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ABSTRACT:

This project is concerned about develop-
ment and estimation of a parametric model
to describe nominal and dispersive values
of DoA (Direction of Arrival) or DoD (Di-
rection of Departure) and delay for a radio
propagation channel. As parametric model
a joint FB5 and truncated Gaussian is de-
rived along with an approximated model
using a multivariate truncated Gaussian.
Both are maximum entropy models. The
Maximum Likelihood Estimator is approx-
imated by the Space-Alternating General-
ized Maximization-Expectation algorithm,
which requires an appropriate design of
data spaces and proper initialization. Sce-
narios with time variant and invariant radio
propagation channels are examined with
synthetic and measurement data to assess
the performance and validate the proposed
parametric model. The SAGE estimator
works and the results are consistent with
other estimators.

- "A SAGE Algorithm for the Estimation of Direction Power Spectrum of Individual
Path Components"
- "Characterization of the Azimuth-Elevation Power Spectrum of Individual Path
Components"
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Introduction 1
1.1 Background

Since the late 1990’s MIMO (Multiple-Input Multiple-Output) antenna systems have been
the subject of enormous interest among engineers and researchers. The reason is that the
theoretical capacity of a MIMO antenna system is capable to far exceed the performance of a
Single-Input Single-Output (SISO) system [1][2]. The extra degrees of freedom can be used
to increase reliability through space time diversity techniques [3] and/or to increase the data
rate with space time multiplexing techniques [4].

It is the trend that 4G mobile systems1 and beyond employ multi antenna transceivers to
improve the spectral efficiency and link quality of the radio propagation channel. A combi-
nation of Orthogonal Frequency Division Multiplexing (OFDM) and MIMO antenna tech-
nology is one such implementation which exploits the spatial benefits of MIMO antenna
arrays [5].

Channel modeling and estimation are important topics. They are introduced in order to
capture appropriate information about the radio channel and serves as a way to simulate
the channel environment. Channel estimation is a necessity to maintain the performance of
spatial multiplexing [6], e.g. in MIMO-OFDM.

Radio propagation channel modeling and estimation provides an insight of how electro-
magnetic waves propagate and interact in real radio channels. With a proper model the
influence of the antenna array can be removed from the observations [7], which enables a
comparison of various MIMO transceiver structures.

The radio propagation channel can be viewed as a superposition of multiple propagation
paths denoted as path components, illustrated in Fig. 1.1. Description of the propagation
paths includes the Direction of Arrival (DoD), Direction of Departure (DoD), delay, polar-
ization and Doppler frequency [8].

Radio propagation channel models may be divided into two categories: Specular propaga-
tion paths [9] and dispersive propagation paths [10]. Research on the characterization of
dispersive propagation path and estimation is quite active in recent years. Betlehem et al.
[11] showed that the shape and orientation of the joint power distribution contours have a
major impact on capacity and diversity of non-line-of-sight (NLOS) channels. "The capacity
is dependent upon the orientation of the distribution contour while the diversity order is
proportional to the area of distribution contours".

14G is not just one defined technology or standard, but rather a collection of technologies and protocols
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CHAPTER 1. INTRODUCTION

Scatterer

Scatterer

Scatterer

Transmitter

Receiver

...

...

Line of Sight

array

array

Figure 1.1: Illustration of a radio propagation channel. The signal departs
from the Tx array and interacts with different scatterers changing its proper-
ties(e.g. amplitude, phase, delay and direction). Also a line of sight path is
illustrated which may provide a strong signal with small dispersion in delay
and direction.

1.1.1 High resolution parametric estimation methods

High resolution estimation parametric methods, formally based on specular path propaga-
tion are effective approaches to exploit the propagation characteristics of e.g. MIMO system.
The high resolution parametric description of the multi antenna system can also be applied
into navigation, locating and radar tracing and sensing as well.

Beam-forming

Beam-forming techniques are a subclass of spectral analysis techniques and they are com-
monly used with electromagnetic and audio signals. The techniques work by "steering" the
sensitivity of a sensor array in a specific direction and are typically used as a first analysis for
the power spectrum of the propagation paths. The Bartlett and Capon beam-former family
are among the most popular beam-forming techniques [12].

MUSIC

The MUltiple SIgnal Classification (MUSIC) algorithm published in [13] is another high res-
olution spectral analysis technique. The idea behind the MUSIC is to divide the signal space
into a noise subspace and signal plus noise subspace. The estimator will exhibit peaks in
the vicinity of the DoA, which is where the steering vector will have a large distance to the
orthogonal projector onto the noise subspace [12]. The MUSIC algorithm is very sensitive to
estimation of the rank of the subspaces.

ESPRIT

The ESPRIT [14] algorithm also belongs to high resolution spectral analysis. The underlying
antenna array is divided into sub-arrays. Each sub-array consists of the same number of

12



1.2. PROBLEM STATEMENT

elements and the spacing between the those are known.

Compared to the MUSIC algorithm, the ESPRIT algorithm does not require any knowledge
of the radiation pattern. However, the ESPRIT algorithm needs multiple sensor doublets.
The elements in each doublet must have identical radiation patterns and are separated by a
known constant distance. Except for the identity requirement for the radiation patterns of
the elements in the same doublet, the identical radiation pattern may have arbitrary gain,
phase and polarization.

EM

The Expectation-Maximum (EM) algorithm [15] is an approximation to the Maximum Like-
lihood Estimator (MLE) of the joint specular path components. The EM is designed on the
expectation of the hidden data space for each specular path propagation and the perfor-
mance of it is quite dependent on the algorithm design.

SAGE

The Space-Alternating Generalized Expectation-Maximization (SAGE) algorithm is intro-
duced in [9]. SAGE is a further improvement for the EM with faster convergence rate and
less complexity, but the design of hidden data spaces is crucial. The realization of SAGE
depends on the expectation of hidden data for the individual path component.

Review of dispersive path modeling and estimation

The dispersive path components model is believed to be a more accurate model of the radio
propagation channel compared to specular path components. Dispersion of the path com-
ponents include direction, delay and frequency and it is described by a continuous function.
In [10], a dispersive path model was proposed by only considering the horizontal angular
spread. The bi-azimuth (DoA and DoD) dispersion was modeled by a von-Mises distribu-
tion and estimation was conducted with the SAGE.

Another dispersive path model of one single side (receiver or transmitter) was proposed in
[16][17] where both the horizontal and vertical angular spread were considered. The joint
horizontal and vertical power angular spread was modeled by the Fisher-Bingham-5(FB5)
distribution and an investigation was conducted to estimate multi-path components using
the SAGE in narrow band scenarios.

1.2 Problem statement

This project is concerned about how to extend the dispersive path component model into
more dimensions specifically in delay. In [16], the authors focused on a single side of the
radio propagation channel in a narrow band scenario, where the latter assumption means
that only dispersion of path components in direction were considered. An extension into a
wide-band scenario requires modeling of path component dispersion in both direction and
delay.

13



CHAPTER 1. INTRODUCTION

Furthermore, the project will also consider the multi-path components estimation problem.
In this matter the SAGE algorithm will be introduced in order to obtain a practical estimator
of the multi-path components.

We only consider SIMO and MISO systems since the results may be extended to MIMO
systems. Also doppler frequency and polarization will not be investigated. Our interests
is to model and estimate the power spectrum of dispersive path components in both time
variant and time invariant radio propagation channel conditions. The phase distribution of
path component will be analyzed for the time invariant scenario.

In short, the problem of the project can be described in the following.

1. To find an appropriate model of the radio propagation channel in SIMO and MISO
systems with dispersive path components in both direction and time.

2. To design a well structured estimation algorithm with preferably fast convergence.

1.3 Report overview

This report is divided into 3 parts: A general part about the channel model; channel propa-
gation characterization and estimation for time variant scenario; channel propagation char-
acterization and estimation for the time invariant scenario.

Part I

Chapter 2 describes signal models of SIMO and MISO systems. Channel sounding tech-
niques are introduced. The radio channel propagation is modeled under the far-field as-
sumption to simplify the radio channel propagation model. A dispersive path component
model is introduced to describe a group of correlated path components.

Part II

In Chapter 3 the power distribution model of the dispersive path components is analyzed.
The maximum entropy modeling principle is used. The FB5 distribution is suggested as the
power distribution in direction and the truncated Gaussian distribution is suggested as the
power distribution in delay. A joint power distribution in direction and delay is derived
based on maximum entropy principle and also approximated by a multivariate Gaussian
distribution.

Chapter 4 analyzes the estimation method in the time variant scenario for multi-path com-
ponents. The SAGE is chosen as a solution for the estimation. Principles and the general
structure of the SAGE are discussed.

Chapter 5 provides the specific algorithm design for the channel propagation estimation in
a time variant scenario. A detailed initialization procedure design for SAGE is given.

Chapter 6 documents the estimation results from both synthetic and real measurement data.
Observation for the measurement data is described. The analysis of the model mismatch

14



1.3. REPORT OVERVIEW

between the model and the measurement is carried out and a solution to minimize the model
mismatch is proposed.

Part III

Chapter 7 suggests a simplified distribution of the path components for the time invariant
scenario by using the power distribution model in Chapter 3 and an identical phase distri-
bution.

Chapter 8 modifies the SAGE for the time invariant scenario.

Chapter 9 modifies the algorithm to the time invariant scenario.

Chapter 10 provides estimation results of the measurement data in the time invariant sce-
nario. Improvements to minimize the model mismatch is again discussed.

Chapter 11 concludes the project. Suggestions to improve the radio channel model are pre-
sented and further research topics in this field of research are provided as well.
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System Modeling 2
This chapter introduces the basic structure of MIMO, SIMO and MISO systems [6]. The
channel sounding techniques help to extract a SIMO or MISO system from a MIMO sys-
tem. The analysis indicates that by using channel sounding techniques the SIMO and MISO
system will have a reciprocal relation in signal model and radio propagation patterns. The
concept of continuous distributed path components is introduced as well as several assump-
tions for the radio propagation channel.

2.1 General structure of MIMO, SIMO and MISO systems

Considering a general MIMO system with MT transmit antennas (Tx) and MR receive an-
tennas (Rx) working simultaneously, the radio channel of the MIMO system can be viewed
as a coexistence of many sub-channels formed by each pair of transmit and receive antenna.
The composition can be represented by the following sub-channel matrix.




(T1, R1) (T1, R2) . . . (T1, RMR
)

(T2, R1) (T2, R2)
. . .

... (Ti, Rj)
...

. . .
(TMT

, R1) (TMT
, RMR

)




,

where each entry represents one sub-channel formed by the Ti transmit antenna and Rj

receive antenna.

A SIMO system can be viewed as a special MIMO system where only one transmit antenna
works. A selection of all the sub-channels in a row of the sub-channel matrix leads to a SIMO
system with one transmit antenna Ti and all MR receiver antennas. Similarly a selection of
a column in the sub-channel matrix leads to a MISO system with one transmit antenna Ri

and all MT receiver antennas.

For either MIMO, SIMO or MISO system, each sub-channel can be described by its channel
impulse response. The channel impulse response describes how the radio channel changes
the transmitted signal in both amplitude and phase. In the interest of research, we only
discuss the channel impulse responses for SIMO and MISO systems.

17



CHAPTER 2. SYSTEM MODELING

SIMO signal model

Consider a SIMO system with one transmit antenna and MR receive antennas, where the
signal s(t) is transmitted. The output signal from the receive antenna array is a MR × 1
vector denoted as y(t).

y(t) = g(t) ? s(t) + w(t) (2.1)

or equivalently:




y1(t)
y2(t)
y3(t)

...
yMR

(t)




=




g1(t)
g2(t)
g3(t)

...
gMR

(t)




? s(t) +




w1(t)
w2(t)
w3(t)

...
wMR

(t)




,

where ? is the convolution symbol, gi(τ, t) is the sub-channel impulse response and w(t) is
assumed to be additive zero-mean spatially and temporally white Gaussian noise:

w(t) ∼ N (0, δ2
wI),

where I is a MR ×MR identical matrix and δ2
w is the variance of the noise.

MISO signal model

In a MISO system with MT transmit antennas and one receive antenna, the transmitted
signal is a MT × 1 vector, s(t). The received signal is:

y(t) = g(t)T ? s(t) + w(t) (2.2)

or equivalently

y(t) =
[

g1(t) g2(t) g3(t) . . . gMR
(t)

]
?




s1(t)
s2(t)
s3(t)

...
sMT

(t)




+ w(t),

where gi(t) is the sub-channel response and w(t) is assumed to be white Gaussian noise with
variance δ2

w:

w(t) ∼ N (0, δ2
w).

The signal models of SIMO and MISO systems share some similar properties. For both
systems, there are one side with a single antenna and another side with multi-antennas

18



2.2. CHANNEL SOUNDING TECHNIQUES

array. Both system works under Gaussian noise as assumption. These imply a way to unify
the signal models for both systems. The following section in fact will apply the channel
sounding technique to improve the signal models.

2.2 Channel sounding techniques

To investigate the radio environment of a multi-antenna system, the properties of each sub-
channel in the system needs to be examined. Channel sounding techniques are used to
decompose the mixed radio channel into orthogonal sub-channels. The time and spatial
overlapping sub-channels are allocated within different divisions so that interference be-
tween the sub-channels is avoided. Channel sounding is also an efficient way to reduce the
cost of the estimation for the channel impulse response.

There are three basic techniques [18]:

1. Time Division Multiplexing (TDM) by allocating different sub-channels at different
time slots.

2. Frequency Division Multiplexing (FDM) by allocating different sub-channels at differ-
ent frequencies.

3. Code Division Multiplexing (CDM) by using distinguishable codewords for different
sub-channels.

The channel sounding techniques can be further developed as mixtures such as joint TDM
and CDM.

Wyzocki et al [19] provide a practical CDM channel sounding technique by using Walsh-
chirp sequence and Prof. Bernard Fleury has described a TDM channel sounding techniques
in [9].

In this project, the TDM channel sounding technique is applied.

Consider the MIMO system with MT transmit antennas and MR receive antennas. To divide
the MT × MR parallel sub-channels in time, a switch is equipped at both the Tx and Rx
array, see Fig. 2.1. The switch is only able to select one antenna at one time. The switching
scheme divides the time period into time slots of equal length. During any time slot, only
one transmit antenna and one receive antenna are selected. In other words, during any time
slot, only one sub-channel works in the radio channel. The switching scheme is depicted in
Fig. 2.2.

The time period for a thorough traversal of all sub-channels is called one sounding period,
denoted as Ts in Fig. 2.2. The switching scheme is repeated in each sounding period. For the
TDM channel sounding, the sounding period is selected short enough to maintain the short
term stationary of the radio propagation channel. This is to guarantee that characteristics of
the radio propagation channel will not vary within one sounding period.

The training sequence, s(t), can be reused for each sub-channel because the TDM mode
guarantees separation of sub-channels. Guard intervals (Tg) are inserted between each time
slot to avoid Inter Symbol Interference (ISI).

19



CHAPTER 2. SYSTEM MODELING

T1

T2

...

TMT

Input

R2

...

RMR

R1

Channel

Output

Switch Switch

Figure 2.1: A TDM channel sounding technique where only one sub-channel
is active at any time.

T1

2,2 2,3 . . . 1,MR2,11,2 1,3 . . . 1,MR1,1

1,1 2,1 3,1 . . . MT , 1

1,2 1,3 . . . 1,MR1,1

MT ,2 MT ,3 . . . MT ,MRMT ,1T3

T2T1 T2
. . . . . .

. . .(Tx , Rx)

(Tx , Rx)

Ts Tg

(Tx , Rx)

TMT
TMT

Figure 2.2: Realized switching pattern. The first row shows how Ts and Tg are
defined. The switching pattern with T1 and other transmitters are expanded
in the second row. The two depicted selections of sub-channels form a SIMO
and a MISO systems respectively.

By using the channel sounding techniques, one can easily extract a SIMO or MISO system
from a MIMO system by picking up specific time slots for different sub-channel combina-
tions. Fig. 2.2 gives examples of extracting a SIMO system and a MISO system from the
same MIMO system. Since the sub-channels are well separated for both SIMO and MISO
system with the help of channel sounding techniques, the signal model of the two systems
can be represented by the same formation as given in Eq. (2.1).

The signal structure analogy for the SIMO and MISO system under channel sounding tech-
niques also indicates that the channel characterization is reciprocal between the SIMO and
MISO system. Therefore the same estimation method is possible for both systems.

2.3 Radio channel propagation model

Fig. 2.3 provides a general radio channel propagation plot of a SIMO system.
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2.3. RADIO CHANNEL PROPAGATION MODEL

Scatterer

Scatterer

D

...

R2

RMr

Bunch of propagation paths

R1

...

T1

Plane wave propagation

Figure 2.3: A SIMO system where a signal is transmitted by T1 and altered in
amplitude, phase, delay etc. by several scatters. The plane waves (illustrated
by the parallel lines) impinge on the Rx array which has a maximum geometric
extend of D.

Along the propagation the transmitted signal, s(t), is reflected or diffracted by objects such
as walls, trees, vehicles or crowds which cause the change of amplitude and phase of the
signal. The signal waves reach the Rx at different delays and directions. The objects which
cause the change of the signal are defined as scatterers. The paths the signal follows are de-
fined as propagation path components. The radio channel impulse response is determined
by the characteristics of the propagation paths.

The SIMO system is only capable to describe the incident waves at the Rx. The information
includes the Direction of Arrival (DoA) and the delay (τ ).

The radio propagation channel of a MISO system shares a similar structure with the SIMO
system. By exchanging all the Tx information with the Rx information, i.e. by exchanging the
labels Tx and Rx and inverting the direction of the signal transmission in Fig. 2.3. Discussion
of the following parts will focus on the channel modeling and estimation method for the
SIMO systems. All the discussions can be reciprocally used for the analysis of the MISO
systems.

The following radio propagation channel model starts from one specular path with a single
delay and a single DoA by this assumption, the sampled signal at sounding period n is
modified into:

yn(t) =
∫ tn+Ts

tn

gn(τi)s(t− τi)δ(τ − τi)dτi + wn(t)

= gn(τ)s(t− τ) + wn(t) (2.3)

2.3.1 Channel assumption

The channel impulse response introduced in Eq. (2.3) is complex due to the radio propaga-
tion channel and the antenna radiation pattern. To set up an effective channel model, several
assumptions are introduced.
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1. Far field assumption and plane wave propagation

The far field assumption considers the distance between the Tx and Rx to be larger
than the Rayleigh Distance [20, page 220] given by:

r À 2D2/λRF (2.4)

where λRF is the wavelength and D represents the largest distance among any two
antennas in the antenna array (antenna dimension).

The far field assumption considers the signal wave as a plane wave whose wavefront
are infinite parallel planes with constant amplitude normal to the velocity vector of
the signal wave. By the assumption of specular path propagation, the general plane
wave can be expressed as:

s(p, t) = a exp
(
j(kT p− ωt)

)
, (2.5)

where a is the complex amplitude, k is the velocity vector of the wave, p is the prop-
agation vector and ω = 2πfRF . One property of plane waves is that the delay of the
transmitted signal is linear to the length of the propagation path. From Eq. (2.3), the
plane wave propagation form the arriving signal at the Rx side is given:

x(t) = a(τ, p)s(t− τ), (2.6)

where a is the complex amplitude of the received signal and it is now a function de-
termined by the specific propagation path p and delay τ .

Eq. (2.6) is a quite compact expression for the signal which is the basis of further study.
Fig. 2.3 also illustrates the characteristics of a plane wave.

