e of intera
tions to takepla
e based on the
ontrol abstra
tions of the Curry language. The idea is to asso
iatean event handler with ea
h submit input element that is shown to the
lient. On
e thewrapper has re
eived the data from the HTML form, it a
tivates this event handler passinga CGI environment as parameter. The CGI environment is a mapping from the names ofthe input elements present in the HTML form to the strings entered by the
lient. Byrequiring an event handler to return a new HTML page,
ontaining a new HTML form, the
on
ept of sessions has raised. The result of exe
uting the event handler is to show a newpage to the
lient. This allows nesting of event handler and thereby series of intera
tions
an be obtained. This resembles the session-
entered approa
h to Web development, sin
ethe developer is able to spe
ify the entire intera
tion between the
lient and the server, asone large program.

1.3. RELATED WORK 29It is also possible to obtain the session-
entered approa
h to Web development without re-lying on nesting of event handlers. Sin
e the various
ontrol stru
tures of the entire Currylanguage is available the developer
an rely on these. For example, the developer might relyon re
ursion to repeatedly show a page until the
lient has entered the
orre
t data. Or asele
t statement
an be used to determine - on basis of just re
eived data - whi
h page toshow next.For an illustration of how the intera
tions between the
lient and server is handled inPAKCS/HTML see Figure 1.15. The intera
tion begins with the evaluation of a fun
tion- here fun
tion - on request from the
lient. The entire box surrounding everything inthe server is
onsidered the session that the
lient a
tivates. The server then exe
utes thefun
tion fun
tion, whi
h generates an HTML page
ontaining two text input elements anda submit input element (here the hat
hed box on the �gure). As seen the two text inputelements are asso
iated with the logi
al variables (here logi
al_var and logi
al_var1). Thegenerated HTML page is shown to the
lient, �lled with data and submitted again. Afterthis, the event handler asso
iated with the submit button (here eventHandler) is a
tivatedand an environment (here env) is passed as parameter. The event handler then generatesan HTML page
ontaining the values entered by the
lient. These values are obtained byapplying the environment on the logi
al variables. The resulting HTML page is shown tothe
lient and the session is terminated.

value1

You entered:

value2

Server

function {

logical_var

eventHandler

}

}

logical_var1

eventHandler (env) {

You entered:
(env logical_var)
(env logical_var1)

value2

value1

Client

Figure 1.15: An illustration of handling an HTML form using event handlers and logi
al variablesin PAKCS/HTML.A problem with traditional CGI programming is the la
k of state on the server due to thestateless nature of the HTTP proto
ol. Normally this is solved by pla
ing the state on the

30 CHAPTER 1. ANALYSIS
lient either in
ookies[DL02℄ or hidden input elements. In PAKCS/HTML this is solvedin a simpler way. Sin
e the entire intera
tion
onsists of nesting of event handlers, there
annot be two pages/event handler on the outer level. There must be one fun
tion whi
his responsible for the �rst intera
tion with the
lient, and the fun
tionality representing fol-lowing intera
tions must be nested inside it.A number of interesting ideas has been used in this work. The idea of having a wrapperfun
tion de
oding the parameters from the
lient and making them available is bene�
ial.However, it is not possible to have stru
ture on the data, sin
e the value of ea
h inputelement is mapped to the value of a variable in the programming language. This means,that no information about the
omposition of input elements are maintained. Furthermore,it is impossible to uniquely identify the value of variable to be equal to the value entered ina spe
i�
 input element. The reason for this is, that the same name
an be used to identifyinput elements in di�erent HTML forms.The idea of allowing
ontrol stru
tures of the Curry language to be used when developing aseries of intera
tions seems natural, as it resembles non-Web related programming. However,sessions in PAKCS/HTML is di�erent from sessions in Bigwig, as there
annot be morethan one top-level fun
tion. Initially an exe
ution of an appli
ation is done on requestfrom a
lient by lo
ating the appropriate s
ript (the one that generates the �rst page inthe appli
ation) and exe
ute it. But the following exe
utions in the appli
ation is done by
alling the asso
iated event handler (the one bound to the submit button that the
lientpresses). Therefore, pla
ing two fun
tions in the same s
ript, does not result in both beingexe
uted. Pla
ing several fun
tions on the top-level might be bene�
ial, sin
e it introdu
esan overview of the �ow of the appli
ation. The developer
an spe
ify a number of fun
tionsand rely on these being evaluated one by one, until the session terminates.1.3.4 SummarySe
tion 1.3 introdu
ed work related to the session-
entered approa
h to Web development.This was done, sin
e a session
on
ept solves two of the four problems identi�ed, namelythe State handling and the Reusability problem. The related work analyzed were Bigwig,WASH/CGI and PACKS/HTML. Bigwig introdu
e sessions by a primitive in the language.This primitive results in a lexi
al s
ope forming an en
apsulation of a sequen
e of pages.WASH/CGI and PACKS/HTML uses a nested handler approa
h to spe
ify the sequen
e ofpages represented by a session.A third approa
h was found in the page-
entered approa
h to Web development, namelysessions by global state. This approa
h was identi�ed in Se
tion 1.2.

1.4. PROBLEM DEFINITION 311.4 Problem De�nitionFollowing the analysis four problems in Web development exists. These are: the State han-dling problem, the Complex forms problem, the Input validation problem and the Reusabilityproblem. These problems are formulated as three hypotheses.The �rst problem is State handling, whi
h - during analysis of related work - have been seendealt with by Bigwig, WASH/CGI and PAKCS/HTML. We expe
t to solve the State han-dling problem and Reusability problem, by introdu
ing a session
on
ept inspired by Bigwig.The reason is, that it is possible to let intera
tions with a
lient, happen in the same lexi
als
ope. This makes it possible to let intera
tions with a
lient share data. This is the solutionto the State handling problem. The Reusability problem is solved sin
e this lexi
al s
ope
an be a
tivated and thereby do intera
tions with a
lient. Be
ause of the lexi
al s
ope, itis possible to regard more than one intera
tion with a
lient as a unit. This is formulated inthe following hypothesis:Hypothesis 1:A session-
entered approa
h to Web development in SLAML solves theState handling problem of a Web appli
ation. Furthermore, a session
on
ept makes a

ess to several HTML pages as a single unit possible.This hypothesis is general and three problems are in
luded in it. These three are the Control�ow handling, the Data �ow handling problem and the Reusability problem. To be more pre-
ise, the hypothesis is spelled out in three sub-hypotheses, ea
h involving one of the subje
ts.With respe
t to
ontrol �ow:Hypothesis 1.1:The Control �ow handling problem is solved by introdu
ing a session
on
ept, where a primitive in the language displays an HTML page toa
lient and returns as a regular fun
tion.With respe
t to data �ow:Hypothesis 1.2:The Data �ow handling problem is solved by introdu
ing a session
on
ept to SLAML, where intera
tions inside the same lexi
al s
ope(session)
an share data.With respe
t to reusability:Hypothesis 1.3:

32 CHAPTER 1. ANALYSISThe Reusability problem is solved by introdu
ing a session primitivethat
an a
tivate a series of intera
tions with a
lient and rely onparameters at
all time.The Complex forms problem is the se
ond problem dis
ussed. A developer will bene�tfrom having a framework that when
onstru
ting
omplex data stru
tures on the server
anpresent them to the
lient as an HTML form and update them with data from the
lient.This lead to the se
ond hypothesis.Hypothesis 2:It is possible to
onstru
t a framework that helps the developer to build,present and update
omplex stru
tures.The last problem is the Input validation problem. By
onstru
tion a validation framework,validation of data from the
lient is done simple. This is formulated in the third hypothesis.Hypothesis 3:It is possible to
onstru
t a validation framework that helps the devel-oper to validate data from the
lient.Relying on mod_laml, a session-
entered approa
h to Web development in SLAML will bedeveloped. This framework is
alled the SLAML framework. As a part of the SLAML frame-work is the session framework and a solution to the Complex forms problem. Furthermore,a validation framework that �t within the SLAML framework will be developed.

2
Design

Contents2.1 Session Framework . 342.2 Complex Forms Framework . 452.3 Validation Framework . 692.4 Summary . 77In this
hapter three main se
tions dis
usses and presents the de
isions made in the de-sign phase of this proje
t. The �rst se
tion explains how the session
on
ept is designedand what alternatives are possible. The se
ond se
tion explains the design of the exten-sions to the session framework to make
onstru
tion, presentation and updating of
omplexstru
tures possible. Last is the design of validation of data in the SLAML session framework.Throughout this
hapter new primitives are introdu
ed and explained. For a
ompletedes
ription of the primitives a referen
e to Appendix A is given. To get a
omplete under-standing of ea
h primitive the reader is requested to
onsult this appendix. Furthermorewe use a number of
on
epts, throughout the rest of this report. In the following box it isdes
ribed what we mean by these
on
ept.

34 CHAPTER 2. DESIGNAttribute: By attribute we mean a key/value pair
onsisting of a name and a string.An example is type = "TEXT" from an HTML input element. The whole is addressedas the attribute. type is addressed as the attribute name, and TEXT as the attribute value.Elements: An element refers to an element as it is known from the SGML family oflanguages. An element
onsists of
ontent and attributes. An example is; <elementattributes-name attribute-value ..> Contents </element>.Content: Content refers to everything inside a double tagged element. The
ontents ofone element
an be other elements.Tag: By tag we refer to a symbol from S
heme present in a list. I.e. a tagged list is a list
ontaining a symbol as the �rst element.Primitive: By a primitive we refer to the name binding of a fun
tion or a spe
ial form.Form parameters: Is the term used for the data entered by the
lient into an HTMLform and submitted to the server.The overall goal of this
hapter is to present and dis
uss the
onstru
ted framework thatsolves the problems presented in the problem de�nition in Se
tion 1.4. Furthermore, theframework is designed to work in a server
ontext where mod_laml is used as an implemen-tation platform. Therefore, it is not ne
essary that the framework �ts with CGI. Part ofthe
ontext of this proje
t is S
heme and the LAML libraries. Therefore the solutions willadhere to the XML like syntax used in LAML. But as the framework makes use of sendingfun
tions as parameters to other fun
tions, XML syntax will not always be possible. Wherethe syntax of XML is not followed dire
tly a noti
e will explain why it is
hosen to deviatefrom the LAML syntax.2.1 Session FrameworkIn the problem de�nition (see Se
tion 1.4) a hypothesis is presented regarding the use ofsessions to solve the problems of State handling and Reusability. Three sub-hypotheses arepresented to expand the �rst hypothesis. The sub-hypothesis state that introdu
ing a session
on
ept
an solve the Data �ow handling problem as well as the Control �ow handling prob-lem. Furthermore, allowing sessions to rely on parameters, sessions
an solve the Reusabilityproblem. The goal is to design a session
on
ept in SLAML that solves the problems fromthe three sub-hypotheses and thereby the �rst hypothesis.In this se
tion the design of the session
on
ept in SLAML is explained. First is
onsidera-tions regarding the design of sessions in SLAML. Se
ond,
hoi
es made regarding the design

2.1. SESSION FRAMEWORK 35is explained. Third, the �ow of a session is explained, followed by an example.2.1.1 Design ConsiderationsThree ways of
onstru
ting the session
on
ept is found in related work (see Se
tion 1.3).Sessions by Global State: This is the approa
h used by various page
entered approa
hesto Web development. This in
ludes PHP, ASP and JSP. Roughly a session is de�nedby a global state asso
iated with a
lient.Sessions by Nesting Event Handlers: This approa
h to sessions is to nest event hand-lers thereby a
hieving a session
on
ept. Event handlers are nested by letting one eventhandler present a page
ontaining a referen
e to another event handler.Sessions as Lexi
al S
opes: This approa
h relies on lexi
al s
ope rules of the languageto represent a session. All intera
tions taking pla
e in the same lexi
al s
ope (session)share data.These three approa
hes for
onstru
ting sessions are explained in details in the followingse
tions. Ea
h of the three approa
hes are dis
ussed in relation to data �ow and
ontrol�ow.Sessions by Global StateThis is the
on
ept of sessions used when most page
entered approa
hes implements ses-sions. In this approa
h sessions are a
hieved by maintaining a global state on the server,so intera
tions with a
lient
an a

ess shared data. In this way the s
ripts
an share dataa
ross invo
ations. The global state
an be lo
ated on either the server or the
lient. Themaintenan
e of the global state is often handled in the language. The
onsequen
e of usingthis strategy is that all pages share the same data. This means that there is no way ofse
uring the data from other pages that must a

ess the data (unless it is done expli
itly bythe programmer).This approa
h to sessions is illustrated in Figure 2.1. Here it is seen that four requestsfrom a
lient all a

esses the same global state. If a new page is requested by the
lient,this request
an a

ess the global state as the others. In this approa
h it is not possibleto prote
t the global state from being a

essed by e.g. Page 1 and Page 2. There existsno en
apsulation to indi
ate that the global state must only be a

essible from Page 3 andPage 4. This is the �rst problem with this solution. There exists solutions where the
lient- based on an unique id (session id) -
an get a

ess or is denied a

ess to global state. Thisis usually done by asso
iating the global state with the session id. The se
ond problem isthat the �ow of the appli
ation is spread a
ross several s
ripts. The �ow of the entire appli-
ation is not pla
ed
entrally, allowing the developer to qui
kly overview the session. Ratherthe �ow of the appli
ation is represented by the a
tivation of various smaller parts one by one.

36 CHAPTER 2. DESIGN
Page 1

Request

Response

Request

Response

Request

Response

Request

Response

Page 2

Page 3

Page 4

Global state

Server Client

Figure 2.1: An example of how global state is used to share data between intera
tions with a
lient.Introdu
ing global state on the server results in in
reased requirements for the server in termsof memory. The amount of memory required depends on the amount of
lients using theserver. It does not in
rease drasti
ally sin
e session state is moved to disk after an amountof time. Regarding disk spa
e there is in
reased requirements so there must be an expiretime for session state. It is hard to determine the amount of time that a session must be ondisk before it is expired. It is advisable to run the server with the sessions in a period (forexample six months) and during this time gather statisti
s about the usage of the sessionson disk. This provides su�
ient information to make a quali�ed de
ision.Sessions by Nesting Event HandlersThe event handling approa
h to sessions is the approa
h used in WASH/CGI (see Se
tion1.3.2) and PACKS/HTML (see Se
tion 1.3.3). The idea is to let the submit button in anHTML form on an HTML page be asso
iated with an event handler. When the HTML formis submitted, the event handler is
alled. In this way it is possible to
reate an intera
tionsequen
e by letting the
alled event handler generate a new HTML form and asso
iate thisHTML form with another event handler. This makes it possible to share data among pagesas these
an be sent as parameters to the
alled event handlers. As the WASH/CGI andPACKS/HTML solutions rely on the CGI proto
ol, the s
ript being exe
uted as part of theappli
ation program has to end after having pro
essed the request. The parameters haveto be send with the response to the
lient, for them to be available at the next page. Fur-thermore, the �ow of the appli
ation is spread a
ross several event handlers. It is therefore

2.1. SESSION FRAMEWORK 37di�
ult to get an overview of a whole session.This approa
h is illustrated in Figure 2.2. Here it is seen how the submission of one HTMLform a
tivates another event handler.
Submit

Form 1

Submit

Form 2

Event handler 1

Event handler 3

Request

Page 1

Event handler 2

Page 2

Page 3

Response

Response

Request

Request

ClientServer

Response

Figure 2.2: An example of how nested event handlers is used to do intera
tions with a
lient.Sessions as Lexi
al S
opesAn intera
tion sequen
e in Bigwig is en
apsulated in a session. A session is a lexi
al s
opewhere intera
tions that are performed inside the same s
ope share data. This makes it pos-sible for the developer to see whi
h intera
tions with the
lient, that share data. This is notpossible when a session is implemented as global state, due to the la
k of a
entral overviewof the entire appli
ation. Likewise it is not possible when event handlers are used for ses-sions. The reason is that the intera
tions with a
lient is not gathered at one pla
e, butspread a
ross event handlers. In Bigwig sessions
an be de�ned inside a servi
e. A servi
ede�nes a lexi
al s
ope that
onsists of sessions. The reason for introdu
ing the servi
e is toen
apsulate related sessions. Two sessions de�ned inside the same servi
e
an intera
t withea
h other and share data. Sessions in di�erent servi
es
annot interfere with ea
h other orshare data.In Figure 2.3, this approa
h to sessions is shown. Here it is seen that the program is
ontinuedfrom the pla
e where it left with the last response. In Figure 2.3 it is shown that Page1 andPage2 share data. In the same way it is illustrated that Page3 and Page4 share data. Thepages in the �gure represents intera
tions with the
lient. There are two essential thingsto be noted from this �gure. First, intera
tions in one session
annot a

ess data from

38 CHAPTER 2. DESIGNother sessions. Se
ond, intera
tions within the same session share data and the �ow of theintera
tions with the
lient are pla
ed in the same program �le.
Page1 and Page2

share data

Page3

Show page4

Show page3

Show page2

Show page1 Page1

Page2
Request

Request

Response

Page3 and Page4
share data

Page4

Response

Request

Response

Request

Response

Request

Service

Server Client

2 sessions

Figure 2.3: An example of how lexi
al s
ope is used to intera
t with a
lient.Introdu
ing sessions as a lexi
al s
ope requires more server pro
esses. Sin
e several intera
-tions with a
lient is
ondu
ted as part of the a
tivation of one SLAML session, the evaluationof su
h a session takes longer. Thereby it will use a server pro
ess for a longer period oftime. A need for more server pro
esses results in in
reased requirements for CPU powerand memory usage. The amount of extra CPU power and memory usage needed
an bedetermined by
onsidering the amount presently used for a server pro
ess.2.1.2 Design of the Session Framework in SLAMLIn the above, three di�erent session
on
epts have been dis
ussed. It is de
ided to basethe session
on
ept in SLAML on the session
on
ept from Bigwig (i.e. a new primitiveen
apsulate the intera
tions with a
lient by the use of lexi
al s
ope). The main reasonfor this is that the developer is able to see the whole �ow of a session. Another reason for
hoosing Bigwig's
on
ept of sessions, is that the developer is able to share data between theen
apsulated intera
tions with the
lient. This gives the developer a better overview of asession. The reason for not
hoosing the approa
h found in WASH/CGI and PACKS/HTMLis that the �ow of an appli
ation is not expressed as
learly in these approa
hes as in sessionas lexi
al s
ope. The idea of having the �ow of a session in one en
apsulation - rather thanas global state or separate event handlers - makes it expli
it whi
h pages share data.Sessions in SLAMLIn order to en
apsulate an intera
tion sequen
e with a
lient, a new primitive is
onstru
ted.This primitive is
alled slaml-session (page 113), inspired by the session primitive in Big-wig. Intera
tions inside the same slaml-session
an share data, by using variables in

2.1. SESSION FRAMEWORK 39S
heme. The lexi
al s
ope inside a session represents the �ow of an intera
tion with a
lient.In order to a
tivate a slaml-session, the slaml-a
tivate-session (page 115) primitiveis used. slaml-a
tivate-session a
tivates a session, and thereby starts the intera
tionwith the
lient.In some
ases it is ne
essary to send parameters to a slaml-session. Imagine a sessionwhere the name of the person - who is logged in - is pla
ed on the top of ea
h page in asession. In su
h an example the possibility of sending parameters to a session is a greatadvantage. To obtain �exibility on a session, as is needed for sessions to be reusable, it isimportant that sessions
an take parameters. Parameters are passed to slaml-sessions inthe way seen in Figure 2.4(slaml-a
tivate-session(slaml-session (sessionparm);
ontents of the session) 'sessionparm person-name) Figure 2.4: An illustration of how a slaml-session is de
lared and a
tivated.In this example person-name is passed to the slaml-session. De
laration of a slaml-sessionis also shown in Figure 2.4. A slaml-session always takes one parameter. Parame-ters
an be send to a slaml-session by evaluating slaml-a
tivate-session with thesessionparm attribute. The attribute value is the parameter passed to the a
tivated ses-sion. A slaml-session returns the last expression evaluated in the session. The reason forthis is, that this is how return values are spe
i�ed in S
heme. Sessions in the language are�rst
lass obje
ts allowing the same possibilities with sessions as with fun
tions.Implementation slaml-a
tivate-session is implemented as a fun
tion that extra
tssession parameters for the optional attributes to slaml-a
tive-session. The slaml-sessionwhi
h is required as a parameter to slaml-a
tivate-session is exe
uted with the optionalsession parameters if any where supplied. slaml-a
tivate-session is de�ned as follows:(define (slaml-a
tivate-session sessionfun
 . args)(let ((parms (slaml-get-sessionparm-parm args)))(sessionfun
 parms)))It always takes one parameter and possible more. First is extra
ts the session parame-ters from the optional parameters. Then it a
tivates the sessionfun
 with the optionalparameters.

40 CHAPTER 2. DESIGNClient Intera
tion in SLAMLIn order to intera
t with a
lient a primitive is needed to show a page to the
lient andreturn the data from the
lient. In Bigwig this is done by the primitive
alled show. InSLAML this primitive is
alled slaml-show (page 115). What slaml-show does is to send apage to the
lient and re
eive the data submitted - by the
lient - from that page. The datareturned from the
lient is passed as a list of key/value pairs. When slaml-show returnswith a request from the
lient, the slaml-session is
ontinued from the pla
e where theslaml-show that showed the page to the
lient is issued.A page in SLAML is represented by a primitive
alled slaml-page (page 114). slaml-pagemust take one argument and return the HTML string to be presented to the
lient. This
anbe done by writing the HTML string manually. But a more appropriate way is to use thehtml
onvenien
e fun
tion from the LAML mirror available from [lam01℄ for generating theHTML string. A slaml-page
an be written as a lambda fun
tion from S
heme, sin
e thisallows for passing parameters to the page. Parameters are however not passed in this way.Instead parameters to a page are passed as a list. This list is spe
i�ed with the pageparmattribute - with an asso
iated parameter list - to the slaml-show primitive. The reason forpassing parameters in this way, is that this makes it possible to send more parameters bywrapping them in a list. The reason for using the slaml-page rather than a lambda is toget a better understanding of a program. A developer seeing a slaml-page is less in doubtof the nature of the fun
tion than if it was a lambda fun
tion. For an example
onsider thefollowing:(slaml-show(slaml-page (pageparm)(html(head (title "The title"))(body"The page parameter: " (
ar pageparm)(br)))) 'pageparm (list "Parameter one" "Parameter two"))Figure 2.5: An example of how a slaml-page is de
lared and shown.In this example it is seen how a slaml-page is shown to the
lient. Noti
e the slaml-pagewhi
h takes a list of parameters. How data is returned from the
lient is dis
ussed in Se
tion2.1.3.To allow for de�ning sessions and pages in SLAML two new primitives are introdu
ed.slaml-define-session (page 114) is used to de�ne sessions. Likewise slaml-define-page(page 114) is used to de�ne pages. Both of these primitives are similar to the define primi-tive in S
heme. They have been
reated to allow the developer to better di�erentiate betweenthe de�nition of pages or sessions and fun
tions. This is useful if the developer has written

2.1. SESSION FRAMEWORK 41a large program. As soon as the slaml-define-page or slaml-define-session is seen thedeveloper is not in doubt of what is being de�ned.Implementation The slaml-show primitive is implemented as a fun
tion that a
tivatesa primitive in the mod_laml server module. This primitive - named slaml-display -handles the
ommuni
ation with the
lient. On
e
ontrol is returned from this primitive,slaml-show a
tivates a fun
tion that generates a key/value pairs list of the form parametersre
eived from the
lient. The implementation of slaml-show is shown in the following.Note that fun
tionality for validation is also in
luded in this implementation. Validation isdes
ribed in Se
tion 2.3.(define (slaml-show pagefun
 . args)(slaml-display (pagefun
 (slaml-get-pageparm-parm args)))(let ((parms (slaml-
reate-parm-lst (slaml-get-args)))(
he
k (slaml-get-
he
kfun
-parm args)))(if
he
k(
he
k parms (slaml-get-
he
kparm-parm args))parms)))SLAML Sessions Compared With BigwigComparing this idea with the session
on
ept in Bigwig, one di�eren
e is that Bigwig has aservi
e layer - represented by the servi
e primitive - that en
apsulates one or more sessions.This servi
e layer is not introdu
ed as a primitive in SLAML, be
ause a servi
e in SLAMLis represented by the entry point (represented by a single �le) to an appli
ation initiallyrequested by a
lient. This means that if sessions wants to share data they must be de�nedin the �le representing the entry point.A
tivation of sessions in Bigwig
an be done in two di�erent ways. Either by requesting aservi
e
ontaining the session to be exe
uted, or by passing a parameter in the URL indi-
ating the name of the session to be a
tivated. When a servi
e is a
tivated it is expli
itlystated in the servi
e whi
h session to start. When the session is passed as URL parameterea
h session - de�ned inside a servi
e -
an be a
tivated individually. Only the �rst approa
his supported by SLAML, the se
ond is not. The latter approa
h requires a

ounting on theserver of the sessions available to
lients.In Bigwig the show primitive is used to show an HTML page to a
lient, and a similar prim-itive is present in SLAML (slaml-show). The session primitive (slaml-session) is similarto session in Bigwig. However, the way that values are re
eived from the input elementsin an HTML form, is di�erent. In Bigwig the developer spe
i�es whi
h variables the formparameters must be bound to. In SLAML all value are returned in a list, whi
h
ontainskey/value pairs of the attribute names and the attribute values entered by the
lient. The

42 CHAPTER 2. DESIGNreason for
hoosing this solution is that when handling large forms, it is
umbersome tospe
ify all the relations between variables in a program and the input elements in an HTMLform. Another and more important reason for this solution has to do with the way SLAMLhandle
omplex forms. Complex forms are des
ribed in Se
tion 2.2.2.1.3 Flow of a Session in SLAMLIn this se
tion the �ow of sessions in SLAML is des
ribed. This is illustrated in Figure 2.6.
Request

Request

Request

Request

Request

Response

Response

Response

Response

Page1 and Page2
share data

share data
Page3 and Page4

two slaml−sessions

slaml−show Page1

slaml−show Page2

slaml−show Page3

slaml−show Page4

ClientServer

Page1

Page2

Page3

Page4

Service

Figure 2.6: An illustration of the �ow of two slaml-session's, ea
h
ontaining twoslaml-show's.When the
lient requests a SLAML program it is a
tivated and evaluated. In the examplein Figure 2.6 the SLAML program
ontains two slaml-sessions. Here the �rst session isa
tivated and Page1 is shown to the
lient with the slaml-show primitive. The
lient
anthen send a new request to the server (by submitting the form on the HTML page), and theSLAML program will
ontinue from where it was left when the last response was send tothe
lient (the slaml-show primitive returns
ontrol to the surrounding program). Follow-ing this, Page2 is shown to the
lient in a similar manner. On
e
ontrol is returned fromthe slaml-show the �rst session is ended. Control is returned to the SLAML program andthe se
ond session is a
tivated. This �ow of
ontrol gives the developer the possibility toview several intera
tions (a session) with a
lient as one program rather than small separateprograms.The data - from a submitted HTML form - belongs to the lexi
al s
ope that the slaml-showwas issued in. This gives an overview of the data �ow in a program, as the data from apage is returned to the same pla
e in the program �ow as the page was send from. Thisgives the possibility to issue a slaml-show as a way to get data from the
lient. In this waythe slaml-show fun
tion
an be
ompared to other fun
tions in the program. Whenever

2.1. SESSION FRAMEWORK 43the developer needs data from the
lient to pro
eed the
al
ulation, the
lient is asked fordata and the evaluation
an resume. As the developer builds the HTML page to show tothe
lient, it is known what data is returned from the user.2.1.4 Example of the SLAML Session FrameworkIn this se
tion a small example of the session framework is presented and explained. Ad-ditional and more
omplex examples are presented and dis
ussed in Chapter 3. Figure 2.7shows an example of how the various elements in the session framework are used.(slaml-define-sessionsimple-session(slaml-session (sessionparm)(let* ((simple-page1(slaml-page(pageparm)(html(head (title "The page 1 title"))(body"The page parameter: " pageparm (br)"The session parameter: " sessionparm (br)(form(input 'type "TEXT" 'name "inputdata")(input 'type "SUBMIT"))))))(page1-data(slaml-showsimple-page1'pageparm "Parameter to page1")))(slaml-show(slaml-page (pageparm)(html(head (title "The page 2 title"))(body"The page parameter: " pageparm (br)"The session parameter: " sessionparm (br)"Data from page1 before is: "(slaml-formparms-key->value 'inputdata page1-data)))) 'pageparm "Parameter to page2"))))(slaml-a
tivate-sessionsimple-session'sessionparm "Parameter to session")Figure 2.7: An example of using the elements in the session framework.

