
 

 

 

 

 

 

 

 

 

 
  



2 

 

 

  



3 

 

Desertification is to an increasing extent 

being identified as a problem for the region 

of south eastern Spain. For politicians and 

planners to fight the desertification 

processes, there is a need for information 

regarding the severity and spatial extent of 

the desertification problem. 

In this thesis a desertification simulation 

model is built, with the aim of providing 

knowledge about desertification. 

The model is constructed as a continuous 

cellular automata model with an artificial 

neural network as transition rule. In this 

way satellite imagery, climatic forecasts and 

topographic data are used to simulate 

desertification as a geographical 

phenomenon. 

To model desertification a desertification 

index is constructed from NDVI satellite 

images and information on soil moisture 

and to include information about erosion, 

RUSLE is studied. 

As a result the model uses data for 2001-

2012 to predict the level of desertification in 

2013. The prediction shows an average 

inaccuracy of 9.84 %, and it is concluded 

that such a model is capable of modelling 

highly complex spatial processes such as 

desertification. The measured inaccuracy is 

not sufficiently low for the model to aid 

politicians and planners to make decisions 

on how to fight desertification and more 

research is needed to improve the model.  
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Preface 
This project is the resulting work of a master thesis in the Master of Science programme in 

Geoinformatics at Aalborg University Copenhagen. It has been written in the spring semester 

2014, from February 3rd to June 12th. As a master thesis of one semester this project 

represents 30 ECTS. 

The project has been created under the supervision of Professor Henning Sten Hansen. 

In the following project references in text is structured like this:  

([Author] [year of publication]). If the reference is to a specific page like this:  

([Author] [year of publication],[pagenumber]), so (Petersen 2014, 45) could be a reference to 

this report at page 45. 

A complete list of references can be found on page 84. 

Internal references also exist in the following. References to other sections in the report will 

take this form: section [section number] [section name], example: see section 2.1.3 Drivers of 

desertification. 
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1 Introduction 
The quality of soil is of major importance to local people, and through trade and migration 

patterns, to an increasing extent neighbouring peoples, countries and regions. Spain is the 

climatic extension of Africa in Europe and with nearly two thirds of its land being either arid, 

semi arid or dry sub-humid (Ministerio de Medio Ambiente 2008, 12)  it is predicted that more 

than 37 % of the total landmass is in high or medium risk of irreversibly losing all productive 

capacities to desertification (Ministerio de Medio Ambiente 2008, 138). Also the DISMED 

(Desertification Information System for the Mediterranean) project under the European 

Environment Agency, displays alarming figures. The map in Figure 1 is computed by 

combining aridity, soil and vegetation quality (EEA 2008). 

In this estimate 35.8 % of the Spanish territory on the Iberian Peninsula is either sensitive or 

very sensitive to desertification (in red and orange). 

To keep desertification at bay it is necessary to sustain water availability and to keep top soil 

from eroding. In south eastern Spain this is complicated by frequent and long dry seasons 

combined with non-native monocultural land uses, which cause land degradation and lead to 

desertification. South eastern Spain is the most arid part of Europe (Gómez, López-Bermúdez 

and Rubio 2011, 936), the rain pattern has high variability and high intensity (ibid.) which 

means that some years are characterised by droughts and others by erosion. Water resources 

are being overexploited to accommodate agriculture, tourism and increasing urban activities 

Figure 1 - Desertification sensitivity (EEA 2008) 
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(Oñate and Peco 2005, 104). Also the geology of southern Spain makes the region prone to 

erosion with vulnerable soil in hilly dryland terrain (ibid.). 

To add insult to injury the climate is gradually becoming warmer and drier. According to 

multi-model averages provided by the IPCC, Spain will become 1-1.5 degrees warmer in the 

most conservative climate scenario (RCP 2.6) and somewhere between 2 and 3 degrees warmer 

in the direr scenario RCP 8.5, in average in the years 2046-2065 (Intergovernmental Panel on 

Climate Change 2013, 1063) as compared to the 1986-2005 average. The Iberian Peninsula is 

also projected to have less precipitation especially the summer months (June, July, August) 

which will be 10 to 30 % less rainy according to the RCP 8.5 (Intergovernmental Panel on 

Climate Change 2013, 1078). 

The quality of soil and continuous availability of water is vital to keep social stability in the 

region which depends highly on tourism and agriculture. This is why desertification is such an 

important issue in south eastern Spain and why there is a need to understand and measure 

desertification processes. The Food and Agriculture Organization of UN (FAO) in their 

position on sustainable development and combating desertification concluded that: 

“Despite modern observation techniques using satellite imagery and software to analyse 

recorded data, there is still a great deal of uncertainty at the local, national and world level as 

to the origin, extent and gravity of the desertification processes. This uncertainty handicaps 

natural resource managers in planning and decisionmaking.” (FAO 1993). 

Here we are 20 years later and not much has changed. The emerging threats of climate 

change and continued failure to correctly counter land degradation in the worlds drylands, 

makes desertification an ever growing ongoing danger. To aid planners by knowing the speed, 

extent and severity of desertification, it is necessary to model this process. Spatial models 

have long been a tool used in many fields of planning, and it is important to keep researching 

and developing these models to make better predictions for better understanding and 

conserving our environments. 

It seems that south eastern Spain is a good test site for studying desertification. As displayed, 

many sources point to south eastern Spain as an area where changes will occur. But can the 

desertification process be predicted? And how? 

Much success in spatial modelling using cellular automata (CA) has been displayed, especially 

in modelling urban development. CA is also showing its applications in other areas of 

geographical modelling. CA opens up for combinations with other computer models. Artificial 

neural networks (ANN) is a subfield of computer science inspired by structures in the brain. 

They are computational models capable of recognising patterns in data and thereby process 

new unknown data based on the recognised patterns. The cellular automata and artificial 

neural networks can, if combined by replicating complex spatiotemporal patterns of 

desertification simulate future development of this geographic phenomenon. 
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1.1 Problem statement 
South eastern Spain is chosen as the location to study the potential of desertification 

simulation. The prospect of applying cellular automata modelling in combination with 

artificial neural networks to predict spatiotemporal development of desertification in south 

eastern Spain will be investigated. The main question that will be attempted answered in the 

following is: 

How can desertification be modelled with cellular automata and artificial neural 

networks? 

To investigate this problem statement, it will be divided into smaller more operational 

research questions, which will be addressed individually to then provide a basis for answering 

the problem statement: 

 Which variables should be included in the model? 

 How should the cellular automaton be set up? 

 How should the artificial neural network be set up? 

 With what accuracy can desertification be predicted with such a model? 

To address the first research question, desertification as a geographical phenomenon must be 

investigated. Links to climate, and topology geology and so on, must be examined, so spatial 

data can form the basis for a sound model. 

To address the second research question cellular automata modelling must be studied, and it 

must be concluded which properties lead to the desired behaviour. 

To address the third research question the capabilities of artificial neural networks to regress 

complex relationships must be researched. 

And finally to address the fourth research question the complete model must be put together 

and the model outputs must be compared with actual measurements, to quantify the success 

of the model. 

1.2 Delimitation 
To predict desertification a model will be devised. A model is an operational simplification of 

reality. When building a model, one must consider which elements of reality to include in the 

model. Not everything can be included because of time, data availability and other constraints. 

This model must be able to function with only the data it produces itself and available 

forecasted data, in order to make predictions about the future. Climate data for the future has 

been computed and can be put into a model in this manner. For this reason it will not be 

possible to include the impacts of human interventions. Management of water resources, 

spatial planning and changes in agricultural planning are topics too difficult to predict to 

meaningfully insert into this model, in the scope of this project. 
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1.3 Report structure 
This report consists of the following chapters: 

Theory 

In the very next chapter, the principal theoretical background for each component is 

presented. First the concept of desertification is discussed. Focus is here, on what causes it, 

and how this can be put into a spatial computer model. Next, cellular automata modelling is 

introduced, and it is discussed how this type of spatial model can be applied to simulate 

desertification. Finally artificial neural networks, their properties and capabilities are 

discussed. 

Methodology 

In the methodology chapter, it is described how, on the basis of the theory, the research 

questions and the problem statement will be answered. In this chapter the applied analysis 

design is presented, and the most important methodological considerations are described.  

Data processing 

The model designed in this project relies mainly modelling in terms of real world data, and in 

terms of computer model design. The first element is presented in this chapter. Every model 

input is analysed, and the data used to compute each input is described along with the 

processing steps taken to reach a ready model input. 

Modelling 

In this chapter the design process of the model is described. First an overview of the model is 

given; next the individual components are addressed. These are; the cellular automata part of 

the modelling, the artificial neural network part of the modelling, the implementation and 

finally model experimentation. 

Results 

Here, the resulting model is applied for simulation, and its output is displayed along with 

relevant performance measures. 

Discussion 

In this chapter the models simulation capacities are evaluated and the results of this 

evaluation and the underlying reasons and consequences are discussed. An important focus of 

the discussion is on how to improve the model in possible future research. 

Conclusion 

In this chapter the answer to the research questions are summarised, and the emerging 

answer to the problem statement is outlined. 

Perspectives 

The conclusion does not put an end to all discussions. In this chapter perspectives of future 

research based on this project are drawn. 
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2 Theory 
The following chapter consists of three main topics each relating to one of the three first 

research questions, as defined in the previous chapter, section 1.1 Problem statement. In each 

of these topics the theoretical background will be laid, to analytically approach each question 

individually. First the geographic topic of desertification will be discussed. The aim here is to 

provide operational definitions of involved processes, so they can be included in a model. 

Next cellular automata modelling will be described, and it will be discussed how a model 

based on cellular automata can be designed to simulate the spatial behaviour of desertification 

over time. 

Finally artificial neural networks will be discussed. This section is focussed on how artificial 

neural networks can be built and trained to regress to a function like the one used in cellular 

automata for desertification modelling. 

2.1 Desertification 
Desertification has been defined by the UNCCD as: 

“...land degradation in arid, semi-arid and dry sub-humid areas resulting from various factors, 

including climatic variations and human activities” (United Nations 1994, 16). 

So desertification is not just, as one could think, an area becoming a desert. It is simply land 

in arid, semi-arid or dry sub-humid areas losing its potential to support vegetation through 

land degradation processes. As formulated in the Millennium Ecosystem Assessment 

(Niemeijer, et al. 2005) desertification can be viewed as: 

“...persistent decline in the ability of a dryland ecosystem to provide goods and services 

associated with primary productivity.” (Niemeijer, et al. 2005, 636 - 637) 

A range of processes are involved in desertification at a range of scales. To model 

desertification it is important to be aware of the scale, and let the scale determine which 

processes should be involved in a model. In this case desertification is investigated as a 

geographical event, impacting the south eastern part of Spain, so focus will be on the local 

geographical and geophysical attributes which determines the rate of land degradation. 
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2.1.1 The geophysical environment 
The potential of soil to support vegetation and thus be of use to people, either through natural 

services or through cultivation, is controlled mainly by two components; the quality of soil and 

the availability of water. The soil must have nutrition and must not be saline. The water 

availability must correspond to the needs of the vegetation; some vegetation is very sensitive 

to changes in the water availability while other types of vegetation are adapted to irregular 

weather conditions. In drylands (arid, semi-arid, dry sub-humid and hyper arid areas) water is 

the main constraint on vegetation growth and health (Niemeijer, et al. 2005, 628). 

The soil quality can deteriorate through the accumulation of salts, known as salinisation. It 

can deteriorate through lack of accumulation of nutrients. And most importantly the top soil 

can be transported away either by water or wind, this is known as erosion. The erosion is 

highly dependent on the weather, but also the soil type, terrain slope and vegetation cover. 

The water availability is dependent on the weather of course. The amount and temporal 

pattern of precipitation as well as the evaporation are controlled by meteorology and climate. 

The water availability is also controlled by the terrain; some soils will hold better on to water 

than others and the slope controls how fast the water runs of. Hence the soils ability to store 

water, decides how long after rainfall, water will be available (Niemeijer, et al. 2005, 628). 

Finally the vegetation cover can both keep an area moist through provision of shade, 

transpiration and prevention of runoff. 

It becomes apparent that the vegetation and soil play vital roles in this system, which is also 

why desertification is often referred to as irreversible or very difficult to reverse; soil quality 

and vegetation are mutually dependant, and necessary for sustained ecosystem health. 

2.1.2 Measuring desertification 
To operationalise the concept of desertification it must be defined in measureable terms, so it 

can be determined, either if an area is desertified or not or to witch degree an area is 

desertified. Desertification is of course a scientific concept rather than indisputable property. 

This provides a bit of freedom in determining desertification, it can be done both in situ by soil 

samples or expert visual assessment. But it can also be conveniently monitored from space by 

addressing desertification indicators. For example, when desertification is defined by the 

ability of an area to support vegetation, the primary production per unit area can be an 

indicator of desertification. But then another problem arises; a satellite image represents the 

captured reality at one instance of time. Any indicator might give an inaccurate impression 

due to probabilistic nature of weather patterns. Therefore as an example, instead of using 

primary production as an indicator, what should be the indicator is the primary production 

potential. 

2.1.2.1 Fuzzy logic 

Fuzzy logic follows the realization that not everything is exact. Some things are modelled well 

binary, like male or female, some things are modelled well in classes, like types of vegetation. 

But sometimes the truths are not that simple, and there can be a benefit from having less 

clear defining borders between classes (Liu 2009, 66). Desertification can be modelled binary; 
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an area is desertified or not. This will yield a sharp spatial boundary between the two classes, 

but it might make more sense to estimate to which degree an area is desertified. This works 

well with indicators as they will always yield a scaling, which will hold more information than 

whether an area can be classified as being desertified or not. 

 

Figure 2 - Conventional logic versus fuzzy logic for indicator values of desertification. 

In Figure 2 the indicator value is being converted to a binary classing in the Boolean logic, by 

an if-then- else-statement. The information will be compressed to a minimum, and there is a 

need for a threshold value. Figure 2 also displays the alternative fuzzy logic where the 

indicator value is being converted to a scalar between one and zero. This will ensure that a 

minimum of information from the indicator scale is lost, so if desired, an extreme indicator 

value will be mapped to an extreme fuzzy value, and vice versa. 