2. Small scale assumption

The arriving signal is further modified by the receive antenna radiation pattern. The
radiation pattern of the antenna array modifies the arrival signal in the form of:

y(t) = Ca(τ, p)s(t− τ), (2.7)

where C is the radiation pattern of the antenna array determined by the direction of
the arrived signal and by the position of the antennas. The small scale characteristics of
the antenna array assume that the geometry distribution of the receiver antenna array
is within small range that the received signal at each receiver antenna is not influenced
by the geometric positions of the antennas. As a result, the antenna radiation pattern
is only determined by the direction of the arriving signal and the antenna radiation
pattern C then becomes a function only determined by the DoA.

The radiation pattern of the antenna array is represented as:

C(Ω) =




c1(Ω)
c2(Ω)

...
cMR

(Ω)


 ,

where Ω is the DoA. Such vector is called a steering vector with direction Ω.
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The visual interpretation of the small scale assumption is shown in Fig. 2.3. The receive
antennas at different positions can be equally viewed as in the center of the ball.

Apply the arriving signal model in Eq. (2.6) and assume that the noise is white Gaus-
sian noise, the output of the Rx antenna array in sounding period n is modified into:

y(t) = C(Ω)a(τ,Ω)s(t− τ) + wn(t). (2.8)

3. Vertical polarization

In this project, the polarization and the cross polarization is not in the scope of the
research. As a default, only vertical polarization is considered since "Vertical polariza-
tion is always used in mobile communication" [21, page 9].

4. Doppler frequency

Doppler frequency is not considered at first in order to obtain a simpler channel model.
Therefore this investigation will only focus on environments where the relative speed
transmitter and receiver negligible.

When the antenna polarization and Doppler frequency are omitted, the signal model of
a SIMO system under the single specular path propagation assumption is simplified to
Eq. (2.8) and the complex amplitude a(τ,Ω) is only a function of τ and Ω.

2.3.2 Dispersive path component model

Eq. (2.8) describes the signal model of one specular path component. The signal model of
specular multi-path components can be written as a sum of the individual specular path
components. Now suppose that L independent specular path components [21] exist in the
channel. Signal y(t) is written as:

y =
L∑

l=1

al(τl, Ωl)Cl(Ω)s(t− τl) + w(t). (2.9)

In Fig. 2.3, the specular path components is clustered by different scatters. Specular path
components coming from the same scatters form a bunch of specular path components. The
research is interested on the relationships of specular path components within one bunch.
By assuming that the size of the scatterers are small, the specular path components within
one bunch is believed to share similar propagation properties in delay and DoA. Conse-
quently, the specular path components are no longer viewed as independent of each other
but correlated. To represent this correlation, the complex amplitude is extended as a contin-
uous distributed function in delay (τ ) and direction (Ω). Thereby, one scatterer in Eq. (2.9)
is replaced with a continuous model:

y(t) =
∫

S,T
a(Ω, τ)C(Ω)s(t− τ)dΩdτ + w(t), (2.10)

where the S and T are the integral intervals of Ω and τ .

Naturally, signals from different scatterers are still considered to be uncorrelated.
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The signal model given in Eq. (2.10) describes a continuous distributed path component
model. This is a way to parametrically describe the clustering of correlated propagation
paths and such will be denoted as dispersive path components. The dispersive path com-
ponent model is believed more accurate corresponding the true environment.

2.4 Summary

In this chapter, the dispersive path component model was defined. We primarily research
on the modeling and estimation of dispersive path components. In the following parts,
by no specification the expression "path component" is considered to be dispersive path
components.
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Part I

Time Variant Scenario
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Power Spectrum Modeling in
Direction and Delay 3
For the time variant scenario estimation of the path component is only related to the power
distribution of a(τ,Ω). This chapter provides the modeling of the power distribution of the
path components. The models are analogue to probability density functions (pdf). Maxi-
mum entropy modeling is introduced. A joint power distribution for direction and delay is
proposed and an approximated power distribution is also proposed by using a multivariate
Gaussian distribution.

3.1 Problem statement

The power spectrum of the path component can be viewed as the average power distribu-
tion of the continuous function, a(τ,Ω), if the training sequence s(t) has unit power within
one sounding period. For the time variant scenario, the average power distribution is ex-
pressed as E[a(τ,Ω)a∗(τ,Ω)]. The power distribution can be modeled in the form of a prob-
ability density function by the following facts:

- The entire power for the received signal from one SDS is finite in one sounding period.
That is,

∫ tn+Ts

tn

∫

S,T
an(Ω, τ)a∗n(Ω, τ)s(t− τ)s∗(t− τ)dtdτdΩ = Pn (3.1)

- The average power distribution E[a(τ,Ω)a∗(τ,Ω)] is stationary within the observa-
tion.

Introduce the power density function f(τ,Ω), the expectation E[a(Ω, τ)a∗(Ω, τ)] is replaced
by Pf(Ω, τ) where

∫
S,T f(Ω, τ)dτdΩ = 1. In this chapter the power density function f(Ω, τ)

is derived.

A power distribution across time and space domain is usually complex. Under the condition
that no prior information is given, our analysis will follow the maximum entropy modeling.
It is necessary to define the support space for the direction and delay variables first.

The support space is the space a variable belongs to. The support space for a real variable is
the real space R, e.g. and the support space for a phase variable can be [0, 2π).

The description of a direction in 3-D space requires two angles, one for the horizontal angle
description and one for the vertical angle description. With polar coordinates, any 3 × 1
vector can be defined by its radius, the azimuth (φ) for the horizontal angle and the elevation
(θ) for the vertical angle. We define the range of azimuth as [−π, π) and the range of elevation
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as [−π/2, π/2]. Without the interest of the radius of the vector, define the unit length vector
in cartesian coordinates:

Ω =




cos(φ) cos(θ)
sin(φ) cos(θ)

sin(θ)


 (3.2)

as the direction vector. Therefore the support space for Ω is |Ω| = 1 which is a unit sphere.

Fig. 3.1 provides the visual expression for the direction vector.

φ

θ

z-axis

|Ω| = 1

θ ∈ [−π/2, π/2]

φ ∈ [−π, π)

0

Ω

y-axis

x-axis

Figure 3.1: Illustration of how the direction vector is obtained.

The range of the delay is normalized by the length of one sounding period. E.g. if for one
sounding period, a total 500 samples was obtained, then the the sampling rate is normalized
to 500 Hertz.

3.2 Maximum entropy modeling

Maximum entropy modeling can be viewed as a common model giving the maximum like-
lihood for exponential models when given special observation for the variables. Principles
for the construction of maximum entropy modeling are given in [22].

Theorem 1 For any given pdf f(x) fulfilling the following conditions:

1. S∗ is the support of f(x) where x ∈ S∗,

2. E[ti(x)] = ai, i = 1, . . . , q, where ti is a function of x and ai is a constant value for the
expectation.
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Then the entropy of f is maximized, if the pdf f is of the form:

f(x) = exp

{
b0 +

q∑

i=1

biti(x)

}
, x ∈ S∗ (3.3)

In Eq. (3.3), function ti(x) can be any kind of elementary function if only E[ti(x)] is observ-
able. From a statistics view, the most common observation is E[x] and E[xxH ].

One popular maximum entropy description is the Gaussian distribution. The following will
try to interpret the Gaussian distribution as a maximum entropy model.

The general description for a real N-variate Gaussian distribution can be written as:

f(x) = C exp
[
−1

2
(x− µx)T R(x− µx)

]
(3.4)

where x ∈ RN is N × 1 random vector , R = Σ−1 is the N × N inverse covariance matrix
with rank N , µx is the mean of x and C is the normalization coefficient.

Expand the expression inside the exponent part in Eq. (3.4):

f(x) = C exp
[
−1

2
(xT Rx− 2µx

T Rx + µx
T Rµx)

]

= C exp
[
−1

2
xT Rx + µx

T Rx− 1
2
µx

T Rµx

]

Let C1 = C exp
[
−1

2
µx

T Rµx

]

f(x) = C1 exp
[
−1

2
xT Rx + µx

T Rx

]
(3.5)

In Eq. (3.5), the general multivariate Gaussian distribution is seen to follow the maximum
entropy modeling where−1

2xT Rx corresponds to the observation E[xxH ] and µx
T Rx cor-

responds to the observation E[x].

Furthermore, the full rank matrix Σ indicates that it is positive definite, as a result the in-
verse matrix R is positive definite. The eigenvalues of R represent the power spread along
the eigenvectors.

To get a clearer view for the observation of expectation E[xT Rx], Let the matrix R =∑N
i=1 λibib

H
i as in eigenvalue decomposition, thereby convert Eq. (3.5) into:

f(x) = C1 exp

[
−1

2
xT (

N∑

i=1

λibib
H
i )x + µx

T Rx

]

= C1 exp

[
−1

2

N∑

i=1

λi(xT bi)2 + µx
T Rx

]
(3.6)
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From Eq. (3.6), it is not hard to see, as the eigenvectors of R forms a basis for the N-
dimension space RN , the expression

∑N
i=1 λi(xT bi)2 implies that a spread is present in all

directions of RN . Denote this kind of second moment spread as full moment description.
For a variable x following the Gaussian distribution with its support as x ∈ RN , its variance
spread is observable along any direction in the N-dimension space. The condition will be
modified if the support of x is a subspace of RN and the variance spread is not observable
in all directions.

3.3 Fisher Bingham 5 distribution for direction distribution

The maximum entropy modeling for a direction vector leads to the Fisher Bingham 5(FB5)
distribution which was originally proposed by Kent in [23]. The FB5 distribution provides
a maximum entropy modeling for a 3× 1 direction vector Ω (|Ω| = 1) and is written as:

f(Ω) = C exp
(

κγT
1 Ω +

1
2
ηκ((γT

2 Ω)2 − (γT
3 Ω)2)

)
, (3.7)

where κ > 0 is the direction spread coefficient and η ∈ [0, 1) is the ovalness ratio for the
angular spread in FB5.

The 3 vectors γ1, γ2 γ3 are orthonormal vectors and γ1 = Ω̄ represents the mean direction
of Ω. The vectors γ2 and γ3 represent the angular power spread direction of Ω. It can be
seen that in FB5 distribution, the angular spread of Ω is orthogonal to its mean direction.

Given that the mean direction γ1 is known, the direction of γ2 and γ3 can be determined by
one relative tilt angle on the orthogonal plane of γ1. To arrive at such expression, define two
direction vectors:

αφ =




sin φ̄
− cos φ̄

0


 αθ =



− sin θ̄ cos φ̄
− sin θ̄ sin φ̄

cos θ̄




which is the basis for the orthogonal plane of γ1. The direction vector αφ is in the X-Y plane.

Fig. 3.2 shows the relation among the three direction vector and the tilt angle.

Define the matrix,

Γ = [γ1 γ2 γ3]

as the direction matrix. The analytical expression for the construction of Γ is:

Γ =




cos θ̄ cos φ̄ sin φ̄ − sin θ̄ cos φ̄
cos θ̄ sin φ̄ − cos φ̄ − sin θ̄ sin φ̄

sin θ̄ 0 cos θ̄







1 0 0
0 cos α − sinα
0 sinα cosα


 , (3.8)

where θ̄ is the mean elevation, φ̄ is the mean azimuth and α is the direction tilt angle.
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α

γ1
γ3

αφ

O

γ2

αθ

Figure 3.2: The relations between γ1, γ2, γ3 and the tilt angle α

To relate the FB5 distribution to the maximum entropy modeling, the following substitution
is performed.

Expand Eq. (3.7):

f(Ω) = C exp
(

κγT
1 Ω +

1
2
ηκ((γT

2 Ω− γT
3 Ω)(γT

2 Ω + γT
3 Ω))

)

= C exp
(

κγT
1 Ω +

1
2
ηκ(γT

2 − γT
3 )Ω(γT

2 + γT
3 )Ω

)

Let
√

2 γ ′2 = γ2 − γ3 and
√

2 γ ′3 = γ2 + γ3

f(Ω) = C exp
(
κγT

1 Ω + ηκ(γ′T
2 Ωγ′T

3 Ω)
)

(3.9)

Fig. 3.3 shows that the γ ′2, γ ′3 and γ1 are still orthonormal to each other. FB5 can then be
redefined by applying γ1, the new γ2 = γ ′2 and the new γ3 = γ ′3.

f(Ω) = C exp(κγT
1 Ω + ζκγT

2 ΩγT
3 Ω) (3.10)

To get a better understanding of the modified FB5 distribution as a maximum entropy
model, the following transition is applied.

For the direction vector Ω, apply a linear transformation by using the direction matrix Γ:

Ω′ = ΩTΓ =




ΩT γ1

ΩT γ2

ΩT γ3
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γ
3

γ
2

γ ′

3
γ ′

2

Figure 3.3: Relation between γ2, γ3, γ′2 and γ′3

Introduce the R matrix for random vector Ω as it is introduced in Gaussian distribution in
Eq. (3.6).

R =




r11 r12 r13

r21 r22 r23

r31 r32 r33




The matrix R is a symmetric real matrix where each entry rij represents the observation of
E[ΩT γiΩ

T γj ]. Now rewrite the Eq. (3.10) with the introduction of R.

f(Ω′) = C exp(κΩ′T




1
0
0


 + βΩ′T RΩ′)

= C exp(κΩ′T




1
0
0


 + βΩ′T




r11 r12 r13

r21 r22 r23

r31 r32 r33


Ω′) (3.11)

By comparing Eq. (3.11) and Eq. (3.10), it can be seen that for FB5 distribution entries of
R are zeroes except for r23 = r32 = 1/2. Comparing Eq. (3.11) with Eq. (3.6), it is easy
to see that the FB5 distribution fulfills the maximum entropy modeling with an confined
observation of E[ΩΩT ]. To be more precise, the FB5 distribution is based on the observable
mean direction E[Ω] and the observable cross covariance E[γT

2 ΩγT
3 Ω] which is orthogonal

to its mean direction. We say the covariance observation of E[ΩΩT ] for FB5 is confined
on the sphere because the support of the direction Ω is on the unit sphere and thereby the
angular spread outside or inside the sphere is not observable.
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3.4 Truncated Gaussian distribution for delay distribution

The support for the delay is τ ∈ R. With TDM channel sounding technique the delay of the
signal is distinguishable within one sounding period. The maximum entropy model of the
delay is proposed to be a truncated Gaussian distribution within one sounding period. The
spread for the delay has to be small enough for the truncation.

The truncated Gaussian distribution is given as below:

f(τ) = C exp(−B(τ − µτ )2) (3.12)

B = 1
2σ2 > 0, σ2 is the variance of the delay. B is denoted as delay spread coefficient. and µτ

is the mean of the delay. The range for the delay is confined in one sounding period defined
as τ ∈ [0, 1) and µτ ∈ [0, 1).

3.5 Joint power distribution in direction and delay

The FB5 distribution and truncated Gaussian distribution is viewed as conditional power
distribution in direction and delay respectively. By considering the joint power distribution
in direction (Ω) and delay (τ ), the conditional power distribution for this joint power dis-
tribution still follows the FB5 and truncated Gaussian in direction and delay respectively.
Meanwhile, the maximum entropy principles has to be satisfied again.

By analysis previously the multivariates Gaussian distribution is a general maximum en-
tropy model which is able to describe the first moment and second moment of a variable.
Because the description for the mean and the variance for a variable is enough to give a
maximum entropy model to describe how the power of the variable is distributed, it is sen-
sible to start the joint power distribution in the form of a Gaussian distribution. The FB5
distribution can also be viewed as a confined Gaussian distribution when its support is lim-
ited to Ω ∈ R3, |Ω| = 1. For the joint power distribution, there are three free variables: the
azimuth, the elevation and the delay. By comparison of the 3-variate Gaussian distribution
to the joint power distribution in direction and delay the following requirements need to be
fulfilled.

1. The conditional distribution of the direction and delay should follow the FB5 and trun-
cated Gaussian respectively.

2. For a 3-variate Gaussian distribution, the parameters which describe it can be catego-
rized as: 3 parameters for the mean of the variables, 6 variables for the variance matrix
of the variables. Accordingly one can expect the same number of parameters to de-
scribe the joint power distribution. For the direction description, the parameters are:
2 parameters for the mean direction (φ̄, θ̄), 3 parameters for the power spread (κ, ζ,
α). For the delay description, the parameters are: 1 parameter for the mean delay(τ̄ ), 1
parameter for the power spread (B = 1

2σ2 ). The cross correlation of the power spread
in direction and delay needs 2 extra parameters to describe it. Finally, the number of
parameters to describe the joint power distribution has to be equal to the number of
parameters to describe a 3 variables Gaussian distribution.
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Now construct a 4× 1 random vector as a stack of a direction vector and a delay variable:

[
Ω
τ

]

The mean for this random vector is:

E

[
Ω
τ

]
=

[
Ω̄
τ̄

]

The derivation for the joint power distribution starts in an expression similar to Gaussian
distribution:

f(Ω, τ) = C exp

([
Ω− Ω̄
τ − τ̄

]T

R

[
Ω− Ω̄
τ − τ̄

])
(3.13)

The matrix R is 4 × 4 used to describe the covariance of the direction and delay. The expo-
nential maximum entropy is determined by the components formation inside the exponent.
Let q(Ω, τ) represent the expression inside the exponent of f(Ω, τ).

q(Ω, τ) =
[
Ω− Ω̄
τ − τ̄

]T

R

[
Ω− Ω̄
τ − τ̄

]

Reform R in the following:

R =
[

A

cT

c

−b

]
,

where A is a 3 × 3 matrix describing the covariance of the direction, b is a scalar spread
coefficient of the delay and c is a 3 × 1 vector describing the cross covariance between the
direction and delay. This decomposition divides R into 3 parts, A and b for the individual
covariance descriptions of Ω and τ , c for the cross covariance description for Ω and τ .

We investigate the conditional direction distribution at certain delay τ0. The expression is
given below.

q(Ω|τ0) =
[
Ω− Ω̄
τ0 − τ̄

]T [
A

cT

c

−b

] [
Ω− Ω̄
τ0 − τ̄

]

q(Ω|τ0) = (Ω− Ω̄)T A(Ω− Ω̄) + 2cT (Ω− Ω̄)(τ0 − τ̄)− b(τ0 − τ̄)2

= ΩT AΩ− 2Ω̄T
AΩ + Ω̄T

AΩ̄ + 2cTΩ(τ0 − τ̄)− 2cT Ω̄(τ0 − τ̄)− b(τ0 − τ̄)2

= ΩT AΩ + 2(−Ω̄T
A + cT (τ0 − τ̄))Ω + C0 (3.14)(

C0 = Ω̄T
AΩ̄− 2cT Ω̄(τ0 − τ̄)− b(τ0 − τ̄)2

)
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If the conditional direction distribution still follows the FB5 distribution, by comparing
Eq. (3.14) and Eq. (3.10), the conditional mean direction Ω̄|τ0 and the conditional direction
spread coefficient κ|τ0 from Eq. (3.14) follow:

κ|τ0Ω̄|τ0 = κΩ̄T − 2cT (τ0 − τ̄), (3.15)

where κ and Ω̄ are the global direction spread coefficient and the mean direction respec-
tively.

From Eq. (3.15) it can be seen that the conditional mean direction moves along the direction
of c and the conditional κ|τ0 is determined by both κ and c(τ0 − τ̄). Eq. (3.14) and Eq. (3.15)
also indicate that the component ΩT AΩ is not affected by the given delay τ0. However, to
maintain the FB5 distribution for conditional direction distribution, the ΩT AΩ needs to be
modified.

To reveal this relation, firstly assume that the azimuth, elevation and delay follow the joint
Gaussian distribution. Fig. 3.4 (a), (b) and (c) provide the conditional Gaussian distribution
of the direction given different delays on the plane. It can be seen that the mean direction of
the conditional Gaussian distribution is located along a line with the global mean direction
locates in the center of the line. One can also observe that the power spread ovalness ratio
and angular spread direction at different delays stay the same. By extending these proper-
ties to the conditional direction FB5 distribution in Eq. (3.15), it can be seen that the ovalness
radio ζ and the direction tilt angle α stay constant in different conditional direction distri-
butions. As a result, the component ΩT AΩ is required to be consistent with the component
ζκ|τ0γ

T
2 |ΩγT

3 Ω given in Eq. (3.10) for different delays, where the conditional angular spread
direction is determined by α and κ|τ0 .

