
 1 

 
 
 
 
 
 

Cooperative Mobile Positioning 
 

Data Fusion by 
  

Support Vector Machines (SVMs) 
 
 
 

 
Philippe LAURENT 

07gr1124@es.aau.dk 
 

June 2007, Aalborg University



 2 

Aalborg University 
E-Studyboard 
Mobile Communications 10th semester 
 
TITLE: 
Cooperative Mobile Positioning, Datafusion by Support Vector Machines (SVMs) 
 

 
THEME: 
Mobile Radio Communication 
 
 
PROJECT PERIOD: 
 
1st February – 7th June 2007 
 
 
PROJECT GROUP: 
gr 1124 
 
 
GROUP MEMBER: 
Philippe Laurent 
 
 
SUPERVISORS: 
Simone FRATTASI 
Joao Figuerias 
 
 
Number of duplicates: 3 
 
Number of pages in the report: 61 

Abstract: 
Emerging location based applications 

like security, monitoring, tracking, 

emergency and others require accuracy in 

localization information anytime and 

anywhere. This represents a great 

challenge for researchers and industry. 

We investigate a data fusion based on 

SVM. Previous works have already been 

done. The innovation in this report comes 

from the RSSI measurements that are the 

SVM input, and from the indoor (with 

AP, computers and MS) and specific 

outdoor (only AP and MS) environments 

considered. Algorithms were 

implemented to improve the MS position 

estimations (SVM output). We obtain the 

best results in indoor with 70% (60% in 

outdoor) of MS well predicted thanks to 

computers and MS cooperation. More 

cooperative algorithms can be associated 

with the previous ones to reach peak 

performance. 
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1. Introduction 
 
 

Until now a lot of work regarding geolocalization has been done. In wireless 
networks the goal was to localize as accurately as possible a sensor or a mobile 
station. Identifying the position of sensors nodes or mobile stations is really 
interesting and useful for the resource allocation and also to manage the network in 
term of efficiency. 
 
Several techniques have been implemented. They deal with different kind of 
information TDOA, AOA or RSSI. Let us take GPS where TOA measurements are 
considered. This technology does not fit when we consider urban environment 
because of the presence of buildings. Moreover, the cost is not negligible due to the 
high battery consumption. 
 
Other work has been done using the same kind of data as input. From those they can 
estimate the location of the sensor nodes. However, these techniques are subject to 
noise and to the cost of the localization. Indeed, to estimate mobile locations for 
instance we need BS which have to deal with several mobiles inside the coverage 
area. 

 
 

1.1 Related work: 
 
Regarding localization using SVM there are 2 different interesting works which 
have already been done [1] [2].  
 
The 1st work deals with RSSI signals and AP dispatched in the area considered. An 
SVM process is running in order to determine MS location according to the RSSI 
information. The output of this system, namely the estimation of the MS positions 
depends on a weighting process in which each MS position depends on his 
surrounding neighbors (AP). Probability calculations and weighting functions 
attributed to the MS’s neighbors give a predicted position. 
 
The 2nd work concerns a dispatch of a certain amounts of AP in a square area 
running SVM according to hyperplans (more explanations will be found in the 
SVM part 3.3). The project doest not handle RSSI measurements but distances 
between the AP. Moreover the environment considered does not include any 
obstacle (walls, buildings). 
 
 
1.2 Thesis contribution: 
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In our project, we deal with RSSI data as in the 1st existing work but otherwise than 
determining MS positions considering mathematical probabilities and dealing with 
a regression function our work is based on classification of data. 
 
Some of our Scenarios are based on the 2nd existing work in the sense that we 
classify data but we do not distance as input. In fact 2 signals received by a MS 
from 2 AP which are at the same distance to the MS can have 2 different RSSI. So 
our project deals with on more constraint. Moreover, we decide to use a more 
realistic environment. Finally, the number of APs seems too high in the existing 
work to fit with a real practical need. 
 
We decide to take into consideration WLAN technology. In fact, we consider 2 
different Scenarios. The first one is based on an outdoor environment in which w 
only consider LOS transmissions. The second is an indoor Scenario where both of 
LOS and NLOS transmissions are considered. 
 
 
Above is the organization of the report:  

 
 

• Chapter II explains the project description, which includes the Scenarios, the 
problem definition, the scope of the project and finally the necessary 
assumptions.  
 

• Chapter III deals with the background theory regarding fundamentals of 
positioning, localization according to hyperplans and also SVM. 
 

• In Chapter IV, we will talk about the protocols and network management, 
namely who runs SVM, transmit the data, and how to manage several APs in 
the same area.  
 

• In Chapter V, all the algorithms implemented, namely LSVM, MRA, OCA 
and ICA are explained 
 

• Chapter VI shows the simulation models, the results and the discussion about 
them. 
 

• Finally, Chapter VII concludes the project by presenting a sum-up of the work 
that has been done plus an overview of the future work. 

 



 10 

2. Project Description 
 
 

2.1.  Introduction 
 
We use cooperative mobile localization in this project to obtain a better localization. 
Using ad-hoc system and RSSI measurements will permit us to get better accuracy 
regarding the calculations of the positions. But we need to devise an accurate and 
efficient technique for fusing data. 
 
SVM has proved over the last 10 years its efficiency in solving classification problem 
[3] thanks to a strong mathematical theory and also the fact that it is adaptable to 
several kinds of data which has to be classified (text, image) [4]. From RSSI 
measurements in ad-hoc network and thanks to SVM we will be able to determine 
locations. 
 
2.2.  Scenario 

 
In this project we consider 2 different Scenarios: 
 
Outdoor Scenario: 
 
We consider an infrastructure link between the AP themselves and also the same 
infrastructure link between the mobiles and the AP. 
 
So we consider 1 communication possible: 
 

• Short range – WLAN (802.11g) between the access points and several 
mobiles connected thanks to infrastructure-based (AP->MS) and 
infrastructure-less (MS->MS) communications for the Scenario 1. 
 

All the AP are placed in the cell such that each mobile can communicate with the 
other mobiles. Let us consider that we have n different AP. We assume that the 
positions of k different APs (k<n) are known in order to determine the location of the 
(n-k) mobiles. 
 
The environment and the communication are simulated in Matlab. Moreover the 
calculations of the location are also done according to Matlab and Borland C++. 
 
Below comes a diagram (Figure 2.2.a) that represents the outdoor Scenario 
considered in the project: 
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Figure 2.2.a: Outdoor Scenario with AP 
 
 
In Figure 2.2.a several access points are dispatched all over the 2D field. 
Each of them belongs to the WLAN network whose links are represented by the 
yellow flashes. Therefore, every access point can communicate with all the others 
within this network. 
 
The position of all the APs is fixed so we assume that they are not moving in time. 
We will refer to them as beacon nodes. 
 
The second diagram (Figure 2.2.b) represents the outdoor Scenario including some 
mobiles whose locations are unknown.  
The goal is to determine their position according to the signals they receive from the 
beacon nodes. This is why we consider this WLAN network which permits to every 
beacon nodes and other nodes to communicate. 
 
More explanations regarding the localization will be found in the part 3.2 of the 
report. 
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Figure 2.2.b: Outdoor Scenario of the project with mobiles 
 
 
Advantages of this Scenario: 
 

• We use an existing network with APs and mobiles. 
 

• Once the AP are placed they are staying in the same place and the calculations 
regarding them only have to be done once. More explanations will be found in 
the Chaper 5 which describes LSVM algorithm. 
 