44 CHAPTER 2. DESIGNThis example shows a simple session. The session de�ned is named simple-session and isa
tivated in the last expression. Note that parameters are passed to simple-session as spe-
i�ed by the 'sessionparm attribute. When the session is a
tivated, it starts by bindinga slaml-page expression to simple-page1. simple-page1 represents an HTML page withinformation about the session parameter, the page parameter and it
ontains one input ele-ment. The next step in the evaluation is to show the simple-page1 page, and bind the datareturned to the variable
alled page1-data. Noti
e that simple-page1 is passed a parameterspe
i�ed by the 'pageparm attribute to the slaml-show fun
tion. The last thing done isto show a slaml-page that also takes a parameter. On this page the page parameter, thesession parameter and the value that is entered on simple-page1 are shown. Noti
e the useof the slaml-formparm-key->value (page 117), whi
h is used for extra
ting the value ofthe inputdata attribute from the page1-data list.2.1.5 Solution to the State Handling ProblemIn this se
tion it is dis
ussed how sessions in SLAML solve the State handling and theReusability problem dis
ussed in Se
tion 1.1.1 and Se
tion 1.1.4. The reason for introdu
ingthe session
on
ept in SLAML, is to solve these problems.Solution to the Control Flow Handling ProblemThe solution to the Control �ow handling problem is inspired by Bigwig and the ideasintrodu
ed there, where it is a primitive in the language that presents a page to a
lient. Thisprimitive is
alled slaml-show in SLAML. Furthermore Bigwig inspired us to let program
ontrol return to the pla
e in the program where the slaml-show primitive is a
tivated. Thisresults in the developer being able to see the �ow of an appli
ation in the program
ode ofthe appli
ation. As a primitive is introdu
ed to show a page and return data from the
lient,the program
ontinues from the pla
e in the program where the slaml-show primitive isa
tivated. A slaml-show in the program
an be
onsidered as any other fun
tion in termsof understanding the program. It is a fun
tion that is evaluated and returns the result ofthe evaluation, whi
h is a list
ontaining the information re
eived from the
lient.Solution to the Data Flow Handling ProblemThe Data �ow handling problem is solved along with the Control �ow handling problem, asparameters already re
eived from the
lient
an remain on the server. The only parameterhandling that is ne
essary is to ask the
lient for data and re
eive the parameters. On
e theparameters have rea
hed the server they exist when the next request
omes from the
lient.This means that the
hosen solution relies on storing state on the server side. This resultsin easier parameter handling than in CGI. The reason is that the developer does not needexpli
itly to send all the parameters to the
lient and re
eive them on the server to maintainstate. There is also problems with this solution as it requires spa
e on the server for storing

2.2. COMPLEX FORMS FRAMEWORK 45the state. Furthermore there is a se
urity
on
erns to be
onsidered when storing the stateon the server. It must not be possible for one
lient to a

ess the state of another
lient.2.1.6 Solution to the Reusability ProblemThe problem of being unable to reuse a number of related pages as one unit has been solvedby introdu
ing sessions as �rst
lass obje
ts. In SLAML it is possible to de�ne a session andlater a
tivate it, thereby allowing the developer to a
tivate a session on demand. This meansthat the developer is able to exe
ute a number of pages following ea
h other and re
eive datafrom the session. Being able to re
eive information from a session on the same level as it ispossible from a page means that there are little di�eren
e between invoking a session anda page to return some data. As an example the developer
an freely
hoose to develop asession or a page to re
eive some spe
i�
 data from the
lient.2.2 Complex Forms FrameworkAs presented in the Analysis (see Se
tion 1.1.3) there is no good solution to maintain datain a
omplex stru
ture when it has been send to the
lient. This lead us to our hypothesis:Hypothesis 2:It is possible to
onstru
t a framework that helps the developer to build,present and update
omplex stru
tures.Three possible ways of representing an HTML form as a
omplex stru
ture has been identi-�ed:1. A data stru
ture2. A language3. A paradigmA nested lists approa
h is used to represent a
omplex stru
ture as a data stru
ture. To repre-sent a
omplex stru
ture as a language, an embedded domain spe
i�
 language is
onsidered.Last, an obje
t oriented approa
h is used to represent the paradigm way of representing a
omplex stru
ture. Ea
h approa
h is presented in the following se
tion. Note that the fol-lowing se
tion serves as a presentation of possible solutions to the Complex forms problem.The de
isions made in order to design the a
tual solution to the Complex forms problem arepresented in Se
tion 2.2.2.2.2.1 Design ConsiderationsIn this se
tion, solutions to how a
omplex stru
ture
an be
reated in order to be representedas an HTML form are
onsidered. The solution must �t well in the
ontext of this proje
t,namely S
heme, LAML and mod_laml. Re
all that the Complex forms problem is split intothree steps (see Figure 1.10 on page 17). These steps are:

46 CHAPTER 2. DESIGN1. Creating the
omplex stru
ture2. Representing the
omplex stru
ture as an HTML form3. Updating the
omplex stru
ture with data from the
lientCreating a
omplex stru
ture means, that the developer
reates a
omplex stru
ture in theprogramming language. This is the stru
ture, that it is of interest to get �lled with datafrom the
lient. Representing the
omplex stru
ture as an HTML form is the se
ond step.This is done, in order to re
eive the data from the
lient. The third step, updating, is wherethe
omplex stru
ture is updated with the information from the HTML form. Updating the
omplex stru
ture is done on behalf of the form parameters, whi
h are pla
ed in a key/valuepairs string. Ea
h of the three possible ways of handling an HTML form - nested lists,embedded domain spe
i�
 language and obje
t orientation - is
onsidered in relation to thethree steps, that makes up the Complex forms problem. These are the steps just presented,namely
reating, representing and updating.Nested List Approa
hThis �rst approa
h relies on lists in S
heme. The reason for
onsidering a nested list ap-proa
h, is that both data and program are represented as lists in S
heme. This means,that a developer working with S
heme, is familiar with lists and list syntax. Furthermore,any �rst-
lass value
an be a list element, so there are only few requirements to list elements.The �rst step in the Complex forms problem,
on
erns the
reation of the
omplex stru
turein the programming language used (S
heme in the
ontext of this proje
t). The personstru
ture from Se
tion 1.1.3, is in the following written by the use of nested lists:(person(name(first-name "")(last-name ""))(address(
ountry "")(
ity(
ity-name "")(postal-number ""))(street(street-name "")(house-number "")))(email "")(phone "")(age ""))This is an example of a nested list stru
ture, whi
h it is of interest to get �lled with infor-mation from the
lient. Three types of elements exists in the list; symbols, other lists andstrings. The strings represent the values �lled into the HTML form by the
lient. The strings

2.2. COMPLEX FORMS FRAMEWORK 47are empty (""), sin
e the nested list stru
ture has not been �lled with information from the
lient. The symbols (the �rst element in ea
h of the lists) are used to spe
ify informationabout the other elements in the list. E.g. the symbol name indi
ates, that the following ele-ments in the list, makes up a name. Using symbols, strings and lists as elements, a
omplexstru
ture
an be
reated.The next step in solving the Complex forms problem is to represent the nested list stru
tureas an HTML form. To make the task of getting the HTML string representation of a nestedlist stru
ture simple, a fun
tion is used. This fun
tion takes the nested list stru
ture as aparameter, and returns the HTML form representation. However, there are no elements inany of the nested lists in the person stru
ture, that spe
i�es how the stru
ture is representedas an HTML form. Two possible ways in handling the HTML layout of a nested list stru
turehave been identi�ed. These are, layout by:1. attributes2. a style sheetLayout spe
i�ed by attributes, means that the HTML layout information about the di�er-ent lists in the nested list stru
ture is added as attributes to a list. Consider the list tagged
ity-name (the list, whi
h has the symbol
ity-name as the �rst element). By adding anattribute named type, the HTML representation of
ity-name
an be spe
i�ed. E.g. does(
ity-name 'type "TEXT") spe
ify, that the
ity-name list must be presented as an HTMLinput element of the type TEXT. By spe
ifying a type attribute to all of the lists, HTMLlayout information is embedded in the nested list stru
ture. Sin
e HTML layout informationis embedded in the nested lists, the nested list stru
ture is mixed with data and informationabout the HTML layout.By using a style sheet instead of attributes to spe
ify the HTML layout of a nested liststru
ture, the nested list stru
ture is separated from the HTML layout information. Thestyle sheet is de�ned external to the nested list stru
ture; e.g. in another list. The stylesheet list,
an be an asso
iation list, where ea
h symbol from the nested list stru
ture is as-so
iated HTML layout information. This means, that the list tagged
ity-name has an entryin the asso
iation list. This entry looks like (
ity-name . "text-input"). Using a style sheetsupports separation between data and layout, sin
e the data is represented in the nested liststru
ture whereas layout is spe
i�ed in an external style sheet list.The last step in the Complex forms problem is to update the nested list stru
ture with theinformation re
eived from the HTML form. In order to update a nested list stru
ture withdata from an HTML form, both the stru
ture and the data from the
lient must be presentat the server. Be
ause of the session framework already designed, the S
heme environmentwill survive intera
tions with the
lient. This means, that the nested list stru
ture does notneed to be stored in an hidden HTML element or on the servers �le system, in order to bepresent after a request. By
omparing the keys - in the key/value pairs re
eived from the
lient - with the names in the nested list stru
ture, the nested list stru
ture is updated with

48 CHAPTER 2. DESIGNthe values. This task is handled by a fun
tion, and when given a nested list stru
ture andthe
orresponding form parameters, the fun
tion returns the updated nested list stru
ture.A great advantage with the nested list approa
h is, that mu
h fun
tionality for doing listmanipulation is present in the S
heme programming language. This
overs fun
tionality toget the head and the tail of a list (
ar and
dr respe
tively) together with fun
tionalitythat supports
reating and extending lists (like list,
ons, append, map and length). Thisfun
tionality helps the developer to
reate and work with lists.A problem with the nested lists approa
h is the way HTML layout is handled. The HTMLlayout information is spe
i�ed by type information, whi
h is used by the fun
tion that gen-erates the HTML layout. This makes it impossible for the developer to spe
ify a
ustomizedHTML layout, e.g. spe
ify that the input elements must be pla
ed in an HTML table.The reason this is a problem, is that a type does not
ontain information about the relationbetween elements. Instead, type information is only related to a single element.Embedded Domain Spe
i�
 LanguageInstead of using a nested list approa
h to solve the Complex forms problem, an embeddeddomain spe
i�
 language
an be used. This approa
h is inspired by the paper, �Little Lan-guages and their Programming Environment� [CGKF02℄. A domain spe
i�
 language, is aprogramming language, that is developed to solve problems in an spe
i�
 domain. In the
ontext of this proje
t, the domain is
omplex stru
tures and HTML forms. The problemin this domain, is the Complex forms problem. That a language is embedded, means that itis implemented inside another language (a host language). This means, that the interpreterin the embedded language
an rely on features in the host language when it is implemented.The embedded domain spe
i�
 language used to solve the Complex forms problem, is nameds� (Small Form Language), and the host language is S
heme. s� is in the following
onsid-ered in relation to
reating, representing and updating a
omplex stru
ture.To
reate a stru
ture by using s�, means to write a program in s�. A s� program mustbe interpreted by the s� interpreter. Therefore, a primitive must exist in S
heme, whi
hes
apes from the S
heme interpreter into the interpreter for s�. This primitive is namedsfl, and an example of how to write a program in s� is presented below:(let ((
omplex-stru
ture(sfl(sfl-
olle
tion "person"(sfl-
olle
tion "name"(sfl-text-input "first-name")(sfl-text-input "last-name"))(sfl-
olle
tion "address"(sfl-text-input "
ountry")(sfl-
olle
tion "
ity"(sfl-text-input "
ity-name")(sfl-text-input "postal-number")

2.2. COMPLEX FORMS FRAMEWORK 49)(sfl-
olle
tion "street"(sfl-text-input "street-name")(sfl-text-input "house-number")))(sfl-
he
kbox-input "email")(sfl-
he
kbox-input "phone")(sfl-text-input "age")))));
omplex-stru
ture
an now be used)The above example is in the following dis
ussed in relation to the syntax, the return valueand the primitives in s�. The syntax of a s� program, is similar to the list syntax used inS
heme. Alternatively a syntax with in�x notation (instead of S
heme's pre�x) and
urlybra
kets (instead of parenthesis)
an be used. However, no reason for
hanging the syntaxis seen. It will only be an irritating requirement, that the developer must
hange syntaxin the middle of a S
heme program. However, another syntax indi
ates that the developeris using s�, but this
an easily be seen be
ause of S
heme's pre�x notation (the �rst worden
ountered when using s� is the sfl primitive). Sin
e a s� program is embedded in aS
heme program, the surrounding S
heme program expe
ts to get a return value from s�. Inthe above example, this value is stored in a variable named
omplex-stru
ture. As the name-
omplex-stru
ture - indi
ate, a
omplex stru
ture is returned from a s� program. This
omplex stru
ture
an be a nested list stru
ture or an abstra
t syntax tree. The primitivesin s� are dis
ussed in the following, in relation to the HTML representation.Spe
ifying the HTML representation of a
omplex stru
ture programmed in s�, is doneby using the primitives in sfl. In the nested list approa
h the developer has to spe
ifyHTML layout of the nested list stru
ture, by the use of attributes or a style sheet. Ins�, the HTML layout information is indi
ated by the names of the primitives. E.g., theprimitive slt-
he
kbox-input indi
ates, that an email (from the example above) is an HTMLinput element of the CHECK type. However, the s�-
olle
tion primitive, does not spe
ify anyinformation about HTML layout. A solution to this problem, is to extend the interpreterin s�, to re
ognize LAML like fun
tions. This means, that there is a mapping between s�primitives, and LAML mirror fun
tions. E.g. s�-br maps to the brmirror fun
tion in LAML.The reason for adding s� to the names of the LAML mirror fun
tions, is to spe
ify that itis not possible to use LAML - and S
heme - fun
tions dire
tly in the embedded language.The following example illustrates how a s�-
olle
tion
an be presented as an HTML table,if the HTML layout spe
i�
ation is embedded:(sfl..(sfl-
olle
tion "street"(sfl-table(sfl-tr(sfl-td

50 CHAPTER 2. DESIGN(sfl-
olle
tion "
ity"(sfl-text-input "
ity-name")(sfl-br)(sfl-text-input "postal-number"))))))..)Sin
e HTML layout information is not
onne
ted to the way the
omplex stru
ture is repre-sented in S
heme, the return type from sfl is
hanged. Both the HTML layout informationand the
omplex stru
ture is present in the s� program. Therefore, a s� program returnsthe
omplex stru
ture (without HTML layout information) and its HTML representation.Updating a
omplex stru
ture returned from a s� program, is handled in the same wayas with the nested list approa
h. Re
all, that this was done by sending both the
omplexstru
ture and the form parameters to an update fun
tion. This fun
tion returns a
omplexstru
ture,
ontaining the values from the form parameters.An advantage with an embedded domain spe
i�
 language, is that a language is
reated tosolve a spe
i�
 problem. In this proje
t the problem is the Complex forms problem. Theintrodu
tion of spe
i�
 primitives allows the developer to use spe
ial designed fun
tionality,whi
h has the purpose of
reating a
omplex stru
ture. This makes it possibility to spe
ify
olle
tions of elements, but also information about the HTML layout of the stru
ture. Aproblem with the embedded language approa
h is, that the same embedded program
an-not be
hanged after it has been evaluated. This results in the impossibility to
hange the
omplex stru
ture
reated by the embedded program. Another problem is, that the HTMLlayout is in
luded in the embedded program. If the embedded program is large, it makesit di�
ult for developer to maintain the overview of what is HTML layout information andwhat is stru
ture.The possibility to spe
ify the HTML layout by using LAML like fun
tions, is an advantagein relation to the nested list approa
h. In the nested list approa
h, the developer
annot
ustomize the HTML layout relation between the di�erent elements, sin
e HTML layout isspe
i�ed by type information. However, a nested list stru
ture
an be bound to a variablein the S
heme environment, whi
h allows the developer to manipulate the stru
ture whenwanted. This is not possible in the embedded language approa
h, sin
e a variable bound toan embedded program will result in the variable being set to the return value of the program.Thus the stru
ture (in the form of a program)
annot be manipulated when wanted.Obje
t Oriented Approa
hInstead of
reating a stru
ture as nested lists or in an embedded language, an obje
t stru
-ture
an be
reated. Just as with the other approa
hes, an obje
t stru
ture must
ontaininformation about the
omposition of elements. Su
h a stru
ture
an be handled with the

2.2. COMPLEX FORMS FRAMEWORK 51Composite Design Pattern[ERRJ95℄, as this is used to represent part whole hierar
hies. Anexample of an obje
t stru
ture based on the Composite Design Pattern is seen in Figure 2.8.Two types of
lasses exist in the Composite Design Pattern, namely the
omposite and theleaf
lass.
aCompositeaLeaf

aLeaf aLeaf

aLeafaLeaf

aComposite

Figure 2.8: An example of an obje
t stru
ture based on the Composite Design Pattern[ERRJ95℄.aComposite is an instan
e of the
omposite
lass, and aLeaf is an instan
e of the leaf
lass.A
omposite obje
t
an represent a
olle
tion of
omposite and leaf obje
ts, like a s�-
olle
tion from the embedded language approa
h
an represent other
olle
tions or basi
elements. A leaf
annot represent other obje
ts, but instead represent the basi
 entity in thestru
ture. Here a
omposite stru
ture is used to represent an HTML form, so a leaf mustrepresent a single HTML input element.With the
lasses introdu
ed, it is possible to
reate an obje
t stru
ture, whi
h must be �lledwith data from a
lient. Su
h an obje
t stru
ture, is
reated by linking obje
ts together.This is done by using nested
onstru
tors, when the obje
ts are
reated. Ea
h name in thefollowing example,
orresponds to the initialization of an obje
t.(aComposite (aLeaf) (aLeaf) (aComposite (aLeaf) (aLeaf)) (aLeaf))The above is an initialization of the obje
t stru
ture presented in Figure 2.8. The rootelement has four
hildren, where one is a
omposite obje
t and the others are leafs. The
omposite
hild has two
hildren, whi
h are leafs. The relation between the obje
ts in theabove obje
t stru
ture is spe
i�ed at initialization time, namely by the use of
onstru
tors.An obje
t stru
ture
an also be spe
i�ed by message passing. This approa
h is
umbersome,sin
e all the obje
ts must be linked together by passing individual obje
ts as arguments tofun
tions on other obje
ts. An example is presented below.(define root (aComposite))(add (aLeaf) root)(add (aLeaf) root)

52 CHAPTER 2. DESIGNThe add fun
tion takes two obje
ts as argument, and the �rst argument is added as a
hildof the se
ond. aLeaf returns a leaf obje
t, and aComposite returns a
omposite obje
t. Asseen in the above example, it is more
omprehensive to
reate an obje
t stru
ture in this way,than if a
onstru
tor is used. To
reate the same obje
t stru
ture by using a
onstru
tor,the developer writes: (aComposite (aLeaf) (aLeaf)).To
reate an HTML form representation of the obje
t stru
ture, a fun
tion that re
ursivelytraverses the obje
t stru
ture and performs the layout is used. On behalf of the type of anobje
t (a
omposite or a leaf), it is determined how an obje
t is presented in an HTML form.To represent the various types of HTML input elements, spe
ialization is used on the leafobje
ts. This allows the leaf obje
t to map to an HTML input element. By using the obje
ttypes to determine the way an obje
t is presented as HTML layout, it is not possible toperform HTML layout on
omposite obje
ts. The reason for this is, that a
omposite obje
tdoes not map to an HTML element. A solution to this problem is to spe
ify HTML layoutas a property of an obje
t. This allows the developer to spe
ify HTML layout of a
ompositeobje
t. When the HTML representation of the obje
t stru
ture is
reated, the HTML layoutproperty on ea
h obje
t is
onsidered instead of the type of the obje
t. However, it is onlyleaf obje
ts, that
an be represented as HTML input elements in an HTML form.Updating the obje
t stru
ture is done on behalf of the form parameters. By the introdu
-tion of the session framework, the obje
t stru
ture is present on the server after a requesthas �nished. The information from the form parameters are added the obje
t stru
ture bysetting it on the individual obje
t. When information from the obje
t stru
ture is needed,the value of the data property
an be obtained from the individual obje
ts.When using the obje
t oriented approa
h the developer is given two possible ways of
reatingan obje
t stru
ture. This
an be done by using message passing or the
onstru
tor. Thisallows the developer to
reate some of the stru
ture by using the
onstru
tor, and afterwardadd elements when wanted by using the message passing me
hanism. This is e.g. bene�-
ial, when the obje
t stru
ture is extended with more obje
ts after is has been
reated andused. Furthermore, the developer is not for
ed to in
lude HTML layout information whenspe
ifying the obje
t stru
ture. This information
an be
reated external, and added theindividual obje
ts afterward. This allows a separation between HTML layout spe
i�
ationand the
reation of the obje
t stru
ture.In the nested list approa
h, it is possible to modify the nested list stru
ture by using fun
tionsavailable in the S
heme language. This is not possible in the obje
t oriented approa
h, sin
eobje
t oriented programming is not supported by standard S
heme. However, by spe
ifyingthe HTML layout property on the
lasses, it is possible to
ustomize the HTML layout. Thisis also possible in the embedded domain spe
i�
 language approa
h, but not in the nestedlist approa
h.

