

2

3

Desertification is to an increasing extent

being identified as a problem for the region

of south eastern Spain. For politicians and

planners to fight the desertification

processes, there is a need for information

regarding the severity and spatial extent of

the desertification problem.

In this thesis a desertification simulation

model is built, with the aim of providing

knowledge about desertification.

The model is constructed as a continuous

cellular automata model with an artificial

neural network as transition rule. In this

way satellite imagery, climatic forecasts and

topographic data are used to simulate

desertification as a geographical

phenomenon.

To model desertification a desertification

index is constructed from NDVI satellite

images and information on soil moisture

and to include information about erosion,

RUSLE is studied.

As a result the model uses data for 2001-

2012 to predict the level of desertification in

2013. The prediction shows an average

inaccuracy of 9.84 %, and it is concluded

that such a model is capable of modelling

highly complex spatial processes such as

desertification. The measured inaccuracy is

not sufficiently low for the model to aid

politicians and planners to make decisions

on how to fight desertification and more

research is needed to improve the model.

Titile: Abstract:

Cellular automata modelling of desertification

using artificial neural networks

– in south eastern Spain

Project period:

February 3rd – June 12th 2014

Author:

Thomas Hallundbæk Petersen

Supervisor:

Henning Sten Hansen

Copies:

3

Pages:

86

Appendices:

2

4

5

Preface
This project is the resulting work of a master thesis in the Master of Science programme in

Geoinformatics at Aalborg University Copenhagen. It has been written in the spring semester

2014, from February 3rd to June 12th. As a master thesis of one semester this project

represents 30 ECTS.

The project has been created under the supervision of Professor Henning Sten Hansen.

In the following project references in text is structured like this:

([Author] [year of publication]). If the reference is to a specific page like this:

([Author] [year of publication],[pagenumber]), so (Petersen 2014, 45) could be a reference to

this report at page 45.

A complete list of references can be found on page 84.

Internal references also exist in the following. References to other sections in the report will

take this form: section [section number] [section name], example: see section 2.1.3 Drivers of

desertification.

6

 Table of Contents

1 Introduction 7
1.1 Problem statement 9
1.2 Delimitation 9
1.3 Report structure 10

2 Theory 11
2.1 Desertification 11
2.2 The cellular automaton 24
2.3 Artificial Neural Networks 28
2.4 Collective conclusion 33

3 Methodology 35
3.1 Methodological considerations 35
3.2 Geographical research area 36
3.3 Applied tools 37
3.4 Analysis design 37

4. Data processing 39
4.1 Desertification index 39
4.2 Erosion index 46
4.3 Climatic data 48
4.4 Topographic data 49
4.5 Non data specific processing 51
4.6 Conclusions 53

5 Modelling 55
5.1 Model overview 55
5.2 Cellular automaton modelling 57
5.3 Artificial neural network modelling 61
5.4 Modelling with the desertification index 62
5.5 Model implementation 63
5.6 Model sensitivity 68
5.7 Collective conclusion 73

6 Results 75
7 Discussion 77

7.1 The desertification index 77
7.2 Model design 78
7.3 Methodological improvements 78

8 Conclusion 81
9 Perspectives 83

9.1 Further research 83
9.2 Other applications 83

References 84

7

1 Introduction
The quality of soil is of major importance to local people, and through trade and migration

patterns, to an increasing extent neighbouring peoples, countries and regions. Spain is the

climatic extension of Africa in Europe and with nearly two thirds of its land being either arid,

semi arid or dry sub-humid (Ministerio de Medio Ambiente 2008, 12) it is predicted that more

than 37 % of the total landmass is in high or medium risk of irreversibly losing all productive

capacities to desertification (Ministerio de Medio Ambiente 2008, 138). Also the DISMED

(Desertification Information System for the Mediterranean) project under the European

Environment Agency, displays alarming figures. The map in Figure 1 is computed by

combining aridity, soil and vegetation quality (EEA 2008).

In this estimate 35.8 % of the Spanish territory on the Iberian Peninsula is either sensitive or

very sensitive to desertification (in red and orange).

To keep desertification at bay it is necessary to sustain water availability and to keep top soil

from eroding. In south eastern Spain this is complicated by frequent and long dry seasons

combined with non-native monocultural land uses, which cause land degradation and lead to

desertification. South eastern Spain is the most arid part of Europe (Gómez, López-Bermúdez

and Rubio 2011, 936), the rain pattern has high variability and high intensity (ibid.) which

means that some years are characterised by droughts and others by erosion. Water resources

are being overexploited to accommodate agriculture, tourism and increasing urban activities

Figure 1 - Desertification sensitivity (EEA 2008)

8

(Oñate and Peco 2005, 104). Also the geology of southern Spain makes the region prone to

erosion with vulnerable soil in hilly dryland terrain (ibid.).

To add insult to injury the climate is gradually becoming warmer and drier. According to

multi-model averages provided by the IPCC, Spain will become 1-1.5 degrees warmer in the

most conservative climate scenario (RCP 2.6) and somewhere between 2 and 3 degrees warmer

in the direr scenario RCP 8.5, in average in the years 2046-2065 (Intergovernmental Panel on

Climate Change 2013, 1063) as compared to the 1986-2005 average. The Iberian Peninsula is

also projected to have less precipitation especially the summer months (June, July, August)

which will be 10 to 30 % less rainy according to the RCP 8.5 (Intergovernmental Panel on

Climate Change 2013, 1078).

The quality of soil and continuous availability of water is vital to keep social stability in the

region which depends highly on tourism and agriculture. This is why desertification is such an

important issue in south eastern Spain and why there is a need to understand and measure

desertification processes. The Food and Agriculture Organization of UN (FAO) in their

position on sustainable development and combating desertification concluded that:

“Despite modern observation techniques using satellite imagery and software to analyse

recorded data, there is still a great deal of uncertainty at the local, national and world level as

to the origin, extent and gravity of the desertification processes. This uncertainty handicaps

natural resource managers in planning and decisionmaking.” (FAO 1993).

Here we are 20 years later and not much has changed. The emerging threats of climate

change and continued failure to correctly counter land degradation in the worlds drylands,

makes desertification an ever growing ongoing danger. To aid planners by knowing the speed,

extent and severity of desertification, it is necessary to model this process. Spatial models

have long been a tool used in many fields of planning, and it is important to keep researching

and developing these models to make better predictions for better understanding and

conserving our environments.

It seems that south eastern Spain is a good test site for studying desertification. As displayed,

many sources point to south eastern Spain as an area where changes will occur. But can the

desertification process be predicted? And how?

Much success in spatial modelling using cellular automata (CA) has been displayed, especially

in modelling urban development. CA is also showing its applications in other areas of

geographical modelling. CA opens up for combinations with other computer models. Artificial

neural networks (ANN) is a subfield of computer science inspired by structures in the brain.

They are computational models capable of recognising patterns in data and thereby process

new unknown data based on the recognised patterns. The cellular automata and artificial

neural networks can, if combined by replicating complex spatiotemporal patterns of

desertification simulate future development of this geographic phenomenon.

9

1.1 Problem statement
South eastern Spain is chosen as the location to study the potential of desertification

simulation. The prospect of applying cellular automata modelling in combination with

artificial neural networks to predict spatiotemporal development of desertification in south

eastern Spain will be investigated. The main question that will be attempted answered in the

following is:

How can desertification be modelled with cellular automata and artificial neural

networks?

To investigate this problem statement, it will be divided into smaller more operational

research questions, which will be addressed individually to then provide a basis for answering

the problem statement:

 Which variables should be included in the model?

 How should the cellular automaton be set up?

 How should the artificial neural network be set up?

 With what accuracy can desertification be predicted with such a model?

To address the first research question, desertification as a geographical phenomenon must be

investigated. Links to climate, and topology geology and so on, must be examined, so spatial

data can form the basis for a sound model.

To address the second research question cellular automata modelling must be studied, and it

must be concluded which properties lead to the desired behaviour.

To address the third research question the capabilities of artificial neural networks to regress

complex relationships must be researched.

And finally to address the fourth research question the complete model must be put together

and the model outputs must be compared with actual measurements, to quantify the success

of the model.

1.2 Delimitation
To predict desertification a model will be devised. A model is an operational simplification of

reality. When building a model, one must consider which elements of reality to include in the

model. Not everything can be included because of time, data availability and other constraints.

This model must be able to function with only the data it produces itself and available

forecasted data, in order to make predictions about the future. Climate data for the future has

been computed and can be put into a model in this manner. For this reason it will not be

possible to include the impacts of human interventions. Management of water resources,

spatial planning and changes in agricultural planning are topics too difficult to predict to

meaningfully insert into this model, in the scope of this project.

10

1.3 Report structure
This report consists of the following chapters:

Theory

In the very next chapter, the principal theoretical background for each component is

presented. First the concept of desertification is discussed. Focus is here, on what causes it,

and how this can be put into a spatial computer model. Next, cellular automata modelling is

introduced, and it is discussed how this type of spatial model can be applied to simulate

desertification. Finally artificial neural networks, their properties and capabilities are

discussed.

Methodology

In the methodology chapter, it is described how, on the basis of the theory, the research

questions and the problem statement will be answered. In this chapter the applied analysis

design is presented, and the most important methodological considerations are described.

Data processing

The model designed in this project relies mainly modelling in terms of real world data, and in

terms of computer model design. The first element is presented in this chapter. Every model

input is analysed, and the data used to compute each input is described along with the

processing steps taken to reach a ready model input.

Modelling

In this chapter the design process of the model is described. First an overview of the model is

given; next the individual components are addressed. These are; the cellular automata part of

the modelling, the artificial neural network part of the modelling, the implementation and

finally model experimentation.

Results

Here, the resulting model is applied for simulation, and its output is displayed along with

relevant performance measures.

Discussion

In this chapter the models simulation capacities are evaluated and the results of this

evaluation and the underlying reasons and consequences are discussed. An important focus of

the discussion is on how to improve the model in possible future research.

Conclusion

In this chapter the answer to the research questions are summarised, and the emerging

answer to the problem statement is outlined.

Perspectives

The conclusion does not put an end to all discussions. In this chapter perspectives of future

research based on this project are drawn.

11

2 Theory
The following chapter consists of three main topics each relating to one of the three first

research questions, as defined in the previous chapter, section 1.1 Problem statement. In each

of these topics the theoretical background will be laid, to analytically approach each question

individually. First the geographic topic of desertification will be discussed. The aim here is to

provide operational definitions of involved processes, so they can be included in a model.

Next cellular automata modelling will be described, and it will be discussed how a model

based on cellular automata can be designed to simulate the spatial behaviour of desertification

over time.

Finally artificial neural networks will be discussed. This section is focussed on how artificial

neural networks can be built and trained to regress to a function like the one used in cellular

automata for desertification modelling.

2.1 Desertification
Desertification has been defined by the UNCCD as:

“...land degradation in arid, semi-arid and dry sub-humid areas resulting from various factors,

including climatic variations and human activities” (United Nations 1994, 16).

So desertification is not just, as one could think, an area becoming a desert. It is simply land

in arid, semi-arid or dry sub-humid areas losing its potential to support vegetation through

land degradation processes. As formulated in the Millennium Ecosystem Assessment

(Niemeijer, et al. 2005) desertification can be viewed as:

“...persistent decline in the ability of a dryland ecosystem to provide goods and services

associated with primary productivity.” (Niemeijer, et al. 2005, 636 - 637)

A range of processes are involved in desertification at a range of scales. To model

desertification it is important to be aware of the scale, and let the scale determine which

processes should be involved in a model. In this case desertification is investigated as a

geographical event, impacting the south eastern part of Spain, so focus will be on the local

geographical and geophysical attributes which determines the rate of land degradation.

12

2.1.1 The geophysical environment
The potential of soil to support vegetation and thus be of use to people, either through natural

services or through cultivation, is controlled mainly by two components; the quality of soil and

the availability of water. The soil must have nutrition and must not be saline. The water

availability must correspond to the needs of the vegetation; some vegetation is very sensitive

to changes in the water availability while other types of vegetation are adapted to irregular

weather conditions. In drylands (arid, semi-arid, dry sub-humid and hyper arid areas) water is

the main constraint on vegetation growth and health (Niemeijer, et al. 2005, 628).

The soil quality can deteriorate through the accumulation of salts, known as salinisation. It

can deteriorate through lack of accumulation of nutrients. And most importantly the top soil

can be transported away either by water or wind, this is known as erosion. The erosion is

highly dependent on the weather, but also the soil type, terrain slope and vegetation cover.

The water availability is dependent on the weather of course. The amount and temporal

pattern of precipitation as well as the evaporation are controlled by meteorology and climate.

The water availability is also controlled by the terrain; some soils will hold better on to water

than others and the slope controls how fast the water runs of. Hence the soils ability to store

water, decides how long after rainfall, water will be available (Niemeijer, et al. 2005, 628).

Finally the vegetation cover can both keep an area moist through provision of shade,

transpiration and prevention of runoff.

It becomes apparent that the vegetation and soil play vital roles in this system, which is also

why desertification is often referred to as irreversible or very difficult to reverse; soil quality

and vegetation are mutually dependant, and necessary for sustained ecosystem health.

2.1.2 Measuring desertification
To operationalise the concept of desertification it must be defined in measureable terms, so it

can be determined, either if an area is desertified or not or to witch degree an area is

desertified. Desertification is of course a scientific concept rather than indisputable property.

This provides a bit of freedom in determining desertification, it can be done both in situ by soil

samples or expert visual assessment. But it can also be conveniently monitored from space by

addressing desertification indicators. For example, when desertification is defined by the

ability of an area to support vegetation, the primary production per unit area can be an

indicator of desertification. But then another problem arises; a satellite image represents the

captured reality at one instance of time. Any indicator might give an inaccurate impression

due to probabilistic nature of weather patterns. Therefore as an example, instead of using

primary production as an indicator, what should be the indicator is the primary production

potential.

2.1.2.1 Fuzzy logic

Fuzzy logic follows the realization that not everything is exact. Some things are modelled well

binary, like male or female, some things are modelled well in classes, like types of vegetation.

But sometimes the truths are not that simple, and there can be a benefit from having less

clear defining borders between classes (Liu 2009, 66). Desertification can be modelled binary;

13

an area is desertified or not. This will yield a sharp spatial boundary between the two classes,

but it might make more sense to estimate to which degree an area is desertified. This works

well with indicators as they will always yield a scaling, which will hold more information than

whether an area can be classified as being desertified or not.

