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Abstract

This thesis addresses the challenges of estimat-
ing wideband speech (0-8000 Hz) from narrow-
band speech (0-3400 Hz). This is done by esti-
mating the missing upper spectral components
from the narrowband speech using statistical
approaches. Utilizing the Source-Filter model,
the estimation problem is divided into estimat-
ing a wideband envelope and a wideband exci-
tation signal. These two estimates are then com-
bined to obtain an artificially extended wide-
band speech signal. Three methods based on
Vector Quantization, Gaussian Mixture Models
and Hidden Markov Models respectively, have
been developed for estimation of the wideband
envelope. Results show that the two later out-
performs the method based on vector quantiza-
tion, in both objective and audible results. Esti-
mation of excitation is done by simple spectral
replication. A new perceptual training proce-
dure which utilizes Mel Frequency Cepstral Co-
efficients for estimation of the envelope is pro-
posed. A formal listening test conclude, that the
proposed method of extending the wideband
speech, is preferred over bandlimited narrow
band speech with a level of significance of more
than 99%.





Preface
This master thesis is written at the Department of Electronic Systems at Aalborg Univer-
sity, Denmark. It is written by Group 1092 in the period from September 4 2006 to June 7
2007.

Nomenclature

All references to source material are specified with square brackets after the part of the
text, where they are used, e.g. [30]. The references are listed in the bibliography on
page 110. The Matlab R© code for the bandwidth extension algorithm can be found on
the attached CD-ROM together with an electronic version of the report and the available
literature. This thesis is written in LATEX. Formulas, figures and tables are numbered in
succession for each chapter. References to equations are made in two ways: equation 4.74
or (4.74), i.e. equation is implied, when the number referred to is in brackets.
Through the report abbreviations have been used frequently. They are explained in the
list of abbreviations after the conclusion on page 105. The frequently used symbols are
listed in a symbol list with explanations on page 107. Estimates are marked with a hat,
e.g. Φ̂w which denotes an estimated wideband power spectrum. Throughout this thesis
the term power spectrum will be used extensively. By this term, we mean short term
power spectrum as all processing is done frame wise. References are made to speech files
(wav-files) in the thesis. An explanation of these speech files which originated from the
TIMIT speech database is given in appendix A.
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Chapter 1Introduction
1.1 Motivation

In todays telephone networks the bandwidth is typically limited to a frequency range
of 300 Hz to 3400 Hz. Even though almost every public telephone exchange today is
digital, this limitation still applies because of the old analogue telephone networks and
standards, see e.g. appendix A. The intelligibility for such bandlimited speech is around
99% when whole sentences are pronounced [16]. However studies have shown that the
acoustic bandwidth has significant impact on the perceived quality of speech [35]. A
higher quality of speech would also result in the speech being more pleasant to listen to,
thus reducing the listening effort.
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Figure 1.1: Spectrograms of a wideband and narrowband speech signal respec-
tively. As can be seen in the figure, the upper spectral components are missing in
the narrowband spectrogram. The signal is created using the filter from appendix
A.2. The 8 kHz (narrowband) sampled signal has been upsampled to 16 kHz for
comparison. Note that the range from 0-300 Hz is available, compared to true
"telephone" speech.

Figure 1.1 shows a spectrogram of respectively a 16 kHz (wideband) and a 8 kHz (nar-
rowband) sampled speech signal. The 8 kHz signal has been upsampled for better com-
parison. As it can be seen the narrowband is missing the upper spectral components from
3400 Hz to 8000 Hz. Our perception as humans is therefore, that narrowband is not as
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Chapter 1 Introduction

broad and pleasant to listen to as wideband. Figures 1.2(a) and 1.2(b) show a section of the
spectrogram for an unvoiced and a voiced sound respectively. The range from 300-3400
Hz is called the narrowband. The complete range is referred to as wideband. The "miss-
ing" range in narrowband compared to the wideband is referred to as the extensionband.
Throughout the thesis the bands will frequently be referred to by their abbreviations; nb,
wb and eb respectively. As it can be seen in both cases, there are a considerable amount
of energy in the extensionband, which would result in a significantly improved version
of the speech, if it was available.
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Figure 1.2: Power spectrum showing the distribution of power within one frame.

A lot of todays terminals are capable of reproducing wideband speech. In order to exploit
this wideband capability when receiving a call from e.g. the public service telephone
network (PSTN), new codecs and better telephones have to be introduced together with
a modification of the network/transmission link. Of economical reasons, true wideband
is not likely to be supported in the old telephone networks in the near future. This
challenge can be overcomed by doing some processing on a terminal capable of playing
back wideband audio. The objective is then to artificially add some "missing" spectral
components to the received signal. Such processing is referred to BandWidth Extension
(BWE), which results in a higher perceived quality of speech. One great advantage of this
approach is that no modifications to the existing system is required.

D/A
Bandwidth
Extension

Coding and
transmissionA/D

Telephone
bandpass

sw sn ŝw

Figure 1.3: Speech is recorded using a microphone, resulting in a wideband speech
signal sw. This signal is bandpass filtered and transmitted across a telephone
network. At the receiving end an estimate ŝw is obtained by the BWE algorithm,
having only a narrowband version sn of the signal at disposal.

Figure 1.3 illustrates how BWE can be included into the existing network. The wideband
signal sw from the microphone is bandpass filtered before digital conversion, compressed
with e.g. µ- or A-law and transmitted across the telephone network. At the receiver only
the narrowband signal sn is available. From this signal the upper and/or lower spectral
components are estimated by the BWE algorithm. By estimating and synthesizing the

2



1.2 Previous work

upper spectral components an estimate ŝw is obtained, which is played back on the
loudspeaker of the receiving terminal.

1.2 Previous work

The first known experiment in the field of BWE was carried out in 1933 and tried to extend
the bandwidth by non linear processing. In 1972 BBC introduced a method to enhance
telephone speech during broadcasting [11]. All of these early methods of BWE used some
simple signal processing techniques, without taking the model of speech production into
account.
In the literature these techniques are all referred to as non-model based algorithms for
bandwidth extension. Other proposals have been made in which a source-filter model of
speech production is taken into considerations [14, 26, 17]. As a result of this, the problem
of BWE can be divided into two separate tasks. One is to extend the spectral envelope,
and the other is to extend the excitation signal. To extend the envelope, several proposals
have been made. Some approaches use conventional codebook implementations (vector
quantization), where a codebook is trained with a corpus of bandlimited speech signals.
This codebook Cn has a counterpart, called a shadow codebook Cw, containing the wide-
band counterpart of the narrowband envelope. Another implementation is to have a
stacked vector of features representing the narrowband envelope and their associated
wideband features. Approaches based on codebooks have been proposed by e.g. [6, 5].
Park and Kim proposed a method [26], where the spectral transformation of the narrow-
band envelope is based on a Gaussian Mixture Model (GMM) with joint density estima-
tion. This study showed that the method based on GMM outperforms the conventional
codebook mapping. One drawback of both the codebook and the GMM implementation
is that temporal dependencies of the speech are not modeled. To incorporate the de-
pendency of speech from one frame to another, methods using a Hidden Markov Model
(HMM) have been proposed by e.g. [16, 17, 18]. This estimation technique assumes
that one frame of speech is dependent on the previous (and/or the next) one. Jax [16]
found that estimating the missing frequency bands, using an HMM significantly reduced
unwanted artifacts in the bandwidth extended signal. One of the great challenges when
doing estimation like this is to find a set of features which describes the envelope the best.
At the same time they should have good discriminative properties. Jax did an intensive
study of both the features; x used to represent the narrowband and y representing the
extensionband. This was motivated by the problem of finding the most "suitable" set of
features for the estimation problem. In order to do this, he looked at mutual information
and separability. The mutual information I(x,y) between x and y can be seen as a mea-
sure of how much information is available about y from x. A high mutual information is
therefore desirable. However a high mutual information is not enough when doing band-
width extension. Of course we want x to give as much information about y as possible,
but another requirement is that the features can be properly separated. The separability
is a measure of how well a given feature set can be discriminated, and this is important
when doing classification. BWE algorithms both rely on estimation and classification.
Therefore both high separability and high mutual information is desired. A compromise
between the two, is often what constitutes the feature vector.
As indicated earlier, a dependance between the narrowband and the extensionbands are
required in order for the estimation of the spectral envelope to succeed. A study by
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Chapter 1 Introduction

Nilsson et al.[25] showed that the mutual information was only a small fraction of the
perceived entropy of the high band. Therefore if bandwidth extension of speech are to
succeed it should not solely rely on mutual information between the bands. It should rely
on methods which make use of perceptual properties, to make the extended speech signal
sound pleasant [25]. This study made use of a GMM to jointly model the envelopes. The
envelopes were represented by Mel Frequency Cepstrum Coefficients (MFCC) and the
log energy of the disjoint frequency bands. A study like this, as when doing estimation,
however highly relies on the features chosen to represent the envelopes.
As the mutual information is limited when representing the envelopes in conventional
ways, efforts have been made to transmit some auxiliary information together with the
narrowband speech signal, see e.g. [1, 8]. The result of doing this has shown to improve
speech quality. These approaches however require a modification of the network. That is,
a better terminal which is capable of recording true wideband is required and new codecs
have to be introduced. As BWE is a solution for the transition phase until true wideband
is available, the auxiliary approach is most likely not going to gain acceptance. If too
many modifications are required, a true wideband codec might as well be introduced.
Extending the signal artificially on the other hand using advanced signal processing, only
require minor (physical) changes at the receiving side. This would therefore be more
tractable.

1.3 Scope of thesis

In this Thesis we address the problem of bandwidth extension on speech. That is, we try
to increase the perceived quality of narrowband speech. This is done by estimating the
upper and/or lower spectral components from a narrowband signal. These components
are then artificially added the narrowband, to obtain an estimated wideband speech
signal. By using the source-filter model, estimation can be divided into two subtasks, one
extending the excitation signal and one extending the spectral envelope of the narrowband
signal. Different types of frameworks which realize estimation of the excitation and the
spectral envelope are proposed and evaluated. One framework is selected based on
optimization criteria and flexibility. A new method of extending the excitation signal is
proposed, based on observations of the wideband excitation signal. The idea is to shape
the estimated excitation such that it has the same spectral characteristics as the observed
excitation.
Estimation of the spectral envelope of the narrowband is done and analyzed using three
methods. The methods we examine are estimation of the spectral envelope using code-
books, a GMM and finally Hidden Markov Models. In most BWE algorithms linear
prediction (LP)-derived features such as Auto Regressive (AR)-coefficients, Cepstral Co-
efficients (CC) etc. are used as features to represent the extension- or wideband band
envelope. In this work we propose a perceptual method by using MFCC to represent the
extensionband envelope during training of the models. The MFCC feature has been used
as a narrowband feature by Enbom and Kleijn [5]. To our best knowledge the MFCC has
never been used, as in our proposal.
Different estimation methods are compared and evaluated. Both objective and subjective
measures are used to evaluate the performance of the individual methods. Objective
measures are calculated from estimated and original wideband envelopes from speech
provided by the TIMIT database. A formal listening test is carried out to evaluate the

4



1.4 Structure of thesis

subjective performance of the estimation methods and whether or not the estimated
speech is preferred over narrowband speech.
If a BWE system was to be implemented in real telephone networks, noise from trans-
mitting the signal, coding etc. should be taken into account, as it affects the signal at the
receiving part. Both interference and coding scheme vary from network to network. In
this thesis we focus on the principles of bandwidth extension and therefore influences
from external factors are omitted. That is, we assume the input signal to be optimal in
such a sense that it contains no noise from transmission and coding. Furthermore we
assume the lower band from 0-300 Hz to be available during estimation. That is, only
the upper spectral components are estimated, but we show how the lower can easily be
estimated using the same framework. The narrowband speech from which estimation is
performed, is obtained by lowpass filtering and downsampling wideband speech. See
e.g. appendix A.2 for further details. In this thesis our main concern is not complexity but
proof of concept. The BWE algorithm is therefore developed and based on the following
assumptions:

- Errorfree transmission and coding

- The band from 0-300 Hz is available

- No computational restrictions

1.4 Structure of thesis

The following gives a brief description of each chapter. The structure of the thesis is as
follows:

Chapter 2 introduces the source filter model. Introducing this linear model, speech can
be represented in a convenient way. In this way estimation can be divided into
estimation of the wideband envelope and estimation of the wideband excitation.
Estimation of excitation is described in chapter 5 and estimation of the wideband
envelope is described in chapter 4. In order to estimate the wideband envelope a
compact representation is required. This is done representing the envelope using
features, representing both the narrowband speech and an extensionband envelope,
which are described in this chapter in section 2.2.

Chapter 3 is a review of possible frameworks which can be used to implement the band-
width extension algorithm. One framework is chosen in view of different criteria.
This chapter is concluded by describing a required method needed for implement-
ing the chosen framework.

Chapter 4 describes the central part of the algorithm, which is to estimate the wideband
envelope. Three methods based on Vector Quantization, GMM and HMM are
implemented and evaluated separately. First a brief overview is given of how
features are extracted and used to train the different models. For each of the methods
training is explained in details and an estimator is derived. In this chapter a new
method of training an HMM is also proposed.

Chapter 5 presents conventional methods of extending the excitation together with a
proposed observation based method. All methods however are all based on spectral
replication.

5



Chapter 1 Introduction

Chapter 6 verifies implementation of both the EM-algorithm and the Baum-Welch algo-
rithm used to estimate model parameters. Furthermore visual plots of original and
extended speech are presented to the reader.

Chapter 7 evaluates the performance of the BWE algorithm using both objective and
subjective measures (a formal listening test). In this chapter the PESQ measure is
also included to support the findings in the listening tests.

Chapter 8 summarizes and concludes the thesis. Furthermore it discusses the future use
of bandwidth extension.

Finally abbreviations, symbols, bibliography and appendices ends the thesis.
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Chapter 2Speech Modeling
and Analysis

In this chapter we show how speech is modeled by an envelope and an excitation signal. The enve-
lope and speech characteristics are then characterized by different features. Features representing
narrowband are afterwards used to estimate the extensionband. Objective measures are introduced
to evaluate the goodness of the estimation.

To make bandwidth extension possible at all, some prior knowledge (e.g. certain charac-
teristics) need to be known about the signal. Otherwise it would be impossible to make
any reasonable estimates. Imagine that all that was known about the signal was that it
was sampled at 8 kHz. Then it would be impossible to make any qualified estimates
about the signal. If e.g. it was known that it was either music or speech or some other
signal, then it would be much more feasible. A requirement is that the signal somehow
can be described/parameterized by a mathematical model. Studies have shown that the
exact shape of musical spectra are determined by both the instrument and the genre being
played [22]. Strictly speaking, if music should be bandwidth extended, using a paramet-
ric approach, it would require that a model for each instrument and each genre of music
were available.

2.1 Source-filter model

If speech is to be extended, as in this thesis, a very recognized model describing the
production of speech is available. Namely the source-filter model [31]. This model is
motivated by studies of the human speech production system and makes a decomposition
of a given speech signal into two parts. One part describing the excitation signal from the
source and another part describing the filters, which are driven by this excitation. The
result of driving these filters with the excitation is then speech.
To understand the source-filter model a closer look at the anatomy of the speech produc-
tion system is required. Figure 2.1 shows a diagram of the human speech production
system. All the important organs used when producing speech are depicted in the figure.
The major components of the system are the lungs, trachea (windpipe), larynx (organ of
voice production), pharyngal cavity (throat), oral cavity (mouth) and nasal cavity (nose).
Usually the Pharyngeal- and oral cavity are referred to as the vocal tract and the nasal
cavity, the nasal tract [20].
The lungs provide the air flow used in the speech production. At the larynx, which among
others include the vocal folds/chords and the glottis, this air flow is shaped into certain
characteristics. Dependent of the shape of the cavities and position of tongue, lips, jaw
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Chapter 2 Speech Modeling and Analysis

Figure 2.1: Diagram of the human speech production system. From [15].

etc. a certain speech sound is then produced.
A simplified model describing these ideas is shown in figure 2.2. It is now possible to
describe the speech production as an acoustic filtering process with an input (excitation)
to the filter and an output (speech). The airflow from the lungs goes through the Trachea
and passes the Vocal folds. The resulting signal is shaped such that it can either be noise-
like, pulse-like (or silence). This constitutes the excitation signal. The last part from the
vocal chords to the lips, i.e the cavities, tongue, jaw etc. can now be modeled by some
filters as mentioned earlier. The excitation and the filters are examined further in the
following. This is used to derive the final source-filter model as depicted in figure 2.3

2.1.1 The excitation signal

The excitation describes the air flow from the lungs passing the vocal chords at the larynx.
When the air passes these vocal chords, it results in either a pulse-like excitation caused
by vibration of the vocal chords, or a noise like excitation when the vocal chords contract
and create only a small passage for the air to pass. In the case of pulse-like excitation
the period of the pulses depends on both mass and tension of the vocal chords [20]. The
average fundamental frequency, i.e the time in between each occurrence of the before
mentioned pulses, is for example larger for men than women and children. For men this
pitch range is typically lying between 50-250 Hz, women 125-500 Hz and children a bit
higher. In the noise-like case the excitation is much more simple. It is a source of random
noise with some gain [31]. Such a signal has the characteristics that it is spectrally flat
[11].
Pulse-like excitation occurs typically when a voiced sound is pronounced, and noise-
like excitation when an unvoiced sound is pronounced. It can be seen from the model in
figure 2.3 that a switch decides whether it is unvoiced or voiced sounds being pronounced.
Because this is a model, it is an ideal case. In reality, however the excitation is typically a
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2.1 Source-filter model

Figure 2.2: A simplified block diagram describing the human speech production.
From [15]

mix of the two with one of them dominating.

2.1.2 Filter models

Typically three filters are used to model the speech production[31]: The Glottal Pulse
Model G(z), The Vocal Tract Model V(z) and The Radiation Model R(z). These models
can all be thought of as linear time invariant systems, because a frame based approach
is utilized in which we can assume the speech to be stationary. The glottal pulse model
is only used to model speech in the voiced case. It shapes the pulse train before it is
used as input to V(z). The vocal tract model V(z) is modeling the region from the vocal
chords and the glottis to the lips where the sound is finally pronounced. The radiation
model accounts for the radiation which occurs at the lips. Sometimes it is convenient to
represent all of these models together in one single transfer function H(z), i.e:

H(z) = G(z)V(z)R(z) (2.1)

H(z) is referred to as the synthesis filter and is depicted on figure 2.3. When LP analysis is
performed on a speech signal, an excitation signal and an analysis filter A(z) is obtained
[31]. The synthesis filter is the inverse of the analysis filter, i.e:

H(z) = 1/A(z) (2.2)

This way of parameterizing a speech signal is a convenient and well defined method,
which is also being exploited in several speech coders as e.g. the CELP codec. The reader
of interest is referred to e.g [31] and [20] for more about the acoustic theory behind the
source-filter model.
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Synthesis

filter H(z)

Generator

Random noise

Impulse train

Generator
Gain

Unvoiced

Voiced

sw(k)uw(k)

Figure 2.3: Source-filter model describing speech production. Speech can either
be generated by driving the synthesis filter H(z) by either an impulse train(voiced)
or random noise(unvoiced), resulting in speech being produced.

