Author(s)
Term
4. term
Publication year
2011
Submitted on
2011-08-31
Pages
72 pages
Abstract
Billede guidet radioterapi er selektiv og kan især målrettes i behandlingen af kræft væv. Ved at foretage en detaljeret og nøjagtig optegning af de kliniske behandlings områder kan terapi planlægning og variabiliteten imellem behandler forbedres. Målet med dette arbejde er at udvikle en kar segmenterings metode, som indirekte kan detektere lymfeknuder med en svag visuel fremtoning i medicinske billede modaliteter. Resultatet er en metode, som er designet I tre stadier. Første stadie anvender en region growing metode til at udtrække en initial kar struktur. Det andet stadie anvender ellipse features, som model for kar tværsnit, der definerer cylinder lignende kar segmenter. Tredje stadie sammenkæder den initiale kar struktur udledt I stadie et med kar segmenterne udledt i stadie to. Hele metoden er en semi-automatisk segmenterings metode, som kun kræver et manuelt valgt seed point. Fjorten bolus tracket CTA data set, som er optaget i bækken området, er anvendt I testen af metoden. Den initiale segmentering viste, at den automatisk udvælger en tærskel værdi og udtrækker en initial træstruktur uden at oversegmentere. I tillæg var stadie et I stand til at fjerne en betydelig volumen af knogle struktur. Den samlede segmenterings metode var I stand til at udvide den initiale træ struktur fra stadie et, med kar segmenter fra stadie to, dog med en mængde oversegmentering, Hvilket kan skyldes nogle valgte begrænsninger med hensyn til beregningskræft med mere. Metoden indeholder flere parameter som kan optimeres. Eftersom kvaliteten af CTA data varierer mangler der yderligere tests til at give indblik i metodens fulde potentiale. Som konklusion antages det at segmenteringsmetoden potentielt kan forbedre udtrækning af kar struktur I bækkenområdet. I et fremtidigt arbejde kunne algoritme optimering være det næste led I en udviklingsproces.
Image guided radiotherapy is selective in the targeting of cancerous tissue. An automatic detailed delineation of the clinical target volume may decrease the treatment planning and inter-variability among clinicians. The aim of this work is to develop a vessel segmentation method to indirectly detect lymph nodes with poor visual appearance in medical images. The method is designed with three stages. First stage uses a region growing method to extract an initial vessel tree volume. Stage two use elliptic vessel cross section features to define tube like vessel segments originally developed for image-guided peripheral bronchoscopy. Stage three connects the vessel tree volume from stage one and the vessel segments from stage two. The method is semiautomatic and only requires one manual selected seed voxel. Fourteen bolus tracked CTA data sets were used in the test. The initial segmentation method in stage one was able to automatically select a threshold and extract an initial vessel tree without over segmentation. In addition a bone filter successfully removed bone structure. The full segmentation method was able to extend the initial vessel tree with the defined vessel segments from stage two. However, the final extracted vessel volume was prone to over segmentation, which may be caused by selected computational delimitations in the method design. Several parameters in the method enable optimisation and since the quality of the CTA data varies, the potential of the method is not fully elaborated. In conclusion the segmentation method shows beneficial results and may potentially improve the extraction of vessel volume to guide radiotherapy.
Documents
Colophon: This page is part of the AAU Student Projects portal, which is run by Aalborg University. Here, you can find and download publicly available bachelor's theses and master's projects from across the university dating from 2008 onwards. Student projects from before 2008 are available in printed form at Aalborg University Library.
If you have any questions about AAU Student Projects or the research registration, dissemination and analysis at Aalborg University, please feel free to contact the VBN team. You can also find more information in the AAU Student Projects FAQs.