Fig. 3.4 (d), (e) and (f) provide the analogue relation for the conditional direction distribution
which follows the FB5 distribution. The conditional mean direction moves along an arch
on the sphere and the ovalness radio for the angular spread of the conditional direction
distribution stay the same at different delays.

To maintain the number of parameters, two parameters are used to describe vector c. Nor-
mally to determine the 3× 1 vector c, 3 parameters are needed (radius, azimuth and eleva-
tion). Now confine the vector c orthogonal to the mean direction Ω̄, then the direction of c
is determined by one relative tilt angle to describe the position of c on the orthogonal plane
of Ω̄. Denote the delay tilt angle for c as β and decompose the c into the amplitude and
direction parts, the vector c is modified into:

c = η




sin φ̄ cosβ − sin θ̄ cos φ̄ sinβ
− cos φ̄− sin θ̄ sin φ̄ sinβ

cos θ̄ sinβ


 (3.16)

The general joint direction delay distribution is:

f(Ω, τ) = C exp
(
(κΩ̄− ηc(τ − τ̄))TΩ + ΩT AΩ− 2cT Ω̄(τ − τ̄)− b(τ − τ̄)2

)
(3.17)
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.4: A comparison of the conditional Gaussian distribution (a, b, c) and
the conditional direction distribution of the joint FB5 and Gaussian distribu-
tion (d, e, f)
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3.6. POWER DISTRIBUTION APPROXIMATIONS

The parameters inside Eq. (3.17) is explained in the following:

• C is the normalization coefficient.

• κ is the direction spread coefficient.

• Ω̄ is the mean direction.

• η is the cross direction delay spread coefficient.

• c is the cross direction-delay spread direction by Eq. (3.16)

• A is determined by the conditional κ|τ0 , Ω|τ0 , the ovalness ratio of direction distribu-
tion ζ and direction tilt angle α.

• b is the delay spread coefficient.

• τ̄ is the mean of the delay.

The practical procedure to construct the joint pdf of direction and delay is given following.

1. For a given delay τ0, calculate the vector Ω′
0 = κΩ̄− ηc(τ0 − τ̄).

2. Let κ0 = |Ω′
0| be the conditional κ and Ω̄0 = Ω′

0/κ0 be the mean direction for the
conditional FB5 direction distribution.

3. Use κ0, Ω̄0 and α to calculate the conditional angular spread direction γ20 and γ30 by
Eq. (3.8).

4. Construct the matrix A. A = κ0ζγ20γ
T
30

5. Calculate f(Ω, τ0) as following FB5 distribution, with condition κ0, Ω0, γ20, γ30, α and
ζ.

6. Combine all the conditional direction distribution to form the joint direction delay
distribution f(Ω, τ).

7. Normalize f(Ω, τ).

3.6 Power distribution approximations

Kent’s article mentioned one property of the FB5 distribution that when the spread of the
FB5 distribution is pretty small, it is close to a Gaussian distribution on the plane. From this
point, it is possible to approximate the joint power distribution in direction and delay with
the Gaussian model when the spread is small enough.

Recall the real 3-variate Gaussian distribution in the form of:

f(x, y, z) = C exp


−1

2




x− µx

y − µy

z − µz




T

Σ−1




x− µx

y − µy

z − µz





 (3.18)
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where Σ is the covariance matrix.

Now define ∆x = x−µx. To approximate the joint power distribution in direction and delay,
the problem is to find a effective approximation to replace the

[
Ω− Ω̄
τ − τ̄

]

with 


∆φ

∆θ

τ − τ̄


 .

To find the approximation ∆φ and ∆θ, the X-Y plane is wrapped onto a sphere. Consider
the arch connecting Ω and Ω̄ as the difference of the two direction vector on the sphere.
This leads to an analogue formation of a difference between two points on the X-Y plane.
Fig. 3.5(a) shows the visual formation of ∆x and ∆y on the plane. Applying the same
method, forms of ∆θ and ∆φ on the sphere is given in Fig. 3.5(b) as two arches. Note that
∆θ and ∆φ are not related with the cartesian coordinate of the space. They are only related
with the relative position of Ω̄, αθ and αφ.

The computation of ∆φ is described in Fig. 3.5(c). The following are the procedures:

1. Let Ωφ = Ω− ΩT αθ
|Ω||αθ| as the projection of Ω onto the Ω̄, αφ plane.

2. Let |∆φ| represents the absolute difference arch on the sphere between Ωφ and Ω̄.

|∆φ| =
∣∣∣∣∣arccos

ΩT
φ Ω̄

|Ωφ||Ω̄|

∣∣∣∣∣

3. Let sgn(ΩT
φαφ) as the sign of ∆φ.

4. Finally ∆φ is in the form of :

∆φ = sgn(ΩT
φαφ)

∣∣∣∣∣arccos
ΩT

φ Ω̄

|Ωφ||Ω̄|

∣∣∣∣∣

In the similar way ∆θ can be obtained.

A simpler approximation is to directly apply the joint Gaussian distribution for:




∆φ

∆θ

∆τ


 =




φ− φ̄
θ − θ̄
τ − τ̄




This approximation works within the following limitations:

- The spread of the distribution is small

- The distribution is far away from the boundaries of the plane(φ = ±π and θ = ±π/2).

- The distribution is not close to the top or the bottom (θ = ±π/2) where the Jaccobi
modification will cause the distortion of the distribution.
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∆x

y-axis

∆y

(x, y)

(µx, µy)

x-axis

(a) The formation of ∆x and ∆y on the
X-Y plane.

O

Ω

Ω̄

∆θ

∆φ

(b) The formation of ∆θ and ∆φ on the
sphere.

O

∆φ

Ω̄

αφ

αθ

Ω

(c) The computation of ∆φ
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3.7 Comparison of power distribution models

Until now, there are two kinds of power distribution in direction and delay at hand. One is
the joint direction delay power distribution applying the conditional FB5 and Gaussian. The
other one is the approximated power distribution by using Gaussian distribution. To make
a comparison, Fig. 3.7 provides a demonstration of the two different model in Fig. 3.5(d)
and Fig. 3.5(e). The settings for the joint power distribution and the approximated power
distribution are selected with the same mean position (θ̄, φ̄, τ̄ ). The power spread and the
power spread direction are defined close between the two models. It can be seen that the
both power distribution model are able to describe the spread and spread direction along
direction and delay.

(d) A isosurface plot of the joint power distribu-
tion in direction and delay

(e) A isosurface plot of the approximated power
distribution in direction and delay

Parameter settings
θ̄[◦] 0
φ̄[◦] 0

τ̄ (index) 30
κ 100
ζ 0.01

α[◦] 60
β[◦] 270
η 1000
B 40000

(f) Parameter settings of
model in (a)

Parameter settings
θ̄[◦] 0
φ̄[◦] 0

τ̄ (index) 30
δθ 0.11
δφ 0.12
δτ 0.004
ρφθ 0.2
ρφτ 0.4
ρθτ -0.1

(g) Parameter settings of
model in (b)

Figure 3.5: Plots of the joint power distribution model and the approximated
power distribution model with the tabularized parameter settings.
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Radio Propagation Channel
Estimation 4
A time variant radio channel means that the channel impulse response is a random process
in each sounding period. Stochastic characteristics of the channel impulse response is dis-
cussed at the beginning of this chapter. The SAGE is introduced for multi-path component
estimation. Estimators such as the MLE and the LSE are applied in SAGE. The analysis is
only provided for the SIMO systems. All the methods can be reused for the MISO system.

4.1 Channel impulse response estimation with multi-path compo-
nents

The signal model for multi-path components is the sum of all the individual path compo-
nents. For L path components, the signal model is:

y(t) =
L∑

l=1

∫

S,T
al(Ω, τ)C(Ω)s(t− τ)dΩdτ + w(t). (4.1)

In the time variant scenario, the WSSUS model [6] is assumed for the path components
expressed as:

E[a(Ωi, τi)a∗(Ωj , τj)] = 0, i 6= j (4.2)

Furthermore the radio propagation channel model assumes that different path components
are assumed to be uncorrelated:

E[ai(Ω, τ)a∗j (Ω, τ)] = 0, i 6= j (4.3)

The WSSUS assumption will lead to a simple expression for the stochastic characteristics of
the channel impulse response.

The correlation of the output signal y(t) with s∗(t− τ ′) provides an estimate of the channel
impulse response at the sampled delay τ ′. Denote the estimated channel impulse response
at delay τ ′ as h(τ ′).
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h(τ ′) =
∫ T

0
y(t)s∗(t− τ ′)dt

=
∫

S,T

L∑

l=1

al(Ω, τ)C(Ω)
∫ tn+T

tn

s(t− τ)s∗(t− τ ′)dtdΩdτ +
∫ tn+T

tn

w(t)s∗(t− τ ′)dt

=
L∑

l=1

∫

S,T
al(Ω, τ)C(Ω)Rss(τ − τ ′)dΩdτ +

∫ tn+T

tn

w(t)s∗(t− τ ′)dt, (4.4)

where Rss(τ) is the autocorrelation function of signal s(t), i.e. Rss(τ) =
∫ tn+T
tn

s(t)s∗(t− τ).

The component
∫ tn+T
tn

w(t)s∗(t− τ ′)dt is additive Gaussian noise.

The sampled vector h(τ ′) forms a complete estimation for the channel impulse response
within one sounding period. Now stack the sampled channel impulse response estimation
denoted as H . The stacked channel impulse response estimation vector is given as:

H =




h(τ1)

h(τ2)
...

h(τk)
...

h(τK)




(4.5)

where τk is the kth delay sample of all the K delay samples within one sounding period.

4.2 Stochastic analysis

In the time variant scenario the complex amplitude al(Ω, τ) is a random process across dif-
ferent sounding periods. The al(Ω, τ) is assumed to have uniform phase distribution in
[0, 2π). This uniform phase distribution makes the complex amplitude a(Ω, τ) have zero
mean. The average power distribution of al(Ω, τ) follows the models given in Chapter 3 as
E[al(Ω, τ)a∗l (Ω, τ)] = Plfl(Ω, τ). By Eq. (4.3) it is assumed that different path components
are uncorrelated. Taking all the above into the investigation, the stochastic characteristics of
H is studied.

By the central limit theorem, the random H vector given in Eq. (4.5) follows the Gaussian
distribution. The mean and covariance matrix of H is derived in the following.

The mean of H is given by:
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E[H] =




E[h(τ1)]

E[h(τ2)]
...

E[h(τk)]
...

E[h(τK)]




, (4.6)

and derivation in A.1 shows that E[H] = 0.

The covariance of H is given by:

E[HHH ] =




E[h(τ1)hH(τ1)] E[h(τ1)hH(τ2)] . . . E[h(τ1)hH(τK)]

...
. . .

...
E[h(τi)hH(τj)]

E[h(τK)hH(τ1)] E[h(τK)hH(τK)]




(4.7)

where each sub-matrix E[h(τi)hH(τj)] has the expression given in Appendix A.1.

E[h(τi)hH(τj)] =
L∑

l=1

∫

S,T
Plfl(Ω, τ)C(Ω)CH(Ω)Rss(τ − τi)Rss(τ − τj)dΩdτ + σ2

nIRss(τi − τj),

(4.8)

where Pl and fl(Ω, τ) are the power and power density function for the lth path component.

The covariance sub-matrix in Eq. (4.8) can be decomposed into signal parts and a noise part.

Let:

Σslsl
=

∫

S,T
Plfl(Ω, τ)C(Ω)CH(Ω)Rss(τ − τi)Rss(τ − τj)dΩdτ

Σww = σ2
nIRss(τi − τj). (4.9)

Then,

E[h(τi)hH(τj)] =
L∑

l=1

Σslsl
+ Σww. (4.10)

The Σslsl
represents the signal part in the covariance matrix and Σww is the noise part.

Due to the uncorrelated multi-path components, the stochastic characteristics of H can be
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viewed as the summation of the stochastic characteristics of the individual path compo-
nents.

For the time variant scenario, the stochastic characteristics of the channel impulse response
estimation is only determined by the power distribution of each path component. The phase
distribution is not considered.

Whether the sub-matrix E[h(τi)hH(τj)] in Eq. (A.4) is a zero-matrix or nonzero depends
only on Rss(τ) and the distance between τi and τj when applying the WSSUS assumption.
The Fig. 4.1 gives a example of the covariance matrix by assuming Rss(τ) = δ(τ). It can be
observed that only the sub-matrices on the diagonal of the covariance matrix are nonzero
matrices.

Figure 4.1: A illustration of the covariance matrix when Rss(τ) = δ(τ). The
color in the figure represents the absolute amplitudes of the entries. From
Eq. (4.8) it is known that a sub-matrix is nonzero only when τi = τj .

4.3 The SAGE

The radio propagation channel estimation in the time variant scenario is equivalent to the
estimation of power distribution of the propagation path components. When the estimation
expands to multiple path component, one can use the EM method to get a joint estimation
for multi-path components [15] where for each estimation iteration the power distributions
for all path components are estimated simultaneously. There are two drawbacks of the EM
method: slow convergence and difficult maximization steps due to coupling when smooth-
ness penalties are used. As an alternative the SAGE algorithm [24] is applied which estimate
parameters in smaller groups sequentially by alternating between several small hidden data
spaces defined by the algorithm designer.
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4.3.1 General structure of the SAGE

In the multi-path component problem, the signal model is given in Eq. (4.1). The individual
signal model for each path component can be viewed as the individual signal corrupted by
additive Gaussian noise. The received signal from the lth path component can be written as:

xl(t) =
∫

S,T
al(Ω, τ ;θl)C(Ω)s(t− τ)dΩdτ +

√
β w(t) β ∈ [0, 1], (4.11)

where θl represents the parameter set for the lth path component. The collection of all
parameter sets is represented by:

θ = [θ1,θ2, θ3, . . . ,θL]

Joint estimation for the whole parameter set θ is impractical due to the computation com-
plexity and convergence rate. The key idea of SAGE is to design a well defined data sub-
space that is only related with one parameter sub set, θk. By analytical expression, for each
estimation iteration, the SAGE replace:

Λ(θm
1 , θm

2 , . . . , θm
L ; θm−1

1 ,θm−1
2 , . . . , θm−1

L )

with

Λl(θm
l ; θm−1

1 ,θm−1
2 , . . . , θm−1

L ),

where Λ represents the estimator of the joint parameters estimation and Λl represents the
estimator of the lth parameter.

In short, SAGE works only in a data subspace extracted from the total received signal y(t).
The y(t) is observable data but the internal composition given in Eq. (4.1) is unknown. The
signal model for each path component is known as given in Eq. (4.11) but is observable from
the receiver. The y(t) is called observable incomplete data and the xi(t) is called complete
unobservable data or hidden data if each path component is uncorrelated. The realization
of SAGE relies on the hidden data for each path component. This is achieved by introducing
the estimation for the hidden data based on previous estimation results.

Fig. 4.2 provides a general structure for the SAGE algorithm. The SAGE can be divided
into two main steps, the Expectation step and the Maximization step. For each estimation
iteration, one path component is selected and the conditional expectation of the likelihood of
the parameter set of the path component is computed by previous estimation results. After
the estimation is done, the algorithm checks whether the convergence of the estimation is
achieved. If not, the algorithm updates the parameter subset with the estimation of current
path component and continues to estimate the next path component.

4.3.2 Expectation step in the SAGE

The original definition of hidden data space is given in [24]:
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Estimation

of ith path component

Convergence

reached?
No

Yes

E step M step

Hidden data space extration

of ith path component

x̃l

l
′ 6= l

j = j + 1θ̃
0

θ̃
j

θ̃SAGE

θ̃
j+1

l

ŷ

θ̃
j+1

l′
= θ̃

j

l′

l = j mod (L) + 1

Figure 4.2: The general SAGE structure. In the structure, L path components
are taken into the estimation. The switching of the path component into one
estimation iteration is determined by the l = j mod (L) where j is the itera-
tion counter. The SAGE will stop if the required convergence is reached.

Definition 1 A random vector XS with probability density function f(x; θ) is an admissible
hidden data space with respect to θS for f(y; θ) when the joint density of XS and Y
satisfies:

f(y, x;θ) = f(y|x;θS̃)f(x; θ), (4.12)

where (θS̃ , θS) = θ, θS̃ contains the rest of the parameter sets θ when θS is excluded.
Eq. (4.12) indicates that the conditional distribution f(y|x; θS̃) must be independent of
θS . In other words, XS must be a complete data space for θS given that θS̃ is known.

One way to estimate the hidden data space xl is to apply the conditional expectation ex-
pressed as:

x̃l(t) = E[xl(t)|y(t) = ŷ; θ̃]. (4.13)

The vector ŷ represents the observation of the data and θ̃ represents the estimated parameter
set.

For the time variant scenario, the covariance matrix is taken into estimation. The hidden
data is therefore in the form of covariance matrix for each path component as derived in
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Eq. (4.8). Let:

ΣH =
L∑

l=1

Σslsl
+ Σww (4.14)

represents the incomplete data for the multi-path components. The hidden data for the lth
path component becomes:

ΣHl
= Σslsl

+ βΣww β ∈ [0, 1], (4.15)

where Σslsl
and Σww is given in Eq. (4.9).

Denote the Hj
l as the estimation of H l from the jth estimation iteration, Hj as the estimation

of H from the jth estimation iteration. By central limit theorem, both H i and H follows
Gaussian distribution. The conditional expectation then turns to the conditional covariance
matrix of two correlated Gaussian random vector. From Appendix A.3, the conditional
expectation of the hidden data space for Hj

l at the iteration j reads:

Σ
Hj

l
= Σ

Hj−1
l

− Σ
Hj−1

l
Σ−1

Hj−1ΣHj−1
l

+ Σ
Hj−1

l
Σ−1

Hj−1ĤĤ
H

Σ−1
Hj−1ΣHj−1

l
(4.16)

where ĤĤ
H

= 1
N

∑N
n=1 ĤnĤ

H
n is the observed covariance matrix of the data.

4.3.3 Maximization step in the SAGE

The Maximization step in SAGE is the estimation of the individual path component param-
eter set based on the hidden data expectation. There are two kinds of estimators available:
the Maximum Likelihood Estimator (MLE) and the Least Square Estimator (LSE).

MLE

The general principles for MLE is given in Appendix A.4. For a random variable x following
the probability density function f(x; θ), the MLE for the parameter set θ is expressed as:

θ̃ = argmax
θ

n∏

i=1

f(xi; θ) (4.17)

Further, the logarithm of the MLE turns it into a Maximum Loglikelihood Estimator.

θ̂ = argmax
θ

ln

(
n∏

i=1

f(xi;θ)

)
= argmax

θ

n∑

i=1

ln f(xi; θ) (4.18)

By the central limit theorem the channel impulse response is zero Gaussian random vector.
A.5 provides the MLE in the time variant scenario using Eq. (4.18).
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θ̃ = argmax
θ

(
− ln |Σ̃(θ)| − trace(Σ̃

−1
Σ̂)

)
(4.19)

The Σ̃(θ) is the estimated hidden data for the path component. The Σ̂ is the expectation of
the hidden data from previous estimation results.

LSE

Least Square Error (LSE) estimation can be viewed as a fitting operation between the esti-
mation and the measurement. The estimator is given in a simple expression.

θ̃ = argmin
θ

(
||Σ̂− Σ̃||

)
(4.20)

where the || · || denote the norm operation.