2.1.3 AR modeling of speech in BWE systems

As mentioned before the presence of a good mathematical model to describe speech is of
great importance in order to make a good estimate of the missing spectral components. A
very good characteristic of this model is that the vocal tract transfer function H(z) is much
alike for persons pronouncing the same sound. That is the position of the formants only
varies slightly within a certain region, which makes clustering of envelopes producing a
certain wideband sound feasible. If this was not the case, as for e.g. power spectra, then a
requirement would be that an estimation rule/model had to be developed individually for
each person. This would not be very feasible. Based on these assumptions, one statistical
model based on a priori knowledge would be sufficient.
Because the period of the pulses in the excitation signal changes from person to person,
this signal is not speaker independent. Because of this changing pitch from person to
person, it would not be very feasible to develop a model, to estimate the higher frequencies
of the excitation. It would require different models for different pitch periods. Simple
and straightforward ways to bandwidth extend such signals have been implemented with
success [16].
The bandwidth extension problem, when applying the source-filter model, can therefore
be solved by extending the spectral envelope and the excitation signal separately. Because
of the properties of the envelope, extension of the spectral envelope can be done by
applying a priori knowledge when estimating. This is e.g. done by simple classification
using codebooks or other estimation models based on e.g. a GMM or Hidden Markov
Models (HMM).
By exploiting the acoustic theory behind speech production, the source filter model has
been derived. This model can now be utilized to extend both the excitation and the
envelope of narrowband speech signals. Figure 2.4 shows how it would be possible to
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obtain a wideband speech signal by bandwidth extension.

of excitation

Extension

band envelope

Estimate wide-

knowledge

Prior

1/Â(z)

Extraction

Feature

Interpolator
Â(z)

Analysis Synthesis
ŝw

ûn ûw

sn

sn

ÂRw

x

Figure 2.4: System overview of how a possible BWE system might work.

Feature vectors x are extracted from the narrowband signal sn and from these a set of
wideband AR-coefficients are estimated. To obtain a wideband estimate ŝw, the narrow-
band speech is first interpolated and then fed to an analysis filter Â(z) obtained from
estimation of the envelope. The excitation ûn is then extended and given to the synthesis
filter 1/Â(z). A wideband estimate ŝw of the speech is obtained by this process.

2.2 Features

The estimation of the spectral envelope of the wideband signal highly relies on the quality
of the features which are used to estimate the coefficients describing the spectral envelope
of the wideband speech. The speech is a slowly time varying signal in the sense that,
when examined over a sufficiently short period of time (between 5 and 100 ms), its
characteristics are fairly stationary [29, p.17]. In order for the features to be descriptive,
they should be extracted in intervals in which we assume the speech, and thereby the
envelope, to fulfill this requirement. Typically a framelength of 20-30 ms is used [10,
p.280]. Throughout this thesis a frame length of 20 ms (320 samples at 16 kHz and 160
samples at 8 kHz) is used. The best possible set of features would of course be every
single sample in each frame. This is computationally untractable, and in order to make a
BWE system realizable a much smaller set is required. Jax has made a study [16] which
examines the suitability of different features for such a system. The features used in our
work is inspired from the results of that study. Only the features which are used in this
project will be described in the following, the reader of interest is therefore referred to
[16].
The section is divided into two subsections. The first section describes the features which
have been used by Jax to characterize the narrowband. The features are described in
the second section and can represent: A narrowband envelope, an envelope found by
Selective Linear Prediction (SLP) (discussed in section 3.2.1) or a wideband envelope.

2.2.1 Features characterizing narrowband

A feature vector consisting of the following has been used in the BWE algorithm [16]:

- A vector xac f containing the ten first coefficients of the autocorrelation function.

- The zero crossing rate xzcr.
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- The gradient index xgi.

- The normalized relative frame energy xnrp

- The local kurtosis xk

- The spectral centroid xsc.

These features could be used to represent a wideband signal, but in our case they are used
to represent narrowband. In the calculation of the features, sn(k) refers to the kth sample
in the narrowband speech signal. Nk is the number of samples within a single frame. In
the following the features are presented.

Auto-Correlation coefficients xac f

The autocorrelation coefficients are calculated for lag η and normalized with respect to
the energy as follows:

xac f (η) =

Nk−1∑
k=η

sn(k − η)sn(k)

Nk−1∑
k=0

(sn(k))2

(2.3)

The zero crossing rate xzcr

This feature contains information about how many times the signal crosses the zero level
within a frame. Unvoiced speech and noise result in many crossings, voiced speech fewer.
The feature is normalized by the maximum number of times it is possible to cross the zero
level.

xzcr =
1

Nk − 1

Nk−1∑
k=1

1
2
|sign(sn(k − 1)) − sign(sn(k))| (2.4)

where

sign(x) =


+1, for x > 0

0, for x = 0 (2.5)

−1, for x < 0

The gradient index xgi

This feature tells something about changes of direction of a signal. During voiced sounds
which do not have many fluctuations, this measure gives a low value, whereas in unvoiced
sounds where a lot of changes occur, the gradient index yields a high value [16]. The
measure is defined in the following way:
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2.2 Features

xgi =
1

10

Nk−1∑
k=2
∆Ψ(k)|sn(k) − sn(k − 1)|√

Nk−1∑
k=0

(sn(k))2

(2.6)

with

∆Ψ(k) =
|ψ(k) − ψ(k − 1)|

2
, ∈ {0, 1} (2.7)

ψ(k) =
sn(k) − sn(k − 1)
|sn(k) − sn(k − 1)|

, ∈ {−1, 1} (2.8)

The constant in front of the expression in (2.6) is a normalization factor to make the
features lie in approximately the same range.

The normalized relative frame energy xnrp

The normalized relative frame energy feature is a robust indication for voice activity. The
power for voiced sounds are in general higher than for unvoiced sounds [22, p. 212].
Therefore xnrp makes it possible to distinguish voiced/unvoiced sounds.
The normalized relative frame energy is calculated as [16, p.86]:

xnrp(m) =
log10 E(m) − log10 Emin(m)

log10 Ē(m) − log10 Emin(m)
(2.9)

E(m) is the energy for one frame:

E(m) =
Nk−1∑
k=0

(sn(k))2 (2.10)

Emin(m) is the minimum energy in the previous Nmin frames:

Emin(m) = min
η∈{0...Nmin}

E(m − η) (2.11)

Ē(m) is the average frame energy calculated recursively:

Ē(m) = αĒ(m − 1) + (1 − α)E(m) (2.12)

The forgetting factor α = 0.96 and the length of the search window Nmin = 200 have been
found to be reasonable [22].
Equation 2.11 requires that the previous Nmin frames are available, which is not the
case when the feature is extracted for the first Nmin frames. The implementation is
made such that as many as possible frames within the last Nmin frames are used. The
average calculation is performed recursively therefore it is necessary to initialize it. One
possibility is to increase alpha from zero to 0.96 during startup. If the BWE should be
used in a telephone it would be possible to store the average value from the last call. In
our implementation we set the average value E(1) to a specific value, that is the average
of the first 200 frames.
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The local kurtosis xk

The local kurtosis is the measure of gaussianity of a signal and is computed using fourth
and second moments[21].

xk = log10

1
Nk

Nk−1∑
k=0

(sn(k))4

(
Nk−1∑
k=0

(sn(k))2

)2 (2.13)

There are substantial peaks in the local kurtosis measure at the onsets of plosives and
strong vowels [16].

The spectral centroid xsc

The spectral centroid is defined as the center of gravity of the magnitude spectrum of
the bandlimited speech [16], i.e the point in the magnitude spectrum where the power is
equally distributed around:

xsc =

Ni∑
i=0

i · |Sn(e jΩi)|

(
Ni
2 + 1

) Ni/2∑
i=0
|Sn(e jΩi)|

(2.14)

Where Sn(e jΩi) denotes the ith coefficient of a Discrete Fourier Transform (DFT) of the
bandlimited speech frame, and Ni is the length of the DFT. The length of the DFT is
specified to be greater than the number of samples in a speech frame, i.e Ni > Nk. This
can be achieved by zero padding.
Figure 2.5 shows the features for a specific utterances. It is seen that the zero crossing
rate xzcr increases during unvoiced sounds, e.g. the “s-sound” at frame 30 and 160. The
gradient index xgi shows the same trend, but it is not entirely equal to xzcr therefore we
hope it will bring valuable information. The normalized frame energy xnrp seems to be
a good indication of voice activity and it also distinguish the voiced/unvoiced section,
see e.g. the differences between “s” (frame 30) and “ae” (frame 20). The local kurtosis xk
have peaks at about frame: 65 (k), 110 (t), 170 (p), i.e. when a plosive consonant occur. A
plosive consonant is a consonant which involves a complete blockage of the oral cavity
[10]. The spectral centroid xsc increase during unvoiced frames and plosives, e.g. frame
30 (s), frame 110 (t). During voiced frames it is about 0.25.

2.2.2 Feature vectors representing an envelope

This section describes the features which will be used to represent envelopes:

- AR coefficients

- Cepstral coefficients derived from AR coefficients

- Mel-frequency cepstral coefficients

The features will be described along with the advantages and disadvantages in the fol-
lowing three sections.
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Figure 2.5: The plot shows all the scalar features in the file:
TEST_CORE/DR2/FPAS0/SX44.WAV. A woman pronouncing “basketball can be
an entertaining sport”. The text is displayed above the time plot. The phonetic
labels for the sounds pronounced are shown along with the utterance. The labels
are shown in two lines to increase readability.
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AR coefficients

The envelope can be represented by the AR coefficients, which describe the all-zero filter
A(z) (the analysis filter). The filter is defined as [24]:

A(z) =
P∑

i=0

aiz−i (2.15)

The filter coefficient (a0 . . . aP) defines the Pth order analysis filter. The coefficients can be
found by performing linear prediction coding (LPC) on the speech samples.
Linear prediction is done by minimizing the prediction error between the actual sample
s(n) and the predicted sample ŝ(n), based on a optimization criteria.
The prediction error is defined as [24]:

e(n) = s(n) − ŝ(n) = s(n) +
P∑

i=1

ais(n − i) (2.16)

Usually the total squared error (α) is minimized, which is:

α =
∑

e(n)2 (2.17)

This can be done by using e.g. the Autocorrelation method. For more particulars on this
topic see e.g. [24, 29].
The AR coefficients are a simple representation of the envelope and are computational
attractive. AR coefficients in between each other are highly correlated. If a single AR
coefficient are alternated it has high impact on the shape of the complete envelope. Two
sets of AR coefficient with only one coefficient being different have a small euclidian
distance. The shape of the envelopes however may differ a lot. Quantizing the AR
coefficients from an Euclidian distance would therefore not be appropriate if similar
envelopes should be clustered together.

Cepstral coefficients derived from AR coefficients

The common method to calculate the real cepstral coefficients is to perform a discrete
time fourier transform of a signal, apply the log operator to the magnitudes of the output
of the transformation, and then do an inverse discrete time fourier transform.
In this thesis we take advantage of the possibility to derive the cepstral coefficients from
the AR coefficients. Markel and Gray [24, p. 230] have an equation from which both the
CC c(n) and AR coefficients ai can be derived recursively:

−n · c(n) − n · an =

n−1∑
k=1

(n − k) · c(n − k) · ak for n > 0 (2.18)

where

a0 = 1 and ak = 0 f or k ≥ P and c(0) = ln(α) (2.19)

P is the order of the autoregressive model. α is the gain coefficient.
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In order to find the cepstral coefficients equation 2.18 is rewritten to:

c(n) = −
1
n

n · an +

n−1∑
k=1

(n − k) · c(n − k) · ak

 = −an −

n−1∑
k=1

(n − k)
n

· c(n − k) · ak n > 0 (2.20)

The cepstral coefficients c(0) and c(1) can be found from (2.19) and (2.20) as:

c(0) = ln(α) c(1) = −a1 (2.21)

The derived cepstral coefficients can be converted back into AR coefficients and gain
again by applying the following (n > 0):

an = −
1
n

n · c(n) +
n−1∑
k=1

(n − k) · c(n − k) · ak

 = −c(n) −
n−1∑
k=1

(n − k)
n

· c(n − k) · ak (2.22)

The conversion between AR coefficients and CC is relatively cheap and easy to perform.
The conversion has the advantage that it can be reversed without any loss in information.
It is an advantages to transform the AR coefficients into cepstral coefficients, because the
cepstral representation has the advantage of a good decorrelation of the coefficients [22,
p. 212]. This is advantageous for modeling CC with a probability density function (pdf),
because the parameters of the pdf, can be estimated (optimized) for one element in the
feature independently of the other elements. Furthermore minimizing the Euclidian dis-
tance between two sets of CC, is closely related to minimizing the Log Spectral Distortion
(LSD) between two spectra [24].

Mel-frequency cepstral coefficients

The mel-frequency scale is a perceptual scale found by performing listening experiments.
Listeners were asked to adjust the frequency of a tone, such that the frequency of which
the tone was perceived was doubled, compared to the reference frequency 1000 Hz =
1000 mels. The adjusted frequency was then labeled 2000 mels and it corresponded
approximately to 3.4 kHz. The listeners were then asked to adjust the frequency of the
tone, such that it was perceived as various multiples of the reference. A mel frequency
can be approximated from the normal frequency scale. The mapping is approximately
linear below 1 kHz and logarithmic above [20].
The ability of humans to perceive a particular frequency is influenced by the energy in the
critical band around this frequency [20]. The width of the critical band is linear below 1000
Hz and increases logarithmic above, as the mapping from frequency to mel-frequency. A
plot of 29 critical bands is depicted in figure 2.6. There exist various different filterbanks
(different center frequencies and number of filters), which are used for implementing
MFCC, see e.g. [34] where four different filterbanks are presented. In our case we choose
a filterbank with 29 filters, constant amplitude and logarithmic spacing.
To obtain the MFCCs, the power spectrum of the speech is calculated and the log-operator
is applied, see figure 2.7. This is similar to calculating the normal cepstral coefficients.
The output is filtered with the critical bands from figure 2.6. That is, the DFT-bins are
weighted according to the ith triangular band and summed to form the total log energy
(YTLE(i)) for the ith band. Performing Inverse DFT (IDFT) results in the MFCCs. The
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Figure 2.6: The magnitude spectra of 29 critical bands.
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Figure 2.7: Block diagram showing the principle for calculating the MFCCs.

MFCC feature is popular for speech recognition applications. Studies have shown that
a 13 dimensional MFCC feature vector achieve low word error recognition rates and an
increase in dimension did not lead to an improvement [10]. Even though the MFCC feature
is used for a different application in our case, 13 coefficients are used for representing the
wideband envelope.
From the cepstral coefficients it is possible to calculate the AR coefficients again (2.22). A
similar reconstruction of the log power spectrum is not possible for the MFCC, because
the total log energy is calculated for each band as a sum of the underlaying bins. One
particular bin can therefore not be reconstructed again. The main advantages of MFCC
is that it includes perceptual properties.
The above mentioned method calculates the MFCC for the entire frequency band (0-8
kHz). Modeling only a subband, e.g. the band from 3.4 kHz to 8 kHz, is done by setting
the lower critical bands to zero. On figure 2.6 it corresponds to keeping the 9 upper
filters and setting the others to zero. When only 9 filters are used the number of cepstral
coefficients can also be reduced. The modeling of a subband will be utilized in section
4.3.6.

2.3 Objective measures

A method for doing bandwidth extension was discussed in section 2.1. The bandwidth ex-
tension is performed by estimating a wideband envelope from features of the narrowband
signal. The most optimal estimate would be the envelope from the original wideband
speech signal. It would be useful to have some measure describing how "close" estimation
is to the original envelope. One measure is to conduct a formal listening test which com-
pares the original wideband signal and the bandwidth extended signal. Unfortunately
this will be very time consuming whenever a new estimation is performed. Therefore
an objective measure is introduced, which is less time consuming. This will give an
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identification of how well the estimation is conducted.
Three different measures of how close the estimated envelope is to the original wideband
envelope will be presented. It should be noted, that these objective measures will never
be able to make it out for a subjective listening test.
The three objective measures to be presented are:

- Log Spectral Distortion (LSD)

- Itakura distance

- Itakura-Saito distance

Investigations have shown that these measures correlate reasonable well with subjective
quality assessments [28, 16]. These measures are therefore a good alternative to listening
tests. These measures are included in the evaluation in chapter 7.

2.3.1 Log Spectral Distortion

The log spectral distortion is a measure of the spectral differences between the original
wb envelope and the estimated envelope. It is calculated as [22, eq. 6.19]:

d2
LSD(m) =

1
2π

∫ π

−π

20 log10
σw

|Aw(e Ω; m)|
− 20 log10

σ̂w

|Âw(e Ω; m)|

2

dΩ (2.23)

where 1/Aw(e Ω; m) denotes the original wideband frequency spectrum of the AR-model,
and Âw(e Ω,m) is the estimated frequency spectrum of the AR-model. σ denotes the gain
for the envelopes and m denotes the frame number.
The measure can be implemented with a discrete fourier transform with N points as:

d2
LSD(m) =

1
N

N−1∑
k=0

20 log10
σw

|Aw(e 2πk/N; m)|
− 20 log10

σ̂w

|Âw(e 2πk/N; m)|

2

(2.24)

Equation 2.24 gives the LSD for one frame. The root mean square (RMS) LSD can be used
as a result for several frames:

d̄LSD =

√√√
1
M

M∑
m=1

d2
LSD(m) (2.25)

The log spectral distortion measure correlates reasonably well with the subjective speech
quality [16].

2.3.2 Itakura and Itakura-Saito distance

Even though the Itakura distance is not a real distance measure, since it is not symmetric,
it is widely used as a similarity measure between AR coefficients. The Itakura distance is
heavily influenced by spectral dissimilarity due to mismatch in formant locations, which
is desirable since the auditory system is sensitive to these errors [20]. The idea is to
measure the log of the ratio between the total energy of the residual signal for two set
of AR coefficients. Denoting this energy for αa and αb for two set of AR coefficients
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Figure 2.8: Two envelopes compared, which gave the following three measures;
dLSD = 5.25, dI = 0.64 and dI−S = 0.59.

a = [1, a1, . . . aP]T and b = [1, b1, . . . bP]T the Itakura distance can be calculated as [20, p.
329]:

dI(a,b) = log
αb

αa
= log

bTRb
aTRa

(2.26)

where R is the enlarged autocorrelation matrix with Toeplitz structure:

R =


r(0) · · · r(P)
...

. . .
...

r(P) · · · r(0)

 (2.27)

The AR coefficients a are found from a signal with auto correlation matrix R. b can be a
completely different set of AR coefficients, e.g. from a different frame or an estimate from
a codebook. The Itakura measure will always be non-negative, because αa is the lowest
possible achievable error. If the measure is zero, then the envelopes are identical and the
more it increase, the more they differ.
A slight modification of the Itakura distance results in the Itakura-Saito distance, defined
as [20]:

dI−S(a,b) =
(a − b)TR(a − b)

aTRa
(2.28)

For similar a and b the Itakura and the Itakura-Saito distance are almost equal. Through-
out this report the distances will be reported as RMS values.
Figure 2.8 gives an impression of the three measures between two envelopes. To give a
feeling of the correlation between the measures, figure 2.9 depicts the measures for several
frames along with their RMS values. The measures seem to correlate, but differ also in
some frames. Therefore we expect the measures will supplement each other.
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Chapter 3Bandwidth
Extension
Algorithm

Bandwidth extension can be performed in several ways. Choosing a parametric approach as the
source-filter model reduces the number of different methods. Four of these are discussed and ana-
lyzed, and one is chosen for the realization of the algorithm.

A possible system for bandwidth extension was presented in figure 2.4. This section will
give a more detailed discussion of possible frameworks for the bandwidth extension.
Several ways of implementing a BWE algorithm using the source-filter model have been
proposed in literature [22, 26, 5]. The framework is the system which encloses the
estimators. It should be possible to choose different estimators for the envelope and
excitation signal without modifying the framework. The framework shall be able to
generate an estimate of the wide-band speech, from the available narrowband speech.
The most optimal estimate of the narrowband speech available, is the narrowband speech
itself, therefore the narrowband speech should not be modified.
The above can be summarized into two main concerns when choosing framework:

- Transparency in the narrowband region.

- Replacement of estimators should be flexible.

3.1 Feasible frameworks

Two fundamentally different frameworks will be presented which fulfil the transparency
requirement. The first is similar to the framework presented in the introduction and is
characterized by its mutual inverse analysis and synthesis filter. The second framework
does not have inverse filters. To maintain the narrowband speech the estimated wideband
speech is band-stop filtered and added to the narrowband speech.
A further division of the two fundamental frameworks is done during the description of
the frameworks, such that there are four frameworks, which are:

- Frameworks based on mutual inverse filters

– 1) Estimation of entire wb envelope
– 2) Estimation of extensionband envelope and subband assembly
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Chapter 3 Bandwidth Extension Algorithm

- Frameworks based on LP analysis and addition in time domain

– 3) Estimate wideband envelope
– 4) Estimate extensionband envelope

The advantages and disadvantages for the four different frameworks will be clarified,
which leads to the choice of the framework. The main concern for this comparison is not
computational complexity, but proof of concept.