2.2. COMPLEX FORMS FRAMEWORK 532.2.2 Design of the Complex Forms Framework in SLAML
It is
hosen to use an obje
t oriented approa
h in the
omplex form framework. This mightseem odd, as S
heme is mainly a fun
tional language. The reason for
hoosing the obje
toriented approa
h is that it allows for division of spe
i�
ation of the layout and spe
i�
ationof the stru
ture. This division allows for easy addition or removal of obje
ts representingelements in the obje
t stru
ture. This means that it is easy to modify and reuse the stru
turethroughout an appli
ation.The reason for not
hoosing the domain spe
i�
 language, is that on
e the embedded inter-preter returns a result it is impossible to mutate this result to �t into another page. The�exibility to
ontinue to use the
omplex stru
ture throughout the appli
ation is not present.Another reason is that when the embedded interpreter is
onstru
ted, it needs a

ess to theLAML fun
tionality. However LAML fun
tionality is not a

essible from the embeddedinterpreter unless the interpreter is told how to handle it. There are two possibilities tosupport LAML fun
tionality in an embedded interpreter. The �rst is to mirror the fun
tionsfrom LAML to the embedded interpreter. This
an be done by mapping fun
tions fromthe LAML library to the embedded language. Thereby, LAML fun
tionality is available inthe embedded language. The se
ond possibility is to es
ape from the embedded interpreterand let the S
heme interpreter handle exe
uting of the LAML fun
tionality. But on
e theembedded interpreter is left, the S
heme interpreter do not know how to exe
ute the domainspe
i�
 language. Therefore there is a need for having all the domain spe
i�
 language fun
-tionality outside the embedded interpreter, to enter the embedded interpreter again. Thismeans there is a need for having a mix of fun
tionality both outside the interpreter andinside the interpreter. By
hoosing an obje
t oriented approa
h it is not ne
essary to es
apeto another interpreter to have fun
tionality exe
uted.This se
tion starts with a presentation of the three steps -
reation, presentation and updat-ing - that are performed, when using the
omplex forms framework in SLAML. Se
ond isan introdu
tion of the
lasses needed in the
omplex forms framework. Third, is a presen-tation of how obje
t oriented programming is simulated in S
heme. This is in
luded for theS
heme interested reader. Fourth, it is presented how
reation, presentation and updatingare performed in the
omplex forms framework in SLAML. Last, is an example of how the
omplex forms framework is used.The steps that are taken when using the
omplex forms framework are presented in Figure2.9.

54 CHAPTER 2. DESIGN

B

A

C

D E

Update the object
structure with the
data from client

B

A

C

D E

Knowledge of
structure remains
on the server

Client is shown a
graphical representaion

B

D E

C

A

HTML page

B D E

B

A

C

D E

String representaion
of the structure

Presses the submit button

Server Client

Client enters data

Step 1

Step 2

Step 3

Send representation of
structure to client

Create object structure

Figure 2.9: An illustration of the a
tions involved in handling the
omplex form, when presentingit to the
lient and updating it with the form parameters from the
lient.Step 1
on
erns the
reation of the obje
t stru
ture. This involves the spe
i�
ation of the re-lation between the obje
ts and the spe
i�
ation of the HTML layout of the obje
t stru
ture.Step 2
overs the HTML representation of the obje
t stru
ture as an HTML form. Whilethe HTML form is being presented to the
lient, the information about the obje
t stru
tureis present on the server. Step 3 is related to updating the obje
t stru
ture with the formparameters re
eived from the
lient. Re
all, that the form parameters, is a key/value pairsstring (an asso
iation list in S
heme).The obje
t model used in the
omplex forms framework has three
lasses. The �rst
lass is
alled slaml-basi
-element (page 118) and represents a leaf in an obje
t stru
ture. These
ond
lass is
alled slaml-element (page 117) and represents a
omposition of obje
ts.The last
lass is
alled slaml-form-element (page 119) and represents the root obje
t inan obje
t stru
ture. An instan
e of the slaml-form-element
lass is also a
omposite obje
t.A reason for only introdu
ing three
lasses is the fo
us on the stru
ture rather than HTMLlayout, when
reating the obje
t stru
ture. This is due to the in
reased abstra
tion obtainedby separation of
on
ern between the stru
ture and the HTML layout of the stru
ture. Thereason for fo
using on the stru
ture is that layout is only asso
iated with the stru
ture andnot part of the stru
ture. Had fo
us been equally on layout and stru
ture, the approa
h usedin DOM[WG02℄ might be more appropriate. The reason is that all elements from HTML isavailable in DOM and thereby the layout of a page
an be
reated using DOM.

2.2. COMPLEX FORMS FRAMEWORK 55Having separated the layout from the presentation the fo
us is on the
lasses needed to
reate the stru
ture. There are three di�erent expe
tations to the obje
ts in the obje
tstru
ture. Sin
e the obje
t stru
ture must be able to re
eive data, its representation mustbe rooted in an HTML form. This �rst expe
tation is a
lass representing the root of theobje
ts stru
ture. This is represented by the
lass named slaml-form-element. Sin
e thestru
ture is
reated with an expe
tation of re
eiving some data from the
lient, a
lass mustrepresent the data from the
lient. This is the di�erent HTML input elements. Therefore a
lass must represent an expe
tation of data. This
lass is
alled slaml-basi
-element.The last expe
tation regarding the stru
ture is representation of the
omposite elements.With the above two
lasses the root and the leaf of the obje
t stru
ture are
overed. A
omposite obje
t as seen in the Composite Design Pattern
an be used to represent the
omposition of several obje
ts. Su
h an obje
t allow addressing a group of obje
ts as one.This
lass is
alled slaml-element. No additional expe
tations are present, and thereforeno additional
lasses are introdu
ed.On
e the stru
ture has been build the layout fun
tionality is
reated and asso
iated with theindividual obje
t in the stru
ture. In this way the stru
ture is in fo
us. The presentation isa property on the individual obje
ts. Ea
h of the three
lasses are des
ribed in more detailin the following.2.2.3 Complex Forms Framework in SLAMLTo use the Composite Design Pattern to represent the
lasses in the
omplex HTML form,SLAML operates with three
lasses. These are explained in the following.Slaml Basi
 Element ClassThe leaf element in SLAML, represents the HTML input elements (see [W3C02d℄). In the
omplex forms framework, the leaf
lass is
alled slaml-basi
-element. Do
umentationand default values of this
lass are found in Appendix A.1 An obje
t of this type
ontains theattributes from the HTML input element (for a
omplete list see [W3C02d℄). This means,that all attributes of the HTML input element are represented by the slaml-basi
-element
lass.As slaml-basi
-element
orresponds to the HTML input element, the HTML represen-tation of this element is given. This is the
ase, sin
e all attributes from the HTML inputelement are present as instan
e variables in the slaml-basi
-element
lass. Therefore, itis possible to
onstru
t an HTML input element from the instan
e variables available in anobje
t of the slaml-basi
-element type.1Please note, that the implementation of slaml-basi
-element only supports the HTML input element,so there is no possibility to e.g. represent a textarea with an instan
e of the slaml-basi
-element
lass.

56 CHAPTER 2. DESIGNThe slaml-basi
-element
lass
an be subje
t to spe
ialization. This is possible sin
ea slaml-basi
-element must represent a number of di�erent HTML elements. Exam-ples in
ludes submit buttons, input elements,
he
k boxes et
. (for a
omplete list refer to[W3C02d℄). Two alternatives are
onsidered. Either the developer is provided with a numberof spe
ializations of the slaml-basi
-element
lass, or we provide updateable state on theobje
ts representing its HTML type.Providing a number of spe
ializations is disregarded, as the di�eren
e between the spe
ial-ized obje
ts is the representation (the HTML input element represent by the obje
ts). Butsin
e presentation is not part of the stru
ture - but rather asso
iated with the individualelements in the stru
ture - there is no di�eren
e between the spe
ialized
lasses. This sug-gests that spe
ialization is not appli
able. If the stru
ture and the representation has notbeen separated the slaml-basi
-element
lass is subje
t to spe
ialization. An additionalargument for not relying on spe
ialization is that the alternative allows for an already in-stantiated obje
t to
hange its HTML element type. This mutation makes it easy to
hangethe HTML element type of obje
ts already inserted into an obje
t stru
ture.Slaml Element ClassThe slaml-element
lass is the
omposite
lass. Obje
ts of the slaml-element type
an
ontain referen
es to other obje
ts (of the types slaml-basi
-element and slaml-element).This makes it possible to make hierar
hies of obje
ts, that represents the stru
ture shownas an HTML form to the
lient. This
lass is used when grouping obje
ts.The HTML presentation of an obje
t of the slaml-element type,
onsists of the presentationof its
hildren. However, it is not satisfa
tory to present the HTML form as a
olle
tion ofHTML input elements. Instead, �exibility is needed to build a spe
i�
 layout of the HTMLrepresentation of the obje
t stru
ture. Therefore, the HTML layout of a slaml-element isspe
i�ed by a template where it is possible to pla
e - in the relation to HTML layout - the
hildren of the slaml-element as wanted. To represent the template of an obje
t, a fun
tionrepresenting the HTML layout of the slaml-element is
reated. This fun
tion is added asa property on the slaml-element it represents. The HTML layout fun
tion is dis
ussed inSe
tion 2.2.5.Slaml Form Element ClassThe slaml-form-element
lass is the root of an obje
t stru
ture in the
omplex formsframework. The reason that this
lass is needed is that the slaml-element
lass
ontains noinformation about the data related to the HTML form element. This information is presentin the slaml-form-element
lass. A slaml-form-element
annot be a
hild of other ob-je
ts, and must therefore be the root of an obje
t hierar
hy. All the attributes from theHTML form element are present in the slaml-form-element
lass.

2.2. COMPLEX FORMS FRAMEWORK 57The HTML layout spe
i�
ation of a slaml-form-element, is the HTML layout spe
i�
a-tion of its
hildren together with the spe
i�
ation of the HTML form element surroundingthem. This means that the slaml-form-element also
onsists of properties that spe
ify theattributes to the HTML form element. This is dis
ussed in further details in Se
tion 2.2.5.The next se
tion (Se
tion 2.2.4) presents underlying S
heme
ode, that is needed in order tosimulate obje
t oriented programming in S
heme. This is in
luded for the S
heme interestedreader and
an be ignored if simulation of obje
t oriented prin
iples in S
heme is not ofinterest.2.2.4 Obje
t Oriented Programming in S
hemeIt is possible to program obje
t oriented in S
heme and di�erent frameworks with supportfor obje
t oriented programming in S
heme exists. Some of these frameworks are generaland works with most S
heme systems. Others are written to a spe
i�
 S
heme system.Examples of obje
t oriented frameworks that are used with a spe
i�
 S
heme systems areGoops (The Guile Obje
t Oriented Programming System)[LDJ02℄ and MzS
heme's ob-je
t[Fla02℄. Goops is a framework for the Guile interpreter and is an extension to thebasi
 Guile interpreter. MzS
heme also
ontains an obje
t framework whi
h is part of theinterpreter. An example of a more general obje
t oriented framework is Meroon [Que02℄,whi
h
an be used in various S
heme systems.Another possibility to program obje
t oriented in S
heme is to use fun
tions to represent
lasses and obje
ts in S
heme (shown by Kurt Nørmark [Nør90℄). This approa
h is the mostportable as it is supported in all S
heme systems. The reason for this is, that it is build onlambda expressions.It is
hosen to simulate
lasses and obje
ts in SLAML with fun
tions, as this gives the bestportability. The reason that portability is important, is that LAML is usable in many dif-ferent S
heme systems and by making SLAML interpreter independent it is possible to usethe SLAML framework on the same S
heme systems that LAML
an be used. However,this approa
h might not be as e�
ient as an obje
t system written for a spe
i�
 S
hemesystem. This is not
onsidered a problem as the
omplex form framework is more a proof of
on
ept than it is a framework used for produ
tion. Another
on
ern is the readability of theprograms written in the SLAML framework. The programs written with pre-made obje
tsystems have a higher synta
ti
al abstra
tion and therefore the programs are easier to read.When simulating obje
t orientation this
an be a
hieved by making synta
ti
al abstra
tionson top of the simulation. The last problem
onsidered with the
hosen approa
h, is that allthe me
hanisms used in obje
t oriented programming (inheritan
e, message passing, et
.)has to be implemented when needed. This is not a big problem in the SLAML framework,as only
lasses, message passing and a
onstru
tor are needed.In the following it is explained how to de�ne
lasses and
reate obje
ts in S
heme. Further-more it is explained how to use message passing to
hange the state of obje
ts and how a

58 CHAPTER 2. DESIGN
onstru
tor is used to instantiate obje
ts with others than the default values.Classes and Obje
ts in S
hemeClasses
an be simulated in S
heme, by de�ning a fun
tion from whi
h obje
ts
an beinstantiated. When an obje
t is instantiated it returns a fun
tion obje
t, that serves as aninterfa
e to the obje
t. An example of a simple
lass is the following:(define (test-
lass)(letre
 ((x 0)(get-x (lambda () x))(set-x (lambda (new-x) (set! x new-x)))(type-of (lambda () 'test-
lass)))(lambda (message)(
ond ((eq? message 'get-x) get-x)((eq? message 'set-x) set-x)((eq? message 'type-of) type-of)(else (error "Message not found"))))))Here the fun
tion test-
lass represents a
lass. An instan
e of the
lass is instantiated byevaluating the fun
tion. Evaluation of this fun
tion makes it return a fun
tion obje
t. Thisfun
tion obje
t serves as an interfa
e to the obje
t. The interfa
e is a dispat
her that
an
all methods on the obje
t. This dispat
her is a
tivated by message passing.Message Passing in S
hemeOn
e an obje
t is instantiated, its state
an be
hanged by sending messages to it. Themessages that
an be send to the obje
t are spe
i�ed in the dispat
her fun
tion, whi
hserves as an interfa
e to the obje
t. Messages are send to the obje
t in the following way:(define new-obje
t (test-
lass))((new-obje
t 'set-x) 10)The �rst thing that happens in this example is that the test-
lass is instantiated and the re-sulting dispat
her fun
tion is bound to the name new-obje
t. Next, the dispat
her is invokedwith the message set-x. This results in the fun
tion asso
iated with the set-x property ofnew-obje
t to be returned. This fun
tion is evaluated with the value 10 as input. All thisresults in
reation of an obje
t and setting the x property to the value 10.It is preferable to
reate a fun
tion (often named send) to send messages to the obje
ts.The reason this is preferred is that it provides a synta
ti
al abstra
tion. This results in thefollowing way to send messages to obje
ts:(send 'get-x new-obje
t)

2.2. COMPLEX FORMS FRAMEWORK 59Here the get-x message is send to the obje
t new-obje
t. The result is the same; the fun
tionasso
iated with the get-x property on new-obje
t is returned. It is
umbersome to relyon message passing to
hange values on the individual obje
ts. Therefore a
onstru
torme
hanism is
reated whi
h allows for spe
ifying values at instantiation time.Instantiation of Obje
ts in S
hemeBy
reating a
onstru
tor it is possible to spe
ify arguments when an obje
t is instantiated.In SLAML, XML syntax is used when instantiating the obje
ts with others than the defaultvalues. An example is the following:(define new-obje
t (test-
lass 'x 10'y 11))In this example an obje
t is instantiated and bound to the name new-obje
t. new-obje
t hastwo instan
e variables. One is
alled x whi
h value is set to 10 at instantiation time. Theother is
alled y and is assigned the value 11. The reason for
hoosing this syntax, is thatthis is a XML like syntax, whi
h is similar to LAML syntax. Another possible syntax isto rely on positional parameters, but this is not a good solution if there are many instan
evariables in the obje
ts, espe
ially if it is possible to spe
ify all of them at instantiation time.In this se
tion it is shown that a
onstru
tor me
hanism is
reated to allow a �exible in-stantiation of obje
ts from
lasses. Message passing is introdu
ed as a way to modify theindividual obje
ts. Furthermore it is illustrated how a fun
tion obje
t - returned from afun
tion representing a
lass - a
ts as an obje
t.2.2.5 Creating, Presenting and Updating Obje
t Stru
turesIn this se
tion it is explained how an obje
t stru
ture from the three basi

lasses (explainedin Se
tion 2.2.3) is
reated. Next, is a des
ription of how to add HTML layout to the obje
tsin the obje
t stru
ture. Last, is des
ribed how the obje
t stru
ture is updated with the datare
eived from the HTML form shown to the
lient.Creating an Obje
t Stru
tureTo
reate an obje
t stru
ture to represent an HTML form, the �rst thing to do is linkingthe obje
ts together. This
an be done in two ways. The �rst is to
reate all the obje
t inthe obje
t stru
ture and afterward link them together by using message passing. This
anbe done by invoking the add method on an obje
t. The add method takes one parameter,whi
h is the obje
t to add as a
hild. Another way to
reate the stru
ture, is to do it atinstantiation time by using the
onstru
tor. This is done in the following way:

60 CHAPTER 2. DESIGN(define person-form(slaml-form-element'name "person-
omposite"'elements(slaml-
reate-obj-lst(slaml-element'name "name-
omposite"'elements(slaml-
reate-obj-lst(slaml-basi
-element'name "first-name-leaf")(slaml-basi
-element'name "last-name-leaf")))(slaml-basi
-element'name "have-
ar-leaf")(slaml-basi
-element'name "submit-button-leaf"))))This expression
reates the stru
ture in Figure 2.10 (see page 60). In this example threethings are added to the SLAML elements. The �rst is the slaml-
reate-obj-lst (page121) primitive. This primitive is used to
reate a list of obje
ts to be added to anotherobje
t. The se
ond thing added in this example is the elements attribute. This attribute isused to spe
ify the
hildren of an obje
t. The list of obje
ts - to be added as
hildren - mustbe
reated with the slaml-
reate-obj-lst primitive. In this way it is possible to
reatean obje
t stru
ture.

last−namefirst−name

person−form

name submit−buttonhave−car

Figure 2.10: The person-form hierar
hy.The third thing added to the example is the name attribute. This attribute sets the nameinstan
e variable of the obje
t. This serves to a

ess an obje
t on
e it is added as a
hildto another obje
t. If the name attribute is not present, there is no way of identifying theobje
t and dis
riminate it from other
hildren with the same parent. Therefore, by giving

2.2. COMPLEX FORMS FRAMEWORK 61all obje
ts of the same parent di�erent names, this property is used to refer to a spe
i�
obje
t. This is used when the HTML layout information is added to the obje
ts. If the
hildobje
ts have no names it is impossible to tell whi
h element is to be pla
ed where in thelayout. This is
ondu
ted later in this se
tion.The last thing des
ribed in this se
tion is the id of an obje
t. An id is set on the obje
tsof the type slaml-basi
-element. The id on an obje
t serves as the name attribute of theHTML input element when the obje
t is presented - in an HTML form - to the
lient. Thereason for having the id is to asso
iate ea
h HTML input element with an obje
t of the typeslaml-basi
-element. The di�eren
e between the id property and the name property of anobje
t is that the name is used when the programmer refers to an given
hild of a parent inthe program. The id is used when the input from the user is pla
ed in the obje
t stru
ture inorder to update it. By letting ea
h of the leaf obje
ts in the obje
t stru
ture have an uniqueid and let the same id represent the name of an input element in HTML, it is possible to tra-verse the obje
t stru
ture and pla
e the
lient data in the obje
t stru
ture. This is done by
omparing the name of the HTML input element with the id attribute on the obje
t. If theymat
h, the data from the HTML input element is pla
ed as data in the mat
hing leaf obje
t.The id
an be set by hand when the obje
t is
reated. If no id attribute is spe
i�ed when theobje
t is
reated, an obje
t is given a unique id. The reason for letting the developer
hangethe unique id is that sometimes it is
onvenient to a

ess the form parameters dire
tly byname instead of using the obje
ts to a

ess them. This is not possible if the name attributein the HTML element
annot be
hanged. And as the id property of an obje
t
orrespondsto the name attribute on an HTML input element, it is ne
essary to allow the developer to
hange the id.Adding HTML Layout to Obje
t Stru
turesAfter the obje
t stru
ture is build, the HTML layout is added. This is done by asso
iatinga template to ea
h obje
t. The template represents the HTML layout of the obje
t it isasso
iated to. This means that a way to spe
ify HTML layout information on ea
h of thethree
lasses in the SLAML framework must be present. This is dis
ussed in the following.Templates for the
omposite
lasses (slaml-element and slaml-form-element) are spe
i-�ed as a fun
tion. The reason for using fun
tions to represent templates is that fun
tions
an return an HTML string representing the HTML layout of a given node in the obje
tstru
ture. Furthermore, it is possible to send parameters to the fun
tion telling whi
h nodein the stru
ture to do layout on. This node serves as the parent node and by referring tothe names of the
hildren it is possible to pla
e them in the layout. Beside this a fun
tion
an
ontain additional HTML information and thereby represent more than the layout ofthe
hildren. It
an also
ontain HTML elements used for formatting the HTML form layout.Another possibility is to let the HTML layout be represented by a list of
hildren and letthe order of the list be the order in whi
h the elements are presented in the HTML form. In

62 CHAPTER 2. DESIGNthis approa
h there
an be no additional formatting of the
hildren in the
omposite nodesof the stru
ture. Therefore the �rst approa
h is
hosen.For the leaf
lass (slaml-basi
-element) the layout is represented by setting attributes onleaf obje
ts. The reason is that the leaf obje
ts represents an HTML input element andthere
an be no HTML layout inside an HTML input element as it is a single tag. Therefore,all formatting information is the surrounding of these elements and this layout informationis present in the
omposite elements.Another possibility is to let ea
h slaml-basi
-element have a template asso
iated to itas done with slaml-element and slaml-form-element. Then the developer will need tospe
ify a template for the leaf elements and asso
iate the HTML layout with a leaf node inthe obje
t stru
ture. The �rst approa
h is
hosen sin
e it requires less asso
iations betweentemplates and nodes. The reason is that the leafs are self
ontained as the instan
e variablesof the obje
ts spe
i�es the HTML layout.A layout fun
tion for the name-
omposite obje
t from the obje
t stru
ture on page 60 ispresented in the following.(define name-layout(slaml-layout (self args)(table(tr (td "Name" '
olspan "2"))(tr (td "First name")(td (slaml-do-layout-
hild self "first-name-leaf")))(tr (td "Last name")(td (slaml-do-layout-
hild self "last-name-leaf")))'border "1")))Figure 2.11: An example of a slaml-layout fun
tion.In this example the slaml-layout (page 123) primitive is introdu
ed. slaml-layout
anbe thought of as a lambda expression. A slaml-layout takes two arguments. The �rstparameter is a referen
e to the obje
t to whi
h this HTML layout fun
tion is asso
iated.The se
ond parameter
an be send to the layout fun
tion when it is a
tivated (when theslaml-do-layout-
hild (page 122) or slaml-do-layout (page 122) is
alled). To asso
iatea layout fun
tion with an obje
t the layout attribute is used at instantiation time.(slaml-element'name "name-
omposite"'elements(slaml-
reate-obj-lst(slaml-basi
-element'name "first-name-leaf")(slaml-basi
-element'name "last-name-leaf"))

2.2. COMPLEX FORMS FRAMEWORK 63'layout name-layout'layoutparm "simple string")In this way the name-
omposite is spe
i�ed to be presented by the slaml-layout fun
tionbound to the name name-layout. When the name-layout is
alled it is passed the string "sim-ple string" as its se
ond parameter. This is done by in
luding the attribute layoutparm inthe instantiation of the obje
t. This parameter is not used in the slaml-layout fun
tion inFigure 2.11.In Figure 2.11 a fun
tion
alled slaml-do-layout-
hild - performing the HTML layout- is introdu
ed. Sin
e a
omposite element like name-
omposite is responsible for layoutof its
hildren, it needs a primitive to express this. This is done by the fun
tion
alledslaml-do-layout-
hild. This fun
tion takes two arguments. The �rst is a referen
e tothe obje
t in whi
h the
hild is lo
ated. In the example in Figure 2.11 this is self. These
ond parameter is a string representing the name of the
hild to layout. The return valueof slaml-do-layout-
hild is a string representing the HTML layout of a given
hild.As a slaml-form-element must represent an HTML form it needs more than a slaml-layoutfun
tion to present itself. Besides a slaml-layout fun
tion, a slaml-form-element alsoneeds attributes spe
ifying the various properties (see [W3C02
℄), to be able to representitself. These attributes
an be set on the slaml-form-element obje
t at instantiation time.To present an obje
t of the slaml-basi
-element type, the value of its type variable mustbe set. The reason is that this attribute spe
i�es what type of HTML input element theobje
t is representing (examples in
lude hidden, text and password. For a
omplete list referto [W3C02
℄). In Figure 2.10 the submit-button is of type submit and the have-
ar is oftype
he
kbox. This
an be spe
i�ed in the following way.(slaml-basi
-element'name "have-
ar-leaf"'type "CHECKBOX")(slaml-basi
-element'name "submit-button-leaf"'type "SUBMIT")When the HTML layout has been spe
i�ed for ea
h element the HTML layout on the rootobje
t is a
tivated in order to generate the HTML layout for the
hildren. The HTML layoutfun
tionality of the root obje
t is a
tivated by the fun
tion
alled slaml-do-layout. Thisfun
tion takes one argument, whi
h is the root obje
t of the obje
t stru
ture to present.slaml-do-layout returns a string representation of the HTML form, whi
h
an be a partof an HTML page, as shown in the following.(slaml-show(slaml-page (parm)(html