• If at least one MS has been localized, then we can use it in order to localize a 
new mobile user moreover than taking into account the existing network 
(cooperation). The accuracy will be better (a Kalman filter can permit us to 
reach this better accuracy). 
 

• No obstacles means LOS link. 
 
Disadvantages: 
 

• A lot of AP have to be dispatched within a certain range such that each of 
them can communicate with the others. We will see the minimum number of 
beacon nodes needed to get correct estimations in the Chapter 6 which 
describes the results obtained. 
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• It costs a certain amount of money to implement access points compared to 
the second Scenario in which we use existing desktops. 

 
Assumptions: 
 

1. We consider n AP randomly dispatched or fairly placed in the outdoor 
environment we consider. 
 

2. The APs locations are know, only the MS ones have to be determined. 
 

3. The communications between the different APs and between the AP and the 
MS are done thanks to respectively an infrastructure-based and infrastructure-
less links. 

 
 
Indoor Scenario: 
 
We consider in that Scenario a floor where has been added a set of 3 AP fairly 
dispatched. The latter is linked to a hub and then to a server such as shown in Figure 
2.2.c) which represents the Scenario. We also consider a set of computers which are 
placed in the middle of each room of the floor.  
 
The aim is to predict in which room or where in the corridor the MS is.  
 

 
 

Figure 2.2.c: Indoor Scenario of the project 
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In Figure 2.2.c is presented the floor considered with 14 different offices equally 
distributed on both sides. Namely, there are 7 offices on each side. A corridor whose 
length is 70m, and width 5m separate the 2 set of rooms. We assume that each room 
is a 10-by-10m square. Figure 2.2.d sums-up the dimensions of the floor considered 
in this Scenario. 
 

 
 

Figure 2.2.d: Dimensions of the floor for Scenario 2 
 
Figure 2.2.e presents the indoor Scenario with AP and laptops or desktop computers 
and also the type of communication used. 
 

 
Figure 2.2.e: Indoor Scenario with APs and laptops or desktop computers 

Advantages of this Scenario: 
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• We use desktop computers, laptops and the APs normally placed in each room 

or office of a building (university, company, etc). 
 

• Thanks to the fact that the environment is not varying (the AP and computers 
are fixed) we will see in the Chapter 5 (SVM description) that it will permit us 
to save time in the localization process.  

 
Disadvantages: 
 

• Due to indoor environment the RSSI could not be reliable in some cases due 
to obstacles (e.g: doors, walls, etc). So we have to take into account it in the 
model we use. 
 

• We need a sufficient number of desktops to estimate reliably the location of a 
mobile user. 

 
 

Assumptions: 
 

1. We consider 3 access points located in 3 different offices as shown in Figure 
2.2.c. 
 

2. The computer positions are known and do not move along the time. 
 

3. The communications between computers and mobiles are in ad-hoc mode. 
 
 
The simulations are done in matlab and C++ according to Matlab software and 
Borland C++ 5.5. 
 
 
2.3.  Problem Definition 

 
1st Scenario: 
 
According to the real distances between every AP we calculate the RSSI 
measurements. This is done thanks to the pathloss model. So let’s take an example. If 
we consider 30 AP, every AP is going to receive 29 RSSI values (30-1).  The input 
data for our SVM will be this RSSI information. The SVM is going to run once in 
order to output the calibration parameters (describing the system) called support 
vectors.  
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The latter, in a second time, will be associated to the RSSI information received by 
the MS from the APs in order to localize it. This association will be done by SVM 
again which is going to be run, therefore, a 2nd time. 
 
 
2nd Scenario: 
 
One AP will act as a head AP which means that in reality all the information will be 
gathered by it. First of all, we use the real distances between all the beacon nodes in 
order to calculate the RSSI information received by each of them. As in the previous 
Scenario the RSSI measurements come from the pathloss model which corresponds to 
an indoor environment for this Scenario. So if they are 20 beacon nodes, each of them 
is going to receive 20-1 = 19 RSSI measurements. Second, the latter is stored in order 
to work as input for the SVM. Based on this information SVM runs for the 1st time 
and outputs support vectors which corresponds to parameters of the system which 
depends on the number of beacon nodes, the way there are dispatched…Then when a 
mobile is coming into the floor it receives 20 RSSI data coming from all the beacon 
nodes. This information and the support vectors obtained previously are input in the 
SVM which runs for a 2nd time in order to determine the location of the mobile. 
 
Procedure for both Scenarios which introduces cooperation: 
 
We can use the estimated positions of some MS to find another one’s. We will see if 
the use of cooperation (taking account estimated positions to find unknown ones) 
improves or not our results. 
 
 
2.4.  Scope of the Project 

 
The aim of this project is to obtain a very accurate location for a mobile depending on 
the RSSI measurements from beacon nodes (APs, computers or other mobiles if we 
consider cooperation). In order to do so we must have a certain number of beacon 
nodes. Our simulations will show some results under different assumptions (number 
of beacon nodes for instance) for SVM. 
 
The different steps followed in this project are: 
 

• To set the mobile in a certain range of the cell and determine its RSSI values 
using the relevant communication in the networks (ad-hoc, infrastructure). 
 

• Describe the Support Vector Machine model and configure the one which fits 
the best to our system and determine its parameters. 
 

• Implement an algorithm using cooperation which will work for Scenario 1 and 
2. It will work in addition to SVM and the goal is to compare it with SVM. 
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• Implement an algorithm which will use cooperation in a different way than the 
previous one and which can fit outdoor and indoor environment in an efficient 
way (Scenario 1 and 2). 

 
 

2.5.  Assumptions 
 

We assume in this project that the positions of the beacon nodes (including the base 
station whose position is known in the outdoor environment) exist. From then we 
calculate the locations of the unknown mobile users. 

 
 1st Scenario 

• All the MS and access points are in LOS with each other 
• The links AP->AP and AP->MS are infrastructure ones 
• The link MS->MS is an ad-hoc one 
• We do not consider multipath 
• We consider shadowing 
 

 2nd Scenario 
• The links AP->AP and AP->MS are infrastructure ones 
• The link MS->MS is an ad-hoc one 
• We consider LOS and NLOS 
• We consider shadowing 
• We do not consider multipath 
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3. Background theory 
 
 

3.1.  Fundamentals of positioning 
 
Positioning techniques: 
We present a group of positioning techniques in this section. Basically, we can 
differentiate 3 different categories: 
 

• Network-based:  
the AP performs both position measurements and computation of a 
location estimate. 
 

• MS-based: 
the MS performs both position measurements and computation of a 
location estimate 
 

• Mobile-Assisted:  
the MS provides position measurements to the network for computation of 
a location estimated by the network. The network may provide assistance 
data to the MS to enable position measurements and/or improve 
measurement performance. 

 
In this project the Mobile-assisted method will be adopted. Above is the 
explanation of the TDOA technique and RSSI technique. The latter is the one we 
deal with in this project: 
 
 

• TDOA technique:  
TDOA can be estimated by doing the cross-correlation between 2 different 
signals received by the MS from 2 different BSs. This technique will not 
be used in this project because we have to establish a connection between 
an AP and a MS or between 2 AP if we want to measure TDOA values. 
With RSSI technique, only the SSID and the RSSI measurements are 
required 
 

• RSSI technique:  
With short distances this technique is the one which fits best. We based 
our calculations on the RSSI (in dB or dBm) received by one AP or a 
mobile from another AP or another mobile (in case of cooperation). 
The advantage of using this technique results in that being connected is 
not an essential need. 
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3.2.  Localization 

 
There are several ways to localize one MS. At the output the aim is to obtain an 
estimated position of the MS in 2D for instance. Some techniques permit us to 
get directly an estimated location with 2 coordinates. Others give us an answer 
according to an area [2]. Namely we have an answer to the question: “Does this 
mobile belongs or not to this area”. 