3.1.1 Mutual inverse filters

This framework makes use of two mutual inverse filters - the analysis and synthesis filters.
Figure 3.1 depicts a block diagram of the system. The narrowband speech signal, sn(k′),
is split into two branches. The purpose of the upper branch is analyze the signal in order
to estimate the AR coefficients for the wideband envelope. Before analysis a Hanning
window is applied to reduce sidelobes [20]. The window has a length which corresponds
to 20 ms, and an overlap of 50% is used. Estimation of the wideband envelope can be
done in several different ways, as discussed in section 1.2. For now we consider it as a
black-box. Two ways of realizing it will be presented after describing the lower branch.

Overlap-add
of excitation

Extension

1/Â(z)Â(z)

Analysis

band envelope

Estimate wide-

Interpolator
20 ms, 50%
Rectangular

20 ms, 50%
Hanning

Synthesis
sn(k′)

ûw(k; m) ŝw(k; m)

ŝw(k)

ÂRw

sn(k; m)sn(k′; m)

s′n(k′; m)

un(k; m)

Figure 3.1: Block diagram of the BWE system. The estimated wideband envelope
is used in both the analysis filter and the inverse synthesis filter. The frames
applied a Hanning window is marked with a prime. Those in the signal path is
left unchanged.

The lower branch is the signal path. Since no transformations are performed in the signal
path a rectangular window is sufficient for dividing the signal into frames. The blocks
which follow the window blocks are all processed on frame basis. The signal path consists
of an interpolator, such that Nyquists sample theorem is kept after the extension. The
discrete indices k′/k correspond to the signal having a sampling frequency of 8 kHz or
16 kHz respectively. This notation is used in the following. The interpolated frames are
passed through the analysis filter, and the excitation signal is obtained. The narrowband
excitation, denoted un(k; m), is extended in the block E  , which
yields ûw(k; m) - the estimated wideband excitation. It is important ûw(k; m) only consists
of the unmodified un(k; m) in the narrowband frequency interval, such that the system
remains transparent in the narrowband region. A modification of the signal will result in
a change of the narrowband speech, which was required to be left unmodified.
The speech is reproduced by driving the synthesis filter with the wideband excitation
signal. Since the analysis and synthesis filters are each others inverse, the narrowband
signal is not modified. Finally the estimated wideband frames ŝw(k; m) can be reassembled
in the overlap-add block, to form the estimated wideband signal ŝw(k).
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3.1 Feasible frameworks

The framework for the estimation of the AR coefficient for the wideband envelope will
be discussed in the following.

Estimation of entire wb envelope

One approach for estimating the wideband envelope is to estimate the entire envelope
over the frequency band from 0 to fs/2. A block diagram for this approach is given in
figure 3.2. First the feature vector xm is extracted for every frame to reduce the complexity
of the estimator. The wideband envelope is afterwards estimated based on some prior
knowledge. It is important to notice that estimation of ÂRw is performed in a single step,
i.e. a nb feature vector maps directly to a wb feature vector.

knowledge

Prior

wb envelope
s′n(k′; m)

xm

Extraction

EstimateFeature

ÂRw

Estimate wideband envelope

Figure 3.2: Block diagram of the framework for estimating the wideband enve-
lope. Based on some prior knowledge, e.g. a codebook, the AR coefficients for
the entire wideband envelope is estimated.

Estimation of extensionband envelope and subband assembly

The procedure in the following is depicted in figure 3.3. From the available narrowband
signal a short term power spectrum can be obtained. An estimated extensionband power
spectrum is approximated from an extensionband envelope. The two spectra are then
assembled to form an estimate of the wideband power spectrum. This wideband power
spectrum can be converted to a set of AR-coefficients ÂRw, representing an wb enve-
lope. As a result of using the narrowband power spectrum the estimated wideband and
narrowband envelope are identical in the narrowband region.
The idea is to find the wideband power spectrum, Φw(ω; m), and then transform it into
the auto correlation function, r(η; m), by using the inverse Fourier transform:

r(η; m) =
1

2π

∫ π

−π
Φw(ω; m) · e ωη dω (3.1)

AR coefficients

Conversion to

power spectrum

Estimate eb

power spectrum

Assembly of wb
ÂRw

Φ̂e(ω; m) Φ̂w(ω; m)

Φn(ω; m)

s′n(k′; m)

Estimate wideband envelope

power spectrum

Calculate nb

Figure 3.3: Block diagram for estimation of the extensionband power spectrum
and subband assembly.
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Chapter 3 Bandwidth Extension Algorithm

Where η is the sample lag. When the auto correlation function is available, the AR
coefficients representing the wideband envelope can be calculated using the Levinson-
Durbin algorithm.
The challenge is to find the wb power spectrum. It can be assembled from several
subbands. If the narrowband speech consist of frequencies between 0 Hz and 3.4 kHz
and an extension between 3.4 kHz and 8 kHz is desired, the estimation of the wideband
power spectrum is done by calculating the nb power spectrum and concatenating it with
the extensionband spectrum.
The power spectrum of s′n(k; m) is calculated as:

Φn(ω; m) = |Sn(ω; m)|2 (3.2)

where Sn(ω; m) is the short-term Fourier transform of s′n(k; m):

Sn(ω; m) =
Nk−1∑
k=0

s′n(k; m)e− ωk (3.3)

is the kth sample in the mth frame. Nk is the number of samples within one frame. It should
be noted that the nb signal s′n(k′; m) is upsampled, thus k′ is replaced by k in 3.3.
From (3.2) the nb power spectrum is obtained. The power spectrum outside this band is
estimated since it is not available. In the following we assume only one extensionband,
unless else is noted. The extensionband is defined to be within the frequency range: ω =
{ωe,l . . . ωe,u}. The subscripts denote Lower and Upper frequencies in the Extensionband
respectively.
The extensionband power spectrum can be approximated with its extensionband enve-
lope and a gain factor [24, eq. 6.1]:

Φ̂e(ω; m) ≈
σ2

e

|Âe(ω; m)|2
(3.4)

|Âe(ω; m)| is the magnitude response of the estimated extensionband envelope. σ2
e is the

power in the extensionband.
For convenience the relative variable σ2

rel is introduced as:

σ2
rel =

σ2
e

Φ̄2
n

(3.5)

Φ̄2
n is the mean value of the power spectrum in the narrowband region. For more details

about the gain factors see section 3.2.1. Equation 3.4 can then be rewritten as:

Φ̂e(ω; m) ≈
σ2

rel · Φ̄
2
n

|Âe(ω; m)|2
(3.6)

The power spectrum for the extensionband can estimated, by estimating an eb envelope
and the relative gain. The eb envelope is represented by AR coefficients. In order to
only model the extensionband, selective linear prediction can be used advantageously.
SLP is explained in details in section 3.2.1. The wideband spectrum is estimated as a
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3.1 Feasible frameworks

concatenation of the power spectra for nb and eb:

Φ̂w(ω; m) =
{
Φ̂e(ω; m) if extensionband (ωe,l ≤ ω ≤ ωe,u) (3.7)

Φn(ω; m) otherwise

The wideband spectrum is obtained and inserted in (3.1) which results in the auto corre-
lation function. The AR coefficients ÂRw is calculated by applying Levinson-Durbin. A
more detailed block diagram for estimating the wideband envelope utilizing this frame-
work, is shown in figure 3.4.

eb envelope

Estimate

Extraction

Feature

knowledge

Prior

power spectrum

Assembly of wb

AR coefficients

Conversion to

spectrum

Power

Conversion to

power spectrum

Interpolate

Φ̂w(ω; m)

s′n(k′; m)

s′n(k; m)

ÂRe

Calculate nb power spectrum

Estimate eb power spectrum

σ
2
relxm

Φn(ω; m)

Φ̂e(ω; m)

ÂRw

Figure 3.4: Block diagram of the framework for estimating the AR coefficients
representing a wideband envelope. The nb and eb power spectra are assembled
to form a wb power spectrum. The Levinson-Durbin algorithm is then applied to
obtain ÂRw.

It has been assumed that there is only one extensionband, but this framework can easily
be extended to contain two or more extension bands. If two extensionbands are present
the extension can be made by modifying (3.7) into:

Φ̂w(ω; m) =


Φ̂e1(ω; m) if extensionband (ωe1,l ≤ ω ≤ ωe1,u) (3.8)

Φ̂e2(ω; m) if extensionband (ωe2,l ≤ ω ≤ ωe2,u)

Φn(ω; m) otherwise

The power spectra for the two extensionband can be approximated by their envelopes
and gain as in (3.6).

3.1.2 LP analysis and addition in time domain

This section describes the other fundamental different method of how to extend a nar-
rowband signal. In this approach, the excitation is obtained by applying LP analysis to
the original narrowband signal, and then using the obtained coefficients in the analysis
filter. The speech can be synthesized again in two different ways. Either by estimating a
wideband envelope or an extensionband envelope. In the following the two methods are
described.

Estimate wideband envelope

The description of this framework is supported by figure 3.5. A set of wb AR coefficients
is estimated from narrowband speech. They represent the estimated wb synthesis filter.
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Chapter 3 Bandwidth Extension Algorithm

The extended excitation is driven through this synthesis filter, which gives a wideband
signal. A gain correction is applied after the synthesis filter. Even though the algorithm
works reasonably well without estimating the gain, Park and Kim have shown that if
gain is estimated, better results are achieved [26]. This signal is then band stop filtered
resulting in a signal ŝe(k) with only contributions outside the narrowband. This signal is
then added to the interpolated signal sn(k) resulting in the extended speech signal ŝw(k).

Interpolator

Overlap-add
Extension of

excitation

20 ms, 50%
Hanning

20 ms, 50%
Rectangular

sn(k′)

ARn ÂRw

Gain

sn(k′; m)

sn(k)

ŝw(k)

ŝe(k)

s′n(k′; m)

correction

Analysis Synthesis

LP

Analysis

Estimate WB

envelope

Band stop

filter

An(z) 1/Âw(z)

un(k′; m) ûw(k; m) ŝw(k; m)

Figure 3.5: Bandwidth extension algorithm.

If only a band limited version of speech is available, say from 300-3400 Hz as in normal
telephony, the band stop filter should be designed such that it attenuates this band. In
this way an estimate of both frequency components below 300 Hz and above 3400 Hz is
obtained.

Estimate extensionband envelope

Another approach is to estimate only a set of extensionband coefficients ÂRe instead of
a set of wideband coefficients ÂRw as in the prior algorithm. The synthesized speech
would then be an estimate of the speech in the extensionband. In this way the band stop
filter could be omitted and the signals could be added directly, giving an estimate of the
wideband speech.
If we wanted to estimate the lower frequencies in the signal (because the signal is band
limited say from 300-3400 Hz), one more branch could simply be added which estimated
a set of lower band coefficients ÂRe1. These coefficients should then be used to obtain a
speech signal, containing the lower frequencies. In fact this approach could be used to
estimate different subbands in the missing frequencies, if that was desired.

3.1.3 Choice of framework

Of the four presented frameworks one framework should be chosen to realize the algo-
rithm. Without having implemented the four frameworks completely it is difficult to
determine the best one based on computational complexity. Therefore we have to base
our choice on other parameters.

Estimation of gain: If the gain between the extensionband and narrowband is estimated
wrong, the effect would be, that too much or too little is added the extensionband.
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3.1 Feasible frameworks

If too much is added, the extensionband will be dominating. On the other hand if
too little is added it will at its worst sound as nb speech. The estimation of gain is
seen as a weakness.

Parallel processing: The estimation of eb envelopes can be carried out in parallel, if there
is more than one extensionband. Parallel should be understood as the subbands can
be estimated independently of each other, e.g. each subband in the power spectrum
can be calculated individually in (3.6). Estimating the entire wideband envelope
without dividing it into subbands makes it impossible to do parallel processing.
The ability to do parallel processing is seen as an advantage.

Subband optimization: Estimating subbands makes it possible to optimize the band-
width extension algorithm individually for each extension band. The ability to
analyze and optimize in a subband without influence from other subbands is a
major strength.

LP derived analysis filter: All the four frameworks include the E  
block. This block extends the excitation signal. In order for this block to have low
complexity, it should have an input signal with certain characteristics. According
to the source-filter model the excitation signal consist of basic signals such as a
pulse train and/or white noise with a certain gain. This knowledge is exploited in
this block, such that the block obtain low complexity. To get a signal with these
characteristics the most optimal excitation signal is obtained by doing a LP analysis
on sn(k; m). If un(k; m) is found using another analysis filter it may result in a
non-spectral flat excitation signal in the extensionband, as assumed in the source-
filter model. This would result in an error being replicated in the extensionband, if
conventional methods to extend the excitation are used. Therefore it is an advantage
if the analysis filter for the framework matches an analysis filter with coefficients
found by linear prediction.

The numbering of the four frameworks are listed here for convenience:

- Frameworks based on mutual inverse filters

– 1) Estimation of entire wb envelope

– 2) Estimation of extensionband envelope and subband assembly

- Frameworks based on LP analysis and addition in time domain

– 3) Estimate wideband envelope

– 4) Estimate extensionband envelope

Table 3.1 gives an overview of the above mentioned parameters for the frameworks.
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Chapter 3 Bandwidth Extension Algorithm

Framework

Parameter 1 2 3 4

No estimation of gain
√

% % %

Subband optimization: %
√

%
√

Parallel processing %
√

%
√

LP derived analysis filter %
√ √ √

Table 3.1: Overview over different parameters for the four frameworks. The
frameworks are numbered in the order they were presented.

√
denotes a strength

and % denotes a weakness.

Only advantage of framework 1 is no gain estimation. The LP derived analysis filter is
seen as a more important parameter, hence framework 1 is discarded. Framework 3 is not
capable of parallel processing and subband optimization. Estimation of subbands instead
of complete wb envelope furthermore reduces the number of coefficients. This is an
advantage during both training and estimation, since the number of features (coefficients)
which are to be estimated is lower. Framework 3 is therefore discarded.
Due to time constrains only one framework is fully implemented. Of the remaining two
frameworks, we choose to base the algorithm on framework 2 (Estimation of extension-
band envelope and subband assembly). This framework seems more elegant from an
implementation point of view.

3.2 Realization of BWE algorithm

In order to implement the chosen framework, a set of AR coefficients has to be estimated
for the extensionband. In the following we describe how selective linear prediction is
applied to efficiently represent an extensionband envelope.

3.2.1 Selective linear prediction

Selective linear prediction is linear prediction conducted on a limited frequency band of
a signal. In our case it is used to model the extensionband from the lower limit ωe,l to the
upper limit ωe,u.
One method for conducting linear prediction on a limited frequency interval could be to
band pass filter the input signal and then do regular LPC. The band pass filter should
have the above mentioned frequencies as cut-off frequencies. This method has one major
weakness; the LPC will try to model the slopes of the band pass filter, which result in
wasted model capabilities.
To avoid this, another method known as Selective Linear Prediction (SLP) is used. The
SLP algorithm is made up from the following four steps [24, p. 148]:

Compute the power spectrum: compute the Fourier transform of the signal and square
its magnitudes:

Φw(ω) = |F {sw(k)}|2 (3.9)
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3.2 Realization of BWE algorithm

Where F { • } is the Fourier Transform. See e.g. the power spectrum in figure 3.7.

Create a translated spectrum: Calculate discrete frequency bins indices l1 and l2 from
respectively ωe,l and ωe,u. Form a translated power spectrum Φt(s) as shown in
figure 3.6 , by letting Φt(s) = Φw(l) where
l = [l1, l1 + 1, . . . , l2, I − l2 + 1, I − l2 + 2, . . . , I − l1 − 1] and s = [0, . . . , 2(l2 − l1) − 1]
Note that (3.9) is implemented as a DFT, with I points - therefore ω is substituted
with the discrete indices s and l. An example of the translated power spectrum can
be seen in figure 3.8 (ωe,l = 0.44, ωe,u = 1 )

Compute the auto correlation sequence: Do a inverse DFT to obtain the auto correlation
function of the translated spectrum.

rt(η) = F −1
{Φt(s)} (3.10)

Compute the SLP model parameters: Based on the auto correlation function calculate
the AR coefficients e.g. by using the Levinson Durbin algorithm. A plot of the
envelope used in the example is given in figure 3.9, (an order of 10 has been used).
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Figure 3.6: The wideband power spectrum (Φw(l)) and the translated spectrum
(Φt(s)). It should be noted that the spectra are double-sided.

3.2.2 Relative gain

The SLP algorithm is used to model an extensionband. The goal in the chosen framework
is to estimate the extensionband envelope and perform subband assembly (described in
section 3.1.1). In order to perform this assembly, it is necessary to have a gain relation
between the available narrowband and the estimated extensionband power spectrum.
This gain is referred to as the relative gain and is a estimated value.
Previous work of Jax [16] has defined a relative gain as:

σ2
rel =

σ2
e

σ2
n

(3.11)
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Figure 3.7: Power spectrum. The envelope found in the extensionband with SLP
is depicted to ease comparison. The gain factors are plotted as well. For this
frame the relative gain factor (σ2

rel) is 2.25 · 10−5 or -46.5 dB.
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Figure 3.8: Translated power spectrum formed from the wideband power spec-
trum in figure 3.7 with the extensionband frequencies: ωe,l = 0.44, ωe,u = 1. It
should be noted that ω′′ denotes change in the frequency range after translation.
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Figure 3.9: Envelope of the SLP. Calculated from the translated spectrum in figure
3.8. The model order was set to 10. Note the envelope is not multiplied by the
gain σ2

e and therefore it is not in the same power interval as figure 3.8.

Where σ2
n and σ2

e were found as the prediction error for SLP performed on narrowband
and extensionband respectively. The prediction error is equal to the gain factor σ2

e in
equation 3.4.
In this work we slightly modify the relative gain. SLP is performed on the extensionband,
the gain factor σ2

e is therefore obtained from the Levinson-Durbin algorithm. The gain
factor for the extensionband is plotted in figure 3.7. It is also seen that multiplying the
extensionband envelope 1/|Ae(ω; m)|2 by the gain factor makes a good approximation for
the power spectrum, which is also indicated by equation 3.4.
The narrowband gain factor in this work is found directly from the available narrowband
power spectrum. This makes it unnecessary to compute the SLP in the narrowband
region, on the contrary to Jax. The narrowband gain factor is simply the mean value of
the power spectrum in the narrowband interval (ωn,l . . . ωn,u):

Φ̄n(m) = E[Φw(ω; m)] = E[Φn(ω; m)] ω ∈ {ωn,l . . . ωn,u} (3.12)

Since the wideband and the narrowband spectrum are equal in the narrowband frequency
interval, Φ̄n(m) can be calculated from both spectra.
The relative gain from (3.11) is modified into:

σ2
rel(m) =

σ2
e (m)
Φ̄n(m)

(3.13)

The narrowband gain factor and the resulting relative gain are depicted in figure 3.7. As
the relative gain and the SLP extensionband envelope can be estimated in the bandwidth
extension algorithm it is possible to form an estimate of the wideband envelope as de-
scribed in section 3.1.1. The SLP parameters represent a frequency translated envelope
(1/Aet(ω

′′; m)). To remove this translation the following mapping is applied to achieve
the non-translated eb envelope and thereby the estimated eb power spectrum:
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Chapter 3 Bandwidth Extension Algorithm

Φe(ω; m) ≈
σ2

rel(m) · Φ̄n(m)

|Aet(π ·
ω−ωe,l
ωe,u−ωe,l

; m)|2
ω ∈ {ωe,l . . . ωe,u} (3.14)

After obtaining this, the extension spectrum can be concatenated with the narrowband
spectrum as given in equation 3.7.