64 CHAPTER 2. DESIGN(head (title "A title"))(body(slaml-do-layout person-form)))))Here a slaml-page is presented where the person-form is in
luded in the body of the page.In this se
tion it is des
ribed how a slaml-layout fun
tion is asso
iated with ea
h obje
tof the types; slaml-element and slaml-form-element. This fun
tion allow generation ofa �exible HTML representation of the individual obje
ts. It is furthermore explained howthe fun
tions slaml-do-layout and slaml-do-layout-
hild is used in a slaml-layoutfun
tion to a
tivate the layout fun
tionality on
hild obje
ts.Updating Obje
t Stru
turesWhen the obje
t stru
ture is presented to the
lient as an HTML form the
lient
an �ll datain the HTML input elements. As explained, the HTML input elements in the HTML formrepresents the slaml-basi
-elements at the server. When the
lient submits the HTMLform, key/value pairs are returned to the server. These key/value pairs are used to updatethe obje
t stru
ture. As ea
h of the HTML input elements has a unique id as name - andthe slaml-basi
-elements has the same ids - the obje
t stru
ture
an be traversed andthe values entered by the
lient
an be assigned to the stru
ture. This is done by using thefun
tion
alled slaml-update-obje
t! (page 123). This fun
tion takes two parameters.The �rst is the root of the obje
t stru
ture, presented to the
lient. The se
ond parameteris the key/value pairs returned from the
lient. Given these two parameters, the obje
tstru
ture is updated with the values from the request and the developer
an then query theobje
ts for data.To allow operation on list stru
tures rather than obje
t stru
tures, the slaml-update-obje
t!returns a list representing the obje
t stru
ture as a tagged list. The reason for returninga list when the obje
t stru
ture is updated is that lists are the general data stru
ture inS
heme. The resulting list stru
ture is shown here.(slaml-form-element(obj-name . person-
omposite)(slaml-basi
-element(submit-button-leaf . ""))(slaml-basi
-element(have-
ar-leaf . ""))(slaml-element(obj-name . name-
omposite)(slaml-basi
-element(last-name-leaf . "my last name"))(slaml-basi
-element(first-name-leaf . "my first name"))))This example shows the list stru
ture returned from slaml-update-obje
t! given theperson-
omposite obje
t as �rst parameter and the key/value pairs - returned from slaml-show

2.2. COMPLEX FORMS FRAMEWORK 65- as se
ond parameter.The list stru
ture returned from slaml-update-obje
t! represents the obje
t stru
turewith person-
omposite as root element. The list is tagged with the name of the type of ea
h ofthe three
lasses in the SLAML framework. The slaml-form-element and slaml-elementtagged list stru
tures
onsist of a key/value pair list as the �rst element. The key is obj-name and the value is the name of the obje
t that is represented by this list. The rest ofthe list is the
hildren of this obje
t. These
an be of the types slaml-basi
-element andslaml-element.The slaml-basi
-element list stru
ture
onsist of a key/value pair, where the key is thename of the obje
t that the list represents. The value of the list is the string entered intothe HTML input element by the
lient.The list is tagged with the type of obje
t that the list stru
ture represents. It is not alwayssatisfa
tory to use the type of the obje
t as the tag. The reason is that the �rst symbol ina tagged list spe
i�es the type of the
ontent of the list. And as the
ontent of the list ismore than an element in SLAML, it is bene�
ial to allow the developer to spe
ify a
ustomtag. This is done by introdu
ing a property named tagtype to the obje
t stru
ture. This isillustrated in the following.(define person-form(slaml-form-element 'name "person-
omposite"'tagtype "person"'a
tion ""'elements(slaml-
reate-obj-lst(slaml-element 'name "name-
omposite"'tagtype "name"'elements(slaml-
reate-obj-lst(slaml-basi
-element 'name "first-name-leaf"'tagtype "first-name")(slaml-basi
-element 'name "last-name-leaf"'tagtype "last-name"))'layout name-layout)(slaml-basi
-element 'name "have-
ar-leaf"'tagtype "have-
ar"'type "CHECKBOX")(slaml-basi
-element 'name "submit-button-leaf"'tagtype "submit-button"'type "SUBMIT"))'layout person-layout))Figure 2.12: Creation of the person-
omposite obje
t stru
ture with a tagtype for ea
h obje
t.In Figure 2.12 it is spe
i�ed that the list representing the person-
omposite obje
t must betagged with person. The name-
omposite must be tagged with name and so forth. The

66 CHAPTER 2. DESIGNresulting list is seen in the following.(person(obj-name . person-
omposite)(submit-button(submit-button-leaf . ""))(have-
ar(have-
ar-leaf . ""))(name(obj-name . name-
omposite)(last-name(last-name-leaf . "my last name"))(first-name(first-name-leaf . "my first name"))))This list is tagged in the way spe
i�ed, and thereby the tagging is more spe
i�
 than in the
ase where no
ustom tagging is used.2.2.6 Example of the Complex Forms FrameworkIn this se
tion an example of how to use the
omplex forms framework in SLAML is shownand explained. The example presents the use of the prin
iples already introdu
ed and willtherefore not be des
ribed in all details. The example is split into three steps. First is thebinding of slaml-layout fun
tions to names. Se
ond is the
reation of the obje
t stru
tureand third is the presentation and updating. A larger example of the
omplex forms frame-work
an be seen in Chapter 3.The �rst thing done is to de�ne two layout fun
tions, whi
h represents the HTML layout ofperson-form and name-
omposite.(define person-layout(slaml-layout (self args)(table(tr (td "Person Information" '
olspan "2"))(tr (td (slaml-do-layout-
hild self "name-
omposite")))(tr (td (string-append "Do you have a
ar?"(slaml-do-layout-
hild self "have-
ar-leaf"))))(tr (td (slaml-do-layout-
hild self "submit-button-leaf")))'border "1")))(define name-layout(slaml-layout (self args)(table(tr (td "Name" '
olspan "2"))(tr (td "First name")(td (slaml-do-layout-
hild self "first-name-leaf")))(tr (td "Last name")

2.2. COMPLEX FORMS FRAMEWORK 67(td (slaml-do-layout-
hild self "last-name-leaf")))'border "1")))The HTML layout of the person-form is the HTML layout of the two
omposite obje
tsin the HTML form (person-
omposite and name-
omposite). The �rst layout is the HTMLlayout of the person-form. This layout is bound to the name person-layout in the above ex-ample. The person-form obje
t is responsible for doing HTML layout of the name-
omposite,have-
ar-leaf and submit-button-leaf obje
ts. The se
ond layout fun
tion is the layout fun
-tion for the name-
omposite obje
t. This layout is bound to the name name-layout. Thename-
omposite obje
t is responsible for doing HTML layout on the �rst-name-leaf andlast-name-leaf.The HTML presentation of the person-form is shown in Figure 2.13.

Figure 2.13: S
reen shot of the
omplex HTML form exampleThe next step is to build the person-form obje
t stru
ture to present to the
lient. The ob-je
t stru
ture is seen in Figure 2.12 (on page 65). This �gure shows how the obje
t stru
tureis build and that it is bound to the name person-form. The layout is also added to the obje
tstru
ture, by the use of the layout attribute. Next step is to present the obje
t stru
tureto the
lient. This is shown in the following.(define page-data(slaml-update-obje
t!person-form(slaml-show(slaml-page (parm)(html(head (title "A title"))

68 CHAPTER 2. DESIGN(body(slaml-do-layout person-form)))))))(slaml-show(slaml-page (parm)(html(head (title "A title"))(body(table(tr (td "Name" '
olspan "2"))(tr (td "First-name")(td (get-first-name-from-form page-data)))(tr (td "Last-name")(td (get-last-name-from-form page-data)))(tr (td "Car ?")(td (get-have-
ar-from-form page-data))))))))The �rst thing that happens in the above is that the HTML page with person-form isshown to the
lient. When the
lient submits the HTML form, the person-form is updatedby the fun
tion slaml-update-obje
t!, whi
h returns a tagged list representing the ob-je
t stru
ture. This list is bound to the name page-data. The last thing that happens isthat page-data is shown on a new HTML page. The de
laration of the sele
tor fun
tions
alled: get-�rst-name-from-form, get-last-name-from-form, and get-have-
ar-from-form arenot shown in this example. They are used to get data from the tagged list returned fromslaml-update-obje
t!.2.2.7 Solution to Complex Forms ProblemIn this se
tion it is dis
ussed how the SLAML
omplex form framework solves the Complexforms problem dis
ussed in Se
tion 1.1.3. The Complex forms problem is divided in threeparts. The �rst
on
erns building the
omplex stru
ture the se
ond
on
erns presenting the
omplex stru
ture and the last
on
erns updating the
omplex stru
ture with data from the
lient.Building the
omplex stru
ture is done by
reating obje
ts using a
onstru
tor me
hanism.By adding obje
ts to other obje
ts an obje
t stru
ture is build. The individual obje
t in thisstru
ture
ontains a referen
e to its
hildren. This obje
t stru
ture represents the HTMLform that is to be presented to the
lient. A message passing me
hanism is developed whi
hallow a
tivation of methods on the individual obje
ts. This fun
tion is named slaml-send.Presenting the
omplex stru
ture is done by assigning the individual obje
t a layout fun
-tion that is responsible for generating the HTML representation of that parti
ular ob-je
t. These layout fun
tions are
reated with the slaml-layout fun
tion. A fun
tionis introdu
ed, whi
h
an a
tivate the layout fun
tions on its
hildren. This is namedslaml-do-layout-
hild. A spe
ial fun
tion named slaml-do-layout, is used to a
tivatethe layout fun
tion on the root element.

2.3. VALIDATION FRAMEWORK 69Updating the
omplex stru
ture is done by invoking slaml-update-obje
t! with the rootobje
t and the form parameters re
eived for the
lient as parameters. This inserts thedata entered by the
lient into the appropriate obje
ts in the obje
t stru
ture. As an ad-ditional feature a nested list representation of the obje
t stru
ture is returned from theslaml-update-obje
t fun
tion.This gives the developer possibility to perform the three steps in the Complex forms problem.2.3 Validation FrameworkAs shown in the analysis, input validation is not supported dire
tly in HTML/CGI. It is ofinterest to build validation into the SLAML framework. Giving the developer the possibilityto write validating fun
tions in the same language as the HTML is generated, makes itpossible to remove the need of external te
hnologies. The design of validation is made onbehalf of hypothesis three, from the problems de�nition:Hypothesis 3:It is possible to
onstru
t a validation framework that helps the devel-oper to validate data from the
lient.The goal is to give the developer the possibility to use a validation framework together withthe SLAML session framework. In this validation framework, two possible levels of validationhave been identi�ed.1. Page level2. Obje
t levelPage level validation is related to validation of a slaml-page, whi
h is presented to a
lientby using the slaml-show fun
tion. Obje
t level validation is related to validation of the
omposite and non-
omposite obje
ts presented in the solution to the Complex forms prob-lem. The reason for introdu
ing validation on both the obje
t level as well as the page levelis the independent nature of the two frameworks. A developer relying on the
omplex formframework does not have to use the session framework and vi
e versa. If validation is notsupported on both levels, then validation is impossible in some situations. In the followingthe design of the validation framework is presented. The
onsidererations regarding thedesign are presented as alternatives to the a
tual solutions. The reason for not in
ludinga
onsiderations se
tion as in the rest of the design is, that mu
h of the design is given,sin
e it is almost di
tated by the session framework and the
omplex forms framework, howthe validation framework must be designed. This is the
ase, sin
e we aim for
onsistentapproa
hes among the di�erent frameworks.

70 CHAPTER 2. DESIGN2.3.1 Design of the Validation Framework in SLAMLThe following presents the
hoi
es made, regarding the design of the validation framework.Ea
h of the two levels is handled individually. However, a general de
ision
on
erning
lientside or server side validation has been taken. The validation on both levels is handled onthe server. Two reasons exist for this
hoi
e. First, the needed te
hnology (S
heme) is notavailable as a s
ripting language that
an be exe
uted by the browser. Se
ond,
lient sidevalidation does not ensure HTML form input to be validated. We are aware, that server sidevalidation
an be
ome a problem regarding bandwidth usage if many users are interested invalidating information at the same time. A solution to this problem
an be to validate inputon both the server and
lient as it is done with Powerforms in Bigwig.Page Level DesignIt has been de
ided, that validation of a page, is done by extending the slaml-show fun
tion.The reason for not using a de
larative manner as done by Powerforms, is that Powerformsrelies on already de�ned �types�. A de
larative fashion of spe
ifying valid types does not �twell in a weakly typed fun
tional oriented programming language as S
heme. Powerformsalso rely on JavaS
ript for evaluation, sin
e a format is translated to JavaS
ript. TranslatingS
heme
ode to JavaS
ript seems to
omprehensive, to allow
lient side input validation.Extending slaml-show means, that if a slaml-page must be validated a

ording to a
he
kfun
tion, slaml-show must be
alled in the following way:(slaml-show a-page '
he
k
he
k-page)The
he
k attribute spe
i�es, that the
he
k-page fun
tion must be used to validate thepage a-page. Here the syntax di�ers from XML like syntax, sin
e
he
k-page is a fun
tionand not a string. All HTML form information from the presented page (a-page) must bevalidated with the
he
k fun
tion
alled
he
k-page. For the
he
k fun
tion to validate thedata returned from a-page it must take the data as parameter. Before the form parametersare used as an argument to the
he
k fun
tion, they are
onverted to a key/value pairs list.The slaml-formparms-key->value (page 117)
an be used to extra
t the value of a keygiven the form parameters.If a
he
k fun
tion is spe
i�ed with the
he
k attribute to slaml-show, it returns the valuereturned by the
he
k fun
tion. This gives the developer the �exibility to de�ne the returnvalue from slaml-show, whi
h means, that a
he
k fun
tion is not ne
essary limited to return#t/#f (true or false). The following is an example of a
he
k fun
tion, whi
h veri�es that anumber is between two values (iname is the name of the input element) whi
h are spe
i�edby the developer.(define (is-between? form-parms limits)(let ((num (slaml-formparms-key->value 'iname form-parms))(min (get-min limits))(max (get-max limits)))

2.3. VALIDATION FRAMEWORK 71(
ond((not-a-num? num) #f)((and (< (string->number num) min) (> (string->number num) max)) num)(else #f))))As seen the
he
k fun
tion takes two parameters, the form parameters and an additional pa-rameter (a list with two numbers, named limits). The
he
k fun
tion �rst extra
ts the valueentered in the HTML input element named iname with the slaml-formparms-key->valuefun
tion and stores it in the num variable. Furthermore, the minimum and maximum valuesare needed. These are extra
t from the limits parameter (the parameter spe
i�ed by thedeveloper), by using the get-min and get-max fun
tions. The values returned from thesefun
tions are stored in the variables min and max, respe
tively. The a
tual validation ishandled in the
ond spe
ial form: if num is not a number or not between min and max, #fis returned. Otherwise the value from the HTML input element is returned.Parameters to
he
k fun
tions are spe
i�ed in a similar way, as parameters to a slaml-pageor a slaml-session, namely by spe
ifying an attribute with the parameter as value. Inthe page level validation framework, the attribute is named
he
kparm. To a
tivate theis-between?
he
k fun
tion with 50 as the minimum value, and 100 as maximum, the valuesare wrappend in a list and spe
i�ed as the value of the
he
kparm attribute:(slaml-show a-page '
he
k is-between? '
he
kparm (list 50 100))This example illustrates how a
he
k fun
tion take parameters. An example of how to use
he
k fun
tions on the page level is presented in Se
tion 2.3.3. This example also presentshow validation of dependen
ies is performed.Obje
t Level DesignCon
erning validation of a
omplex form
reated by using the
omplex forms framework, twoalternatives are
onsidered. The �rst possible solution is to give the whole obje
t stru
ture toa fun
tion and let this fun
tion traverse the obje
t stru
ture to validate the obje
t stru
ture.In this approa
h the developer need to traverse the obje
ts stru
ture expli
itly in order tovalidate the stru
ture. The se
ond, and the
hosen solution is to add a
he
k property to allthe
lasses. This allows performing validation on ea
h obje
t in the stru
ture and therebythe obje
t level validation framework �ts well with the
omplex stru
ture represented by theobje
ts. In this solution the traversing of the obje
t stru
ture is done impli
itly by lettingea
h node in the obje
t stru
ture be responsible for validating itself and the subtree it
on-sists of.The de
ision to extend the obje
ts with information about validation, means that all typesof obje
ts must have fun
tionality to set and get a
he
k fun
tion. Furthermore, ea
h
lassmust
ontain a property (named valid) spe
ifying if the obje
t is valid. The attribute valueused for the valid property is either #t or #f. The valid property value is determined bythe
he
k fun
tion assigned to the obje
t. The default value is #t. Fun
tionality to set(slaml-set-valid (page 125)) and get (slaml-get-valid (page 125)) the valid property

72 CHAPTER 2. DESIGNalso exist. This allows the developer to query ea
h obje
t for the status of the validationperformed on the obje
t. Instead of using message passing when assigning information aboutvalidation to obje
ts, the
onstru
tor is extended to allow this.A
he
k fun
tion
an be assigned to an obje
t by using message passing or by using the
onstru
tor. By using the
onstru
tor it is done as follows:(slaml-element 'name "obj-name" '
he
k
he
k-fun
)In this example it is stated that the slaml-element named obj-name must be
he
ked withthe fun
tion bound to the name
he
k-fun
. When this obje
t is returned and has beenupdated the valid instan
e variable is set to #t if the validation went well and #f if theobje
t data was invalid a

ording to
he
k-fun
.Sin
e
he
k fun
tions are used to set the valid property on obje
ts, there are requirementsto the
he
k fun
tions. They must always return either #t of #f, whereas a
he
k fun
tionon the page level does not have requirements to the return value. Likewise, a
he
k fun
tionused on the obje
t level, must always take exa
tly one parameter. If the obje
t is of thetype slaml-basi
-element, the parameter will be the string entered in the
orrespond-ing input element in the HTML form. If the obje
t is either a slaml-form-element or aslaml-element, the parameter is a list
ontaining the
hildren. slaml-get-element-from-listis a fun
tion that
an extra
t an obje
t from the list on behalf of a name.To see an example of validation on the obje
t level,
onsult Se
tion 2.3.3.
2.3.2 Flow of ValidationThis se
tion will in turn present �ow of both the page level validation as well as obje
ts levelvalidation.Page Level FlowThe �ow of the page level validation
ontains two steps. First, get the form parameters fromthe
lient. Se
ond, validate the parameters a

ording to the
he
k fun
tion. This �ow ispresented in Figure 2.14.

2.3. VALIDATION FRAMEWORK 73
Step one

(slaml−display pagefunc (slaml−get−pageparm−parm args)))))

A
n H

T
M

L page

Server Client
slaml−show

Step two

(if check
 (check formparms (slaml−get−checkparm−parm args))
 formparms

(check (slaml−get−checkfunc−parm args)))
(let (formparms (slaml−create−parm−lst (slaml−get−args)))

)
)

Figure 2.14: This �gure presents two steps from the slaml-show fun
tion. slaml-displaypresents the string representation of a page to the
lient. The
all to slaml-display will
ausethe evaluation to pause, until a new request is issued by the
lient.Showing a page to the
lient, means that the appli
ation pauses on the server. The appli
a-tion will wait until the
lient submits information (Step one on Figure 2.14). The �rst thingdone in Step two, is to
reate a key/value pairs list
ontaining the form parameters (donewith the
all: (slaml-
reate-parm-lst (slaml-get-args))). The form parameters are stored inthe variable formparms. Next, the
he
k fun
tion is extra
ted from the optional parame-ters to slaml-show and stored in the variable
he
k. This is done, by using the fun
tionslaml-get-
he
kfun
-parm, whi
h returns the value of the
he
k attribute and #f if nonewas spe
i�ed. If
he
k is false (the false bran
h in the if expression), formparms is re-turned. If a
he
k fun
tion is spe
i�ed (the true bran
h in the if expression), the
he
kfun
tion is
alled with the return value of (slaml-get-
he
kparm-parm args) as a parameter.slaml-get-
he
kparm-parm returns the value of the
he
kparm attribute, and the emptylist if none is spe
i�ed. Re
all, that the
he
kparm attribute is used to spe
ify parametersto the
he
k fun
tion, when slaml-show is
alled. All this means, that if a
he
k fun
tionis spe
i�ed when slaml-show is
alled, slaml-show returns the return value from the
he
kfun
tion. Otherwise, slaml-show returns the form parameters.Obje
t Level FlowBefore an obje
t stru
ture
an be validated, the obje
ts in the stru
ture must be assignedvalidation fun
tions and the related form parameters must be present. Assigning validationfun
tions to obje
ts is done by message passing or by the
onstru
tor me
hanism when theobje
t stru
ture is instantiated. In order to get the form parameters related to an obje
t

74 CHAPTER 2. DESIGNstru
ture, a page where the stru
ture is represented as an HTML form must be presentedto a
lient. This is done by
alling slaml-show with the page
ontaining the related HTMLform as a parameter. When the
lient submits the HTML form, the form parameters arereturned from slaml-show. These form parameters
an then be used to update the obje
tstru
ture. This is done, by
alling slaml-update-obje
t! with the obje
t stru
ture and theform parameters as parameters. slaml-update-obje
t! a
tivates the validation fun
tionsin relation to the obje
t stru
ture. This means, that a
he
k fun
tion on an obje
t ofthe slaml-basi
-element type is a
tivated with the value entered in the related inputelement. Furthermore, a
he
k fun
tion on a
omposite obje
t (slaml-form-element orslaml-element) is a
tivated with the obje
ts
hildren. This means, that a
omposite obje
tis responsible for validating the subtree it represents. By setting the valid property ofea
h obje
t in the obje
t stru
ture to the return value of its asso
iated validation fun
tion,the entire obje
t stru
ture is validated. Furthermore, information about the validation isadded to the individual elements in the list returned from slaml-update-obje
t!. Thismeans, that it
an be determined if an obje
t is valid, by either sear
hing the list returnedfrom slaml-update-obje
t! or by querying the individual obje
t for the value of its validproperty.2.3.3 Example of Validation FrameworkThis se
tion gives a small example on how to use validation on the page level and theobje
t level. The s
enario used in the examples is a single HTML page
ontaining two inputelements. The value entered in both elements must be numbers, and the value entered inthe se
ond input element must be the double of the value entered in the �rst. This yieldfor validation on single input elements, but also validation on the dependen
ies between theinput elements. Additional examples
an be found in Chapter 3.Page Level Validation ExampleThe �rst thing done, is to
reate the HTML page (named enter-double) with the inputelements. There are three input elements (two textual input elements and one submitinput element) inside a form:(slaml-define-page enter-double(slaml-page (parms)(html(head (title "Number test"))(body(form 'a
tion ""(p "Enter a value:")(input 'type "text" 'name "value1")(p "Enter the double:")(input 'type "text" 'name "value2")(input 'type "submit")))) ; end html))

2.3. VALIDATION FRAMEWORK 75To
he
k, if the values entered in the input elements are numbers, a fun
tion
alled is-number?is
reated. This fun
tion is
alled from the validation fun
tion (named double-value?), thatis assigned to the enter-double page.(define (is-number? str)(integer? (string->number str)))(define (double-value? form-parms extra)(let ((val1 (slaml-formparms-key->value 'value1 form-parms))(val2 (slaml-formparms-key->value 'value2 form-parms)))(if (and (is-number? val1) (is-number? val2))(let ((num1 (string->number val1))(num2 (string->number val2)))(if (equal? num2 (+ num1 num1))form-parms#f ;not the double size))#f ;not both numbers)))(slaml-show enter-double '
he
k double-value?)The double-value? fun
tion takes the form parameters as input (and the additional se
ondinput, whi
h is not used here). The values entered in the two input elements are extra
ted,and stored in lo
al variables (val1 and val2). It is veri�ed if ea
h of the two values arenumbers. If not, #f is returned. Otherwise, the dependen
y is
he
ked. If the numberentered in the se
ond input element is not the double of the number entered in the �rst, #fis returned. If the dependen
y is ful�lled, the form parameters are returned.Obje
t Level Validation ExampleThis se
tion will des
ribe how validation is handled on the obje
t level. The is-number?fun
tion from the previous example is used in this example also. The obje
t stru
ture
onsistsof a slaml-form-element whi
h has three slaml-basi
-elements as
hildren. Two of thebasi
 elements are text input elements, and the third is a submit button.