 
Now if we think about the interest of this method, first of all we can divide quite 
easily any cell, field into n several areas (A1, A2…An) in order to determine if 
our mobile belongs or not to A1, A2…till An. 
 
The Figure 3.2.a shows a subdivision possible of one area into 4 equal rectangles. 
 
 

 
Figure 3.2.a: Localization using subdivided areas along the x-axis 

 
 

The mobile 1 belongs to the area A1 and the mobile 2 to the area A3. This cutting 
out along the x-axis can also be done according to the y-axis as well as the Figure 
3.2.b shows: 
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Figure 3.2.b: Localization using subdivided areas along the y-axis 

 
 

In order to determine to which band (A1, A2 or B1 for instance) each MS belongs 
to we need of course a procedure and algorithms that can work under the 
constraints of Scenario 1 and 2 explained in Figures 2.2.b and 2.2.d. 
 
The procedure we select is the one which corresponds the best to that kind of 
classification (classify the MS positions) according to signal strength 
measurements [1]. The procedure is Support Vector Machine. 
 
 

3.3.  Support Vector Machine 
 
Introduction: 
 
This method was invented in 1995 by Vapnik [5]. SVM is composed of SVC and 
SVR. The former concerns classification while the latter is a regression procedure. In 
this project we only use SVC, namely SVM as a classifier. SVC is a classification 
standard method which permits to classify some data thanks to some complex 
functions and calculations. We will see in the following section the theory behind 
SVM. 
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So it is a matter of 2 states (binary) classification [5]. Indeed at the input of an SVM 
we find real data which are going to be compared to previous collected data. A binary 
Figure is coming up at the output of this process. With that method we compare some 
values in order evaluate the degree of similarity between some of them. 
 
 
Theory behind SVM 
 
Among the kernels methods, coming from the statistic learning theory of Vapnik, 
Support Vectors Machines are standard methods which are the most famous. It 
consists of a binary classification within a supervised learning. Because it is a 2 states 
classification matter this method calls a learning dataset in order to learn the 
parameters pf the system. It is based on the use of a function called “kernel” that 
permits an optimal data separation. 
 
As we can see on from Figure 3.3.a the goal is to separate the collected data 
according to a straight line, in order to create 2 groups. The straight line is called a 
hyperplan. The name of the closest points to the hyperplan is support vectors. 
 
We consider an area E, that belongs to the cell considered. The binary classification 
the SVM uses is done according to the fact that the data belongs or not the specified 
zone. 
 
 

 
 

Figure 3.3.a: SVM classification of data 
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The data from Figure 3.3.a has to be classified according to a binary process in which 
we separate the one which belongs to the zone E and the other not. We are now 
looking at a hyperplan, that will permit us to separate the data. 
 
Figure 3.3.b shows the second step of this classification process displaying a 
hyperplan. This hyperplan works as a limit between the 2 sets of data (left and right 
side). 

 
 
 
 

 
 

Figure 3.3.b: SVM binary classification and support vectors 
 
 

The support vectors represented in red correspond to the closest points to the hyperplan 
belonging to E. We highlight them because they will have an important role in the 
classification process. However, there is not a unique hyperplan which can subdivide all 
the data into 2 groups. If we take the example coming from Figure 3.3.b we can see that 
several hyperplans can fit regarding the binary classification we would like to do. 
 
Figure 3.3.c which presents the SVM classification, shows that several hyperplans can 
correspond to the one we want. 
 
Thereafter, we will see how we can manage that consequent amount of hyperplans in 
order to select one and only one of them. 
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Figure 3.3.c: SVM classification thanks to the best hyperplan 
 
 
All of them can separate the data according to the same 2 groups. So the goal from now is 
to find the best hyperplan, also called “optimal hyperplan” [6]. To translate that "optimal 
hyperplan" expression into geometrical aspects we can talk about maximizing the margin 
between the hyperplan and the support vectors. That will permit us to find the optimal 
one. 
 
Previously in Figure 3.3.c we assume the hyperplan is a straight line but this is only true 
if it is a linear model. Indeed if some data which belongs to one group are located 
between other data belonging to the other group then a linear classification is not 
possible. In that case we need an unlinear model. 
 
 
Unlinear classification: 
 
We separate data thanks to one more dimension for instance. So, the goal is to evaluate 
the data according 3 dimensions and not only 2 such as the following example in Figure 
3.3.d, which represents a kernel classification in 3 dimensions, show us. 
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Figure 3.3.d: Classification using Kernel of n+1 (=3) dimensions 
 
 

The classification process described in Figure 3.3.d is done by a kernel function which 
can be a polynomial, Gaussian or also Laplacian function. 
 
Figure 3.3.e shows a classification example using a polynomial kernel. 
 

 
 

Figure 3.3.e: Classification thanks to a polynomial kernel function 
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3.3.1. Training 
 
In the training phase we consider a dataset composed of signal strength 
measurements issued from the different beacon nodes. The goal is to compare 
these 2 different data for every couple of beacon nodes in order to evaluate the 
parameters of the SVM such as shown in Figure 3.3.1.a. 
 
 

 
 

Figure 3.3.1.a: RSSI measurements for the training phase dataset  
 
Figure 3.3.1.a assumes that all the RSSI information can be obtained. If it is not 
the case one solution will be followed. It consists of taking 2 mobiles, called MS1 
and MS2. They are placed at the same position as the AP. From then MS1 is 
going to check such as a sniffer the RSSI received from the MS2. Moreover the 
SSID of MS2 will also be received with the RSSI so both data can be gathered. 
We repeat the same procedure for all the links where the RSSI cannot be 
calculated  
 
All the RSSI measurements collected are useful for the input of our SVM. We 
take into account them for the training phase that is the first part of the SVM 
procedure. Thereafter, in the classification phase other RSSI values are going to 
be gathered. Section 3.3.2 of the report goes more deeply in this classification 
part. 
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Let us see now the algorithm use in order to classify the training data, it is 
explained in Figure 3.3.1.b 
 
 

 
 

Figure 3.3.1.b: SVM Training phase 
 
First, we have some input called X1 and X2, which have to be compared in order 
to do a classification. These data could be TDOA or RSSI. In our project we only 
take into account RSSI measurements. Second, the SVM intervenes in the process 
in order to do the training. It means to look at the data at the input such as for 
instance, some distances between 2 nodes and evaluate the support vectors as 
explained in the theory of SVM (section 3.3). So every SVM will deal with X1 
and X2 but also with Y1 and Y2 which are binary values equal to -1 or 1. 
 
The number of SVM depends on the number of hyperplans according to both x-
axis and y-axis. Namely if we consider a field divided into p different bands (p 
integer >=1) according to the x-axis there will be p SVM calculations for the 
training phase. Regarding now the value of the label Y we see at the top of the 
Figure 3.3.1.b, it indicates if the beacon node belongs or not to the hyperplan 
considered. The goal of the SVM is to maximize a function called W �α� in order 
to obtain support vectors which act like some limits in the classification process. 
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All this training phase is detailed according to the example we took in the part 
5.1.a titled “Training phase”.  
 