3.2.3 Model order of extensionband

Here we address the problem of choosing the number of coefficients used for modeling the
extensionband (3.4-8 kHz). These coefficients will be integrated in the prior knowledge
block in figure 3.4. It will be an advantage to keep the number of coefficients on a
minimum, such that the prior knowledge is compact. On the other hand the number of
coefficients must not be too few such that the envelope can not be represented properly.
Markel and Gray [24, p.154] have, based on the physics of speech production system
and the velocity of sound, found a relation between the model-order and the sampling
frequency as: P = fs (sampling frequency in kHz.). For voiced sounds it can be necessary
to increase the model-order by 4 or 5 to model the glottal and lip radiation characteristics.
In our case with a sampling frequency of 16 kHz it will lead to an order between 16
and 21 for a wideband signal. Since several of the coefficients are used for modeling the
narrowband, we must expect that the order for the extensionbands is less.
We will investigate the RMS LSD for different model-orders for the extensionband. The
estimated ÂRw is compared by means of RMS LSD to AR-coefficients found from doing
LP-analysis on the wideband signal. The procedure is explained from figure 3.4; the block
E   is bypassed and substituted by a SLP analysis of the wideband
signal. Different model orders of the SLP analysis are investigated. The RMS LSD are
calculated for the test core in the TIMIT database (192 files, 58,269 frames) and yield the
following result:

SLP model-order 7 8 9 10 11 12 13 14 15

RMS LSD [dB] 1.04 0.72 0.36 0.17 0.13 0.11 0.10 0.10 0.09

From the table we see that increasing the model order from eight to nine and from nine
to ten, results in a reduction of approximately 50 percent in RMS LSD. Increasing the
order to more than ten coefficients only results in a minor improvement of the RMS LSD.
Therefore the model-order is chosen to ten. A tenth-order model yields 0.17 dB RMS LSD.
This value can be viewed as an average lower bound for the RMS LSD during estimation,
and can only be achieved if the estimation is completely correct.

3.2.4 Discussion

The model order for the eb has been found to be ten, based on non-estimates. However
a more intensive study of the number of coefficients should be carried out by varying
the number of coefficients which has to be estimated. That is, reducing the feature
vector representing the extensionband used in training. It is likely that it would result
in a better estimate, because fewer coefficients has to be estimated, i.e the degrees of
freedom reduces. A better estimate would result in a lower RMS LSD. This would likely
compensate for the loss introduced by using lower model orders in the SLP.

34



Chapter 4Extension
of Envelope

The framework for the algorithm has been established in the previous chapter. A further investi-
gation of the estimation of envelope is given. We will elaborate on estimation of the extensionband
envelope and the prior knowledge required for the estimation. This corresponds to going into
details about the blocks E   and P  on figure 3.4 on page 27.
Three different methods for the estimation approach are presented. For each method an estimator is
derived. Aside from estimation, the training of these models are discussed and implemented from
a common feature set.

The chosen framework requires a set of narrowband features x for estimating another set
of features y representing the extensionband envelope. This estimate is based on prior
knowledge obtained from training different models. The quality of the estimator, which
yields the estimate, is highly dependent on the training of prior knowledge. Therefore
training and estimation is given the primary focus.
Three methods for generating the primary knowledge are presented and implemented.
The methods will be presented in the order given below:

Codebook: The codebook contains mean values obtained, by clustering the features. The
estimate is then obtained by quantizing the narrowband feature vector and using
the mean value of the cluster.

Gaussian Mixture Model: The GMM is able to model the probability density function
of the data and thereby avoid quantization of the data. The quantization of the
narrowband feature, x, can result in valuable information about the extensionband
being lost. The GMM method therefore achieves better results than the codebook
solution.

Hidden Markov Model: The HMM is able to model hidden information, e.g. how a
speech sequence evolves over time. Therefore it utilizes information about previous
frames to estimate the extensionband. The HMM is the most sophisticated method
of the three methods.

Before the estimation methods are discussed, the general setup for extracting the features
will be presented. The TIMIT database provides wideband speech files, which are used
to train the models. For each frame of these files both a narrowband feature vector x and
a feature vector y describing the extensionband envelope are extracted.
The features which are included in the narrowband vector, are described in section 2.2.1
on page 11. The specific features are the:
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- Auto correlation function: xac f = [xac f (1), xac f (2), . . . , xac f (10)]T

- Zero crossing rate: xzcr

- Gradient index: xgi

- Normalized relative frame energy: xnrp

- Local kurtosis: xk

- Spectral centroid: xsc

The features are concatenated to form the feature vector x =
[xac f

xscl

]
, where xscl is the scalar

features: xscl = [xzcr, xgi, xnrp, xk, xsc]T giving x a dimension of 15.
The AR coefficients which are used to model the eb envelope is found using selective linear
prediction (SLP). This means that only the extensionband from ωe,l to ωe,u is modeled;
resulting in the coefficients ARe and the relative gain σ2

rel. The model order for the AR
model is set to 10 when modeling the extensionband from 3.4-8 kHz (found in section 3.2.3
on page 34).
The AR coefficients could be utilized during training, but since the cepstral coefficients
have better quantization properties and good decorrelation, the AR coefficients are trans-
formed into cepstral coefficients. In the transformation, the gain coefficient α (2.19) is
converted into the cepstral coefficient c(0). To include the relative gain (σ2

rel) from the
SLP analysis it replaces the gain coefficient in the conversion. The conversion results in
the following vector for representing the extensionband: y = [c(0), c(1), . . . , c(10)]T, with a
dimension of 11.
The feature vectors x and y can be extracted for each frame of the available speech to form
several observations, which will be utilized in the training. The procedure for extracting
the features from the TIMIT database is depicted in figure 4.1.
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[
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sw(k)
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σ
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Figure 4.1: Block diagram illustrating features being extracted from the training
data in the TIMIT database.

Wideband speech signals sw are available from the training part of the TIMIT database.
The size of the database including the training part is described in appendix A.1. A
narrowband version sn(k′) of the speech is obtained by applying a lowpass filter and then
subsequently downsample the signal (see e.g. appendix A.2 for particulars).
The narrowband signal sn(k′) goes through the upper part and the wideband signal sw(k)
goes through the lower part on the figure. Both signals are split into frames and a Hanning
window is applied. Features from both signals are then extracted, without preprocessing,
e.g; noise suppression, excluding silence frames and no manual selections. The AR
coefficients are converted into cepstral coefficients. The last block stack the nb and eb
feature vectors, which results in the concatenated feature vector z =

[x
y
]
. The stacking
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4.1 Codebook-based method

makes it possible to describe the joint distribution of x and y, i.e. the distribution of z.
The joint distribution is utilized in the estimation, were the prior knowledge about z is
used to estimate y from x, i.e estimate the extensionband from narrowband. Storing of
the joint distribution is different for the three methods. This also result in the estimation
being performed differently for each of the three methods.
In this thesis the number of extensionbands to be estimated is one. If more than one ex-
tensionband were to be estimated, the number of joint distributions can e.g. be increased,
such that the following are modeled separately as; z1 =

[ x
y1

]
, z2 =

[ x
y2

]
, . . . , zN =

[ x
yN

]
, where

yi denotes the feature vector from the ith extensionband. Another solution is to model z
as:

z =



x

y1
...

yN


Since only one band is estimated (N = 1) z is:

z =

 x

y


Training of the joint distribution z will now be presented for the three methods together
with estimation of y given x.

4.1 Codebook-based method

One of the simplest way to obtain some a priori knowledge about the dependencies
between the narrowband and the wideband envelope would be to utilize a codebook as
the statistical model. In the beginning of the project a codebook approach was chosen
to get some hands on feeling about the estimation problem. The codebook denoted Cz,
is trained using the stacked feature vector z consisting of both narrowband features and
extensionband features. After training has completed, the codebook Cz is obtained. We
now define an entry Cz(i) = [Cx(i) Cy(i)] , where Cx(i) is the part of the entry describing
the narrowband features and Cy(i) describing the extensionband features. By training
using the stacked vector z, an estimate of y can be obtained from x. This can be done
by comparing x and Cx(i) for all i, and minimizing a distortion measure. The i yielding
the lowest distortion, will then be the estimate Cy(i) of the extensionband envelope. In
our implementation the Squared Euclidean distance is chosen as the distortion measure,
due to computational tractability during both training and estimation, e.g. the update of
centroids during training is straight forward and computational fast.

4.1.1 The LBG algorithm

The distribution of the features for the database is unknown. Therefore the training of
the codebook will be based on an unknown distribution. Numerous kinds of vector
quantizers exist, which can solve this problem. Furthermore different approaches to
design the vector quantizers can be taken, e.g. tree structured vector quantizer, supervised
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Figure 4.2: Training procedure for obtaining a codebook Cz, including both nar-
rowband features and extensionband features.

learning, and various distortions measures. The Linde, Buzo and Gray (LGB) is a simple
and well-known procedure and it is therefore chosen to vector quantize the features
zt, t ∈ {1, 2 . . . ,T}. The algorithm consist of these steps [23] [20, p. 72]:

1. Initialization. Chose the following:

- Nc - the number of vectors in the codebook
- M = Nc · β arbitrary training features zt, t ∈ {1, 2....T}. zt is a feature vector for

the tth observation. β is the training ratio [9, p. 191]
- ε ≥ 0 - the distortion threshold.
- Nc initial codewords to form the initial codebook Cl

z(i), i ∈ {1, 2, . . . ,Nc}. Arbi-
trarily chosen from the T training features.

Set iteration number l = 0 and the initial distortion D−1 =∞.

2. Quantization: Quantize each training vector zt using the codebook Cl
z:

i∗ = argmin
i

d(z,Cl
z(i)) (4.1)

3. Distortion: Calculate the average distortion between z and its quantized value, Q(z):

Dl =
1
T

T∑
t=1

d(zt,Q(zt)) (4.2)

4. Check if the distortion have decreased enough. If

Dl−1
−Dl

Dl
≤ ε (4.3)

use Cl
z as the final codebook else continue with 5.

5. Calculate new centroids for the codebook Cl+1
z : For all i calculate the mean of all the

zt quantized into the ith codebook entry.

Cl
z(i) =

1
T

T∑
t=1

zt (4.4)

Increase l to l = l + 1 and go to 2.
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4.1 Codebook-based method

The training ration β has been chosen, such that training is conducted using all training
data to form the joint codebook Cz. The convergence criteria is set by letting ε = 0.0005.
After convergence has been achieved the joint codebookCz is obtained. This is illustrated
in figure 4.2.
A plot of the average distortion during training as a function of iterations, can be seen in
figure 4.3(a). A codebook with a size of 256 clusters has been used in this example. The
distortion measure d which is used during training is squared Euclidean. The average
distortion can then be calculated from (4.2). As can be seen, the average distortion
decreases as expected for each iteration.
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(a) Plot of average distortion as a function of iter-
ations. The distortion can be observed to decrease
steadily during iterations.
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Figure 4.3: Distortion as a function of iterations and histogram for a codebook of
size Nc = 256.

Figure 4.3(b) shows a histogram of the number of vectors going into to each cluster. From
the figure we see that the variation is quite large. Some clusters have a high number
of vectors going into them, whereas others have low numbers. Ideally this distribution
should be uniform.

4.1.2 Initialization

In order to get a good initialization, the clusters should "span" or cover the whole distri-
bution of the training data. If some prior knowledge were available about the distribution
of the training data, the clusters could then be designed to cover the whole distribution.
This is seldom the case, therefore different approaches can be taken in order to initialize
the codebook. A simple method is to choose Nc vectors from the training set randomly.
These vectors then constitute the initial codebook C0

z . Other approaches could e.g. be to
do splitting. In this implementation Nc samples are drawn randomly from the training
data, and used as the initial codebook.

4.1.3 Estimation using nearest neighbor

Estimation is done using nearest neighbor with Euclidean distance. Because only x is
available this is both an estimation and a classification problem. First we need to classify
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Chapter 4 Extension of Envelope

to which cluster Cx(i) x belongs. Then we need to estimate the corresponding y, which
would be Cy(i). An estimator can now be formulated as:

i∗ = argmin
i∈{1...Nc}

d(x,Cx(i)) (4.5)

Equation 4.5 is the classifier. Having the index i∗, the corresponding estimate of y can be
found as:

ŷ = Cy(i∗) (4.6)

Only the i∗ which results in the lowest distortion is used in the estimator. Estimation is
therefore done by hard-decision. A soft-decision estimator could have been derived by
choosing the n nearest i’s and then forming ŷ as a linear combination of the corresponding
mean values, weighted by the relative distortion.

4.1.4 Discussion

In this section it has been shown how a possible implementation of an estimator using a
codebook can be done. The estimator both relies on how well the narrowband features are
classified and how well the extensionband features are estimated from this classification.
In order to achieve this, good separability in x is desired together with a high correlation
between x and y. Because this is a codebook implementation, it only looks at snapshots of
the speech, and not how it evolve over time (a supervector could of course be created in
which more frames are stacked. Most people tends to use other models for this problem,
e.g. HMMs). Because no interframe modeling is done, one could imagine that it would
result in valuable information being lost. Furthermore the result of the quantization could
also result in degraded correlation between x and y.
To see things from an engineering point of view, the clusters and the corresponding
vectors which made up the cluster, have been examined. Figure 4.4 illustrates this small
study. A codebook using all training vectors has been trained (approx. 1.1 million
vectors). Codebook size is Nc = 256. From these training data 4% (45267 vectors) have
been chosen randomly and quantized using the codebook. The envelope representing
the extensionband part y of the training vector z is plotted together with the cluster Cy(i),
which the training vector is quantized to. In this case i = 40, 110. A remark needs to be
given here. As recalled the relative gain is :

σ2
rel =

σ2
e

Φ̄sn

From the estimated features y the extensionband envelope 1/|Ae(z)|2 and σ2
rel can be

obtained. This is plotted in figure 4.4 as:

σ2
rel

|Ae(z)|2

The envelopes used in training are the blue ones and the resulting cluster is the red colored
envelope. If estimation is to be carried out having only the corresponding narrowband
envelope to one of the blue extensionband envelopes in figure 4.4(a), the estimate would
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(a) Envelopes representing extensionband.
Blue envelopes are those used in training. The
red envelope is obtained from codebook entry
Cy(40).
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(b) Envelopes representing extensionband.
Blue envelopes are those used in training. The
red envelope is obtained from codebook entry
Cy(110).

Figure 4.4: Envelopes from clustersCy(40) andCy(110) respectively in a codebook
of size 256. It is observed that the resulting clusters is somehow averaged out and
the extensionband envelopes are not separated properly. It should be noted that
only 4% of all the training vectors have been quantized. The codebook however
has been trained using all data.

therefore be the red envelope. This envelope is then assembled as described in section
3.1.1.
What is observed from figure 4.4 is that the shapes of the envelopes being clustered is
mutually very different. This is not very fortunate. What is desired is clusters made up
from envelopes having almost the same shape. With, of course, some variability. The
less the better. Because all the envelopes contributing to the clusters are so differently in
shape, the "cluster" envelope does not contain the interesting peaks, which we would like
to estimate. Instead it gets averaged out, and in a way only represent the relative gain σ2

rel
for the extension band.

To see if this trend apply for all clusters in the codebook, all the clusters from a single
codebook is plotted in figure 4.5. To make it more comprehensible and foreseeable only a
codebook of size Nc = 32 is plotted. Both training and plots for this figure has been done
in the same way as figure 4.4. It is clearly seen that the shape of the envelopes for some
clusters are very much alike. From the plot it may seem like, when doing the clustering,
the biggest impact on the clustering is the gain. It seems like the envelopes have been
clustered primarily according to relative gain, and afterwards by shape of the envelope.
This would mean that a lot of differently shaped envelopes would go to the same cluster.
When the quantized values of these envelopes are calculated, it shows that the clusters
of the codebook, when converted to envelopes, get averaged out. This indicates low
correlation between narrowband and the extensionband, at least when representing the
envelopes using these features. Since the feature vector z consists of different features, a
better clustering would most likely be obtained if another distance measure was utilized
and/or other features. One obvious solution could be to do a weighting of each of the
elements in the feature vector or e.g. normalize each element such that they would get
unit variance. One other idea could be to use Euclidean distance on the cepstrum part,
i.e y, and some other distance measures on x, and then define a weighting of the two as a
total measure. Instead of using a hard decision in the estimator, a soft decision approach
could be taken as e.g. in [6], where a weighting of the clusters are utilized.

41



Chapter 4 Extension of Envelope

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

−50

−40

−30

−20

−10

0

10

Frequency [Hz]

P
ow

er
 [d

B
]
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Figure 4.5: Clusters of a codebook of size 32.

One general disadvantage of the codebook implementation is that quantization of both x
and y could result in valuable information being lost. Information which could result in
the estimate being more accurate. By representing the features by a GMM, the information
which is lost due to quantization using codebooks, will not occur. This is because a GMM
is capable of doing a continuously modeling of the training data. This has shown to
reduce the estimation error.

4.2 GMM-based method

Compared to the codebook approach the GMM avoids the quantization, because it models
the data continuously. In a previously study a GMM has been utilized to estimate a full
wideband envelope from narrowband features. This method was compared to a similar
codebook approach (mapping from nb to wb) and the former method outperformed the
codebook approach both in objective and subjective tests [26].
It is possible to model the distribution as a histogram of the data, but this would require a
large amount of storage. The GMM is a parametric approach and is capable of modeling
relatively complex distributions with only few parameters. The GMM is able to model
any arbitrary pdf, due to the central limit theorem [10]. The stacked feature vector z is
modeled by a GMM, corresponding to modeling the joint pdf between x and y: f (x,y).
When this pdf is available, y can be estimated, based on the observation of x.
A GMM consists, as the name indicate, of a mixture of Gaussian densities. The density
function for the stacked vector z can be modeled by the mixture of M Gaussian densities
as [2]:

f (z) =
M∑

m=1

cm · g(z|µm,Σm) (4.7)

In order for f (z) to be a probability density function, the following requirements needs to
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4.2 GMM-based method

be fulfilled: ∫
f (z)dz = 1

f (z) ≥ 0,∀ z

This is done by constraining the weighting coefficients cm as:

M∑
m=1

cm = 1, cm ≥ 0,∀ m (4.8)

These coefficients are also known as the mixture coefficient or the mixture gains. Fixing
M = 1 in (4.7) leads to a regular multivariate Gaussian distribution.
g(z|µm,Σm) is the d-dimensional multivariate Gaussian distribution for the mth mixture
component and is defined as:

g(z|µm,Σm) =
1

(2π)
d
2 |Σm|

1
2

exp
(
−

1
2

(z − µm)TΣ−1
m (z − µm)

)
(4.9)

The shape of the mth distribution is determined by the mean vector (µm) and the covariance
matrix (Σm). To shorten the notation, the complete set of parameters for a GMM is defined
as:

Θ = {c1, c2, . . . , cM, θ1, θ2, . . . , θM}

where θm = {µm,Σm}.
The plots in figure 4.6 depict the pdf of five GMMs with various numbers of mixture
components. The pdfs model the distribution of two arbitrary chosen features: the
spectral centroid (xsc) and the first cepstral coefficient c(1). It is seen that increasing the
number of mixture components leads to a better fit with the histogram. The correlation
between the two parameters are limited, but xsc ≈ 0.35 seems to yield a high probability
for c(1) taking a value close to zero. The model with 8 mixture components seems
to model the two peaks from the histogram. The GMM with 32 mixture components
follows the histogram very well. The number of mixture components can be increased,
but this will perhaps lead to an over-fitting of the model. Too few mixture components
will result in the model not being capable of modeling the data properly. The number of
mixture components is therefore a tradeoff between; not being able to model the data, or
over-fitting the model and having unnecessary complexity.
In order to be able to estimate using a GMM as prior knowledge, its parameters need to
be know. No analytic solution exist for finding the parameters of a GMM. Therefore the
parameters have to be estimated.