Figure 2 - Conventional logic versus fuzzy logic for indicator values of desertification.

In Figure 2 the indicator value is being converted to a binary classing in the Boolean logic, by

an if-then- else-statement. The information will be compressed to a minimum, and there is a

need for a threshold value. Figure 2 also displays the alternative fuzzy logic where the

indicator value is being converted to a scalar between one and zero. This will ensure that a

minimum of information from the indicator scale is lost, so if desired, an extreme indicator

value will be mapped to an extreme fuzzy value, and vice versa.

2.1.2.2 A desertification index

When desertification is defined by an areas lack of ability to sustain primary production, the

primary production can be a good indicator for desertification. There are a few problems

however with using the primary production as an indicator value. These will be discussed in

the following sections.

2.1.2.2.1 Measuring primary production

The primary production cannot be directly inferred from satellite imagery. But some sources

suggest a near linear relationship between the above ground net primary production (ANPP)

and the normalized difference vegetation index (NDVI) summed over time (Prince, Brown de

Colstoun and Kravitz 1998) (Tucker, et al. 1983).

What is NDVI?

NDVI is an index derived from remotely sensed imagery by relating the near infrared

radiation to the red radiation. It is used in phonological studies because of the information it

provides about plant life.

14

Figure 3 - NDVI values for February 2014 Dark green: NDVI 1, Grey: NDVI 0. Image from

TERRA/MODIS (NASA 2014)

Figure 3 shows a map composite of satellite data, which shows average NDVI values in

February 2014. The image allows us to quickly make out where on our planet, plant life is

dominating, and where this is not the case.

The idea is to relate this concept of remotely sensed NDVI values to the rate of primary

production. The connection between primary production and NDVI values follows the logic of

understanding NDVI as an indicator of plant vigour or plant health and thereby as an

indicator for the rate of primary production.

Figure 4 - Relationship between plant vigour and primary production

As Figure 4 displays, if NDVI is assumed to be a good indicator of the rate of primary

production, investigating how the NDVI varies in time, can help us calculate primary

production from space.

15

And in this manner ANPP (Above ground Net Primary Production) can be formulated as a

function of the integral of calculated NDVI values:

Prince, Brown de Colstoun and Kravits (1998, 363) takes it further and assumes f is a linear

function, thus;

,

and regress a and b from field harvest measurements (ibid.), this function yields an amount of

biomass in

.

Whether f is well approximated by a linear function might change from location to location, it

might change with the level of detail of the survey. It is worth a scientific investigation of its

own, which lies outside the scope of this project. The linear model is very simple and effective

and it will be assumed to be suitable in this project.

2.1.2.2.2 The variability of weather

Weather is a stochastic variable. When measuring primary production in drylands the main

constraint, the availability of water, may differ hugely from year to year. If one year provides

favourable rainfall, and the following year features a catastrophic rainfall deficiency, there

will be a decline in primary production. We are interested in persistent decline in primary

production, and not decline which is explained by the variability of the weather, as it will not

be possible to predict future rainfall with a high temporal resolution anytime soon. Therefore

the aim is to find a more stable indicator, which behaves more like how desertification is

perceived; slow and steady, rather than rapid change from year to year. The net primary

production can be stabilized by dividing by the available water; this is called the Rain-use

efficiency (RUE) (Houérou 1983) and can be used as an improved indicator for desertification

compared to the ANPP (Niemeijer, et al. 2005, 629). The simplest rain-use efficiency is simply

 where Pyear is the total rain in mm throughout the year. Pyear might not be the best way, to

factor in the rain. A high amount of rain could come at unsuitable times or low amounts of

rain might be spread out to perfectly provide for primary production needs. Therefore higher

temporal resolution of rain data could facilitate a more meaningful rain-use efficiency value.

Another measure of water availability is the soil moisture. The wetness of the soil is more

resistant to extreme rain events, as the soil will quickly be saturated, and a maximum value

will be reached. The desertification index can therefore be formulated as

.

where NDVI are remotely sensed values, is water availability measured either by rainfall

or soil moisture, and b and a are regression constants.

16

2.1.2.3 Conclusions

An applicable index of desertification is adopted like described; as a calculation based on

remotely sensed NDVI values and water availability. To finalize the index the net primary

production must be regressed from NDVI integrals and it must be tested whether total rainfall

or soil moisture is better water availability indicator. This index follows the fuzzy logic, in the

sense it will never determine whether an area is desertified or not, it will provide a value,

which can be related across time and space.

2.1.3 Drivers of desertification
To predict desertification it is not enough to measure the phenomenon itself, also the

processes that drives desertification must be modelled.

A range of factors has an impact on the desertification process. Still there are a lot of

unknowns both in climate research and specifically in desertification research. Which factors

to include in such a model, depends on data availability and assumed importance. It is

assumed that human impacts are real and severe. But they are difficult to predict. In order to

successfully predict how irrigation patterns and water usage patterns evolve a broad

understanding of socio economic relationships must also be included. Modelling these

specifically factors is outside the scope of this project. This will mean that if large areas are

changed from one land use to another due to political decisions or similar, this is regarded as

noise in the model.

Instead what can be modelled are the natural drivers. Described in the following is water

erosion and climate change. Even though both are, at least to some extent, anthropogenic,

they can be modelled as natural drivers on a short timescale. Wind erosion as well as soil

salinisation are not considered, as Middleton & Thomas (1997, 32-33) consider them less

important for the particular geography of south eastern Spain. In a more elaborate model,

these two could be included to model desertification more accurately, but due to time

constraints, they will not be considered.

2.1.3.1 Water erosion

The soil quality is paramount for dryland ecosystems; therefore failure in soil conservation

(i.e. prevention of erosion and soil formation) is a major driver of desertification (Niemeijer, et

al. 2005, 628). Water erosion happens when the energy and mass from a rain drop cannot be

absorbed by the soil (Middleton and Thomas 1997, 27). Soil particles will be loosened and run

off along with the water. Many factors collectively determine the rate of water erosion,

Middleton and Thomas (1997) lists the factors shown in Figure 5:

17

Figure 5 - Factors determining erosion. From Middleton & Thomas (1997)

Not all of these can be easily modelled because of difficulty in data collection. Perhaps the

most successful attempt at establishing a mathematical relationship between the most

important variables and the water erosion, is the Universal Soil loss Equation (USLE) and its

successor; the Revised USLE.

2.1.3.1.1 Measuring water erosion

Water erosion can be computed by the Revised Universal Soil Loss Equation (RUSLE)

(Renard, et al. 1997). In RUSLE, soil loss is calculated by the following equation:

 , where:

A is the resulting erosion, in volume of soil lost per unit time

R is the Erosivity factor of the rain. The intensity and number of rainfalls a given time

period is used to compute this.

K is the Erodibility factor of the soil. The soil texture and compaction determines how

susceptible to water erosion the soil is.

L is the Slope length factor of the terrain. The amount of run-off water affecting a plot of

soil, is not only determined by the rainfall but also by the terrain. Water may fall somewhere

else and run down slope and affect this plot as well.

S is the Slope steepness factor of the terrain. Steepness determines the runoff speed and

hence the force of the water.

18

C is the Cover-Management factor. Vegetation cover prevents erosion, as previously

mentioned, due to roots and rain cover.

P is the Support-practice factor which covers human intervention practices such as

terracing and stripcropping (Renard, et al. 1997, 15). No available information on this subject

was found and the factor is set to 1.

2.1.3.1.2 The Erosivity factor

The Erosivity factor R, is considered the most important factor when measuring water erosion

(Maria, Soupios og Vallianatos 2009, 486).

The Erosivity factor as defined in RUSLE (Renard, et al. 1997) is given by , where E is

the total storm energy and I30 is the maximum 30 minutes intensity of the storm, these values

are multiplied and summed for each storm in the investigated time span.

To calculate this value, high temporal resolution of rainfall data is needed, and this is not

always available, therefore shortcuts are taken in order to estimate the Erosivity factor. For

precipitation data of daily resolution, EI30 can be estimated by assuming that no rainfall lasts

longer than a day, and at no day are there more than one rainfall. Then each day with

measured precipitation counts as one rainfall with a Erosivity of , where P is the

precipitation while α and β are regression constants (Yu 2008, 259). β varies mostly within the

range of 1.5 and 1.8 and the higher values are primarily found at higher latitudes (ibid.). In

Italy β has found to be 1.53 with a standard deviation of ±0.19 (ibid.). No information about β

in studies of Spain has been found, and the best estimate is that β similar to that of Italy

applies to south eastern Spain. So the Erosivity factor with daily rainfall data is estimated as:

α here is not important, as it will be described in section 4.5.2 Normalisation, because all

factors will be normalised to lie the range of 0 and 1.

2.1.3.1.3 The Erodibility factor

The Erodibility factor K, describes how easily the soil is eroded by rain. This parameter is

easier to incorporate because it is more stable. The soil variables that make up the K factor

change through slow processes, and can be assumed to be constant in the entire study.

The Erodibility factor is given by

,

where OM is the organic matter content, M relates to the texture (clay, silt, sand-

percentages), s is a structure class and p a permeability class (Renard, et al. 1997, 74). These

values can be found by analysis of soil samples and subsequent interpolation (Panagos,

Meusburger, et al., Soil erodibility estimation using LUCAS point survey data of Europe

2011).

19

2.1.3.1.4 The Slope Length factor

The Slope Length factor L, is designed to account for the run off energy, which also impacts

the soil. Water running along the terrain from higher altitudes will not only affect soil where

the rain drop hits the ground, but also every other place where the drop runs down until it is

absorbed, accumulated or evaporated. In RUSLE, the Slope Length factor is given by the

following formula:

Where θ is the terrain slope and λ is the slope length (Renard, et al. 1997, 105). The slope

length as defined in RUSLE is measured as the horizontal length of the slope (see Figure 6)

However, this type of slope length was meant for in situ manual assessment and not for

calculation based on digital elevation maps. Hickey, R (2000) proposed a way to estimate a

cumulative slope lengths based on a digital elevation model, which not only accounts for the

maximum slope length of a plot but for each point calculates all slope lengths leading to the

point. This is performed by first calculating the flow direction of each point by finding steepest

angle to a neighbour cell. Then calculate for each cell the lengths leading from this cell, this is

called the Non cumulative slope length, NCSL:

 For a high point this is set

 For a point with a flow through in a cardinal direction (N, S, E, W),

 For a point with a flow through in a non cardinal direction (NE, NW, SE, SW),

 ,

where C is the cell size, the DEM raster resolution.

Then these are then added up in the flow direction to make the accumulative slope length

which is used as λ.

Figure 6 - Slope length, λ as defined for RUSLE (Renard, et al. 1997, 18)

20

2.1.3.1.5 The Slope Steepness factor

The Slope Steepness factor S, is incorporated in order to account for the influence on the

steepness on the erosion. Just like the K factor and the L factor, S is assumed to be constant in

time but not in space. In RUSLE the Slope Steepness factor is calculated by three different

formulae, depending on local terrain properties. Just like it was the case with the Slope

Length factor this is not a convenient way of calculating the Slope Steepness factor based on a

DEM. Therefore Nearings (1997) single equation moderation is adopted:

 θ

(Nearing 1997, 918).

2.1.3.1.6 The Cover Management factor

The cover Management factor C, is included in order to account for the favourable effect of

plant cover. This factor is meant to be the one, which shows the effect of a conservation

management plan (Renard, et al. 1997, 146), if the C factor is 0.5, it means there is a plant

cover which halves the rate of erosion, compared to no plant cover. Van Der Knijff, Jones and

Montanarella (1999) suggest the following relationship between remotely sensed NDVI values

and the C factor:

first in an Italian context (van der Knijff, Jones and Montanarella 1999, 26) and later for most

of Europe (van der Knijff, Jones og Montanarella 2000, 18). This is convenient as the NDVI

values are also included in the desertification index see section 2.1.2.2 A desertification index.

The only problem however, is that NDVI values for the future will not be available, as NDVI is

information drawn from satellite imagery and these are only available up until present, only

the desertification index is available as a model output:

.

A function average from u to v is given by:

.

This means that if we multiply our desertification index with and divide by the time range

we will get an average NDVI value.

where di is the desertification index, is the water availability either in total rainfall or soil

moisture, and T is the total time of the desertification index and a, b are the regression

coefficients used to relate the NDVI integral to primary production. This means that:

21

2.1.3.1.7 Conclusions

As displayed in the following, almost every part of RUSLE can be estimated (R, K, S, L, C),

only the P-factor is left out.

Apart from the K factor, every factor will have to be estimated based on other data, and in

every factor a small error will be introduced. The RUSLE model in itself also is not perfect, as

it is a relatively simple simulation of a highly complex process. However including RUSLE like

described provides the best possible basis for including soil erosion.

Figure 7 - Factors covered by RUSLE

Figure 7 displays how the factors from Middtleton & Thomas (1997) are covered by the chosen

adaptation of RUSLE. Clearly it is less specific in the vegetation part of the surface variables

and in the soil variables and this might be significant.

2.1.3.2 Climate change

Modelling and understanding the processes that are drivers of and driven by climate change

continues to be one of the major scientific struggles. Desertification is one of those processes

which both drives climate change and is driven by it (UNCCD 2012, 29). Soil is capable of

large scale carbon sequestration and so is the vegetation that it supports, and therefore can

soil degradation be viewed as a driver of climate change. On the other hand increases in

aridity, droughts and erosion are consequences of climate change.

Dryland ecosystems are thought to be the ones that will suffer most from the climatic changes

(Nicholson 2011). It follows, that if water is the principal constraint, changing precipitation

22

patterns might have a direct impact on plant life. Changing precipitation patterns will have

an impact on water erosion.

Changes in temperature will mean changes in aridity as water vaporisation rates, therefore

three measures of climate change will be investigated:

 Rainfall deficiency

 Erosion, which is already covered in a previous section.

 Temperature change

This is by no means a complete list of impacts on desertification by changes in the climate. On

the other hand these are the impacts which harmonise both with data availability and the

scope of this project.

2.1.3.2.1 Rain deficiency

In the 80’s huge parts of dryland Africa were struck by severe droughts. Desertification was

immediately linked to droughts and even though this gave birth to a lot of discussions about

desertification it has since been questioned (Niemeijer, et al. 2005, 646) how strong this

connection really is, and examples were given where the soils were able to bounce back after

being hit by droughts (ibid.). However when climate change alters the frequency and severity

of droughts, it might be a different story.