2.1.2.2 A desertification index 

When desertification is defined by an areas lack of ability to sustain primary production, the 

primary production can be a good indicator for desertification. There are a few problems 

however with using the primary production as an indicator value. These will be discussed in 

the following sections. 

2.1.2.2.1 Measuring primary production 

The primary production cannot be directly inferred from satellite imagery. But some sources 

suggest a near linear relationship between the above ground net primary production (ANPP) 

and the normalized difference vegetation index (NDVI) summed over time (Prince, Brown de 

Colstoun and Kravitz 1998) (Tucker, et al. 1983).  

What is NDVI? 

NDVI is an index derived from remotely sensed imagery by relating the near infrared 

radiation to the red radiation. It is used in phonological studies because of the information it 

provides about plant life. 
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Figure 3 - NDVI values for February 2014 Dark green: NDVI 1, Grey: NDVI 0. Image from 

TERRA/MODIS (NASA 2014) 

Figure 3 shows a map composite of satellite data, which shows average NDVI values in 

February 2014. The image allows us to quickly make out where on our planet, plant life is 

dominating, and where this is not the case. 

The idea is to relate this concept of remotely sensed NDVI values to the rate of primary 

production. The connection between primary production and NDVI values follows the logic of 

understanding NDVI as an indicator of plant vigour or plant health and thereby as an 

indicator for the rate of primary production. 

 

Figure 4 - Relationship between plant vigour and primary production 

As Figure 4 displays, if NDVI is assumed to be a good indicator of the rate of primary 

production, investigating how the NDVI varies in time, can help us calculate primary 

production from space. 
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And in this manner ANPP (Above ground Net Primary Production) can be formulated as a 

function of the integral of calculated NDVI values: 

                  
      

     

 

Prince, Brown de Colstoun and Kravits (1998, 363) takes it further and assumes f is a linear 

function, thus;  

                 
      

     
, 

and regress a and b from field harvest measurements (ibid.), this function yields an amount of 

biomass in 
  

       
.  

Whether f is well approximated by a linear function might change from location to location, it 

might change with the level of detail of the survey. It is worth a scientific investigation of its 

own, which lies outside the scope of this project. The linear model is very simple and effective 

and it will be assumed to be suitable in this project. 

2.1.2.2.2 The variability of weather 

Weather is a stochastic variable. When measuring primary production in drylands the main 

constraint, the availability of water, may differ hugely from year to year. If one year provides 

favourable rainfall, and the following year features a catastrophic rainfall deficiency, there 

will be a decline in primary production. We are interested in persistent decline in primary 

production, and not decline which is explained by the variability of the weather, as it will not 

be possible to predict future rainfall with a high temporal resolution anytime soon. Therefore 

the aim is to find a more stable indicator, which behaves more like how desertification is 

perceived; slow and steady, rather than rapid change from year to year. The net primary 

production can be stabilized by dividing by the available water; this is called the Rain-use 

efficiency (RUE) (Houérou 1983) and can be used as an improved indicator for desertification 

compared to the ANPP (Niemeijer, et al. 2005, 629). The simplest rain-use efficiency is simply 
    

     
 where Pyear is the total rain in mm throughout the year. Pyear might not be the best way, to 

factor in the rain. A high amount of rain could come at unsuitable times or low amounts of 

rain might be spread out to perfectly provide for primary production needs. Therefore higher 

temporal resolution of rain data could facilitate a more meaningful rain-use efficiency value. 

Another measure of water availability is the soil moisture. The wetness of the soil is more 

resistant to extreme rain events, as the soil will quickly be saturated, and a maximum value 

will be reached. The desertification index can therefore be formulated as 

   
           

  
. 

where NDVI are remotely sensed values,   is water availability measured either by rainfall 

or soil moisture, and b and a are regression constants. 
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2.1.2.3 Conclusions 

An applicable index of desertification is adopted like described; as a calculation based on 

remotely sensed NDVI values and water availability. To finalize the index the net primary 

production must be regressed from NDVI integrals and it must be tested whether total rainfall 

or soil moisture is better water availability indicator. This index follows the fuzzy logic, in the 

sense it will never determine whether an area is desertified or not, it will provide a value, 

which can be related across time and space. 

2.1.3 Drivers of desertification 
To predict desertification it is not enough to measure the phenomenon itself, also the 

processes that drives desertification must be modelled. 

A range of factors has an impact on the desertification process. Still there are a lot of 

unknowns both in climate research and specifically in desertification research. Which factors 

to include in such a model, depends on data availability and assumed importance. It is 

assumed that human impacts are real and severe. But they are difficult to predict. In order to 

successfully predict how irrigation patterns and water usage patterns evolve a broad 

understanding of socio economic relationships must also be included. Modelling these 

specifically factors is outside the scope of this project. This will mean that if large areas are 

changed from one land use to another due to political decisions or similar, this is regarded as 

noise in the model. 

Instead what can be modelled are the natural drivers. Described in the following is water 

erosion and climate change. Even though both are, at least to some extent, anthropogenic, 

they can be modelled as natural drivers on a short timescale. Wind erosion as well as soil 

salinisation are not considered, as Middleton & Thomas (1997, 32-33) consider them less 

important for the particular geography of south eastern Spain. In a more elaborate model, 

these two could be included to model desertification more accurately, but due to time 

constraints, they will not be considered. 

2.1.3.1 Water erosion 

The soil quality is paramount for dryland ecosystems; therefore failure in soil conservation 

(i.e. prevention of erosion and soil formation) is a major driver of desertification (Niemeijer, et 

al. 2005, 628). Water erosion happens when the energy and mass from a rain drop cannot be 

absorbed by the soil (Middleton and Thomas 1997, 27). Soil particles will be loosened and run 

off along with the water. Many factors collectively determine the rate of water erosion, 

Middleton and Thomas (1997) lists the factors shown in Figure 5: 
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Figure 5 - Factors determining erosion. From Middleton & Thomas (1997) 

Not all of these can be easily modelled because of difficulty in data collection. Perhaps the 

most successful attempt at establishing a mathematical relationship between the most 

important variables and the water erosion, is the Universal Soil loss Equation (USLE) and its 

successor; the Revised USLE. 

2.1.3.1.1 Measuring water erosion 

Water erosion can be computed by the Revised Universal Soil Loss Equation (RUSLE) 

(Renard, et al. 1997). In RUSLE, soil loss is calculated by the following equation: 

             , where: 

A is the resulting erosion, in volume of soil lost per unit time 

R is the Erosivity factor of the rain. The intensity and number of rainfalls a given time 

period is used to compute this. 

K is the Erodibility factor of the soil. The soil texture and compaction determines how 

susceptible to water erosion the soil is. 

L is the Slope length factor of the terrain. The amount of run-off water affecting a plot of 

soil, is not only determined by the rainfall but also by the terrain. Water may fall somewhere 

else and run down slope and affect this plot as well. 

S is the Slope steepness factor of the terrain. Steepness determines the runoff speed and 

hence the force of the water. 
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C is the Cover-Management factor. Vegetation cover prevents erosion, as previously 

mentioned, due to roots and rain cover. 

P is the Support-practice factor which covers human intervention practices such as 

terracing and stripcropping (Renard, et al. 1997, 15). No available information on this subject 

was found and the factor is set to 1. 

2.1.3.1.2 The Erosivity factor 

The Erosivity factor R, is considered the most important factor when measuring water erosion 

(Maria, Soupios og Vallianatos 2009, 486). 

The Erosivity factor as defined in RUSLE (Renard, et al. 1997) is given by        , where E is 

the total storm energy and I30 is the maximum 30 minutes intensity of the storm, these values 

are multiplied and summed for each storm in the investigated time span. 

To calculate this value, high temporal resolution of rainfall data is needed, and this is not 

always available, therefore shortcuts are taken in order to estimate the Erosivity factor. For 

precipitation data of daily resolution, EI30 can be estimated by assuming that no rainfall lasts 

longer than a day, and at no day are there more than one rainfall. Then each day with 

measured precipitation counts as one rainfall with a Erosivity of          , where P is the 

precipitation while α and β are regression constants (Yu 2008, 259). β varies mostly within the 

range of 1.5 and 1.8 and the higher values are primarily found at higher latitudes (ibid.). In 

Italy β has found to be 1.53 with a standard deviation of ±0.19 (ibid.). No information about β 

in studies of Spain has been found, and the best estimate is that β similar to that of Italy 

applies to south eastern Spain. So the Erosivity factor with daily rainfall data is estimated as: 

      
    

    

      

 

α here is not important, as it will be described in section 4.5.2 Normalisation, because all 

factors will be normalised to lie the range of 0 and 1. 

2.1.3.1.3 The Erodibility factor 

The Erodibility factor K, describes how easily the soil is eroded by rain. This parameter is 

easier to incorporate because it is more stable. The soil variables that make up the K factor 

change through slow processes, and can be assumed to be constant in the entire study. 

The Erodibility factor is given by 

  
                                       

   
, 

where OM is the organic matter content, M relates to the texture (clay, silt, sand- 

percentages), s is a structure class and p a permeability class (Renard, et al. 1997, 74). These 

values can be found by analysis of soil samples and subsequent interpolation (Panagos, 

Meusburger, et al., Soil erodibility estimation using LUCAS point survey data of Europe 

2011). 
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2.1.3.1.4 The Slope Length factor 

The Slope Length factor L, is designed to account for the run off energy, which also impacts 

the soil. Water running along the terrain from higher altitudes will not only affect soil where 

the rain drop hits the ground, but also every other place where the drop runs down until it is 

absorbed, accumulated or evaporated. In RUSLE, the Slope Length factor is given by the 

following formula: 

   
 

     
         

  
 

   
       

  
            

                 
 

Where θ is the terrain slope and λ is the slope length (Renard, et al. 1997, 105). The slope 

length as defined in RUSLE is measured as the horizontal length of the slope (see Figure 6)  

However, this type of slope length was meant for in situ manual assessment and not for 

calculation based on digital elevation maps. Hickey, R (2000) proposed a way to estimate a 

cumulative slope lengths based on a digital elevation model, which not only accounts for the 

maximum slope length of a plot but for each point calculates all slope lengths leading to the 

point. This is performed by first calculating the flow direction of each point by finding steepest 

angle to a neighbour cell. Then calculate for each cell the lengths leading from this cell, this is 

called the Non cumulative slope length, NCSL: 

 For a high point this is set             

 For a point with a flow  through in a cardinal direction (N, S, E, W),        

 For a point with a flow through in a non cardinal direction (NE, NW, SE, SW), 

         , 

where C is the cell size, the DEM raster resolution. 

Then these are then added up in the flow direction to make the accumulative slope length 

which is used as λ. 

Figure 6 - Slope length, λ as defined for RUSLE (Renard, et al. 1997, 18) 
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2.1.3.1.5 The Slope Steepness factor 

The Slope Steepness factor S, is incorporated in order to account for the influence on the 

steepness on the erosion. Just like the K factor and the L factor, S is assumed to be constant in 

time but not in space. In RUSLE the Slope Steepness factor is calculated by three different 

formulae, depending on local terrain properties. Just like it was the case with the Slope 

Length factor this is not a convenient way of calculating the Slope Steepness factor based on a 

DEM. Therefore Nearings (1997) single equation moderation is adopted: 

       
  

                 
       θ                    

(Nearing 1997, 918). 

2.1.3.1.6 The Cover Management factor 

The cover Management factor C, is included in order to account for the favourable effect of 

plant cover. This factor is meant to be the one, which shows the effect of a conservation 

management plan (Renard, et al. 1997, 146), if the C factor is 0.5, it means there is a plant 

cover which halves the rate of erosion, compared to no plant cover. Van Der Knijff, Jones and 

Montanarella (1999) suggest the following relationship between remotely sensed NDVI values 

and the C factor: 

     
       
      

 
 

first in an Italian context (van der Knijff, Jones and Montanarella 1999, 26) and later for most 

of Europe (van der Knijff, Jones og Montanarella 2000, 18). This is convenient as the NDVI 

values are also included in the desertification index see section 2.1.2.2 A desertification index. 

The only problem however, is that NDVI values for the future will not be available, as NDVI is 

information drawn from satellite imagery and these are only available up until  present, only 

the desertification index is available as a model output: 

   
           

  
. 

A function average from u to v is given by: 

          
   

  
 

   
       
 

 
.  

This means that if we multiply our desertification index with    and divide by the time range 

we will get an average NDVI value. 

          
       

   
  

where di is the desertification index,   is the water availability either in total rainfall or soil 

moisture, and T is the total time of the desertification index and a, b are the regression 

coefficients used to relate the NDVI integral to primary production. This means that: 
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2.1.3.1.7 Conclusions 

As displayed in the following, almost every part of RUSLE can be estimated (R, K, S, L, C), 

only the P-factor is left out.  

Apart from the K factor, every factor will have to be estimated based on other data, and in 

every factor a small error will be introduced. The RUSLE model in itself also is not perfect, as 

it is a relatively simple simulation of a highly complex process. However including RUSLE like 

described provides the best possible basis for including soil erosion. 

 

Figure 7 - Factors covered by RUSLE 

Figure 7 displays how the factors from Middtleton & Thomas (1997) are covered by the chosen 

adaptation of RUSLE. Clearly it is less specific in the vegetation part of the surface variables 

and in the soil variables and this might be significant. 

2.1.3.2 Climate change 

Modelling and understanding the processes that are drivers of and driven by climate change 

continues to be one of the major scientific struggles. Desertification is one of those processes 

which both drives climate change and is driven by it (UNCCD 2012, 29). Soil is capable of 

large scale carbon sequestration and so is the vegetation that it supports, and therefore can 

soil degradation be viewed as a driver of climate change. On the other hand increases in 

aridity, droughts and erosion are consequences of climate change. 

Dryland ecosystems are thought to be the ones that will suffer most from the climatic changes 

(Nicholson 2011). It follows, that if water is the principal constraint, changing precipitation 
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patterns might have a direct impact on plant life. Changing precipitation patterns will have 

an impact on water erosion. 