4.2.1 EM Algorithm

The Expectation-Maximization (EM) algorithm is a widely used method for estimating
parameters of a GMM given a set of observations. That is, it maximizes the probability
of a certain set of observations being generated from a distribution with a given set of
parameters. This is done by adjusting the parameters such that the likelihood for these
parameters is maximized. The EM algorithm performs this estimation iteratively, and for
each iteration it guarantees an increase in likelihood.
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Chapter 4 Extension of Envelope

Figure 4.6: GMM densities for different number of mixture components (2, 4, 8,
16 and 32). The GMMs model the joint distribution between the spectral centroid
xsc and the first cepstral coefficient c(1). A histogram of the data is plotted in the
top left corner. 1 million observations are used for training of the GMMs and for
the histogram. The color corresponds to the density f (xsc, c(1)). The figures are
normalized and warm colors correspond to higher density.

The observed data is denoted as Z = {z1, z2, . . . , zT}. It is assumed that the observations
are independent and identical distributed with the distribution f (z). From these data,
a set of parameters Θ, which maximizes the likelihood, is estimated. The likelihood
function for the observations can be written as [2]:

f (Z|Θ) =
T∏

t=1

f (zt|Θ) = L(Θ|Z) (4.10)

The in-dependency assumption is exploited to divide the likelihood function into a prod-
uct of each individual observation. The objective is to maximize the likelihood by adjust-
ing the parameter Θ, i.e. we would like to solve:

Θ∗ = argmax
Θ

L(Θ|Z) = argmax
Θ

T∏
t=1

f (zt|Θ) = argmax
Θ

T∏
t=1

M∑
m=1

cm · g(zt|µm,Σm) (4.11)

Since g ≥ 0 and cm ≥ the likelihood function will always be non-negative. The logarithm
is a monotonically increasing function and therefore maximizing the log-likelihood is pro-
portional to maximizing likelihood. If the log-likelihood is maximized (4.11) is changed
into:

Θ∗ = argmax
Θ

log [L(Θ|Z)] = argmax
Θ

T∑
t=1

log

 M∑
m=1

cm · g(zt|µm,Σm)

 (4.12)

The problem is divided into two parts; the Expectation and the Maximization steps, which
also gave the algorithm its name.
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4.2 GMM-based method

The expectation step (E-step) is performed by calculating the posterior probability based
on the observationsZ and the multivariate Gaussian distributions [2]:

P(m|zt,Θ
l) =

cl
mg(zt|µl

m,Σ
l
m)

M∑
n=1

cl
ng(zt|µl

n,Σ
l
n)

(4.13)

where P(m|zt,Θl) is the probability that the mth mixture component with parameters Θl

generated the observation zt. The superscript l denotes iteration. An initialization ofΘ is
necessary and will be discussed in the next section. Equation 4.13 is normalized by the sum
of likelihoods for observing zt from all the mixture components, i.e.

∑
m P(m|zt,Θl) = 1.

Summing the log of denominator in (4.13) yields the log-likelihood for the entire set of
observations:

log[L(Θ|Z)] =
T∑

t=1

log

 M∑
m=1

cm · g(zt|µm,Σm)

 (4.14)

The E-step is calculated for all observations and all mixture components. The posterior
probability is utilized during the maximization step. An analytic expression for finding
an update for Θl can be found when the mixture densities are Gaussian distributions.
This results in the maximization step (M-step) which is made up from the following steps
for updating the parameters for each mixture component [2]:

cl+1
m =

1
T

T∑
t=1

P(m|zt,Θ
l) (4.15)

µl+1
m =

T∑
t=1

P(m|zt,Θl)zt

T∑
t=1

P(m|zt,Θl)
(4.16)

Σl+1
m =

T∑
t=1

P(m|zt,Θl)(zt − µl+1
m )(zt − µl+1

m )T

T∑
t=1

P(m|zt,Θl)
(4.17)

Some comments need to given for these equations. Equation 4.15 can be interpreted as
the more the mth mixture component is expected, the more weight should be given to this
component. cl+1

m is normalized with the number of observations, such the constrain on
the sum is kept. Equation 4.16 weights the observations zt with the posterior probability,
so those observations which lead to a high probability for the mth mixture component
are weighted most in the calculation of the mth mean vector. Updating of the covariance
matrix is conducted similar to as for updating the mean vectors. It should be noted that
the updated mean vector µl+1

m is utilized for updating the covariance matrix.
The E-step and M-step are conducted iteratively followed by each other until the algorithm
reaches convergence. A diagram depicting the training is shown in figure 4.7.
Convergence is achieved, when the absolute increase in log-likelihood between two it-
erations is below the threshold ε. The algorithm then stops and the final parameters
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Figure 4.7: Diagram of the training for the GMM approach. The E-step is (4.13).
The M-step is (4.15), (4.16) and (4.17). The equation for updating the covariance
matrix can be replaced by (4.18) if the covariance matrix is diagonal.

Θ obtained. Each iteration makes the log-likelihood increase and it is ensured that the
algorithm converges to a local maximum of the log-likelihood function (4.14) [2].
If low cross-correlation is assumed, the covariance matrix in (4.17) can be written as a
diagonal matrix. By writing it as a diagonal matrix, fewer parameters are required to
be estimated/updated. As a consequence fewer data is also required in order to get a
reliable estimate of the model parameters, because cross correlation is not included as a
parameter. Furthermore a reduction in parameters makes estimation of parameters faster,
concerning both the amount of data which is processed and calculation of equation 4.9.
Even though the cross-covariance (off-diagonal elements) is removed from the covariance
matrixes, it has been noted that the overall mixture model is able to model covariance
between the feature vector elements [32, p. 75]. In order to achieve the same effect for
diagonal matrixes as for full covariance matrixes the number of mixture components
should however be increased. If diagonal covariance matrixes are used, equation 4.17
simplifies to:

Σl+1
m, j =

T∑
t=1

P(m|zt,Θl)(zt, j − µl+1
m, j)(zt, j − µl+1

m, j)
T

T∑
t=1

P(m|zt,Θl)
=

T∑
t=1

P(m|zt,Θl)(zt, j − µ
(l+1)
m, j )2

T∑
t=1

P(m|zt,Θl)
(4.18)

where Σl+1
m, j is the jth diagonal element in the covariance matrix for the mth mixture com-

ponent, zt, j is the jth element/dimension in the tth sample and µm, j is the jth element in
the mean vector for the mth mixture component. All the off-diagonal elements of the
covariance matrix should be set to zero if equation 4.18 is used instead of equation 4.17.

4.2.2 Initialization

The EM-algorithm need to be initialized properly, in order to reach a "good" local or global
maximum. The initialization of the algorithm is chosen to be done by clustering. The
observed data Z = {z1, z2, . . . , zT} is split into m clusters and for each cluster cm,µm and
Σm is calculated.

cm =
Tm

T
(4.19)

Where Tm is the number of samples going into the mth cluster, and T is the total number
of samples. The mean is calculated as follows:
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µm =
1

Tm

Tm∑
t=1

zt,m (4.20)

Where zt,m is all the samples going into the mth cluster. Σm can then be calculated in the
following way:

Σm =
1

Tm

Tm∑
t=1

(zt,m − µm)(zt,m − µm)T (4.21)

In our implementation 20% of the observations have been used for the clustering and
calculating the initial Θ. To increase convergence speed of the EM-algorithm, the EM-
algorithm is run for 2 iterations with this reduced data set. This results in a modified Θ
which is used for another two iterations using the next 20% of the data. This procedure
can be summarized in the following pseudo-code:

1. Calculate initial Θ based on clustering of 20% the observations

2. Run the EM-algorithm for two iterations with 20% the observations.

3. If more data left; Use the updatedΘ and the next 20% in point 2, else return the last
updated Θ and use it for the EM algorithm with all the observations.

The number of iterations is set to two, because the first iterations changes the log-
likelihood most and since it is an initialization the EM algorithm is not required to
converge completely.

4.2.3 Estimation

Two estimators for y are derived - one for mixture models with full covariance matrixes
and one for diagonal. The estimators have been chosen such that they minimizes the mean
squared error. The estimator minimizes the mean squared error between the estimated
extension-band feature ŷ and the real extension band feature y.
The Minimum Mean Squared Error (MMSE) estimator can then be written as:

ŷMMSE = argmin
ŷ

E[(ŷ − y)T(ŷ − y)|x,Θ] (4.22)

x denotes the observation which is observed and ŷ is the parameter which are changed.
The estimator is conditioned on x and the GMM model (Θ). The mean squared error is:

E[(ŷ − y)T(ŷ − y)|x,Θ] = ŷTŷ + E[yTy|x,Θ] − 2E[ŷTy|x,Θ] (4.23)

Differentiating the right part of equation 4.23 with respect to ŷ and setting it equal to zero
in order to find the minimum yields:

2ŷ − 2E[y|x,Θ] = 0⇔ ŷMMSE = E[y|x,Θ] (4.24)

A weighting function for each component m is now introduced as:

P(m|x,Θ) =
cmg(x|µx

m,Σ
xx
m )

M∑
n=1

cng(x|µx
n,Σ

xx
n )

(4.25)
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where g is the Gaussian distribution (4.9). µx
m and Σxx

m are a part of the mean vector and a
part of the covariance matrix for the mth component. These arises from a decomposition
of µz

m and Σz
m:

µz
m =

[
µx

m

µy
m

]
Σz

m =

Σxx
m Σ

xy
m

Σ
yx
m Σ

yy
m

 (4.26)

Equation 4.25 is a expression for how probable it is that the observation x is observed from
the mth mixture component. It is assumed that the mixture components in the GMM are
independent. This information can be used in the estimator (4.24). Since the distribution
of y is modeled as GMM and the individual mixture components are independent we can
write the estimator as a weighted sum:

ŷMMSE =

M∑
m=1

P(m|x,Θ)E[y|x, θm] (4.27)

The E-operator only operates on a single component. The conditional expectation
E[y|x, θm] is equal to [33, p. 51]:

E[y|x, θm] =
[
µy

m + Σ
yx
m (Σxx

m )−1(x − µx
m)

]
(4.28)

Inserting (4.28) in (4.27) leads to the final expression for the estimator:

ŷMMSEF =

M∑
m=1

P(m|x,Θ)
[
µy

m + Σ
yx
m (Σxx

m )−1(x − µx
m)

]
(4.29)

If the covariance matrixΣz
m is diagonal, equation 4.29 is reduced, because no cross-variance

between x and y exist. This result in the reduced equation:

ŷMMSED =

M∑
m=1

P(m|x,Θ)µy
m (4.30)

i.e. a linear combination of the mean vectors for y. If there is no correlation between x
and y (Σyx

m is the all zero matrix) the most optimal, in a mean squared error sense, is to
choose the mean vector as estimator.

4.2.4 Numerical issues

Rabiner [29] has shown that is necessary to limit the parameter estimates during training
of the parameters, to prevent them in becoming to small [29]. It is important to limit the
mixture gains and the coefficients on the diagonal of the covariance matrix to be greater
or equal to some minimum value. The lower limits on the covariance matrix ensures that
the matrix can be inverted and that the determinant is larger than zero. The inversion is
necessary for performing the E-step (4.13). If the mixture gains are not limited it is possible
for the values calculated in the E-step to yield zero for certain mixture gains. This will
cause the updates in the M-step for these mixture components to become unreliable.
Rabiner uses a lower limit of 10−4 for both the mixture gains and the diagonal elements
of the covariance matrix [29]. We will use the same lower limits. The lower limit on the
mixture gains is implemented in the M-step as:
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cl+1
m = max

 1
T

T∑
t=1

P(m|zt,Θ
l), cLL

 (4.31)

In order to keep the constrain on the mixture gains they are normalized after introducing
the lower limit cLL.
The lower limit for the covariance matrix could also be included by flooring, but another
approach is tried out. The lower limit for the diagonal elements of the covariance matrix
is implemented by adding an identity matrix scaled by the lower limit. Thereby it is
achieved, that a difference between the entries, with variances below the lower limit, is
kept. For example if the two lowest entries on the diagonal is 0.5 · 10−4 and 0.7 · 10−4, after
addition these variances will become 1.5 · 10−4 and 1.7 · 10−4, thereby the entries are still
different, on the contrary to flooring.

4.2.5 Discussion

The limiting of the parameters for the covariance matrix was done by adding a scaled
identity matrix. It was argued that this would keep differences between two variances,
which were below the lower limit. This addition also results in, the two variances
becoming more similar and just above the lower limit. For example variances of 1 · 10−4

and 2 · 10−4 become 2 · 10−4 and 3 · 10−4. The method of adding has drawbacks and a
flooring method might have been better.
The convergence criteria for the EM-algorithm was defined to be the absolute change in
log-likelihood. This change should be below the threshold ε for convergence. The criteria
was unfortunately implemented differently. The implemented likelihood was calculated
as:

Limp(Θ|Z) =
T∑

t=1

 M∑
m=1

cm · g(zt|µm,Σm)


This is equation 4.12 for calculating the log-likelihood, but without log applied. It can
be seen that it is a sum over likelihoods for each observation and not a product as it
should have been. Even though this is the likelihood calculated it only influences the
convergence criteria and not the other parts of the EM-algorithm.
This likelihood is used to calculate the convergence criteria, which is implemented as:

Limp(Θl
|Z) − Limp(Θl−1

|Z)

Limp(Θl|Z)
< ε

The algorithm stops when the inequality is true. The numerator is not guaranteed to
increase for each iteration. However the EM-algorithm performed on average 12 iterations
for the trained models with this convergence criteria. Figure 4.8 depicts the result of the
of Limp(Θ|Z) as a function of iterations for the training of the GMM with 64 mixture
components. It is seen that the Limp increases for each iteration. This was the case for all
the conducted trainings except for the one with 256 mixture components. Even though the
convergence criteria is not implemented correctly it is found, in the verification (chapter
6), that the implemented EM-algorithm gives a very reasonable estimate of the pdf for
the underlying data. It is therefore expected, that as long a sufficient amount of iterations
are conducted, the convergence criteria is less critical.
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Figure 4.8: The result of implemented likelihood as a function of iterations. From
the training of the GMM with 64 mixture components.

4.3 HMM-based method

The hidden Markov model is a strong statistical tool used to describe some process, e.g.
real world signals, measurements or some other process producing an observable output.
By applying an HMM to a process, the process can be parameterized. The observations
can now be assumed to come from such a process with a given set of parameters. This is
very useful, as synthetic observations can be generated from this parameterized version of
the process. Furthermore by doing simulations, a better understanding of the underlying
model, can be obtained. The most important thing is that signal models can often be used
to solve complex problems such as recognition, estimation, identification etc. in a very
efficient way.

Channel Degrading

and feature extraction

S1 S3

S2

a13

a31

a22

a33

a32

a23a21

a12

a11

Hidden Markov Model

uw

Excitation signal
x

Speech
Synthesis filter

z

Figure 4.9: Model of speech production utilizing an HMM. Wideband excitation
uw is fed into a synthesis filter. This filter varies over time and changes as defined
by an HMM. The result of the filtering is speech. This speech is transmitted over
a telephone network, degrading it. After transmission only the feature x can be
observed. Only a 3 state ergodic HMM is plotted in this example.

Figure 4.9 shows a state diagram of an HMM. Let us focus on only the HMM part.
In this example there are 3 states denoted S1, S2 and S3. Each of these states have
an associated probability mass (or density) function, which defines the probability of
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4.3 HMM-based method

emitting an observation. This probability is only dependent of the current state. Over
time the system changes from one state to another (or itself) defined by a set of probabilities
associated with the state. That is at time t the system can be in one state and another at
time t + 1. The actual state at time t is denoted qt. It is assumed that the probability of
being in state Si at time t is only dependant of the previous state, that is

P(qt = S j|qt−1 = Si, qt−2 = Sk, . . .) = P(qt = S j|qt−1 = Si) (4.32)

which is the Markov assumption [30]. Furthermore we assume the system to be indepen-
dent of time, which means that the transition probabilities can be written as:

ai j = P(qt = S j|qt−1 = Si) (4.33)

where ai j is the probability of making a transition from state Si to state S j.
Compared to both a codebook and a GMM based approach, the properties of an HMM
can be used to describe a time varying process. Speech production is such a process,
where the position of the organs of the speech production system has a great impact on
the speech being produced. Even though speech changes over time, only small variations
occur from frame to frame. Figure 4.10 shows how the envelope derived from an LPC
changes over time. Because a frame based approach is taken where we assume that

Figure 4.10: Spectral plot of how envelopes changes over time. In this figure
the speech is divided into frames of 20 ms using 50% overlap. It can be seen
how these envelopes changes gradually over time. This is the process which is
modeled using an HMM

speech is stationary within intervals of 20 ms, this change is only gradually between
frames. By exploiting this knowledge, speech production can be conceived as coming
from a process described by an HMM. By decomposing the speech by the source-filter
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Chapter 4 Extension of Envelope

model it can be represented by an excitation signal and a synthesis filter. Figure 4.9 shows
how an HMM is used to describe the change in envelope of a speech signal over time.
The wideband excitation signal uw is driving a synthesis filter, resulting in wideband
speech being produced. The synthesis filter is modeled by an HMM from which features
describing the envelope/synthesis filter can be observed. What can be observed is z. The
underlying states from which z is generated, with some probability, can however not be
observed. They are said to be hidden. The hidden states S j can e.g. be seen as the physics
from which the observed envelope is generated. As time evolves, the state changes with a
certain probability ai j. That is the probability of entering state S j, given that the previous
state was Si. This change of state results in a change of envelope, used in the speech
production. By introducing these states and their associated probabilities, time is now
being included into the model. The system used to model the change of envelope is fully
ergodic, i.e. it is possible to go to any state from any other state.
Assuming speech can be modeled this way, the only thing we actually observe is the
feature vector x after transmission over the telephone channel. That is, the features
describing characteristics of the narrowband speech signal. An HMM model, described
by the parameter set λ, can be trained using wideband speech, or more exactly; from the
wideband speech, the narrowband feature vector x and the corresponding extensionband
feature vector y are extracted and they will be used during the training of the model. From
the current observation xt and the previous observations xt−1

1 the probability for being in
S j at time t can be calculated for all j. This probability for being in state S j is utilized to
obtain a MMSE estimate of yt. We will use xt2

t1
to denote the sequence of observations from

time t1 to t2, where t2 is greater than t1. If t2 is unspecified, it denotes one observation at
time t1. The same notation is also used for z and y.

4.3.1 Parameters of the HMM

In the previous section the overall idea to estimate y using an HMM has been presented.
In this section the preliminaries such as parameters and notation will be defined.
In the following this notation is used:

- N: Number of states.

- M: Number of mixture components in each state.

- T: Number of observations.

The complete set of model parameters for an HMM is denoted λ and it consist of:

λ = {π,A,Θ} (4.34)

A state transition probability matrix A is now defined as:

A =



a11 . . . . . . a1N
...

. . .
...

...
... . . . ai j

...

aN1 . . . . . . aNN


(4.35)

where ai j is the state transition probability defined in (4.33). π = [π1 . . . πN]T is a vector
denoting the initial state distribution, i.e. π j = P(q1 = S j).
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4.3 HMM-based method

The distribution of observations from each state is modeled as a GMM. Θ denotes the
parameters for the components of these GMMs, and they are organized as:

Θ =



Θ11 . . . . . . Θ1M
...

. . .
...

...
... . . . Θ jm

...

ΘN1 . . . . . . ΘNM


(4.36)

where Θ jm is the parameters for component m and state S j:

Θ jm = {c jm,µ jm,Σ jm} (4.37)

4.3.2 Baum-Welch Algorithm

No analytical expressions exists for finding the set of parameters λ of an HMM, such that
the available observations denoted Z = {z1z2 . . . zT}, "fit" the model the best. Therefore
these parameters need to be estimated. That is, the problem we want to solve to maximize
the likelihood for the parameter set:

λ = argmax
λ

[L(λ|Z)] (4.38)

This can be done by training the model usingZ. To solve this problem, the Baum-Welch
algorithm, also known as the forward-backward algorithm, can be utilized [10]. This
algorithm is an extension of the EM-algorithm, and it also insure an increase in likelihood
for each iteration. The procedure for estimating the parameters of an HMM using the
Baum-Welch algorithm is shown in figure 4.11.
In the following each of the boxes will be described in a section corresponding to the
title of the box in figure 4.11. First step is to initialize the algorithm by the initial state
distribution π, the transition probabilities A and the GMM parametersΘ used to calculate
emission likelihoods. This can e.g. be done by clustering. Iteration is continued until
convergence is achieved.