There is no universal definition of droughts or drought severity (Nicholson 2011, 407). But

several indices do exist with different merits and demerits. One of the simplest indices of

drought is the standardized precipitation index SPI by McKee et al. (1993), which is a

measure of how likely the observed precipitation is. More elaborate is the popular Palmer

drought severity index (PDSI) which relates available moisture to the moisture needs of plants

(Palmer 1965).

The fact that the SPI can be computed using only rainfall data and climate normals, makes it

applicable for this use, because it allows us not only to measure historical droughts but in

addition one can combine it with climate projections to gain information about severity of

future drought patterns. The computation though applicable, is rather extensive as it relies on

the computation of a gamma distribution function space. Instead a more easily computable

mean rainfall is used.

2.1.3.2.2 Temperature rise

Temperature has implications for plant life both on a short time scale, as it impacts the

biological processes of plants and raises the moisture evaporation rates. And on a longer scale,

as the aridity will slowly change the spatial extent of habitats. An example of the latter is

forest migration. As a simple indicator the yearly temperature mean is adapted.

2.1.3.2.3 Conclusions

Although climate change is much more than just change in mean temperature and mean

rainfall, these two factors will help enhancing the model by introducing differences and

interannual trends in the weather.

23

2.1.4 Desertification conclusions
A theoretical understanding of desertification has now been established, and operational

definitions of desertification as geographical phenomenon as well as two its main drivers,

water erosion and climate change, has been established. This will serve as the basis for spatial

modelling of desertification, as it now is known which data is important for a desertification

simulation.

24

2.2 The cellular automaton
Cellular automata or CA, are a category of computer models which simulates a certain

behaviour of a n-dimensional grid. CA is commonly used to simulate natural growth like

systems such as urban development, cancer cells, animal populations and more.

In the following cellular automata will be defined, a small display of its capabilities will

discribed and it will be discussed how it can be applied in desertification modelling.

2.2.1 Defining characteristics
Wolfram (1984, 419) uses the following characteristics to describe cellular automata in one

dimension:

 It consists of a line of ‘sites’

 Each site has a value of 0 or 1

 Each site is updated in discrete time steps

 Each update is determined by one identical rule

 This rule is a function of the site neighbourhood

In this way for each time step, the system develops according to the rule, and very simple

rules can result in complex patterns.

If the above is seen as a family member of the CA family of models, it can be generalised a bit

to include more family relatives. The CA properties as described by (Liu 2009, 28) are defined

as the following:

The grid

The one dimensional CA has a line of ‘sites’ or a 1-dimensional array. More generally; in an n-

dimensional space, the line of sites becomes an n-dimensional grid of sites or cells. This is

referred to as the grid.

The states

Each cell has a value associated with it. This is called the state. Basically there are two types

of states discrete or continuous. The binary model with 0 and 1 is an example of a discrete

state system and this can be interpreted as dead or alive (0 or 1), but also more complex class

systems exists, where cells can have more than two different states. The other type is the

continuous model where the cell state is defined by a scalar.

Time

The cells states evolve in time. Time in these models is discrete, which means that for a

certain time step every cell will have a certain state.

The transition rule

How each cell evolve is governed by the transition rule. This rule is a function of the states of

25

the previous time step. Only cells within a defined proximity of each cell are included in this

function.

For a more sophisticated model, the transition rule function can also include external

factors, to create site and/or time dependant transition rule variation.

The neighbourhood

Whether a cell should be included in the function of the transition rule is determined by the

size and shape of the neighbourhood. The neighbourhood can be of any shape but is typically

spherical or quadratic. In two dimensional CA two small typical neighbourhoods are the von

Neuman and the Moore neighbourhoods, exemplifying the smallest possible spherical (von

Neuman) and quadratic (Moore) neighbourhoods.

The fact that the CA models depend on neighbourhoods makes it topological in the sense that

locality matters. There is an obvious analogy to Toblers first law of geography "Everything is

related to everything else, but near things are more related than distant things." (Tobler 1970,

236), and as a furthering of this analogy, the neighbourhood can be accompanied by a decay

function which weights the neighbourhood so, that close neighbours are more significant than

distant ones. This is displayed in Figure 8 where the distance to the centre of each cell is

calculated for a unit size grid. The weight associated with each cell will then be a function of

this distance such as

 or

 .

2.2.2 The simple complexity of cellular automata
Although a very simple system, a cellular automaton is capable of complex behaviour. In one

dimension much research has been conducted by Stephen Wolfram. Wolfram describes what

he calls class 4 behaviour as

“...class 4 involves a mixture of order and randomness: Localized structures are produced

which on their own are fairly simple, but these structures move around and interact with each

other in very complicated ways.” (S. A. Wolfram 2002, 235).

This is inherently false, the cellular automata are not capable of random behaviour as they

follow strict deterministic rules, but it is still an accurate description as the patterns produced

do indeed appear randomised. As examples of this class four behaviour three cellular

automata have been constructed to store three numbers in each cell. These are shown in

Figure 9.

Figure 8 - The von Neumann, and the Moore neighbourhoods, and a distance matrix

26

Figure 9 - 1-dimensional CA with colour mapping

The top pixel represents the first time step, the next line of pixels the second time step and so

on. The three values of each cell, is calculated based on values, of the previous time step from

the same cell and the cells next to it, using trigonometric functions. The three values are then

mapped in RGB to produce a colour, so each pixel represents one cell at one point in time. In

the leftmost pyramid a very organic pattern emerges with round shapes. In the middle

pyramid a very different pattern is produced, consisting of edges and lines and in the

rightmost pyramid wavelike structures appear. This demonstrates how simple rules can

produce complex patterns resembling randomness.

In two dimensions, perhaps the most well known example of a cellular automaton has been

designed by John Conway. “Game of life” was presented as a pastime activity (Gardner 1970),

but it proved more important and has since become canonical in cellular automata. Game of

life consists of a two dimensional grid with cell states dead or alive. Cells evolve based on a

Moore neighbourhood with transition rules inspired by a biological reality. Cells can die from

loneliness (fewer than two live neighbours) or over crowdedness (more than three live

neighbours) and live cells can spread in the right environment (exactly three live neighbours).

Conway’s game of life is ultimately the inspiration for most work with cellular automata for

modelling spatial systems.

2.2.3 Desertification cellular automata
With correctly chosen properties a CA model can be constructed to simulate geographical

systems. This has been extensively researched in urban modelling, where simulations predict

growth and structural changes of urban areas (Liu 2009).

Cellular Automata can also be used to simulate other geographical phenomena such as

desertification. Here desertification can be treated as either a class property as in 0 or 1 (not

desertified/desertified) or a fuzzy classification, as cell states. Ding, Chen & Wang (2009)

simulated desertification in the Heibei province surrounding Beijing. Here desertification was

simulated with binary cell states, and they concluded that further research should be carried

out to combine the desertification CA with fuzzy set theory and to include erosion modelling

(Ding, Chen and Wang 2009, 327).

To design a CA for desertification, every property of CA must be modelled with this purpose in

mind. In the following the properties are discussed on this background.

The grid

In a desertification CA the grid is 2-dimensional, it could perceivably be in three dimensions to

27

include something like top soil depth or similar, but it makes sense to model desertification as

a 2-dimensional geographical phenomenon. It should be a square grid to ensure that even

spatial relationships exist between all neighbouring cells. This would not be true in say, a

rectangular grid. It could however be true for a triangular or a hexagonal grid, these do not

align well with most raster processing or conventional cellular automata. That is of course not

the same as saying it cannot be done.

The states

Desertification in terms of cell states, can be modelled in a number of ways. Desertification

can be classified or modelled continuously as a fuzzy cell state describing how desertified a cell

is, like it was suggested by Ding, Chen & Wang (2009).

Time

The time property of a desertification CA is straight forward. The desertification level at a

location evolves in time just as a CA system cell. The length of the time steps must be

determined to fit the temporal scale of the modelled phenomenon.

The transition rule

How the level of desertification changes, appears to be governed by a series of factors as

discussed in section 2.1.3 Drivers of desertification, but it is clear that external factors such as

climatic attributes must be included in order to model the phenomenon precisely. Rain may be

influenced by the level of desertification, but also other factors affect rain patterns, for

instance we know that the climate changes both in space and in time.

The presence of surface freshwater can also be expected to have an impact on desertification

processes, as surface water alters the availability of water which, as previously stated is the

primary constraint on dryland systems (see section 2.1.1 The geophysical environment).

The neighbourhood

The neighbourhood is relevant in desertification as a geographical phenomenon, because

resource cycles (water, nutrition, flora, fauna etc.) are part of the ecological properties of a

locality. One specific place is more likely to fall into desertification if its neighbouring areas

are desertified, because less resource transactions will occur, resource transactions meaning

ecosystem resources transferring from one area to another, such as migrating wildlife or

moisture spread through transpiration etc.

As most ecosystem transactions happen slowly in short distances a small neighbourhood such

as the Moore neighbourhood seems appropriate. With the Moore neighbourhood only

neighbouring cells with shared boundaries are included.

2.2.4 Conclusions
Cellular automata systems are capable of serving as the basis for modelling geographical

phenomena like desertification. A lot of unknowns persist in how the system should be set up.

These will be discussed further in 5.2 Cellular automaton modelling.

28

2.3 Artificial Neural Networks
The artificial neural network (ANN) is a type of computer model, successful in the field of

pattern recognition (Bishop 2006, 226). In this section the feed forward neural network will be

described and discussed with the purpose of applying the model in recognising the

spatiotemporal pattern of desertification. Artificial neural networks have one of two distinct

objectives; classification or regression. The cellular automaton as described in the previous

section finds an output value, by evaluating a function of values of the neighbourhood – the

transition rule. This function could be in any form conceivable; so by applying artificial neural

network regression to zone in on the best possible function the ANN could serve as a

transition rule.

An artificial neural network is an attempt to create a mathematical representation of how

information is processed in biological systems (Bishop 2006, 226) such as the human brain.

Information is stored in Neurons and passed through the network, for the network to

collectively achieve its goals. In the feed forward type neural network, information is only

passed forward in the network and only a relevant subgroup of these types of ANNs will be

described. As this is not meant to be a study of the neural network, which aims to improve

algorithms or general knowledge of the ANNs, the focus will be on the basic functionality and

not the mathematical theoretical background. This will serve as help in the modelling of the

network for the specific uses it has.

This way of using an artificial neural network as a transition rule for a cellular automaton for

spatial modelling, has previously been carried out in the field of urban modelling by Li and

Yeh (2001). In this study the authors highlight the robustness and versatility of the networks’

abilities in spatial cellular automata (Li and Yeh 2001, 1446).

2.3.1 Feed forward ANN
Feed forward networks are the most basic type of neural networks. They are limited in the

way that information is only processed in a forward direction.

A feed forward neural network has an input layer any number of hidden layers and an output

layer. For this purpose only neural networks with one hidden layer will be considered.

Information from the input layer is passed on to the hidden layer, processed and then again

passed on to the output layer, processed again to yield the model output.

29

Figure 10 - Basic feed forward ANN

Figure 10 displays a basic feed forward neural network structure, where all neurons of the

input layer are connected to all neurons of the hidden layer, except for the bias neuron, just

like all neurons of the hidden layer are connected to all neurons of the output layer. All links

have a weight associated with it; this weight is a scalar and it could be zero simulating no

connection between the two neurons. The neural network function of the model depicted in

Figure 10 is evaluated in three steps. First, linear combinations of the input layer values are

sent to the hidden layer:

where is the weight of the connection from a to b, is the value of the neuron x of the

input layer and y iterates from 1 to M (Bishop 2006, 227).

These values are then processed by an activation function A to form the values of the hidden

layer:

The activation function A should be a continuous function; this is often an s-shaped function

such as the logistic sigmoid function which work in the codomain]0,1[or the tanh which

works in the codomain]-1,1[, depending on structure of input and output values. These two

functions are illustrated in Figure 11.

30

Figure 11 - Most common activation functions

Now that the values of the hidden layer are known, these are again combined:

(Bishop 2006, 227). And finally these values are run through the activation function, to form

the final outputs of the network.

The complexity of the neural network depends on the architecture, the number of neurons in

each layer, which has implications for the output quality, amount of needed, training data and

calculation time.

2.3.2 Network training and backpropagation
When the network architecture is setup, the network can be trained. Network training refers

to adjusting the weights, so the output approximates an expected output more and more

accurately; this is known as supervised training as the model is supplied with an expected

output.

Training of artificial neural networks happens through a procedure known as

backpropagation. Backpropagation works by subdividing the error between the incoming

connections to a neuron. And then these errors are send backwards even further through the

network, to again subdivide between incoming connections from the previous layer. That way,

each weight is associated with a part of the model error. For each weight one can imagine,

that the error will change as the weight changes.

31

Figure 12 - Error - weight space, displaying gradient for specific weight

Calculating the global minimum for each weight for each step in the training process, is

simply impossible computationally, so instead the main working tool is the gradient, – how

the error changes with the weight. This gradient can be used to iteratively improve the

weights of the network; if the gradient is positive the error will decrease if the weight is

decreased and vice versa. Depending on numerical circumstances and training algorithm,

using the gradient to search for better weights, can yield three results if enough iterations are

applied; a global minimum, a local minimum, or the weights may simply not converge.

The gradients can be calculated using the following formulae:

where v is the incoming value, and (called the node delta) is calculated differently for the

output layer neurons and the hidden layer neurons. For the neurons in the output layer:

where is the output value of neuron z and t is the expected value of neuron z. For neurons

in the hidden layer the node deltas are calculated a little bit differently:

by summing weights and node deltas from the output layer, and multiplying by the derivative

of the activation function evaluated in the incoming value (Bishop 2006, 243 - 244).

2.3.2.1 Training algorithms

A range of training algorithms have been developed, each with its advantages and

disadvantages. In the following, two of these will be described and their differences will be

demonstrated.