Changes in temperature will mean changes in aridity as water vaporisation rates, therefore 

three measures of climate change will be investigated: 

 Rainfall deficiency 

 Erosion, which is already covered in a previous section.  

 Temperature change 

This is by no means a complete list of impacts on desertification by changes in the climate. On 

the other hand these are the impacts which harmonise both with data availability and the 

scope of this project. 

2.1.3.2.1 Rain deficiency 

In the 80’s huge parts of dryland Africa were struck by severe droughts. Desertification was 

immediately linked to droughts and even though this gave birth to a lot of discussions about 

desertification it has since been questioned (Niemeijer, et al. 2005, 646) how strong this 

connection really is, and examples were given where the soils were able to bounce back after 

being hit by droughts (ibid.). However when climate change alters the frequency and severity 

of droughts, it might be a different story. 

There is no universal definition of droughts or drought severity (Nicholson 2011, 407). But 

several indices do exist with different merits and demerits. One of the simplest indices of 

drought is the standardized precipitation index SPI by McKee et al. (1993), which is a 

measure of how likely the observed precipitation is. More elaborate is the popular Palmer 

drought severity index (PDSI) which relates available moisture to the moisture needs of plants 

(Palmer 1965). 

The fact that the SPI can be computed using only rainfall data and climate normals, makes it 

applicable for this use, because it allows us not only to measure historical droughts but in 

addition one can combine it with climate projections to gain information about severity of 

future drought patterns. The computation though applicable, is rather extensive as it relies on 

the computation of a gamma distribution function space. Instead a more easily computable 

mean rainfall is used. 

2.1.3.2.2 Temperature rise 

Temperature has implications for plant life both on a short time scale, as it impacts the 

biological processes of plants and raises the moisture evaporation rates. And on a longer scale, 

as the aridity will slowly change the spatial extent of habitats. An example of the latter is 

forest migration. As a simple indicator the yearly temperature mean is adapted. 

2.1.3.2.3 Conclusions 

Although climate change is much more than just change in mean temperature and mean 

rainfall, these two factors will help enhancing the model by introducing differences and 

interannual trends in the weather.  
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2.1.4 Desertification conclusions 
A theoretical understanding of desertification has now been established, and operational 

definitions of desertification as geographical phenomenon as well as two its main drivers, 

water erosion and climate change, has been established. This will serve as the basis for spatial 

modelling of desertification, as it now is known which data is important for a desertification 

simulation. 
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2.2 The cellular automaton 
Cellular automata or CA, are a category of computer models which simulates a certain 

behaviour of a n-dimensional grid. CA is commonly used to simulate natural growth like 

systems such as urban development, cancer cells, animal populations and more.  

In the following cellular automata will be defined, a small display of its capabilities will 

discribed and it will be discussed how it can be applied in desertification modelling. 

2.2.1 Defining characteristics 
Wolfram (1984, 419) uses the following characteristics to describe cellular automata in one 

dimension: 

 It consists of a line of ‘sites’ 

 Each site has a value of 0 or 1 

 Each site is updated in discrete time steps 

 Each update is determined by one identical rule 

 This rule is a function of the site neighbourhood 

In this way for each time step, the system develops according to the rule, and very simple 

rules can result in complex patterns. 

If the above is seen as a family member of the CA family of models, it can be generalised a bit 

to include more family relatives. The CA properties as described by (Liu 2009, 28) are defined 

as the following: 

The grid 

The one dimensional CA has a line of ‘sites’ or a 1-dimensional array.  More generally; in an n-

dimensional space, the line of sites becomes an n-dimensional grid of sites or cells. This is 

referred to as the grid. 

The states 

Each cell has a value associated with it. This is called the state. Basically there are two types 

of states discrete or continuous. The binary model with 0 and 1 is an example of a discrete 

state system and this can be interpreted as dead or alive (0 or 1), but also more complex class 

systems exists, where cells can have more than two different states. The other type is the 

continuous model where the cell state is defined by a scalar. 

Time 

The cells states evolve in time. Time in these models is discrete, which means that for a 

certain time step every cell will have a certain state. 

The transition rule 

How each cell evolve is governed by the transition rule. This rule is a function of the states of 
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the previous time step. Only cells within a defined proximity of each cell are included in this 

function. 

For a more sophisticated model, the transition rule function can also include external 

factors, to create site and/or time dependant transition rule variation. 

The neighbourhood 

Whether a cell should be included in the function of the transition rule is determined by the 

size and shape of the neighbourhood. The neighbourhood can be of any shape but is typically 

spherical or quadratic. In two dimensional CA two small typical neighbourhoods are the von 

Neuman and the Moore neighbourhoods, exemplifying the smallest possible spherical (von 

Neuman) and quadratic (Moore) neighbourhoods.  

The fact that the CA models depend on neighbourhoods makes it topological in the sense that 

locality matters. There is an obvious analogy to Toblers first law of geography "Everything is 

related to everything else, but near things are more related than distant things." (Tobler 1970, 

236), and as a furthering of this analogy, the neighbourhood can be accompanied by a decay 

function which weights the neighbourhood so, that close neighbours are more significant than 

distant ones. This is displayed in Figure 8 where the distance to the centre of each cell is 

calculated for a unit size grid. The weight associated with each cell will then be a function of 

this distance such as      
 

 
  or       

 

   . 

2.2.2 The simple complexity of cellular automata 
Although a very simple system, a cellular automaton is capable of complex behaviour. In one 

dimension much research has been conducted by Stephen Wolfram. Wolfram describes what 

he calls class 4 behaviour as 

“...class 4 involves a mixture of order and randomness: Localized structures are produced 

which on their own are fairly simple, but these structures move around and interact with each 

other in very complicated ways.” (S. A. Wolfram 2002, 235).  

This is inherently false, the cellular automata are not capable of random behaviour as they 

follow strict deterministic rules, but it is still an accurate description as the patterns produced 

do indeed appear randomised. As examples of this class four behaviour three cellular 

automata have been constructed to store three numbers in each cell. These are shown in 

Figure 9. 

Figure 8 - The von Neumann, and the Moore neighbourhoods, and a distance matrix 
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Figure 9 - 1-dimensional CA with colour mapping 

The top pixel represents the first time step, the next line of pixels the second time step and so 

on. The three values of each cell, is calculated based on values, of the previous time step from 

the same cell and the cells next to it, using trigonometric functions. The three values are then 

mapped in RGB to produce a colour, so each pixel represents one cell at one point in time. In 

the leftmost pyramid a very organic pattern emerges with round shapes. In the middle 

pyramid a very different pattern is produced, consisting of edges and lines and in the 

rightmost pyramid wavelike structures appear. This demonstrates how simple rules can 

produce complex patterns resembling randomness. 

In two dimensions, perhaps the most well known example of a cellular automaton has been 

designed by John Conway. “Game of life” was presented as a pastime activity (Gardner 1970), 

but it proved more important and has since become canonical in cellular automata. Game of 

life consists of a two dimensional grid with cell states dead or alive. Cells evolve based on a 

Moore neighbourhood with transition rules inspired by a biological reality. Cells can die from 

loneliness (fewer than two live neighbours) or over crowdedness (more than three live 

neighbours) and live cells can spread in the right environment (exactly three live neighbours). 

Conway’s game of life is ultimately the inspiration for most work with cellular automata for 

modelling spatial systems. 

2.2.3 Desertification cellular automata 
With correctly chosen properties a CA model can be constructed to simulate geographical 

systems. This has been extensively researched in urban modelling, where simulations predict 

growth and structural changes of urban areas (Liu 2009). 

Cellular Automata can also be used to simulate other geographical phenomena such as 

desertification. Here desertification can be treated as either a class property as in 0 or 1 (not 

desertified/desertified) or a fuzzy classification, as cell states. Ding, Chen & Wang (2009) 

simulated desertification in the Heibei province surrounding Beijing. Here desertification was 

simulated with binary cell states, and they concluded that further research should be carried 

out to combine the desertification CA with fuzzy set theory and to include erosion modelling 

(Ding, Chen and Wang 2009, 327).  

To design a CA for desertification, every property of CA must be modelled with this purpose in 

mind. In the following the properties are discussed on this background. 

The grid 

In a desertification CA the grid is 2-dimensional, it could perceivably be in three dimensions to 
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include something like top soil depth or similar, but it makes sense to model desertification as 

a 2-dimensional geographical phenomenon. It should be a square grid to ensure that even 

spatial relationships exist between all neighbouring cells. This would not be true in say, a 

rectangular grid. It could however be true for a triangular or a hexagonal grid, these do not 

align well with most raster processing or conventional cellular automata. That is of course not 

the same as saying it cannot be done. 

The states 

Desertification in terms of cell states, can be modelled in a number of ways. Desertification 

can be classified or modelled continuously as a fuzzy cell state describing how desertified a cell 

is, like it was suggested by Ding, Chen & Wang (2009). 

Time 

The time property of a desertification CA is straight forward. The desertification level at a 

location evolves in time just as a CA system cell. The length of the time steps must be 

determined to fit the temporal scale of the modelled phenomenon.  

The transition rule 

How the level of desertification changes, appears to be governed by a series of factors as 

discussed in section 2.1.3 Drivers of desertification, but it is clear that external factors such as 

climatic attributes must be included in order to model the phenomenon precisely. Rain may be 

influenced by the level of desertification, but also other factors affect rain patterns, for 

instance we know that the climate changes both in space and in time. 

The presence of surface freshwater can also be expected to have an impact on desertification 

processes, as surface water alters the availability of water which, as previously stated is the 

primary constraint on dryland systems (see section 2.1.1 The geophysical environment). 

The neighbourhood 

The neighbourhood is relevant in desertification as a geographical phenomenon, because 

resource cycles (water, nutrition, flora, fauna etc.) are part of the ecological properties of a 

locality. One specific place is more likely to fall into desertification if its neighbouring areas 

are desertified, because less resource transactions will occur, resource transactions meaning 

ecosystem resources transferring from one area to another, such as migrating wildlife or 

moisture spread through transpiration etc. 

As most ecosystem transactions happen slowly in short distances a small neighbourhood such 

as the Moore neighbourhood seems appropriate. With the Moore neighbourhood only 

neighbouring cells with shared boundaries are included. 

2.2.4 Conclusions 
Cellular automata systems are capable of serving as the basis for modelling geographical 

phenomena like desertification. A lot of unknowns persist in how the system should be set up. 

These will be discussed further in 5.2 Cellular automaton modelling. 
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2.3 Artificial Neural Networks 
The artificial neural network (ANN) is a type of computer model, successful in the field of 

pattern recognition (Bishop 2006, 226). In this section the feed forward neural network will be 

described and discussed with the purpose of applying the model in recognising the 

spatiotemporal pattern of desertification. Artificial neural networks have one of two distinct 

objectives; classification or regression. The cellular automaton as described in the previous 

section finds an output value, by evaluating a function of values of the neighbourhood – the 

transition rule. This function could be in any form conceivable; so by applying artificial neural 

network regression to zone in on the best possible function the ANN could serve as a 

transition rule. 

An artificial neural network is an attempt to create a mathematical representation of how 

information is processed in biological systems (Bishop 2006, 226) such as the human brain. 

Information is stored in Neurons and passed through the network, for the network to 

collectively achieve its goals. In the feed forward type neural network, information is only 

passed forward in the network and only a relevant subgroup of these types of ANNs will be 

described. As this is not meant to be a study of the neural network, which aims to improve 

algorithms or general knowledge of the ANNs, the focus will be on the basic functionality and 

not the mathematical theoretical background. This will serve as help in the modelling of the 

network for the specific uses it has. 

This way of using an artificial neural network as a transition rule for a cellular automaton for 

spatial modelling, has previously been carried out in the field of urban modelling by Li and 

Yeh (2001). In this study the authors highlight the robustness and versatility of the networks’ 

abilities in spatial cellular automata (Li and Yeh 2001, 1446). 

2.3.1 Feed forward ANN 
Feed forward networks are the most basic type of neural networks. They are limited in the 

way that information is only processed in a forward direction. 

A feed forward neural network has an input layer any number of hidden layers and an output 

layer. For this purpose only neural networks with one hidden layer will be considered. 

Information from the input layer is passed on to the hidden layer, processed and then again 

passed on to the output layer, processed again to yield the model output. 
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Figure 10 - Basic feed forward ANN 

Figure 10 displays a basic feed forward neural network structure, where all neurons of the 

input layer are connected to all neurons of the hidden layer, except for the bias neuron, just 

like all neurons of the hidden layer are connected to all neurons of the output layer. All links 

have a weight associated with it; this weight is a scalar and it could be zero simulating no 

connection between the two neurons. The neural network function of the model depicted in 

Figure 10 is evaluated in three steps. First, linear combinations of the input layer values are 

sent to the hidden layer: 

         
        

 

   

    

where     is the weight of the connection from a to b,    is the value of the neuron x of the 

input layer and y iterates from 1 to M (Bishop 2006, 227). 

These values are then processed by an activation function A to form the values of the hidden 

layer: 

         

The activation function A should be a continuous function; this is often an s-shaped function 

such as the logistic sigmoid function which work in the codomain ]0,1[ or the tanh which 

works in the codomain ]-1,1[, depending on structure of input and output values. These two 

functions are illustrated in Figure 11. 
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Figure 11 - Most common activation functions 

Now that the values of the hidden layer are known, these are again combined: 

         
        

 

   

    

(Bishop 2006, 227). And finally these values are run through the activation function, to form 

the final outputs of the network.  

         

The complexity of the neural network depends on the architecture, the number of neurons in 

each layer, which has implications for the output quality, amount of needed, training data and 

calculation time. 

2.3.2 Network training and backpropagation 
When the network architecture is setup, the network can be trained. Network training refers 

to adjusting the weights, so the output approximates an expected output more and more 

accurately; this is known as supervised training as the model is supplied with an expected 

output. 