76 CHAPTER 2. DESIGN(define double-form(slaml-form-element'layout (slaml-layout (parm)(string-append(p "Enter a value: ") (slaml-do-layout-
hild parm "value1")(p "Enter the double: ") (slaml-do-layout-
hild parm "value2")(slaml-do-layout-
hild "send-button")))'
he
k
he
k-stru
ture-double?'a
tion ""'elements (slaml-
reate-obj-lst(slaml-basi
-element 'name "value1"'
he
k is-number?)(slaml-basi
-element 'name "value2"'
he
k is-number?)(slaml-basi
-element'type "SUBMIT"))))Figure 2.15: Creating the obje
t stru
ture. Noti
e, that a
he
k attribute is used to spe
ify the
he
k fun
tion - here is-number? - when an obje
t is
reated.As shown in Figure 2.15, two of the slaml-basi
-elements are assigned a
he
k fun
tion.This is done by the is-number? fun
tion from the page level validation example. There isalso assigned a
he
k fun
tion to the slaml-form-element, namely
he
k-stru
ture-double?.This fun
tion has the responsibility to validate the dependen
y between the
hildren. The
reation of the last
he
k fun
tion and the presentation of the page is presented below:(define (
he
k-stru
ture-double?
hildren)(let ((obj1 (slaml-get-element-from-list
hildren "value1"))(obj2 (slaml-get-element-from-list
hildren "value2")))(if (not (and (slaml-get-valid obj1) (slaml-get-valid obj2)))#f ;they are not both numbers!(let ((num1 (string->number (slaml-get-data obj1)))(num2 (string->number (slaml-get-data obj2)))(equal? num2 (+ num1 num1)))))))(slaml-update-obje
t! double-form(slaml-show(slaml-page (parms)(html(head (title "Number test"))(body(slaml-do-layout double-form))))))Figure 2.16: The de�nition of the
he
k-stru
ture-double? fun
tion and the presentation of thestru
ture to the
lient. Re
all, that slaml-show returns the form parameters, andthat slaml-update-obje
t! takes the obje
t to update and the form parametersas input.The
he
k-stru
ture-double? fun
tion takes the
hildren element list as argument. It �rstextra
ts the obje
t representation of the two input elements. These obje
ts are stored

2.4. SUMMARY 77in the lo
al variables obj1 and obj2. Next, it is
he
ked if the data entered in the in-put elements (validated by the is-number? fun
tion) are numbers. This is done, by usingthe slaml-get-valid fun
tion, whi
h returns the value of the valid property from anobje
t (re
all, that the value of the valid property is determined by the
he
k fun
tionon the obje
t, and it is set when slaml-update-obje
t! is
alled). If either is invalid,#f is returned. Otherwise the data (the values entered in the input elements) from theslaml-basi
-elements are extra
ted with the slaml-get-data (page 127) fun
tion, and itis
he
ked if the value from input element two is the double of the value from input elementone.The slaml-update-obje
t! fun
tion updates the double-form obje
t, and a
tivates allthe
he
k fun
tions assigned to the obje
ts. To validate the HTML form a

ording to thedependen
ies, slaml-get-valid is
alled with double-form as the argument. This will returnthe valid attribute set by
he
k-stru
ture-double?.2.3.4 Solution to Input Validation ProblemIn this se
tion it is dis
ussed how the validation framework solves the Input validation prob-lem des
ribed in Se
tion 1.1.2. The Input validation problem is
onsidered on two levels, thepage level and the obje
t level.Page level validation is done by supplying a validation fun
tion as parameter to a slaml-show.The validation fun
tion must be supplied as the attribute value to the attribute named
he
k.The validation fun
tion must always a

ept two parameters. The �rst is the form parametersentered by the
lient. The se
ond is an additional parameter whi
h
an be supplied by usingthe
he
kparm attribute with the slaml-show fun
tion. The value of the additional param-eter is the value of the
he
kparm attribute, and the empty list if none is spe
i�ed. Thereturn value of the validation fun
tion on this level
an be freely de
ided by the developerand is returned by slaml-show.Obje
t level validation is done by adding validation fun
tionality to ea
h obje
t. A validationfun
tion on the obje
t level must take one parameter. A valid property
ontaining the statusof the validation is introdu
ed on the
lasses in the
omplex forms framework. The validationis performed on
e the obje
t stru
ture is updated with the form parameters. This is donewith the slaml-update-obje
t! fun
tion. It is a requirement that the validation fun
tionon this level returns a #t or #f value indi
ating if the data is valid.2.4 SummaryIn this
hapter the design of the solutions to the problems mentioned in Se
tion 1.1 is
on-du
ted. Three se
tions are presented whi
h ea
h
orresponds to a hypothesis.During the design of the SLAML session framework it is de
ided to base the SLAML sessionframework on the session
on
ept from Bigwig (sessions as lexi
al s
ope), as this makes the

78 CHAPTER 2. DESIGNdeveloper able to see the entire �ow of a session. A primitive, slaml-session, is introdu
edto
reate a session. Another primitive, slaml-show, is introdu
ed to show a slaml-pageto the
lient. The
ontrol �ow of the appli
ation is maintained as the data entered by the
lient is returned from the slaml-show primitive. A
tivation of a session is done with theslaml-a
tivate-session primitive.During the design of the
omplex forms framework it is de
ided to rely on obje
t orienta-tion, as this allows �exible mutation of the
omplex stru
ture. Three di�erent
lasses areintrodu
ed to represent obje
ts in the obje
t stru
ture. These are slaml-form-element,slaml-element and slaml-basi
-element. A
onstru
tor me
hanism is
reated to allow a�exible instantiation of the
lasses. Layout
on
erns of the obje
t stru
ture is handled byassigning layout fun
tionality to the individual obje
ts in the obje
t stru
ture. This layoutfun
tionality must be
reated with the slaml-layout primitive. Representing the obje
tstru
ture to the
lient is done by a
tivating the assigned layout fun
tionality on ea
h obje
tin the stru
ture. On
e the
lient submits the form - representing the obje
t stru
ture - thedata are asso
iated with the individual obje
ts in the obje
t stru
ture. This asso
iation isdone with the fun
tion slaml-update-obje
t!. The individual obje
t
an be queried forthe value of its data instan
e variable.Design of the validation framework is divided into two levels, page level and obje
t level.This makes validation available on both the
omplex forms framework and the session frame-work. On the page level a validation fun
tion is passed to the slaml-show primitive as thevalue of the
he
k attribute. A validation fun
tion must take two parameters. The �rst isthe form parameters entered by the
lient. The se
ond is an additional parameter whi
h
anbe supplied by passing the
he
kparm attribute to the slaml-show primitive. On the obje
tlevel validation fun
tions are written using the slaml-
he
k fun
tion. They are asso
iatedwith the individual obje
ts in the obje
t stru
ture. A slaml-
he
k fun
tion on the obje
tlevel must always take one parameter, namely the string value entered by the
lient asso
i-ated with the parti
ular obje
t. The return value must always be #t or #f. Validation isperformed when slaml-update-obje
t! is used to update the obje
t stru
ture.This has resulted in three di�erent frameworks solving the problems mentioned in Se
tion1.1.

3
Example Appli
ations

Contents3.1 Guess a Number Appli
ation . 793.2 Student Class Example . 843.3 Summary . 95This
hapter introdu
es two appli
ations, whi
h use the SLAML framework (designed andimplemented to solve the problems identi�ed during the analysis see Chapter 1). Re�e
tionsare made after the presentation of ea
h appli
ation. The �rst appli
ation is a �Guess anumber� appli
ation. The se
ond example presented, is a �Student
lass� appli
ation.3.1 Guess a Number Appli
ationThe �rst appli
ation implemented in order to show, how the SLAML framework
an be used,is �Guess a number�. The idea behind the appli
ation is that a
lient must guess a randomnumber. When a
lient enters a guess that is invalid, a hint is shown to help the
lient. Sin
evalidation is done on the server, a
lient/server loop is maintained, until the
lient entersthe
orre
t number. The appli
ation is divided into two parts. The �rst part presents theway, that obje
ts, layout,
he
k fun
tions and pages are de�ned and handled. The se
ondpresents the de�nition of a session, and the �ow of the appli
ation is des
ribed. The
odepresented in this se
tion is almost
omplete; the de�nition of two - almost stati
 - pages anda single validation fun
tion is not in
luded. The entire implementation of the appli
ationis found in Appendix B. For readability, all fun
tions, obje
ts and pages are de�ned globally.

80 CHAPTER 3. EXAMPLE APPLICATIONS3.1.1 Obje
ts, Layout, Che
k Fun
tions and PagesThe "Guess a number" appli
ation
onsists of three pages. First a wel
ome page, se
ond thegame loop page and third the end page. The three pages are presented in Figure 3.1.
(A) (B) (C)Figure 3.1: The three pages in the �Guess a number� appli
ation. Page (A) is the wel
ome page.Page (B) is the page, where the
lient
an enter a guess. The top of the page, presents a hint,or the text shown in (B) (if it is the �rst time the page is shown). The last page - (C) - presentsthe number of guesses used, when the
orre
t number has been guessed.The �rst and last page are simple and does not use obje
ts to represent stru
ture. Thegame loop page (Page B)
onsists of two parts. One part that gives the
lient a hint to helpperform the next guess, and one part that
ontains the HTML input element and a submitbutton. The de�nition of the guess loop page, is seen in Figure 3.2.(slaml-define-page guess-page(slaml-page (guess-information)(html(head (title "Guess a number!"))(body(get-hint guess-information)(hr)(slaml-do-layout guess-form)))))Figure 3.2: The de�nition of the guess loop page. The page takes a single parameter - guess-information- whi
h is used when getting a hint (the get-hint fun
tion). guess-information is a list, whi
h
ontains the guess made by the
lient, the number ofguesses used and the right number to guess.This page builds up the two parts needed. The �rst part (the hint) is
reated with a
all to get-hint and the se
ond part (the input elements) is done by doing the layout ofguess-form. guess-form is an obje
t of the type slaml-form-element, whi
h
onsists of aslaml-element, whi
h again
onsists of two slaml-basi
-elements. The
reation of theobje
t stru
ture is seen in Figure 3.3. General for all the obje
ts used, is that they areassigned a tagtype. The tagtype is used when the obje
ts in the stru
ture are updated withthe data entered by the
lient (after a request). Similar, all obje
ts are given a name. The

3.1. GUESS A NUMBER APPLICATION 81reason for giving the obje
ts a name, is to identify them when the HTML layout fun
tion-ality is spe
i�ed. This is shown later.(define guess-input(slaml-basi
-element'
he
k slaml-is-integer?'name "input-field"'tagtype "input-field-guess"))(define submit-guess-button(slaml-basi
-element'name "submit-button"'tagtype "submit-button-guess"'type "SUBMIT"'value "Guess"))(define guess-
omposite(slaml-element'layout guess-
omposite-layout'elements (slaml-
reate-obj-lst guess-input submit-guess-button)'name "guess-
omposite"'tagtype "guess-
omposite"))(define guess-form(slaml-form-element'layout guess-form-layout'name "guessform"'a
tion ""'method "GET"'tagtype "guess-form"'elements (slaml-
reate-obj-lst guess-
omposite)))Figure 3.3: The
reation of the obje
t stru
ture. Noti
e, that the slaml-basi
-element namedinput-�eld is assigned a
he
k fun
tion named slaml-is-integer?. Re
all, that fun
-tions, obje
ts and pages are de�ned global for readability.The �rst obje
t
reated - guess-input - represents the HTML input element on the se
ondpage in the appli
ation (see Figure 3.1 (B)). The default value of the type property on theslaml-basi
-element
lass is TEXT. Sin
e the type of the HTML input element must beTEXT, the type is not spe
i�ed when guess-input is instantiated, as TEXT is the default value.guess-input is assigned a
he
k fun
tion named slaml-is-integer? (see Appendix B for itsde�nition), whi
h veri�es if the value entered in the HTML input element is an integer.Next, the submit button is
reated. Like the guess-input obje
t, the submit-guess-buttonis of the type slaml-basi
-element. A
omposite obje
t of the type slaml-element is
reated, and it is used to represent the two basi
 elements. A layout fun
tion - guess-
omposite-layout - is assigned to the obje
t (the layout fun
tions are shown later). Thetwo basi
 elements are added to the guess-
omposite obje
t. The elements must be gath-ered, by using the slaml-
reate-obj-lst fun
tion. The guess-
omposite obje
t is added

82 CHAPTER 3. EXAMPLE APPLICATIONSto the root obje
t, whi
h is named guess-form. A layout fun
tion (guess-form-layout) isalso added to the guess-form obje
t. Even though the guess-form obje
t is only added asingle
hild (guess-
omposite), slaml-
reate-obj-lst is used. The reason for this, is thatslaml-
reate-obj-lst adds a spe
ial tag to the list of elements it returns.In order to present the obje
t stru
ture in an HTML form, it is needed to spe
ify thelayout of the individual obje
ts in the stru
ture. Layout fun
tions have been
reated tothe guess-form and the guess-
omposite obje
t. The following presents the layout fun
tionsguess-
omposite-layout and guess-form-layout, whi
h are the layout of the guess-
ompositeand guess-form obje
ts respe
tively:(define guess-form-layout(slaml-layout (self parms)(slaml-do-layout-
hild self "guess-
omposite")))(define guess-
omposite-layout(slaml-layout (self parm)(string-append"Enter your guess:"(table(tr (td (slaml-do-layout-
hild self "input-field")))(tr (td (slaml-do-layout-
hild self "submit-button")))))))The purpose of the guess-form-layout, is to a
tivate the HTML layout fun
tion on its
hild.As seen, the name of the
hild obje
t (set in Figure 3.3) is used to spe
ify whi
h
hild tolayout. The guess-
omposite-layout layout fun
tion, spe
i�es that the input element andthe submit button are pla
ed in an HTML table.The following se
tion presents the se
ond part of the �Guess a number� appli
ation. Thisin
ludes the de�nition of the session used in the appli
ation.3.1.2 Flow and the Session De�nitionThe �ow of the appli
ation is modeled as a session
ontaining three steps. One step handlingthe presentation of ea
h of the pages de�ned. The de�nition of the guess session is seen inFigure 3.4.

3.1. GUESS A NUMBER APPLICATION 83(slaml-define-session guess-session(slaml-session (session-param)(slaml-show start-game) ;say hello - step one(letre
 ((guess-loop(lambda (guess guesses right-number)(if (equal? guess right-number)guesses ; Return the number of guesses used(let((obj-stru
t(slaml-update-obje
t! guess-form(slaml-showguess-page 'pageparm (list guess guesses right-number)))))(if (slaml-get-valid guess-input)(guess-loop(string->number(slaml-get-data guess-input)) (+ 1 guesses) right-number)(guess-loopNaN (+ 1 guesses) right-number)))))))(let* ((right-number (get-random-number))(guesses (guess-loop 0 0 right-number)) ;do loop - step two)(slaml-show end-game 'pageparm guesses) ;say bye - step threeguesses ; return the number of guesses used));end letre
))(slaml-a
tivate-session guess-session) ; it startsFigure 3.4: The de�nition of the guess-session. The name guess-session is bound to a sessionthat is
reated with the slaml-session primitive.The guess-session is a
tivated with the primitive slaml-a
tivate-session, and as seen, thesession takes a single parameter (it must always take exa
tly one parameter). The parameterto a session must be spe
i�ed when the session is a
tivated (with slaml-a
tivate-session).This is not done in this example, so session-param is equal to the empty list. The �rst thingdone in the session, is to
all slaml-show with start-game as parameter. The page shown isthe hello page (bound to start-game) and as seen, the page is given no parameters. Next, isthe de�nition of the guess-loop fun
tion. The guess-loop takes three arguments: the guess,the number of guesses and the right number the
lient must guess. The �rst thing done inthe loop, is to
he
k if the
lient has made the right guess. If this is the
ase, the numberof guesses is returned. If the
lient has not made the right guess, the guess-form obje
tstru
ture is updated with the information gained from showing the guess-page (already pre-sented in Figure 3.2) and the obje
t stru
ture is stored in a variable named obj-stru
t. Allinformation needed to present the page (
reate the hint to the
lient), are send as parametersto the page. The page
an only take one parameter (spe
i�ed with the pageparm attribute),

84 CHAPTER 3. EXAMPLE APPLICATIONSso the information is wrapped inside a list. None of the information used to maintain theloop is needed to be send to the
lient in hidden �elds, but are instead handled as variablesand parameters as shown.A
he
k fun
tion is assigned to the guess-input obje
t, and after the obje
t stru
ture hasbeen updated (by the slaml-update-obje
t! fun
tion), it is asked if an obje
t is valida

ording to its
he
k fun
tion. This is done on the guess-input obje
t, to see if the
liententered a number. If this is the
ase, the game loop is
alled, with the entered number, thenumber of guesses in
reased by one and the right number. Else, the game loop is
alled withNaN - Not a Number - as a guess (NaN is bound to the value -1), the number of guessesin
reased by one and the right number, as arguments.After the de�nition of the loop, a lo
al variable named right-number, holding the randomgenerated number (in the example it is generated by the fun
tion get-random-number), is
reated. Another variable - guesses - is set to represent the return value of a
all to theguess-loop. The
all to the loop means, that a number of intera
tions with the
lient is
arried out. After the right number is guessed (the loop returns), the �nal page (end-game)is presented. The number of guesses used is send as a parameter to the page. The sessionreturns the number of guesses used.As shown in the example, information and fun
tions needed to handle the �ow of the sessionis maintained and de�ned lo
ally to the session. This allows for en
apsulation (in the formof lexi
al s
ope) of fun
tionality and information. If needed, all the pages, obje
ts and helpfun
tions (seen in Appendix B)
an be
reated lo
ally to the session (in a similar way as itis done with the guess-loop). The session
an be loaded when the server is started (as it
anbe done with all libraries), and
an be a
tivated whenever wanted, by performing the
all:(slaml-a
tivate-session guess-session).In the example, a validation fun
tion is added to the guess-input obje
t. It is somewhat
omprehensive to �rst
reate a validation fun
tion, add it to the obje
t and ask the obje
tif it is valid, when only a single HTML input element exist on the HTML page. Sin
e theonly information from the guess-page is the value entered in the input element, page levelvalidation
an be used. This eliminates the need to query an obje
t to determine if theinput is a number. However, it is still our opinion that obje
t level validation is bene�
ialwhen more than a single input element exist on the HTML page. The reason for this is,that a page level validation fun
tion gets
omplex (many if and
ond statements), if it mustvalidate many input values.3.2 Student Class ExampleTo show that the SLAML framework is appli
able in real world appli
ations, a large exam-ple appli
ation (about 1000 lines of
ode) is developed. This appli
ation is des
ribed in thisse
tion. The appli
ation is not des
ribed in every detail but instead an overview is givenof the system. The reason is that the software is large and giving a detailed des
ription of

3.2. STUDENT CLASS EXAMPLE 85the whole appli
ation, is not ne
essary to understand how the SLAML framework is used inthis appli
ation. The pla
es where the SLAML framework is used, is des
ribed in details togive an indi
ation of the usability of the SLAML framework in this appli
ation. The entiresour
e
ode of the program is found in the folder ExampleAppli
ations/StudentClass on theCD distributed with this report.3.2.1 Overview of the Appli
ationThe appli
ation is a student
lass registration appli
ation. In this appli
ation it is possiblefor tea
hers to add new
ourses to a list of
ourses. Furthermore, students are able to sele
tthe
ourses they want to attend from the list of all
ourses. Ea
h student have a pro�le,where details about the presentation of the pages for the student is set. Last, a
alendar isavailable where a
ourse
an be s
heduled.Flow of the Appli
ationThe �ow of the Student
lass appli
ation is seen in Figure 3.5.

ExitAdd new course

Login screen

Login ok?

No

Teacher?

Yes No

Teacher menu Student Menu

Show calendar

Start

If teacher If student

Goodbye page

Yes

Edit profile
course calendar

Show a Add to/remove
from course

Figure 3.5: The �ow of the Student
lass appli
ation.

86 CHAPTER 3. EXAMPLE APPLICATIONSThe appli
ation starts with a login s
reen where the user is asked for username and password.If the username and password is in
orre
t, the login s
reen is shown again. If the usernameand password is
orre
t, the type of user is examined. There exist two types of users in theappli
ation, students and tea
hers. The di�eren
e between these two types lays in what theyare allowed to do. The next step in the appli
ation is to see if the user who is logged in, isa tea
her. If this is the
ase, the tea
hers menu is shown, otherwise the students menu isshown. Tea
hers are shown a menu with �ve items:� Edit pro�le� Add to/remove from
ourse� Add new
ourse� Show a
ourse
alendar� ExitStudents are shown a menu with three items:� Edit pro�le� Add to/remove from
ourse� ExitAs it is seen the two menus are the same, ex
ept that a tea
her has two additional menuitems (Add new
ourse and Show a
ourse
alendar). Depending on whi
h item is
hosen inthe menus, a new page is shown where an HTML form is present. In the following ea
h ofthe menus are des
ribed.The �rst menu item is Edit pro�le. Here the user
an
hange his pro�le, this in
ludes theba
kground
olor, the wel
ome message and the title. The Edit pro�le page has three inputelements in the HTML form, and the page is shown in Figure 3.6.

Figure 3.6: Edit pro�le page from Student
lass appli
ation.

3.2. STUDENT CLASS EXAMPLE 87The next menu item is Add to/remove from
ourse. Here the user
an spe
ify whi
h
oursesto attend. All the
ourses in the appli
ation are available and a
he
ked
he
k box indi
atesif the user wishes to attend a given
ourse. The Add to/remove from
ourse page is shownin Figure 3.7.

Figure 3.7: Add to/remove from
ourse page from Student
lass appli
ation.The third menu item is only available to tea
hers and is
alled Add new
ourse. Here tea
hers
an add a
ourse to the list of already existing
ourses. The details that are needed to
reatea new
ourse, is shown in an HTML form on this page. The tea
her then enters informationabout the new
ourse. When the submit button is pressed, the
ourse is added to the list of
ourses. This page is shown in Figure 3.8.

Figure 3.8: Add new
ourse page from Student
lass appli
ation.The fourth menu item is also available only to tea
hers and is
alled Show a
ourse
alendar.The only purpose for this
alendar is as a demonstration of the use of
omplex HTML forms,where more than one item of the same type is shown on a page. Therefore this
alendar do

88 CHAPTER 3. EXAMPLE APPLICATIONSnot update the global state in the program, neither is the
alendar asso
iated to a spe
i�

ourse. This intera
tion
onsists of two pages. The �rst page shows a
alendar
onsisting of
he
k boxes. Here it is possible to mark days in a
alendar. This page is shown in Figure3.9.

Figure 3.9: Show
ourse
alendar page from Student
lass appli
ation.When the submit button on this page is pressed a new page is shown where the days - thatwas marked on the previous - is marked in a new
alendar. This page is shown in Figure3.10.

Figure 3.10: Show
alendar page from Student
lass appli
ation.3.2.2 Use of the Session Con
eptIn this se
tion it is explained how the session
on
ept is used in the Student Class appli
ation.This appli
ation
ontains �ve sessions:� main-session

3.2. STUDENT CLASS EXAMPLE 89� login-session� student-session� tea
her-session� exit-sessionThe �ow of the sessions is illustrated in Figure 3.11. main-session is the �rst session a
tivatedwhen the appli
ation is started. main-session is responsible for a
tivating the login-session.login-session is the session asking for the username and password and returning a re
ord withthe data representing this user. student-session and tea
her-session are almost identi
al.Depending on the type of user (tea
her or student) one of the sessions is started on
e theuser has logged in. The reason for having two sessions that are nearly identi
al, is to showthat it is possible to have two sessions and on behalf of the type of the user,
hoose whi
hsession to a
tivate. The last session is
alled exit-session and is a
tivated when a user logsout. It shows a goodbye page and a
tivates main-session again.
login−session

show username/password page

is username and password valid?

recieve username and password

no

yes

teacher−session

if next−page == edit−profile
show edit−profile page
update "database"

update "database"

if next−page == add−course

activate teacher−session

activate teacher−session

show add−course page
update "database"

if next−page == show−course−calendar
show build−a−course−calendar page
show show−course−calendar page

if next−page == exit

activate teacher−session

activate teacher−session

activate exit−session

main−session

activate login−session

type of person:

student

activate student−session

teacher

activate teacher−session

show general−menu−page

if next−page == edit−profile
show edit−profile page
update "database"
activate student−session

if next−page == add−to/from−course
show add−to/from−course page
update "database"
activate student−session

if next−page == exit
activate exit session

student−session

exit−session

activate main−session

show goodbye page

show general−menu−page

if next−page == add−to/from−course
show add−to/from−course page

Figure 3.11: The session �ow of the Student
lass appli
ation.In the following login-session and student-session are explained.

90 CHAPTER 3. EXAMPLE APPLICATIONSLogin-sessionThe �rst session that is dis
ussed is the login-session. The login-session illustrates theusefulness of using re
ursive sessions. Furthermore it shows how a session
an be used toreturn a value.(slaml-define-sessionlogin-session(slaml-session (lst)(let ((app-user(slaml-showlogin-page'
he
k login-
he
k'
he
kparm people-lst))) ;
he
k if the person is valid; this is page level validation(if app-user ; is the user valid ?app-user ; yes : return the users information(slaml-a
tivate-session login-session))))) ; no : rea
tivate the login-sessionThe login-session shows login-page to the
lient. If the user enters an non-valid usernameor password, the login-page return #f else it return the re
ord stru
ture - named app-user -for the person with the
urrently entered username and password. This is done with a
he
kfun
tion, that is explained later. The last if expression in the login-session,
he
ks if a validusername and password is entered. If it is a valid user, the users re
ord is returned from thesession. If it is not a valid user (the login-page returned #f) the login-session is a
tivatedagain. This illustrated the usefulness of re
ursion of sessions.Student-sessionOther sessions that make use of re
ursion are student-session and tea
her-session. Further-more these sessions rely on session parameters. The session parameter is used to send aperson re
ord to the session and in this way make it possible to
ustomize the layout of thepages as spe
i�ed in the users pro�le. The student-session and the tea
her-session are alsoused to show the right page based on the link in the tea
her-menu or student-menu. Ea
hof the links in the menu is
reated as follows:(a "Edit profile" 'href "?page=edit-profile-page")The href attribute sets the page url parameter to the value of the next page to display. Asthe student-session and tea
her-session are alike, only the student-session is shown.

3.2. STUDENT CLASS EXAMPLE 91(slaml-define-sessionstudent-session ; the student-session(slaml-session (lst)(let* ((app-person (
ar lst))(next-page (slaml-formparms-key->value ; show general-menu-page'page ; and get the "page" parameter(slaml-showgeneral-menu-page'pageparm (list app-person))))) ; show the menu page for the student(
ond ; based on the page parameter submitted
hoose a page((string=? "edit-profile-page" next-page) ; edit profile;"show the edit-profile-page";"when the form is submitted, update the
onfiguration";"a
tivate the student session again")((string=? "add-remove-page" next-page) ; add to or remove from
ourse page;"show the add-remove-page";"when the form is submitted, update the
ourse list";"a
tivate the student session again")((string=? "exit" next-page) ; the exit session;"a
tivate the exit session")))))Figure 3.12: The de�nition of student-session.In the above example some of the
ode has been repla
ed with text. This is done to makeit easier to read. This example shows the de�nition of the student-session. In this examplenext-page is bound to the value of the page form parameter (from the link in the menu),whi
h is set by the link in the general-menu-page. Based on the page parameter the wanteda
tion is performed (edit pro�le, add to/remove from
ourses or exit). After ea
h a
tion isperformed, the student-session is a
tivated again. This approa
h looks like the approa
htaken in CGI, but this is ne
essary to bran
h to the right a
tion. This approa
h di�ershowever from the CGI approa
h as here it is expli
itly stated to restart the session. This isdis
ussed in details in Se
tion 4.3.
3.2.3 Use of Complex FormsComplex HTML forms are used in four pla
es in the appli
ation (Edit pro�le, Add to/removefrom
ourse, Add new
ourse and Show a
ourse
alendar). In this se
tion it is shown how
omplex HTML forms are used on Add new
ourse page and Show a
ourse
alendar page.The reason for
hoosing these two is that these are the two most
omplex HTML forms inthe appli
ation.