The most basic training algorithm is known as gradient descent, where a learning rate η is

set, and each weight is updated by: (Bishop 2006, 240). So the learning rate

and the size of the gradient determines the size of the weight change. This will ensure that we

find a local minimum, if the learning rate is not too large for the weight to converge. One way

32

to improve this is by adding a momentum term. This will make the search speed up if the

gradient is small and there is a long way to the minimum, furthermore it can help the search,

to ‘jump’ out of a local minimum if the momentum is great enough:

 . Both the momentum and learning rate, should be between 0 and 1. Setting these

values correctly is not simple, and to overcome this difficulty another algorithm can be

applied, this is called Rprop (Igel og Huesken 2000, 115). Resilient Backpropagation, or Rprop,

was proposed by by Riedmiller and Braun (1993). Since Rprop has been proposed further

research has been conducted and improvements has been added (see for instance (Igel og

Huesken 2000)), here only the basic Rprop with weight back-tracking (Rprop+) will be

discussed. In Rprop the step size is governed independently of the size of the gradient. The

step size is found by comparing the gradient, with the previous gradient:

1. If the gradients have the same sign, indicating that the weight should be moved

further in the same direction, the step size is increased: , so as long as the

weight is continuing down the same slope, the step size will increase exponentially

independently of the gradient size.

the weight will then be updated by:

2. If the gradients have different sign, indicating the weight has crossed past a local

minimum, the step size is decreased:

the previous weight change will be cancelled (called weight backtracking) so:

and the gradient is stored as zero, so for the next iteration, the gradients will neither

have the same or different signs, and we enter 3.

3. Else the step size will be maintained: , this is when on the previous iteration

the step was too large, so it has already been decreased, and a more careful step is

taken in the same direction.

In Rprop, like gradient descent, some variables need to be set; the learning rates:

 . Also there needs to be an initial step size, as well as maximum and

minimum step sizes.

But for Rprop these values are not as crucial, as it is the case in gradient descent (Riedmiller

og Braun 1993, 588). And the Riedmiller and Braun suggest the following settings, which is

empirically tested to give good results regardless of the problem:

(Riedmiller og Braun 1993, 588).

These ‘standardized’ values help save time in the modelling process, as one does not have to

search for good values and check for convergence.

33

As a simple demonstration a regression problem is constructed. A neural network with 1 input

3 hidden neurons and one output, with the activation function , is trained with

random weights from -0.1 to 0.1. The goal is to approximate the function , as

represented by 20 random points along the function.

Figure 13 - Training error after each completed iteration of training.

As displayed in Figure 13, the error of the network behaves very differently for the two

training algorithms. With gradient descent, the training was highly dependent on the chosen

variables learning rate, and momentum. Also when training the network with the same initial

conditions, it showed a high dependency on which 20 random points, which were used. There

was a substantial variation on how fast it converged, or if it converged at all. The graph

displayed was one of the best results.

The Rprop behaved more consistently, it converged every time, and the graph looked very

similar each time. One thing to note is that the final error is smaller in the Gradient descent

example. And this might be attributed to the momentum term. Based on this, the Rprop is

selected as the training algorithm, as it shows more consistent results, and it depends less on

the variables. This will allow more focus on experimenting with the network architecture.

2.3.3 Conclusions
Artificial neural networks can be designed to solve a regression problem to find functions that

mimic the behaviour of inputted data. With the Rprop training algorithm, training data can be

entered into the model to make it adjust without much experimentation or prior knowledge

about the modelled data.

2.4 Collective conclusion
In the desertification section it was concluded how a fuzzy index of desertification could be

computed from satellite data. Also discovered were operational measures of erosion, and

climate change. These measures will serve as the data background for the model. Still lacking

are the actual acquisition, processing and calculation of these datasets.

A cellular automaton can be the basis for a desertification simulation model, it is capable of

being set up according to modelling goals, and of producing rich patterns which must be

34

controlled through the transition rule. The properties of the cellular automaton are not trivial

and a discussion of these properties will follow.

Artificial neural networks can flexibly solve regression problems to find a function without

prior knowledge about this function. This is exactly what is needed as a transition rule in the

cellular automaton to control how desertification develops in time. An artificial neural

network can be designed in many different ways, so a discussion of how it should look will

follow.

35

3 Methodology
In this chapter it will be described how the question posed in the problem statement will be

answered. First general methodological considerations will be discussed, then applied tools are

described and finally the analytical design structure will be outlined.

3.1 Methodological considerations
In the following some key methodological considerations of the modelling will be discussed.

The following topics will be touched in the section:

 The black box nature of using artificial neural networks

 Spatial and temporal independence of the model

 Data acquisition

3.1.1 Black box
The aim of this study is to investigate, how well suited cellular automata models with an

artificial neural network as transition rule, are for modelling the geographical phenomenon of

desertification. Often when building a simulation model, information about the nature of the

studied phenomenon will be gained. This is not the case when using artificial neural networks.

The derived transition function is not generally applicable to modelling desertification. If a

new model is build or this model is improved, and perhaps other factors are included, the

training process will have to be performed again. This is the trade off when using artificial

neural networks, and for this reason ANNs are referred to as a black box (Liu 2009, 50).

3.1.2 Spatial and temporal independence
The modelling is performed using spatially and temporally independent data. By spatially

independent is meant, that no inputted data is specific to the geographic region of south

eastern Spain, and the same analysis could have just as easily be performed somewhere else,

if the same data was available. In this sense, the model treats all pixels the same regardless of

coordinates. If the model was not spatially independent, every pixel could be modelled

separately, and it would be exposed to over fitting.

The same is true for the time dimension. Time is not a model variable, and the model does not

use information about which year it is for its predictions.

36

By keeping the model spatially and temporally independent, the modelling process strides for

generality; the modelling procedure could be moved to any location, to any point in time if the

corresponding data could be acquired.

3.1.3 Data acquisition strategy
Data acquisition is an important subject in a study like this. Such an overwhelming amount of

spatial and non spatial data is freely available online. Similarly for other kinds of information,

not all sources are equally reliable, and so it is important to be aware of where the data is

coming from, and on what background it has been published. In the subsequent chapter, all

data sources are listed, here the nature of the data is described for each data source.

Overall data has been acquired from very few sources. This makes it easy to keep track of the

data, and the problems that may be related to these sources.

Every applied dataset is well documented, there exist metadata describing the data motives

and processing information.

3.2 Geographical research area
As formulated in the problem statement, the case area for testing the model capabilities is

south eastern Spain. In this study south eastern Spain is selected, because it is believed that

desertification may be imminent in this area. The geographical delimitation is defined by the

common area of the two major datasets; the eMODIS NDVI imagery and the Eurostat DEM

(described in Chapter 4 Data processing).

Figure 14 - Research area - common area of the the DEM and the eMODIS datasets.

Figure 14 displays the research area in geographical relation to the rest of the Iberian

Peninsula.

37

For some tasks only a subset of the research area was used.

This is area will be known as the “training area”. The

training area which can be viewed in Figure 15, is used for

model training and other specific tasks, where the entire area

was unnecessary or otherwise inappropriate. When the

training area is used instead of the research area, it will be

stated in the text.

3.3 Applied tools
ArcPy is a python library created by ESRI to allow python

programming with ArcGIS tools. The research work

presented in the following chapters, was performed mainly with ArcPy. ArcPy allows

integration between the programming elements and the spatial elements, such as raster

calculations, so a model can be programmed to include spatial data processing, directly in

python.

Python with ArcPy has been the main tool both for modelling and data processing. ArcGIS

10.2 is a Desktop GIS, which allows manipulation of spatial data via a set of tools, and a

visual map interface. For some tasks, when the visual output needed inspection, the ArcGIS

10.2 environment was applied.

CDO – Climate Data Operators is a collection of tools for manipulating multi dimensional

climate data. CDO has been used for data

operations regarding the climate data, where

tools in the ArcGIS environment has not

been sufficiently equipped.

3.4 Analysis design
The problem statement was operationalised

using four research questions, three of which

relates to the development of the model and

one relating to the quality of the achieved

model. Hence, the first three research

questions will be answered, then the fourth

which will lead to final conclusions on the

problem statement.

In the theory chapter the framework for the

model was laid out. But still questions

remained on how get the best results out of

available tools. The following three chapters

will be laid out as displayed in analysis

design structure, Figure 16. The very next

chapter will concern the processing of the

raw data, which leads to suitable inputs for Figure 16 - Analysis design.

Figure 15 - Geographic definition

of the training area.

38

the model. In figure 16 the key data processing tasks are displayed.

In the Modelling chapter the structure and development of the model will be discussed. This

will in turn lead to answering the first three research questions. Finally the resulting model

will run predictions. These predictions will result in a test of how accurately the model can

predict desertification of south eastern Spain. This will assist in answering the fourth and

final research question.

39

4. Data processing
In this chapter all applied data will be presented and discussed. To prepare the data to be

included in the modelling, it needs to be processed individually according the diverse nature of

the data from different sources. So the aim of the following chapter is twofold; to present data

sources, and to describe the processing it has undergone.

First the data and processing related to the desertification index will be discussed, and then

the data and processing related to the erosion index. Then all climatic data will be discussed,

the datasets in the section are applied in the model on its own and as part of the two indices,

desertification and erosion. The last presented datasets are the topographic datasets. Finally

the general processing, not specific to any dataset are described. Each subsection is structured

by starting with an introduction to the topic, listing its data components, then describing the

data sources and finally describing the processing applied.

4.1 Desertification index
In section 2.1.2.2 A desertification index it was derived that a desertification index can

meaningfully be formulated as

, where the NPP can be found from regression:

 . Both NPP yearly and NDVI weekly are products provided by NASA’s MODIS

satellites. Yearly NPP are available from 2000-2010 while weekly NDVI’s are available from

March 2000 up until present. Both candidates, rain and soil moisture are datasets

available as part of the Ensembles, which is separately discussed in section 4.3.1 Ensembles –

Climate data.

Apart from working as the model output, the desertification index, also provides average

NDVI values used in the erosion index, described in section 4.2 Erosion index.

40

4.1.1 eMODIS – NDVI
The EROS Moderate Resolution Imaging

Spectroradiometer by NASA provides free 250 m NDVI

products 4 times a month for Africa among other

continental datasets. Africa is defined as everything within

the bounding box of N: 40.0, S: -39.0, E: 52.0, W: -20.0, this

means that data for southern Spain is also included in

these products, see Figure 17. The data appear in 10-day

composites, so 10 images have been combined to remove

clouds from the products images (Jenkerson, Maiersperger

and Schmidt 2010). In spite of this effort, the quality of the

imagery is still varying, and there is need for further

processing, this is addressed in section 4.1.3.1 NDVI Cloud

removal.

As the datasets are available four times each month they

provide a good basis for estimating an integral. The datasets

are each approximately 1.5 gb large, so only downloading one

dataset per month was feasible, due to hard disk space, time and bandwidth limitations.

4.1.2 MODIS – NPP
NASA also provides global primary production estimates. These are independent of the NDVI

and are calculated from corrected Leaf Area index, LAI and Fraction of Photosynthetically

Active Radiation, FPAR (Running and Zhao 2011). This product is in 1 km spatial resolution

and has global cover. The dataset unit is

 .

Several places NPP (Net Primary Production) and ANPP (Above ground Net Primary

Production) are used interchangeably. The difference between these two terms, in this matter

is small. The desertification index is related to NPP and not ANPP, even though it was

initially based on an index that was related to ANPP (see section 2.1.2.2 A desertification

index). Desertification will also have an impact on the growth of roots and other below ground

primary production sources, so it is not viewed as a problem to switch ANPP for NPP.

Figure 17 - eModis Africa

area. World map provided by

Bjørn Sandvik,

Thematicmapping.com

41

4.1.3 Processing
Before a useful desertification index can be inserted into the model, these four tasks needs to

be performed, on the above data:

 NDVI cloud removal

 NDVI integration

 NPP regression

 Normalisation of the final output

The processing methodology in each of these is described in the following. Except for the

normalisation processing which is described separately for all input data in section 4.5 Non

data specific processing.

4.1.3.1 NDVI cloud removal

Even though each eMODIS NDVI product is based on a composite of several images, total

cloud free imagery has not been possible. Clouds disturb measurement of NDVI values, as

they allow less light through than the remaining atmosphere.

Removal of clouds from satellite imagery is usually a difficult task. Missing information may

be recreated from imagery of the same place at different times, but this poses two problems:

The information that was not recorded might have changed in the passing time, and the

images might be radiometrically incompatible, in the sense that the pixel values in one image,

might not represent the same amount of light, as the same pixel value in the next. Lin et al.

(2013) described a method for cloning information in Landsat 7 imagery, addressing the

problem of radiometrical incompatibility. However this problem is not considered in the

following, because the eMODIS NDVI images were designed for multi temporal analysis,

radiometrical incompatibility is assumed to be a small problem, and data can be recreated by

simpler means. The method described in the following, is not the best way to deal with cloud

contamination in general, but should be seen as a “quick and dirty” fix, this will be discussed

further in Chapter 7 Discussion.

The disturbance that the clouds cause is removed by interpolation. The missing information

can be recreated by taking advantage of temporal and spatial information relationships.

Generally there can be two types of trends in the NDVI data, an intraannual cyclic trend and

a climatic interannual trend. How the image with the missing data differs from these trends,

depends on incidental weather, impacting plants before the image was captured. This

information can to some extent be included by comparing mean NDVI for the non clouded

parts of the images.

42

But first, the clouds must be identified in the images.

Figure 18 - Monthly NDVI means

In Figure 18 the mean values of the NDVI values are plotted to show the intraannual cycle.

The months with heavy cloud cover can easily be spotted; they are identified by unexpected

drops from the trend. Clouds can naively be distinguished from undistorted information by

applying a threshold. In Figure 19 a threshold of 0.07 is applied to group pixels as either ‘good

values’ or ‘bad values’; we see that this works fairly well, identifying water and clouds which

have low NDVI values (b) in Figure 19).

Now that the missing information is identified, it can be recreated by combining available

data from the same locality in other images:

 The intraannual trend is included by using information from the next and previous

month

 The interannual trend is included by using information from the same month the

next and previous year.

 The information used is adjusted by multiplying with the non cloud mean ratio, using

the parts that are without clouds in both images.

Figure 19 - a) Original image, clipped to the southern part of the Iberian Peninsula b) Pixels with

NDVI < 0.07 (in white). c) Image histogram

43

This means that four pieces of information about the missing data is computed, and the

average value of these four distinct approximations is used as an estimate.

So the pixel value p, at a given month m, is approximated by:

Where is the non cloud NDVI mean for the month m.

Some images do not have all four components for this equation. For the first image for

instance, neither the m-1 nor the m-12 exist, and it can only be estimated based on m+1 and

m+12.