Training of artificial neural networks happens through a procedure known as 

backpropagation. Backpropagation works by subdividing the error between the incoming 

connections to a neuron. And then these errors are send backwards even further through the 

network, to again subdivide between incoming connections from the previous layer. That way, 

each weight is associated with a part of the model error. For each weight one can imagine, 

that the error will change as the weight changes. 
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Figure 12 - Error - weight space, displaying gradient for specific weight 

Calculating the global minimum for each weight for each step in the training process, is 

simply impossible computationally, so instead the main working tool is the gradient,    – how 

the error changes with the weight. This gradient can be used to iteratively improve the 

weights of the network; if the gradient is positive the error will decrease if the weight is 

decreased and vice versa. Depending on numerical circumstances and training algorithm, 

using the gradient to search for better weights, can yield three results if enough iterations are 

applied; a global minimum, a local minimum, or the weights may simply not converge. 

The gradients can be calculated using the following formulae: 

         

where v is the incoming value, and   (called the node delta) is calculated differently for the 

output layer neurons and the hidden layer neurons. For the neurons in the output layer: 

                   

where    is the output value of neuron z and t is the expected value of neuron z. For neurons 

in the hidden layer the node deltas are calculated a little bit differently: 

                 

 

   

    

by summing weights and node deltas from the output layer, and multiplying by the derivative 

of the activation function evaluated in the incoming value (Bishop 2006, 243 - 244). 

2.3.2.1 Training algorithms 

A range of training algorithms have been developed, each with its advantages and 

disadvantages. In the following, two of these will be described and their differences will be 

demonstrated. 

The most basic training algorithm is known as gradient descent, where a learning rate η is 

set, and each weight is updated by:               (Bishop 2006, 240). So the learning rate 

and the size of the gradient determines the size of the weight change. This will ensure that we 

find a local minimum, if the learning rate is not too large for the weight to converge. One way 
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to improve this is by adding a momentum term. This will make the search speed up if the 

gradient is small and there is a long way to the minimum, furthermore it can help the search, 

to ‘jump’ out of a local minimum if the momentum is great enough:                 

      . Both the momentum and learning rate, should be between 0 and 1. Setting these 

values correctly is not simple, and to overcome this difficulty another algorithm can be 

applied, this is called Rprop (Igel og Huesken 2000, 115). Resilient Backpropagation, or Rprop, 

was proposed by by Riedmiller and Braun (1993). Since Rprop has been proposed further 

research has been conducted and improvements has been added (see for instance (Igel og 

Huesken 2000)), here only the basic Rprop with weight back-tracking (Rprop+) will be 

discussed. In Rprop the step size is governed independently of the size of the gradient. The 

step size is found by comparing the gradient, with the previous gradient: 

1. If the gradients have the same sign, indicating that the weight should be moved 

further in the same direction, the step size is increased:            , so as long as the 

weight is continuing down the same slope, the step size will increase exponentially 

independently of the gradient size. 

the weight will then be updated by:                  

2. If the gradients have different sign, indicating the weight has crossed past a local 

minimum, the step size is decreased:            

the previous weight change will be cancelled (called weight backtracking) so: 

            

and the gradient is stored as zero, so for the next iteration, the gradients will neither 

have the same or different signs, and we enter 3. 

3. Else the step size will be maintained:         , this is when on the previous iteration 

the step was too large, so it has already been decreased, and a more careful step is 

taken in the same direction. 

In Rprop, like gradient descent, some variables need to be set; the learning rates: 

          . Also there needs to be an initial step size, as well as maximum and 

minimum step sizes.  

But for Rprop these values are not as crucial, as it is the case in gradient descent (Riedmiller 

og Braun 1993, 588). And the Riedmiller and Braun suggest the following settings, which is 

empirically tested to give good results regardless of the problem:  

       

       

       

          

        

(Riedmiller og Braun 1993, 588). 

These ‘standardized’ values help save time in the modelling process, as one does not have to 

search for good values and check for convergence. 



33 

 

As a simple demonstration a regression problem is constructed. A neural network with 1 input 

3 hidden neurons and one output, with the activation function              , is trained with 

random weights from -0.1 to 0.1. The goal is to approximate the function            , as 

represented by 20 random points along the function.  

 

Figure 13 - Training error after each completed iteration of training. 

As displayed in Figure 13, the error of the network behaves very differently for the two 

training algorithms. With gradient descent, the training was highly dependent on the chosen 

variables learning rate, and momentum. Also when training the network with the same initial 

conditions, it showed a high dependency on which 20 random points, which were used. There 

was a substantial variation on how fast it converged, or if it converged at all. The graph 

displayed was one of the best results. 

The Rprop behaved more consistently, it converged every time, and the graph looked very 

similar each time. One thing to note is that the final error is smaller in the Gradient descent 

example. And this might be attributed to the momentum term. Based on this, the Rprop is 

selected as the training algorithm, as it shows more consistent results, and it depends less on 

the variables. This will allow more focus on experimenting with the network architecture. 

2.3.3 Conclusions 
Artificial neural networks can be designed to solve a regression problem to find functions that 

mimic the behaviour of inputted data. With the Rprop training algorithm, training data can be 

entered into the model to make it adjust without much experimentation or prior knowledge 

about the modelled data. 

2.4 Collective conclusion 
In the desertification section it was concluded how a fuzzy index of desertification could be 

computed from satellite data. Also discovered were operational measures of erosion, and 

climate change. These measures will serve as the data background for the model. Still lacking 

are the actual acquisition, processing and calculation of these datasets. 

A cellular automaton can be the basis for a desertification simulation model, it is capable of 

being set up according to modelling goals, and of producing rich patterns which must be 



34 

 

controlled through the transition rule. The properties of the cellular automaton are not trivial 

and a discussion of these properties will follow. 

Artificial neural networks can flexibly solve regression problems to find a function without 

prior knowledge about this function. This is exactly what is needed as a transition rule in the 

cellular automaton to control how desertification develops in time. An artificial neural 

network can be designed in many different ways, so a discussion of how it should look will 

follow. 
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3 Methodology 
In this chapter it will be described how the question posed in the problem statement will be 

answered. First general methodological considerations will be discussed, then applied tools are 

described and finally the analytical design structure will be outlined. 

3.1 Methodological considerations 
In the following some key methodological considerations of the modelling will be discussed. 

The following topics will be touched in the section: 

 The black box nature of using artificial neural networks 

 Spatial and temporal independence of the model 

 Data acquisition 

3.1.1 Black box 
The aim of this study is to investigate, how well suited cellular automata models with an 

artificial neural network as transition rule, are for modelling the geographical phenomenon of 

desertification. Often when building a simulation model, information about the nature of the 

studied phenomenon will be gained. This is not the case when using artificial neural networks. 

The derived transition function is not generally applicable to modelling desertification. If a 

new model is build or this model is improved, and perhaps other factors are included, the 

training process will have to be performed again. This is the trade off when using artificial 

neural networks, and for this reason ANNs are referred to as a black box (Liu 2009, 50). 

3.1.2 Spatial and temporal independence 
The modelling is performed using spatially and temporally independent data. By spatially 

independent is meant, that no inputted data is specific to the geographic region of south 

eastern Spain, and the same analysis could have just as easily be performed somewhere else, 

if the same data was available. In this sense, the model treats all pixels the same regardless of 

coordinates. If the model was not spatially independent, every pixel could be modelled 

separately, and it would be exposed to over fitting.  

The same is true for the time dimension. Time is not a model variable, and the model does not 

use information about which year it is for its predictions.  
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By keeping the model spatially and temporally independent, the modelling process strides for 

generality; the modelling procedure could be moved to any location, to any point in time if the 

corresponding data could be acquired. 

3.1.3 Data acquisition strategy 
Data acquisition is an important subject in a study like this. Such an overwhelming amount of 

spatial and non spatial data is freely available online. Similarly for other kinds of information, 

not all sources are equally reliable, and so it is important to be aware of where the data is 

coming from, and on what background it has been published. In the subsequent chapter, all 

data sources are listed, here the nature of the data is described for each data source. 

Overall data has been acquired from very few sources. This makes it easy to keep track of the 

data, and the problems that may be related to these sources. 

Every applied dataset is well documented, there exist metadata describing the data motives 

and processing information.  

3.2 Geographical research area 
As formulated in the problem statement, the case area for testing the model capabilities is 

south eastern Spain. In this study south eastern Spain is selected, because it is believed that 

desertification may be imminent in this area. The geographical delimitation is defined by the 

common area of the two major datasets; the eMODIS NDVI imagery and the Eurostat DEM 

(described in Chapter 4 Data processing). 

 

Figure 14 - Research area - common area of the the DEM and the eMODIS datasets. 

Figure 14 displays the research area in geographical relation to the rest of the Iberian 

Peninsula. 
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For some tasks only a subset of the research area was used. 

This is area will be known as the “training area”. The 

training area which can be viewed in Figure 15, is used for 

model training and other specific tasks, where the entire area 

was unnecessary or otherwise inappropriate. When the 

training area is used instead of the research area, it will be 

stated in the text. 

3.3 Applied tools 
ArcPy is a python library created by ESRI to allow python 

programming with ArcGIS tools. The research work 

presented in the following chapters, was performed mainly with ArcPy. ArcPy allows 

integration between the programming elements and the spatial elements, such as raster 

calculations, so a model can be programmed to include spatial data processing, directly in 

python. 

Python with ArcPy has been the main tool both for modelling and data processing. ArcGIS 

10.2 is a Desktop GIS, which allows manipulation of spatial data via a set of tools, and a 

visual map interface. For some tasks, when the visual output needed inspection, the ArcGIS 

10.2 environment was applied. 

CDO – Climate Data Operators is a collection of tools for manipulating multi dimensional 

climate data. CDO has been used for data 

operations regarding the climate data, where 

tools in the ArcGIS environment has not 

been sufficiently equipped. 

3.4 Analysis design 
The problem statement was operationalised 

using four research questions, three of which 

relates to the development of the model and 

one relating to the quality of the achieved 

model. Hence, the first three research 

questions will be answered, then the fourth 

which will lead to final conclusions on the 

problem statement. 

In the theory chapter the framework for the 

model was laid out. But still questions 

remained on how get the best results out of 

available tools. The following three chapters 

will be laid out as displayed in analysis 

design structure, Figure 16. The very next 

chapter will concern the processing of the 

raw data, which leads to suitable inputs for Figure 16 - Analysis design.  

Figure 15 - Geographic definition 

of the training area. 
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the model. In figure 16 the key data processing tasks are displayed. 

In the Modelling chapter the structure and development of the model will be discussed. This 

will in turn lead to answering the first three research questions. Finally the resulting model 

will run predictions. These predictions will result in a test of how accurately the model can 

predict desertification of south eastern Spain. This will assist in answering the fourth and 

final research question. 
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4. Data processing 
In this chapter all applied data will be presented and discussed. To prepare the data to be 

included in the modelling, it needs to be processed individually according the diverse nature of 

the data from different sources. So the aim of the following chapter is twofold; to present data 

sources, and to describe the processing it has undergone. 

First the data and processing related to the desertification index will be discussed, and then 

the data and processing related to the erosion index. Then all climatic data will be discussed, 

the datasets in the section are applied in the model on its own and as part of the two indices, 

desertification and erosion. The last presented datasets are the topographic datasets. Finally 

the general processing, not specific to any dataset are described. Each subsection is structured 

by starting with an introduction to the topic, listing its data components, then describing the 

data sources and finally describing the processing applied. 

4.1 Desertification index 
In section 2.1.2.2 A desertification index it was derived that a desertification index can 

meaningfully be formulated as 
    

  
, where the NPP can be found from regression:        

       . Both NPP yearly and NDVI weekly are products provided by NASA’s MODIS 

satellites. Yearly NPP are available from 2000-2010 while weekly NDVI’s are available from 

March 2000 up until present. Both    candidates, rain and soil moisture are datasets 

available as part of the Ensembles, which is separately discussed in section 4.3.1 Ensembles – 

Climate data. 

Apart from working as the model output, the desertification index, also provides average 

NDVI values used in the erosion index, described in section 4.2 Erosion index. 
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4.1.1 eMODIS – NDVI 
The EROS Moderate Resolution Imaging 

Spectroradiometer by NASA provides free 250 m NDVI 

products 4 times a month for Africa among other 

continental datasets. Africa is defined as everything within 

the bounding box of N: 40.0, S: -39.0, E: 52.0, W: -20.0, this 

means that data for southern Spain is also included in 

these products, see Figure 17. The data appear in 10-day 

composites, so 10 images have been combined to remove 

clouds from the products images (Jenkerson, Maiersperger 

and Schmidt 2010). In spite of this effort, the quality of the 

imagery is still varying, and there is need for further 

processing, this is addressed in section 4.1.3.1 NDVI Cloud 

removal. 

As the datasets are available four times each month they 

provide a good basis for estimating an integral. The datasets 

are each approximately 1.5 gb large, so only downloading one 

dataset per month was feasible, due to hard disk space, time and bandwidth limitations. 

4.1.2 MODIS – NPP 
NASA also provides global primary production estimates. These are independent of the NDVI 

and are calculated from corrected Leaf Area index, LAI and Fraction of Photosynthetically 

Active Radiation, FPAR (Running and Zhao 2011). This product is in 1 km spatial resolution 

and has global cover. The dataset unit is 
    

  .  

Several places NPP (Net Primary Production) and ANPP (Above ground Net Primary 

Production) are used interchangeably. The difference between these two terms, in this matter 

is small. The desertification index is related to NPP and not ANPP, even though it was 

initially based on an index that was related to ANPP (see section 2.1.2.2 A desertification 

index). Desertification will also have an impact on the growth of roots and other below ground 

primary production sources, so it is not viewed as a problem to switch ANPP for NPP. 

  

Figure 17 - eModis Africa 

area. World map provided by 

Bjørn Sandvik, 

Thematicmapping.com 
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4.1.3 Processing 
Before a useful desertification index can be inserted into the model, these four tasks needs to 

be performed, on the above data: 

 NDVI cloud removal 

 NDVI integration 

 NPP regression 

 Normalisation of the final output 

The processing methodology in each of these is described in the following. Except for the 

normalisation processing which is described separately for all input data in section 4.5 Non 

data specific processing. 