 
 
 
3.3.2. Classification 
 
The classification is done taking into account the same kind of data as the input. 
Namely we deal RSSI measurements coming from the beacon nodes in the 
training phase. In the classification one RSSI measurements are also considered 
but they are issued from the links between all the beacon nodes to the MS. The 
difference between the classification and training phase, regarding the input, 
results in the first 1st term. 
 
In the training phase we compare values such as RSSI measurements between 
nodes whose position are known. It is therefore a sort of calibration. In the 
classification phase we are interested in finding out the position of one node 
according to its RSSI values with respect to the other nodes whose positions are 
known (see Figure 3.3.2.a). 
 
To sum-up we have first a calibration regarding some nodes whose location is 
known in order to find the features (support vectors) of the SVM system. 
Thereafter, we can apply this SVM system one more time in order to localize a 
new mobile coming up in the network. 
 

 
 

Figure 3.3.2.a: Input data for the classification phase 
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The RSSI measurements issued from every AP->MS link for each new mobile are 
gathered and are used in the classification procedure such as input data for the 
SVM. 
 
The entire classification process is described in Figure 3.3.2.b: 
 

 

 
 

Figure 3.3.2.b: Classification process using SVM 
 
 
SVM deals with the input data as explained above and also the support vectors in 
order to classify new data (for instance, to localize a new mobile user in the 
network). The support vectors work as limits in the classification. It is the reason 
why we use the “sign” function which outputs a binary value 0 or 1. Indeed if the 
difference of signal between the mobile user and a node A is almost the same as 
the difference of signal between the node A and another node C then the output of 
the “sign” function will be 1. 
 
The Maximum Response Algorithm (MRA) is an algorithm which is going to be 
used in this project in order to localize the new MS which belongs to the network 
as efficient as possible. More explanations will be found in section 5.1.b.
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4. Protocols and network management 
 

 

4.1.  SVM calculation 
 
The 2 phases included in the SVM process, namely the training and the classification 
phase, are run by one and only one AP, that is considered as a “head AP”. Indeed it is 
more relevant to have one “leader” to manage our WLAN network. 
 
Its job is to gather all the RSSI information coming from all the other APs (training 
phase) in order to run the SVM once to outputs the support vectors. Then, every time 
a MS is coming up in the network the head AP sends it the SVM parameters. 
Afterwards, the MS has to do the calculations itself in order to know where it is. 
 
In each Scenario that we will present in this report there will not be any IP connection 
between APs and APs. Otherwise there must be a connection between either APs and 
MSs or computers and MSs (2nd Scenario) because the head AP owns the parameters 
of the system after the training phase. Moreover the RSSI values are only known by 
the MS. Therefore the best solution will be for the head AP to send the features of the 
system (support vectors) to the MS in order for him to do the 2nd classification phase 
and find his location. This solution will avoid to the MS to send all the RSSI values 
obtained from the beacon nodes, to wait for the calculations and the answer from the 
head AP. 
 
 
4.2.  Interference problem 
 
Another issue must be raised. How to deal with several AP in the same area? The 
answer is 3 taking into account the 802.11g standards. The use of the channel 1, 6 and 
11 permits to avoid overlapping but it narrows our Scenario. 
 
To deal with that problem we can order the n AP considered from 1 to n in order not 
to transmit at different time slot. This will solve the interference problems. Moreover 
the training phase is only done once so this solution will rather be interesting during 
the classification phase. 
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5. Algorithms 
 

 
We have implemented several algorithms based on SVM. In this section all of them 
will be presented. First of all we describe LSVM and MRA (training phase of LSVM) 
algorithms that will be used for the simulations. Then CSVM, which consists of SVM 
added with a cooperative algorithm, will be presented. The last section concern OCA 
(for Scenario 1) and ICA (for Scenario 2) that use, as CSVM, SVM as a first step and 
then deal with cooperation between APs and MS for OCA and APs, computers and 
MS for ICA. 

 
5.1.  LSVM and MRA 

 
LSVM is a Support Vector Machine technique using lagragian coefficients. It is the 
fastest technique for training SVM [7]. Concerning the testing phase we use the MRA 
algorithm that permits to avoid running several times the training phase. 

 
The environment: 
 
We consider a 2D-grid geographic area with a certain number of cases (possible 
square area locations). Along the x-axis and y-axis we choose to have a longer d 
which will vary along our simulations. We take M different locations possible along 
each axis. So higher the value of M is, better will be the accuracy of the localization 
(see Figure 5.1.a): 

 
 

 
 

Figure 5.1.a: 2D-grid n x m dimensions 
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5.1.1 Training phase: 
 

Firstly we consider several access points whose positions are known. Let us 
assume that we have k different ones. They are randomly placed in the [0, D] x [0, 
D] grid. The classification corresponds to a 2 classes-binary classification. The 
point belongs to a set E or not. We consider training data points, which 
correspond to beacon positions. K data have to be taken into account; 
namely kxxx ..., 21 . We also consider k different labels, namely binary value [-1; 1]. 

1y  = 1 means 1x  belongs to the set E. In the previous example E stands for one of 
the square shown in the previous picture.  
 
Second we define the relevant Kernel function [8]: 
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where i and j are values that range between 1 and k. They stand for the indices of 
the beacon node considered. iS  is a vector that contains the k different shortest 

distances between the beacon node i and its (k-1) beacon neighbors. γ  is a 
positive constant that was determined during the training phase. 
 
Then, we have to maximize the following equation 
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where ia , i ];1[ k∈  are the solutions of this optimization problem. C is a constant 

that permits to take into account the points that cannot be really well classified. 
Namely, the more you increase the value of C, the better the classification of the 
data will be. 
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Figure 5.1.b shows some examples of the same classification but using different 
values for C. 
 

 
 

Figure 5.1.b: Results of classification under different values of C 
 
 

As we can observe on the Figure 5.1.b, higher is C better will be the 
classification. Indeed in the 4th diagram (down-right) all the red points which 
stand for values y = +1 (the values y = -1 are not in the set) are gathered. The goal 

is obtain the SVM model information, namely these a i  coefficients. The system 
model is then applied to the mobiles in the cell whose position is unknown. The 
aim of this process called the classification phase is to localize them. 

 
 
 5.1.2 Classification phase: MRA algorithm 
 

Now each mobile in the cell whose position is unknown has to gather the k 
different RSSI measurements it receives. Let us say we consider N different 
mobiles. Once every mobile gets this information it applies the SVM in order to 
localize itself. The algorithm used is called “Maximum Response Algorithm”. 

 
This algorithm is described in the following diagram from the input “support 
vectors” and also the data X and Xi. The diagram is the Figure 5.1.c. 
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Figure 5.1.c: Maximum Response Algorithm 

 
 
We just consider one axis but the procedure has to be repeated according to the 
other axis (to get an answer for x and y) as well. The cell has been divided into 
several different rectangular zones (hyperplans).  
 
 
According to SVM we determine if the new mobile belongs or not to each 
hyperplan. Repeating this process several times (for each hyperplan) permits us to 
get the area on the x-axis the mobile belongs to (physically the zone where the 
mobile is). 
 