4.1.3.2 NDVI integration

In order to find the integral of (‘area under’) the NDVI curve a numerical estimation known as

the trapezoidal rule is applied:

This can be applied to the NDVI data, as both a timestamp and the NDVI value are available

for each dataset.

Figure 20 - Information used for reconstructing missing information.

44

Figure 21 - How the trapezoidal rule is applied to approximate the NDVI integral

In Figure 21 it is displayed how the NDVI integral is estimated for the area between two

known points on the curve, this is then summed for a year to approximate the integral of the

whole year:

4.1.3.3 NPP regression

The yearly net primary production (NPP) is available for the years 2000-2010 and the NDVI

integrals have been calculated for the years 2001-2013 which means, that there is an overlap

of the years 2001-2010. The correlation between the NPP and the NDVI integral can be found

from a simple least squares regression, as the relationship is thought to be linear. As both

datasets represents continuous raster data, it is possible to compare points individually. After

resampling the data to grid as explained in section 4.5.1 Gridding, corresponding pixels from

the two datasets can be extracted in pairs. The NDVI and the NPP behave very differently on

water, therefore the regression is only applied to the cells near the centre of the data extent,

because this excludes proximity to the ocean.

45

Figure 22 - Result of the regression

On Figure 22 all data used in the regression is plotted. There is a clear linear trend in the

data, but also a considerable error. The ordinary least square fit yields:

 with an average error of 468

.

46

4.2 Erosion index
The erosion index is based on RUSLE as described in section 2.1.3.1 Water erosion;

 , excluding the P-factor and any constants. The calculation of each

factor in the erosion index is also explained there. Only the slope length factor remains a topic,

as it is less simple than the others. The erosion index is based on the following data:

 Rain data. Used in the R-factor

 The K-factor is an external dataset in it self

 EU-DEM. Used in the L and S factors

 Desertification index. Used in the C factor, described in section 4.1 Desertification

index.

The K-factor and the EU-DEM are explained in the following. The rain data along with other

climatic datasets are explained in a later section, the desertification index, has already been

discussed in the previous section.

4.2.1 ESDAC - K-factor
The K-factor is provided in 500m resolution by the European Commission – European Soil

Portal of the European soil data Centre (ESDAC). It is based on 22000 soil samples collected

across Europe in 2009 within the project LUCAS (Panagos et al. 2014, 143). The data is

designed to be included in USLE and RUSLE calculations of soil erosion.

4.2.2 The EU-DEM
The EU- Digital Elevation model is likewise provided by the European commission for free

download online. It is in 25 meter resolution (EEA 2013). The DEM has been computed by

combining the SRTM near global DEM from 2000 and the ASTER GDEM from 2009.

4.2.3 Processing
Every element of the erosion is created from presented data using simple raster calculations.

The exception is the L-factor, for which the processing will be described in the following. The

following steps constitute the processing of the erosion index data:

 L-factor calculation

 Raster calculations as described in section 2.1.3.1 Water erosion

 Normalisation

4.2.3.1 L-factor calculation

In section 2.1.3.1 Water erosion the slope length factor (L-factor) was described to be given by

the formula

where M is derived from Raster calculation based on the DEM and λ is the horizontal length of

the slope. This is adopted from the original RUSLE (Renard, et al. 1997, 105). The maximum

slope length at a given point on a DEM, can be calculated with ArcGIS Hydrology toolset, by

47

first Running the tool Flow Direction and then the tool Flow Length. The accuracy of this

however is very dependent on the DEM resolution. Interruptions in the flow can occur without

it being recorded in the DEM because it is on smaller scale than the DEM. Due to the relative

coarseness of the DEM, the slope lengths may be grossly overestimated. It has not been

possible to find any best practices; therefore an experimental approach with a number of

maximum lengths (λmax) is adopted. The model will be run with several maximum slope

lengths to see what difference it makes for the final result. To illustrate the difference a

maximum slope length makes, three histograms has been plotted on a logarithmic scale:

Figure 23 - L-factor histogram, a: without λmax, b: with λmax =1000 m, c: with λmax = 100 m.

Figure 23 displays how the L-factor distribution is altered with a maximum slope length

(λmax). These are calculated from the original DEM in 25m resolution before resampling for

modelling.

Without a maximum, the L-factor goes beyond 700 for a few pixels indicating that the erosion

happens more than 700 times faster in these pixels.

48

4.3 Climatic data
The climatic data plays a role in several different factors; the desertification index depends on

rainfall or soil moisture, and the erosion index depends on the erosivity of the rain. But the

changing climate is also included as factors separately. The climatological data is the only

source of data used, which is needed to extend into the future. Every other dataset is either

assumed constant or estimated as a model output. This is possible due to the availability of

publicly free climate modelling outputs in the Ensembles project.

4.3.1 Ensembles – climate data
The Ensembles project was initiated by the European Commission, in order to inform

researchers and decision makers about climate change (Linden and Mitchell 2009, 3).

Ensembles is a series of research themes of which the third (RT3) was “Formulation of very-

high-resolution Regional Climate Model ensembles for Europe.” (Linden and Mitchell 2009, 4).

This has resulted in a range of climate model outputs with uninterrupted data from 1951 to

2100, for different climate scenarios with different models. Within the Ensembles project the

EHTZ-CLM climate model in 25 km spatial and 1 day temporal resolution by Böhm et al.

(2006) has been used. It is a local realization of the general circulation model (GCM) HadCM3

by the Hadley Centre. This particular model was selected as it was run with the needed

output variables and it is in 25 km resolution (rather than 50 km). It was run for the A1B

climate scenario, which is from the A1 family of scenarios that describe a world of rapid

economic and population growth until 2050. A1FI is in the same family, but here energy

demands are met by a Fossil Intensive energy production. The A1T is where the energy

demands are met by more by non fossil energy production, and the A1B lies somewhere in

between, with B for balanced energy production (IPCC WG3 2000, 4). Due to time constraints

is has not been possible to test different climate models or scenarios, and the significance of

differences and uncertainties within these models has not been tested.

4.3.2 Processing
Three climatic factors are included in the model:

 Rainfall data is included both in the Erosivity index of the Erosion index, and as a

separate factor

 Soil moisture

 Temperature

The processing of each dataset consists of simple arithmetic as discussed in 2.1.3.2 Climate

change, and the processing will not be discussed further.

49

4.4 Topographic data
Lastly the topographic data included will be described. Applied in the model are surface water;

lakes and rivers as well as urban areas. Even though all of these topographic features are

dynamic both in terms of size and probably also in impact on desertification, they are assumed

static. Modelling the temporal development of these topographic features is beyond the scope

of this project.

Including water bodies in this model is important as water is the primary constraint on

primary production. Including urban areas is important for two reasons. Firstly urban areas

physically obstruct natural development. Secondly urban areas will not be more and more

desertified, as they are a special type of land use, which responds very differently to changes

in climate and erosion.

4.4.1 ECRINS – Surface water data
The European Catchments and Rivers Network System (ECRINS) is the name a European

hydrographical model containing both river and lake data in Europe. The data is being used

for hydrographical purposes in by European Union institutions such as EEA and WISE (EEA

2012, 8).

ECRINS river data contains an information attribute named “SurfC”, which holds information

on the cumulated catchment area upstream (EEA 2012, 89). This field can be used as a size

factor to make large rivers (rivers with large catchments) count more than small rivers.

4.4.2 Corine land cover – Urban areas
Corine Land Cover (CLC) is a European project to create a land cover map of Europe derived

from satellite imagery. CLC 2006 provides data in 100 m spatial resolution with land cover

types defined in 44 different classes (EEA 2006, 6-7).

CLC classes 1-6 are defined like this:

1. Continuous urban fabric

2. Discontinuous urban fabric

3. Industrial or commercial units

4. Road and rail networks and associated land

5. Port areas

6. Airports

These 6 classes represent the two first super classes; urban fabric and Industrial, commercial

and transport units. These are the ones relating to urbanity and the ones that are extracted to

be included in the model. The remaining classes 7-44 represents other land uses which are not

included.

To include the rivers, lakes and urban areas in the model, they must be converted to a suitable

raster format the processes are very similar for the three datasets.

Even though the Corine data is already in a raster format this is not suitable for raster

calculations because it is a categorical dataset. There is no mathematical relationship between

50

the classes; class 4 is not twice the amount of class 2. To account for this the Corine data is

treated as a discrete vector dataset.

4.4.3 Gridding of topographic vector data
This process has the goal of quantifying the discrete topographical data, so they can be

represented as a continuous raster datasets which can be included in the model.

The impact on desertification of either of the topographic datasets is assumed to be

proportional to the amount of each feature in a cell times a weight factor.

Rivers are weighted by their cumulated catchment area (SurfC), so if cell A contains 200m

river with catchment of 10 km2, and cell B contains 400m river with catchment of 20 km2, cell

B has four times “as much river” as cell A.

Urban areas are assigned a weight of 2.0 for Continuous urban fabric, and a weight of 1.0 for

the other classes. So if Cell A contains 400 m2 industrial and commercial units and cell B

contains 200 m2 continuous urban fabric, cell A and B are equally urban.

Lakes are not weighted; they are measured only by their size.

The gridding follows these steps, illustrated in Figure 24:

1. Spatial intersection between the grid

and the vector features, dividing the

features at each grid border.

2. Calculation of measure of each divided

feature.

a. Rivers: Length times SurfC

b. Urban: Area times 2 for

continuous urban fabric, times 1

otherwise

c. Lakes: Area

3. Spatial join, matching each divided feature with a cell.

4. Add up values.

Figure 24 - Gridding process for

topographical vector data

51

4.5 Non data specific processing
Each model variable has now been processed to a state where it is ready to be part of

desertification modelling. Two final processing steps remain before the data can incorporated

into this particular model. These processing steps are common for all data sets.

For the cellular automaton to function properly, data must be put in to a regular square grid,

as explained in section 2.1.3 Desertification cellular automata. This process is known as

gridding.

Secondly for the data to be modelled properly by the artificial neural network, the data values

must fall in the range of [0,1], to achieve this data must be normalised.

4.5.1 Gridding
As presented in the previous parts of this chapter, data from different sources is not in the

same format. Data does not have the same spatial resolution or the same projection. Classical

cellular automata requires all data sources to be in the same grid, therefore all data must be

fitted into a grid. This process is known as gridding. Most data sources have a finer resolution

than the grid, and the gridding process will lead to a loss of information, but for the climate

data, which is in 25 km resolution, the information density will have to be increased. Both the

downscaling and upscaling of information density, happens with interpolation. The gridding

was performed in ArcPy with the ProjectRaster function. This function reprojects an input

raster to a chosen projection with a chosen cell size and an anchor point. This way all data can

be projected to the same grid. The change of information density called resampling, is handled

by a chosen interpolation method. ArcGIS offers four choices of resampling technique (ESRI

2014):

 Nearest neighbour simply assigns the nearest value from the input dataset to each

cell.

 Majority assigns the most popular value from a filter window.

 Bilinear interpolation, which interpolates using the four nearest cell values.

 Cubic convolution, which interpolates using the 16 nearest cell values.

Nearest neighbour and Majority can be instantly ruled out as they are primarily targeted for

categorical data, such as land cover types or soil types. Both the Bilinear interpolation and the

cubic convolution are designed for continuous data, but based on different algorithms.

52

Bilinear interpolation and cubic convolution will be

tested in two different examples: For low resolution

data, that needs to be fitted in to a cell size smaller

than the original data, and high resolution data

that needs to be fitted into a grid of smaller size. In

Figure 25 gridding into 10 km cells of 25 km data is

illustrated. There is very little noticeable difference

between the results of the two algorithms. Both

reproduce the spatial pattern very similarly. One

important thing to note, is that the bilinear

interpolation decreased the value range of the data

from [50558, 0.0005] to [48895, 0.0052], while the

cubic convolution creates values outside of the

original value range. Cubic convolution even comes

up with negative values. Negative values for this

specific dataset are problematic as there cannot be a

negative Erosivity, because that would imply a

negative amount of rain. Not only are the negative

values problematic in a contextual sense, but it will

also have implications for the normalisation, if

negative values occur where they should not.

Figure 26 displays the result of resampling “the

other way around”, going from fine grained raster

size of 25 m to the same 10 km cells as before.

Here the two results are also very similar. In blue

two mountain ridges are marked on the original

data, these features can also be identified in the

gridded results. In red there are three cells which

seem to be miscalculated. The top one seems like it

should be darker, and the two next ones should be

lighter. This problem is caused by the fact that the

interpolation methods use the 4 and 16 “closest

cells” respectively. Closest here, refers to closest to

the centre of the output cell. In the three example

cells values in the middle does not correspond well

with the averages, and the algorithm fails. The

problem will be proportional to the difference

between cell sizes. The problem is tolerated as it is

expected to be small and because no other

resampling methods are available within the

ArcGIS environment. One might also note, that the

max values in both cases lies way below the max for

the original, this is caused by the way the

Figure 25 - Bilinear interpolation and

Cubic convolution of Erosivity data from

Ensemble. 25 km. to 10 km. resampling.

Figure 26 - Bilinear interpolation and

Cubic convolution of L factor data based

on the DEM. 25 km to 10 km resampling.

53

algorithms are calculated by fitting smooth curves on the data. This is not considered a

problem because it means that data will be less sensitive to a few extreme pixel values. Very

few pixels in this specific dataset have a value of above 100, so these few pixels will have less

of an impact on the dataset.

Overall the two methods yield similar results. To avoid values outside the original range

(especially negative values) bilinear interpolation is the chosen method, which is applied for

all datasets.

4.5.2 Normalisation
The aim of the normalisation process is, that all individual pixel values remain inside the

range of [0,1]. This can be achieved, by searching for the maximum value throughout all years,

and then simply dividing each raster dataset by this value.

The maxima are found using the ArcPy function GetRasterProperties.

It is not necessary to search for minima, as no model inputs deal with negative values, and

simply dividing the raster data by the maximum value will put all values inside the range of 0

and 1, and it will keep the spatial and temporal ratios of values between pixels.

4.6 Conclusions
In this chapter it was described which data is applied for the desertification modelling. It was

described how the net primary production values were derived from monthly NDVI data, as a

part of the desertification index. It now remains to be investigated whether the yearly rainfall

data or the yearly soil moisture averages should be combined with the NDVI integrals, to form

the desertification index.