Emission Likelihoods

The first part of the E-step is to calculate the likelihood that the observation zt was
generated by the mth mixture component in the jth state. Recalling section 4.2, this can be
written as:

b jm(zt|Θ jm) = c jmg(zt|µ jm,Σ jm) (4.39)

Where c jm is the mixture coefficient for the mth mixture component in the jth state and g(·)
is a Gaussian distribution. µ jm is the mean value of the mth component in the jth state
and Σ jm is the covariance matrix for the mth component in the jth state. Equation 4.39
is calculated for all T observations. For each t, N ×M values are obtained. If it were
to be stored it could be done using a three-dimensional matrix. By summing over m,
the likelihood that observation zt was generated in the jth state is obtained. This can be
calculated by equation 4.40:
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λ
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γt(i) and γt( j,m)
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Convergence
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Iterate
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Calculate αt( j) and βt( j)
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M-Step
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Calculate b jm(Z|Θ) and b j(Z|Θ)

Figure 4.11: Flowchart of the Baum-Welch algorithm.
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4.3 HMM-based method

b j(zt|Θ) =
M∑

m=1

b jm(zt|Θ jm) =
M∑

m=1

c jmg(zt,µ jm,Σ jm), 1 ≤ j ≤ N (4.40)

Having the emission likelihoods for each state, both the expected times the HMM was in
state Si and that it made a transition to state S j is now calculated. This can be done by
calculating the likelihood thatZ is observed/generated given the model λ. A brute force
approach can be taken, by finding every possible sequence, i.e for each sequence calculate
the likelihood that the observationZwas generated by this particular sequence. Sum all
of these possible sequences to obtain p(Z|λ). This however can be very computationally
intractable, therefore another approach utilizing the Markov assumption is taken [30].
This procedure is called the forward-backward procedure.

Forward -Backward Procedure

One variable is defined as the forward variable:

αt(i) = p(zt
1, qt = Si|λ) (4.41)

That is the likelihood of the partial observation zt
1 being generated and being in state Si

at time t. Letting t = T and sum alpha for all states will give the likelihood, i.e:

N∑
i=1

αT(i) =
N∑

i=1

p(zT
1 , qT = Si|λ) = p(Z|λ) (4.42)

The forward variable αt(i) can be calculated inductively as shown in figure 4.12.

aN1

aN2

a2N

aN3

β4(N)

5 T4

b2(z3)

aN2

t =

α2(1)

S1

S2

SN

z3

a12

SN

S1

S2

α2(N)

S1

S2

SN

α2(2)

a22

1 2 3

SN

S2

S1

α3(2)

SN

S2

S1 S1

S2

SN

Figure 4.12: Forward-backward procedure. The left part of the figure is showing
how to calculate the likelihood of the partial observation zt

1 and being in state Si

at time t given the model λ. This is the forward procedure. The right part of the
figure shows how to calculate the likelihood of the "last" part of the observation
sequence zT

t+1 given the state Si at time t and the model λ.

Let us say we wanted to calculate the likelihood p(z3
1, q3 = S2|λ), i.e. that the HMM was

in state S2 at time t = 3 and generated the partial observation z3
1 given the model λ. This

can be found by calculating α3(2). Because of the Markov assumption, α2( j) is available
for all j. Calculating the term α2(1)a12 + α2(2)a22 . . . α2(N)aN2 and multiply the likelihood
that, state S2 emitted z3, gives α3(2). A general formula can be derived as:

55



Chapter 4 Extension of Envelope

αt+1( j) =

 N∑
i=1

αt(i)ai j

 b j(zt+1), 1 ≤ t ≤ T − 1 (4.43)

As can be seen the procedure has to be initialized. This is done by multiplying the initial
state probability for each state by the likelihood that state Si emitted the first observation
z1. That is:

α1(i) = πibi(z1), (4.44)

In the same way a backward variable βt(i) = p(zT
t+1|qt = Si, λ) is defined. Here it is the

likelihood of the "last" part of the observation sequence from t + 1 to T given the state
Si at time t and the model λ. Only the transition probability and not the observation
likelihood is used in this calculation for time t, therefore state Si is given compared to
calculation of αt( j). Calculation of β4(N) is similar to calculation of the forward variable.
This calculation can also be explained by figure 4.12 and is calculated as:

β4(N) = aN1b1(z5)β5(1) + aN2b2(z5)β5(2) + . . . + aNNbN(z5)β5(N)

Hence the general formula for calculating βt(i) can be derived as follows:

βt(i) =
N∑

j=1

ai jb j(zt+1)βt+1( j), t = T − 1, . . . , 1 (4.45)

Initialization is a bit different to αt( j). It is defined as follows:

βT(i) = 1 (4.46)

The initialization has been defined arbitrarily by [30, p.263]. As no observation, and no
other knowledge is available this value seems reasonable.

Expected States and Components

The forward and backward variables αt(i) and βt+1( j) can now be used to calculate the
probability ξt(i, j) of being in state Si at time t and state S j at time t + 1, given the model
λ and the complete observation sequence Z. If we turn to the definitions and figure
4.12, intuitively this probability can be calculated from αt(i) and βt+1( j), the transition
probability from state Si to S j (ai j) and the emission likelihood for zt+1. Suppose we want
to calculate ξ3(2,N). This is done by multiplying α3(2), β4(N), the transition probability
a2N and the likelihood that state SN generated observation z4. This is divided by the total
likelihood of the model λ, which can be calculated from αt(i) and βt+1( j). Formulating it
in a general way we get:

ξt(i, j) =
αt(i)ai jb j(zt+1)βt+1( j)

p(Z|λ)

=
αt(i)ai jb j(zt+1)βt+1( j)

N∑
i=1

N∑
j=1
αt(i)ai jb j(zt+1)βt+1( j)

(4.47)
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If we sum ξt(i, j) over t, we get a quantity which can be interpreted as the expected number
of times state S j was visited from state Si, i.e the number of transitions from Si. This is
calculated as:

T−1∑
t=1

ξt(i, j) = expected number of transitions from Si to S j (4.48)

This is used when updating the transition probabilities ai j. To be able to do this update,
the number of total transitions from state Si is also required. For this purpose γt(i) is
defined as:

γt(i) =
N∑

j=1

ξt(i, j) (4.49)

Inserting (4.47) into (4.49) yields:

γt(i) =

N∑
j=1
αt(i)ai jb j(zt+1)βt+1( j)

N∑
i=1

N∑
j=1
αt(i)ai jb j(zt+1)βt+1( j)

=

αt(i)
N∑

j=1
ai jb j(zt+1)βt+1( j)

N∑
i=1
αt(i)

N∑
j=1

ai jb j(zt+1)βt+1( j)
(4.50)

Recalling the definition of βt+1( j) we can rewrite as:

γt(i) =
αt(i)βt(i)

N∑
j=1
αt( j)βt( j)

(4.51)

Which can be seen as the probability of being in state Si at time t. Now if we sum over
t as in equation 4.52, a quantity yielding the number of expected transitions from Si is
obtained.

T∑
t=1

γt(i) = expected number of transitions from Si (4.52)

Last part of the E-step is now to calculate the probability of being in state S j at time t with
the mth mixture component generating zt. To calculate this, equation 4.50 and equation
4.39 can be combined into1:

γt( j,m) = γt( j)
c jmg(zt|µ jm,Σ jm)

M∑
m=1

c jmg(zt|µ jm,Σ jm)
= γt( j)

b jm(zt|Θ)
b j(zt|Θ)

(4.53)

1Here it should be noted a change of notation. j is not the state considered to be going to. It has the same
meaning as i on the left side of equation 4.49. In the case when γt is a "function" of only one variable as in
(4.49) any arbitrary variable denoting state can therefore be used.
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The last term on the right hand side is simply the probability of the tth observation coming
from the mth mixture component in state S j. If only a single mixture component were
present, this term would reduce to 1 and equation 4.53 would simply reduce to γt( j). This
completes the E-step. The parameters can now be maximized using the values obtained
in the E-step.

Transition Update

In the maximization step two jobs are at hand, one is to update the transition probabilities
ai j and the initial state distribution πi, another is to update the parametersΘ of the GMMs
for each state. First ai j are updated. Having the expected number of transitions from Si to
S j, and the expected number of transitions from Si from equation 4.48 and equation 4.49
respectively, the elements of the transition probability matrix can now be calculated as:

ai j =

T−1∑
t=1
ξt(i, j)

T−1∑
t=1
γt(i)

(4.54)

Because the sum goes over t, we get the expected number of transitions from Si to S j.
If this is divided by the expected number of transitions from Si, we get the transition
probabilities of going from state Si to S j.
Remember that γt(i) is the probability of being in state Si at time t. We can simply update
π by letting:

πi = γ1(i) (4.55)

Emission Update

Update of the parameters defining the emission likelihoods is almost similar to those in
section 4.2 for the GMM, except that states now have to be included. First the mixture
weights are updated as:

c jm =

T−1∑
t=1
γt( j,m)

T−1∑
t=1

M∑
m=1

γt( j,m)
(4.56)

Which is the ratio between the expected number of times the system is in state S j utilizing
the mth mixture component and the expected total number of times the system is in state S j.
Updating the mean values µ jm is done by weighting each observation by the probability
of the mth component in state S j generated the observation zt

µ jm =

T−1∑
t=1
γt( j,m)zt

T−1∑
t=1
γt( j,m)

(4.57)

The same explanation can be given for updating Σ jm:
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Σ jm =

T−1∑
t=1
γt( j,m)(zt − µ jm)(zt − µ jm)T

T−1∑
t=1
γt( j,m)

(4.58)

Here it should be noted that the µ jm used is from the previous iteration2.

Termination

Termination can e.g. be done by calculating the ratio of the current likelihood and the
previous likelihood and check if it is below a threshold ε. As we will see in section
4.3.5 scaling of likelihood is necessary and the log-likelihood is introduced instead. The
ratio between likelihoods for two iterations is therefore calculated as a difference in log-
likelihood. This difference is used as a distance measure between different models [30].
We believe that this distance therefore is suitable as the convergence criteria:

1
T

(log[L(λl
|Z)] − log[L(λl−1

|Z)]) < ε (4.59)

This term can be seen as the absolute increase in log-likelihood from iteration l − 1 to l.
A scaling of T is included such that the term is the average increase in log-likelihood per
observation. The scaling only have the affect that ε is different. The threshold ε has been
set to 0.01, which was found to be a suitable value.

4.3.3 Initialization

It was assumed that the set of parameters λwas initialized in the Baum-Welch algorithm.
The initialization is important for the Baum-Welch to end up in a "good" local or global
maximum of the log-likelihood function. A procedure for obtaining good initial estimates
has previous been presented by Rabiner[30], and will be adopted in this thesis.
The method is described by figure 4.13. The first step makes an initial guess of the
transition probabilities, unlike the initial parameters for the Baum-Welch algorithm these
can be chosen randomly for the initialization. In our case as a uniform distribution. The
observations are clustered into N clusters and labeled such that each observation belong
to a cluster. This division of observations can be thought of as dividing observations into
states.
In the block EU the parameters for the mth mixture component in the jth state
is updated by clustering the observations labeled j into M clusters. The observations from
the mth component and jth state are then utilized in the update of the GMM parameters for
this particular mixture component and state. This update is similar to the one conducted
for the GMM initialization in section 4.2.2 - equation 4.19, 4.20 and 4.21.
All the parameters in Θ, now have an initial value, which makes it possible to calculate
the emission likelihoods b j(Z|Θ). From the emission likelihoods, the log-likelihood is
obtained from the forward procedure and the convergence criteria is checked.

2Because of the variables which need to be stored in the algorithm, it requires a considerable amount of
memory for large T. Implementation has been done such that iteration goes over t and the variables are
summed continuously. Therefore we are restricted to use the µ jm. If available, µ jm could advantageously be
used to update Σ jm. This would most probably result in a faster convergence.
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Figure 4.13: Flowchart for the initialization of the parameters for HMM. For the
updating of ai j, (qt == Si) && (qt == S j) yields 1 if a state transition from Si to S j

occurred, otherwise 0.
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4.3 HMM-based method

The most likely state sequence is calculated to update the transition probabilities. The
state sequence can be calculated efficiently using the Viterbi algorithm. The Viterbi
algorithm finds the most optimal state sequence given the observations and model λ.
The Viterbi algorithm is similar to the forward procedure except that it eliminates path-
sequences along its way from the first observation to the last. When it reach the last
observation at time T backtracking is performed, which result in the optimal sequence:
Q = [q1 = Si, q2 = S j, . . . qT = S?]. The obtained state sequence is used to label the
observations with a state label (instead of the clustering procedure). The Viterbi algorithm
is addressed shortly here and the reader is referred to [10, 30] for more information.
The update of the transition probabilities (the last block at the figure) is based on the
sequence of states. That is, ai j is updated as the number of transitions from state Si to
state S j divided by the number of times the state sequence is decoded as Si. The initial
distribution π is set to one for the entry, which corresponds to the first decoded state.
The initializing method iterates until the increase in log-likelihood is below a certain
threshold. The same criteria as in equation 4.59 is used with an ε equal to 0.1.
The method mentioned above is the first part of the initialization. The complete initial-
ization is performed in two steps:

Step 1: The initialization procedure in figure 4.13 is performed with 20% of the available
data.

Step 2: The Baum-Welch algorithm runs for two iterations with the same data as in step
1, then the next 20% and so on, i.e. a similar approach as for the GMM initialization,
described in section 4.2.2.

After ending step 2 the set of parameters λ is obtained and utilized in the Baum-Welch
algorithm with all the available data.

4.3.4 Estimator

The available information for estimation is an HMM model, the current xt and previ-
ous observations xt−1

1 . The HMM model is described by its parameters: λ = {π,A,Θ}.
From this information, an estimate of the extensionband feature yt at time t is obtained.
Estimation is carried out for each frame, i.e. for each t.
The estimator is chosen such that it minimizes the mean squared error between the
estimated extension-band feature ŷt and the real extensionband feature yt. The Minimum
Mean Squared Error (MMSE) estimator can then be written as:

ŷ∗t = argmin
ŷt

E[(ŷt − yt)T(ŷt − yt)|xt
1, λ] (4.60)

The equation is similar to the estimator derived in section 4.2.3 except for the time-index
and the different model parameters. The solution for equation 4.60 is (see section 4.2.3):

ŷ∗t = E[yt|xt
1, λ] (4.61)

This equation can be split into a weighted sum of estimates for each state weighted with
the probability of being in this state at time t, P(qt = S j|xt

1, λ):
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Chapter 4 Extension of Envelope

ŷ∗t =
N∑

j=1

P(qt = S j|xt
1, λ)E[yt|xt, qt = S j, λ] (4.62)

It should be noted that the given data in the expectation is reduced to only the current
observation xt instead of all the previous observations xt

1. This is due to the fact that the
observation probability, for an HMM, only is dependent on the current state.
The Gaussian mixture components within states are independent of each other. Therefore
we can write the expectation term in equation 4.62 as a linear combination of estimates
from each component, weighted by the probability of this mixture component for a given
state, i.e:

ŷ∗t =
N∑

j=1

P(qt = S j|xt
1, λ)

M∑
m=1

P(m|xt,Θ jm, qt = S j) · E[yt|xt, qt = S j,Θ jm] (4.63)

where P(m|xt,Θ jm, qt = S j) is the probability for the mth mixture component. Figure 4.14
is an graphical illustration of the estimator.

E[yt|xt, qt = S1,Θ11]

P(1|xt,Θ11, qt = S1)

Σ

Σ

E[yt|xt, qt = SN,ΘNM]

P(M|xt,ΘNM, qt = SN)

P(qt = S j|x
t
1
, λ)

Σ

P(M|xt,Θ1M, qt = S1)

P(qt = S1|x
t
1
, λ)

E[yt|xt, qt = S1,Θ1M]

Decomposition into states

Component M

Component 1

State N

Decomposition into components

ŷ∗t

State 1

Figure 4.14: Graphical illustration of the MMSE estimator in equation 4.63. The
expectation is calculated for each component in all states and weighted with
the probability of being in this particular state and using this particular mixture
component.

The three terms in (4.63) are now further explained one at the time. The estimator is a
soft-decision estimator, i.e. it weights each expected value of yt for each state and mixture
component.
P(qt = S j|xt

1, λ) is the probability of being in state S j at time t. This probability can be found
by solving the decoding problem for an HMM. The decoding problem can be solved by
using e.g. the forward-backward variables or the Viterbi algorithm. The former method
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4.3 HMM-based method

will result in a probability for each state at each time t. The Viterbi algorithm makes a
hard-decision and yields the most likely state sequence found from backtracking. For the
backtracking to work efficiently it requires observations beyond xt in order to estimate
yt. Since the forward procedure yields a probability for each state, which can be used as
soft-decision, it is chosen.
Equation 4.51 is applied to calculate the probability for each state. The equation is repeated
here for convenience:

γt(i) =
αt(i)βt(i)

N∑
j=1
αt( j)βt( j)

The observations available at time t is xt
1. Therefore the backward variable is βt(i) = 1

for all states, because nothing is known about the next observation xt+1. This future
observation could have been used, but it results in additional delay, before the bandwidth
extended speech signal can be played. Therefore xt+1 is not utilized and the calculation
of γt(i) reduces to:

P(qt = S j|xt
1, λ) = γt(i) =

αt(i)
N∑

j=1
αt( j)

(4.64)

where αt( j) is found from the forward procedure with the observations xt
1 as:

αt( j) =

 N∑
i=1

αt−1(i) · ai j

 b j(xt)

where the initial α1( j) is:

α1( j) = π jb j(x1)

and b j(xt) is the likelihood of observing xt in state S j:

b j(xt) =
M∑

m=1

c jm · g(xt|µx
jm,Σ

xx
jm) (4.65)

The parameters µx
jm and Σxx

jm are defined similar as in (4.26) with addition of the jth state.

The second term in equation 4.63, P(m|xt,Θ jm, qt = S j), is the probability of the mth GMM
mixture component. The weighting is found in equation 4.25.
The last term in (4.63), E[yt|xt, qt = S j,Θ jm], is the expectation of yt given the present
observation, the state, and the parameters for the mth component of the GMM in the jth

state. This term differs depending on the form of the covariance matrix (Σzz
jm). This is also

the case for the GMM approach. From (4.28) and 4.63 we obtain the solution for a full
covariance matrix:

ŷF
t =

N∑
j=1

P(qt = S j|xt
1, λ)

M∑
m=1

P(m|xt,Θ jm, qt = S j)
[
µy

jm + Σ
yx
jm(Σxx

jm)−1(x − µx
jm)

]
(4.66)

The two probabilities which are included are found in (4.64) and (4.25). The index F
denotes full covariance matrix. If the covariance matrix is diagonal (D) it reduces to:
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Chapter 4 Extension of Envelope

ŷD
t =

N∑
j=1

P(qt = S j|xt
1, λ)

M∑
m=1

P(m|xt,Θ jm, qt = S j)µ
y
jm (4.67)

The estimators in (4.66) and (4.67) are used in the block E   in figure 3.4
on page 27.

4.3.5 Parameter flooring and scaling

In order to implement the HMM with success, two practical problems have to be solved.
The first problem is parameter flooring of Σ jm, c jm, A and g(zt|Θ jm). The other problem
concerns the ability to represent the forward and backward variables on a computer. This
problem is addressed first.