92 CHAPTER 3. EXAMPLE APPLICATIONSAdd New CourseWhen adding a
ourse to the list of
ourses, it is ne
essary to spe
ify all the entries in a
ourse re
ord. A
ourse re
ord stru
ture look as follows:(
ourse(name . "S
heme le
ture")(tea
her . "1")(modules . "5")(pla
e . "E0-001")(student-info (min-students . "2") (max-students . "10"))(id . "a1"))The �rst entry is the name of the
ourse. This is the string shown on the Add to/removefrom
ourse page. The next entry is the tea
her entry, whi
h spe
i�es the id of the tea
herthat will be tea
hing the
ourse. modules spe
i�es how many modules (lessons) the
ourse
onsists of. pla
e, is the name of the pla
e where the
ourse is held. student-info is a newre
ord stru
ture, spe
ifying what the minimum and the maximum number of students arefor this
ourse. Last is the id of the
ourse, this is a unique id used to relate
ourses tostudents.To present a form where these informations
an be entered, a
omplex form is build. Thereason for building a form to handle the new
ourse is that the
ourse re
ord stru
ture isbuild to mat
h the list returned from the slaml-update-obje
t! fun
tion. This makes iteasy to mutate the global list - where all
ourses are present - to in
lude the new
ourse.When the list is returned from slaml-update-obje
t! it is made to �t the
ourse re
ordshown above and it is then added to the global list of
ourses. This makes it easy to addnew
ourses to the list of
ourses.Show a Course CalendarAnother pla
e where a
omplex HTML form is used, is in the Show a
ourse
alendar page.This HTML form
onsists of four weeks where ea
h week
onsists of seven days. To generatea week obje
t with seven days a fun
tion is used.(define (
reate-
ourse-
alendar-days-obje
ts) ;
reates a week(slaml-
reate-obj-lst(slaml-basi
-element'value "present" 'tagtype "day" 'name "Mo" 'type "CHECKBOX")(slaml-basi
-element'value "present" 'tagtype "day" 'name "Tu" 'type "CHECKBOX")(slaml-basi
-element'value "present" 'tagtype "day" 'name "We" 'type "CHECKBOX")(slaml-basi
-element'value "present" 'tagtype "day" 'name "Th" 'type "CHECKBOX")(slaml-basi
-element'value "present" 'tagtype "day" 'name "Fr" 'type "CHECKBOX")(slaml-basi
-element'value "present" 'tagtype "day" 'name "Sa" 'type "CHECKBOX")

3.2. STUDENT CLASS EXAMPLE 93(slaml-basi
-element'value "present" 'tagtype "day" 'name "Su" 'type "CHECKBOX")))This fun
tion takes no parameters, but returns an obje
t-list (whi
h is a tagged list usedinside the obje
ts to represent referen
es to other obje
ts) of seven slaml-basi
-elementsrepresenting a week. The reason for using a fun
tion instead of binding the list to a name,is that a new instan
es of the week is needed. As it is seen ea
h day is tagged with dayand the name of the obje
ts are the names of the days of a week. The reason for taggingthe list with day is that thereby it is possible to spe
ify that ea
h of the lists returned fromslaml-update-obje
t! represents a day. The list representing one week is then added toea
h of the four weeks in the
alendar HTML form.(define
reate-
ourse-
alendar-weeks-obje
t ; a month of obje
ts(slaml-
reate-obj-lst(slaml-element'name "week1"'tagtype "week"'elements (
reate-
ourse-
alendar-days-obje
ts)'layout week-layout)(slaml-element'name "week2"'tagtype "week"'elements (
reate-
ourse-
alendar-days-obje
ts)'layout week-layout)(slaml-element'name "week3"'tagtype "week"'elements (
reate-
ourse-
alendar-days-obje
ts)'layout week-layout)(slaml-element'name "week4"'tagtype "week"'elements (
reate-
ourse-
alendar-days-obje
ts)'layout week-layout)))Here the weeks are tagged with week and the name of the obje
ts are the name of theweeks (here week1, week2, week3 and week4). To get the elements (days) for ea
h week,the
reate-
ourse-
alendar-days-obje
ts fun
tion is
alled. The list representing four weeks isbound to the name
reate-
ourse-
alendar-weeks-obje
t as only four weeks are needed in theappli
ation. The list representing four weeks
an now be added as elements to the
alendarHTML form.(define
ourse-
alendar-form ;
alendar form(slaml-form-element'a
tion ""'elements (append
reate-
ourse-
alendar-weeks-obje
t

94 CHAPTER 3. EXAMPLE APPLICATIONS(list (slaml-basi
-element'name "submit-button"'tagtype "submit-button"'type "SUBMIT"'value "Submit
alendar")))'layout month-layout))Here it is seen that the new slaml-form-element is bound to the name
ourse-
alendar-form. Furthermore a submit button is added to the HTML form. The
ourse-
alendar-formis then shown to the
lient whi
h
he
ks the
he
k boxes that represents the days where a
ourse is held. When the HTML form is submitted, the data returned from the HTML formis used to update the
ourse-
alendar-form obje
t stru
ture. How this is done is illustratedin the following.(let ((page-data(slaml-showshow-
ourse-
alendar-page'pageparm (list app-person))))(slaml-showshow-
ourse-
alendar-result-page'pageparm (list app-person page-data))(slaml-a
tivate-session tea
her-session 'sessionparm lst))First is the show-
ourse-
alendar-page shown to the
lient. The resulting form parameter listis then bound to the name page-data. The re
ord representing the
urrent user is bound tothe name app-person. The reason for sending this re
ord to all pages is that it
ontains thepro�le of the person. This information is used to e.g. set the ba
kground
olor of the page.Next step in the appli
ation is to show the page bound to the name show-
ourse-
alendar-result-page. This page is given a list
ontaining app-person and page-data as parameter,as this data is used to build the resulting
alendar. Last the tea
her-session is a
tivatedagain. The lst parameter, whi
h is passed as parameter to the tea
her-session is passed asparameter to the session from whi
h the above example is taken.3.2.4 Use of ValidationBoth page level validation and obje
t level validation is used in the appli
ation. Page levelvalidation is used in the login-session when the login-page is
alled. Obje
t level validationis used to
he
k the ba
kground
olor on the Edit pro�le page. Both of these are explainedin this se
tion.Login Che
kWhen the login-page is shown, a
he
k fun
tion is used to
he
k the username and passwordagainst a list of persons (whi
h ea
h has a username and a password).

3.3. SUMMARY 95(define login-
he
k ; fun
tion used to do page level
he
k on the login form(lambda (form-parms all-persons-lst)(let ((username (slaml-formparms-key->value 'username form-parms))(password (slaml-formparms-key->value 'password form-parms)))(
he
k-user-and-password username password (get-persons all-persons-lst)))))In the above the
he
k fun
tion used with the login-page is seen. It is seen that the form-parms parameter is asked for the username and password. This is done with the fun
tionslaml-formparms-key->value. The username and the password is bound to the variables
alled username and password, respe
tively. These two values are passed to the fun
tion
he
k-user-and-password, whi
h takes a username, a password and a list of persons as pa-rameter. Based on these parameters the person that mat
hes the username and passwordis returned. If no person mat
hes the username and password, #f if returned. The se
ondparameter to the login-
he
k fun
tion is the list of all persons in the system. login-
he
kreturns what the
he
k-user-and-password returns.Ba
kground Color Che
kAn example of obje
t level validation is in the Edit pro�le menu, where the submittedba
kground
olor is
he
ked. The reason for
he
king the ba
kground
olor is that if theuser submits bla
k as the ba
kground
olor the user
annot see the text on the s
reen as thisis bla
k too. The following
he
k fun
tion is used for
he
king the ba
kground
olor:(define (
he
k-ba
kground-
olor str)(not (string=? str "bla
k")))This
he
k fun
tion is simple, but it is useful sin
e it makes it impossible to sele
t the sameba
kground
olor as the text
olor.Another possibility to this problem is to add a menu to the page where the
olors
an besele
ted from. Thereby, it is unne
essary to do
he
k on this value as it is impossible to
hoose a wrong
olor.Che
k on
oheren
e of two input elements is useful in the student-info re
ord stru
ture inthe Add new
ourse page. Here it must always be the
ase that the minimum number ofstudents is lower than the maximum number of students. But as validation on obje
ts ofthe type slaml-elements is not implemented it is not used in this appli
ation.3.3 SummaryTwo appli
ations based on the SLAML framework is dis
ussed in this
hapter. First a smallappli
ation - �Guess a number� - is dis
ussed. Se
ond, a larger appli
ation - �Student
lass�- is dis
ussed. Based on the experien
es gained during the implementation of these example

96 CHAPTER 3. EXAMPLE APPLICATIONSappli
ations, the following
on
ludes on usability of the frameworks.The session framework in SLAML gives the developer the possibility to think of a Webappli
ation as one program. The result is that the �ow of the Web appli
ation is like the�ow of a non-Web appli
ation. This means that the �ow of the program is gathered in asingle �le. This gives an overview of the �ow of the appli
ation. That a session en
apsulatesintera
tions with a
lient means that responsibility
an be delegated on a higher level thana single page. By this we mean that intera
tions sharing the same responsibility
an begathered in a session. An example is a login session where more than one page is responsiblefor ensuring a user is logged in. By doing this it is possible to a

ess all the pages responsiblefor logging the user in, as a unit.The
omplex forms framework, gives the developer possibility to
reate an obje
t stru
tureon the server and rely on this obje
t stru
ture to query for data returned from the
lient.Therefore, the obje
t stru
ture send to the
lient is also the obje
t stru
ture that is queriedfor data. Building the obje
t stru
ture and pla
ing the layout on the obje
ts in the stru
tureis a
onsiderable amount of work, but on
e this has been done it is straight forward to updatethe obje
t stru
ture and query the obje
ts in the stru
ture for data.The validation framework is designed to work on both the page level and the obje
t level.This means that it is possible to do validation when using the
omplex forms framework aswell as the session framework. The validation framework is not implemented on slaml-elementand slaml-form-element. On the page level the form parameters from the
lient is sendas parameter to the
he
k fun
tion. Thereby, all data from the submitted HTML form
anbe
he
ked. This is an advantage sin
e it thereby is possible to build HTML forms withoutthe
omplex forms framework and still get the data validated. However, if both the
omplexforms framework and the session framework is used it is redundant to
he
k on both thepage level and the obje
t level.

4
Re
e
tionContents4.1 En
ountered Problems . 974.2 Current Limitations . 1004.3 SLAML Framework . 1034.4 Summary . 106In this
hapter the re�e
tion of the designed and implemented frameworks are given. This
hapter
onsists of four se
tions.The �rst se
tion gives an overview of the problems that were en
ountered during the imple-mentation of the SLAML framework. These problems are related to the Apa
he server.The se
ond se
tion is about the limitations to the implemented framework in relation tothe design. The limitations are
on
erned with the implementation done in S
heme as wellas limitations by the problems en
ountered when implementing the session framework inApa
he.The third se
tion is re�e
tions on the experien
es gained when implementing the exampleappli
ations (from Chapter 3) with help from the SLAML framework.Last is a summary where the limitations and re�e
tions are summarized.4.1 En
ountered ProblemsDuring the implementation problems were en
ountered. These are des
ribed in the followingtwo se
tions. The nature of the en
ountered problems is mainly on a low level i.e. involvingmod_laml and the server. The reason for not solving the problems is the de
ision to pla
eour fo
us on S
heme level implementation.

98 CHAPTER 4. REFLECTION4.1.1 New Apa
he ModuleDuring the implementation of the designed solutions a problem
on
erning mod_laml o
-
urred. The reason for this problem is the intended implementation of the slaml-showprimitive. We de
ided to let the slaml-show primitive halt the evaluation of the SLAMLappli
ation and display a page to the
lient. Upon submission of the page from the
lient,the program
ontrol is returned to the slaml-show primitive in the SLAML appli
ation.The solution is based on a signal/wait situation in the Apa
he server. By a signal/waitsituation we mean that on
e the �rst request - for a Web appli
ation - is handled by theserver, the server will spawn a new thread (named session thread) to run the S
heme programin. This means that two threads are present in the server after the �rst request (the Apa
hepro
ess that handles the request is also seen as a thread, the main thread). This is seen inFigure 4.1.
session thread

Server Client

Request

Response

Request

Response

session thread main thread

(3) main threadWait
Spawn

Signal main thread
session threadWait

Signal
main threadWait
session thread

Signal main thread
Wait session thread

(slaml−show ...

(slaml−show ...

(4)

(6)

(5)

(1)

(2)

(7)

Figure 4.1: An illustration of the two threads running in the server and the
ommuni
ationbetween them.To handle requests by using threads, the server module must handle seven steps, whi
h areexplained below. Ea
h number in the following,
orresponds to the same number in the�gure:1. When a
lient requests a SLAML appli
ation, it is handled by the main thread. Themain thread represents the Apa
he
hild that re
eives the request.2. The main thread
he
ks if the session thread is present (
he
ked by a global state in themodule). Sin
e this is not the
ase at the �rst request, the session thread is spawnedand the main thread waits.

4.1. ENCOUNTERED PROBLEMS 993. The session thread starts evaluating the S
heme program requested by the
lient, byusing the embedded interpreter.4. When the session thread rea
hes a slaml-show in the appli
ation, it signals the mainthread and waits.5. The main thread sends the page - spe
i�ed as a parameter to slaml-show - to the
lient and ends the request. This results in the main thread going idle.6. When the
lient submits the HTML form from the page presented, the main threadis resumed. Like step 2, the main thread
he
ks if the session thread is present (by
he
king the global state in the module). Sin
e this is not the �rst request to theappli
ation, the session thread is already present. Therefore it is signaled (instead ofspawned) and the main thread waits.7. When re
eiving the signal, the session thread resumes its
omputation. This resultsin slaml-show to return the data entered by the
lient. The steps from step 4 andforward are
ontinued until the appli
ation is ended.The problem related to this approa
h is that mod_laml is unable to use threads as it uses theApa
he server version 1.3 [apa01℄. We tested the pthread library with mod_laml, but wereunable to
reate threads in mod_laml. Additional small modules indi
ated that threads arenot allowed in a module for the Apa
he server version 1.3. Version 2.0 of the Apa
he serveris
reated to allow better portability and better support for threads, as the pro
ess modelin this version is
hanged. This motivated us to implement a module using threads underApa
he 2.0, and it worked. Therefore we repla
ed Apa
he version 1.3 with Apa
he version2.0 and
reated mod_laml for this version of the server.By using Apa
he version 2.0 it is possible to use threads in a server module. But it is notpossible to use Apa
he version 2.0 together with MzS
heme. The reason for this is unknown,but small tests indi
ates that it is impossible to start a MzS
heme interpreter inside Apa
he2.0. Therefore we
hanged the S
heme interpreter to Guile[gui01℄. This resulted in
reationof a module
ontaining only the ne
essary features to perform a proof of
on
ept implemen-tation of the designed solution to the problems presented during the analysis.4.1.2 Handling Data on the ServerDuring the beginning of this semester experiments with handling data sharing on the serverwere
ondu
ted. This was motivated by two requirements.First a way to share data between the individual server pro
esses are needed. The reasonis that Apa
he starts several pro
esses to handle requests from the
lient. The pro
esses
annot share data, so if a
lient sends a request to one pro
ess this pro
ess must also servethe following requests for the data to be a

essible. This is not the
ase in Apa
he, sin
e anarbitrary pro
ess
an respond to a request. But if the pro
esses
an share data it is unne
es-sary to ensure that a given pro
ess always handles requests from a given
lient. Se
ondly it

100 CHAPTER 4. REFLECTIONis needed to make sessions persistent, so in
ase the server restarts it
an a

ess the data re-lated to the sessions. This is impossible if data related to the session is kept in main memory.Another reason for
onsidering persisten
e of sessions is the memory usage on the server.If all sessions are kept in main memory and not moved to disk, the memory requirementwill in
rease
ontinuously. These two problems are dis
ussed and possible solutions are given.We found a library that is used by other Apa
he modules (e.g. mod_ssl [Eng02b℄) whi
hsolves the problem of sharing data between pro
esses in an Unix system. The library is
alled MM [Eng02a℄ and is a �exible way to
reate memory that
an be shared between thevarious server pro
esses. This is done by
reating a memory segment and give ea
h serverpro
ess a referen
e to it. This memory segment is - dependent of the platform - lo
ated ina �le on the hard-disk or in main memory, so using this memory segment is not always ase�
ient as main memory.The problem with persisten
e of sessions is to store the
ontents of a S
heme environment.The
ontents of the embedded S
heme environment is all the name bindings in the
urrentinstan
e of the interpreter. In general the
ontent is all the information needed to rea
ti-vate the S
heme interpreter, as if it has never been dea
tivated. Making sessions persistenthas been done by Queinne
 in [Que℄. Queinne
 has implemented a server and a S
hemeinterpreter in Java, whi
h allows
ontinuations to be stored on the disk. By implementingboth the server and the S
heme interpreter in Java, Queinne
 relies on the possibility forserialization in Java [In
02a℄ to store
ontinuations. Serialization allows writing obje
t to�les on disk, and to re
reate the obje
ts from the �les. Unfortunately this is not possiblewhen relying on Apa
he and Guile as these are written in C and serialization is not as easyin C as it is in Java.The implementational task of solving data sharing requires a substantial amount of work,and will pla
e fo
us of the proje
t on the C level instead of the S
heme level. As fo
us is onthe S
heme level in this proje
t, it is
hosen to rely on a server module where data is keptin main memory and not written to disk. Therefore it is not
onsidered any further. Thisresults in a number of limitations whi
h are stated in the following se
tion.
4.2 Current LimitationsIn the implemented framework there are limitations in relation to the designed framework.Some of these limitations are related to the implementation of mod_laml. Others are lim-itations made during work at the S
heme level. Limitations in mod_laml are related toimplementation of the slaml-show, sharing data between pro
esses and making S
heme en-vironments persistent. Limitations in the SLAML framework are made when no new insightis expe
ted by implementing the fa
ility.

4.2. CURRENT LIMITATIONS 1014.2.1 Mod_laml LimitationsDue to the problems des
ribed in Se
tion 4.1 a new implementation of mod_laml is made.It is de
ided that a basi
 implementation is su�
ient for the purpose of this proje
t. Themodule need to be able to evaluate S
heme programs - with slaml-show primitives - on theserver. Sin
e this
annot be done with the old mod_laml the solution was to dis
arding themodule implemented during the preparatory work, and
reate a new module for the Apa
heserver version 2.0, using the Guile S
heme interpreter. In the following it is presented whatis lost and what is still present from the old mod_laml when using the new mod_laml.In the old module it is possible to load �les into mod_laml when the server is started andthereby de
rease the exe
ution time spend on the request. This is still possible in the newmod_laml, but in the new version a S
heme �le is used for loading the libraries, whereasthe old version relies on a spe
ial
on�guration �le.In the old version of mod_laml it is possible to have as many
lient
onne
ted as the hard-ware allowed. The reason is that the S
heme environment is
leaned after ea
h request. Thisis not possible in the new version of mod_laml as information about the sessions are neededat a later time. Furthermore, sin
e it is not possible to share data between Apa
he pro
esses,ea
h
lient needs its own Apa
he pro
ess. It is impossible to ensure that a
lient gets thesame Apa
he pro
ess at the next pro
ess so only one Apa
he pro
ess
an be present at theserver. This is done be
ause it must be ensured the
lient gets the same Apa
he pro
essat the next request. As the S
heme environment in the Apa
he pro
ess is dedi
ated to one
lient, only one
lient
an a

ess the server.The old version of mod_laml has a possibility to use di�erent interpreters. This is not possi-ble in the new version of mod_laml. The reason is that the implementation of this requiresmu
h work on the implementation of S
heme in Apa
he, and this is not the fo
us of thisproje
t. But implementing support for more than one interpreter is designed in our Dat5report and
an be implemented a

ording to this design.In order to make the new version of mod_laml work with more than one
lient it is ne
essaryto make data sharing and data persisten
e available on the server. This is the �rst thingto be done in order make this module usable as a produ
tion server. By produ
tion serverwe mean a server that is stable enough to be used for other than proof of
on
ept appli
ations.4.2.2 HTML ElementsIn the design of the
omplex forms framework the slaml-basi
-element type is
reated torepresent basi
 HTML elements, su
h as the HTML input element. In the implementationthe possible HTML elements are limited to the HTML input element. This is
hosen as theimplementation of the additional HTML elements does not bring new insight. To implementthe additional HTML elements a new property on obje
ts of the slaml-basi
-element typeindi
ating the element type of the element, must be added. Possible values for this are:

102 CHAPTER 4. REFLECTIONinputsele
ttextareabuttonBesides introdu
ing the element type property, the fun
tionality of the slaml-basi
-elementfun
tion must be extended to in
lude possible attributes and default values of the propertiesfrom the new HTML elements. For a
omplete referen
e of the elements and the attributesof the elements please refer to [W3C02b℄.The above list
ontains only a subset of the HTML elements that
an appear as part of anHTML form. The above list is
hosen as these are the ones that allows input to be enteredby the
lient. As an example the HTML label element is also a valid HTML element insidean HTML form. But it must not be represented as a slaml-basi
-element, as it
annotrepresent data entered by the
lient. Instead the HTML label element is part of the layoutfun
tions written on obje
ts of the slaml-form-element and slaml-element types.We suggest to implement the new elements as a property on the slaml-basi
-element
lass, indi
ating the type of the HTML element. An example of a property name
an beelement-type. As part of this, fun
tionality on the slaml-basi
-element must be extendedto support the attributes present with the new element type.4.2.3 Error MessagesThe initial goal of this proje
t is to help the developer in the development pro
ess. Part of thishelp, is to provide suitable and pre
ise error messages when an error is en
ountered. The taskof writing des
riptive error messages has not been a design goal for the SLAML framework.Writing error messages is something that must be done, before software is released. Nospe
ial
onsiderations to the quality of the error messages in the
urrent implementation hasbeen given. This is
hosen sin
e the implementation is not intended as a produ
t for release,but rather as a proof of
on
ept.4.2.4 Validation on slaml-element and slaml-form-elementA validation framework has been developed for both the session framework and the
omplexforms framework, but the implementation of the validation is not
omplete in the
omplexforms framework. Validation on obje
ts of the slaml-element and slaml-form-elementtype is not implemented, as it is not ne
essary to show that validation on the individ-ual obje
ts is possible. Furthermore, by proving the idea of a validation fun
tion on theobje
ts of the slaml-basi
-element type we expe
t this to work on slaml-element andslaml-form-element too. Validation on obje
ts of the slaml-element and slaml-form-elementtype must be implemented for the validation in the
omplex forms framework to be
omplete.