4.1.3.1 NDVI cloud removal 

Even though each eMODIS NDVI product is based on a composite of several images, total 

cloud free imagery has not been possible. Clouds disturb measurement of NDVI values, as 

they allow less light through than the remaining atmosphere.  

Removal of clouds from satellite imagery is usually a difficult task. Missing information may 

be recreated from imagery of the same place at different times, but this poses two problems: 

The information that was not recorded might have changed in the passing time, and the 

images might be radiometrically incompatible, in the sense that the pixel values in one image, 

might not represent the same amount of light, as the same pixel value in the next. Lin et al. 

(2013) described a method for cloning information in Landsat 7 imagery, addressing the 

problem of radiometrical incompatibility. However this problem is not considered in the 

following, because the eMODIS NDVI images were designed for multi temporal analysis, 

radiometrical incompatibility is assumed to be a small problem, and data can be recreated by 

simpler means. The method described in the following, is not the best way to deal with cloud 

contamination in general, but should be seen as a “quick and dirty” fix, this will be discussed 

further in Chapter 7 Discussion. 

The disturbance that the clouds cause is removed by interpolation. The missing information 

can be recreated by taking advantage of temporal and spatial information relationships. 

Generally there can be two types of trends in the NDVI data, an intraannual cyclic trend and 

a climatic interannual trend. How the image with the missing data differs from these trends, 

depends on incidental weather, impacting plants before the image was captured. This 

information can to some extent be included by comparing mean NDVI for the non clouded 

parts of the images. 
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But first, the clouds must be identified in the images.

 

Figure 18 - Monthly NDVI means 

In Figure 18 the mean values of the NDVI values are plotted to show the intraannual cycle. 

The months with heavy cloud cover can easily be spotted; they are identified by unexpected 

drops from the trend. Clouds can naively be distinguished from undistorted information by 

applying a threshold. In Figure 19 a threshold of 0.07 is applied to group pixels as either ‘good 

values’ or ‘bad values’; we see that this works fairly well, identifying water and clouds which 

have low NDVI values ( b) in Figure 19). 

 

Now that the missing information is identified, it can be recreated by combining available 

data from the same locality in other images: 

 The intraannual trend is included by using information from the next and previous 

month 

 The interannual trend is included by using information from the same month the 

next and previous year. 

 The information used is adjusted by multiplying with the non cloud mean ratio, using 

the parts that are without clouds in both images. 

Figure 19 - a) Original image, clipped to the southern part of the Iberian Peninsula b) Pixels with 

NDVI < 0.07 (in white). c) Image histogram 
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This means that four pieces of information about the missing data is computed, and the 

average value of these four distinct approximations is used as an estimate.  

So the pixel value p, at a given month m, is approximated by: 

     
 

 
 

    

       
        

    

      
       

    

      
       

    

       
          

Where      is the non cloud NDVI mean for the month m. 

Some images do not have all four components for this equation. For the first image for 

instance, neither the m-1 nor the m-12 exist, and it can only be estimated based on m+1 and 

m+12. 

4.1.3.2 NDVI integration 

In order to find the integral of (‘area under’) the NDVI curve a numerical estimation known as 

the trapezoidal rule is applied: 

     
 

 

        
         

 
 

This can be applied to the NDVI data, as both a timestamp and the NDVI value are available 

for each dataset. 

 

Figure 20 - Information used for reconstructing missing information. 
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Figure 21 - How the trapezoidal rule is applied to approximate the NDVI integral 

In Figure 21 it is displayed how the NDVI integral is estimated for the area between two 

known points on the curve, this is then summed for a year to approximate the integral of the 

whole year: 

        
      

            

      

      

             

 
 

4.1.3.3 NPP regression 

The yearly net primary production (NPP) is available for the years 2000-2010 and the NDVI 

integrals have been calculated for the years 2001-2013 which means, that there is an overlap 

of the years 2001-2010. The correlation between the NPP and the NDVI integral can be found 

from a simple least squares regression, as the relationship is thought to be linear. As both 

datasets represents continuous raster data, it is possible to compare points individually. After 

resampling the data to grid as explained in section 4.5.1 Gridding, corresponding pixels from 

the two datasets can be extracted in pairs.  The NDVI and the NPP behave very differently on 

water, therefore the regression is only applied to the cells near the centre of the data extent, 

because this excludes proximity to the ocean. 
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Figure 22 - Result of the regression 

On Figure 22 all data used in the regression is plotted. There is a clear linear trend in the 

data, but also a considerable error. The ordinary least square fit yields:           

             
    

 with an average error of 468 
   

   
. 
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4.2 Erosion index 
The erosion index is based on RUSLE as described in section 2.1.3.1 Water erosion;  

                 , excluding the P-factor and any constants. The calculation of each 

factor in the erosion index is also explained there. Only the slope length factor remains a topic, 

as it is less simple than the others. The erosion index is based on the following data: 

 Rain data. Used in the R-factor 

 The K-factor is an external dataset in it self 

 EU-DEM. Used in the L and S factors 

 Desertification index. Used in the C factor, described in section 4.1 Desertification 

index. 

The K-factor and the EU-DEM are explained in the following. The rain data along with other 

climatic datasets are explained in a later section, the desertification index, has already been 

discussed in the previous section. 

4.2.1 ESDAC - K-factor 
The K-factor is provided in 500m resolution by the European Commission – European Soil 

Portal of the European soil data Centre (ESDAC). It is based on 22000 soil samples collected 

across Europe in 2009 within the project LUCAS (Panagos et al. 2014, 143). The data is 

designed to be included in USLE and RUSLE calculations of soil erosion. 

4.2.2 The EU-DEM 
The EU- Digital Elevation model is likewise provided by the European commission for free 

download online. It is in 25 meter resolution (EEA 2013). The DEM has been computed by 

combining the SRTM near global DEM from 2000 and the ASTER GDEM from 2009. 

4.2.3 Processing 
Every element of the erosion is created from presented data using simple raster calculations. 

The exception is the L-factor, for which the processing will be described in the following. The 

following steps constitute the processing of the erosion index data: 

 L-factor calculation 

 Raster calculations as described in section 2.1.3.1 Water erosion 

 Normalisation 

4.2.3.1 L-factor calculation 

In section 2.1.3.1 Water erosion the slope length factor (L-factor) was described to be given by 

the formula 

   
 

     
   

where M is derived from Raster calculation based on the DEM and λ is the horizontal length of 

the slope. This is adopted from the original RUSLE (Renard, et al. 1997, 105). The maximum 

slope length at a given point on a DEM, can be calculated with ArcGIS Hydrology toolset, by 
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first Running the tool Flow Direction and then the tool Flow Length. The accuracy of this 

however is very dependent on the DEM resolution. Interruptions in the flow can occur without 

it being recorded in the DEM because it is on smaller scale than the DEM. Due to the relative 

coarseness of the DEM, the slope lengths may be grossly overestimated. It has not been 

possible to find any best practices; therefore an experimental approach with a number of 

maximum lengths (λmax) is adopted. The model will be run with several maximum slope 

lengths to see what difference it makes for the final result. To illustrate the difference a 

maximum slope length makes, three histograms has been plotted on a logarithmic scale: 

 

Figure 23 - L-factor histogram, a: without λmax, b: with λmax =1000 m, c: with λmax = 100 m. 

Figure 23 displays how the L-factor distribution is altered with a maximum slope length 

(λmax). These are calculated from the original DEM in 25m resolution before resampling for 

modelling. 

Without a maximum, the L-factor goes beyond 700 for a few pixels indicating that the erosion 

happens more than 700 times faster in these pixels. 
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4.3 Climatic data 
The climatic data plays a role in several different factors; the desertification index depends on 

rainfall or soil moisture, and the erosion index depends on the erosivity of the rain. But the 

changing climate is also included as factors separately. The climatological data is the only 

source of data used, which is needed to extend into the future. Every other dataset is either 

assumed constant or estimated as a model output. This is possible due to the availability of 

publicly free climate modelling outputs in the Ensembles project. 

4.3.1 Ensembles – climate data 
The Ensembles project was initiated by the European Commission, in order to inform 

researchers and decision makers about climate change (Linden and Mitchell 2009, 3). 

Ensembles is a series of research themes of which the third (RT3) was “Formulation of very-

high-resolution Regional Climate Model ensembles for Europe.” (Linden and Mitchell 2009, 4). 

This has resulted in a range of climate model outputs with uninterrupted data from 1951 to 

2100, for different climate scenarios with different models. Within the Ensembles project the 

EHTZ-CLM climate model in 25 km spatial and 1 day temporal resolution by Böhm et al. 

(2006) has been used. It is a local realization of the general circulation model (GCM) HadCM3 

by the Hadley Centre.  This particular model was selected as it was run with the needed 

output variables and it is in 25 km resolution (rather than 50 km). It was run for the A1B 

climate scenario, which is from the A1 family of scenarios that describe a world of rapid 

economic and population growth until 2050. A1FI is in the same family, but here energy 

demands are met by a Fossil Intensive energy production. The A1T is where the energy 

demands are met by more by non fossil energy production, and the A1B lies somewhere in 

between, with B for balanced energy production (IPCC WG3 2000, 4). Due to time constraints 

is has not been possible to test different climate models or scenarios, and the significance of 

differences and uncertainties within these models has not been tested. 

4.3.2 Processing 
Three climatic factors are included in the model: 

 Rainfall data is included both in the Erosivity index of the Erosion index, and as a 

separate factor  

 Soil moisture  

 Temperature 

The processing of each dataset consists of simple arithmetic as discussed in 2.1.3.2 Climate 

change, and the processing will not be discussed further. 
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4.4 Topographic data 
Lastly the topographic data included will be described. Applied in the model are surface water; 

lakes and rivers as well as urban areas. Even though all of these topographic features are 

dynamic both in terms of size and probably also in impact on desertification, they are assumed 

static. Modelling the temporal development of these topographic features is beyond the scope 

of this project. 

Including water bodies in this model is important as water is the primary constraint on 

primary production. Including urban areas is important for two reasons. Firstly urban areas 

physically obstruct natural development. Secondly urban areas will not be more and more 

desertified, as they are a special type of land use, which responds very differently to changes 

in climate and erosion. 

4.4.1 ECRINS – Surface water data 
The European Catchments and Rivers Network System (ECRINS) is the name a European 

hydrographical model containing both river and lake data in Europe. The data is being used 

for hydrographical purposes in by European Union institutions such as EEA and WISE (EEA 

2012, 8). 

ECRINS river data contains an information attribute named “SurfC”, which holds information 

on the cumulated catchment area upstream (EEA 2012, 89). This field can be used as a size 

factor to make large rivers (rivers with large catchments) count more than small rivers. 

4.4.2 Corine land cover – Urban areas 
Corine Land Cover (CLC) is a European project to create a land cover map of Europe derived 

from satellite imagery. CLC 2006 provides data in 100 m spatial resolution with land cover 

types defined in 44 different classes (EEA 2006, 6-7). 

CLC classes 1-6 are defined like this: 

1. Continuous urban fabric 

2. Discontinuous urban fabric 

3. Industrial or commercial units 

4. Road and rail networks and associated land 

5. Port areas 

6. Airports 

These 6 classes represent the two first super classes; urban fabric and Industrial, commercial 

and transport units. These are the ones relating to urbanity and the ones that are extracted to 

be included in the model. The remaining classes 7-44 represents other land uses which are not 

included. 

To include the rivers, lakes and urban areas in the model, they must be converted to a suitable 

raster format the processes are very similar for the three datasets.  

Even though the Corine data is already in a raster format this is not suitable for raster 

calculations because it is a categorical dataset. There is no mathematical relationship between 



50 

 

the classes; class 4 is not twice the amount of class 2. To account for this the Corine data is 

treated as a discrete vector dataset. 

4.4.3 Gridding of topographic vector data 
This process has the goal of quantifying the discrete topographical data, so they can be 

represented as a continuous raster datasets which can be included in the model. 

The impact on desertification of either of the topographic datasets is assumed to be 

proportional to the amount of each feature in a cell times a weight factor.  

Rivers are weighted by their cumulated catchment area (SurfC), so if cell A contains 200m 

river with catchment of 10 km2, and cell B contains 400m river with catchment of 20 km2, cell 

B has four times “as much river” as cell A. 

Urban areas are assigned a weight of 2.0 for Continuous urban fabric, and a weight of 1.0 for 

the other classes. So if Cell A contains 400 m2 industrial and commercial units and cell B 

contains 200 m2 continuous urban fabric, cell A and B are equally urban. 

Lakes are not weighted; they are measured only by their size. 

The gridding follows these steps, illustrated in Figure 24: 

1. Spatial intersection between the grid 

and the vector features, dividing the 

features at each grid border. 

2. Calculation of measure of each divided 

feature. 

a. Rivers: Length times SurfC 

b. Urban: Area times 2 for 

continuous urban fabric, times 1 

otherwise 

c. Lakes: Area 

3. Spatial join, matching each divided feature with a cell. 

4. Add up values. 

  

Figure 24 - Gridding process for 

topographical vector data 
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4.5 Non data specific processing 
Each model variable has now been processed to a state where it is ready to be part of 

desertification modelling. Two final processing steps remain before the data can incorporated 

into this particular model. These processing steps are common for all data sets. 

For the cellular automaton to function properly, data must be put in to a regular square grid, 

as explained in section 2.1.3 Desertification cellular automata. This process is known as 

gridding. 

Secondly for the data to be modelled properly by the artificial neural network, the data values 

must fall in the range of [0,1], to achieve this data must be normalised. 

4.5.1 Gridding 
As presented in the previous parts of this chapter, data from different sources is not in the 

same format. Data does not have the same spatial resolution or the same projection. Classical 

cellular automata requires all data sources to be in the same grid, therefore all data must be 

fitted into a grid. This process is known as gridding. Most data sources have a finer resolution 

than the grid, and the gridding process will lead to a loss of information, but for the climate 

data, which is in 25 km resolution, the information density will have to be increased. Both the 

downscaling and upscaling of information density, happens with interpolation. The gridding 

was performed in ArcPy with the ProjectRaster function. This function reprojects an input 

raster to a chosen projection with a chosen cell size and an anchor point. This way all data can 

be projected to the same grid. The change of information density called resampling, is handled 

by a chosen interpolation method. ArcGIS offers four choices of resampling technique (ESRI 

2014): 

 Nearest neighbour simply assigns the nearest value from the input dataset to each 

cell. 