It was described how the erosion index has three possible rasters based on different slope

length maximum limit (λmax). It now remains to be explored which limit, or if any limit at all

will yield the best predictive erosion index.

It was also described how the topographic data could be included in the model, which only

accepts continuous raster datasets.

Finally it was described how the datasets could be conformably arranged, to meet the

requirements of the cellular automaton and artificial neural network modelling.

All data processing not described in this chapter, is left out because it is performed using

simple raster calculations based on equations stated in chapter 2 Theory.

54

55

5 Modelling
In the following chapter the modelling of the desertification simulation will be described and

discussed. This will be laid out in six subchapters. The first three subchapters describe the

model structure, and modelling choices; first an overview of the model will be drawn and then

in the two subsequent subchapters the two main components of the model, the cellular

automaton and the artificial neural network will be discussed individually.

Next the two candidates for desertification index will be compared, to see which one is better

fit for its purpose. The next subchapter deals with the practical implementation of the model,

which includes an explanation of how the implementation code works.

Finally the sensitivity of the implemented model will be tested.

5.1 Model overview
The model is a fuzzy cellular automaton with transition rules defined by the regression

capacities of an artificial neural network. This means that the desertification, that is being

simulated, is given by a scalar between 0 and 1 corresponding to the degree of desertification

in each cell. It is modelled in a discrete grid in discrete time steps. The degree of

desertification can be found in two different ways:

 For model training, meaning for any point in time until now. The desertification index

is calculated by remotely sensed data and historical meteorological data like described

in the previous chapter.

 For model simulation, meaning for any point in time after present, where remotely

sensed data and historical meteorological data will not be available, the desertification

index is the output of the model.

For the model to be able to run iteratively into the future, each input of the model has to have

two sources of data, just like the desertification index as described above; one for the model

training and one for model simulation.

56

Figure 27- Model overview

On the left, the model inputs are displayed in three main categories: The cellular automata

related inputs, the climatic inputs and the topographical inputs. These inputs are then

processed through an artificial neural network to compute an output value for each cell in a

grid this output is used to compare with observed data for training the neural network and to

simulate the desertification process.

57

5.2 Cellular automaton modelling
As described in section 2.2 The cellular automaton, cellular automata are a family of models

which holds a range of properties which determines which kind of CA model it is. Setting

these properties appropriately to match the aim of the model is what is called CA modelling.

So in the following these parameters will be discussed and selections will be explained.

5.2.1 The properties
The following discussion is based on the properties described in section 2.2.1 Defining

characteristics.

5.2.1.1 The grid

The grid is a two dimensional square grid. It is in two dimensions because the phenomenon of

desertification is happening primarily in two dimensions. This is realised in the Lambert

Azimuthal Equal Area projection, which ensures that the cells are in fact equal area across

the studied area. The implication of having this projection is that the angles will not be equal

across the studied area, so the cells will in fact not be perfectly square, but slightly skewed one

way or the other. The consequences of this are assumed to be almost nonexistent due to small

geographical scale, and the distance from the projection origin.

The grid also needs a size. Unless all used data is recorded in a way that favours a certain cell

size, for example if all data was already in the same grid, selecting a grid size is something

that is difficult to substantiate. There should be enough cells to see spatial patterns; there

should be enough cells for meaningful model training. Too many cells will mean longer

calculation time and problems with resampling data with lower resolution to this small cell

grid.

The cell size is tested for three values; 5 km, 10 km and 20 km to see how sensitive the model

is to this parameter. This test is described in 5.6 Model sensitivity.

5.2.1.2 The cell states

The cell states, which describes the level of desertification in each cell, is selected to be a fuzzy

variable from 0 to 1. As explained in 2.1.2.2 A desertification index, this value is based on the

primary production per available water unit. This means that higher values correspond to

more primary production per available water unit, which means desertificated cells will have

low values. The desertification index is given by yearly net primary production divided by the

water availability, and as explained in 4.5.2 Normalisation this is normalised to always

remain in the range of 0 and 1.

5.2.1.3 Time

In cellular automata, time is kept in discrete time steps of a given length. As much of the

climatic data this model is based on, has a specific intraannual trend the time steps should not

be less than one year. As an example, the primary production happens very differently

throughout the year, and the year cannot be subdivided in a meaningful way. How many years

one time step should consist of, is a balance of the amount of available data. On the one hand,

more years in a time step would ensure more stable trends and more accurate results and the

58

phenomenon of desertification might not be necessary to study on high temporal resolution.

On the other hand longer time steps will decrease the number of available time steps for

training. The MODIS NDVI product is only available for the complete years 2001-2013 which

is 13 years. This leaves the following options:

Figure 28 - Four different time step options

All these options will yield different results in terms of accuracy and temporal resolution. The

model can be adjusted to use any of these settings.

The 1 year resolution is used for all results, this implies that no data is lost and there are 11

available training dataset pairs.

5.2.1.4 The transition rule

How cells transition in time, should be a continuous function of desertification level and

external factors. As displayed in the model overview, Figure 27 in section 5.1 Model overview,

this will be an eight dimensional function as there are a total of eight inputs. To find a fitting

function could prove difficult without much knowledge about how the function is supposed to

behave, also studying the function in different domains across all the dimensions, with all the

unknowns of the modelling seems like a task for a computer. While extremely fast at complex

calculations computers are poor at seeing patterns and making decisions. Therefore the

transition rule function is defined in a flexible way to support whatever configurations the

model is tested with, by always seeking the smallest possible error. This is achieved through

an artificial neural network regression, the modelling of which is the focus of the subsequent

subchapter.

5.2.1.5 The neighbourhood

As discussed in section 2.2.3 Desertification cellular automata, a small neighbourhood seems

more appropriate. Therefore the following two neighbourhood sizes will be tested: the Moore

neighbourhood, consisting of the 8 surrounding cells, and the double Moore neighbourhood,

consisting of the Moore neighbourhood and the 16 cells on the outside of the Moore

neighbourhood.

The neighbourhood values are included by the ArcPy function Focal statistics. This allows the

summing of all cells in a 3x3 or 5x5 neighbourhood. The middle cell of the neighbourhood has

already been included so this value is subtracted, and finally the value is divided by the

number of cells included 8 (32 - 1) for the Moore neighbourhood and 24 (52 - 1) for the double

Moore neighbourhood). The division is performed to ensure that the value stays between 0 and

59

1. On the edge of the dataset, it will not be possible to collect data for the entire

neighbourhood. This will cause the neighbourhood values to be lower than in other parts of the

grid, and make the calculations for these cells go sour. This problem is handled by only

dividing by the number of included cells.

Figure 29 - Number of neighbours of edge cells

Figure 29 shows an example of how the number of available neighbours is counted for the

Moore and the double Moore neighbourhoods, near the edges of the dataset. This can be

computed by using the same ArcPy function, Focal statistics, on a raster grid where all cell

values are 1.

When the above is performed as explained, all neighbours are equally weighted, and this may

not be correct, as discussed in 2.2.1 Defining characteristics. To introduce a decay function,

the neighbourhood values must be weighted by a function of how far away they are. The

functions tested will be

 and

. This is also achieved with ArcPy Focal statistics. In this

case the Focal statistics sums using a weight matrix. A script for creating these matrices can

be found in Appendix 2.

60

Figure 30 - Focal statistics using a raster of ones. White cells in the centres represent the maximum

values.

Figure 30 displays the different distance decay functions and neighbourhood sizes applied to a

grid of ones, with cell size 20 km The rasters displayed in Figure 30 show how many weighted

cells each cell will include in the calculation and therefore they can be used to normalise the

neighbourhood calculation.

61

5.3 Artificial neural network modelling
Just as the cellular automata part of the modelling has a range of properties to be determined,

so does the ANN. These will be discussed in the following.

5.3.1 The activation function
All values used in the modelling are measures of something; primary production, erosion,

nearby surface water etc. They are measuring the amount of something, and are therefore

never negative. There cannot be a negative soil erosion, primary production or surface water.

As all values lie in the positive range, they can be normalised to lie between 0 and 1, just by

dividing with the maximum value (see section 4.5.2 Normalisation). This is the range where

the logistic sigmoid function operates, therefore this activation function is chosen for the

artificial neural network, and not the hyperbolic tangent.

5.3.2 Network architecture
The network architecture describes the number of layers, neurons and connections of the

ANN. Here only considered are the feed forward ANNs with one hidden layer. For both the

input layer and the hidden layer there will be one bias neuron transmitting ones. The output

layer will have one neuron, which is the output desertification index for the next time step.

The input layer will have one neuron for each input value plus one for the bias. The input

values are:

 Desertification index

 Neighbourhood value, calculated from the desertification index of surrounding cells

 Erosion index

 Average temperature

 Total rainfall

 Nearby rivers

 Nearby Lakes

 Nearby urban area

 Bias

So there will be a total of 9 neurons in the input layer.

The number of neurons in the hidden layer is less simple; there are no easy rules to determine

which number is the best (Li and Yeh 2001, 1460). The optimal numbers of neurons usually lie

between the number of input neurons (9) and the number of output neurons (1) so a good

guess would be around 5. Therefore the network will be tested with both 4, 5 and 6 neurons in

the hidden layer, and one of these neurons will be a bias neuron.

62

5.4 Modelling with the desertification index
As was concluded in section 2.1.2.2 A desertification index, there are two candidate

desertification indices:

 Above ground net primary production per mm rainfall

 Above ground net primary production per kg water of soil moisture

The following section is a discussion of which one to use in the model. The desertification

index is the most important factor in the model. It is the internal factor which the modelling is

based on, and the one which the output of the model should resemble. The index of

desertification should therefore ideally match the initial ideas about how desertification

evolves in time. As discussed in section 2.1.2.2.2 The variability of weather, desertification is a

slow process so the index should be stable, cells should not change dramatically from one year

to the next (unless of course the land use is changed).

Figure 31 - The rate of change of the two candidate indices

Figure 31 clearly depicts the difference in stability of the two candidate indices. The

desertification index with soil moisture content as a normaliser is not stable. All training

pixels show on average almost 10% change from year to year, but it is much more stable than

its rival candidate. In 2007 large parts of the training area experienced major rainfall, which

could not be converted into primary production. The soil moisture was less sensitive to this.

On this basis, the more stable and less noisy desertification index, based on soil moisture

content is chosen.

The structure of the model and all of its components are now drawn. The cellular automaton,

with the artificial neural network as transition rule, is modelled to simulate desertification.

63

5.5 Model implementation
In the following the practical implementation procedure of the model is described. The

implementation of the model was performed in Python using the ArcPy module which allow

ArcGIS raster calculations in the python environment. In the following the implementation of

the model will be explained. Only the key lines of code will be described, the model code in its

entirety can be found in Appendix 1.

The following subchapter consists of two sections; one concerning the implementation of the

artificial neural network, and one concerning the CA part of the model. The reader might

notice that this is the reversed order as compared to earlier in this chapter and in previous

chapters where; first the cellular automaton was explained, then the artificial neural network.

This is because the artificial neural network can be viewed as a component of the CA model –

the transition rule. For implementation however, the ANN comes first. First the all

components must be defined, and then they are applied. So the description in the following

matches the order of the actual code.

5.5.1 Artificial neural network implementation
In the following the artificial neural network part of the model implementation is described.

The ANN part of the model consists mainly of three methods; one for running the network,

one for arranging raster data as trainable sets of pixel values and one for training the

network. These three methods are described in the following.

5.5.1.1 General implementation strategy

The artificial neural network was implemented as three lists, one for each layer (input,

hidden, output) and each neuron was implemented as class object. This is not an efficient way

of implementing the neurons, as it blocks for the use of matrix multiplication. The focus in the

implementation is to give the reader an overview of what happens and how it happens, not

computational performance.

Weights are initiated in the range of 0.1 and -0.1, in all experiments the same initial weights

have been used.

5.5.1.2 The Run method

The run method generates the output from the input, this is the method which is meant to be

run when the network is trained. Basic arithmetic operations like +,-,* and / in python both

handles numbers and Rasters, when the ArcPy module is initialised. The activation function is

implemented using ArcPy raster calculation interface so it also both handles rasters and

single numbers:

#sigmoid

def activation(a):

 return 1/(1+Exp(-a))

where the exponential function Exp(-a)is an ArcPy raster calculator function that can handle

both individual numbers and full rasters cell-wise.

64

In this way the run method can both be used to process single numbers, which will be needed

when the network is trained, and for a whole raster simultaneously, when the network is fully

trained.

The run method takes a list of input values, equivalent to the number of neurons in the input

layer.

 First an iteration through input values, to assign them the neurons in the input layer,

named “inputs”.
 for i in range(numinputs):

 inputs[i].val = inputnumbers[i]

 Now all values from the input layer neurons are linearly combined to the hidden layer

and processed in the activation function. This is performed for every non bias neuron in

the hidden layer.

 for neuron in hidden1:

 if not neuron.bias:

 sumval = 0

 for inpval in neuron.getConsTo():

 sumval += inpval.val*inpval.getWeight(neuron)[0]

neuron.vsum = sumval

neuron.val = activation(sumval)

 Then an almost identical process is performed to find the incoming and output values

of the output layer neurons.

 for neuron in outputs:

 sumval = 0

 for inpval in neuron.getConsTo():

 sumval += inpval.val*inpval.getWeight(neuron)[0]

 neuron.val = activation(sumval)

 neuron.vsum = sumval

 Finally the values of the output neurons are collected into a list and returned as a

function result.

 outputvals = []

 for out in outputs:

 outputvals.append(out.val)

 return outputvals

5.5.1.3 The training set generator

This method generates a training set, based on inputted rasters and an expected output

raster. A training area has been defined as a rectangular area in the centre of the research

area, see section 3.2 Geographical research area.

65

The method takes the input and output rasters.

 First all rasters are converted into numpy matrices, for the training area.

 trainingcorner = Point(3082508.745,1723162.51)

 nprasters = []

 for ras in inputrasters:

 nparr = arcpy.RasterToNumPyArray(ras,trainingcorner,27,20)

 nprasters.append(nparr)

 npout = arcpy.RasterToNumPyArray(expectedoutput[0],trainingcorner,27,20)

 Then each point on the raster is treated as a training set. Lists of spatially

corresponding points are grouped together as training sets, so the k’th element of ‘ins’

are the input pixel values of the same area as the k’th element of ‘outs’.
 ins = []

 outs = []
 for i in xra:

 for j in yra:

 runvals = []

 for ras in nprasters:

 runvals.append(ras[j,i])

 ins.append(runvals)

 outs.append([npout[j,i]])

 Then ins and outs are returned.