4.3. SLAML FRAMEWORK 1034.3 SLAML FrameworkIn this se
tion the experien
es with the SLAML framework are
onsidered. The sessionframework,
omplex forms framework and validation framework are re�e
ted upon in turn.The re�e
tions are based on the experien
es gained during the implementation of the �Guessa number� example and the �Student
lass� example.4.3.1 Session FrameworkBy using the session framework we are able to share data between intera
tions with a
lient.This is seen as a strength
ompared to a CGI approa
h, where data sharing is usually doneby sending data between
lient and server. In the session framework, data is present on theserver when the next request is re
eived. This ensures a de
reased use of bandwidth, sin
e
lient input are not send between server and
lient in order to be available at a later point.However in CGI there is also a possibility to store data on the server, but this has to bedone expli
itly by the programmer. Furthermore, CGI appli
ations uses �les or databasesfor sharing data sin
e data in main memory are lost after a request. Using �les to share datameans that the state of the program is a

essible from all other s
ripts in the CGI appli
a-tion. In the session framework the data re
eived from an intera
tion is part of a lexi
al s
opeand thereby prote
ted from other unrelated intera
tions. Furthermore, the data is kept inmain memory, whi
h means that the programmer does not need to expli
itly take
are ofstoring the
lient data to disk.The session framework introdu
es a new way to view a Web appli
ation. As the slaml-showprimitive is used to ask the
lient for data, the view of an appli
ation is turned around. Bythis we mean, that in a CGI approa
h the Web appli
ation is mostly programmed in a waywhere the
lient asks the server to generate a page based on input. In the session frameworkthe server asks the
lient for data and based on this data, it
an
ontinue the evaluation ofthe appli
ation. By requesting data from the server, the
lient still has the
ontrol of theappli
ation. However, the opposite seems the
ase from the developers point of view, sin
eit seems as if the
lient is asked for data.From the �Student
lass� example it is experien
ed that the �ow of the appli
ation is morelike non-Web appli
ations (
ompared to a CGI approa
h). The reason is, that the nexta
tion to be performed when the
lient submits data,
an be seen in the program. Anexample is the menu in the �Student
lass� example. In the example the menu page is pre-sented to the
lient, and based on the link
hosen in the menu a bran
h of the programis taken. At �rst sight this looks like the
ontrol needed in the CGI approa
h, where a
ond spe
ial form is used to determine the page to show. The di�eren
e between the twoapproa
hes is, that it is not possible to maintain an overview of various intera
tions withthe
lient in a CGI s
ript. This is possible in the session framework sin
e the slaml-showreturns like a normal fun
tion and ea
h slaml-show represents an intera
tion with the
lient.In Bigwig it is possible to a
tivate a session from the URL. This means that a menu like

104 CHAPTER 4. REFLECTIONthe one in the �Student
lass� example,
an be
onstru
ted of links to new sessions. Butthe �Student
lass� example shows, that when a
tivating a link only one or two pages areshown in sequen
e. To make sessions that only
onsists of one or two pages spreads the�ow of the appli
ation. The reason for this is, that it results in a similar approa
h as CGI,where a single page in an appli
ation
orresponds to a single s
ript. In the session approa
h,ea
h page then
orresponds to a session, whi
h is a
tivated by a link. This approa
h seemsmu
h like the approa
h used in WASH/CGI and PACKS/HTML, where event handlers areasso
iated to submit buttons on an HTML page. Pressing a submit button results in thepresentation of a single page from a Web appli
ation. Sin
e an event handler is equal toa page, whi
h is equal to a single s
ript, the entire appli
ation is split into a number of s
ripts.4.3.2 Complex Forms FrameworkIn this se
tion the
omplex forms framework is
ompared to a solution based on CGI.One way to
ome around the Complex forms problem in CGI, is to use data stru
tures inthe CGI program. Based on these data stru
tures, fun
tions that
an take a data stru
-ture as input and return the HTML representation of the stru
ture, must be
reated by thedeveloper. In this way ea
h stru
ture needs an asso
iated fun
tion to generate the HTMLrepresentation. When data are submitted from the
lient, a fun
tion is needed to re
reatethe stru
ture based on a spe
i�
 key/value pairs string. Therefore it is ne
essary to sendinformation to the
lient spe
ifying what type of stru
ture is submitted (see Se
tion 1.1.3).This approa
h means that two fun
tions are needed for ea
h stru
ture. The �rst is respon-sible for presenting the stru
ture and the se
ond is responsible for rebuilding the stru
ture.We
an think of two optimizations to this approa
h. The �rst is to make a general fun
tionthat
an take any given stru
ture and
reate the HTML presentation. Sin
e the fun
tionmust
ontain information about the presentation of ea
h individual stru
ture, it is di�
ult- if not impossible - to a
hieve su
h general fun
tionality.Another solution is to build substru
tures and let two fun
tions handle presentation andre
reation of ea
h substru
ture. Large
omplex stru
tures
an then be
reated based onthese substru
tures. This
an be done by
ombining fun
tions that generate HTML presen-tation of substru
tures. By aggregating HTML presentation of substru
tures, the HTMLpresentation of a larger stru
ture is a
hieved. Re
reating a large and
omplex stru
ture isdone by
ombining the appropriate re
reation fun
tions used on substru
tures.In
ontrast to the CGI solution, the
omplex forms framework
onsists of three phases. The�rst is to build the obje
t stru
ture. This is similar to building a stru
ture in CGI, ex
eptwhen programming CGI in S
heme a list stru
ture is more appropriate than the obje
t ori-ented approa
h used in the framework. The reason for this is, that in CGI it is
omprehensiveto rebuild an obje
t stru
ture after ea
h request, whereas an obje
t stru
ture
reated in theframework is persistent (in main memory) and survives intera
tions with the
lient. Thenext step is to present the stru
ture. In the
omplex forms framework this is done by adding

4.3. SLAML FRAMEWORK 105HTML layout to the individual obje
ts and
all slaml-do-layout to generate the HTMLrepresentation. In CGI this is done by writing fun
tionality, that based on a spe
i�
 stru
-ture generates the HTML representation. The last step is to update the obje
t stru
ture.In the
omplex forms framework this is done by
alling slaml-update-obje
t! with there
eived data and the obje
t stru
ture to update. In CGI, this is done by
reating a fun
tionthat
reates a
omplex stru
ture on behalf of the substru
tures.Comparing the CGI approa
h with the
omplex forms framework two large di�eren
es areseen. The �rst is, that in the CGI approa
h a new fun
tion has to be
reated for ea
h stru
-ture to present. Sin
e the fun
tion that presents a stru
ture also
ontains the HTML layout,a new fun
tion has to be
reated for ea
h representation of a stru
ture. In the
omplexforms framework the layout of the obje
t stru
ture
an be
hanged sin
e it is a property onthe obje
t. Furthermore there are general fun
tionality to generate the layout of an obje
tstru
ture (slaml-do-layout). The se
ond di�eren
e when
omparing the
omplex formsframework with a CGI approa
h is re
reation of a data stru
ture. In CGI, this is done bywriting a re
reation fun
tion for ea
h stru
ture. To re
reate a stru
ture, the server needs toknow whi
h stru
ture is submitted. This is needed in order to
all the right fun
tion thatbased on data from the
lient re
reates the stru
ture. In the
omplex forms framework allthis is done by passing the obje
t stru
ture - present on the server - and the data re
eivedfrom the
lient to slaml-update-obje
t!. This results in the obje
t stru
ture being up-dated with the values re
eived from the
lient. However, if two HTML forms are present onthe same page, information about ea
h stru
ture must also be present. The reason for thisis, that both stru
tures send to the
lient are present on the server. The problem here is,that the server does not know whi
h of the two HTML forms is submitted. This information
an be pla
ed on the submit button in the HTML form and based on whi
h submit buttonis pressed, the appropriate stru
ture
an be send as parameter to slaml-update-obje
t!.4.3.3 Validation FrameworkIn this se
tion the experien
es with the validation framework are re�e
ted upon. The vali-dation framework works on both the obje
t level and the page level. Both of these levels arere�e
ted upon in the following.On the obje
t level, validation on slaml-basi
-element is implemented. This means thatit is possible to add a
he
k fun
tion to obje
ts of the slaml-basi
-element type and afterthe obje
t stru
ture is updated the obje
ts
an be queried for their status (valid or invalid).This gives the developer the possibility to validate the data from the input elements in anHTML form.Validation on
omposite obje
ts has also been designed, but not implemented. Our opinionis that validation on
omposite elements is useful sin
e it gives the developer a way to vali-date the dependen
ies between elements in the stru
ture. An example is a page where twolists of input elements are presented. One
onsists of person names and the other
onsistsof person emails. In this example it must be ensured, that all persons have an email, i.e.

106 CHAPTER 4. REFLECTIONwhen data is su

essful validated, there are an equal amount of names and emails.Validation on the page level gives the developer possibility to verify that the HTML formsubmitted from a page is valid a

ording to a
he
k fun
tion. This
an also be done in CGI,sin
e the form parameters from the
lient
an be passed to a validation fun
tion de�ned inthe s
ript. The di�eren
e between the CGI approa
h and the approa
h in the validationframework is, that validation of the
lient data is done as one a
tion in the validation frame-work. This is possible sin
e the server has knowledge of whi
h fun
tion to use for validatingthe data returned from the
lient (it is spe
i�ed when slaml-show is
alled).The approa
h used in the validation framework,
hanges the semanti
s of the slaml-show,sin
e the returned value from this fun
tion indi
ates if the data re
eived from the
lient isvalid or not. Thereby slaml-show has a semanti
 that states: If data is valid a

ording tothe
he
k fun
tion return the return value of the
he
k fun
tion else return false.4.4 SummaryThis
hapter presents the problems en
ountered during the implementation of the design. Anumber of limitations has been presented and des
ribed. These are the mod_laml moduleonly being able to handle one
lient. The slaml-basi
-element only representing theHTML input element. The error messages, not being
onsidered. And �nally the la
k ofvalidation on obje
ts of the types slaml-form-element and slaml-element. Based on theimplementation of the two proof of
on
ept appli
ations - des
ribed in Chapter 3 - re�e
tionson the designed solutions to the problems are given. The re�e
tions also in
ludes
omparisonwith the CGI approa
h.

5
Con
lusionThe purpose of this proje
t was to
ontinue work made during the preparatory proje
t(Dat5). In the previous proje
t, mod_laml was developed, whi
h de
reased the evaluationtime of the average LAML s
ript by 45%. Furthermore, existing work in the Web worldwas analyzed in order to identify ideas and prin
iples that
ould be used together withmod_laml. The Dat5 proje
t
on
luded, that we wanted to make Web development inSLAML (Server side LAML in mod_laml) �easier�. Therefore, the �rst task in this proje
t,was to spe
ify how to do Web development �easier�. To make Web development �easier� weneeded to identify often en
ountered problems in Web development. Therefore the fo
us ofthis proje
t has been to identify problems in Web development and to design and implementsolutions to these problems. Four problems were identi�ed (see Se
tion 1.1):1. State handling2. Input validation3. Complex forms4. ReusabilityThe State handling problem had two di�erent aspe
ts, namely Control �ow handling andData �ow handling. During the analysis, the four problems were explained in detail, andpossible solutions to the problems were presented. After the spe
i�
ation of the problems,the session
on
ept was introdu
ed as a possible solution. Three possible ways of using ses-sions were identi�ed, and they were presented through an analysis of Bigwig, WASH/CGIand PACKS/HTML. The Analysis ended in a problem de�nition, whi
h presented three hy-potheses. In the following, the results of this proje
t is related to ea
h of these hypotheses.The �rst hypothesis is related to two of the identi�ed problems in Web development, namelyState handling and Reusability. The �rst hypothesis is presented below:Hypothesis 1:

108 CHAPTER 5. CONCLUSIONA session-
entered approa
h to Web development in SLAML solves theState handling problem of a Web appli
ation. Furthermore, a session
on
ept makes a

ess to several HTML pages as a single unit possible.The �rst hypothesis was split into sub-hypotheses as it in
ludes two problems, namely theState handling and Reusability problems. Re
all, that the State handling problem had twoaspe
ts: Control �ow handling and Data �ow handling. This resulted in three hypotheses.The �rst of the three sub-hypotheses regards the Control �ow handling problem and ispresented below:Hypothesis 1.1:The Control �ow handling problem is solved by introdu
ing a session
on
ept, where a primitive in the language displays an HTML page toa
lient and returns as a regular fun
tion.In this hypothesis we state that the Control �ow problem is solved by introdu
ing a primitivein the language that
an show a page to the
lient and return
ontrol to the program as a reg-ular fun
tion
all. This primitive was designed and implemented and is
alled slaml-show.This solution is inspired by Bigwig and the primitive in Bigwig
alled show. In relation toCGI, this primitive solves the problem that the developer has to take
are of the
ontrol�ow expli
itly (by linking between �les or use sele
tion statements) as des
ribed in Se
tion1.1.1. This helps the developer to see a Web appli
ation as one appli
ation rather than small�appli
ations� linked together.In relation to the Control �ow problem, The slaml-show primitive is designed and imple-mented like show is in Bigwig. Therefore slaml-show will have mu
h of the same e�e
ton SLAML programs as show has on Bigwig programs. This results in simplifying theintera
tion with a
lient. This was mu
h as expe
ted sin
e Bigwig states that:"...the session
on
ept greatly simpli�es the programming of
ompli
ated
ontrol�ow with multiple
lient intera
tions ." [CAM02℄In our opinion we have solved the Control �ow problem, sin
e slaml-show works as a regularfun
tion
all in a non-Web appli
ation. slaml-show is
alled when data is needed from the
lient and it returns the form parameters to the surrounding program.Hypothesis 1.2:The Data �ow handling problem is solved by introdu
ing a session
on
ept to SLAML, where intera
tions inside the same lexi
al s
ope(session)
an share data.The Data �ow handling problem is solved along with the solution to the Control �ow prob-lem. This is so, sin
e the slaml-show primitive ensures that sequential intera
tions witha
lient are performed without the S
heme environment on the server is lost after ea
h in-tera
tion. slaml-show was designed and implemented to return the data re
eived from a

109
lient, and this data
an be stored in variables in the S
heme environment. This means thatthe data are present at a later time, and
an therefore be used without the developer havingto handle data expli
itly (e.g. store it in hidden input elements or on the servers �lesystem).The introdu
tion of the slaml-show, resulted in the developer being able to see a Web ap-pli
ation as one program and thereby as a non-Web appli
ation. This has the e�e
t that alldata re
eived in an appli
ation
an be bound in the S
heme environment and be availableat a later time. This was expe
ted as this is the
ase in Bigwig. Sin
e it is possible toprogram a SLAML appli
ation as a non-Web appli
ation, data is present on
e it is boundin the S
heme environment.We mean that the Data �ow handling problem is solved, by introdu
ing the slaml-sessionprimitive. The reason is that this primitive en
apsulates intera
tions with a
lient and allowsthe intera
tions to share data.Hypothesis 1.3:The Reusability problem is solved by introdu
ing a session primitivethat
an a
tivate a series of intera
tions with a
lient and rely onparameters at
all time.Reusability has been obtained by implementing a session primitive that relies on parameters.A slaml-session in the SLAML framework, is a �rst
lass obje
t in the S
heme environ-ment. This �ts well with the S
heme language. The slaml-session primitive en
apsulatesa number of intera
tions with the
lient, represented by slaml-shows. In order to fullyevaluate the level of reusability gained by introdu
ing sessions, a number of general sessionsmust be
reated and evaluated in a

ordan
e to the reusability.We have implemented relatively few appli
ations with the SLAML framework and
an there-fore not
on
lude if the Reusability problem is solved. However, a slaml-session en
ap-sulates more than one intera
tion with a
lient and
an therefore be used as a module that
an a
tivate intera
tions with a
lient. Sin
e a session
an take arguments, it is possible toa
tivate a session in di�erent
ontexts.The se
ond hypothesis is related to the Complex forms problem. It in
ludes the three stepspresent in the problem:Hypothesis 2:It is possible to
onstru
t a framework that helps the developer to build,present and update
omplex stru
tures.The Complex forms problem was inspired by the need to:� Build
omplex data stru
tures on the server.� Send the data stru
tures to the
lient as an HTML form and get it �lled with data.

110 CHAPTER 5. CONCLUSION� Re
eive the data and maintain the data stru
tures.This is not possible in plain CGI as there is no solution to build an HTML form from astru
ture and re
eive the data in the same stru
ture as it was presented to the
lient. Nosolutions were found that solves this problem. Motivated by this we designed and imple-mented a framework as part of the SLAML framework, to handle
omplex forms.It was
hosen to rely on obje
ts to represent data stru
tures. Other alternatives were pre-sented. These were a embedded domain spe
i�
 language and a nested list approa
h. Thereason for
hoosing an obje
t oriented approa
h is that it gives a �exibility to easily
hangethe stru
ture.Sin
e the session framework is part of the SLAML framework, it was possible to rely onfeatures from the session framework when the
omplex forms framework was designed andimplemented. The reason for relying on the session framework in the design and implemen-tation of the
omplex forms framework is that sessions makes it possible to store the obje
tstru
ture on the server and update it with data submitted from the
lient. However, sin
ethe session framework
annot be used as a produ
tion framework (is not stable enough torun with many
lients), there are two possibilities to make the
omplex forms frameworkready for produ
tion. First, the underlying problems of the session framework
an be solvedand thereby use the
omplex forms framework as it is now. Another possibility is to basethe
omplex forms framework on CGI. Implementing the
omplex forms framework in a CGIenvironment means that it is possible to use the framework without having to install a newApa
he server module.In our opinion the obje
t oriented approa
h solves the Complex forms problem. This is so,sin
e the
omplex forms framework supports the developer to
reate, present and update a
omplex stru
ture.The third and �nal hypothesis, spe
i�es how the Input validation problem was to be solved:Hypothesis 3:It is possible to
onstru
t a validation framework that helps the devel-oper to validate data from the
lient.This hypothesis stated that it is possible to solve the Input validation problem by
onstru
t-ing a validation framework. Sin
e two frameworks were
reated (the session framework andthe
omplex forms framework) to handle data, two approa
hes to validation existed. In thesession framework the data handling
onsists of asking the
lient for data and return thedata to the server. In the
omplex forms framework the data handling
onsists of updatingthe obje
ts with the data from the
lient. By supporting validation on both the sessionframework and the
omplex forms framework it is possible to use validation on the twoframeworks independent of ea
h other.

5.1. FUTURE WORK 111If the validation framework must work under CGI, the validation fun
tions must instead behandled expli
itly by the developer. The reason for this is, that a
he
k fun
tion must bede�ned in the s
ript where it is used. A solution to this problem, is to
reate a �validationlibrary� whi
h is in
luded in all s
ripts. This library
an then
onsist of
olle
tions of vali-dation fun
tions available.By extending the obje
ts in the
omplex forms framework to
ontain validation fun
tionality,we have made validation on the obje
t stru
ture possible. This is done by allowing thedeveloper to de�ne a
he
k fun
tion to ea
h of the nodes in an obje
t stru
ture. These
he
k fun
tions are then a
tivated when the obje
t stru
ture is updated, thus setting thevalid property on the obje
ts in the obje
t stru
ture. Validation in the session framework isobtained by validating information re
eived from individual intera
tions with a
lient. Thisis done, by spe
ifying a
he
k fun
tion as a parameter to ea
h slaml-show where validationis wanted.5.1 Future WorkThis last part of the
on
lusion presents possible areas where fo
us for future work with theSLAML framework
an be set. In order to use the SLAML framework in a broader
ontext,it is needed to solve the problems related to the Apa
he module. If these problems are notsolved, it is not possible to serve more than a single
lient at a time (see Se
tion 4.2). Thisis not adequate for produ
tion use.An aspe
t of the session
on
ept, has not been
onsidered in detail in this proje
t. Thisis related to the possibility to step ba
k in a session. A session
onsists of an amount ofintera
tions with a
lient and we �nd it bene�
ial to allow, that a
lient
an go ba
k in asession to
hange information entered. Stepping ba
k in a session means that the serverwill need to do a

ounting of how far the individual
lients has rea
hed in their sessions.Furthermore, it is ne
essary to undo a
tions performed by the
lient when the ba
k buttonis pressed. This is a subje
t that
an be investigated further.A problem not
onsidered in details in this proje
t, is the need to make sessions persistent.This must be
onsidered, sin
e a
lient
an pause the session (stop sending requests) foran amount of time. It is not known when - or even if - the
lient returns to
ontinue thesession. The problem with persistent sessions have two aspe
ts. The �rst is to share the databetween the Apa
he pro
esses. This is not possible in the
urrent implementation, be
auseof the Apa
he pro
ess model. This problem
an be solved by the MM library, whi
h allowsdata to be shared between Apa
he pro
esses. The other aspe
t of the persisten
e problem isto store sessions to disk. A possible solutions is to make the S
heme environment persistent,as e.g. done by Christian Queinne
 [Que℄.In Bigwig it is possible to a

ess sessions dire
tly by spe
ifying their name as an URL param-eter. This is done by letting the server have knowledge of all the sessions in a given servi
e.In the
urrent session framework this is only supported if handled expli
it by the developer.

112 CHAPTER 5. CONCLUSIONAn example of this is shown in the student-session in the �Student Class� appli
ation. Thesolution in Bigwig is better sin
e this approa
h requires no expli
it
ontrol of the �ow bythe developer. Thereby it is possible to a

ess a session by a link on a page.To use the fun
tionality from the old mod_laml it is ne
essary to implement all the featuresagain. This in
ludes support for more than one interpreter, registration of whi
h librariesare loaded and logging fa
ilities et
. This is a suggestion to future work in whi
h the designfrom our Dat5 proje
t
an be used.The last aspe
t that is
onsidered, is how the use of a session
on
ept
hanges the developersview on developing Web appli
ations. This
an be examined by performing an analysis ofthe di�eren
e between an appli
ation written in CGI and the same appli
ation based on thesession
on
ept. Aspe
ts su
h as e�
ien
y, lines of
ode, readability, reusability, develop-ment time and exe
ution time
an also be in
luded here.

A
SLAML Referen
eThis appendix presents the primitives from the SLAML library. For ea
h primitive the var-ious
hara
teristi
s are presented. The
hara
teristi
s on ea
h primitive is:Name The name of the primitiveDes
ription A des
ription of the primitiveForm The form in whi
h the pro
edure is a
tivatedReturns The return value of the pro
edureRequired Parameters The required parameters to the pro
edureOptional Parameters Optional parameters in form of named parametersFirst fun
tionality asso
iated with the session framework are presented. Next fun
tionalityasso
iated with the obje
t framework are presented.A.1 Session FrameworkThis se
tion presents the primitives used in the session framework. This in
ludes primitivesfor de�ning pages and sessions as well as primitives for a
tivating sessions and showing pages.Name:slaml-session [Spe
ial form℄Des
ription:A fun
tion used to represent a session in SLAML. It is similar to a lambda fun
tion, takingone parameter. The body of this fun
tion
ontains the various pages and intera
tions withthe
lient.Form:(slaml-session (args) body)Returns:A fun
tion representing the body of the slaml-session.

114 APPENDIX A. SLAML REFERENCERequired Parameters:Name Des
riptionargs A parameter to be used during the a
tivation of the session.Name:slaml-page [Spe
ial form℄Des
ription:A fun
tion used to represent a page in SLAML. It is similar to a lambda fun
tion withone parameter. The body of this fun
tion must evaluate to a string representation of anHTML page.Form:(slaml-page (args) body)Returns:A fun
tion representing a HTML page.Required Parameters:Name Des
riptionargs A parameter to the page.Name:slaml-define-page [Spe
ial form℄Des
ription:A fun
tion used to de�ne a slaml-page in the S
heme environment.Form:(slaml-de�ne-page name slaml-page)Returns:unspe
i�edRequired Parameters:Name Des
riptionname The name to bind the slaml-page to.slaml-page The slaml-page to bind to name.Name:slaml-define-session [Spe
ial form℄Des
ription:A fun
tion used to de�ne a slaml-session in the S
heme environment.Form:(slaml-de�ne-session name slaml-session)Returns:

A.1. SESSION FRAMEWORK 115unspe
i�edRequired Parameters:Name Des
riptionname The name to bind the slaml-session to.slaml-session The slaml-session to bind to name.
Name:slaml-show [Pro
edure℄Des
ription:Shows a page to the
lient and returns form parameters entered by the
lient. Used in theprograms to ask or query a
lient for data. Control �ow of the appli
ations will returnto the point just after the a
tivation of slaml-show. If a
he
k attribute is suppliedthe
he
k fun
tion passed as attribute value is a
tivated on the form parameters and thereturn value of the validation fun
tion be
omes the return value of the
he
k fun
tion.Form:(slaml-show slaml-page . attributes)Returns:The data entered by the
lient, or the return value of the optional validation fun
tion.Required Parameters:Name Des
riptionslaml-page The page to be shown to the
lient. The page is
reated with theslaml-page primitive. It must be a slaml-page fun
tion.Attributes:Name Des
ription
he
k An attribute indi
ating the validation fun
tion to be exe
uted on thedata returned from the
lient.pageparm An attribute indi
ating that parameters are passed to the page. The at-tribute value is the parameters to be passed. If more than one parameteris required, the attribute value is send as a list
ontaining the parameters.Name:slaml-a
tivate-session [Pro
edure℄Des
ription:A
tivates a session on the
urrent lo
ation of the program. The value of the last expressionis returned.Form:(slaml-a
tivate-session slaml-session . attributes)Returns:

116 APPENDIX A. SLAML REFERENCEThe value of the last expression in the slaml-sessionRequired Parameters:Name Des
riptionslaml-session The session to be a
tivated. The session must be spe
i�ed with theslaml-session primitive.Attributes:Name Des
riptionsessionparm An attribute indi
ating that a parameter is passed to the slaml-session. Ifmore than one parameter is required a list of parameters is the attributevalue.
Name:slaml-
reate-parm-lst [Pro
edure℄Des
ription:A fun
tion to
reate the appropriate representation of the data re
eived from the
lient,in an url en
oded string. The string
ontaining the keys and values - representing the
ontents of the HTML form presented to the
lient - are pro
essed and a asso
iation listis
reated.Form:(slaml-
reate-parm-lst form-parameter-string)Returns:A list of key/value pairs, tagged with the formparms symbol.Required Parameters:Name Des
riptionform-parameter-string A string in url en
oded format
Name:slaml-key->value [Pro
edure℄Des
ription:A fun
tion for sear
hing asso
iation lists. Based on a key it extra
t the asso
iated value.Form:(slaml-key->value key a-lst)Returns:The value that
orresponds to key from a-lst or #f is key is not found.Required Parameters:

A.2. OBJECT FRAMEWORK 117Name Des
riptionkey The key to sear
h for in a-lst. key must be a symbol.a-lst The list to sear
h for key. The list must be an asso
iation list.Name:slaml-formparms-key->value [Pro
edure℄Des
ription:A fun
tion for extra
ting values asso
iates with a key from a list tagged with formparms.The list of data entered into an HTML form by a
lient is returned tagged with theformparms symbol. If the key is not found, #f is returned.Form:(slaml-formparms-key->value key lst)Returns:The value that
orresponds to key from lst or #f if key is not found.Required Parameters:Name Des
riptionkey The key to sear
h for in lst. key must be a symbol.lst The asso
iation list tagged with formparms to sear
h for key.
A.2 Obje
t FrameworkThis part of the appendix presents fun
tionality asso
iated with the
omplex stru
ture frame-work. First primitives asso
iated with the
lasses are presented. Next various
onvenien
efun
tionality are presented. Then fun
tionality for presentational tasks are presented. Fi-nally a message passing primitive are presented.A.2.1 ClassesThis se
tion des
ribes the fun
tions used to represent the di�erent
lasses in the
omplexforms framework. The
omplex forms framework
onsists of fun
tionality for building, pre-senting and updating
omplex HTML forms.
Name:slaml-element [Class℄Des
ription:

118 APPENDIX A. SLAML REFERENCEThe fun
tion representing the slaml-element
lass. slaml-element is used to representa
omposite obje
t. A
tivating this fun
tion will
reate an obje
t and return a referen
eto it.Form:(slaml-element . attributes)Returns:A referen
e to the newly
reated obje
t.Required Parameters:None.Instan
e Variable:Name Default Value Des
riptionname "unique name" The name of this obje
t. Must be a string.layout "" The layout fun
tion of this obje
t. Must be astring.
he
k (lambda (str) #t) The
he
k fun
tion asso
iated with this obje
t.elements () A list of obje
ts rooted in this obje
t.tagtype "slaml-element" The tag identifying this obje
t. It is used whenthe obje
t stru
ture is returned in list format fromthe slaml-update-obje
t! fun
tion.