The LSE estimator is an approximation to the MLE and because of its low computational
complexity it may be preferably when the complexity of other estimators are too high.

4.3.4 Performance analysis

The reason to apply the SAGE is its lower complexity and fast convergence. Suppose the
computation complexity for one parameter set is O(f(n)), then the computation complexity
for joint estimation of K parameter sets is O(f(n)K). The SAGE, on the other hand, lower
the computation complexity into O(Kf(n)).

The SAGE is an extension of the EM algorithm and an approximation towards the global
maximum likelihood. The structure of SAGE does not guarantee that it reaches the global
maximum likelihood. In fact for most cases the SAGE is limited around a local optimal
estimation result. The performance of SAGE relies heavily on the initialization step. A
good initialization can guarantee the estimation results of SAGE closer to global maximum
likelihood.

The hidden data space introduced in Eq. (4.15) consists of two parts, the signal Σslsl
and

the noise βΣww. The β in Eq. (4.15) is a controllable parameter when extracting the hidden
data space. the The coefficient β determines how much noise and estimation errors that are
introduced into the hidden data. The expected hidden data is then taken into the Maximiza-
tion step to reduce the introduced estimation errors. In theory, the introduced estimation
errors will be decreased along with iteration. The SAGE can also be viewed as to reduce the
estimation errors with the estimation iteration. This explains the effect of β. As β get closer
to 0, less estimation errors are introduced and the convergence of SAGE get slower but the
performance of the estimation will not fluctuate too much. As β is closer to 1, more estima-
tion errors are introduced and the convergence of SAGE get faster but the performance of
the estimation may change quite a lot due to e.g. model mismatch.

Fig. 4.3 provides a visual interpretation of the constitution of the hidden data space, it can
be seen that the selection of β is also a important factor for the performance of SAGE.
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Path 1 Path 2 Path l Path L

Estimation Error and Noise

Data

Hidden data space

β

. . .

Switch

Figure 4.3: The constitution of hidden data space.

49





Algorithm Design 5
This chapter describes the specific algorithm design for the radio propagation channel esti-
mation in the time variant scenario. The overall structure of the algorithm is described at the
beginning. The initialization design for the SAGE is a critical part in the algorithm design
and several initialization strategies are offered and compared. The data structure and the
flow chart of the algorithm are also presented.

5.1 General structure

Fig. 5.1 shows the basic steps of the algorithm, where the SAGE estimates path components.
Generally, the algorithm can be divided into 4 block: Data preparation, initialization for the
estimation, the SAGE estimator and saving and displaying the estimation resuls.

Data Extraction

SAGE initialization

SAGE estimation

Yes

Save results

Stop requirements

reached? No

Figure 5.1: The general framework of the algorithm
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5.2 Data structures

Basically there are 4 kinds of data that are used in the algorithm. They are:

• The information register for the algorithm and measurement data settings which in-
cludes:

- The directory of where the measurement data and the corresponding antenna
response should be extracted.

- Which scenario is going to be estimated.

- Whether a SIMO or a MISO is taken into estimation.

- How many sounding period samples are taken into estimation

- How the extracted measurement data and antenna response data should be fur-
ther truncated for the purpose of estimation.

- Whether time variant scenario or time invariant scenario is selected.

- Which power distribution model that is selected.

- The upper boundary of the number of path components in the estimation

- Which initialization strategy the SAGE applies.

- The estimation control of the SAGE including the beta value, the maximum iter-
ation number, etc.

• The measurement data structure which includes the following information:

- Statistical information of the measurement data such as the mean and the covari-
ance matrix.

- The index for the selected delay samples which is taken into estimation

- The autocorrelation function Rss(τ) for signal s(t).

- The power delay profile for each sub channel.

• The antenna response structure which include the information:

- The calibrated antenna response.

- The minimal antenna response.

- The antenna resolution.

- The delay range in index.

- The delay resolution.

• The parameter container which is used to store the parameter subset for each path
component.
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5.3 Data preparation

The measurement data extraction is done by channel sounding techniques.

The data needs to be truncated to alleviate the work load of the estimator. The algorithm
selects the delay samples with the most power. The rest of the delay samples are consid-
ered as noise. The truncation of delay samples will not deteriorate the performance of the
estimation because it only excludes part of the noise.

The antenna can be partially selected to alleviate the estimation work load. The antenna
truncation will somehow reduce the resolution of the estimation thereby more error are
likely to be introduced.

From Eq. (4.8) the noise can be estimated from the average power from the power delay
profile where signals are believed not to be present. Therefore, the noise is estimated during
the data preparation step.

5.4 Initialization

The initialization design is crucial for the performance of SAGE. A good initialization should
resemble the true environment. In the power distribution estimation problem beamforming
techniques are proposed as a first estimation for the power spectrum in the initialization
step.

5.4.1 Power spectrum analysis

The beamformer is a filter bank approach to convert the power spectrum from eigenmode
into angular view.

The methods is similar to the standard Fourier transform. Denotes the filter representation
of beamformer as: a(Ω). For a certain delay τ0, the power spectrum in angular view is:

p(Ω, τ0) = a(Ω)HΣ̂(τ0)a(Ω),

where Σ̂(τ0) = 1
N ynyH

n is the data covariance matrix.

The ideal power spectrum in angular view is able to remove the antenna response effect as:

p(Ω, τ) = Pf(Ω, τ)

However, because the antenna array has a finite number of antennas the power spectrum
will be blurred by sidelobes similar to a finite length Fourier transform. Such limitation will
reduce the resolution of the power spectrum. Currently, there are several kinds of beam-
formers that can be used for the estimation of the power spectrum.
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Bartlett beamforming

Bartlett beamforming tries to maximize the power in a specific direction [25].

For the time variant scenario, the Bartlett spectrum at delay τk is given in the form of :

p(Ω, τk) =
C(Ω)HΣ̂(τk)C(Ω)

C(Ω)HC(Ω)
(5.1)

The Σ̂(τk) = 1
N

∑N
n=1 ĥ(τk)nĥ(τk)H

n is the measurement covariance matrix at delay τk.

Eq. (5.1) is derived from the condition that:

maxa(Ω)HΣ̂(τk)a(Ω)

In eigenmode view, decompose the Σ̂(τk) as:

Σ̂(τk) =
N∑

i=1

λinbib
H
i .

Bartlett beamforming can be viewed as the summation of the eigenvalue projections of the
covariance matrix on the specific direction Ω.

The number of the antennas determine the resolution of Bartlett spectrum. As more anten-
nas are included both along the elevation and azimuth, the resolution of Bartlett beamform-
ing is improved and the sidelobes from Bartlett beamforming decreases. Fig. 5.2 illustrates
this effect.

Capon beamforming

Capon beamforming tries to maintain the power gain level for a specific direction while
it minimizes the power from other directions [25]. Capon beamforming contains several
different expression for different scenario. The study so far investigates three kinds of Capon
beamforming, the Capon I, the Capon II, and the robust Capon beamforming.

For the time variant scenario, Capon I spectrum for at delay τk is then in the form of:

p(Ω, τk) =
1

C(Ω)HΣ̂(τk)−1C(Ω)
(5.2)

It is derived from the condition that

minaHΣ̂(τk)a while aHC(Ω) = 1

The Capon I spectrum is sensitive to the antenna response because it is not normalized to
the antenna response C(Ω). The effect is dominant where the |C(Ω)| is quite small.

54



5.4. INITIALIZATION

(a) The FB5 distribution on plane. (b) Bartlett spectrum using 9 antennas.

(c) Bartlett spectrum using 32 antennas. (d) Bartlett spectrum using 50 antennas.

Figure 5.2: The Bartlett power spectrums for the FB5 distribution given in (a)
with different number of antennas. Color of the figures represent the linear
power level. It is seen that the resolution of the Bartlett spectrum increases as
more antennas are included.

The Capon II spectrum is able to normalize the power spectrum. The Capon II has a general
expression as given :

p(Ω) =
C(Ω)HΣ̂(τk)−(i−1)C(Ω)

C(Ω)HΣ̂(τk)−iC(Ω)
(5.3)

where i is a positive integer i ≥ 1.

as i = 1, Capon II spectrum can be viewed similar to a Bartlett spectrum where it is based
on the projection of the eigenvalues to the specific direction.

The robust Capon spectrum is introduced in [26]. The robust Capon spectrum is applied
when the the calibration of the antenna response C(Ω) is imprecise. The robust Capon
spectrum is only able to improve the spectrum when the antenna response is not precisely
calibrated.

All kinds of the above Capon spectrums call for the inverse operations for matrix Σ̂(τk). This
requires that the samples for the measurement data should be no less than the dimension
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of the sub-covariance matrix 1
N

∑N
n=1 ynyH

n otherwise it will cause the problem of singular
matrix inversion.

In our algorithm the Bartlett spectrum is selected a trustable power spectrum estimator
given the condition that the resolution of the antenna is high enough and the effect of side-
lobes are small.

The construction of the power spectrum along the delay and direction can be viewed as
stacking of the individual power spectrum for each delay sample. This provides an easy
way to construct the direction and delay power spectrum.

5.4.2 Initialization strategy

The general principle for the initialization of SAGE is to search the peaks in the Bartlett
power spectrum as the central of the path components. After the mean values (τ̄ and Ω̄)
and the power of one path component are initialized, parameters to describe the power dis-
tribution of each path component are initialized according to different strategies described
below.

Power initialization

The power P initialization of path components can be estimated from the absolute values
of the peaks in Bartlett spectrum with some modifications. Consider a single specular path
propagation, the covariance matrix at the peak delay is:

Σ(τ0) = PC(Ω0)C(Ω0)H

The Bartlett spectrum for the direction Ω0 is :

p(Ω, τ0) =
C(Ω0)HPC(Ω0)C(Ω0)HC(Ω0)

C(Ω0)CH(Ω0)

p(Ω, τ0) = PC(Ω0)HC(Ω0)

Therefore, the estimated power using the Bartlett spectrum is:

P̃ =
∣∣∣∣

p(Ω, τ0)
C(Ω0)HC(Ω0)

∣∣∣∣ (5.4)

Note that the power initialization given in Eq. (5.4) is based on the specular path. As the
estimation is carried, the optimal power estimation will be different for a distributed path
component. Experience showed that the performance of SAGE gets stable when the power
estimation has reached a local maximum likelihood.
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Power spread initialization

After the initialization of the power and the mean position of the path components, other
parameters for each path component are initialized. These parameters describe the power
distribution in delay and direction. One can design different procedures using different cri-
terias. These approaches are categorized into two groups: blind initialization and estimated
initialization.

Blind initialization Blind initialization stands for providing the parameters with default
values. This method avoids to give each path component specific parameter initialization.
However, such default initialization may cause a lot of estimation errors for the initialization
step and will affect the performance of the later SAGE step. One safe design of the blind
initialization is to initialize each path component with quite small power spread. Currently
there are two approaches as the candidates of blind initialization.

1. The default initialization which sets the path component as specular path component
at the beginning. This initialization is believed to be safe because any kind of path
component distribution can be viewed as the summation of large numbers of specular
path components.

2. The initialization which sets the path component as having quite small power spread.
This strategy can be viewed as extension of the first one while the later one has a easier
transition for specular path initialization to the distributed path estimation.

Estimated initialization Since blind initialization method may introduce unnecessary er-
rors, an improved strategy can be realized by give a specific initialization of the power
spread for each path component. This calls for the estimation at the initialization step.

The following describe several candidates for the estimation strategy.

1. Parallel path estimation using SAGE: One can apply the normal SAGE to parallel esti-
mate the multi-path components. To differentiate the SAGE in initialization step and
in estimation step, SAGE in initialization part can set β = 1 in Eq. (4.15) for the hidden
data expectation to include the most estimation errors. In the estimation step, the β is
set for a smaller value to maintain the stability of the estimation performance.

2. Sequential path estimation: In this method, the initialization starts with the strongest
power as the first path component. The programme estimates the first path within the
entire data. After the estimation is done, the reconstructed data for it will be reduced
from the measurement data. For the next iteration, the programme searches for the
strongest power in the residual data as the second path component, same estimation
is conducted. The initialization continuous until the threshold is reached. This method
can reduce the influence of previous path components initialization to the next path
component initialization. Meanwhile, the estimation error can still make some false
initialization due to the erroneous residual measurement data.

3. Sequential path estimation with path management: The path management is an exten-
sion for the sequential path estimation. After reducing one reconstructed data from the
previous path component initialization, the next path component is not found in the
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strongest power peak of the residual power spectrum. As an alternative, the next path
component is redirected to find the strongest peak within a predefined division of the
whole power spectrum. The division can be made from the beginning by dividing
the whole power spectrum with the peak distribution. One benefit of the introduc-
tion of path management is that the estimation error from the previous path compo-
nent initialization is reduced in the residual data. Furthermore the algorithm can find
multi-path components in a larger power range.

5.5 SAGE

The SAGE follows the general SAGE structure in Chapter 4. The β value is selected to
optimize the estimation performance.

For the Maximization step in SAGE, the joint estimation of all parameters of one path com-
ponent will increase the computation complexity. A solution to reduce the complexity is to
adopt a sequential parameter estimation in the Maximization step. The order of the param-
eter estimation should be carefully sorted. One sensible strategy is to group the parameters
with regards to the moment description. The parameter describing the mean position of
the path component and the parameters describing the power spread should be grouped
respectively. The power estimation determine the stability of the estimation performance
and should always be estimated at the beginning of the Maximization step.

Complete flow chart

The Fig. 5.3 depicts a complete flow chart of the algorithm using the sequential estimation
steps.
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Figure 5.3: A flow chart of the algorithm
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Numerical and Experimental
Results 6
The discussion in this chapter is divided into two parts, the test of the programme in simula-
tion environment and the numerical and experimental results of the programme with mea-
surement data. The test in the simulation environment is done to validate the performance
of the programme. The measurement conditions and environment is described in details
such as the channel sounder equipment and the sounding signal. The model mismatch for
time variant scenario is analyzed for measurement data and optimization is made.

6.1 Synthetic data estimation

6.1.1 Synthetic data creation principles and methods

Estimation of synthetic data is carried out in order to evaluate the performance of the algo-
rithm. The principles behind the synthetic data creation include:

1. The synthetic data is created with known and controllable power distributions of
multi-path components. Different sets of synthetic data created by the same parameter
settings are supposed to have the same power distribution in direction and delay.

2. The model mismatch is not considered in the synthetic data. Instead of applying the
Monte Carlo simulation to generate a random process for the path components, the
simulation directly generate the covariance matrix for the synthetic data. The proce-
dure of the covariance matrix generation follows the model in Chapter 2 where the
distribution of the path component follows the model in Chapter 3.

3. The synthetic data shares the antenna response information with the measurement
data in the time variant scenario. It also shares the same training sequence s(t) and its
autocorrelation function Rss(τ). The similar settings can anticipate the programmes
performance in the measurement data.

The truncated sampled Rss(τ) for the synthetic data is given:

Rss(k) =





1 k = 0
0.5 |k| = 1
0 |k| > 1

An omnidirectional antenna array is considered in the synthetic environment. This is the
same antenna array of the Tx antenna array for the measurement data shown in Fig. 6.7.
The antenna array has 50 antennas with calibrated antenna response. The sum of antenna
response is given in Fig. 6.1. The effective radiation of the antenna array is:
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Azimuth [−180◦, 180◦), elevation: [−70◦, 90◦].

The resolution of the Bartlett spectrum for this antenna array is illustrated in Fig. 6.2. It can
be seen that the effect of the sidelobe in the spectrum is small.

Figure 6.1: Antenna array response of the selected 50 antennas for the syn-
thetic data creation

6.1.2 Estimation results

The synthetic data is created with 2 path components following the joint power distribution
in direction and delay given in Eq. (3.17). The estimation is divided into two groups. One
without path order mismatch and one with path order mismatch where the estimation tries
to estimate 3 path component.

The estimation result without model order mismatch is given in Fig. 6.3. It can be seen
that the position of the path components are well captured, the delay spread and direction
spread estimations for each path component are also quite consistent with the settings of the
synthetic data.

The estimation result with path order mismatch is given in Eq. (6.4). It can be seen that
the extra path estimation converges towards a quite low power that can be ignored. This
supports the performance of the programme under path order mismatch.

The algorithm shows reliable and accurate estimation results in the synthetic environment.
Based on that, we believe the algorithm is applicable for the measurement data.
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6.1. SYNTHETIC DATA ESTIMATION

(a) The FB5 distribution shown on the plane (b) Bartlett spectrum for the FB5 distribution
shown on the plane

Parameter of FB5 Value
κ 200
ζ 0.1
α 40◦

θ̄ 40◦

φ̄ 20◦

P 2.961 · 10−11

δ2
w 3.776 · 10−12

Notice that the sidelobes can still be ob-
served from the Bartlett spectrum. How-
ever comparing Fig. 6.2(a) and Fig. 6.2(b),
the effect of the sidelobes is considered to
be small.

Figure 6.2: An illustration of the 50 antennas array resolution.

(a) Plot of the true path components (b) Plot of the estimated path components

Figure 6.3: Estimation of synthetic data without path order mismatch.
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(a) Plot of the true path components (b) Plot of the estimated path components

Figure 6.4: Estimation of synthetic data with path order mismatch.

6.2 Measurement data estimation

6.2.1 Introduction to Electrobit PropSound CS

The measurement data is collected by a channel sounder called EB PropSound CS, designed
and produced by Elektrobit Group Ltd1. The sounder is a wide band MIMO radio channel
sounder and it is able to capture and record fast fading impulse responses, Doppler fre-
quency, polarization as well as DoD and DoA in the radio channel. Electrobit also provides
tools in Matlab environment to proceed the measurement data.

For the current project, the channel sounder operates as a TDM channel sounder. Basic
information for the settings of the channel sounder is offered in Table 6.1.

The sounding signal (or so-called training sequence) is selected as a known Pseudo-Noise
(PN) training sequence with unit power for each sounding period:

∫ tn+T

tn

s(t)s∗(t)dt = 1 (6.1)

Notice that the sampling frequency is twice the chip rate given in Table 6.1. This leads to the
sampled autocorrelation function Rss(k) as given in Fig. 6.5. As seen the Rss(k) has small
values when |k| > 1. The algorithm truncates Rss(k) which greatly reduces the computation
complexity:

Rss(k) =





1 k = 0
0.5 |k| = 1
0 |k| > 1

,

1http://www.elektrobit.com
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6.2. MEASUREMENT DATA ESTIMATION

Basic parameters
Carrier frequency 5.25GHz
Transmit power +26dBm

Bandwidth 200MHz
Chip rate 100MChip/s

Sampling frequency 200MHz
Measurement distance

Code length 255 chips
Measurement excess delay 2.55 µs

Measurement excess distance 765 m
Spatial resolution parameters

Number of Tx antennas 50
Number of Rx antennas 32

Array scan time 8.42 ms
Tx antenna height 1.53 m
Rx antenna height 1.05 m

Sounder setting
Samples per chip 2

Total channels 1650
Channels in use 1600

Table 6.1: Basic channel sounder parameters

where k stands for the index of the delay sample τk.

The sounder switching mode is given in Fig. 6.6. Notice that there are 50 sub-channels that
are used as guard intervals at the beginning of each Rx switching cycle. The sub-channel
extraction should disregards those guard interval sub-channels.

6.2.2 Description of the measurement environment and equipment

Measurement data for time variant scenario is collected in Oulu university in Finland. The
data is collected indoors at different locations including large and small rooms. The LOS and
NLOS paths may exist in different scenarios. The equipments of the Tx and Rx are installed
in trolleys and by assumption there is no vertical movement for the equipments. Both Tx
and Rx antenna array are omni-direction antenna arrays. Photographs for the antenna array
is given in Fig. 6.7 and basic information of the antenna arrays are given in Table 6.2.