Scaling

Equation 4.43 for calculating the forward variable, causes some representational problems.
The values of the transition probabilities ai j are between zero and one. The emission
likelihoods b j takes on values from zero to infinity. The forward variable will therefore be
able to take on values between zero and infinity. The variable is updated using induction
which results inαt(i) either decreasing or increasing exponentially towards zero or infinity
as t increases. The same problem exist for the backward variable βt(i), when t decreases
from T. This decreasing or increasing of α and β makes it difficult to represent them
within the dynamic range of the computer.
To deal with this problem a scaling of α and β is introduced. This idea for scaling is found
in [30, p. 272]. The scaling factor for the forward variable is defined as:

Sct =
1

N∑
i=1
αt(i)

(4.68)

and is used to scale αt to obtain the scaled version α′t, which sums to 1 for each time
instant t:

α′t(i) = Sct · αt(i) (4.69)

The scaling factor Sct is also applied to βt(i). Any scaling could have been chosen, but
applying the same scaling as for alpha makes the scaling cancel out. The scaling is:

β′t(i) = Sct · βt(i) (4.70)

Inserting the scaled values of α and β into the calculation of the probability ξt(i, j) from
equation 4.47 yields:

ξ′t(i, j) =
α′t(i)ai jb j(zt+1)β′t+1( j)

N∑
i=1

N∑
j=1
α′t(i)ai jb j(zt+1)β′t+1( j)

(4.71)

Replacing α′t(i) and β′t+1( j) with the right side of (4.69) and (4.70) we see that the scaling
factors cancel each other out:
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4.3 HMM-based method

ξ′t(i, j) =
αt(i)(

t∏
k=1

Sck)ai jb j(zt+1)βt+1( j)(
T∏

l=t+1
Scl)

N∑
i=1

N∑
j=1
αt(i)(

t∏
k=1

Sck)ai jb j(zt+1)βt+1( j)(
T∏

l=t+1
Scl)
= ξt(i, j) (4.72)

where (
t∏

k=1
Sck) is the total scaling factor applied to αt(i) and (

T∏
l=t+1

Scl) is the total scaling

factor for βt+1. From 4.71 it is seen that the scaling do not influence the values of ξt(i, j),
which means that the rest of the Baum-Welch algorithm can be left unchanged, except for
the likelihood calculation. The calculation of the likelihood is affected from the scaling.
If equation 4.42 is used for calculating the likelihood with the scaled α′ it yields:

p(Z|λ) =
N∑

i=1

α′T(i) = 1 (4.73)

It is seen that the scaling of alpha has to be removed in order to calculate the likelihood.
Instead of calculating the likelihood, it is replaced by the log-likelihood:

log(p(Z|λ)) = log


1

T∏
t=1

Sct

N∑
i=1

α′T(i)

 = log


1

T∏
t=1

Sct

 = −
T∑

t=1

log(Sct) (4.74)

The log-operator is applied, because the product of the scaling factor increase towards
infinity or decrease towards zero depending on the value of α. To represent this product
the log-operator is applied, such that a sum of the log of the scaling factors are obtained
instead of the product. The scaling factor will always be larger than zero, because lower
limits on the emission likelihoods are applied. The lower limits also assures that the
scaling factor can not increase to more than the inverse of the lower limit of b j(z). This
is seen by inserting 4.43 into 4.68 and assuming b j(z) to have the lower limit bLL for all
states:

Scmax =
1

N∑
j=1
αt( j)

=
1

N∑
j=1

[
N∑

i=1
αt(i)ai j

]
bLL

=
1

N∑
i=1
αt(i)

 N∑
j=1

ai j

 bLL

=
1

N∑
i=1
αt(i)bLL

=
1

bLL
(4.75)

Since bLL is chosen to be strictly larger than zero, it is possible to represent log(Sct).

Parameter flooring

The parameter flooring is applied similar for the covariance matrix and the mixture gains
as in the GMM implementation (section 4.2.4).
Additional flooring of A makes the transition from all states to all states possible (ergodic
model). It also helps to give a reliable estimate of the parameters [10]. The flooring is
performed by adding a lower limit (10−4) to all the entries of A.
A lower limit of b j(z) has also shown to improve performance [30]. The lower limit on
b j(z) is implemented by putting a lower limit of 10−20 on g(z).
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Chapter 4 Extension of Envelope

4.3.6 Perceptual Training

A lot of applications which have to do with speech, audio etc, has shown to benefit
from taking the human auditory system into account. This would most probable also
be the case for an application like BWE. Unfortunately no procedure exist which update
the parameters of an HMM using a perceptual measure. An obvious candidate for
incorporating a perceptual measure could therefore be to include it into the feature vector
z.
Recalling the training vector

z =


xac f

xscl

y


where xac f denotes the auto correlation coefficients representing the narrowband. xscl
denotes scalar features of the narrowband and y denotes the cepstral coefficients rep-
resenting the extensionband. A lot of representations can be utilized to represent the
extensionband envelope. One feature which has been used very successfully together
with speech recognizers is the MFCC [4]. As described in section 2.2.2 on page 14, the
MFCC is a perceptual representation which takes the human auditory system into ac-
count. The motivation for choosing the MFCC as feature, is that we would like to group
the envelopes/features we perceive as humans to be "close" to each other. Put in a different
way, the more perceptually close two envelopes are, the more likely we would it to be,
that they come from the same state and same mixture component. It will therefore be
expected that the perceived quality of the estimated speech signal is higher using this
representation during training.
There is however no direct mapping from MFCC’s to AR coefficients. To account for
this missing mapping an alternative training procedure is proposed. The idea is to stack
the training vector in a different way and then use the MFCC as feature during training.
When the training procedure has converged some other features are used to make the
final update of the means µ jm and the covariance matrices Σ jm. The values of the transi-
tion matrix A and the weighting coefficients c jm remain the same as those found during
training of the HMM.

Method 1

In this way, the complete feature vector zcomp is stacked as follows:

zcomp =



xac f

xscl

ym f cc

y


Where ym f cc denotes the mel frequency cepstral coefficients of the extensionband and y
extensionband features from which it is possible to obtain AR coefficients of this band. The
dimension of ym f cc is eight and obtained from a filterbank with nine filters as described
in section 2.2.2. During the first part of the training only
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zperc =


xac f

xscl

ym f cc


is utilized. When the training has converged

z =


xac f

xscl

y


is used to calculate the means and covariance matrices, while keeping the other parameters
of the HMM. This update is achieved by doing one last iteration in the Baum-Welch
algorithm, using z as observation vectors.

Method 2

The complete feature vector used in this method is

zcomp =



xac f

xscl

wm f cc

y


where wm f cc is the MFCC of the whole wideband signal. The dimension of wm f cc is 13
as studies has shown that 13 MFCC is enough to represent a wideband speech signal.
During the first part of the training

zperc =

 xscl

wm f cc


is used. After convergence

z =


xac f

xscl

y


is used in a final iteration to update the means µ jm and covariance matrices Σ jm.
Figure 4.15 shows how an HMM would be trained by rearranging the complete vector
zcomp. First features are extracted to obtain zcomp. Then only the features constituting zperc

is chosen when doing the training. After convergence one last iteration is executed where
µ jm and Σ jm are calculated using z.
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Extract Features

Do HMM training until
convergence

Rearrange Observation

Rearrange Observation

Vectors to get zperc

Vectors to get z

Calculate new µ jm and

Σ jm and save HMM

Figure 4.15: Update µ jm and Σ jm by rearranging the training vector z.

4.4 Discussion

Three different approaches for estimating the extensionband envelope have been pre-
sented. The simplest one taking a codebook approach has been discussed in section 4.1.4.
The issues discussed in the codebook discussion could advantageously have been used
in initialization of both GMM and HMM.
By using a GMM, any distribution can practically be represented provided a high enough
order. Furthermore the GMM estimator is not limited to only estimate mean values.
Estimation using a soft decision, can therefore be exploited by GMMs and significantly
improves estimation. By introducing the HMM, time is included into estimation too.
Informal listening test showed that it was almost impossible to distinguish the estimation
method using GMM from the method using an HMM. A minor study of this carried out
and it confirmed that the envelopes being estimated, is almost identical. The reason for
this could be that a Markov model of order one is used, and the fact that a frame overlap
of 50% is applied. The change in envelope from one frame to another might be to small
to fully utilize the capabilities of the HMM. If a Markov model of order two, together
with frame processing using no overlap, a better result might have been obtained. This
hypothesis is supported by studying the transition matrices of the HMMs obtained from
training. Figure 4.16 shows a plot of a transition matrix from an HMM with 32 states and
8 mixture components.
It is observed that the values are very high on the anti-diagonal of the matrix. This means
that the probability of staying in the same state is very high. This is most probable because
there is not much change from one frame to another. It would therefore be very interesting
to see how a Markov model of order two would do. Furthermore it should be investigated
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Figure 4.16: Transition matrix for an HMM with 32 states and 8 mixture compo-
nents. It can be seen that the probabilities of staying in the same state is quite
large compared to entering another state.

what impact processing using no overlap will have on the estimation. Because of the
lack of ability of an HMM to model state durations [30], an evident improvement of
the implementation would be to include state durations. As it is now the probability
of going to the same state is P(qt = Si, qt+1 = Si, ...) = P(qt = Si) × P(qt+1 = Si) × ...
i.e exponential decreasing. A better model would perhaps be obtained using another
distribution defining state durations. Because of time constraints, the ideas discussed in
this section have unfortunately not been investigated. We still believe that the HMM does
some smoothing in time. Therefore the HMM approach is chosen to extend the speech
evaluated in the formal listening test (section 7.2).
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Chapter 5Extension of
Excitation

This chapter will concern the extension of the excitation signal. This corresponds to E 
 in the block diagram for the BWE in figure 3.1 on page 24. Two methods are presented;
spectral translation and a new observation based approach. Besides the estimation methods, a
bypassing method for obtaining the original wideband excitation is presented. A perceptual com-
parison of the two methods are conducted.

The input signal to the E   block is the narrowband excitation signal,
un(k; m), and the output is an estimate of the wideband excitation, ûw(k; m). An important
property of the block, is the block to be transparent, i.e. no modifications are made in
the narrowband frequency region. Besides this property it should be able to give a good
estimate of the missing excitation signal bands. A good and sufficient estimate would
be an estimate, which results in no perceptual differences between the estimate and the
original wideband. Two different methods for estimation will be presented. The first
method is in literature known as spectral translation and the second method is developed
from observations of the excitation signal.
To evaluate the estimated envelope, which was discussed in the previous chapter, without
influence from possible estimation error in the excitation signal, a bypass method is
included. This method is not a part of the bandwidth extension algorithm, but is useful
for perceptually comparing different methods of the envelope estimation. We will denote
this signal as the original wideband excitation signal.

5.1 Original Wideband Excitation

The original wideband excitation signal is used to evaluate the estimated envelopes. The
original wideband excitation signal is assumed to be the most optimal "estimate" of the
excitation signal. An analysis filter is found from the wideband speech signal and the
excitation signal is obtained from this analysis filter. Figure 5.1 depicts the setup for
obtaining the original wideband excitation signal and utilizing it in the synthesis filter.
The order of the synthesis filter to model the speech production system is discussed in
section 3.2.3 on page 34. The rule of thumb is to set the model order as the sample
frequency i kHz plus some additional poles for modeling the glottal and lip radiation
characteristics. Based on these considerations the model order is set to 18.
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Figure 5.1: Block diagram of the bypassed system for obtaining the original
wideband excitation signal. The gray blocks are bypassed. Compare e.g. with
the non-bypassed block diagram in figure 3.1 on page 24.

5.2 Spectral Translation

Spectral Translation is one method of extending the excitation signal. The technic has
previous been used in bandwidth extension algorithms and is described in literature [22,
p.190]. The idea is to "shift" the spectrum of the narrowband excitation into the upper
part of the spectrum, and then combine the two. This will result in the spectrum of the
excitation being repeated. In the time domain this can be achieved by modulating un(k; m)
by a modulation frequencyΩM, and then subsequently do a highpass filtering. Figure 5.2
depicts the principle of spectral translation.

delay ûw(k; m)un(k; m)

ûe(k; m)

2 cos(ΩM · k)

Figure 5.2: Block diagram for spectral translation. The delay is introduced to
compensate for the delay in the highpass filter.

The modulation frequency and the cut-off frequency must be chosen to get the desired
spectral characteristics. An illustration of spectral translation in the frequency domain
can be seen in figure 5.3 and figure 5.4.
This shows how the modulation frequency is found by introducing un,l and un,u which
are, respectively, the lower and upper cutoff frequency of the bandpass filter making it out
for the telephone channel. In this illustration it is assumed that the narrowband signal is
limited in frequency from un,l = 300 Hz to un,u = 3400 Hz. The estimate for the upper part
of the spectrum of the excitation, is then just a highpass filtered version of the resulting
signal. The spectrum of the extended signal is shown in figure 5.3. (note that only the
upper part is used, that is, the dotted band is filtered out using a highpass filter.)
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Figure 5.3: A narrowband excitation signal un(k; m) being modulated by the
frequency ΩM = un,u − un,l = 3400 − 300 = 3100 Hz. In the frequency domain
this corresponds to folding marked with an ∗. For illustrative reasons only the
positive modulation frequency is plotted.
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Figure 5.4: The resulting spectrum from adding the excitation signal from the
narrowband and the extended signal

The estimate for the wideband excitation is then the sum of the narrowband excitation
signal and the extended excitation signal. The resulting spectrum is shown in figure 5.4.
This method is a good compromise between complexity and performance [19].
One special case of spectral translation is denoted spectral folding. If the modulation
frequency ΩM is chosen to be the Nyquist frequency = π (8 kHz in our case), then a
mirrored version of un(k) would be obtained in the frequency domain mirrored around
the Nyquist frequency. Because of the band limitations on the signals, no filtering would
be required [22]. A consequence of using Spectral Folding would be a gap in the middle
of the spectrum from 3700-4300 Hz. This is due to the band limitations on the signal,
which would create a gap from 3700-4000 Hz and another one from the mirrored version
from 4000-4300 Hz.
By informal listening test we have chosen to use Spectral Translation. Furthermore it can
be argued that speech contains less energy, the higher the frequency. Hence the most
upper part of the spectrum is omitted, instead of omitting frequencies near 3400 Hz as in
Spectral Folding.
For the example in this section it is assumed that the narrowband signal is limited in
frequency from un,l = 300 Hz to un,u = 3400 Hz. In the final implementation only the
upper band is missing, i.e. the signal is limited from un,l = 0 Hz to un,u = 3400 Hz.
Therefore the modulation frequency is chosen as:
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ΩM = un,u − un,l = 3400 − 0 = 3400 Hz (5.1)

The cutoff frequency for the highpass filter is also chosen asΩM. The estimated wideband
excitation signal, ûw(k; m), is then limited from 0 Hz to 6800 Hz.

5.3 Observation based approach

The section will describe a new approach for extending the excitation signal. First the
motivation for a new solution is given, afterwards a method is developed. Finally results
from the new method are presented.

5.3.1 Motivation

The motivation for this approach was found by inspecting the power spectra and spec-
trograms of the wideband excitation signal. The wideband excitation signal is derived
from the output of the analysis filter, with the original wideband signal as input. The
coefficients for the analysis filter are found from a LPC.
Figure 5.5 depicts the spectrogram of the wideband excitation signal. From the spectro-
gram the pitch structure is noticed. Looking at the pitch structure from approximately
frame 17 to 26, where the phone “ae” in basketball is pronounced, we observe it to be
very dominating and easily identified in the lower part of the spectrum. Above 3000 Hz
it seems like the structure is less dominating or not even there. This trend can be found
throughout the whole spectrogram. No dominating structure at all is present above
approximately 5.5 kHz.
Frame 140 and the neighboring frames have a dominating pitch structure up to 5.5 kHz.
Figure 5.6 shows the power spectrum of frame 140. This figure gives a closer look at this
particular frame. The spectrum above 5 kHz does not contain as dominating dips as the
lower part of the spectrum, i.e. the spectrum is more flat above 5 kHz and looks more
like the spectrum of white noise.
Another interesting point is that the dips in the spectrum from 0 Hz to about 1500 Hz is in
general lower than the dips in the middle of the spectrum from 1.5 kHz - 5.5 kHz. Frame
48 to 58 in figure 5.5 show this tendency. Above 1.5 kHz for these frames no green colors
are present like it is the case below 1.5 kHz. It seems like there is a power floor.
Using spectral translation for extending the excitation signal will cause dominating dips
in the power spectrum above 3.4 kHz. Furthermore spectral translation will yield the
pitch structure to be repeated above 5.5 kHz. Another disadvantage with conventional
spectral translation is the lack of spectral components above the double bandwidth of the
signal.

5.3.2 Method

The objective is to produce an excitation signal with the properties that is observed for
the wideband excitation signal, i.e no pitch structure above 5.5 kHz and no replication of
the spectrum below 1500 Hz. Furthermore the new method should cover the spectrum
all the way to 8 kHz.
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Figure 5.5: The speech signal is from the recording: DR2/FPAS0/SX44.WAV. A
woman pronouncing:: “Basketball can be an entertaining sport”. Time plot of
speech signal plotted together with spectrograms of the original wideband and
the estimated excitation respectively. The LPC order used is 18. A Hanning
window is applied before the 2048 points DFT. Some specified frames are labeled,
as they are referred to in the text.
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Figure 5.6: The power spectrum of frame 140 for the wideband excitation signal.

To avoid replicating the pitch structure above 5.5 kHz, as would be the case for con-
ventional spectral translation, a lowpass filter can be applied to the signal. This will on
the other hand still yield big dips in the power spectrum above 3.4 kHz, which is not
observed.
Instead of the lowpass filter an adjustment of the modulation frequency (ΩM) is possible.
The adjustment should result in energy in the translated spectrum up to only 5.5 kHz.
We denote this frequency as ue,max - the maximum frequency in the extensionband. The
new modulation frequency can be found as:

ΩM = ue,max − (un,u − un,l) (5.2)

Inserting un,u = 3.4 kHz, un,l = 0 kHz and ue,max = 5.5 kHz yield a modulation frequency
of: ΩM = 2.1 kHz. The spectral translation is still followed by a highpass filter with a
cutoff frequency of 3.4 kHz, such that the lower part of the spectrum from the translation
is not repeated. That is the spectrum below (un,u − un,l) − ΩM = 1.3 kHz is not used for
producing the final spectrum.
The extended excitation signal contains energy up to 5.5 kHz. In section 5.3.1 it was
noticed that the wideband excitation signal had the same characteristics as white noise
above this frequency. Therefore a noise generator is applied, followed by a highpass filter
with a cutoff frequency of 5.5 kHz.
If too much noise is added it will make the extended signal sound noisy. On the other
hand if too little noise is added it will not give the wanted wideband effect. It is therefore
necessary to be able to control the variance of the noise.
The variance can be calculated from the narrowband excitation signal as:

σ2
un
=

1
Nk

Nk∑
k=1

(un(k) − µ)2 (5.3)
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5.4 Discussion

where Nk is number samples per frame and µ is the mean value.
The noise generator is implemented by drawing samples from a Gaussian distribution
with zero mean and unit variance. The output of the noise generator is scaled by σun .
The result is that the extensionband on average has the same spectral height as the
narrowband. A block diagram of the final method can be seen in figure 5.7.

Calculate σun

Noise
Generator

Translation
Spectral

Φ

f

Φ

f

Φ

f

un

ûw

fc = 5.5 kHzfc = 3.4 kHz

Figure 5.7: The block diagram of the new approach. The brown boxes illustrate
which part of the spectrum the signal contribute to. The narrowband excitation
signal has been upsampled. During this upsampling some aliasing has been
introduced. When filtering the slightly aliased signal through the analysis filter
this aliasing is amplified. In order to avoid overlapping in the extensionband an
additional lowpass filter is included after the analysis filter.

5.3.3 Results

The result is presented as a spectrogram in figure 5.5. There are no gaps in the spectrogram
as was the case for spectral translation. Differences between the original wideband
excitation and the estimated can be seen in figure 5.8.
From this plot it is possible to see that spectra from spectral translation contains wrong
pitch information. This is especially noticed around frame 90. The blue and yellow
horizontal lines indicate that the translated spectrum was not modulated as a multiple of
the pitch. It is also noticed from the constant color in narrowband, that the spectrum in
narrowband is not modified. Another difference is noticed at frame 171. Here the phone
“p” in “sport” is pronounced. An estimation error in the variance results in a vertical line
being visible.