Name:slaml-basi
-element [Class℄Des
ription:The fun
tion represents the slaml-basi
-element
lass, whi
h represents basi
 HTMLelements. It is used to represent HTML elements, e.g. input[W3C02b℄. A
tivating thisfun
tion will
reate an obje
t and return a referen
e to it. Information present on theobje
ts that is not related to the parti
ular type, is ignored when dolayout is
alled. Asan example the maxlength attribute is not used if the type is
he
kbox.Form:(slaml-basi
-element . attributes)Returns:A referen
e to the newly
reated obje
t.Required Parameters:None.Instan
e Variables:

A.2. OBJECT FRAMEWORK 119Name Default Value Des
riptionname "unique name" The name of this obje
t. Must be a string.type "TEXT" The type of input �eld from HTML [W3C02b℄.Possible values are TEXT, PASSWORD, CHECK-BOX, RADIO, SUBMIT, RESET, FILE, HID-DEN, IMAGE, BUTTON. Must be a
apitalizedstring.size "15" The size of an text�eld. Must be a string.maxlength "" The maximum length of an text�eld. Must be astring.
he
ked "false" Indi
ates whether or not a
he
k box is
he
ked("true" or "false"). Must be a string.value "" The default
ontents of this text�eld. Must be astring.
he
k (lambda (str) #t) The
he
k fun
tion asso
iated with this obje
t.tagtype "slaml-basi
-element" The tag identifying this obje
t. It is used whenthe obje
t stru
ture is returned in list format fromthe slaml-update-obje
t! fun
tion. Must be astring.

Name:slaml-form-element [Class℄Des
ription:The fun
tion represents the slaml-form-element
lass, whi
h represent an HTML form.A
tivating this fun
tion will
reate an obje
t and return a referen
e to it. Obje
ts of thistype represents the root element in an obje
t stru
ture.Form:(slaml-form-element . attributes)Returns:A referen
e to the newly
reated obje
t.Required parameters:NoneInstan
e Variables:

120 APPENDIX A. SLAML REFERENCEName Default Value Des
riptionname "unique name" The name of this obje
t. Must be a string.a
tion "http://lo
alhost" The a
tion asso
iated with the form. Must be astring.method "GET" Method of the a
tion (either GET or POST). Mustbe a string.en
type "appli
ation/x-www-form-urlen
oded" The type of the HTML form en
oding. Must be astring.a

ept-
harset "UNKNOWN" The
hara
ter-set a

epted in the form. Must bea string.a

ept "text/html" A

epted
ontent type. Must be a string.layout "" The layout fun
tion asso
iated with this obje
t.Must be a string.elements () A list of referen
es to other obje
ts, rooted in thisobje
t. It must be a obj-lst.tagtype "slaml-form-element" The tagtype identifying this obje
t. It is usedwhen the obje
t stru
ture is returned in list for-mat from the slaml-update-obje
t! fun
tion,represent the type of this obje
t. Must be a string.
A.2.2 Convenien
e Fun
tionalityIn this se
tion
onvenien
e fun
tionality used to
reate obje
t stru
tures are des
ribed. Thisin
ludes fun
tionality for
reating obje
ts as well as fun
tionality for
reating a list of obje
ts.Name:slaml-
reate-basi
-element [Pro
edure℄Des
ription:A
onvenien
e fun
tion used to
reate an obje
t of the
lass slaml-basi
-element.slaml-basi
-element represents a basi
 HTML input element [W3C02d℄.Form:(slaml-
reate-basi
-element name)Returns:A referen
e to the newly
reated obje
t.Required Parameters:Name Des
riptionname The name of the obje
t. It must be a string.

A.2. OBJECT FRAMEWORK 121Name:slaml-
reate-element [Pro
edure℄Des
ription:Used to
reate an obje
t of the type slaml-element. slaml-element represents a
om-posite obje
ts used to address a group of obje
ts as one.Form:(slaml-
reate-element name)Returns:A referen
e to the newly
reated obje
t.Required Parameters:Name Des
riptionname The name of the obje
t. It must be a string.Name:slaml-
reate-form-element [Pro
edure℄Des
ription:Used to
reate obje
ts of the type slaml-form-element. slaml-form-element representsan HTML form. An obje
t of this type must be the top level obje
t in the obje
t stru
ture.Form:(slaml-
reate-form-element name)Returns:A referen
e to the newly
reated obje
t.Required Parameters:Name Des
riptionname The name of the obje
t. It must be a string.Name:slaml-
reate-obj-lst [Pro
edure℄Des
ription:A fun
tion that given a list of obje
ts returns a list in the format required as the at-tribute value to the elements attribute. Obje
ts of the types slaml-element andslaml-form-element has the elements instan
e variable. The list is tagged with theslaml-obj-lst symbol.Form:(slaml-
reate-obj-lst . lst)Returns:A spe
ially formatted obje
t list that is used as attribute value to the elements attributename when
reating SLAML obje
ts.Required Parameters:NoneOptional Parameters:

122 APPENDIX A. SLAML REFERENCEName Des
riptionlst A list of obje
ts that
an be in
luded in the spe
ial formatted obje
t listwhi
h is returned.
A.2.3 Fun
tionality for Generating HTMLThis se
tion in
ludes fun
tionality for presenting the
omplex stru
ture to the
lient. It alsoin
ludes fun
tionality used for working with the stru
ture on
e data has been re
eived fromthe
lient.Name:slaml-do-layout [Pro
edure℄Des
ription:A fun
tion that
an be used to a
tivate the layout of the obje
t whose referen
e is passedas parameter. This fun
tion is used when generating the representation of an obje
t.This fun
tion is used when the layout of a slaml-form-element is needed. In
ontrastto slaml-do-layout-
hild, whi
h is used in the slaml-layout fun
tions to do layouton the spe
i�ed
hild.Form:(slaml-do-layout obj)Returns:A string representing the intended representation of the obje
t in HTML terms.Required Parameters:Name Des
riptionobj A referen
e to an obje
t of the slaml-form-element
lass, on whi
h thelayout fun
tion is to be a
tivated.Name:slaml-do-layout-
hild [Pro
edure℄Des
ription:A
tivate the layout fun
tion of a
hild obje
t to a given parent obje
t. Is used in theslaml-layout fun
tion to
all the layout fun
tion of other obje
ts. This allows for re-
ursively generating the layout of all obje
ts in the obje
t stru
ture. This fun
tion isused inside slaml-layout fun
tions to
all the layout on a spe
i�

hild. In
ontrastslaml-do-layout is used when a slaml-form-element is presented.Form:(slaml-do-layout-
hild parent
hildname)

A.2. OBJECT FRAMEWORK 123Returns:An HTML string of the obje
t with
hildname present in the parent obje
t.Required Parameters:Name Des
riptionparent A referen
e to the parent obje
t of the obje
t to layout.
hildname The name of the
hild to layout. It must be a string.
Name:slaml-update-obje
t! [Pro
edure℄Des
ription:A fun
tion to update the obje
t stru
ture - rooted in obj - with the data entered by the
lient. This fun
tion must be used expli
itly to update the obje
t stru
ture. The formatof the parms parameter must be the same format as the data returned by the slaml-showfun
tion. Besides updating the obje
t stru
ture it returns a nested list representation ofthe obje
t stru
ture. This list in
ludes the following instan
e variables from the variousobje
ts as attributes; tagtype, data, valid.Form:(slaml-update-obje
t! obj parms)Returns:A list representation of the obje
t stru
ture rooted in obj.Required Parameters:Name Des
riptionobj A referen
e to the obje
t that is the root of the obje
t stru
ture whi
his updated with the data from the
lient.parms The form parameters to be inserted into the obje
t stru
ture. Must be
reated by slaml-show.
Name:slaml-layout [Spe
ial form℄Des
ription:A fun
tion used to a
tivate layout fun
tionality in the self obje
t.This fun
tion is equivalent to lambda. Form:(slaml-layout (self parm) body)Returns:A referen
e to a fun
tion representing the layout.Required Parameters:

124 APPENDIX A. SLAML REFERENCEName Des
riptionself The obje
ts that
ontains this layout fun
tion.parm A parameter to be supplied to the a
tivation of the layout fun
tion onself.A.2.4 Message Parsing Fun
tionsThis se
tion presents the get and set methods implemented for easy a

ess to the obje
tsinstan
e variables and methods. Common to all of these are that the same fun
tionality
anbe a
hieved by message passing with the slaml-send primitive.Name:slaml-send [Pro
edure℄Des
ription:A fun
tion used to a
tivate fun
tionality in the various obje
ts.Form:(slaml-send method obj . parm)Returns:The result of evaluating method on obj.Required Parameters:Name Des
riptionmethod The fun
tionality that must be invoked on obj.obj The obje
ts that
ontains the method to be a
tivated.Optional Parameters:Name Des
riptionparm A parameter to be supplied to the a
tivation of method on obj. Must bea symbol.Name:slaml-get-elements [Pro
edure℄Des
ription:A fun
tion for extra
ting the elements lists from the obje
t passed as parameter. The listreturned is tagged with the slaml-obj-lst tag.Form:(slaml-get-elements obj)Returns:The element list of obje
ts rooted in this obje
t.Required Parameters:

A.2. OBJECT FRAMEWORK 125Name Des
riptionobj The obje
t to extra
t the elements list from. Must be aslaml-form-element or slaml-element.Name:slaml-get-name [Pro
edure℄Des
ription:A fun
tion used to extra
t the value of the name instan
e variable from the obje
t passedas parameter.Form:(slaml-get-name obj)Returns:The value of the name instan
e variable of obj.Required Parameters:Name Des
riptionobj The obje
t to extra
t the value of the name instan
e variable from as astring.Name:slaml-get-valid [Pro
edure℄Des
ription:A fun
tion used to extra
t the value of the valid instan
e variable. The result is either#t or #f, indi
ating whether the data entered by the
lient and validated with a suppliedvalidation fun
tion is valid. The valid instan
e variable is used to indi
ate whether aneventual validation on the obje
ts failed.Form:(slaml-get-valid obj)Returns:A boolean valueRequired Parameters:Name Des
riptionobj The obje
t to extra
t the value of the valid instan
e variable from.Name:slaml-set-valid! [Pro
edure℄Des
ription:A fun
tion for setting the valid instan
e variable on an obje
t. The valid instan
e variableis used to indi
ate whether an eventual validation on the obje
ts failed.

126 APPENDIX A. SLAML REFERENCEForm:(slaml-set-valid! obj valid)Returns:NothingRequired Parameters:Name Des
riptionobj The obje
t to set the valid instan
e variable on.valid The value to be set on obj. It must be a S
heme true or false (#t, #f).Name:slaml-get-type [Pro
edure℄Des
ription:A fun
tion for extra
ting the type of an obje
t. The return value is a string representingthe type of the obje
t. Possible value are
he
k, text, radio et
.Form:(slaml-get-type obj)Returns:The type of the obje
t as a string.Required Parameters:Name Des
riptionobj The obje
t to extra
t the value of the type instan
e variable from. objmust be of the type slaml-basi
-element.Name:slaml-get-tagtype [Pro
edure℄Des
ription:A fun
tion used to extra
t the values of the tagtype instan
e variable of an obje
t. Thetagtype is used as identi�
ation of the obje
t, when a nested list representation of anobje
t stru
ture is returned from slaml-update-obje
t!.Form:(slaml-get-tagtype obj)Returns:The tag type of an obje
t, as a string.Required Parameters:Name Des
riptionobj The obje
t to extra
t the tag type from.Name:

A.2. OBJECT FRAMEWORK 127slaml-get-
he
k [Pro
edure℄Des
ription:A fun
tion used to retrieve the validation fun
tion asso
iated with the obje
t passed asparameter.Form:(slaml-get-
he
k obj)Returns:A referen
e to a fun
tion obje
t.Required Parameters:Name Des
riptionobj The obje
t who's
he
k fun
tion is wanted.Name:slaml-set-data! [Pro
edure℄Des
ription:A fun
tion to set the data instan
e variable of the obje
t passed as parameter. The valueset on the data instan
e variable is the supplied value.Form:(slaml-set-data! obj value)Returns:NothingRequired Parameters:Name Des
riptionobj The obje
ts who's data instan
e variable is set to value.value The value to be set on the data instan
e variable of obj. It must be astring value.Name:slaml-get-data [Pro
edure℄Des
ription:A fun
tion used to retrieve the value of the data instan
e variable.Form:(slaml-get-data obj)Returns:The value of the data instan
e variable in obj.Required Parameters:Name Des
riptionobj The obje
t who's data value is wanted.

B
Small ExampleThis appendix
ontains the fun
tionality of the �Guess a number� appli
ation, presentedin Se
tion 3.1. First various fun
tionality is de�ned. Then the various obje
ts and theirasso
iated layout fun
tions used in the example are
reated. This also in
ludes the de�nitionof three HTML pages. Last is the session in the example.UtilsThe di�erent utilities used in the �Guess a number� appli
ation.;======== Utils to the Guess a number appli
ation ============;(define NaN -1) ;Not a Number;return 42, sin
e no fun
tion exist for generating a random number in S
heme(define (get-random-number) 42)(define (slaml-is-integer? str)(integer? (string->number str)))(define (get-guess lst)(
ar lst))(define (get-guesses lst)(
adr lst))(define (get-right-number lst)(
addr lst))(define (get-hint guess-info) ;;
he
ks information in order to set the
orre
t hint(let ((guess (get-guess guess-info))(guesses (get-guesses guess-info))

130 APPENDIX B. SMALL EXAMPLE(right-number (get-right-number guess-info)))(string-append(
ond((equal? 0 guesses) "Enter your first guess.") ;first time, no guess yet((not (slaml-get-valid guess-input)) "HINT: Try a number next time.")(else (string-append "HINT: Your guess was: "(
ond((> guess right-number) "too high... try a lower.")((< guess right-number) "too low... try a higher."))))))))LayoutThe de�nition of the obje
ts and their asso
iate layout fun
tions. This se
tion also presentsthe de�nition of the HTML pages.(load "utils.slaml");;====== The obje
ts needed in the Guess a number appli
ation ==========;(define guess-form-layout(lambda (self parms)(slaml-do-layout-
hild self "guess-
omposite")))(define guess-
omposite-layout(lambda (self parms)(string-append"Enter your guess:"(table(tr (td (slaml-do-layout-
hild self "input-field")))(tr (td (slaml-do-layout-
hild self "submit-button")))))))(define guess-input(slaml-basi
-element'
he
k slaml-is-integer?'name "input-field"'tagtype "input-field-guess"))(define submit-guess-button(slaml-basi
-element'name "submit-button"'tagtype "submit-button-guess"'type "SUBMIT"'value "Guess")

131)(define guess-
omposite(slaml-element'layout guess-
omposite-layout'elements (slaml-
reate-obj-lst guess-input submit-guess-button)'name "guess-
omposite"'tagtype "
omposite-guess"))(define guess-form(slaml-form-element'layout guess-form-layout'name "guessform"'a
tion ""'method "GET"'tagtype "guess-form"'elements (slaml-
reate-obj-lst guess-
omposite)));;======================== Simple pages =============================;;say hello(slaml-define-page start-game(slaml-page (lst)(html(head (title "Guess a number"))(body (h1 "Wel
ome to guess a number... ")(p "This appli
ation is written in SLAML.")(hr)(p "You must guess a number between 1 and 100")(a "
ontinue" 'href "http://lo
alhost/laml/guess-app/guess-number.slaml"))))); say goodbye(slaml-define-page end-game(slaml-page (guesses)(html(head (title "Guess a number"))(body (h1 "Congratulations")(p "You made it in " (number->string guesses) "guesses!")))))(slaml-define-page guess-page(slaml-page (parameter-list)(html(head (title "Guess a number!"))(body

132 APPENDIX B. SMALL EXAMPLE(get-hint parameter-list)(hr)(slaml-do-layout guess-form)))))MainThe de�nition of the session in the example. The �nal line a
tivates the session.(load "layout.slaml");;==;; Guess a number appli
ation;;==(slaml-define-session guess-session(slaml-session (session-param)(slaml-show start-game) ;say hello - step one(letre
 ((guess-loop(lambda (guess guesses right-number)(if (equal? guess right-number)guesses ; Return the number of guesses used(let((obj-stru
t(slaml-update-obje
t! guess-form(slaml-showguess-page 'pageparm (list guess guesses right-number)))))(if (slaml-get-valid guess-input)(guess-loop(string->number(slaml-get-data guess-input)) (+ 1 guesses) right-number)(guess-loopNaN (+ 1 guesses) right-number)))))))(let* ((right-number (get-random-number))(guesses (guess-loop 0 0 right-number)) ;do loop - step two)(slaml-show end-game 'pageparm guesses) ;say bye - step threeguesses ; return the number of guesses used) ;end letre
)))(slaml-a
tivate-session guess-session) ; it starts

Bibliography[AB84℄ Andrew D. Birrel and Bru
e Jay Nelson. Implementing Remote Pro
edure Calls.ACM Transa
tions on Conmputer Systems, 2(1):39�59, 1984.[apa01℄ Apa
he Homepage. http://www.apa
he.org/, September 2001.[asp01℄ Introdu
tion to A
tive Server Pages. http://msdn.mi
rosoft.
om/library/en-us/iisref/html/psdk/asp/iiwaabt.asp, September 2001.[BMRS01℄ Claus Brabrand, Anders Møller, Mikkel Ri
ky, and Mi
hael I. S
hwartzba
h.PowerForms: De
larative Client-Side Form Field Validation. http://www.bri
s.dk/bigwig/resear
h/publi
ations/powerform.ps, O
tober 2001.[CAM02℄ Claus Brabrand, Anders Møller, and Mi
hael I. S
hwartzba
h. The <bigwig>Proje
t. ACM Transa
tions on Internet Te
hnology, 2002. It is to appear in thejournal.[
gi01℄ The CGI Spe
i�
ation. http://hoohoo.n
sa.uiu
.edu/
gi/interfa
e.html,November 2001.[CGKF02℄ John Clements, Paul T. Graunke, Shriram Krishnamurthi, and MatthiasFelleisen. Little Languages and their Programming Environments. http://www.
s.ri
e.edu/CS/PLT/Publi
ations/mw01-
gkf.pdf, May 2002.[DJ01℄ David A. Ladd and J. Christopher Ramming. MAWL. http://www.bell-labs.
om/proje
t/MAWL/mawl.html, De
ember 2001.[DL02℄ D. Kristol and L. Montulli. HTTP State Management Me
hanism. http:/www.ietf.org/rf
/rf
2109.txt/, Feburary 2002.[ECH02℄ ECHMA. ECHMAS
ript Language Spe
i�
ation. http://www.e
ma.
h/e
ma1/STAND/ECMA-262.HTM, may 2002.[Eng02a℄ Ralf S. Engels
hall. MM Shared Memory Library. http://www.engels
hall.
om/sw/mm/, May 2002.[Eng02b℄ Ralf S. Engels
hall. mod_ssl. http://www.modssl.org/, June 2002.[ERRJ95℄ Eri
 Gamma, Ri
hard Helm, Ralph Johnson, and John Vlissides. Design Patterns- Elements of Reusable Obje
t-Oriented Software. Addison-Wesley, 1995.

134 BIBLIOGRAPHY[Fla02℄ Matthew Flatt. PLT MzS
heme: Language Manual. http://download.plt-s
heme.org/do
/200alpha12/html/mzs
heme/, June 2002.[gui01℄ Guile Homepage. http://www.gnu.org/software/guile/guile.html, Septem-ber 2001.[Han01℄ M. Hanus. High-Level Server Side Web S
ripting in Curry. In Pro
. of theThird International Symposium on Pra
ti
al Aspe
ts of De
larative Languages(PADL'01), pages 76�92. Springer LNCS 1990, 2001.[Han02℄ Mi
hael Hanus. The Portland Aa
hen Kiel Curry System. http://www.informatik.uni-kiel.de/~pak
s/, May 2002.[In
01℄ Sun Mi
rosystems In
. Java 2 Platform Enterprise Edition. http://java.sun.
om/j2ee, November 2001.[In
02a℄ Sun Mi
rosystems In
. Java Obje
t Serialization Spe
i�
ation. http://java.sun.
om/j2se/1.4/do
s/guide/serialization/spe
/serialTOC.do
.html, June 2002.[In
02b℄ Sun Mi
rosystems In
. The Sour
e for Java Te
hnology. http://java.sun.
om/,June 2002.[JO02℄ John Peterson and Olaf Chitil. The Haskell Home Page. http://www.haskell.org/, Feburary 2002.[KCR+98℄ Ri
hard Kelsey, William Clinger, Jonathan Rees, H. Abelson, H. I Adams IV,D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman, R. Halstead, C. Hanson,C. T. Haynes, E. Kohlbe
ker, D. Oxley, K. M. Pitman, G. J. Rozas, G. L. SteeleJr., G. J. Sussman, and M. Wand. Revised Report on the Algorithmi
 LanguageS
heme. 1998.[lam01℄ The LAML Home Page. http://www.
s.au
.dk/~normark/laml/, August 2001.[LDJ02℄ Christian Lynbe
h, Mikael Djurfeldt, and Niel Jerram. Goops manual. http://www.gnu.org/software/goops/goops.html, June 2002.[Mi
02a℄ Mi
hael Hanus. The Fun
tional Logi
 Language Curry. http://www.informatik.uni-kiel.de/~
urry/, May 2002.[Mi
02b℄ Mi
rosoft. JS
ript. http://msdn.mi
rosoft.
om/library/default.asp?url=/library/en-us/s
ript56/html/js56jsoriJS
ript.asp, June 2002.[Mi
02
℄ Mi
rosoft Corporation. VBS
ript. http://msdn.mi
rosoft.
om/library/default.asp?url=/library/en-us/s
ript56/html/vtoriVBS
ript.asp, May2002.[MPJ02℄ Mikael Hansen, Paw Iversen, and Jimmy Jun
ker. SLAML - Server side LAML.Te
hni
al report, Aalborg University, 2002.

BIBLIOGRAPHY 135[Net02℄ Nets
ape. JavaS
ript Developer Central. http://developer.nets
ape.
om/te
h/javas
ript/index.html, June 2002.[Nør90℄ Kurt Nørmark. Simulation of Obje
t-oriented Con
epts and Me
hanisms inS
heme. Te
hni
al Report R 90-01, Department of Mathemati
s and ComputerS
ien
e, Institute of Ele
troni
 Systems, Aalborg University, January 1990.[Nør00℄ Kurt Nørmark. A Programmati
 Approa
h to WWW Authoring Using Fun
-tional Programming. http://www.
s.au
.dk/~normark/laml/papers/old-programmati
-approa
h.pdf, November 2000.[Pet℄ Peter Thiemann. WASH/CGI: Server-side Web S
ripting with Sessions, Compo-sitional Forms, and Graphi
s. http://www.informatik.uni-freiburg.de/~thiemann/papers/
gi-in-haskell.ps.gz.[Pra02℄ Vipul Ved Prakash. Cgi::persistent. http://sear
h.
pan.org/do
/VIPUL/CGI-Persistent-0.22/lib/CGI/Persistent.pm, May 2002.[Que℄ Christian Queinne
. The In�uen
e of Browsers on Evaluators or, Continuationsto Program Web Servers.[Que02℄ Christian Queinne
. Meroon: an Obje
t System in S
heme. http://youpou.lip6.fr/queinne
/WWW/Meroon.html, June 2002.[SM02℄ In
. Sun Mi
rosystems. JavaServer Pages(TM) Te
hnology. http://java.sun.
om/produ
ts/jsp/, Feburary 2002.[The02℄ The PHP Group. Session handling fun
tions. http://www.php.net/manual/en/ref.session.php, Feburary 2002.[W3C02a℄ W3C. Extensible Markup Language (XML). http://www.w3.org/XML, June2002.[W3C02b℄ W3C. The HTML 4.01 spe
i�
ation. http://www.w3.org/TR/html401/, may2002.[W3C02
℄ W3C. W3C Re
ommendation - The form element. http://www.w3.org/TR/html4/intera
t/forms.html#h-17.3, June 2002.[W3C02d℄ W3C. W3C Re
ommendation - The input element. http://www.w3.org/TR/html4/intera
t/forms.html#h-17.4, June 2002.[WG02℄ W3C DOM WG. Do
ument Obje
t Model (DOM). http://www.w3.org/DOM/,May 2002.