The information in Table 6.2 tells that antennas in the second ring from the bottom(19 to
36) of the Rx antenna array do not work. In [27] analysis shows that this defect results in a
distance larger than half of the wavelength between the antennas at the bottom and at the
top for Rx antenna array. Consequently, it leads to ambiguity for the elevation of arrival.
To this point, the estimation for the elevation of arrival becomes unreliable. Fortunately, the
Tx antenna array utilizes all the antennas in the antenna array and provide little ambiguity
on the elevation of departure. The estimation of elevation of departure is then much more
reliable than the estimation of elevation of arrival. The following estimation is done with
the data extracted for a MISO system.

The selected environment is TxR11, the snapshots of TxR11 environment is given in Fig. 6.8.
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(a) The PN sequence

(b) The biased autocorrelation of the signal code (c) The partial autocorrelation around 0

Figure 6.5: The PN signal and it autocorrelation

32

1 2

32 slots 33 slots

(The 1st switching cycle of Rx) (The rest switching cycle of Rx)

. . .

. . .

. . .

50

1

1

32

50

3132

22

31

2

32

22

11. . .

. . . . . .1

32

11

1Rx switching mode

Tx switching mode

Figure 6.6: The sounder switching mode for the Tx and Rx antennas
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(a) Photograph (b) Schematic plot

Figure 6.7: Omni-direction antenna array used at 5.25GHz at both, Tx and Rx

Transmitter
Antenna designation 2x9ODA_5G25_T1

Frequency/Bandwidth 5.25GHz/420MHz
Radiation [−180◦ 180◦] in azimuth, [−70◦ 90◦] in elevation

Antenna type Dual polarized (±45◦) path array, 50 elements (2× 25)
Antenna in use (Index Fig. 6.7(b)) All elements

Receiver
Antenna designation 2x9ODA_5G25_T2

Frequency/Bandwidth 5.25GHz/420MHz
Radiation [−180◦ 180◦] in azimuth, [−70◦ 90◦] in elevation

Antenna type Dual polarized (±45◦) path array, 50 elements (2× 25)
Antenna in use (Index Fig. 6.7(b)) 1, 2, . . . 18, 37,. . . , 50

Table 6.2: Information about the antennas arrays
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General information
Tx location TxR11
Rx location Rx2

Tx orientation 0◦

Rx orientation 0◦

Scenario Time variant
Notes People moving around
LOS not available

Table 6.3: General information about the TxR11 environment

Basic information for TxR11 environment is offered in Table 6.3.

(a) Rx environment (b) Tx environment

(c) Route map of TxR11

Figure 6.8: The TxR11 environment

Measurement data description

The MISO system is extracted from the MIMO system with the entire Tx antenna array and
receive antenna R9.

The power delay profile for the MISO system is depicted in Fig. 6.9. The power delay profile

68



6.2. MEASUREMENT DATA ESTIMATION

is obtained by calculate the average power at different delay as P (τk) =
∑N

n=1 hn(τk)Hhn(τk).
Delay samples from τ21 to τ40 are selected from the observation. The delay samples trunca-
tion is sensible that the selected delay samplings contain most of the signal power. The noise
estimation is obtained by calculating the average of the power delay profile from delay τ100

to the end.

(a) Power delay profile, global view

(b) Power delay profile, local view

Figure 6.9: The power delay profile of environment TxR11, MISO system with
all Tx antennas and R9 receive antenna selected

The covariance matrix of the measurement is shown in Fig. 6.10(a). A reconstructed co-
variance matrix following the WSSUS assumption in Chapter 2 is shown in Fig. 6.10(b).
Comparing Fig. 6.10(a) and Fig. 6.10(b) it is found that for the covariance matrix of measure-
ment data, the nonzero entries distributed along the columns and rows that are relatively
large which implies that the WSSUS assumption does not hold. That reveals the existence
of model mismatch.
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(a) Covariance matrix of the channel response for TxR11

(b) The reconstructed channel response covariance matrix using
WSSUS model

Figure 6.10: The measurement covariance matrix has nonzero entries that is
distributed along the column and row around position (100, 100). With a WS-
SUS assumption, those positions are suppose to have zero entries or close to
zero entries. The dominant nonzero entries given the Rss are supposed to
be around the diagonal of the matrix in WSSUS model. It shows the model
mismatch for the measurement data.
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Discussion on model mismatch

The observation of the model mismatch indicates that the WSSUS assumption of the path
components is not true for the observations. In the time variant scenario the WSSUS as-
sumption requires that the complex amplitudes al(Ω, τ) are uncorrelated for different path
component.

Recall the expression:
E[ai(Ω, τ)aj(Ω, τ)] = 0. (6.2)

As mentioned earlier the covariance matrix derived for a WSSUS model have its nonzero
sub-matrices distributed along the diagonal of the covariance matrix. The following dis-
cussion provides an investigation of the constitution of the covariance matrix under non-
WSSUS condition where different path components are correlated.

Suppose there are 2 specular scatters existing in the environment, transmitted signal for
these two scatters can be denoted as:

s1 = a1(Ω1, τ1)c(Ω1)s(t− τ1)
s2 = a2(Ω2, τ2)c(Ω2)s(t− τ2)

The received signal y(t) is the sum of s1(t) and s2(t)

y(t) = s1(t) + s2(t) (6.3)

Recall the representation of the estimated channel impulse response given by:

hn(υ) =
∫ tn+T

tn

y(t)s(t− υ)dt (6.4)

Let,

a1(Ω1, τ1) = a1, c(Ω1) = c1, s1 = a1c1s(t− τ1)
a2(Ω2, τ2) = a2, c(Ω2) = c2, s2 = a2c2s(t− τ2)

for short. The cross covariance matrix for the channel response h(υ) at two different delays
υ1 and υ2 is derived in A.7:

E[h(υ1)hH(υ2)] =
∫ tn+T

tn

∫ tn+T

tn

[E[a1a
∗
1]c1c

H
1 s(t1 − τ1)s∗(t2 − τ1)s(t1 − υ1)s∗(t2 − υ2)+

E[a1a
∗
2]c1c

H
2 s(t1 − τ1)s∗(t2 − τ2)s(t1 − υ1)s∗(t2 − υ2)+

E[a2a
∗
1]c2c

H
1 s(t1 − τ2)s∗(t2 − τ1)s(t1 − υ1)s∗(t2 − υ2)+

E[a2a
∗
2]c2c

H
2 s(t1 − τ2)s∗(t2 − τ2)s(t1 − υ1)s∗(t2 − υ2)]dt1dt2
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Suppose the autocorrelation of s(t) is a delta function Rss(τ) = δ(τ).

h(υ1)hH(υ2) =[E[a1a
∗
1]c1c

H
1 δ(τ1 − υ1)δ(τ1 − υ2) + E[a1a

∗
2]c1c

H
2 δ(τ1 − υ1)δ(τ2 − υ2)+

E[a2a
∗
1]c2c

H
1 δ(τ2 − υ1)δ(τ1 − υ2) + E[a2a

∗
2]c2c

H
2 δ(τ2 − υ1)δ(τ2 − υ2)] (6.5)

Under non-WSSUS assumption, as long as E[a1a
∗
2] 6= 0 or equivalently a1 and a2 are corre-

lated, sub-matrices E[h(τ1)hH(τ2)] and E[h(τ1)hH(τ2)] will become nonzero sub-matrices.
These nonzero sub-matrices contain the information of the correlated path component. Fig. 6.11
gives a brief instance of the correlation in covariance matrix.

(a) WSSUS model (b) non WSSUS model

Figure 6.11: A comparison of covariance matrices with WSSUS assumption
and with non-WSSUS assumption with 4 antennas and 5 delay samples.
Rss(τ) = δ(τ). The color of the figure represents the absolute value of the
entries. In non-WSSUS model, path components in the first delay and in the
last delay are considered correlated. This leads to two nonzero sub-matrices
in the corner.

To decrease the effect of model mismatch it is suggested to apply LSE method. LSE can be
viewed as a fitting technique to approximate the maximum likelihood. d

To further reduce the effect of model mismatch using LSE, one can recheck the constitution
of the covariance matrix. By the given model, it can be seen that the sub-matrices along the
diagonal of the covariance matrix contain all the power distribution information in direction
and delay. The sub-matrices in other positions of the covariance matrix are just repeated
combination of the the power spectrum for different delays. For this point, the model mis-
match can be reduced further by only fitting the diagonal sub-matrices using LSE. This is
called selective LSE.

Estimation results

Estimation of the given MISO system in the environment TxR11 contains 50 sub-channels
and 20 delay samples. This made the covariance matrix of H have a size of 1000 × 1000.
Matlab has its limitation on calculating such huge matrix. The MLE method introduced
in Eq. (4.19) calls for the determinant computation and inversion operation on the covari-
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ance matrix. The results will become unreliable in Matlab. As an alternative, the MLE was
replaced by the LSE method.

To reduce the effect of model mismatch in the measurement, the selective LSE method men-
tioned previously is applied which only considers the sub-matrices on the diagonal.

In short, estimation under environment TxR11 in time variant scenario adopts selective LSE
method to fit the sub-matrix along the diagonal of measurement covariance matrix. The
signal model is still considered to follow the WSSUS assumption.

Fig. 6.12 (a) displays the estimation results using joint direction delay power distribution
given Eq. (3.17). The estimation limits the maximum number of path components to 10 and
the power level threshold to 20dB below the maximum power found in the Bartlett spectrum
at the initialization step.

Fig. 6.12 (b), (c), and (d) provide different views of the power distribution for the multi-
path components. It can be seen that there are two path components overlapped around
the position with azimuth −70◦ and elevation 0◦. This observation indicates that the path
component distribution at those positions does not fully follow the proposed model. The
programme then tries using 2 path components to patch the real path component.

The list of the estimated parameter sets are given in Table B.3.
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(a) In 3-D view (b) In Azimuth-Elevation view view

(c) In Elevation-Delay view (d) In Azimuth-Delay view

Figure 6.12: The estimated power distribution of the path component using
the joint FB5 Gaussian distribution. A MISO system with all Tx antennas and
R9 receive antenna is considered in a time variant scenario and in the environ-
ment TxR11. The color of the figure represent the signal power in dB of each
path component.
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To evaluate the estimation results, the reconstructed Bartlett spectrum is compared with the
Bartlett spectrum of the measurement data at each delay. This is given from Fig. 6.13 to
Fig. 6.15.

Comparing the strongest power delay τ23 and the second strongest power delay τ24 in
Fig. 6.13, The reconstructed Bartlett spectrum is quite close to the measurement Bartlett
spectrum. It is believed that the most dominant paths are captured by the estimation. Fur-
thermore, it is worth noticing that in the reconstructed Bartlett spectrum at delays τ23 and
τ24 the estimation managed to capture the path components with smaller power. This ob-
servation further confirms the performance of the estimation.

(a) Measurement data, delay 23 (b) Estimation, delay 23

(c) Measurement data, delay 24 (d) Estimation, delay 24

Figure 6.13: Bartlett spectrum comparison, delay 23 and delay 24
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(a) Measurement data, delay 25 (b) Estimation, delay 25

(c) Measurement data, delay 26 (d) Estimation, delay 26

Figure 6.14: Bartlett spectrum comparison, delay 25 and 26

In Fig. 6.14 and Fig. 6.15, the estimation continues capturing the path component at later
delay samples. In delay τ25 2 path components are captured with a close angular spread
estimation, shown in Fig. 6.14. At delay τ26 the estimated power for the path components
are different from the measurement power spectrum. It could be due to the skewness of the
measurement power spectrum that does not fully follow the proposed model. The estima-
tion error can be alleviated by introducing supplementary path components to patch this
skewed power spectrum.
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(a) Measurement data, delay 27 (b) Estimation, delay 27

(c) Measurement data, delay 28 (d) Estimation, delay 28

Figure 6.15: Bartlett spectrum comparison, delay 27 and 28

In delay τ27, 4 paths are captured with promising power level and angular spread. The esti-
mation does not capture all the peaks in the Bartlett spectrum because of the power thresh-
old. The reader may observe the difference between the estimation and the measurement
at delay τ28 where some small power path components are not estimated. The difference
between the estimation and the measurement is caused by the path order mismatch. One
can anticipate that, as the threshold of the power allows larger power range to get more path
components, the programme will capture more path components.

The estimation shows promising performance by using the selective LSE even there is model
mismatch in the measurement data. The path order selection has to be consistent with ob-
servation to get good estimation results. It is reasonable to concentrate on the estimation for
the dominant path components. The estimation results in environment TxR11 shows that
the estimation is trustable by focusing on the dominant path components.
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Part II

Time Invariant Scenario

79





Path Component Distribution
Model 7
7.1 Channel model modification in the time invariant scenario

A time invariant scenario means that the path component is deterministic and that the com-
plex amplitude a(Ω, τ) is a deterministic function of direction and delay. Thereby both the
amplitude distribution and the phase distribution of a(Ω, τ) needs to be modeled in the time
invariant scenario.

7.2 Path component model

The power distribution of one path component becomes just a(Ω, τ)a∗(Ω, τ). the power dis-
tribution still fulfills the modeling condition given in Chapter 3, thereby the proposed power
density function discussed in Chapter 3 can be reused to describe the power distribution in
time invariant scenario. Eq. (7.1) provides the amplitude distribution model.

|a(Ω, τ)|2 = Pf(Ω, τ)

|a(Ω, τ)| =
√

Pf(Ω, τ) (7.1)

Modeling of phase distribution for a(Ω, τ) can be regarded as a problem independent of the
power distribution for a(Ω, τ). The phase distribution can be caused by many factors. For a
reflection of the propagation wave, the phase change depends on the reflection coefficient of
the reflector and the reflection angle [21, p.18]. The description of the phase distribution for
dispersive path components is quite complex depending on the properties of the scatterers.
In this report, the phase distribution is proposed as a identical value of one path compo-
nent. This suggestion assumes that the path component is quite concentrated and the phase
distribution remains close to different delays and directions. The identical modeling of the
phase distribution can be viewed as a solution to simplify the path component distribution
in time invariant scenario.

The proposed path component distribution reads:

a(Ω, τ) = exp(−jϑ)
√

Pf(Ω, τ) (7.2)

where ϑ is the phase of the path component and f(Ω, τ) is the power density function given
in Chapter 3.
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Radio Channel Propagation
Estimation 8
This chapter follows the same structure as the in Chapter 4 where characterization and esti-
mation in time variant scenario is carried. The modifications for the estimation methods are
described for the time invariant scenario.

8.1 Channel impulse response estimation with multi-path compo-
nents

The signal model for multi-path components is the summation of all the individual path
components. For L path components, the signal model is in the form:

y(t) =
L∑

l=1

∫

S,T
al(Ω, τ)C(Ω)s(t− τ)dΩdτ + w(t), (8.1)

where each al(Ω, τ) is a deterministic function.

Recall the channel impulse response estimation method for the time variant scenario. By
applying it to the time invariant scenario, we get the same channel impulse response esti-
mation structure:

h(τ ′) =
∫ tn+T

tn

y(t)s∗(t− τ ′)dt

=
∫

S,T

L∑

l=1

al(Ω, τ)C(Ω)
∫ tn+T

tn

s(t− τ)s∗(t− τ ′)dtdΩdτ +
∫ tn+T

tn

w(t)s∗(t− τ ′)dt

=
L∑

l=1

∫

S,T
al(Ω, τ)C(Ω)Rss(τ − τ ′)dΩdτ +

∫ tn+T

tn

w(t)s∗(t− τ ′)dt. (8.2)

The estimated channel impulse estimation h(τ ′) is made up of two parts, the deterministic
part

∑L
l=1

∫
S,T al(Ω, τ)C(Ω)Rss(τ − τ ′)dΩdτ and the random part

∫ tn+T
tn

w(t)s∗(t − τ ′)dt

which is an additive Gaussian noise. It is then known that h(τ ′) follows the Gaussian distri-
bution.

Again the stacked channel response estimation H is provided:
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H =




h(τ1)

h(τ2)
...

h(τk)
...

h(τK)




(8.3)

and H follows the Gaussian distribution.

8.2 Stochastic analysis

For the Gaussian distributed channel impulse response vector H , the mean and the covari-
ance matrix for H are studied.

The mean of H is given by:

E[H] =




E[h(τ1)]

E[h(τ2)]
...

E[h(τk)]
...

E[h(τK)]




, (8.4)

In time invariant scenario, expression for the sub-vector E[h(τ1)] is derived in A.2.

E[h(τk)] =
L∑

l=1

∫

S,T
al(Ω, τ)C(Ω)Rss(τ − τk)dΩdτ (8.5)

The covariance of H is given by:

E[HHH ] =




E[h(τ1)hH(τ1)] E[h(τ1)hH(τ2)] . . . E[h(τ1)hH(τK)]

...
. . .

...
E[h(τi)hH(τj)]

E[h(τK)hH(τ1)] E[h(τK)hH(τK)]




(8.6)

And the derivation of a sub-matrix in the covariance matrix is derived in Appendix A.2. The
expression can be equivalently viewed as:
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E[HHH ] = σ2
wD, (8.7)

where D is a matrix determined by the Rss(τ) function. The covariance matrix of the chan-
nel impulse response in the time invariant scenario is not related to the path component but
only determined by the noise variance and Rss(τ).

8.3 The SAGE

The SAGE for the time invariant scenario follows the same structure as in the time variant
scenario. Only the Expectation step and the Maximization step are modified.

8.3.1 Expectation step in the SAGE

The hidden data is composed by the deterministic data of the path component and the ad-
ditive noise part. Let:

Sl =
∫

S,T
al(Ω, τ)C(Ω)Rss(τ − τk)dΩdτ

denote the signal part for the lth path component. Let:

E[H] =
L∑

l=1

Sl

denote the signal part for the multi-path components.

The hidden data for the lth path component is in the form:

H i = Sl + βw, (8.8)

where w is the introduced noise.

The conditional expectation of the hidden data is given as:

H̃
j
l = S̃

j−1
l + β(Ĥ − E[H̃]j−1), (8.9)

where Ĥ = 1
N

∑N
n=1 Ĥn is the observed mean of H from the measurement data.

The β is again the controlling parameter to determine how much estimation errors that are
introduced into the hidden data for the Maximization step.

85



CHAPTER 8. RADIO CHANNEL PROPAGATION ESTIMATION

8.3.2 Maximization step in the SAGE

The MLE and LSE are candidates of the estimator for the Maximization step in the SAGE.

Recall the general principles of MLE introduced in the variant scenario, the channel impulse
response for time invariant scenario follows the Gaussian distribution given the condition
that the noise is additive Gaussian noise. By taking the E[H] and E[HHH ] given in Eq. (8.5)
and Eq. (8.7) into Eq. (4.18), MLE for one path component in the time invariant scenario is
derived in Appendix A.6.

θ̃ = argmax
θ

(
−σ2

w ln |Σ(θ)| − (E[Ĥ]− E[H̃(θ)])HR(E[Ĥ]− E[H̃(θ)])
)

(8.10)

The E[H̃(θ)] is the estimated hidden data for the path component. The E[Ĥ] is the hidden
data expectation from previous estimation results.

For a fixed noise level, Eq. (8.10) is equivalent to:

θ̃ = argmin
θ

|E[Ĥ]− E[H̃(θ)]|, (8.11)

which is equivalent to LSE. Therefore, for the time invariant scenario, MLE method equals
to the LSE method by the condition that the noise is additive Gaussian noise.