5.5.1.4 The Rprop algorithm

The network is trained with the Rprop algorithm as described in 2.3.2.1 Training algorithms.

Rprop is implemented as a function that takes a list of input values for each training set, the

corresponding output values (the output of the training set generator function) and an integer

determining how many iterations of the Rprop algorithm that should be carried out.

 For each training iteration run the following:

o For each training set of corresponding inputs and expected output:

 First the run method is executed to find out how different the output is

from the expected output – the error

 Then the node delta for each node in the output layer are calculated.

 , where the sum is the incoming value not the

outputvalue

 for neuron in outputs:

 neuron.nodeDelta = -error*actder(neuron.vsum)

 Then the error is backpropagated to the hidden layer, and the node

deltas for the neurons in this layer are calculated by summing weights

and node deltas for all outgoing connections:

66

for neuron in hidden1:

 if not neuron.bias:

 ndelta = 0

 for con in neuron.getConsFrom():

 ndelta += neuron.getWeight(con)[0]*con.nodeDelta

 neuron.nodeDelta = ndelta * actder(neuron.vsum)

 Then the gradient for each weight is calculated or recalculated. For each

weight, five numbers are stored; the weight, the gradient, the previous

weight change, the previous gradient and the learning rate.

The gradient for the current data point is simply the negative product of

the neurons outgoing value and the nodeDelta of the neuron it is going

to. This gradient is then added to the recorded gradient. This will result

in the sum of all gradient calculations for the same weight, and thereby

in the end be negative if the gradients are mostly negative and vice

versa. Only the gradient is updated in this step (info[1]) the other

elements are left untouched.

 for layer in layers[:-1]:

 for neuron in layer:

 for toNeuron in neuron.weights.keys():

 #[weight,gradient,dweight,previous gradient,lr]

 this_grad = -toNeuron.nodeDelta*neuron.val

 info = neuron.weights[toNeuron]

 info[1] += this_grad

 neuron.setWeight(toNeuron,info)

o The looping of each training set is now exited. So the following is only executed

once per iteration, and not for each training set.

At this point we know if the gradients are overall positive or negative in the

training set so based on the Rprop algorithm the weights are updated. See

2.3.2.1 Training algorithms.

 for layer in layers[:-1]:

 for neuron in layer:

 for toNeuron in neuron.weights.keys():

 #[weight,gradient,dweight,previous gradient,lr]

 this_grad = neuron.weights[toNeuron][1]

 prev_grad = neuron.weights[toNeuron][3]

 prev_lr = neuron.weights[toNeuron][4]

 prev_dw = neuron.weights[toNeuron][2]

 #same direction

 if this_grad*prev_grad >0:

 lr = min(prev_lr*Eta_plus,lr_max)

 dw = -np.sign(this_grad)*lr

 #opposite direction

 elif this_grad*prev_grad<0:

 lr = max(prev_lr*Eta_minus,lr_min)

 this_grad = 0

 dw = -prev_dw"

 #new direction (prev_grad = 0)

67

 else:

 lr = prev_lr

 dw = -np.sign(this_grad)*prev_lr

 newW = neuron.weights[toNeuron][0] + dw

 neuron.setWeight(toNeuron,[newW,0,dw,this_grad,lr])

This concludes the artificial neural network part of the model implementation. The usage of

the ANN follows this structure:

 The modules are imported and the network is initialised.

 Training sets are generated from the rasters

 The network is trained using rprop algorithm

 The Run method can now serve as the transition rule for the cellular automaton

5.5.2 Cellular automata implementation
In the following the CA model implementation is described. In this part of the model

implementation no methods are defined. Only the ones defined in ArcPy are used. The code

displays the simplicity of cellular automata, as only a few lines of code is needed.

 First the neighbourhood weight matrices are defined. Four possible settings are used,

these are defined by a txt document, as described in section 5.2.1.5 The neighbourhood,

_nbhsize==1 refers to the single Moore neighbourhood, and _distdec == 'sqr'refers

to the distance decay using square distances.

 if _nbhsize==1:

 if _distdec == 'sqr':

 nbhweights = os.path.join(kernalfolder,'mooresqr.txt')

 else:

 nbhweights = os.path.join(kernalfolder,'moore.txt')

 else:

 if _distdec == 'sqr':

 nbhweights = os.path.join(kernalfolder,'2mooresqr.txt')

 else:

 nbhweights = os.path.join(kernalfolder,'2moore.txt')

 Then a normalisation raster is prepared. This aims to find out how many neighbours

are included for each cell, and what are their weights. This is performed using

FocalStatistics on a raster grid with the value 1 in each cell (called ‘grid’). This

raster uses the weight matrix chosen in the previous step.

nbh_norm = FocalStatistics(grid,NbrWeight(nbhweights), "SUM","")

 Now the actual neighbourhood value raster is calculated. This is performed in the exact

same way, but now the desertification index is the input (called ‘di’), instead of a raster

of only ones. This raster is then normalised by division with the normalisation raster

defined in the previous step.

nbh = FocalStatistics(di, NbrWeight(nbhweights), "SUM","")/nbh_norm

This raster ‘nbh’ along with ‘di’ and the other input rasters, can now be used in the already

defined training and run methods. And this concludes the model implementation.

68

5.6 Model sensitivity
Now only a few questions remain open in the modelling process. These last uncertainties will

be determined with experiments that aim to test which are the best options and how sensitive

the model is to minor changes. Ideally all setup combinations would be tested, but due to time

constraints this has not been possible.

Data from 2013 are withdrawn from the training data pool. The model is trained using all

remaining data, and then the model is run for 2012 data to see how well the model predicts

the 2013 data.

The variables tested are:

 Erosion index L-factor λmax

o No λmax

o λmax of 1000 m

o λmax of 100 m

 Grid size

o 5 km

o 10 km

o 20 km

 Neighbourhood size

o Moore neighbourhood

o Double Moore neighbourhood

 Decay function

o

o

 Neurons in the hidden layer

o 4

o 5

o 6

In all experiments the neural network converged, each training process was stopped after 50

Rprop iterations.

5.6.1 L-factor limit
Whether there should be a limit to the λ in the Rusle L-factor or not, is tested in the following.

The following three experiments are performed, with these settings in common:

Grid size: 10 km, neighbourhood size: double Moore, decay function:

, hidden neurons: 4

 L-factor with λmax

 L-factor with a λmax of 1000 m and

 L-factor with a λmax of 100 m

69

Figure 32 - Error rasters L-factor experiments. No limit, 1000 m limit and 100 m limit

Figure 32 shows the results of the three experiments in terms of absolute error, bright colours

signify a high error(up to around 0.3 (White), and dark colours signify a low error, black is

zero). The three results are very similar, they do well in the same geographic locations, and all

of them does not do well in the north western corner. The average errors are measured to be:

 No λmax: 0.052

 1000 m λmax: 0.054

 100 m λmax: 0.055

So almost no difference, but the experiment without a limit seems just a tad better. There is

no guarantee that the no limit λ, is better with different settings for the other parameters. But

at least the difference will most likely be very small.

5.6.2 Grid size
The following three experiments is meant to test the significance of the grid size. Just like in

the prior set of experiments all parameters, except the one that is being tested, are held

steady, while the grid size is varied.

Figure 33 - Error raster from the grid size experiments. 5 km, 10 km and 20 km cells

Here the settings kept constant were: no λmax, neighbourhood size: double Moore, decay

function:

, hidden neurons: 4. Again the results are quite similar, in terms of errors. The

average errors are:

 5 km: 0.051

 10 km: 0.052

 20 km: 0.055

70

It is unexpected that the finer grain size show higher accuracy. One could expect that bigger

cells would be easier to predict, as the values averages of larger areas. But the differences are

very small, and the model is also not very sensitive to cell size. Also noteworthy, is that we see

the exact same spatial error pattern in all three experiments.

5.6.3 Neurons in the hidden layer
To test the result of having different number of neurons in the hidden layer, again three

experiments are performed, this time to see the effect of altering the number of neurons in the

hidden layer. The three following experiments have these settings in common: Grid size: 5 km,

no λmax, neighbourhood size: double Moore, decay function:

.

Figure 34 – Error rasters from the experiments regarding neurons in the hidden layer. 4, 5 and 6

From Figure 34, again we see a very familiar result; similar spatial patterns and similar

values.

 4 Neurons: 0.051

 5 Neurons: 0.049

 6 Neurons: 0.050

The best result appears when there are 5 neurons in the hidden layer, this could be a sign

that, when 6 neurons are applied the model overfits the training data, and the model is too

specific to the training data, to be generally applicable, and so it fails in predicting new data.

But the difference is very small and making any absolute conclusions from just this one

example is not possible.

5.6.4 Neighbourhood
In the following experiments, two related factors are tested, the neighbourhood size and the

decay function. This yields combinations which are all conducted with these settings: Grid

size: 10 km, no λmax, 5 neurons in the hidden layer.

71

Figure 35 - Error rasters of the neighbourhood experiments. Single Moore neighbourhood and

 as

decay function, single Moore neighbourhood and

 as decay function, double Moore

neighbourhood

 as decay function, double Moore neighbourhood and

 for decay function.

The four experiments once again, show very similar outputs. The main values of the error in

the same order as presented in Figure 35:

 Single Moore neighbourhood,

 as distance decay: 0.050

 Single Moore neighbourhood,

 as distance decay: 0.052

 Double Moore neighbourhood,

 as distance decay: 0.052

 Double Moore neighbourhood,

 as distance decay: 0.053

Very slight differences, but the experiment yielded a better result using the smaller

neighbourhood, and

 as decay function.

5.6.5 Best options
Apart from the partial results from the previous experiments, a few other setting

combinations were tested. The experiment which overall yielded the best result had the

following settings:

Grid size: 10 km, no λmax, 6 neurons in the hidden layer, double Moore neighbourhood and

as distance decay. This option yielded an average error of 0.038. As previously stated, not

every combination of settings has been tested, and there might be a better setup.

72

5.6.6 Conclusions
Drawing conclusions from these results is not easy, because every result is nearly identical.

The most noteworthy experience is how little a difference it makes, when these parameters

are adjusted slightly. When one setting shows a better result in terms of average error it is not

a proof that this setting is better for two reasons:

 It could be coincidental. The test sample is small, and the way data is split into a grid

could favour one thing or the other based on where the grid is.

 Even if the variable setting is better in one setting for the other variables, it is not

necessarily better with different settings for the other variables.

The best guess based on these experiments is these experiments are that the settings should

be:

 L-factor with no λmax

 Grid size 10 km

 6 Neurons in the hidden layer

 Double Moore neighbourhood

 as distance decay function

73

5.7 Collective conclusion
In this chapter it has been showed how a model for predicting desertification can be built from

cellular automata with an artificial neural network as transition rule. The answer to the first

three research questions has been found.

In reference to the first research question regarding the model inputs, the following inputs

have been shown to be usable in the model:

 A desertification index calculated by dividing net primary production by average soil

moisture. The net primary production can be derived from NDVI images.

 Neighbourhood values consisting of the average of the values in the double Moore

neighbourhood with the decay function

, calculated from the desertification index.

 An erosion index based on RUSLE where the L-factor can be calculated using ArcGIS’

hydrology toolsets without a λmax.

 The average temperature

 The total rainfall

 The amount of nearby river surface water

 The amount of nearby lake surface water

 The amount of nearby urban area

In reference to the second research question regarding cellular automata modelling, it has

been concluded that all the above listed data input should be put in to a square grid using a 10

km grid size in an equal area projection, though other grid sizes can work almost equally well.

The cellular automaton is based on fuzzy indices rather than classes, and the transition rule is

a continuous function derived by applying an artificial neural network.

In reference to the third research question regarding the modelling of the artificial neural

network, the following setup has been found successful:

 Feed forward network with one hidden layer

 Training based on the Rprop algorithm, training for a range of single cell values.

 6 neurons in the hidden layer.

74

75

6 Results
In this chapter the model developed in the previous chapters will be evaluated. The best

settings found in section 5.6.5 Best options, are used again, this time with more training

iterations.

Figure 36 - Evaluation of the model output for 2013. Target raster, predicted raster and the absolute

difference.

Figure 36 displays the target raster and the predicted raster, for the desertification index of

2013. It shows many similarities in terms of spatial variation. The model correctly predicts

where high DI values and where low DI values are found, based on past data.

The model however, does not reproduce the individual values very precisely. Figure 36 also

displays the absolute error. On average the prediction is 0.0372 off. This provides an answer

for the fourth and final research question which relates to the accuracy of the model; the best

prediction for 2013 has a mean absolute error of 0.0372. The 2013 target raster has a mean

desertification index value of 0.378, so the inaccuracy is 9.84 %.

For this forecast, unlike the sensitivity experiments in the previous chapter, the Rprop

algorithm was allowed to run for more iterations.

76

Figure 37 - Training error (sum of squares)

Figure 37 shows the training performance progress of the Rprop algorithm in the artificial

neural network. The training error is measured in summed squared errors for 1430 training

samples across the 2001-2011 data sets. As Figure 37 displays, the training process converges,

and after iteration 60 the error decreases very slowly, and not much improvement is found.

77

7 Discussion
In chapter 6 Results the best model prediction for the desertification of 2013 was displayed.

On one hand, the results demonstrate some of the possibilities of the combination of cellular

automata and artificial neural networks, there was a low level of sensitivity to small

alterations, demonstrated in section 5.6 Model sensitivity, which showcases some of the ability

of the artificial neural network to react to data noise. On the other hand the results also show

an inaccuracy of 9.84 %. In the following the strengths and weaknesses of the models will be

discussed with the goal of drawing conclusions from the modelling process.

When evaluating a result like the one presented in the previous chapter, the context of the

evaluation is important. The model was inspired by the threads posed by desertification, and

the lack of knowledge relating to the advancement in terms of speed and extent. If politicians

and planners are to act on the basis of modelling results, the accuracy of the model is

paramount. 9.84 % average error is a substantial amount, and as such it is not possible for

politicians and planners to make decisions on the basis on a model with amount of much error.