 Majority assigns the most popular value from a filter window. 

 Bilinear interpolation, which interpolates using the four nearest cell values. 

 Cubic convolution, which interpolates using the 16 nearest cell values. 

Nearest neighbour and Majority can be instantly ruled out as they are primarily targeted for 

categorical data, such as land cover types or soil types. Both the Bilinear interpolation and the 

cubic convolution are designed for continuous data, but based on different algorithms. 
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Bilinear interpolation and cubic convolution will be 

tested in two different examples: For low resolution 

data, that needs to be fitted in to a cell size smaller 

than the original data, and high resolution data 

that needs to be fitted into a grid of smaller size. In 

Figure 25 gridding into 10 km cells of 25 km data is 

illustrated. There is very little noticeable difference 

between the results of the two algorithms. Both 

reproduce the spatial pattern very similarly. One 

important thing to note, is that the bilinear 

interpolation decreased the value range of the data 

from [50558, 0.0005] to [48895, 0.0052], while the 

cubic convolution creates values outside of the 

original value range. Cubic convolution even comes 

up with negative values. Negative values for this 

specific dataset are problematic as there cannot be a 

negative Erosivity, because that would imply a 

negative amount of rain. Not only are the negative 

values problematic in a contextual sense, but it will 

also have implications for the normalisation, if 

negative values occur where they should not. 

Figure 26 displays the result of resampling “the 

other way around”, going from fine grained raster 

size of 25 m to the same 10 km cells as before. 

Here the two results are also very similar. In blue 

two mountain ridges are marked on the original 

data, these features can also be identified in the 

gridded results. In red there are three cells which 

seem to be miscalculated. The top one seems like it 

should be darker, and the two next ones should be 

lighter. This problem is caused by the fact that the 

interpolation methods use the 4 and 16 “closest 

cells” respectively. Closest here, refers to closest to 

the centre of the output cell. In the three example 

cells values in the middle does not correspond well 

with the averages, and the algorithm fails. The 

problem will be proportional to the difference 

between cell sizes. The problem is tolerated as it is 

expected to be small and because no other 

resampling methods are available within the 

ArcGIS environment. One might also note, that the 

max values in both cases lies way below the max for 

the original, this is caused by the way the 

Figure 25 - Bilinear interpolation and 

Cubic convolution of Erosivity data from 

Ensemble. 25 km. to 10 km. resampling. 

Figure 26 - Bilinear interpolation and 

Cubic convolution of L factor data based 

on the DEM. 25 km to 10 km resampling. 
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algorithms are calculated by fitting smooth curves on the data. This is not considered a 

problem because it means that data will be less sensitive to a few extreme pixel values. Very 

few pixels in this specific dataset have a value of above 100, so these few pixels will have less 

of an impact on the dataset. 

Overall the two methods yield similar results. To avoid values outside the original range 

(especially negative values) bilinear interpolation is the chosen method, which is applied for 

all datasets. 

4.5.2 Normalisation 
The aim of the normalisation process is, that all individual pixel values remain inside the 

range of [0,1]. This can be achieved, by searching for the maximum value throughout all years, 

and then simply dividing each raster dataset by this value. 

The maxima are found using the ArcPy function GetRasterProperties. 

It is not necessary to search for minima, as no model inputs deal with negative values, and 

simply dividing the raster data by the maximum value will put all values inside the range of 0 

and 1, and it will keep the spatial and temporal ratios of values between pixels. 

4.6 Conclusions 
In this chapter it was described which data is applied for the desertification modelling. It was 

described how the net primary production values were derived from monthly NDVI data, as a 

part of the desertification index. It now remains to be investigated whether the yearly rainfall 

data or the yearly soil moisture averages should be combined with the NDVI integrals, to form 

the desertification index. 

It was described how the erosion index has three possible rasters based on different slope 

length maximum limit (λmax). It now remains to be explored which limit, or if any limit at all 

will yield the best predictive erosion index. 

It was also described how the topographic data could be included in the model, which only 

accepts continuous raster datasets. 

Finally it was described how the datasets could be conformably arranged, to meet the 

requirements of the cellular automaton and artificial neural network modelling. 

All data processing not described in this chapter, is left out because it is performed using 

simple raster calculations based on equations stated in chapter 2 Theory. 
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5 Modelling 
In the following chapter the modelling of the desertification simulation will be described and 

discussed. This will be laid out in six subchapters. The first three subchapters describe the 

model structure, and modelling choices; first an overview of the model will be drawn and then 

in the two subsequent subchapters the two main components of the model, the cellular 

automaton and the artificial neural network will be discussed individually. 

Next the two candidates for desertification index will be compared, to see which one is better 

fit for its purpose. The next subchapter deals with the practical implementation of the model, 

which includes an explanation of how the implementation code works. 

Finally the sensitivity of the implemented model will be tested. 

5.1 Model overview 
The model is a fuzzy cellular automaton with transition rules defined by the regression 

capacities of an artificial neural network. This means that the desertification, that is being 

simulated, is given by a scalar between 0 and 1 corresponding to the degree of desertification 

in each cell. It is modelled in a discrete grid in discrete time steps. The degree of 

desertification can be found in two different ways: 

 For model training, meaning for any point in time until now. The desertification index 

is calculated by remotely sensed data and historical meteorological data like described 

in the previous chapter. 

 For model simulation, meaning for any point in time after present, where remotely 

sensed data and historical meteorological data will not be available, the desertification 

index is the output of the model. 

For the model to be able to run iteratively into the future, each input of the model has to have 

two sources of data, just like the desertification index as described above; one for the model 

training and one for model simulation. 
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Figure 27- Model overview 

On the left, the model inputs are displayed in three main categories: The cellular automata 

related inputs, the climatic inputs and the topographical inputs. These inputs are then 

processed through an artificial neural network to compute an output value for each cell in a 

grid this output is used to compare with observed data for training the neural network and to 

simulate the desertification process. 
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5.2 Cellular automaton modelling 
As described in section 2.2 The cellular automaton, cellular automata are a family of models 

which holds a range of properties which determines which kind of CA model it is. Setting 

these properties appropriately to match the aim of the model is what is called CA modelling. 

So in the following these parameters will be discussed and selections will be explained. 

5.2.1 The properties 
The following discussion is based on the properties described in section 2.2.1 Defining 

characteristics. 

5.2.1.1 The grid 

The grid is a two dimensional square grid. It is in two dimensions because the phenomenon of 

desertification is happening primarily in two dimensions. This is realised in the Lambert 

Azimuthal Equal Area projection, which ensures that the cells are in fact equal area across 

the studied area. The implication of having this projection is that the angles will not be equal 

across the studied area, so the cells will in fact not be perfectly square, but slightly skewed one 

way or the other. The consequences of this are assumed to be almost nonexistent due to small 

geographical scale, and the distance from the projection origin. 

The grid also needs a size. Unless all used data is recorded in a way that favours a certain cell 

size, for example if all data was already in the same grid, selecting a grid size is something 

that is difficult to substantiate. There should be enough cells to see spatial patterns; there 

should be enough cells for meaningful model training. Too many cells will mean longer 

calculation time and problems with resampling data with lower resolution to this small cell 

grid.  

The cell size is tested for three values; 5 km, 10 km and 20 km to see how sensitive the model 

is to this parameter. This test is described in 5.6 Model sensitivity. 

5.2.1.2 The cell states 

The cell states, which describes the level of desertification in each cell, is selected to be a fuzzy 

variable from 0 to 1. As explained in 2.1.2.2 A desertification index, this value is based on the 

primary production per available water unit. This means that higher values correspond to 

more primary production per available water unit, which means desertificated cells will have 

low values. The desertification index is given by yearly net primary production divided by the 

water availability, and as explained in 4.5.2 Normalisation this is normalised to always 

remain in the range of 0 and 1. 

5.2.1.3 Time 

In cellular automata, time is kept in discrete time steps of a given length. As much of the 

climatic data this model is based on, has a specific intraannual trend the time steps should not 

be less than one year. As an example, the primary production happens very differently 

throughout the year, and the year cannot be subdivided in a meaningful way. How many years 

one time step should consist of, is a balance of the amount of available data. On the one hand, 

more years in a time step would ensure more stable trends and more accurate results and the 
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phenomenon of desertification might not be necessary to study on high temporal resolution. 

On the other hand longer time steps will decrease the number of available time steps for 

training. The MODIS NDVI product is only available for the complete years 2001-2013 which 

is 13 years. This leaves the following options: 

 

Figure 28 - Four different time step options 

All these options will yield different results in terms of accuracy and temporal resolution. The 

model can be adjusted to use any of these settings.  

The 1 year resolution is used for all results, this implies that no data is lost and there are 11 

available training dataset pairs. 

5.2.1.4 The transition rule 

How cells transition in time, should be a continuous function of desertification level and 

external factors. As displayed in the model overview, Figure 27 in section 5.1 Model overview, 

this will be an eight dimensional function as there are a total of eight inputs. To find a fitting 

function could prove difficult without much knowledge about how the function is supposed to 

behave, also studying the function in different domains across all the dimensions, with all the 

unknowns of the modelling seems like a task for a computer. While extremely fast at complex 

calculations computers are poor at seeing patterns and making decisions. Therefore the 

transition rule function is defined in a flexible way to support whatever configurations the 

model is tested with, by always seeking the smallest possible error. This is achieved through 

an artificial neural network regression, the modelling of which is the focus of the subsequent 

subchapter. 

5.2.1.5 The neighbourhood 

As discussed in section 2.2.3 Desertification cellular automata, a small neighbourhood seems 

more appropriate. Therefore the following two neighbourhood sizes will be tested: the Moore 

neighbourhood, consisting of the 8 surrounding cells, and the double Moore neighbourhood, 

consisting of the Moore neighbourhood and the 16 cells on the outside of the Moore 

neighbourhood.  

The neighbourhood values are included by the ArcPy function Focal statistics. This allows the 

summing of all cells in a 3x3 or 5x5 neighbourhood. The middle cell of the neighbourhood has 

already been included so this value is subtracted, and finally the value is divided by the 

number of cells included 8 (32  - 1) for the Moore neighbourhood and 24 (52 - 1) for the double 

Moore neighbourhood). The division is performed to ensure that the value stays between 0 and 



59 

 

1. On the edge of the dataset, it will not be possible to collect data for the entire 

neighbourhood. This will cause the neighbourhood values to be lower than in other parts of the 

grid, and make the calculations for these cells go sour. This problem is handled by only 

dividing by the number of included cells. 

 

Figure 29 - Number of neighbours of edge cells 

Figure 29 shows an example of how the number of available neighbours is counted for the 

Moore and the double Moore neighbourhoods, near the edges of the dataset. This can be 

computed by using the same ArcPy function, Focal statistics, on a raster grid where all cell 

values are 1. 

When the above is performed as explained, all neighbours are equally weighted, and this may 

not be correct, as discussed in 2.2.1 Defining characteristics. To introduce a decay function, 

the neighbourhood values must be weighted by a function of how far away they are. The 

functions tested will be 
 

    
 and 

 

     
. This is also achieved with ArcPy Focal statistics. In this 

case the Focal statistics sums using a weight matrix. A script for creating these matrices can 

be found in Appendix 2. 
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Figure 30 - Focal statistics using a raster of ones. White cells in the centres represent the maximum 

values. 

Figure 30 displays the different distance decay functions and neighbourhood sizes applied to a 

grid of ones, with cell size 20 km The rasters displayed in Figure 30 show how many weighted 

cells each cell will include in the calculation and therefore they can be used to normalise the 

neighbourhood calculation. 
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5.3 Artificial neural network modelling 
Just as the cellular automata part of the modelling has a range of properties to be determined, 

so does the ANN. These will be discussed in the following. 

5.3.1 The activation function 
All values used in the modelling are measures of something; primary production, erosion, 

nearby surface water etc. They are measuring the amount of something, and are therefore 

never negative. There cannot be a negative soil erosion, primary production or surface water. 

As all values lie in the positive range, they can be normalised to lie between 0 and 1, just by 

dividing with the maximum value (see section 4.5.2 Normalisation). This is the range where 

the logistic sigmoid function operates, therefore this activation function is chosen for the 

artificial neural network, and not the hyperbolic tangent. 

     
 

     
 

5.3.2 Network architecture 
The network architecture describes the number of layers, neurons and connections of the 

ANN. Here only considered are the feed forward ANNs with one hidden layer. For both the 

input layer and the hidden layer there will be one bias neuron transmitting ones. The output 

layer will have one neuron, which is the output desertification index for the next time step. 

The input layer will have one neuron for each input value plus one for the bias. The input 

values are: 

 Desertification index 

 Neighbourhood value, calculated from the desertification index of surrounding cells 

 Erosion index 

 Average temperature 

 Total rainfall 

 Nearby rivers 

 Nearby Lakes 

 Nearby urban area 

 Bias 

So there will be a total of 9 neurons in the input layer. 

The number of neurons in the hidden layer is less simple; there are no easy rules to determine 

which number is the best (Li and Yeh 2001, 1460). The optimal numbers of neurons usually lie 

between the number of input neurons (9) and the number of output neurons (1) so a good 

guess would be around 5. Therefore the network will be tested with both 4, 5 and 6 neurons in 

the hidden layer, and one of these neurons will be a bias neuron. 
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5.4 Modelling with the desertification index 
As was concluded in section 2.1.2.2 A desertification index, there are two candidate 

desertification indices: 

 Above ground net primary production per mm rainfall 

 Above ground net primary production per kg water of soil moisture 

The following section is a discussion of which one to use in the model. The desertification 

index is the most important factor in the model. It is the internal factor which the modelling is 

based on, and the one which the output of the model should resemble. The index of 

desertification should therefore ideally match the initial ideas about how desertification 

evolves in time. As discussed in section 2.1.2.2.2 The variability of weather, desertification is a 

slow process so the index should be stable, cells should not change dramatically from one year 

to the next (unless of course the land use is changed). 