8.3.3 Performance analysis

It is important to keep in mind that for the time invariant scenario the MLE is equivalent to
the LSE by the condition the noise is a white additive Gaussian noise. Estimation in time
invariant scenario is regarded as fitting the estimated channel impulse response vector H̃
with the measurement. Fitting a complex vector depends on a good phase estimation. The
algorithm should be carefully designed to get a good phase estimation. So far the phase
distribution model for the path component is set as an identical value and the estimated
path components are expected to have a small power spread to maintain the performance
of the estimation.
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Algorithm Design 9
9.1 General description

The algorithm described in Chapter 5 is reused in the time invariant scenario. The pro-
gramme structure and the data structure are unchanged. This chapter gives a brief descrip-
tion of what is changed in the power distribution initialization, the phase initialization and
the estimation strategies in time invariant scenario.

9.2 The initialization modification

9.2.1 Power spectrum analysis

Both the Bartlett spectrum and the Capon spectrum requires a matrix and for the time in-
variant scenario this matrix constructed at delay τk in the following:

Rk = ĥ(τk)ĥ
H

(τk), (9.1)

where ĥ(τk) = 1
N

∑N
n=1 hn(τk) is the mean vector of the data. The expression provides the

matrix which can be used to estimate the power spectrum.

The Bartlett spectrum at delay τk is:

p(Ω, τk) =
C(Ω)HRkC(Ω)

C(Ω)HC(Ω)
(9.2)

The Bartlett spectrum in time invariant can be just viewed as the power of the projection of
the mean vector ĥ(τk) to the antenna response C(Ω) in direction Ω.

The Capon spectrum is not available for the time invariant scenario because Rk is a singular
matrix and an inversion operation on Rk will cause errors.

The initialization of the power and the power distribution follow the same principles as for
the time variant scenario.

9.2.2 Initialization strategy modification

Initialization of the identical phase for one path component can be set to 0 at the beginning
and then estimated to an optimal value. Normally the identical phase value is regarded as
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a additional information for the path component distribution. The estimation is supposed
to have a better performance by adjusting the identical phase value frequently to fit the
estimated power distribution.
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Numerical and Experimental
Results 10
10.1 Measurement data estimation

Measurement data for the time invariant scenario is provided by the same EB PropSound
CS as used in the time variant scenario and the same switching pattern and PN training
sequence are used as given in Chapter 6. Descriptions of the environment is given in this
chapter. The estimation is conducted in MISO and SIMO system. Model mismatch is dis-
cussed at the end.

10.1.1 Description of the measurement environment and equipment

Measurement data for the time invariant scenario is collected by Attaphongse Taparugssanagorn
from Oulu Univeristy in an anechoic chamber where the walls of the room is covered by ab-
sorbing material. The measurement data is collected under control and therefore the propa-
gation path is considered as stationary.

The environment is depicted in Fig. 10.1(a). It shows that only 3 propagation paths are
possible: The LOS path, the horizonal reflection path from the side of the equipment and
the ground reflection path.

RX antenna TX antenna

Reflector

Floor

3 m.

2.1 m2.1 m

 55
 55

Side view

RX antenna TX antenna

 45

Reflector

Top view

 50

(a) The site map of the environment

2 / 1

13 / 1422 / 21

31 / 32 15 / 16 8 / 7

6 / 5

24 / 23

29 / 30

27 / 28 20 / 19 11 / 12

25 / 26 18 / 17 9 / 10

4 / 3

(b) The placement of the Rx antennas

The Tx antenna array uses the same equipment given in Fig. 6.7. The Rx antenna array
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consists of 32 antennas positioned on a plane. The Rx is not viewed as a omni-directional
antenna array anymore. Its effective radiation pattern in azimuth is (−90◦90◦).

The information for the antennas is given in Table 10.1. Because both Rx and Tx utilize all
of their antenna elements no ambiguity is introduced to the estimation of either Direction of
Departure (DoD) or Direction of Arrival (DoA).

Transmitter
Antenna designation 2x9ODA_5G25_T1

Frequency/Bandwidth 5.25GHz/420MHz
Radiation [−180◦ 180◦] in azimuth, [−70◦ 90◦] in elevation

Antenna type Dual polarized (±45◦) path array, 50 elements (2× 25)
Antenna in use (Index Fig. 6.7(b)) All elements

Receiver
Antenna designation 4x4_5G25_R1

Frequency/Bandwidth 5.25GHz/420MHz
Radiation [−90◦ 90◦] in azimuth, [−70◦ 90◦] in elevation

Antenna type Dual polarized (±45◦) path array, 32 elements (2× 16)
Antenna in use (Index Fig. 10.1(b)) All the elements

Table 10.1: Information about the antennas arrays

10.1.2 Estimation for measurement data

Estimation of SIMO and MISO systems are conducted respectively.
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Estimation results for SIMO system

The SIMO system is extracted with T1 transmit antenna and the even index receive antennas.
In Fig. 10.1(b) one antenna is selected in each grid. The minimum distance of the selected
antennas are still smaller than half wavelength. There is no ambiguity problem in this SIMO
system.

The power delay profile is given in Fig. 10.1. From Fig. 10.1(d), delay τ4 to τ12 are selected
for the estimation.

(c) Global view

(d) Local view

Figure 10.1: The delay power profile of time invariant SIMO system.

The estimation limits the maximum number of path component estimation to 5. The se-
quential path initialization method is adopted.

The estimation results for the SIMO system is given in Fig. 10.2. Values of parameter esti-
mation are given in Table B.1. The estimation provides path components at two positions,
the LOS and the side reflection as shown in Fig. 10.1(a). It shows that the LOS path has the
strongest power as expected.

Comparison between the reconstructed data and the measurement data is presented in
Fig. 10.3.
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(a) In 3-D view (b) In Azimuth-Delay view

(c) In Elevation-Delay view (d) In Azimuth-Elevation view

Figure 10.2: The path components estimation using the joint FB5 Gaussian
distribution. A SIMO system with all even index Rx antennas and T1 receive
antenna is used for the time invariant scenario. The color of the figure repre-
sent the signal power in dB of each path component.
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(a) Amplitude comparison between the measurement(blue) and es-
timation(red)

(b) Phase comparison between the measurement(blue) and estima-
tion(red)

Figure 10.3: Estimation results comparison for the SIMO system in the time
invariant scenario.
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Estimation results for MISO system

The MISO system is extracted with the all Tx antennas and R2 receive antenna. Notice the Tx
antenna array is a omnidirectional antenna array, the effective radiation pattern for azimuth
is [−180◦, 180◦).

The power delay profile is given in Fig. 10.4. From Fig. 10.4(b), delay τ4 to τ12 are selected
for the estimation.

(a) Global view

(b) Local view

Figure 10.4: The delay power profile of time invariant MISO system.

The estimation limits the maximum number of path component estimation to 5. The se-
quential path initialization method is adopted.

The estimation results for the SIMO system is given in Fig. 10.5. Values of parameter esti-
mation are given in Table B.2.

Fig. 10.5 provides the first 4 path components estimation. The last and the weakest path
component is overlapped with the strongest one. It is due to the estimation error and noise
made by the residual data from the initialization.

The estimation result shows 3 dominant path components with the strongest corresponding
to the LOS. The other two path component can be viewed consistent with the true environ-
ment where one path component is the reflection from the floor and and the other one comes
from the horizontal reflection. The delay estimation is also consistent with the environment
where the LOS is estimated to be the first to arrive at the receive side.
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(a) In 3-D view (b) In Azimuth-Delay view

(c) In Elevation-Delay view (d) In Azimuth-Elevation view

Figure 10.5: The path components estimation using the joint FB5 Gaussian
distribution. A MISO system with all Tx antennas and R2 receive antenna
is used for the time invariant scenario. The color of the figure represent the
signal power in dB of each path component.
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Comparison between the reconstructed data and the measurement data is presented in
Fig. 10.6.

(a) Amplitude comparison between the measurement(blue) and es-
timation(red)

(b) Phase comparison between the measurement(blue) and estima-
tion(red)

Figure 10.6: Estimation results comparison for the MISO system in the time
invariant scenario

10.2 Discussion on model mismatch

To improve the estimation performance, the model mismatch is analyzed. It is not certain
that the proposed identical phase distribution for one path component is fully consistent
with the true environment. This may cause estimation errors especially when the estimated
paths have large power spread.

A complete estimation of the phase distribution for each path component may improve
the performance of the algorithm. If no models are proposed for phase distribution, the
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first consideration is to estimate the specific value of the phase at every point in one path
component.

Another solution to estimate the complete phase distribution it to use the specular path
model instead. Without the requirement to estimate the power spread, the estimation can
be much faster. If multiple specular paths are estimated as within one cluster, this can still
be viewed as the effect of dispersive path component model.

One attempt to estimate the SIMO system mentioned in Section 10.1.2 using specular path
component model is given in Fig. 10.8 where 5 specular paths are estimated. The result
showed the improvement of the estimation. Notice the clustering of a couple of specular
paths around the position with azimuth 0◦ and elevation 0◦, it may indicate the existence of
a dispersive path component with specific phase distribution.

(a) The estimated channel response mean vector

Figure 10.7: The specular path estimation in azimuth-elevation view

(a) Specular path estimation

Figure 10.8: The 5 specular paths estimation in the SIMO system mentioned
in Section 10.1.2. The color of the figure represent the signal power in dB of
each path component.

The performance of the estimation using specular path component model is supposed to
get improved as more specular path components estimation are included. In Fig. 10.9, 60
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specular paths are taken into estimation for the SIMO system mentioned in Section 10.1.2
and the reconstructed data of the estimation shows quite close to the measurement in both
amplitude and phase.

However, even when the massive number of specular path components may produce a
small residual error, it is not guaranteed that the estimation results can be fully trusted. The
specular path models can also be affected by the estimation errors. In Fig. 10.9, it can be
seen that the estimation of specular path components contains path component that are far
away from the environment setting, such as one specular path component around position
of azimuth −20◦ and elevation 60◦.

98



10.2. DISCUSSION ON MODEL MISMATCH

(a) The specular paths estimation

(b) The reconstructed channel response mean vector amplitude

(c) The reconstructed channel response mean vector phase

Figure 10.9: The 60 specular paths estimation in the SIMO system mentioned
in Section 10.1.2. The color of the figure represent the signal power in dB of
each path component.
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Conclusion and Summary 11
11.1 Summary of the project

In this project a continuous distributed path component model was used to describe the ra-
dio propagation channel. An analysis and discussion were undertaken in both time variant
and time invariant scenarios and the WSSUS assumption for the path components was used
in order to analyze the characteristics of each path component where multi-path compo-
nents are present.

To model the continuous distribution of path components, we introduced the maximum
entropy modeling to describe the power distribution of each path component. In the time
invariant scenario, a phase distribution of the path component was also needed and it was
modeled as a constant value for each path component.

As estimation method the SAGE algorithm was applied to cope with the estimation of multi-
path components in the two scenarios. The algorithm is an approximation to the global
maximum likelihood, but with faster convergence. The SAGE works on the estimated data
space of single path components (denoted as a hidden data space) and the performance
is inherently sensitive of its design. In the computation of the hidden data space, β was
introduced as a parameter to control how much noise and estimation error that was added
into the hidden data space.

The performance of the estimation algorithm was evaluated in a synthetic environment and
with measurement data. The estimation results in the synthetic environment were reliable
and accurate. Observations and a discussion on the model mismatch in the measurement
data was presented and an effort to minimize it was carried out. Also, the computational
complexity of the algorithm was reduced. A LSE estimator for the time variant scenario
(with the cross-correlation in delay omitted) showed promising performance for the mea-
surements data in the environment TxR11. Estimation results of the specular path model in
the time invariant scenario showed better performance than the dispersive path model. We
believe a more rigorous phase model to describe the phase of the dispersive path compo-
nents will improve that performance.

11.2 Discussion and proposed improvements

In both the time variant and time invariant scenario with measurement data a model mis-
match was apparent. The problem is how to find an effective way to minimize the model
mismatch as it is inevitable. Some possible improvements in different scenarios will be men-
tioned:
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11.2.1 Time variant scenario

For the time variant scenario the non-WSSUS scatterer model is believed to better describe
the true radio propagation channel. Usually, the WSSUS scatterer model is regarded as a
simplified approximation of the real scatterers. The WSSUS assumes that different disper-
sive path components are uncorrelated. Correlation among the path components can be
caused by the finite samples of data or simply by the physical environment of the scatterers.

Another observation from the estimation results showed that some specular paths existed.
It is naturally to think of the radio channel propagation as a mixture of specular path com-
ponents and dispersive path components. The specular path components are just a extreme
form of continuous distributed path component (the spread is 0), and the existence of spec-
ular path components should not, to some extend, deteriorate the performance of the algo-
rithm, but only decrease the convergence rate.

The model mismatch can also be caused by the skewness of the power distribution. A seri-
ously skewed power distribution will cause a dominant model mismatch as well. This kind
of model mismatch can be removed by using several distributed path components to model
a skewed path component.

A solution to alleviate the model mismatch for the time variant scenario is to replace the
MLE method with LSE method as mentioned before. The LSE is a fitting estimator. The
LSE is able to capture useful information from measurement data with dominant model
mismatch. On the other hand, the MLE always take the entire measurement data to estimate.
With the current proposed model and available measurement data, we believe that the LSE
works better than the MLE in the measurement data with model mismatch.

The discussion on the LSE also showed its limitation to give a reliable estimation that can
be "connected" to the true physical environment. The LSE is sensitive to the residual data
(estimation errors and noise) which may introduce false existence of path components. The
reliability of LSE is primary determined by the initialization of the SAGE. For a high reso-
lution antenna array, the Bartlett spectrum is viewed as a trustable estimation of the power
spectrum. The combination of the Bartlett spectrum in the initialization and the LSE in
the later estimation can then be considered as a trustable estimation of the radio channel
response in time variant scenario.

11.2.2 Time invariant scenario

For the time invariant scenarios, the identical value of the phase distribution in one path
component may be quite different from the true condition. So far there is no further dis-
cussion on the phase distribution of the path component in time invariant scenario. One
suggested improvement is to provide a specific description of the phase at different direc-
tion and different delay. The complexity of this specific phase description can increase the
computational cost.

Another suggestion to solve the phase estimation is to replace the distributed path compo-
nent modeling with specular path modeling. The attempts of using specular path compo-
nent for the estimation showed some improvement for the estimation though one should
still be aware of the possible estimation of false "images" from the residual data.
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11.3 Outlooks

So far we have focused on a solution to estimate the radio propagation channel in MISO
and SIMO systems. The radio propagation channel is a complex process that contains more
information than just direction, delay, doppler frequency and polarization. The experience
in this project can be utilized into the radio channel propagation into MIMO system. The
joint power distribution of DoA and DoD will become quite complex if the FB5 distribu-
tion for each power direction distribution is still applied. To this point, an approximation
for this joint direction distribution using a joint Gaussian distribution can still become an
effective candidate to solve the distribution problem. The phase distribution for determin-
istic path component in time invariant scenario should be investigated to obtain an accurate
description of it.

Improvements to further reduce the model mismatch are required. The non-WSSUS con-
dition, skewness of the power distribution, mixture of deterministic path components and
random path components are probable reasons to cause a model mismatch.

It is worth exploring a mixture model for the non-WSSUS and WSSUS conditions of the path
component.

The current measurement data processing for the estimation algorithm is heavy and quite
time consuming. Furthermore, the computational limits of MATLABTMrestricts some oper-
ations to be performed in the algorithms (determinant computation). For every parameter
set of one path component, the sequential parameter estimation is adopted. The ideal joint
estimation is impractical due to the workload. It is another challenge of future research to
optimize the algorithm design and programming. In a real-time application, the speed of
the programme is critical. For data analyzing purpose, speed of the programme is still an
important benchmark. It is necessary to find a balance between accuracy and speed of the
algorithm.
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Formula Derivation A
A.1 Derivation of E[H ] and E[HHH ] in the time variant scenario

A.1.1 Derivation of E[H ]

E[H] =




E[h(τ1)]

E[h(τ2)]
...

E[h(τk)]
...

E[h(τK)]




(A.1)

The h(τk) follows the model given in Eq. (4.4).

For each sub-vector E[h(τk)] in E[H]:

E[h(τk)] =
L∑

l=1

∫

S,τ
E[al(Ω, τ)]C(Ω)Rss(τ − τk)dΩdτ +

∫ tn+T

tn

E[w(t)]s∗(t− τk)dt (A.2)

al(Ω, τ) is assumed to have phase uniformly distributed and w(t) is a zero mean Gaussian
noise. Therefore,

E[al(Ω, τ)] = 0 and E[w(t)] = 0.

The mean of H is zero:

E[H] = 0. (A.3)
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APPENDIX A. FORMULA DERIVATION

A.1.2 Derivation of E[HHH ]

E[HHH ] =




E[h(τ1)hH(τ1)] E[h(τ1)hH(τ2)] . . . E[h(τ1)hH(τK)]

...
. . .

...
E[h(τi)hH(τj)]

E[h(τK)hH(τ1)] E[h(τK)hH(τK)]




(A.4)

with each sub-matrix E[h(τi)hH(τj)]:

E[h(τi)hH(τj)]

=E[
L∑

l=1

(
∫

S,τ
al(Ω, τi)C(Ω)Rss(τ − τi)dΩdτ +

∫ tn+T

tn

w(t)s∗(t− τi)dt)·

(
L∑

l=1

∫

S,τ
a∗l (Ω, τ)CH(Ω)Rss(τ − τj)dΩdτ +

∫ tn+T

tn

wH(t)s(t− τj)dt)]

=E[(
L∑

l=1

∫

S,τ
al(Ω, τ)C(Ω)Rss(τ − τi)dΩdτ)(

L∑

l=1

∫

S,τ
a∗l (Ω, τ)CH(Ω)Rss(τ − τj)dΩdτ)]

+ E[(
L∑

l=1

∫

S,τ
al(Ω, τ)C(Ω)Rss(τ − τi)dΩdτ)(

∫ tn+T

tn

wH(t)s(t− τj)dt)]

+ E[(
L∑

l=1

∫

S,τ
al(Ω, τ)C(Ω)Rss(τ − τj)dΩdτ)(

∫ tn+T

tn

wH(t)s(t− τi)dt)]

+ E[(
∫ tn+T

tn

wH(t)s(t− τj)dt)(
∫ tn+T

tn

wH(t)s(t− τj)dt)]. (A.5)

Component

E[(
∫
S,τ a(Ω, τi)C(Ω)Rss(τ − τi)dΩdτ)(

∫ tn+T
tn

wH(t)s(t− τj)dt)] = 0

E[(
∫
S,τ a(Ω, τj)C(Ω)Rss(τ − τj)dΩdτ)(

∫ tn+T
tn

wH(t)s(t− τi)dt)] = 0

are given by the assumption that a(Ω, τ) and w(t) are uncorrelated.

By the assumption in Eq. (4.3) that different path components are uncorrelated.

E[ai(Ωi, τi)aj(Ωj , τj)] = 0.
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A.1. DERIVATION OF E[H] AND E[HHH ] IN THE TIME VARIANT SCENARIO

E[(
L∑

l=1

∫

S,T
al(Ω, τ)C(Ω)Rss(τ − τi)dΩdτ)(

L∑

l=1

∫

S,T
a∗(Ω, τ)CH(Ω)Rss(τ − τj)dΩdτ)]

=
L∑

l=1

∫

S,T

∫

S,T
E[al(Ω1, τ1)a∗l (Ω2, τ2)]C(Ω1)CH(Ω2)Rss(τ1 − τi)Rss(τ2 − τj)dΩ1Ω2dτ1dτ2

(A.6)

The complex amplitude al(Ω, τ) is considered as uncorrelated in time and direction.