This binary calculation is done thanks to the following equation 
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where b represents the bias, calculated in the training phase.{ ia } are the 

lagrangian coefficients coming from the training phase. ),( ixxK is the kernel 

function, which includes the RSSI values between each beacon node and the other 
beacon nodes, and the ones between each mobile and the beacon points. 
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Localization: 
 

At the output of the system we get a square 
d
m by 

d
m   because we take into 

account the cross between the 2 hyperplans obtained. One comes from the x-axis 
and the other one from the y-axis. We take the middle of this square in order to 
determine the x and y coordinates of the MS we have to localize.  
 
Remark: according to the value of m, we can increase or not the accuracy of the 
localization. Indeed, smaller is the target zone, better will be the precision. 
 
However after all the SVM procedure it happens that some MS are not localized. 
This can be due to the severe constraints of the environment, to the parameters 
that are too selective (strong value for C). In order to solve this problem another 
algorithm was implemented. Its name is CSVM. The next section describes it in 
details. 
 
 

5.2. Cooperative Support Vector Machine (CSVM) 
 
 
This algorithm is based on SVM. It is applied after at least one SVM runs in order to 
increase if it is possible the number of predictions. We call it Cooperative Support 
Vector Machine because cooperation appears among the MS. Indeed, in order to 
localize accurately a MS, which has not been localized by the first run of SVM, we 
can use the MS which have been localized.  
 
To sum up the MS well-localized are going to become Beacon nodes, namely we will 
include them in the second training phase of the SVM (process now called 
Cooperative Support Vector Machine).  
 
In Figure 5.2.a the algorithm CSVM is described: 
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Figure 5.2.a: CSVM training phase 
 

The SVM is going to run N+M several times; N corresponds to the number of 
hyperplans according to x-axis, M to the y-axis. So, there is no difference concerning 
the number of SVM runs for SVM and CSVM process. 
 
However,  the number of beacon nodes increase between the 2 runs (SVM and 
CSVM) because the MS well localized after the 1st classification phase (SVM) are 
now input in the dataset as shown Figure 5.2.a. 
 
So, the training phase of CSVM will take much more time than SVM’s one because 
we have to run twice the training phase otherwise than running it only once. 
Otherwise the classification phase will be faster thanks to a less amount of MS to 
localize. The CSVM classification phase is explained in Figure 5.2.b. 
 
All the analysis and performance of CSVM will be done in Chapter 6 which talks 
about simulations, results and discussions. 
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Figure 5.2.b: CSVM classification phase 

 

 

5.3. Outdoor Cooperative Algorithm (OCA) 

 

OCA algorithm is a part of the localization process in outdoor environment. Its goal is 
to better estimate the position of the MS after the SVM has been run once. In the 
simulations, a lack of predictions appears for some mobiles even using CSVM so the 
aim is to avoid getting no-predictions. In order to do so OCA deals with the RSSI 
measurements obtained from the distances. Afterwards, it assesses and stores the 
minimum RSSI value for each AP to MS links. For instance, if we put 50 APs and 10 
MSs in the environment used in Scenario 1, OCA will keep track of 10 RSSI values, 
which stand for the minimum measurement for each of the 10 mobiles. 
 
When the minimum RSSI value has been saved we are interested in dealing with all 
the MSs whose positions have not been predicted. This is why when there is no 
prediction according to the x and y-axis the OCA algorithm will calculate the 
estimated position taking into account the minimum RSSI value that has been stored. 
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Figure 5.3.a describes the OCA algorithm 
 

 
Figure 5.3.a: Outdoor Cooperative Algorithm (1st part) 

 
From this procedure OCA will consider that the MS is located in the hyperplan where 
the AP is. This will give a better estimated position. 
 
 
5.4. Indoor Cooperative Algorithm (ICA) 

ICA works as OCA except that we use it in an indoor environment to predict the 
MSs’ positions if there were no one. We apply it for the Scenario 2 represented in 
Figure 5.4.a following which gives the process of ICA: 
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Figure 5.4.a: ICA Algorithm (RSSI comparisons) 
 
 

In this Scenario what is important is to forecast that the MS considered will be in the 
right room. Knowing that there are 14 different offices it seems really important to 
localize the mobile according to the computers and the AP as well. We take the 
minimum RSSI value and decide to estimate the position of the MS as inside the 
room where the beacon node the most interested is (the one which sends the high 
RSSI signal to the mobile). We then choose to choose the middle of the room for the 
prediction. 
 
 
Next section: simulations and results: 
 
Next section will present the analysis of the performance of SVM first which is the 
main aspect of this report and which takes part in every simulation. Then we will go 
through CSVM in order to see the improvements done. And finally, OCA and ICA 
results are going to be analyzed to see their respective efficiency and understand how 
important their contribution is.
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6. Simulation, results and discussion 
 

 

6.1 Outdoor Scenarios 

 

6.1.1. Scenario 1.A 
 
In the Scenario, we consider a 100m-by-100m square area in which we 
dispatch several Access Points [2]. Otherwise than dealing with the hop-
count distances our input information is the RSSI measurements from every 
AP to the other AP (training phase) or to the other MS. 
 
The following diagram (Figure 6.1.1.a) presents the environment of the 
outdoor Scenario 1.A. 

 

 
 

Figure 6.1.1.a: Outdoor map, Scenario environment 1.A 
 

The area corresponds to some main areas of cities such as ones with city halls, 
museums (Raadhuspladsen in Copenhagen, Le Louvre in Paris). These squared 
places are surrounded by buildings on each of the sides. Moreover their width and 
length are important (around 100m). This is why this Scenario is interesting.  
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In order to calculate the signal strength we base our calculations on the distance 
between the 2 AP considered or the AP and the MS. We follow Scenario B1 
presented in [9]. We make a few modifications in order to take into account only 
the LOS case because we assume that no building or obstacles are present in our 
Scenario (except in the borders). 
 
Here is the pathloss equation: 
 

41)(log7.22)_( 10 += ddBPathloss  

 
d stands for the distance between the 2 AP or the AP and the MS. 
 
and the shadowing standard deviation: 
 

3.2)_( =dBσ  
 
 
Randomly generated Beacon nodes 
 
We dispatch a certain amount of AP in the square area considered. In order to 
localize the MS accurately we decide to base our calculations on the environment 
described as following (Table 6.1.1.b): 

 
 

x-
axis 100 Dimensions of the area 

(m) y-
axis 100 
x-

axis 16 
Number of hyperplan 

y-
axis 16 

Number of AP generated 50 

Number of simulations 20 
 

Table 6.1.1.b: parameters of the Scenario 1.A 
 
 
The Figure 6.1.1.c, below, represents the 50 AP randomly generated in the square 
area. 
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Figure 6.1.1.c: 50 AP randomly generated in a [100x100m] grid 
 

 

The distance of each hyperplan is equal to 
D
M

= 100
16

= 6.25m  

 
 
Fixed Beacon nodes: 
 
We decide to set the parameters of the SVM for every indoor and outdoor 
simulations as shown in Table 6.1.1.d 
 
 

SVM type multiclass 

Kernel RBF 

Scaling interval [0;1] 

C 40 

G 2 
 

Table 6.1.1.d: SVM parameters for the Scenario 1.A 
 
 
SVM type has to be multiclass (one class stands for one hyperplan) because we 
consider several hyperplans. The kernel function chosen is the most optimal one 
[6]. The SVM software choosen is libsvm [10] [11]. After the generation of the 
APs. We also generate the MS on the map. Figure 6.1.1.e shows an example of a 
complete map including AP (beacon nodes) and MS (to be localized). 
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Figure 6.1.1.e: AP and MS random generations for the Scenario 1.A 
 
In this Scenario we choose to fix the AP to a certain location in order to study the 
incidence regarding the localization. Namely we decide to place 50 beacon nodes 
such as they are fairly dispatched in the square area (see Figure 6.1.1.f) 
 
 

 
 

Figure 6.1.1.f: 25 AP fairly generated in the [100x100] area 
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6.1.2 Scenario 1.B 

 
In this Scenario, we consider a 100m-by-50m street in which we dispatch 
several Access Points. Otherwise than dealing with the hop-count distances 
our input information is the RSSI measurements from every AP to the other 
AP (training phase) or to the other MS. Using this environment is important 
because we can find several streets in different cities which have a length of 
at least 100m and whose width is around 50m (shopping and main streets 
cities). 