 

Figure 31 - The rate of change of the two candidate indices 

Figure 31 clearly depicts the difference in stability of the two candidate indices. The 

desertification index with soil moisture content as a normaliser is not stable. All training 

pixels show on average almost 10% change from year to year, but it is much more stable than 

its rival candidate. In 2007 large parts of the training area experienced major rainfall, which 

could not be converted into primary production. The soil moisture was less sensitive to this. 

On this basis, the more stable and less noisy desertification index, based on soil moisture 

content is chosen. 

The structure of the model and all of its components are now drawn. The cellular automaton, 

with the artificial neural network as transition rule, is modelled to simulate desertification. 
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5.5 Model implementation 
In the following the practical implementation procedure of the model is described. The 

implementation of the model was performed in Python using the ArcPy module which allow 

ArcGIS raster calculations in the python environment. In the following the implementation of 

the model will be explained. Only the key lines of code will be described, the model code in its 

entirety can be found in Appendix 1. 

The following subchapter consists of two sections; one concerning the implementation of the 

artificial neural network, and one concerning the CA part of the model. The reader might 

notice that this is the reversed order as compared to earlier in this chapter and in previous 

chapters where; first the cellular automaton was explained, then the artificial neural network. 

This is because the artificial neural network can be viewed as a component of the CA model – 

the transition rule. For implementation however, the ANN comes first. First the all 

components must be defined, and then they are applied. So the description in the following 

matches the order of the actual code. 

5.5.1 Artificial neural network implementation 
In the following the artificial neural network part of the model implementation is described. 

The ANN part of the model consists mainly of three methods; one for running the network, 

one for arranging raster data as trainable sets of pixel values and one for training the 

network. These three methods are described in the following. 

5.5.1.1 General implementation strategy 

The artificial neural network was implemented as three lists, one for each layer (input, 

hidden, output) and each neuron was implemented as class object. This is not an efficient way 

of implementing the neurons, as it blocks for the use of matrix multiplication. The focus in the 

implementation is to give the reader an overview of what happens and how it happens, not 

computational performance. 

Weights are initiated in the range of 0.1 and -0.1, in all experiments the same initial weights 

have been used. 

5.5.1.2 The Run method 

The run method generates the output from the input, this is the method which is meant to be 

run when the network is trained. Basic arithmetic operations like +,-,* and / in python both 

handles numbers and Rasters, when the ArcPy module is initialised. The activation function is 

implemented using ArcPy raster calculation interface so it also both handles rasters and 

single numbers: 

#sigmoid 

def activation(a): 

    return 1/(1+Exp(-a)) 

 

where the exponential function Exp(-a)is an ArcPy raster calculator function that can handle 

both individual numbers and full rasters cell-wise. 
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In this way the run method can both be used to process single numbers, which will be needed 

when the network is trained, and for a whole raster simultaneously, when the network is fully 

trained. 

The run method takes a list of input values, equivalent to the number of neurons in the input 

layer. 

 First an iteration through input values, to assign them the neurons in the input layer, 

named “inputs”. 
  for i in range(numinputs): 

            inputs[i].val = inputnumbers[i] 

 

 Now all values from the input layer neurons are linearly combined to the hidden layer 

and processed in the activation function. This is performed for every non bias neuron in 

the hidden layer.  

        for neuron in hidden1: 

            if not neuron.bias: 

                sumval = 0 

                for inpval in neuron.getConsTo(): 

                    sumval += inpval.val*inpval.getWeight(neuron)[0] 

neuron.vsum = sumval 

neuron.val = activation(sumval) 

                 

 Then an almost identical process is performed to find the incoming and output values 

of the output layer neurons. 

        for neuron in outputs: 

            sumval = 0 

            for inpval in neuron.getConsTo(): 

                sumval += inpval.val*inpval.getWeight(neuron)[0] 

            neuron.val = activation(sumval) 

            neuron.vsum = sumval 

 

 Finally the values of the output neurons are collected into a list and returned as a 

function result. 

        outputvals = [] 

        for out in outputs: 

            outputvals.append(out.val) 

        return outputvals 

5.5.1.3 The training set generator 

This method generates a training set, based on inputted rasters and an expected output 

raster. A training area has been defined as a rectangular area in the centre of the research 

area, see section 3.2 Geographical research area. 
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The method takes the input and output rasters. 

 First all rasters are converted into numpy matrices, for the training area. 

    trainingcorner = Point(3082508.745,1723162.51) 

    nprasters = [] 

    for ras in inputrasters: 

        nparr = arcpy.RasterToNumPyArray(ras,trainingcorner,27,20) 

        nprasters.append(nparr) 

 

    npout = arcpy.RasterToNumPyArray(expectedoutput[0],trainingcorner,27,20) 

 

 Then each point on the raster is treated as a training set. Lists of spatially 

corresponding points are grouped together as training sets, so the k’th element of ‘ins’ 

are the input pixel values of the same area as the k’th element of ‘outs’. 
    ins = [] 

    outs = [] 
    for i in xra: 

        for j in yra: 

            runvals = [] 

            for ras in nprasters: 

                runvals.append(ras[j,i]) 

 

            ins.append(runvals) 

            outs.append([npout[j,i]]) 

 

 Then ins and outs are returned. 

5.5.1.4 The Rprop algorithm 

The network is trained with the Rprop algorithm as described in 2.3.2.1 Training algorithms. 

Rprop is implemented as a function that takes a list of input values for each training set, the 

corresponding output values (the output of the training set generator function) and an integer 

determining how many iterations of the Rprop algorithm that should be carried out.  

 For each training iteration run the following: 

o For each training set of corresponding inputs and expected output: 

 First the run method is executed to find out how different the output is 

from the expected output – the error 

 Then the node delta for each node in the output layer are calculated. 

                   , where the sum is the incoming value not the 

outputvalue 

            for neuron in outputs: 

                neuron.nodeDelta = -error*actder(neuron.vsum) 

 

 Then the error is backpropagated to the hidden layer, and the node 

deltas for the neurons in this layer are calculated by summing weights 

and node deltas for all outgoing connections:  
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for neuron in hidden1: 

                if not neuron.bias: 

                    ndelta = 0 

                    for con in neuron.getConsFrom(): 

                        ndelta += neuron.getWeight(con)[0]*con.nodeDelta 

 

                    neuron.nodeDelta = ndelta * actder(neuron.vsum) 

 

 Then the gradient for each weight is calculated or recalculated. For each 

weight, five numbers are stored; the weight, the gradient, the previous 

weight change, the previous gradient and the learning rate.  

The gradient for the current data point is simply the negative product of 

the neurons outgoing value and the nodeDelta of the neuron it is going 

to. This gradient is then added to the recorded gradient. This will result 

in the sum of all gradient calculations for the same weight, and thereby 

in the end be negative if the gradients are mostly negative and vice 

versa. Only the gradient is updated in this step (info[1]) the other 

elements are left untouched. 

 
            for layer in layers[:-1]: 

                for neuron in layer: 

                    for toNeuron in neuron.weights.keys(): 

                        #[weight,gradient,dweight,previous gradient,lr] 

                        this_grad = -toNeuron.nodeDelta*neuron.val 

                        info = neuron.weights[toNeuron] 

                        info[1] += this_grad 

                        neuron.setWeight(toNeuron,info) 

 

o The looping of each training set is now exited. So the following is only executed 

once per iteration, and not for each training set. 

At this point we know if the gradients are overall positive or negative in the 

training set so based on the Rprop algorithm the weights are updated. See 

2.3.2.1 Training algorithms.  

 
        for layer in layers[:-1]: 

            for neuron in layer: 

                for toNeuron in neuron.weights.keys(): 

                    #[weight,gradient,dweight,previous gradient,lr] 

                    this_grad = neuron.weights[toNeuron][1] 

                    prev_grad = neuron.weights[toNeuron][3] 

                    prev_lr = neuron.weights[toNeuron][4] 

                    prev_dw = neuron.weights[toNeuron][2] 

 

                    #same direction 

                    if this_grad*prev_grad >0: 

                        lr = min(prev_lr*Eta_plus,lr_max) 

                        dw = -np.sign(this_grad)*lr 

 

                    #opposite direction 

                    elif this_grad*prev_grad<0: 

                        lr = max(prev_lr*Eta_minus,lr_min) 

                        this_grad = 0 

                        dw = -prev_dw" 

 

                    #new direction (prev_grad = 0) 
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                    else: 

                        lr = prev_lr 

                        dw = -np.sign(this_grad)*prev_lr 

 

                    newW = neuron.weights[toNeuron][0] + dw 

                    neuron.setWeight(toNeuron,[newW,0,dw,this_grad,lr]) 

 

This concludes the artificial neural network part of the model implementation. The usage of 

the ANN follows this structure: 

 The modules are imported and the network is initialised. 

 Training sets are generated from the rasters 

 The network is trained using rprop algorithm 

 The Run method can now serve as the transition rule for the cellular automaton 

5.5.2 Cellular automata implementation 
In the following the CA model implementation is described. In this part of the model 

implementation no methods are defined. Only the ones defined in ArcPy are used. The code 

displays the simplicity of cellular automata, as only a few lines of code is needed. 

 First the neighbourhood weight matrices are defined. Four possible settings are used, 

these are defined by a txt document, as described in section 5.2.1.5 The neighbourhood,  

_nbhsize==1 refers to the single Moore neighbourhood, and _distdec == 'sqr'refers 

to the distance decay using square distances. 

    if _nbhsize==1: 

        if _distdec == 'sqr': 

            nbhweights = os.path.join(kernalfolder,'mooresqr.txt') 

        else: 

            nbhweights = os.path.join(kernalfolder,'moore.txt') 

    else: 

        if _distdec == 'sqr': 

            nbhweights = os.path.join(kernalfolder,'2mooresqr.txt') 

        else: 

            nbhweights = os.path.join(kernalfolder,'2moore.txt') 

 

 Then a normalisation raster is prepared. This aims to find out how many neighbours 

are included for each cell, and what are their weights. This is performed using 

FocalStatistics on a raster grid with the value 1 in each cell (called ‘grid’). This 

raster uses the weight matrix chosen in the previous step. 

nbh_norm = FocalStatistics(grid,NbrWeight(nbhweights), "SUM","") 

 

 Now the actual neighbourhood value raster is calculated. This is performed in the exact 

same way, but now the desertification index is the input (called ‘di’), instead of a raster 

of only ones. This raster is then normalised by division with the normalisation raster 

defined in the previous step. 

nbh = FocalStatistics(di, NbrWeight(nbhweights), "SUM","")/nbh_norm 

 

This raster ‘nbh’ along with ‘di’ and the other input rasters, can now be used in the already 

defined training and run methods. And this concludes the model implementation. 
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5.6 Model sensitivity 
Now only a few questions remain open in the modelling process. These last uncertainties will 

be determined with experiments that aim to test which are the best options and how sensitive 

the model is to minor changes. Ideally all setup combinations would be tested, but due to time 

constraints this has not been possible. 

Data from 2013 are withdrawn from the training data pool. The model is trained using all 

remaining data, and then the model is run for 2012 data to see how well the model predicts 

the 2013 data. 

The variables tested are: 

 Erosion index L-factor λmax 

o No λmax 

o λmax of 1000 m 

o λmax of 100 m 

 Grid size 

o 5 km 

o 10 km 

o 20 km 

 Neighbourhood size 

o Moore neighbourhood 

o Double Moore neighbourhood 

 Decay function 

o 
 

    
 

o 
 

     
 

 Neurons in the hidden layer 

o 4 

o 5 

o 6 

In all experiments the neural network converged, each training process was stopped after 50 

Rprop iterations. 

5.6.1 L-factor limit 
Whether there should be a limit to the λ in the Rusle L-factor or not, is tested in the following. 

The following three experiments are performed, with these settings in common: 

Grid size: 10 km, neighbourhood size: double Moore, decay function: 
 

     
, hidden neurons: 4 

 L-factor with λmax 

 L-factor with a λmax of 1000 m and 

 L-factor with a λmax of 100 m 



69 

 

 

Figure 32 - Error rasters L-factor experiments. No limit, 1000 m limit and 100 m limit 

Figure 32 shows the results of the three experiments in terms of absolute error, bright colours 

signify a high error(up to around 0.3 (White), and dark colours signify a low error, black is 

zero). The three results are very similar, they do well in the same geographic locations, and all 

of them does not do well in the north western corner. The average errors are measured to be: 

 No λmax:  0.052 

 1000 m  λmax:  0.054 

 100 m λmax:  0.055 

So almost no difference, but the experiment without a limit seems just a tad better. There is 

no guarantee that the no limit λ, is better with different settings for the other parameters. But 

at least the difference will most likely be very small. 

5.6.2 Grid size 
The following three experiments is meant to test the significance of the grid size. Just like in 

the prior set of experiments all parameters, except the one that is being tested, are held 

steady, while the grid size is varied. 

 

Figure 33 - Error raster from the grid size experiments. 5 km, 10 km and 20 km cells 

Here the settings kept constant were: no λmax, neighbourhood size: double Moore, decay 

function: 
 

     
, hidden neurons: 4. Again the results are quite similar, in terms of errors. The 

average errors are: 

 5 km:  0.051 

 10 km:  0.052 

 20 km:  0.055 
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It is unexpected that the finer grain size show higher accuracy. One could expect that bigger 

cells would be easier to predict, as the values averages of larger areas. But the differences are 

very small, and the model is also not very sensitive to cell size. Also noteworthy, is that we see 

the exact same spatial error pattern in all three experiments. 

5.6.3 Neurons in the hidden layer 
To test the result of having different number of neurons in the hidden layer, again three 

experiments are performed, this time to see the effect of altering the number of neurons in the 

hidden layer. The three following experiments have these settings in common: Grid size: 5 km, 

no λmax, neighbourhood size: double Moore, decay function: 
 

     
. 

 

Figure 34 – Error rasters from the experiments regarding neurons in the hidden layer. 4, 5 and 6 

From Figure 34, again we see a very familiar result; similar spatial patterns and similar 

values. 