E[al(Ω1, τ1)a∗l (Ω2, τ2)] = E[al(Ω1, τ2)a∗l (Ω2, τ2)]δ(Ω1 − Ω2)δ(τ1 − τ2)

Therefore,

E[(
L∑

l=1

∫

S,T
al(Ω, τ)C(Ω)Rss(τ − τi)dΩdτ)(

L∑

l=1

∫

S,T
a∗l (Ω, τ)CH(Ω)Rss(τ − τj)dΩdτ)]

=
L∑

l=1

∫

S,T
E[al(Ω, τ)a∗l (Ω, τ)]C(Ω)CH(Ω)Rss(τ − τi)Rss(τ − τj)dΩdτ (A.7)

Component E[(
∫ tn+T
tn

wH(t)s(t− τj)dt)(
∫ tn+T
tn

wH(t)s(t− τj)dt)] is expanded as:

E[(
∫ tn+T

tn

w(t)s(t− τj)dt)(
∫ tn+T

tn

wH(t)s∗(t− τj)dt)]

=
∫ tn+T

tn

∫ tn+T

tn

E[w(t1)wH(t2)]s(t1 − τj)s∗(t2 − τj)dt1dt2

As given w(t) is a white complex Gaussian noise that E[w(t1)wH(t2)] = σ2
nIδ(t1 − t2)

Therefore:

E[w(t1)wH(t2)] = σ2
nI

∫ tn+T

tn

s(t− τj)s∗(t− τj)dt = σ2
nIRss(τi − τj) (A.8)

Replace E[a(Ω, τ)a∗(Ω, τ)] = Pf(Ω, τ) as a continuous power distribution of the signal.
Finally, E[h(τi)hH(τj)] is expressed as:

E[h(τi)hH(τj)] =
L∑

l=1

∫

S,T
Plfl(Ω, τ)C(Ω)CH(Ω)Rss(τ − τi)Rss(τ − τj)dΩdτ + σ2

nIRss(τi − τj)

(A.9)
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APPENDIX A. FORMULA DERIVATION

A.2 Derivation of E[H ] and E[HHH ] in the time invariant sce-
nario

The formation of H in the time invariant scenario has the same structure as in the time
variant scenario.

A.2.1 Derivation of E[H ]

E[H] =




E[h(τ1)]

E[h(τ2)]
...

E[h(τk)]
...

E[h(τK)]




, (A.10)

where h(τk) still follows the model in Eq. (4.4).

The sub-vector E[h(τk)]:

E[h(τk)] =
L∑

l=1

∫

S,T
E[al(Ω, τ)]C(Ω)Rss(τ − τk)dΩdτ +

∫ tn+T

tn

E[w(t)]s∗(t− τk).dt (A.11)

E[al(Ω, τ)] = al(Ω, τ) and E[w(t)] = 0 in time invariant scenario.

Thereby the sub-vector E[h(τk)] is given as:

E[h(τk)] =
L∑

l=1

∫

S,T
al(Ω, τ)C(Ω)Rss(τ − τk)dΩdτ (A.12)

A.2.2 Derivation of E[HHH ]

E[HHH ] =



E[(h(τ1)− E[h(τ1)])(hH(τ1)− E[h(τ1)])] . . . E[(h(τ1)−E[h(τ1)])(hH(τK)−E[h(τK)])]

...
. . .

...

E[(h(τK)− E[h(τK)])(hH(τ1)− E[h(τ1)])] E[(h(τK)−E[h(τK)])(hH(τK)−E[h(τK)])]




(A.13)

with each sub-matrix E[h(τi)hH(τj)] given as:
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E[(h(τi)− E[h(τi)])(hH(τj)− E[h(τj)])]

= E[(
∫ tn+T

tn

w(t)s∗(t− τj)dt)(
∫ tn+T

tn

w∗(t)s∗(t− τj)dt)]

= σ2
wIRss(τi − τj) (A.14)

A.3 Hidden data expectation in the time variant scenario

Take the representation of Σslsl
and Σww in Eq. (4.9)

Let ΣHl
= Σslsl

+ βΣww denote the covariance matrix of the channel impulse response for
the lth path component. Let E[H l] denote the mean for the channel impulse response for
the lth path component.

Let ΣH =
∑L

l=1 Σslsl
+Σww denote the covariance matrix for all the multi-path component.

Let E[H] denote the mean of the all multi-path component.

Let ĤĤ
H

= 1
N

∑N
n=1 ĤnĤ

H
n represent the observed covariance matrix for all the multi-

path components.

From A.1 it is known E[H l] = 0, E[H] = 0.

Let Rj represent an estimation of matrix R at iteration j

The H l and H are assumed to be joint Gaussian. Then the hidden data expectation in time
variant scenario becomes the condition expectation of the joint Gaussian covariance matrix.

From [28][p.132],conditional expectation of the covariance matrix ΣHi|Ĥ,θ is given as fol-
lowing.

ΣHl|Ĥ,θ = ΣHl|θ − ΣHlH|θΣ−1
H|θΣHHl|θ + E[H l|H, θ]E[H l|H, θ] (A.15)

E[H l|H, θ] = E[H l] + ΣHlH|θΣ−1
H|θ(Ĥn − E[H]) = ΣHlH|θΣ−1

H|θĤn (A.16)

ΣHl|θ = ΣHlH|θ = ΣHHl|θ (A.17)

Therefore,

ΣHl|Ĥ,θ = ΣHl|θ − ΣHl|θΣ−1
H|θΣHl|θ + ΣHl|θΣ−1

H|θĤĤ
H

Σ−1
H|θΣHi|θ. (A.18)

Replace the estimated covariance matrix with the estimation results of estimation iteration
j − 1, the conditional covariance matrix for the estimation iteration j for the lth scatter is
given:

Σ
Hj

l
= Σ

Hj−1
l

− Σ
Hj−1

l
Σ−1

Hj−1ΣHj−1
l

+ Σ
Hj−1

l
Σ−1

Hj−1ĤĤ
H

Σ−1
Hj−1ΣHj−1

l
(A.19)
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A.4 MLE principles

The general principles of Maximum Likelihood Estimator(MLE) can be described as follow.

Let F (x;θ) indicate the distribution of the random variable X given the parameter θ. Thus,
if X1, X2, . . . , Xn are i.i.d.(independent identical distributed) measurement of X , then f(x1, x2, . . . , xn; θ)
is the joint pdf of X1, . . . , Xn given θ, and because of independency it can be written:

f(x1, x2, . . . , xn;θ) =
n∏

i=1

f(xi; θ)

Here f(x1, x2, . . . , xn; θ) are called a likelihood function and is denoted by:

L(θ) = f(x1, x2, . . . , xn;θ) =
n∏

i=1

f(xi; θ) (A.20)

and it can be considered as a function of the unknown parameter set of θ.

If there is a value θ̃ that maximizes the likelihood function, it is then called a Maximum
Likelihood Estimator(MLE) of θ expressed as:

θ̃ = argmax
θ

L(θ) = argmax
θ

n∏

i=1

f(xi; θ)

Further, the logarithm of the MLE then it is converted into a Maximum Loglikelihood Esti-
mator.

θ̂ = argmax
θ

ln L(θ) = argmax
θ

ln

(
n∏

i=1

f(xi;θ)

)
= argmax

θ

n∑

i=1

ln f(xi; θ) (A.21)

A.5 MLE in time variant scenario

The H is believed to follow zero mean Gaussian distribution.

f(Ĥ) =
1

(2π)M |Σ(θ)| exp
(
−Ĥ

H
Σ−1(θ)Ĥ

)
(A.22)

Let Σ̃ denote the estimated covariance matrix.Insert Eq. (A.22) into Eq. (A.21), the MLE is
given by:
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A.6. MLE IN TIME INVARIANT SCENARIO

θ̃ = argmax
θ

n∑

i=1

ln

(
1

(2π)M |Σ̃(θ̂)| exp
(
−Ĥ

H
i Σ̃

−1
(θ̂)Ĥ i

))

= argmax
θ

n∑

i=1

(
ln

1

(2π)M |Σ̃(θ̂)| − Ĥ
H
i Σ̃

−1
(θ̂)Ĥ i

)

= argmax
θ

(
−nM ln 2π − n ln |Σ̃(θ̂)| −

n∑

i=1

(Ĥ
H
i Σ̃

−1
(θ̂)Ĥ i)

)

= argmax
θ

(
− ln |Σ̃(θ̂)| − 1

n

n∑

i=1

(Ĥ
H
i Σ̃

−1
(θ̂)Ĥ i)

)

= argmax
θ

(
− ln |Σ̃(θ̂)| − trace(Σ̃

−1
Σ̂)

)
(A.23)

where Σ̂ = 1
n

∑n
i=1 Ĥ iĤ

H
i .

A.6 MLE in time invariant scenario

The H is believed to follow Gaussian distribution.

fĤ =
1

(2π)M |Σ| exp
(−(H − E[H])HΣ−1(H − E[H])

)
(A.24)

Let Σ̃ denote the estimated covariance matrix. Insert Eq. (A.24) into Eq. (A.21), the MLE is
given by:

θ̃ = argmax
θ

n∑

i=1

ln
1

(2π)M |Σ(θ̂)| exp
(
−(Ĥ i − E[H])HΣ−1(θ̂)(Ĥ i − E[H])

)

= argmax
θ

n∑

i=1

(
ln

1

(2π)M |Σ(θ̂)| − (Ĥ i − E[H])HΣ−1(θ̂)(Ĥ i − E[H])

)

= argmax
θ

− ln |Σ(θ̂)| − 1
n

n∑

i=1

(Ĥ i −E[H])HΣ−1(θ̂)(Ĥ i − E[H])

= argmax
θ

− ln |Σ(θ̂)| − 1
n

n∑

i=1

(Ĥ i −E[H])Hσ−2
w R(Ĥ i − E[H])

= argmax
θ

− σ2
w ln |Σ(θ̂)| − 1

n

n∑

i=1

(Ĥ i − E[H])HR(Ĥ i − E[H]) (A.25)

A.7 Model mismatch in time variant scenario

The sub covariance matrix for two correlated specular path a1 and a2 is given:
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E[h(υ1)hH(υ2)]

= E[
∫ tn+T

tn

y(t)s(t− υ1)dt

∫ tn+T

tn

yH(t)s∗(t− υ2)dt]

= E[
∫ tn+T

tn

∫ tn+T

tn

y(t1)yH(t2)s(t1 − υ1)s∗(t2 − υ2)dt1dt2]

= E[
∫ tn+T

tn

∫ tn+T

tn

[a1c1s(t1 − τ1) + a2c2s(t1 − τ2)][a∗1c
H
1 s∗(t2 − τ1) + a∗2c

H
2 s∗(t2 − τ2)]·

s(t1 − υ1)s∗(t2 − υ2)dt1dt2]

=
∫ tn+T

tn

∫ tn+T

tn

[E[a1a
∗
1]c1c

H
1 s(t1 − τ1)s∗(t2 − τ1)s(t1 − υ1)s∗(t2 − υ2)+

E[a1a
∗
2]c1c

H
2 s(t1 − τ1)s∗(t2 − τ2)s(t1 − υ1)s∗(t2 − υ2)+

E[a2a
∗
1]c2c

H
1 s(t1 − τ2)s∗(t2 − τ1)s(t1 − υ1)s∗(t2 − υ2)+

E[a2a
∗
2]c2c

H
2 s(t1 − τ2)s∗(t2 − τ2)s(t1 − υ1)s∗(t2 − υ2)]dt1dt2
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Estimation Results B

Paths 1 2 3 4 5
P 7.0967 · 10−6 3.9773 · 10−7 1.3225 · 10−6 2.5927 · 10−7 8.9704 · 10−8

θ̄[◦] 2 2 0 -2 2
φ̄[◦] -6 -2 -8 -46 -4

τ̄ (index) 6 7 8 8 7
κ 5600 3460 1458 5024.8 366.74
ζ 0.14 0.78 0.94 0.94 0.98

α[◦] 154 140 102 140 160
β[◦] 20 132 -132 -76 -60
η 700 700 700 700 700
B 285120 271524 158400 14434 65885

ϑ[◦] 214.54 83.634 72.726 225.45 261.82

Table B.1: The estimation results of the time invariant environment. A SIMO
system with all even index Rx antennas and T1 transmit antenna is used in
the time invariant scenario. The selected power distribution model is the joint
direction and delay power distribution in Eq. (3.17). The LSE was applied.

Paths 1 2 3 4 5
P 1.5622 · 10−5 2.5044 · 10−6 2.2277 · 10−6 9.7908 · 10−7 4.9591 · 10−7

θ̄[◦] 2 -32 0 -42 2
φ̄[◦] 2 2 58 32 -12

τ̄ (index) 6 7 7 8 6
κ 2033 103740 2230 1742 162
ζ 0.72 0.98 0.46 0.92 0.98

α[◦] 40 44 74 8 130
β[◦] 84 -180 96 72 -156
η 700 0 700 700 357
B 550800 4752000 318240 30240 83635

ϑ[◦] 113 105.45 196 0 291

Table B.2: The estimation results of the time invariant environment. A MISO
system with all Tx antennas and R2 receive antenna is used for the time in-
variant scenario. The selected power distribution model is the joint direction
and delay power distribution in Eq. (3.17). The LSE was applied.
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Paths
1

2
3

4
5

6
7

8
9

10
P

8.785·10 −
8

2.256·10 −
8

1.325·10 −
8

8.489·10 −
9

2.135·10 −
8

7.440·10 −
9

2.677·10 −
8

1.080·10 −
8

2.414·10 −
9

4.127·10 −
9

θ̄[ ◦]
0

-2
-10

14
2

-2
4

-6
-36

14
φ̄[ ◦]

-68
-132

-10
-172

120
-136

-68
-34

-100
62

τ̄(index)
22

22
22

23
25

25
24

27
23

23
κ

505.83
84.7

2787.8
10890

54
14641

336.96
97.978

66647
152460

ζ
0.92

0.52
0.86

0.14
0.68

0.44
0.98

0.74
0.98

0.92
α
[ ◦]

130
56

128
94

170
90

42
22

120
56

β
[ ◦]

-76
16

-64
12

140
12

124
-136

68
-60

η
6855.7

1209.8
24484

89455
3460.5

182310
8229.6

3197.7
229550

76601
B

261620
522720

355450
781470

221760
2316600

200990
104360

790610
95040

δ
2w

2
.7380·10 −

1
2

Table
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A SAGE Algorithm for the Estimation of Direction
Power Spectrum of Individual Path Components
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Abstract— In this contribution, the Fisher-Bingham-5
(FB5) probability density function (pdf) is used to model
the shape of the direction power spectrum of individual
path components in the radio channel response. The FB5
pdf is selected because among all distributions of direction,
the FB5 distribution maximizes the entropy under the
constraints that the first moment of the distribution and its
second moment are specified. A SAGE (Space-Alternating
Generalized Expectation-maximization) algorithm is de-
rived based on this model for estimation of the parameters
characterizing the power spectrum of individual path
components. The performance of the SAGE algorithm
is evaluated using measurement data. Preliminary results
show that the estimated power spectra of individual path
components exhibit different ovalness and tilt angle. They
are noticeably more concentrated than the corresponding
footprints in the power spectrum estimated using the
Bartlett beamformer.

Index Terms— Path component, Fisher-Bingham-5 dis-
tribution, SAGE algorithm

I. INTRODUCTION

Due to the heterogeneity of the propagation environ-
ment, the response of the radio channel is the superpo-
sition of a certain number of components. Each com-
ponent, which we refer to as “path component”, is con-
tributed by an electromagnetic wave propagating along a
path from the transmitter (Tx) to the receiver (Rx). Along
this path, the wave interacts with a certain number of
objects called scatterers. Due to the geometrical extent
and the nonhomogeneous electromagnetic properties of
the scatterers, a path may be dispersive in delay, direction
of departure, direction of arrival, polarizations, as well
as in Doppler frequency when the environment is time-
variant. As a consequence, an individual path component
may be spread in these dispersion dimensions. Modeling
of these dispersion phenomena is required for the design
and optimization of mobile communication systems and
thus, the knowledge of the dispersive characteristics of
path components is necessary.

In recent years, estimation of the dispersive char-
acteristics of individual path components in multiple

This work was jointly supported by the Network of Excellencein
Wireless COMmunications (NEWCOM) and Elektrobit Group.

dimensions has attracted much attention. Some of the
techniques are derived using the assumption that the
shape of the power spectrum of individual path com-
ponents can be described using a probability density
function (pdf). In [1], the product of the von-Mises pdf
and the exponential pdf is used to describe the shape of
the delay–AoA (Azimuth of Arrival) power spectrum. In
[2] and [3], the von–Mises–Fisher and Fisher–Bingham–
5 (FB5) pdfs are used to characterize the shape of the
AoA–AoD (azimuth of departure) power spectrum and
the direction (azimuth and elevation) power spectrum
respectively. The shape of the delay–AoA–AoD power
spectrum can be described using a 3-variate pdf derived
in [4].

In this contribution, we derive a SAGE algorithm
which is used to estimate the direction power spectrum
of the individual path components. The power spectrum
is modeled using the FB5 pdf. The performance of the
SAGE algorithm is evaluated using measurement data.

This contribution is organized as follows. In Section II,
a signal model for channel sounding is presented and
the characterization of the power spectrum based on the
FB5 pdf is introduced. In Section III, the estimators
of the model parameters are derived within the SAGE
framework. Section IV shows the experimental results.
Finally concluding remarks are stated in Section V.

II. SIGNAL MODEL

In this contribution, we are interested in the dispersive
characteristics of individual path components in direc-
tion of arrival (DoA). The channel sounding system
considered has a SIMO (single-input multiple-ouput)
configuration with a single Tx antenna and aM -element
Rx antenna array. The signal model, the characterization
method, and the estimation method derived here can be
easily modified to handle a MISO (multiple-input single-
ouput) channel sounding configuration where dispersion
in direction of departure (DoD) is of interest.

We consider narrow-band transmission, which implies
that the product of the signal bandwidth times the chan-
nel delay spread is much smaller than one. Following the
nomenclature in [5], the continuous-time output signal of



the Rx array in the SIMO system reads

Y (t) = H(t)u(t) + W (t) ∈ C
M

=

[∫

S2

c(Ω)h(t;Ω)dΩ

]
u(t) + W (t). (1)

The complex vectorY (t) contains the output signals
of the Rx array observed at time instancet. The
scalar functionu(t) denotes the complex envelope of
the transmitted sounding signal at timet. The vector
H(t) represents the time-variant impulse response of
the SIMO system. We assume thatu(t) is known to
the Rx and that

∫
T

0
u(t)u(t)∗dt = 1, where[·]∗ denotes

complex conjugate andT represents the duration of one
observation interval. The functionh(t;Ω) is the (time-
variant) DoA spread function of the propagation channel
[5]. Here,Ω denotes the DoA, which is defined to be a
unit vector with initial point anchored at the originO of
a coordinate system where the Rx array is confined. The
end point ofΩ locates at a unit sphereS2 centered at
O. The DoAΩ is uniquely determined by the spherical
coordinates(φ, θ) ∈ [−π, π) × [0, π] of its end point
according to the relation

Ω = [cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)]T (2)

with [·]T denoting transposition. The anglesφ and θ
are referred to as the azimuth and elevation of the
DoA respectively. The noiseW (t) in (1) is a vector-
valued circularly symmetric, spatially and temporally
white Gaussian process with component spectral height
σ2

w. We assume thatσ2

w can be measured and therefore
is known in advance. The complex vector

c(Ω)
.
= [c1(Ω), c2(Ω), . . . , cM (Ω)]T

arising in (1) is the responses of the Rx array. In a
scenario where the electromagnetic energy propagates
from the Tx to the Rx viaD paths, the DoA spread
function h(t;Ω) can be decomposed as

h(t;Ω) =

D∑

d=1

hd(t;Ω). (3)

The summandhd(t;Ω) denotes thedth path component
in h(t;Ω).