 
Figure 6.1.2.a presents the outdoor Scenario 1.B with this main street whose 
dimensions are 100m-by-50m. 
 

 
 

Figure 6.1.2.a: Outdoor map for the Scenario 1.B 
 
In order to calculate the signal strength we base our calculations on the distance 
between the 2 AP considered or the AP and the MS. We follow the Scenario B1 
presented in [9]. We also make a few modifications in order to take into account 
only the LOS case because no building or obstacles are present in our Scenario. 
 
Here is the pathloss equation: 
 

41)(log7.22)_( 10 += ddBPathloss  

 
d stands for the distance between the 2 AP or the AP and the MS and the 
shadowing standard deviation: 
 

3.2)_( =dBσ  
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 Randomly generated Beacon nodes 
 
In this 2nd Scenario we dispatch a 25 AP in the area considered. In order to 
localize the MS accurately we decide to base our calculations on the environment 
described in Table 6.1.2.b: 
 

x-
axis 100 Dimensions of the area 

(m) y-
axis 50 
x-

axis 16 
Number of hyperplan 

y-
axis 8 

Number of AP generated 25 

Number of simulations 20 
 

Table 6.1.2.b: Parameters of the Scenario 1.B 
 
 

We notice that we keep the number of simulations, namely 20 different ones. That 
means 20 different random regarding the AP. Let us see now in Figure 6.1.2.c one 
case in which 25 AP are generated randomly taking into account 100m of length 
and 50m of width for our environment. 
 
 

 
 

Figure 6.1.2.c: 25 AP randomly generated in a [100x50m] grid 
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Each hyperplan width (x-axis) is equal to 
Dx
M

= 100
16

= 6 .25m  

 

Each hyperplan width (y-axis) is equal to 
Dy
M

= 50
16

= 3 .725m  

 
 
Fixed Beacon nodes: 
 
Here we exactly deal with the same Scenario 1.B as previously but we fixed the 
14 access points such that they are fairly dispatched in the [100x50] grid. 
 
Figure 6.1.2.d shows us the environment. 
 

 
 

Figure 6.1.2.d: 14 AP fixed generation in a [100x50m] grid 
 
 

Afterwards, 20 MSs are generated. They are going to be localized in the [100x50] 
m Scenario which represents the main street environment. Figure 6.1.2.e 
represents the Scenario. 
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Figure 6.1.2.e: Main street area with 14 fixed APs and 20 random MSs 
 
 
 
Relevance of these 2 Scenarios: 
 
Hanging around in a main street of a capitol for instance permits us to focus on 
the different area where we can get a WiFi connection thanks to one or more 
access points. 
 
The goal is to use as far as we can some networks already built in order to exploit 
the points to increase the localization accuracy. In a main street what is interesting 
is the fact that several fast foods offer now a WiFi access. Moreover, in some 
café, currently there is an enhancement in this sense to increase the number of 
clients by attracting tourists who would like to take their lunch and look through 
the web if they can find a show for their night or to check if a museum is open in 
the afternoon to avoid going there if it is closed. Then we may also use the WiFi 
connection from the hotels, which could be a good opportunity to decrease the 
cost of the AP deployment. 
 
Finally, in several cities such as London and Paris, for example, internet providers 
offer to their clients a low cost fare to share their access points in order to allow 
users in the street with VoIP phones to communicate or browsering through the 
web on a patio of a restaurant to find movies performance in the surrounding 
cinemas. Next section describes the results and their analysis 
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6.1.3  Results, analysis and discussion 
 
Scenario 1.A: 
 
Figure 6.1.4.a presents the results for the outdoor Scenario 1.A. It compares the 
SVM with CSVM. 
 

 
 

Figure 6.1.3.a: Comparison CSVM vs SVM for Scenario 1.A 
 
 
Analysis: 
 
RMSE: 
The RMSE (Root Mean Square Error) is assessed thanks to the following 
formula: 
 

)²()²( realestrealest yyxxRMSE −+−=  

 
where estx  stands for the estimated position of the MS along the x-axis, esty  the 

one along the y-axis. Finally, realx  and realy  correspond to the real positions of the 

MS along both axis. 
 
The RMSE for the fixed generation of AP is around 7.5m. If we compare that 
figure to the 4.5m standing for the 50 randomly distributed AP we note a 
difference of 3m. This difference can be explained because it is better to dispatch 
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fairly the AP in the environment. Indeed the chance for the beacon nodes to get 
close to the MS are more important than if we consider a random dispatch where 
several beacon nodes can be gathered in a corner, which is not efficient. For 
instance using a random distribution will create empty space, namely without any 
beacon nodes. This will be detrimental to the MS in these empty spaces that have 
to be localized. The CSVM algorithm brings about a short increase around 1m 
because the MS estimations at the output of CSVM are based on beacon nodes 
(former MS) which have some errors. So the error issued from the output of the 
first SVM run is propagating to the 2nd SVM run which characterizes CSVM 
algorithm. 
 
Predictions: 
The 50 APs random distribution is not so efficient compared to the 25 APs fair 
dispatch in that we obtain 8 predictions for the latter and 6 for the former. This 
can be explained because several APs can be closed one to the other which is 
useful to increase the number of good predictions for a MS close to them. But if 
the MS is located in an empty area, SVM will not be able to predict where he is 
because of a lack of information regarding the RSSI measurements in this area 
(no AP). So some MSs far away from any beacon node cannot be predicted. 
As for the CSVM algorithm it turns out that the number of prediction is soaring 
up (2 times more predictions for the 25 fixed beacon nodes). However CSVM is 
not so powerful regarding the random distribution (only 2 more predictions). So 
the random generation remains a handicap in the predictions. 
 
Good predictions: 
Number included in the “Predictions” the word “good” means that the MS are 
well localized. Namely, the distance between the estimated position and the real 
one does not exceed 10m. Both under SVM and CSVM the difference between 
the number of good predictions of the fixed AP and the randomly generated ones 
is not so big, around 1. Moreover, we notice 2 more good predictions for the 
random distribution which permits to obtain a 50% gain. So cooperation is 
working in that a MS well localized can work as a beacon node to find out another 
MS location (MS whose position was not estimated after 1st SVM procedure).  
 
Conclusion: 
Even though the difference is not so much, CSVM algorithm improves the 
localization in our outdoor Scenario 1.A. Over 20 MS generated it permits to 
obtain around one more good prediction which means 10% of increase. Regarding 
the difference between the fixed 25 beacon nodes and the 50 generated ones it 
appears that the former benefits from their fair dispatch along the grid. The 
localization performance is 33% better for them. 
 