 4 Neurons:  0.051 

 5 Neurons:  0.049 

 6 Neurons:  0.050 

The best result appears when there are 5 neurons in the hidden layer, this could be a sign 

that, when 6 neurons are applied the model overfits the training data, and the model is too 

specific to the training data, to be generally applicable, and so it fails in predicting new data. 

But the difference is very small and making any absolute conclusions from just this one 

example is not possible. 

5.6.4 Neighbourhood 
In the following experiments, two related factors are tested, the neighbourhood size and the 

decay function. This yields combinations which are all conducted with these settings: Grid 

size: 10 km, no λmax, 5 neurons in the hidden layer.  
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Figure 35 - Error rasters of the neighbourhood experiments. Single Moore neighbourhood and  
 

    
 as 

decay function, single Moore neighbourhood and 
 

     
 as decay function, double Moore 

neighbourhood
 

    
 as decay function, double Moore neighbourhood and 

 

     
 for decay function. 

The four experiments once again, show very similar outputs. The main values of the error in 

the same order as presented in Figure 35: 

 Single Moore neighbourhood,  
 

    
 as distance decay:  0.050 

 Single Moore neighbourhood,  
 

     
  as distance decay: 0.052 

 Double Moore neighbourhood,  
 

    
 as distance decay: 0.052 

 Double Moore neighbourhood,  
 

     
  as distance decay:  0.053 

Very slight differences, but the experiment yielded a better result using the smaller 

neighbourhood, and 
 

    
 as decay function. 

5.6.5 Best options 
Apart from the partial results from the previous experiments, a few other setting 

combinations were tested. The experiment which overall yielded the best result had the 

following settings: 

Grid size: 10 km, no λmax, 6 neurons in the hidden layer, double Moore neighbourhood and  
 

    
 

as distance decay. This option yielded an average error of 0.038. As previously stated, not 

every combination of settings has been tested, and there might be a better setup. 
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5.6.6 Conclusions 
Drawing conclusions from these results is not easy, because every result is nearly identical. 

The most noteworthy experience is how little a difference it makes, when these parameters 

are adjusted slightly. When one setting shows a better result in terms of average error it is not 

a proof that this setting is better for two reasons: 

 It could be coincidental. The test sample is small, and the way data is split into a grid 

could favour one thing or the other based on where the grid is. 

 Even if the variable setting is better in one setting for the other variables, it is not 

necessarily better with different settings for the other variables. 

The best guess based on these experiments is these experiments are that the settings should 

be:  

 L-factor with no λmax 

 Grid size 10 km 

 6 Neurons in the hidden layer 

 Double Moore neighbourhood 

 
 

    
 as distance decay function 
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5.7 Collective conclusion 
In this chapter it has been showed how a model for predicting desertification can be built from 

cellular automata with an artificial neural network as transition rule. The answer to the first 

three research questions has been found. 

In reference to the first research question regarding the model inputs, the following inputs 

have been shown to be usable in the model: 

 A desertification index calculated by dividing net primary production by average soil 

moisture. The net primary production can be derived from NDVI images. 

 Neighbourhood values consisting of the average of the values in the double Moore 

neighbourhood with the decay function 
 

    
, calculated from the desertification index. 

 An erosion index based on RUSLE where the L-factor can be calculated using ArcGIS’ 

hydrology toolsets without a λmax. 

 The average temperature 

 The total rainfall 

 The amount of nearby river surface water 

 The amount of nearby lake surface water 

 The amount of nearby urban area 

In reference to the second research question regarding cellular automata modelling, it has 

been concluded that all the above listed data input should be put in to a square grid using a 10 

km grid size in an equal area projection, though other grid sizes can work almost equally well. 

The cellular automaton is based on fuzzy indices rather than classes, and the transition rule is 

a continuous function derived by applying an artificial neural network. 

In reference to the third research question regarding the modelling of the artificial neural 

network, the following setup has been found successful: 

 Feed forward network with one hidden layer 

 Training based on the Rprop algorithm, training for a range of single cell values. 

 6 neurons in the hidden layer. 
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6 Results 
In this chapter the model developed in the previous chapters will be evaluated. The best 

settings found in section 5.6.5 Best options, are used again, this time with more training 

iterations. 

 

Figure 36 - Evaluation of the model output for 2013. Target raster, predicted raster and the absolute 

difference. 

Figure 36 displays the target raster and the predicted raster, for the desertification index of 

2013. It shows many similarities in terms of spatial variation. The model correctly predicts 

where high DI values and where low DI values are found, based on past data.  

The model however, does not reproduce the individual values very precisely. Figure 36 also 

displays the absolute error. On average the prediction is 0.0372 off. This provides an answer 

for the fourth and final research question which relates to the accuracy of the model; the best 

prediction for 2013 has a mean absolute error of 0.0372. The 2013 target raster has a mean 

desertification index value of 0.378, so the inaccuracy is 9.84 %. 

For this forecast, unlike the sensitivity experiments in the previous chapter, the Rprop 

algorithm was allowed to run for more iterations. 
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Figure 37 - Training error (sum of squares) 

Figure 37 shows the training performance progress of the Rprop algorithm in the artificial 

neural network. The training error is measured in summed squared errors for 1430 training 

samples across the 2001-2011 data sets. As Figure 37 displays, the training process converges, 

and after iteration 60 the error decreases very slowly, and not much improvement is found.  
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7 Discussion 
In chapter 6 Results the best model prediction for the desertification of 2013 was displayed. 

On one hand, the results demonstrate some of the possibilities of the combination of cellular 

automata and artificial neural networks, there was a low level of sensitivity to small 

alterations, demonstrated in section 5.6 Model sensitivity, which showcases some of the ability 

of the artificial neural network to react to data noise. On the other hand the results also show 

an inaccuracy of 9.84 %. In the following the strengths and weaknesses of the models will be 

discussed with the goal of drawing conclusions from the modelling process. 

When evaluating a result like the one presented in the previous chapter, the context of the 

evaluation is important. The model was inspired by the threads posed by desertification, and 

the lack of knowledge relating to the advancement in terms of speed and extent. If politicians 

and planners are to act on the basis of modelling results, the accuracy of the model is 

paramount. 9.84 % average error is a substantial amount, and as such it is not possible for 

politicians and planners to make decisions on the basis on a model with amount of much error. 

The result presented in the previous chapter has one CA iteration. It predicts 2013 from 2012 

data, in an ideal scenario, it should be able to iterate further and predict 2014 based on the 

predicted 2013 output, and then again 2015 and so on. In an iterative process like this, the 

error can potentially increase for each iteration and it may effectively change the conclusion 

from “the area is in recovery” to “the threat is increasing”. 

But that does not mean that the attempt was in vain. The modelling process was constrained 

by time and data availability. Many possible improvements to the model do exist. 

7.1 The desertification index 
To improve the model a good place to start would be the desertification index. The 

desertification index needs to be stabilised to a higher degree, this can be done by working 

with the processes behind the net primary production. In section 5.4 Modelling with the 

desertification index, we saw that the net primary production varies from year to year, and 

the average soil moisture level does not stabilise the primary production sufficiently. The 

index must be modelled more carefully, by including biochemical knowledge about primary 

production. The index, as described in section 2.1.2.2 A desertification index, is based on the 

work of le Houérou (1983) and Prince et al. (1998) both sources used the index for longer 
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periods, and maybe the index is not fine tuned enough to work with, in as high a temporal 

resolution as only one year. 

The modelling described in the previous chapters is based on data from 2001 to 2013, this may 

be too short a time frame. The data availability was the limiting factor for this choice. Perhaps 

the applied NDVI data could be combined with other older datasets to extent the analysis to 

include more years. Satellites with the AVHRR sensor have previously been applied in 

desertification studies. 

By stabilising the desertification index through a more accurate measure and a longer study 

period the result will change drastically, and if it helps to predict desertification, it is worth 

investigating. 

7.2 Model design 
The model design needs further development. Several elements can be improved either 

through experimentation or deeper study of how the model components react in different 

setups. 

The architecture of an artificial neural network is paramount for its functionality. For this 

reason much research has been conducted, trying to uncover the secrets of architecture in 

artificial neural networks. In section 5.6 Model sensitivity only a few architectures were 

tested, by having a different number of neurons in the hidden layer, but many more elaborate 

experiments could be interesting. But also the network could be build with more hidden layers 

or with recurrence, where connections in the network are allowed to loop. One of the dangers 

of having too advanced a network is over fitting. The function might incorrectly fit the noise in 

the training data, and then expect the same noise in its predictions. To fight this, the amount 

of training data can be increased by widening the training area, or as previously suggested, 

having data available from more years. 

Also experimentation with more than one hidden layers, could possibly enhance the network 

capabilities. 

Another one of the shortcoming, which has already been discussed, is the lack of modelling of 

human interventions. Perhaps most importantly is the artificial irrigation. An artificially high 

level of primary production can be observed, in spite of terrible rain deficits. Information about 

the spatial patterns of irrigation could have a big impact on the model accuracy. But then 

another problem arises; how could these irrigation patterns be predicted? It seems that the 

desertification of a highly developed agricultural region is  

7.3 Methodological improvements 
The following deal with possible improvements which could be included in the modelling and 

data processing. These were performed differently due to time constraints. 

7.3.1 Cross validation 
The model settings have been tested, by seeing how well all data up until 2012 predicts 2013 

data. This is a fragile validation method, as 2013 may not be a very good validation example. 
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If more time was available the validation and experimentation process would have used every 

time step as validation by excluding it from the training data pool, and trying to predict it. 

This is called cross validation. 

The model is meant to make predictions more than one time step into the future, so having 

that in mind, the validation process should include iterative model predictions to see how the 

model behaves when the model is less controlled by the known data. 

7.3.2 Cloud removal 
Perhaps the most important data set in the modelling is the NDVI data, from which the 

desertification index originates. The NDVI was to some degree afflicted by cloud 

contamination. Cloud removal is a large field of research in remote sensing, and several 

methods exist for removing clouds. Methods exists both for cloud removal based on data 

cloning (Lin, et al. 2013), and based on time series analysis. Some combination of the two 

fields would be appropriate in this case, as the process should both take account for spatial 

relationships and for the trends in the NDVI data. Development of a methodology specifically 

for this purpose could be a future research topic. 

7.3.3 Resample techniques 
In section 4.5.1 Gridding it was noted, that none of ArcGIS’ available resampling techniques 

were good for resampling from very fine grained raster to a very coarse one. Other resampling 

techniques could be included from other software. Or perhaps a new technique or techniques 

could be developed from scratch; it seems that gridding for cellular automata, is unnecessarily 

difficult using available tools.  
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8 Conclusion 
The aim of this thesis has been to investigate how to combine cellular automata modelling 

with an artificial neural network to model the geographic process of desertification. 

It is concluded that a combination of cellular automata and artificial neural networks as 

transition rule can, at least to some extent, work as a basis for modelling desertification. 

It is important to have a good indicator for desertification. The index developed in the model 

presented here is based on the RUE, net primary production and available water, as it was 

suggested by le Houérou (1983) and Prince et al. (1998). 

Also included in the model as inputs, are erosion based on RUSLE, temperature, rain, nearby 

surface water and nearby urban area. 

To model the spatiotemporal changes in desertification with cellular automata, all factors 

were presented as fuzzy variables from zero to one. This means that the transition rule should 

be a continuous function, and the degree of desertification is presented as a number between 

zero and one. To model the desertification using a cellular automaton, the data should be 

presented in a square grid using an equal area projection. 5 km, 10 km and 20 km has been 

tested and they all yield similar results. The length of the time step has only been tested as 

one year. Other time steps may be more suiting, as using longer time steps will even out some 

of the noise of the data. Different neighbourhood settings have been tested, all with not too 

different results, but the best one found was the double Moore neighbourhood with 
 

    
 as 

decay function.  

An artificial neural network can be designed to find the transition rule function. This has been 

successfully done with the Rprop learning algorithm. The network was designed as a feed 

forward network with one hidden layer. The hidden layer was tested with 4, 5 and 6 neurons. 

These test did not result in a clear cut conclusion, as in one example 5 was the better choice 

and 6 in another. The conclusion is, that the number of neurons in the hidden layer should be 

fine tuned as the last step in the modelling process. 

Desertification proved not to be an easy modelling subject, at the selected temporal and 

spatial scale. When subtracting 2013 from the training data pool, and predicting the 2013 

data, the best prediction was off by 0.037 on average which is an accuracy of 9.84 %.  
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To improve the modelling accuracy it is necessary to investigate and address the elements 

that hamper the modelling. Continued work to improve a desertification index, and to 

investigate the factors that impact the process would be a good place to start. Also considering 

ways to model the process with lower temporal resolution, on a longer time scale is believed to 

potentially improve the results.  

Desertification will have more and more focus in Europe in the future and as an increasing 

amount of satellite data among other data accumulates and is improved in quality, the 

possibilities for better predictions will also improve. 
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9 Perspectives 
It is clear from the discussion and conclusion that the modelling of desertification is in no way 

“solved”, and that science now can move on to other things. The work presented in the 

previous chapters can lead to further research on the topics, and the model can be improved. 

In the following chapter a few topics on further work and development possibilities will be 

discussed. 

9.1 Further research 
Two things noted as possible explanations for the shortcomings of the designed models are the 

data not included, and chosen time scale. 

Desertification happens for two reasons, firstly ‘naturally’ due to climatic and 

geomorphological reasons, secondly due to spatial and water mismanagement. The second 

portion has not been included in this model, and that is a serious shortcoming. Land use 

change can be modelled, and hence its impacts on desertification can also be included in this 

kind of model. A cellular automaton could have two output values for each cell, which are 

calculated simultaneously. In this manner land use and desertification could be modelled side 

by side in an integrated model. 

9.2 Other applications 
The cellular automaton with artificial neural network as transition rule, has been tested for 

desertification modelling. But it has many other possible applications in spatial modelling and 

simulation. The artificial neural network also solves classification problems, so a cellular 

automaton with a non continuous output is also possible.   
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