We assume that the transfer vectorH(t) fluctuates
over the overall sounding period, but remains constant
within individual observation intervals:

H(t)
.
= Hn, t ∈ [tn, tn + T ).

Similarly, the spread functionshd(t;Ω), d = 1, . . . ,D
arising in (3) are constant within individual observation
intervals:

hd(t;Ω) = hd(tn;Ω)
.
= hd,n(Ω), t ∈ [tn, tn + T ). (4)

The processeshd,n(Ω), n ∈ [1, . . . , N ], d ∈ [1, . . . ,D]
with N denoting the number of observation intervals,
are assumed to be uncorrelated complex (zero-mean)
orthogonal stochastic measures, i.e.

E[h∗

d,n(Ω)hd′,n′(Ω′)] = Pd(Ω)δnn′δdd′δ(Ω − Ω
′). (5)

Here, δ(·) and δ(·) represent the Kronecker delta and
the Dirac delta function respectively, andPd(Ω)

.
=

E[|hd,n(Ω)|2] is the direction power spectrum of the
dth path component. Identity (5) implies that the spread
functions of different individual path components or
at different observation intervals are uncorrelated. This
scenario is referred to as theuncorrelated scattering case
in the literature (see e.g. [5]).

The spectrumPd(Ω) describes the manner the average
power of thedth path component is distributed on the
unit sphereS2. We assume

Pd(Ω) = Pd · fd(Ω) (6)

with Pd representing the average power of thedth path
component andfd(Ω) the DoA density function of the
dth path component.

In this contribution, we assume thatfd(Ω) is of the
form of the FB5 pdf [6]. Among all distributions on the
unit sphereS2, the FB5 distribution [6] maximizes the
entropy under the constraints that the first moment of
the distribution and its second moment are specified. The
first moment of the distribution are parameterized by the
center of gravity of the power spectrum, while the second
moments are characterized by the parameters describing
the concentration and the ovalness of the spreads on the
surface of the unit sphere. The direction density function
fFB5

(Ω) reads

fFB5
(Ω) = C(κ, η)−1 exp{κγT

1
Ω

+κ · η[(γT

2
Ω)2 − (γT

3
Ω)2]}, (7)

whereκ ≥ 0 represents the concentration parameter and
η ∈ [0, 1/2) describes the ovalness of the distribution.
In (7), C(κ, η) denotes a normalization constant number
depending onκ and η, γ1, γ2, and γ3 ∈ R3 are
unit vectors. The matrixΓ

.
= [γ1,γ2,γ3] is uniquely

determined by three angular parametersθ̄, φ̄ and α
according to

Γ =




sin(θ̄) cos(φ̄) − sin(φ̄) cos(θ̄) cos(φ̄)
sin(θ̄) sin(φ̄) cos(φ̄) cos(θ̄) sin(φ̄)

cos(θ̄) 0 − sin(θ̄)





·




1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)



 . (8)

In (8), φ̄ and θ̄ coincide with respectively the azimuth
and the elevation of the mean direction, i.e. the first

2



, φ̄

Fig. 1. The FB5 density function withφ̄ = 135◦, θ̄ = 18◦, α =
144◦, κ = 80 and η = 0.375. The color bar to the right of the plot
shows density expressed in linear scale.

moment of the distribution. The angleα describes how
the density function is tilted onS2. A detailed description
of the meanings ofγ1, γ2 andγ3 can be found in [6].
Note that whenη equals0, the FB5 pdf does not depend
on the values ofα and the equal-density contours of
fFB5

(Ω) are circles. Forη ∈ (0, 1/2), the equal-density
contours of the pdf exhibit the ovalness, which becomes
significant asη increases. Fig. 1 depicts the FB5 density
function for the parameter setting reported in the figure
caption.

The parameters offd(Ω) are denoted byθ̃d

.
=

[φ̄d, θ̄d, κd, ηd, αd]. We use a vectorθ to represent all
unknown model parameters in (1), i.e.

θ
.
= [P1, P2, . . . , PD, θ̃1, θ̃2, . . . , θ̃D].

III. E STIMATION OF THE MODEL PARAMETERS

In a scenario with multiple path components, as de-
picted by (1), the problem at hand is to estimate the
parameter vectorθ. We now derive a SAGE algorithm
[7] as an approximation of the maximum likelihood
estimator ofθ.

A. Admissible hidden data

We choose the subsets of parameters updated in the
iterations of the SAGE algorithm to be the sets including
the parameters characterizing individual path compo-
nents. At Iterationi = 1, 2, . . . , the parameter subset
θd

.
= [Pd, θ̃d] with d = [(i− 1) mod D] + 1 is updated.

We define the admissible hidden data associated with
θd as

Xd(t)
.
= Hd(t)u(t) + W (t)

=

[∫

S2

c(Ω)hd(t;Ω)dΩ

]
u(t) + W (t). (9)

It follows from the properties ofhd(t;Ω) that Hd(t) is
constant within individual observation intervals, i.e.

Hd(t)
.
= Hd,n =

∫

S2

c(Ω)hd,n(Ω)dΩ. (10)

The output of a correlator

H̃d,n

.
=

∫
tn+T

tn

xd(t)u(t)∗dt, n = 1, . . . , N. (11)

with the input as the observationXd(t) = xd(t) can be
written as

H̃d,n = Hd,n + Nn, (12)

where Nn ∈ C
M , n = 1, . . . , N is a sequence of

N independent random vectors, the entries of which
are independent circularly symmetric Gaussian random
variables with varianceσ2

w. Invoking the central limit
theorem, the elements of̃Hd,n in (9) are assumed to be
Gaussian random variables. The vectorsH̃d,1, . . . , H̃d,N

form a sufficient statistic for the estimation ofθd.

B. Expectation Step

In the Expectation (E-) step of Iterationi, we compute
the expectation of the likelihood ofθd conditioned on the

observationY (t) = y(t) and assuming thatθ = θ̂
[i−1]

:

Q(θd|θ̂
[i−1]

)
.
= E

[
Λ(Ωd;Xd)|Y (t) = y(t), θ̂

[i−1]

)
]
. (13)

Here,θ̂
[i−1]

denotes the parameter estimates obtained in
the (i−1)th iteration. It can be shown that (13) is of the
form

Q(θd|θ̂
[i−1]

) = − ln|ΣH̃d

(θd)| − tr
[
(ΣH̃d

(θd))
−1

· Σ̂H̃d|y(t)
(θ̂

[i−1]

)
]
, (14)

wheretr[·] is the trace of the matrix given as an argument
and ΣH̃d

(θd) is the covariance matrix of̃Hd,n as a
function of the parameter subsetθd:

Σ
H̃d

(θd) = Pd

∫

S2

c(Ω)c(Ω)Hfd(Ω)dΩ + σ2

wIM

with [·]H denoting the Hermitian operator. In (14),
Σ̂H̃d|y(t)

(θ) is the conditional covariance matrix of

H̃d,n given the observationy(t). It can be shown that

Σ̂H̃d|y(t)
(θ̂

[i]

) = ΣH̃d

(θ̂
[i]

d )

− Σ
H̃d

(θ̂
[i]

d )
[
Σ

H̃
(θ̂

[i]

)
]
−1

Σ
H̃d

(θ̂
[i]

d )

+ ΣH̃d

(θ̂
[i]

d )
[
ΣH̃(θ̂

[i]

)
]
−1

Σ̂H̃

[
ΣH̃(θ̂

[i]

)
]
−1

Σ
H̃d

(θ̂
[i]

d ), (15)

where

ΣH̃(θ̂) =

D∑

d=1

ΣH̃d

(θ̂d) + σ2

wIM ,

Σ̂H̃ =
1

N

N∑

n=1

H̃nH̃
H

n

with H̃n

.
=

∫
tn+T

tn

y(t)u(t)∗dt, n = 1, . . . , N .

3



C. Maximization Step

In the M-step, the estimatêθ
[i]

d is calculated as

θ̂
[i]

d
= arg max

θd

Q(θd|θ̂
[i−1]

).

By applying a coordinate-wise updating procedure
similar to that used in [8], the required multiple-
dimensional maximization can be reduced to mul-
tiple one-dimensional maximization problems. This
coordinate-wise updating still remains within the SAGE
framework with the admissible data given in (9).

D. Initialization Step

In the initialization step, the nominal azimuths of
arrival and elevations of arrival of the path components
are estimated using a SAGE algorithm derived based
on the specular-path model [8]. The parameters which
the Bartlett beamformer is incapable to estimate are set
to certain predefined values. So, the estimates of the
concentration parametersκd, d = 1, . . . ,D are set to100
and the ovalness parameters are sent to zero. With this
setting it is assumed a priori that the path components are
close to specular path components and that the spectrum
is not tilted onS2. This initialization method procedure
has worked well for measurement data in the scenarios
where it was tested.

IV. EXPERIMENTAL INVESTIGATIONS

The measurement data was collected using an Elek-
trobit Propsound CS switched channel sounder [2] in
an office building. The sounder was configured with a
MISO (multiple-input single-output) structure where the
Rx has a single antenna and the Tx is equipped with a
50-element omnidirectional antenna array. A detailed de-
scription of the sounder, the array and the measurement
settings can be found in [2]. In the measurement, the Rx
was located in a corridor and the Tx was located in an
office room. Two photographs and the map shown in Fig.
2 depict the surroundings of the Rx and Tx. In the map,
the locations of the Tx and the Rx are marked with the
symbols⊙ and⊗ respectively. In the measurement, both
Tx and Rx were fixed. People were moving in the office
where the Tx was located. These movements created the
randomness of the radio channel. Due to this reason, the
uncorrelated scattering condition as depicted in (5) is
considered to be valid.

The data obtained from50 consecutive measurement
cycles within a period of3.3 seconds are considered. A
measurement cycle is referred to as the interval within
which all 50 subchannels are sounded once. In this
preliminary study, we investigate dispersion of individual
path components in direction of departure and neglect
dispersion in other dimensions. As delay dispersion is
not considered, we consider the output of the Rx antenna

(a) Surroundings of the Tx. (b) Surroundings of the Rx.

(c) Map of the premises.

Fig. 2. Photographs and map of the premises where the measurement
experiment was conducted.

at160 ns. The narrow-band signal model (1) is applicable
in the considered scenario. The parameter estimators
derived based on the SAGE algorithm can be easily
modified to estimate the parameters of the DoD power
spectrum of individual path components.

For the implementation of the SAGE algorithm, we
assume the number of the path components is known
and equals4 in the considered scenario. Totally10 SAGE
iteration cycles are performed. Here, an iteration cycle
is referred to as the procedure in which the estimates
of all elements inθ are updated once. In the M-step
we select the quantization step to be2◦ in both azimuth
and elevation. This is due to the fact that the Rx array
response is measured at points with minimum spacing
of 2◦ in both azimuth and elevation.

Fig. 3 depicts the estimation results obtained using the
SAGE algorithm. The parameter estimates are reported
in Table I. The notationBartlett(·) in Fig. 3 denotes the
Bartlett spectrum computed with the covariance matrix
given as an argument and̂P (Ω) represents the estimated
power spectrum of the radio channel response. It can
be observed that the power spectrum of individual path
components estimated using the SAGE algorithm are
noticeably more concentrated as shown inP̂ (Ω) than the
corresponding footprints depicted inBartlett(ΣH̃(θ̂)).
These path components differ in concentration, ovalness
and tilt angle. The “blurring” effect arising in the Bartlett
spectrum is due to the response of the Rx array.

The footprints of the path components shown in
Bartlett(ΣH̃(θ̂)) andBartlett(Σ̂H̃) are observed to be
similar. This implies that the reconstructed covariance
matrix computed using the parameter estimates is close
to the sample covariance matrix. We also observe some
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Bartlett(Σ̂H̃ )
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Fig. 3. Estimated direction power spectrum at delay160 ns. The
estimates of the parameters are shown in Table I.

differences on the shapes and the maximum spectral
heights of the corresponding footprints. These differ-
ences can be caused by the approximation of the “true”
power spectrum of individual path components with a
FB5 pdf. Another possible reason for the difference is
that dispersion in other dimensions, e.g. in delay, is not
considered.

V. CONCLUSIONS

In this contribution, we derived a SAGE algorithm for
estimation of the parameters characterizing the direction
power spectrum of individual path components in a radio
propagation channel. The Fisher-Bingham-5 probability
density function (pdf) was used to model the shape of the
direction power spectrum of individual path components.
The performance of the SAGE algorithm was evaluated
using measurement data. From the results we observed
that the Bartlett spectra obtained from the signal co-
variance matrix computed using the SAGE parameter
estimates and from the sample covariance matrix are

TABLE I
THE ESTIMATES OF THE PARAMETERS OBTAINED USING THE

SAGEALGORITHM .

d φ̄d [◦] ˆ̄θd [◦] κ̂d η̂d α̂d [◦] P̂d[10−10] P̂d [dB]
1 −84 4 140 0.33 59.3 7.10 0
2 114 −4 160 0.49 15.8 5.72 −1
3 44 −10 923 0.00 26.5 5.19 −1
4 −24 8 923 0.17 144.0 4.10 −2

similar. The estimated power spectra of individual path
components exhibit different ovalness and tilt angle.
They are more concentrated than the corresponding foot-
prints in the Bartlett spectrum. These results indicated
that dispersive path components exist in real propagation
channels. In such a case, the conventional algorithms de-
rived based on the specular-path model are inappropriate
for estimation of the parameters of the radio channel.
As shown in [9], the mismatch between the specular-
path model and the “true” dispersive feature of path
components results in significant estimation errors with
high probabilities of occurrence.
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Abstract— In this contribution, we propose to use the
density function of the Fisher-Bingham-5 distribution to
characterize the shape of the azimuth-elevation power
spectrum of individual path components in the response
of the radio channel. The maximum likelihood estimator
of the parameters of the power spectrum is derived and
applied to estimate the dispersive characteristics of individ-
ual path components from measurement data. Preliminary
results are presented that illustrate the applicability of the
method.

I. INTRODUCTION

Due to the heterogeneity of the propagation environ-
ment, the response of the radio channel is the superpo-
sition of a certain number of components. Each compo-
nent, which we call a “path component”, is contributed
by an electromagnetic (EM) wave propagating along a
path from the transmitter (Tx) to the receiver (Rx). Along
this path, the EM wave interacts with a certain number
of objects that we call scatterers. Due to the geometrical
extent and nonhomogeneous electromagnetic properties
of the scatterers, a path may be dispersive in delay,
direction of departure, direction of arrival, polarization,
as well as in Doppler frequency when the environment
is time-variant. Thus, an individual path component may
be spread in these dispersion dimensions.

Recently, different methods have been proposed for
estimation of dispersive characteristics of individual path
components. Some of these methods make use of the
assumption that the shape of the power spectrum of
individual path components can be described using a
density function of a probability distribution. In the
case where dispersion in one dimension, e.g. azimuth of
arrival (AoA), is considered, the shape of the AoA power
spectrum can be described using the density function
of the (truncated) Gaussian distribution [1], the uniform
distribution confined within a certain azimuth range [2],
and the von-Mises distribution [3]. Recently, dispersion
in multiple dimensions of individual path components
have also been investigated. In [4], a von-Mises-Fisher
density function is used to characterize the shape of
the biazimuth (azimuth of departure and AoA) power

This work was jointly supported by the Network of Excellencein
Wireless COMmunications (NEWCOM) and Elektrobit Group.

spectrum. In [5], a3-variate density function is derived
which can be used to model the shape of the biazimuth-
delay power spectrum of individual path components.

In this contribution, we propose to use the Fisher-
Bingham-5 (FB5) density function to describe the shape
of the azimuth-elevation power spectrum of individual
path components. Among all distributions on the unit
sphere, the FB5 distribution maximizes the entropy un-
der the constraints that the distribution’s first moment
and second moment are specified [6]. The maximum
likelihood (ML) estimator of the parameters of the
power spectrum is derived and applied to estimate the
dispersive characteristics of individual path components
from measurement data.

II. FB5 DENSITY FUNCTION, SIGNAL MODEL AND

MAXIMUM L IKELIHOOD ESTIMATOR

Following the nomenclature in [7], a direction can be
characterized using a unit vectorΩ. This vector has its
initial point anchored at the originO of a coordinate
system, and terminal point located on a unit sphereS2

centered atO. This vectorΩ is uniquely determined by
its elevationθ and azimuthφ. The FB5 distribution [6]
is a probability distribution onS2 which maximizes the
entropy under the constraint that the distribution’s first
moment and second moment are specified. The density
function of the FB5 distribution is of the form

fFB5
(Ω) = c · exp{κγT

1Ω + β[(γT

2Ω)2 − (γT

3Ω)2]},

where c represents a normalization constant,κ and β
are respectively the concentration parameter and the
ovalness parameter, the vectorsγ1, γ2 andγ3 ∈ R

3×1

φ̄ [
◦
] θ̄ [

◦
] α [

◦
] κ β

45 70 35 200 100

Fig. 1. The FB5 density function with the parameter setting given
above.



(a) (b) (c)

Fig. 2. Estimated azimuth-elevation power spectra: (a), Bartlett spectrum computed from original received data; (b),Proposed ML estimate
of the power spectrum; (c), Bartlett spectrum reconstructed using the ML estimate of the power spectrum. Color bars to the right of these
plots show the spectral height in linear scale.

are determined by three angular parametersθ̄, φ̄ and
α. Here, θ̄ and φ̄ specify respectively the elevation and
the azimuth of the mean direction, andα describes how
the distribution is tilted onS2. Fig. 1 depicts a surface
calculated using the FB5 density function on the unit
sphere for the parameter setting also reported in the
figure. A detailed description of the features of the FB5

density function will be presented in the full version of
the paper.

In the full version of the paper, we will also present
a signal model for channel sounding, in which the
FB5 density function is used to characterize the shape
of the azimuth-elevation spectrum of individual path
components. The ML estimator of the parameters of
the power spectrum will be derived and its properties
described in the full paper.

III. PRELIMINARY EXPERIMENTAL INVESTIGATION

We apply the derived MLE to measurement data col-
lected using the MIMO wideband radio channel sounder
Elektrobit Propsound CS [4]. The description of the
sounder setting as well as of the environment where the
measurements were conducted is given in [4].

In a preliminary investigation, we consider a SIMO
system which consists of one Tx antenna and a32-
element Rx array. As delay dispersion is not investigated
in this study, the output of the Rx array at a specific delay
is considered. Fig. 2 (a) shows the estimate of the AoA-
EoA power spectrum computed from the selected data by
using the Bartlett beamformer [8]. In the following dis-
cussion, we refer to this spectrum as Bartlett spectrum.
The proposed ML estimate of the power spectrum of
a single path component is depicted in Fig. 2 (b). Fig.
2 (c) shows the Bartlett spectrum calculated from the
reconstructed signal covariance matrix computed based
on the ML estimate of the power spectrum illustrated
in Fig. 2 (b). It can be observed that the ML estimate
of the power spectrum is more concentrated than the
corresponding footprint observed in the Bartlett spectrum
in Fig. 2 (c). The blurring effect observed in the Bartlett
spectrum is due to the ambiguity function of the Rx array
response. It can also be observed that the “reconstructed”

Bartlett spectrum shown in Fig. 2 (c) is similar to the
“original” Bartlett spectrum depicted in Fig. 2 (a). A
more comprehensive discussion of the results will be
presented in the full paper.

IV. CONCLUSIONS

In this contribution, we proposed to use the Fisher-
Bingham-5 density function to model the shape of the
azimuth-elevation power spectrum of individual path
components. We derived the maximum likelihood esti-
mator of the parameters of the power spectrum and used
it to estimate the dispersive characteristics of individ-
ual path components from measurement data. From a
preliminary result, we found that the estimated power
spectra of the path components are noticeably more
concentrated than the corresponding footprints in the
Bartlett spectrum.
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