Let us compare SVM with OCA. Figure 6.1.4.b presents the results for the 
outdoor Scenario 1.A. It compares the SVM use with OCA ones. 
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Figure 6.1.3.b: Comparison OCA vs SVM for Scenario 1.A 
 
 
The difference of values of OCA and SVM are insignificant (less than 0.5m). This 
can be explained thanks to the fact that OCA only intervenes for the case where 
there is no prediction, so the predictions coming from the SVM are not modified. 
Moreover predictions added by OCA are good in the sense that the RMSE is not 
varying while the number of predictions is soaring up to reach 20. It permits us to 
be confident in the efficiency of OCA. First of all, thanks to OCA all the 20 MS 
have now an estimation of their position which is a good point compare to 
previously where SVM outputs a lack of information. Second and most interesting 
observation: for every different situation the number of good prediction is soaring 
up to reach 10 for the 25 fixed beacon nodes and around 7 for the random 
generation. The increase is about 100%. It means that OCA associated with SVM 
well performs by keeping the same RMSE as SVM and increasing the number of 
good predictions. 
 
Conclusion: 
OCA permits to obtain better performances. The number of good predictions is 
more important (2 times better) wile the RMSE is almost not varying. To sum-up 
the results for this Scenario 1.A we can order the different algorithms in term of 
efficiency.  
 

1. OCA 
2. CSVM 
3. SVM 
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Scenario 1.B: 
 
Figure 6.1.4.c presents the results for the outdoor Scenario 1.B. It compares the 
SVM use with CSVM. 
 

 
 

Figure 6.1.3.c: Comparison CSVM vs SVM for Scenario 1.B 
 
Contrarily to Scenario 1.A the RMSE for the fixed AP is higher than the one 
which characterizes the 25 randomly distributed AP. This gap is due to the 
difference in figure (14 against 25). Moreover we took a very small number of 
fixed beacon nodes (14) compared to the size of the area considered. This 
explains why the RMSE is higher is that case compared to the random 
distribution. CSVM algorithm increases the RMSE which remains really small 
(4m at the maximum). Moreover it permits to get a more important number of 
predictions (6 otherwise than 4 for the simple SVM), indeed we state a strong 
increase (70%) between the SVM and CSVM. However the increase concerning 
the predictions does not bring so many results regarding the well predicted MS. 
Indeed we can notice only one more good prediction, which seems a low 
improvement. Regarding the comparison between the random and fair distribution 
the better increase of predictions for the former is inefficient for the good 
predictions statistics. Namely the fair distribution, despite its lower amount of 
predictions obtains more MS well predicted than the random distributed case. The 
logic is respected in that the fixed distribution outperforms the random one. 
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Conclusion: 
 
The RMSE, issued from CSVM algorithm stays at a very low value, namely 3 to 
4m while CSVM permits to gain 66% of good predictions. Moreover the highest 
amount of good predictions for the random distribution does not have the 
expected impact on the good prediction statistics. As we did before for the 
Scenario 1.A we are going now to analyze the OCA results. 
 
The Figure 6.1.4.d presents the results for the outdoor Scenario 1.B. It compares 
the SVM use with OCA ones. 
 
 

 
 

Figure 6.1.3.d: Comparison OCA vs SVM for Scenario 1.B 
 
 
The RMSE value is changing for the fixed AP case passing from 4m to almost 
6m, otherwise for the random distribution it is still the same. The increase which 
is not present in the Scenario 1.A can be explained by the little amount of beacon 
nodes in this Scenario. As we observed in the previous Scenario all the MS have 
now a prediction regarding their respective location. An important result: almost 
14 good predictions and 8, respectively for the fixed and random AP generations. 
The number of well predicted MS soars up with both beacon nodes distributions. 
We also notice the highest figure for the fixed one. This explanation is the 
following: even if there are just 14 beacon nodes, the fair distribution permits to at 
at least a little amount of them to get close to the MS. Being surrounded by AP is 
important to be well localized by SVM. It means that OCA is efficient in this 
Scenario. 
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Conclusion: 
 
OCA is more time better that SVM and the number of good prediction which 
soars up let us think that the former is a good additional algorithm to SVM. 
Moreover, even if CSVM is not so performing compared to OCA it remains a 
nice alternative. First of all to conclude this Scenario 1.B we have noticed that the 
ranking is not modified in that we obtained better results regarding the number of 
good predictions with OCA than CSVM. The latter is still interesting compare to 
the simple use of SVM. The RMSE remains interesting in both of the Scenarios. 
Second, in both of the outdoor Scenarios we observed an important advantage of 
using OCA and an appreciable result regarding CSVM algorithm. The next study 
will be about the indoor environment. 
 
 
 

6.2 Indoor Scenarios 
 
 

6.2.1. Environment considered 
 

In this Scenario we consider a floor with 14 different offices which dimensions 
are 10 x 10m. The rooms are separated by a 70 x 5m corridor. Figure 6.2.1.a 
reminds the environment considered.  
 
 

 
Figure 6.2.1.a: Indoor Scenario with APs and computers 
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A MS is going to receive 17 different signals (3 from the AP and 14 from the 
computers). 
 
The aim is to estimate in which room the MS is. 
 
Pathloss model: 
 
We based our Scenario on Scenario A1 in [9]. So, we took into account the same 
pathloss formulas, which are: 
 
LOS case:  
 

46.8  (d) log 18.7 10 +=pathloss  
 
NLOS case:  
 

 38.8  (d) log 8.63 10 +=pathloss  
 
Respective shadowing standard deviations for both of the cases: 
 
LOS case:  
 

 3.1)_( =dBσ  
 
NLOS case:  
 

 3.5)_( =dBσ  
 
 
In order to decide if we are in LOS or not we focus on the distance d between the 
2 AP or the AP and the MS. Namely, if the distance d ≤ 2.5m then we estimate 
that we are in LOS. On the contrary, if d > 2.5m then we use the following 
equation: 
 

3/13
10 )))(log61.024.1(1(9.01 dP ×−−×−=  

 
The output of this equation gives the probability to be in LOS. So we generate a 
uniform distributed value which ranges [0;1] and compare the latter with the value 
of P obtained thanks to the distance d. If the former exceeds the latter we are in 
NLOS, otherwise we use the LOS pathloss equation for our calculations and also 
a standard deviation equals to 2.3dB. 
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Pertinence of the Scenario: 
 
Nowadays so many companies’ building are equipped with a wireless internet 
access. We took a map which already exists [9]. Moreover we decide to add one 
computer (which could be a desktop or a laptop of course) which is going to work 
as an AP. For instance in Aalborg University there is at least one computer in 
each room or office. The desktops cannot be easily removed and we can consider 
that a laptop is put on a table and that this table is not going to be moved 
everyday. So this Scenario is relevant in that we use the network configuration 
without adding any new object. We enter into the floor with our mobile and we 
are detected. In Sections 6.2.2 and 6.2.3 two different environment are considered 
for the simulations: only the 3 AP as beacon nodes and in a second time the same 
AP with one computer located in each office. 
 
 
6.2.2. Scenario 2.A: Access Points and Mobile Stations 
 
For the first scenario, which is called Scenario 2.A, we deal with 7 hyperplans 
along the x-coordinates which stands for the 7 rooms on both of the sides of the 
floor. Regarding the y-axis we decide to divide it into 3 different hyperplans 
which correspond to the 2 set of 7 rooms and the 2nd one to the corridor. 
 