The result presented in the previous chapter has one CA iteration. It predicts 2013 from 2012

data, in an ideal scenario, it should be able to iterate further and predict 2014 based on the

predicted 2013 output, and then again 2015 and so on. In an iterative process like this, the

error can potentially increase for each iteration and it may effectively change the conclusion

from “the area is in recovery” to “the threat is increasing”.

But that does not mean that the attempt was in vain. The modelling process was constrained

by time and data availability. Many possible improvements to the model do exist.

7.1 The desertification index
To improve the model a good place to start would be the desertification index. The

desertification index needs to be stabilised to a higher degree, this can be done by working

with the processes behind the net primary production. In section 5.4 Modelling with the

desertification index, we saw that the net primary production varies from year to year, and

the average soil moisture level does not stabilise the primary production sufficiently. The

index must be modelled more carefully, by including biochemical knowledge about primary

production. The index, as described in section 2.1.2.2 A desertification index, is based on the

work of le Houérou (1983) and Prince et al. (1998) both sources used the index for longer

78

periods, and maybe the index is not fine tuned enough to work with, in as high a temporal

resolution as only one year.

The modelling described in the previous chapters is based on data from 2001 to 2013, this may

be too short a time frame. The data availability was the limiting factor for this choice. Perhaps

the applied NDVI data could be combined with other older datasets to extent the analysis to

include more years. Satellites with the AVHRR sensor have previously been applied in

desertification studies.

By stabilising the desertification index through a more accurate measure and a longer study

period the result will change drastically, and if it helps to predict desertification, it is worth

investigating.

7.2 Model design
The model design needs further development. Several elements can be improved either

through experimentation or deeper study of how the model components react in different

setups.

The architecture of an artificial neural network is paramount for its functionality. For this

reason much research has been conducted, trying to uncover the secrets of architecture in

artificial neural networks. In section 5.6 Model sensitivity only a few architectures were

tested, by having a different number of neurons in the hidden layer, but many more elaborate

experiments could be interesting. But also the network could be build with more hidden layers

or with recurrence, where connections in the network are allowed to loop. One of the dangers

of having too advanced a network is over fitting. The function might incorrectly fit the noise in

the training data, and then expect the same noise in its predictions. To fight this, the amount

of training data can be increased by widening the training area, or as previously suggested,

having data available from more years.

Also experimentation with more than one hidden layers, could possibly enhance the network

capabilities.

Another one of the shortcoming, which has already been discussed, is the lack of modelling of

human interventions. Perhaps most importantly is the artificial irrigation. An artificially high

level of primary production can be observed, in spite of terrible rain deficits. Information about

the spatial patterns of irrigation could have a big impact on the model accuracy. But then

another problem arises; how could these irrigation patterns be predicted? It seems that the

desertification of a highly developed agricultural region is

7.3 Methodological improvements
The following deal with possible improvements which could be included in the modelling and

data processing. These were performed differently due to time constraints.

7.3.1 Cross validation
The model settings have been tested, by seeing how well all data up until 2012 predicts 2013

data. This is a fragile validation method, as 2013 may not be a very good validation example.

79

If more time was available the validation and experimentation process would have used every

time step as validation by excluding it from the training data pool, and trying to predict it.

This is called cross validation.

The model is meant to make predictions more than one time step into the future, so having

that in mind, the validation process should include iterative model predictions to see how the

model behaves when the model is less controlled by the known data.

7.3.2 Cloud removal
Perhaps the most important data set in the modelling is the NDVI data, from which the

desertification index originates. The NDVI was to some degree afflicted by cloud

contamination. Cloud removal is a large field of research in remote sensing, and several

methods exist for removing clouds. Methods exists both for cloud removal based on data

cloning (Lin, et al. 2013), and based on time series analysis. Some combination of the two

fields would be appropriate in this case, as the process should both take account for spatial

relationships and for the trends in the NDVI data. Development of a methodology specifically

for this purpose could be a future research topic.

7.3.3 Resample techniques
In section 4.5.1 Gridding it was noted, that none of ArcGIS’ available resampling techniques

were good for resampling from very fine grained raster to a very coarse one. Other resampling

techniques could be included from other software. Or perhaps a new technique or techniques

could be developed from scratch; it seems that gridding for cellular automata, is unnecessarily

difficult using available tools.

80

81

8 Conclusion
The aim of this thesis has been to investigate how to combine cellular automata modelling

with an artificial neural network to model the geographic process of desertification.

It is concluded that a combination of cellular automata and artificial neural networks as

transition rule can, at least to some extent, work as a basis for modelling desertification.

It is important to have a good indicator for desertification. The index developed in the model

presented here is based on the RUE, net primary production and available water, as it was

suggested by le Houérou (1983) and Prince et al. (1998).

Also included in the model as inputs, are erosion based on RUSLE, temperature, rain, nearby

surface water and nearby urban area.

To model the spatiotemporal changes in desertification with cellular automata, all factors

were presented as fuzzy variables from zero to one. This means that the transition rule should

be a continuous function, and the degree of desertification is presented as a number between

zero and one. To model the desertification using a cellular automaton, the data should be

presented in a square grid using an equal area projection. 5 km, 10 km and 20 km has been

tested and they all yield similar results. The length of the time step has only been tested as

one year. Other time steps may be more suiting, as using longer time steps will even out some

of the noise of the data. Different neighbourhood settings have been tested, all with not too

different results, but the best one found was the double Moore neighbourhood with

 as

decay function.

An artificial neural network can be designed to find the transition rule function. This has been

successfully done with the Rprop learning algorithm. The network was designed as a feed

forward network with one hidden layer. The hidden layer was tested with 4, 5 and 6 neurons.

These test did not result in a clear cut conclusion, as in one example 5 was the better choice

and 6 in another. The conclusion is, that the number of neurons in the hidden layer should be

fine tuned as the last step in the modelling process.

Desertification proved not to be an easy modelling subject, at the selected temporal and

spatial scale. When subtracting 2013 from the training data pool, and predicting the 2013

data, the best prediction was off by 0.037 on average which is an accuracy of 9.84 %.

82

To improve the modelling accuracy it is necessary to investigate and address the elements

that hamper the modelling. Continued work to improve a desertification index, and to

investigate the factors that impact the process would be a good place to start. Also considering

ways to model the process with lower temporal resolution, on a longer time scale is believed to

potentially improve the results.

Desertification will have more and more focus in Europe in the future and as an increasing

amount of satellite data among other data accumulates and is improved in quality, the

possibilities for better predictions will also improve.

83

9 Perspectives
It is clear from the discussion and conclusion that the modelling of desertification is in no way

“solved”, and that science now can move on to other things. The work presented in the

previous chapters can lead to further research on the topics, and the model can be improved.

In the following chapter a few topics on further work and development possibilities will be

discussed.

9.1 Further research
Two things noted as possible explanations for the shortcomings of the designed models are the

data not included, and chosen time scale.

Desertification happens for two reasons, firstly ‘naturally’ due to climatic and

geomorphological reasons, secondly due to spatial and water mismanagement. The second

portion has not been included in this model, and that is a serious shortcoming. Land use

change can be modelled, and hence its impacts on desertification can also be included in this

kind of model. A cellular automaton could have two output values for each cell, which are

calculated simultaneously. In this manner land use and desertification could be modelled side

by side in an integrated model.

9.2 Other applications
The cellular automaton with artificial neural network as transition rule, has been tested for

desertification modelling. But it has many other possible applications in spatial modelling and

simulation. The artificial neural network also solves classification problems, so a cellular

automaton with a non continuous output is also possible.

84

References
Bishop (2006), Christopher M. Pattern Recognition and Machine Learning. Springer.

Böhm, U., et al.(2006). “ETHZ-CLM climate model output.” CLM.

Ding, Huo-ping, Jian-ping Chen, and Gong-wen Wang. (2009). “A Model for Desertification

Evolution Employing GIS with Cellular Automata.” International Conference on Computer

Modeling and Simulation: 324 - 328.

EEA (2006). “CLC2006 technical guidelines.”.

EEA (2008). “DISMED Sensitivity to desertification index (SDI).” EEA.

EEA (2012). “EEA Catchments and Rivers Network System.”.

EEA (2013). EU-DEM Metadata. http://www.eea.europa.eu/data-and-maps/data/eu-dem#tab-

metadata (accessed May 21, 2014).

ESRI (2014). ArcGIS Help 10.2, 10.2.1, and 10.2.2. 5 June 2014.

http://resources.arcgis.com/en/help/main/10.2/index.html#//00170000009t000000 (accessed

June 5, 2014).

FAO (1993). Sustainable development of drylands and combating desertification. FAO position

paper, Rome: Food and Agriculture Organization of the United Nations.

Gardner, Martin (1970). “The fantastic combinations of John Conway's new solitaire game

"life".” Scientific American: 120-123.

Gómez, Jorge García, Francisco López-Bermúdez, and Juan Manuel Quiñonero Rubio (2011).

“Land-use Changes, Desertification, and Climate Change Impacts in South-eastern Spain.”

Coping with Global Environmental Change, Disasters and Security: 935-945.

Houérou, Henri N (1983). “Rain use efficiency: a unifying concept in arid-land ecology.”

Journal of arid Environments: 213-247.

Igel, Christian, and Michael Huesken (2000). “Improving the Rprop Learning Algorithm.”

Proceedings of the Second International Symposium on Neural Computation: 115-121.

Intergovernmental Panel on Climate Change (2013). Fifth Assessment Report of the

Intergovernmental Panel on Climate Change. Working Group I Contribution, Cambridge

University Press.

IPCC WG3 (2000). “Emissions Scenarios.” Summary for Policy Makers.

Jenkerson, Calli, Thomas Maiersperger, and Gail Schmidt (2010). eMODIS: A user-friendly

data source: U.S. Geological Survey Open-File Report. USGS.

85

Li, Xia, and Gar-On Yeh (2001). “Calibration of cellular automata by using neural networks

for the simulation of complex urban systems.” Environment and Planning: 1445 - 1462.

Lin, Chao-Hung, Po-Hung Tsai, Kang-Hua Lai, and Jyun-Yuan Chen (2013). “Cloud Removal

from Multitemporal Satellite Images Using Information Cloning.” Transactions on Geoscience

and Remote Sensing: 232-241.

Linden, P., and J. F. B. Mitchell (2009). ENSEMBLES: Climate Change and its Impacts:

Summary of research and results from the ENSEMBLES project. Exeter: Met Office Hadley

Centre.

Liu, Yan (2009). Modelling Urban Development with Geographic Information systems and

Cellular Automata. Taylor & Francis.

Maria, Kouli, Pantelis Soupios, and Filippos Vallianatos (2009). “Soil erosion prediction using

the Revised Universal Soil Equation (RUSLE) in a GIS framework, Chania, Northwestern

Crete, Greece.” Environmental Geology: 483-497.

McKee, Thomas B., Nolan J. Doesken, and John Kleist (1993). “The Relationship of Drought

Frequency and Duration to Time Scales.” Eighth Conference on Applied Climatology: 179-184.

Middleton, Nick, and David Thomas (1997). World atlas of Desertification. UNEP.

Ministerio de Medio Ambiente (2008). “Programa de Acción Nacional Contra la

Desertificación.” Action programme.

NASA (2014). “Vegetation Index [NDVI].” NASA Earth Observations. Februar 2014.

http://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD13A2_M_NDVI (accessed May 29, 2014).

Nearing, M. A. (1997). “A Single, Continous Function for Slope Steepness Influence on Soil

Loss.” Soil Science society of America: 917-919.

Nicholson, Sharon E. (2011). Dryland Climatology. University Press, Cambridge.

Niemeijer, David, Puigdefabregas, Juan, White, Robin, Lal, Rattan, Winslow, Mark, Ziedler,

Juliane, Prince, Stephen, Archer, Emma and King, Caroline (2005) “Dryland systems.” In

Millinium Ecosystem Assessment, 623 - 662.

Oñate, Juan J., and Begoña Peco (2005). “Policy impact on desertification: stakeholders’

perceptions in southeast Spain.” Land Use Policy: 103-114.

Palmer, Wayne C. (1965). Meteorological Drought. Research Paper, U. S. Weather Bureau.

Panagos, P., K. Meusburger, C. Alewell, and L. Montanarella (2011). “Soil erodibility

estimation using LUCAS point survey data of Europe.” Environmental Modelling & Software:

143-145.

86

Panagos, P., K. Meusburger, C. Alewell, and L. Montanarella (2014). “Soil Erodibility

Estimation Using LUCAS Point Survey Data of Europe.” Environmental Modelling &

Software: 143-145.

Prince, S. D., E. Brown de Colstoun, and L. L. Kravitz (1998). “Evidence from rain-use

efficiencies does not indicate extensive sahelian desertification.” Global Change Biology: 359-

374.

Renard, K. G., G. R. Foster, G. A. Weesies, D. K. McCool, and D. C. Yoder (1997). Predicting

soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss

Equation. Handbook, USDA.

Riedmiller, Martin, and Heinrich Braun (1993). “A Direct Adaptive Method for Faster

Backpropagation Learning: The RPROP Algorithm.” Procedings of the IEEE international

conference on Neural Networks: 586-591.

Running, Steven, and Maosheng Zhao (2011). “Note to users on use of ODIS GPP/NPP

(MOD17) datasets.” Numerical Terradynamic Simulation Group.

Tobler, Waldo (1970). “A Computer Movie Simulating Urban Growth in the Detroit Region.”

Economic Geography: 234-240.

Tucker, C. J., C. Vanpraet, E. Boerwinkel, and A. Gaston (1983). “Satellite remote-sensing of

total dry-matter production in the Senegalese Sahel.” Remote Sensing of Environment: 461-

474.

UNCCD (2012). Desertification: A Visual Synthesis.

United Nations (1994). Report of the Intergovernmental Negotiating Committee. Paris: United

Nations General Assembly.

van der Knijff, J. M., R. J. A. Jones, and L. Montanarella (1999). Soil Assessment Risk in Italy.

Joint Research Centre - European Commission.

van der Knijff, J. M., R. J. A. Jones, and L. Montanarella (2000). Soil Risk Assessment in

Europe. Joint Research Centre - European Commission.

Wolfram, Stephen A (2002). A New Kind of Science. Wolfram Media.

Wolfram, Stephen A (1984). “Cellular Automata as a Model of Complexity.” Nature: 419-424.

Yu, Bofu (2008). “Erosion and Precipitation.” In Encyclopedia of Water Science, by Stanley W.

Trimble, 258-261. Francis & Taylor.