Table 6.2.2.a summarizes the features of this Scenario. 
 

x-
axis 70 Dimensions of the area 

(m) y-
axis 25 
x-

axis 7 
Number of hyperplan 

y-
axis 3 

Number of fixed AP generated 3 

Number of simulations 20 
 

Table 6.2.2.a: Features of the indoor Scenario 2.A 
 

The environment, the AP and the 20 MS can (only the 20 MS are generated 
randomly) be distributed such as Figure 6.2.2.b shows: 
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Figure 6.2.2.b: Map of the Scenario 2.A 
 
The results are placed in Section 6.2.4 of the report called “Results and 
discussion”. 
 
 
6.2.3. Scenario 2.B: Access Points, computers and Mobile Stations 

 
In this Scenario 2.B the number of hyperplans along both of the axes remains the 
same. The sizes of the rooms and the corridor are unchanged. The only difference 
results in the add of 14 computers (AP). One in each office. 
 
Table 6.2.3.a sums-up the feature of this Scenario. 

  

x-axis 70 Dimensions of the area 
(m) y-axis 25 

x-axis 7 Number of hyperplan 
y-axis 3 

Number of AP generated 3+14 

Number of simulations 20 
 

Table 6.2.3.a: features of the indoor Scenario 2.B 
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The diagram following (Figure 6.2.3.b) presents the environment with the 3AP, 
the 14 computers and the randomly generated 20 MS. 

 
 

 
 

Figure 6.2.3.b: map of the Scenario 2.B 
 
 

As in the previous section the results are gathered in the following section 6.2.4 
called “Results and discussion”. 

 
 

6.2.4. Results, analysis and discussion 
 
We are going in this section to compare SVM and CSVM algorithms, SVM and 
ICA, and finally CSVM and ICA for the Scenarios 2.A and 2.B. Figures 6.2.4.a 
and 6.2.4.b gather all the results. Figure 6.2.4.a compares SVM and CSVM 
algorithm with Scenario 2.A and 2.B. 
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Figure 6.2.4.a: SVM and CSVM results for the indoor Scenarios 
 
Analysis: 
 
The RMSE is not varying so much and stays around 4m (we decided to take the 
middle of the office as a prediction, this is the reason why there is no change). 
Regarding the number of predictions for  the case with the computers and without 
them we notice a gap of 4.5. Namely when the computers are present in the rooms 
SVM outputs more estimated locations which sounds logical. But the fact that the 
RMSE is not varying let us think that CSVM performs well. Indeed it permits us 
to pass from 6 to 14 predictions so more than 2 times of increase. It is important 
to notice that the computers lead to 8 MS localized in the good room compared to 
the 3 MS well localized thanks to the only 3 AP. The difference is consequent and 
remains important for the CSVM case. Concerning the comparison between SVM 
and CSVM an improvement can be observed specially for the AP+computers 
environment which permits to reach almost 10 good predictions over 20 MS. 
With or without CSVM we have the same statement which is coherent: the 14 
desktops or laptops are a benefit for our localization procedure. Indeed SVM 
outperforms under that constraints compared to when we only use 3 AP. 
 
Conclusion: 
 
CSVM outperforms SVM while the 3 AP are not sufficient to localize the 20 MS. 
This is why we need at least one laptop or desktop in each room and then the 
result becomes interesting. Except an average of 4-5 MS which are positioned 
inside a wall or a door which can cause problems for the simulations the results 
are important to show that with CSVM we get better predictions. So cooperation 
is brings better results in this indoor environment than in the previous scenarios 
1.A and 1.B. 
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Let us focus now on the efficiency of ICA algorithm. Figure 6.2.4.b compares the 
SVM and CSVM algorithm with Scenario 2.A and 2.B. 
 

  

Figure 6.2.4.b: SVM and ICA results for the indoor Scenarios 
 
 
Analysis: 
 
As in Figure 6.2.4.a the RMSE is not varying for the same reasons as explained 
previously. Regarding the predictions without ICA, we note the benefit brought 
by the computers. It results in an enhancement of 2 times the value (10 
predictions compared to 5) obtained for the case where there are just the 3 APs. In 
fact the APs are just useful if the MSs are in their respective office. Otherwise 
SVM will not be able to predict any positions. ICA carries out a 100% prediction 
regarding the 20 MS randomly generated in the environment as in Scenario 2.A 
and as the OCA algorithm did in Scenarios 1.A and 1.B. Adding the computers 
leads to obtain 8 good predictions (great improvement compared to the 3 good 
predictions we get without ICA). Even if ICA cannot really increase the 
localization with the 3AP because only a little number of MS is in the AP’s room 
it outperforms CSVM and SVM in outputting 14 good predictions for the AP + 
computers case. Namely we reach 70 % of good predictions with ICA. 
 
Conclusion: 
 
ICA outperforms CSVM in both indoor scenarios in that we observed an 
important increase of good predictions while the RMSE is not varying. Moreover 
an average of 4-5 MS is generated in unfair location (inside walls or doors) so the 
results are subject to one more improvement. As for CSVM we notice its 
efficiency in both of the indoor Scenarios, efficiency less visible in Scenario 1.A 
and not really demonstrated by the results obtained in Scenario 1.B.
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7. Conclusion and future work 

 

7.1 Conclusion regarding this project 
 
We applied SVM in a localization procedure to find MS station positions. We 
based our calculations on RSSI measurements issued from AP links fairly or 
randomly distributed in both outdoor and indoor scenarios. The parameters of the 
SVM were chosen in order to fit with the different environments considered along 
our simulations. We expect to find out relevant outputs for each scenario but the 
impact of the models chosen, and severe constraints reduced the amount of 
predictions. This is why other algorithms have been implemented to deal with this 
lack of estimations. It has permitted us to see that CSVM, OCA and ICA have 
improved localization in both of the environment. So cooperation was a good 
additional process to SVM which carried better estimations regarding the location 
of MS. ICA and OCA outperformed CSVM. But the latter improved SVM 
estimations. 
 
Good advantages of SVM such as 

• Training phase to run once and only one 
• A possible adaptation to every Scenario 
• A short calculation time (maximum of 1min)  
 

were really helpful and demonstrate to us the reliability and the efficiency of 
Support Vector Machines. 
 
 
7.2 Expectation concerning future work 
 
Our work contribution is limited to a set of Scenarios but we can adapt the 
required distances thanks to our simulation code which is dedicated to deal with 
different kind of parameters (frequency of the transmission, length and width of 
the area considered, number of AP and MS, their generation model). 
 
 
1st possible improvement (tracking): Kalman filter for the 1st Scenario: 
 
Regarding cooperation for the first Scenario we can improve the simulation taking 
into account NLOS links between MS and the AP. In fact to solve this 
transmission problem we predict first the location of the MS and then thanks to a 
Kalman filter we estimate the position of the 2nd MS in NLOS with the AP putting 
it a lower weight compared to the AP. 
 
Figure 7.a describes this new scenario of cooperation. 
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Figure 7.a: SVM and Kalman filter cooperation in localization  
 
 

2nd possible improvement:practical part 
 
It will be interesting to analyze in a real environment the behavior of SVM, 
CSVM, OCA and ICA algorithms. For instance the indoor environment stands for 
a floor in many university or company buildings. After scaling the hyperplans to 
the environment and create the infrastructure and ad-hoc links to measure the 
RSSI we can run the calculations. 
 
 
3rd possible improvement:Compare our result with other algorithms 
 
Compare the performance of SVM with the Non-Linearleast Square Algorithm 
and the Kalman filter should be done in order to compare their respective 
efficiency under the same environment.
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