5.4 Discussion

In this section two methods for estimating the excitation signal have been presented. The
former method is known in literature as spectral translation. The second method was
developed from observations of the wideband excitation signal.
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Figure 5.8: Spectrogram of the original excitation subtracted the estimated exci-
tation signal.

The new approach has been compared with spectral translation in an informal listening
test. To avoid errors in the shape of the envelope, the analysis filter was found from an
LP analysis of the original wideband signal. Therefore only errors in the estimation of
the excitation signal contributes to differences between the original wideband and the
estimated signal. The informal listening test consisted of 10 randomly chosen speech files
from the TIMIT test core. The excitation signal was extended using the two methods. The
two versions was compared by the members of the group. In 3 out of 10 files spectral
translation was the best, in 6 out of 10 the observation based method was preferred. For
one file it could not be distinguished which version was the best.
The primary reason that spectral translation was disliked was due to "ringing" effects
being introduced. The effect arises from misaligned harmonics and occurs only during
voiced sounds. Even though the observation based method also contain misaligned pitch
structure these artifacts was not as noticeable as for spectral translation. For two of the
files, the new approach gave a more wideband feeling. This is likely the result of adding
noise in the upper part of the spectrum. This addition on the other hand introduced some
noisy characteristics in the speech signal, which were a bit unpleasant in some utterances.
This noise sound occurred in bursts and sounded a bit like cicadas. For those version
where severe ringing occurred the observation based method was preferred.
It is very individual how these artifacts are perceived by different listeners. Therefore it
is difficult to state that the observation based approach is better than spectral translation.
In spite of these artifacts, the two methods gave a perceptual much better result than the
narrowband speech signal.
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Chapter 6Verification
of Algorithms

The algorithms presented, are both numerical methods which maximizes the log-likelihood function
and the implementation is therefore difficult to verify, because they do not guarantee ending up
in a global maximum of this cost function. Synthetic data is used to verify that the parameters
estimated from the algorithms, comply with the distribution of the synthetic data.

Before the actual training using extracted speech features, the implemented EM and
Baum-Welch algorithms are tested with synthetic data. This is done for a small scale
experiment, such that visual verification is possible. The experiment is conducted to
give a verification of the training procedures for GMMs and HMMs. The verification of
the codebook implementation is not included in this section, because it has already been
verified in section 4.1. The verification is described in two sections starting with GMM.

6.1 Expectation-Maximization

The generation of synthetic data is addressed first. The idea is to use synthetic data in the
EM algorithm to find the parameters for the distribution of these data. The log-likelihood,
the distribution and the parameters for the estimated model and the generating model
are then compared to verify correct implementation.
The synthetic data is generated by drawing samples from a GMM. To be able to inspect
the result visually, the observation vectors are restricted to a dimension of two. The
two-dimensional vector o is drawn as:

o ∼
M∑

m=1

cmg(o|µm,Σm) (6.1)

It is chosen to use three mixture components, i.e. M = 3, to ease comparison. The
parameters for the three components are set as specified in table 6.1. The parameters are
denoted Θg, to indicate that they were used to generate the observations.
This distribution incorporates overlapping densities and cross-covariance within compo-
nent two and three. It is therefore verified that the implemented EM-algorithm (including
initialization) is able to model covariance and position of the individual mixture compo-
nents in a suitable way.
The number of observations are set to T=10,000, i.e.O = {o1,o2, . . . ,o10,000}. Drawing (6.1)
of data is implemented by drawing cm · T samples from each component. The function
randn in Matlab is used to draw independent samples from a multivariate Gaussian dis-
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Chapter 6 Verification of Algorithms

tribution with zero mean and unit variance. The samples are shaped with the covariance
matrix (by using a Cholesky factorization) and added the mean value for this specific mix-
ture component. When the samples are drawn for each component, the actual mean value
and covariance matrix are calculated for this mixture component. These actual values are
used to calculate the log-likelihood for the model: log(L(Θ|O)). This log-likelihood should
be considered as the upper bound for the log-likelihood. A histogram of the generated
data is shown in figure 6.1(a).

(a) Histogram of synthetic data
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(b) Log-likelihood as function of iteration. The red
line is the log-likelihood log(L(Θ|O)). It should be
noted that the first ten iterations are a part of the
initialization.

(c) Pdf of trained GMM with 3 mixture components (d) Pdf of trained GMM with 4 mixture components

Figure 6.1: The result for estimating the parameters for the synthetic data.

The estimation of parameters are carried out for models with three and four mixture
components. Figure 6.1(c) depicts the estimated pdf for a GMM with 3 components. It is
seen that the densities do not follow the shape of the histogram completely. Estimation
of model parameters must have ended up in a local maximum of the log-likelihood
function. Increasing the number of components results in the pdf plotted in figure
6.1(d). This model follows the histogram better than with three mixture components.
The log-likelihood for the generating model, log(L(Θ|O)), is depicted in figure 6.1(b). It is
compared to the log-likelihood for the two estimated models. It is seen from figure 6.1(b)
that the log-likelihood is increasing fr each iteration. The log-likelihood for the model
with 3 mixture components do not reach the log-likelihood of the generating model,
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6.1 Expectation-Maximization

which is also indicated by the plot of the pdf. The model with four components gets
very close to the optimal log-likelihood. It is concluded that it ends up very close to the
global maximum of the log-likelihood function. The estimated parameters are given in
table 6.2 for three components and table 6.3 for four components. The parameters for the
model with three components are difficult to compare to the parameters which generated
the distribution (table 6.1), because the mean value and covariance matrix are different.
But comparing the parameters for the model with 4 components and the generating
parameter shows that these parameters are much alike. The mean and covariance for
the first 3 components are very similar. The fourth mixture component is given a little
mixture weight c4 and the influence it has on the complete distribution is therefore quite
limited.

m 1 2 3

cm 0.4 0.3 0.3

µm

 0

−0.5


 1

0


 −1

0


Σm

 0.5 0

0 0.1


 0.7 −0.75

−0.75 0.85


 0.7 0.75

0.75 0.85


Table 6.1: Parameters for the synthetic data for the GMM verification.

m 1 2 3

cm 0.47 0.24 0.29

µm

 −0.67

−0.50


 −0.08

0.65


 1.2

−0.44


Σm

 0.82 0.21

0.21 0.25


 0.27 0.07

0.07 0.59


 0.48 −0.35

−0.35 0.40


Table 6.2: Estimated parameters for a GMM with 3 components.

m 1 2 3 4

cm 0.39 0.29 0.27 0.06

µm

 0.02

−0.52


 1.05

−0.06


 −1.14

−0.15


 −0.07

0.83


Σm

 0.48 0.01

0.01 0.09


 0.66 −0.71

−0.71 0.81


 0.60 0.65

0.65 0.74


 0.30 0.32

0.32 0.51


Table 6.3: Estimated parameters for a GMM with 4 components.

It is therefore concluded that the implemented EM-algorithm increases the log-likelihood
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Chapter 6 Verification of Algorithms

for each iteration and it seems to fit the distribution well with the histogram of the data.

6.2 Baum-Welch

Verification of the Baum-Welch implementation takes same approach as for the EM algo-
rithm. The idea is to generate synthetic data and then estimate HMM parameters which
generated these data. These estimated parameters are then used to generate a new set of
data. The distribution of the two sets of data are compared. The distance between the
two models is also calculated and should be as low as possible.
The generation of synthetic data is different compared to the GMM, because the data
should be observations from a Markov chain. The data is generated by the following
procedure:

1. Choose the initial state Si from the distribution of π.

2. Draw a sample (o1) from the emission distribution in state Si

3. Chose the next state for time t+1 by drawing a number from the discrete distribution
of going from state Si to S j.

4. Draw a sample (ot+1) from the emission distribution in state S j

5. If t == T; stop else goto 3.

The samples are drawn from a GMM, i.e. similar to the drawing in the verification
of the EM algorithm. The difference compared to the GMM is the drawing of states.
10,000 samples are drawn from an HMM. The number of states is set to three. The
implementation of the EM algorithm is verified in section 6.1, therefore it is sufficient to
use one component per state. The transition matrix and the initial distribution is set to:

Ag =


0.10 0.10 0.80

0.45 0.50 0.05

0.05 0.15 0.80

 πg =


0.33

0.33

0.33

 (6.2)

The parameters for the GMMs are listed in table 6.4. The parameter for generating the
synthetic data is denoted λg. A histogram of the generated distribution is shown in figure
6.2(a).
The results of the estimation of parameters are now described. The Baum-Welch (and
initialization) results in the following parameters for the HMM 1:

Aest =


0.11 0.12 0.77

0.45 0.51 0.04

0.05 0.15 0.80

 πest =


1

0

0

 (6.3)

If the estimated parameters are compared to the generating parameters (6.2) it is seen that
the transition probabilities matrix is quite similar.

1The indexing of the states was different after running the Baum-Welch algorithm, but it has been changed
to ease comparison of the parameters which generated the data.
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6.2 Baum-Welch

The estimated parameters for the GMMs for each state are found in table 6.5. As for the
transition matrix these parameters correspond well to those of the generating model (table
6.4). This result is supported by the histogram of a set of data generated by an HMM with
the estimated parameters. The histogram is shown in figure 6.2(b). The histogram is very
similar to the histogram of the data generated using the parameter λg (figure 6.2(a)).
Figure 6.2(c) depicts the increase in log-likelihood during training. It is seen that it almost
reaches the log-likelihood of the generating model (log(L(λg

|O))).

State 1 2 3

c jm 1 1 1

µ jm

 0

−1.5


 1

0


 −2

0


Σ jm

 0.5 0

0 0.1


 0.7 −0.75

−0.75 0.85


 0.7 0.75

0.75 0.85


Table 6.4: GMM parameters for the synthetic data for the HMM verification. Note
that there are only one Gaussian per state (k=1).

State 1 2 3

c jm 1 1 1

µ jm

 0.00

−1.49


 1.00

0.00


 −1.99

0.01


Σ jm

 0.52 0.00

0.00 0.10


 0.66 −0.71

−0.71 0.81


 0.69 0.74

0.74 0.84


Table 6.5: Estimated GMM parameters for the HMM verification.

The distance between the two models (or actual dissimilarity) can be calculated by this
equation [30]:

Ds(λ1, λ2) =
D(λ1, λ2) +D(λ2, λ1)

2
(6.4)

where D(λ1, λ2) is defined as:

D(λ1, λ2) =
1
T

[log(L(λ1
|O

2)) − log(L(λ2
|O

2))] (6.5)

O
2 is a sequence of observations generated by the model λ2 and O1 is generated by λ1.

The distance measure between λg and λest yields:

Ds(λg, λest) =
D(λg, λest) +D(λest, λg)

2
=
−3.94 · 10−4 + (−6.14 · 10−4)

2
= −5.05 · 10−4

The more negative the distance, the higher dissimilarity. The closer to zero the measure is,
the more alike they are. Ds(λg, λest) of the size 10−4 tell us that the models are very much
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alike. Therefore it is concluded that the implementation of the Baum-Welch algorithm
assures an increase in log-likelihood and that the generating model and the estimated
model is very similar.
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Figure 6.2: The result for estimating the parameters for the synthetic data.
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Chapter 7Evaluation
Before reading this section the reader is encouraged to read section 2.3, as these measures are used
extensively throughout section 7.1. Furthermore the reader is also referred to appendix A for a
description of the files used in this objective test. The reader is also strongly encouraged to study
the figures in appendix B to get a visual impression of how the algorithm perform. These figures
have been positioned in the appendix because of size and not because of minor relevance.

In the previous chapters we have seen how the spectral envelope and excitation is esti-
mated. Synthesizing the speech combining these estimates, an estimate of the wideband
speech is obtained. This chapter focuses on evaluation of the estimated speech signal.
The reader is referred to figure B.2 in appendix B which verifies that the framework do
not introduce any errors in the narrowband region.

7.1 Objective measures on extended speech

As mentioned in section 2.3 an objective measure is convenient to get an idea of how
well the algorithm performs. The measures presented are concerning envelopes. For
both HMM and GMM, the RMS LSD, RMS Itakura and RMS Itakura Saito distance are
calculated. Results from the codebook based approach are deliberately omitted, because
it only achieved an RMS LSD of 5.14 dB and because informal listening test demonstrated
very low performance by this method. Glitches were recognized and the extended speech
sounded a bit "sharp". As described in section 2.3 these measures indicate how "close"
an envelope are to another. In this evaluation the envelopes, which are compared are the
one estimated and the original wideband envelope. All files in TEST_COMPLETE from
the TIMIT database have been used in this test setup. Each file has been extended using
different model-orders for both GMM and HMM. For every frame in each file, all three
measures have been calculated. For every measure a mean value has been calculated, by
adding the values for each frame and then dividing it by the total number of frames, as
e.g. in equation 2.25 on page 19.

7.1.1 GMM

Objective measures from estimating using the GMM based method can be seen in figure
7.1 and 7.2. All distributions in the following are represented using 3 different kinds of
training/estimation.

Full: During training a full covariance matrix is estimated for each mixture (4.17) . The
estimation is performed with the estimator ŷMMSEF (4.29).

Full with diagonal estimation: The same training as the above, but estimation is per-
formed with the diagonal estimator ŷMMSED (4.30). These results are included to
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give a understanding of the differences between using diagonal and full covariance
matrices during training.

Diagonal: During training a diagonal covariance matrix is estimated (4.18) and therefore
a diagonal estimator ŷMMSED is applied.

16 32 64 128 256
4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Number of mixtures

R
M

S
 L

S
D

Full
Full with diagonal estimation
Diagonal

Figure 7.1: Average RMS Log Spectral Distortion plotted as a function of mixture
components in a GMM. The difference between the best performing and worst
performing, using full covariance matrices, can be seen to be very low. Only a
difference of 0.1 dB from a GMM having 16 components to a GMM having 256
components. For GMMs using diagonal covariance matrices it is approx. 0.26 dB.

From figure 7.1 we observe an improvement in LSD by using a GMM with more com-
ponents. For full covariance matrices the 16 component GMM achieves a distortion of
approx. 4.25 dB whereas the GMM having 256 components achieves a distortion of 4.15
dB. The difference between the two however is only 0.1 dB and we would have expected
it to be a bit higher, at least when going from 16 to 256 mixture components. In the case
when using diagonal covariance matrices the difference is approx. 0.26 dB. For GMMs
with 16 and 32 components there is a large difference between the two estimators with
full covariance matrixes. This difference decreases when increasing the number of com-
ponents increases. For 16 components the diagonal estimators perform almost similar
even though the training is conducted differently.
Figure 7.2 shows that there is a reasonable relationship between the LSD and the Itakura
measures. But again the difference from the GMM performing the best and the GMM
performing the worst is very low. The performance in all three measures when using
diagonal matrices is in general low compared to using full diagonal matrices. In all cases
the GMM having 16 components and full covariance matrix actually gives a better result
than a GMM with 256 components having diagonal covariance matrix. For example in
the case of RMS LSD the difference is 0.15 dB. An informal listening test showed that the
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Figure 7.2: Itakura(a) and Itakura-Saito(b) distance calculated for GMMs with
different number of components.

perceived quality of the GMM with 16 components and full covariance matrices, is higher
than the GMM with 256 components and diagonal covariance matrices.

7.1.2 HMM

Because a higher performance was observed using full covariance matrices for the GMM
method, all distributions used in each state of the HMMs are represented using full
covariance matrices. Figures 7.3 and 7.4 depict the RMS LSD, RMS Itakura and RMS
Itakura Saito distance. Figure 7.3 shows the average RMS Log Spectral Distortion as a
function of number of states. Each color denotes the number of components used in each
state. It can be seen that the best result achieved in terms of LSD has been achieved by
using a 4 state HMM with 64 components in each state. The average RMS LSD when
estimating is approximately 4.16 dB. If we turn to the highest value, it is obtained utilizing
a 2 state HMM with 2 mixture components in each state. For this a value of approx. 4.35
dB is achieved. Compared to the best it is only a difference of approx. 0.2 dB. That is the
difference between the best and worst performing model order is very low, and should
not be noticeable at all when listening to it. Informal listening has also shown that it
is almost impossible to distinguish speech files extended by using any of these plotted
model orders. The Itakura and Itakura-Saito measures show the same trend as LSD. The
plots show that increasing the number of states and mixture components results in lower
values of LSD, Itakura-Saito and Itakura up to a certain order. For example for LSD an
increase is seen from 32 states to 64 states with 2 components.
In table 7.1 we compare the ordinary way of stacking z during training with the perceptual
stacking procedure. The table shows that perceptual method 2 results in higher values
in all three measures, which indicate a greater difference between original and estimated
envelope. Whereas the ordinary way and perceptual method 1 are almost identical.
Informal listening tests also showed that both the ordinary way and perceptual method
1 were preferred over perceptual method 2.
It is difficult to distinguish these two methods, both are therefore included in the formal
listening test. Due to time constraints the study carried out in figure 7.3 and figure 7.4,
has not been conducted using both perceptual methods.
To get a more visual feeling of how "close" the original and estimated signal are, we urge
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Figure 7.3: RMS Log Spectral Distortion plotted as a function of states in the
HMM. Different colors denotes different number of components in each state.
The difference between the best performing and worst performing can be seen to
be very low. The HMMs have been trained the ordinary way.
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Figure 7.4: Itakura(a) and Itakura-Saito(b) distance calculated for different sizes of
HMMs. In both figures it might look like the training is saturated for the highest
number of states and components.
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7.2 Listening test

Measure/HMM Ordinary Perceptual method 1 Perceptual method 2

LSD 4.16 dB 4.16 dB 4.64 dB

Itakura distance 0.78 0.76 0.96

Itakura-Saito distance 0.39 0.39 0.44

Table 7.1: Comparison of ordinary way of stacking and perceptual way of stacking
z. All HMMs used in this comparison have 16 states and 8 mixtures components
having full covariance matrices.

the reader to take a look at figure B.1 in appendix B.

7.1.3 Discussion

In this section obtained objective results from doing bandwidth extension have been
presented. Results from estimation utilizing both HMM and GMM have been presented.
Increasing the model order in both cases, does not have the desired effect of minimizing
these measures. An increase in model order lead to a decrease in all measures for the
HMMs up to a certain model order only. It seems like training of the model gets saturated
for the highest orders. One thing could be that there is insufficient training data to train
models of that size using full covariance matrices. Even though the measure decreases,
only a difference of 0.2 dB, when comparing the best and the worst performing HMM can
be presented. For a GMM the number is even smaller, 0.1 dB. This small difference is also
supported by informal listening test, in which it was concluded that it was impossible
to distinguish between speech files being extended using any of the presented models.
Results for both the diagonal and full estimator are presented for the GMM. For 16 mixture
components there is a difference of approx. 0.6 dB in LSD between a model with diagonal
and full covariance matrix. In an informal listening test it was found that fewer artifacts
were introduced and less lisp was introduced for the model with the full covariance matrix
compared to the diagonal. For the GMM two estimators are used to estimate ŷ. Both
estimators were tried and for 16 and 32 components the result indicated that the cross
covariance matrix Σyx

l has great impact on the results. It seems that this impact reduces
when more mixture components are included in the model. The reason for this could
be that for the low number of components, one group of closely spaced observations are
modeled as one mixture component with cross covariance between x and y. When the
number of mixture components are increased several components may model this group
of closely spaced observations and the cross covariance for each component is decreased.
If the cross covariance tends toward zero the two estimators will give the same estimate.
Even though no significant improvement was noticed when increasing the model order,
informal listening tests showed that combining the estimated envelopes with spectral
translation gave a much better sound experience compared to narrowband.

7.2 Listening test

To evaluate the subjective quality of the extended speech files a listening test is conducted.
The test has primarily been designed such that the results it produces, should answer these
three questions:
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- How close are the estimated signal to the wideband in Mean Opinion Score (MOS)
ratings. (Test 1a)

- How important is excitation and envelope respectively when doing estimation.
(Test 1b,1c)

- Is the estimated speech signal better than the narrowband speech signal. (Test 2)

7.2.1 Setup

Eighteen people are going to be conducting the listening test. All of them having normal
hearing capabilities. The evaluation is done using a modified version of the "The Audio
Codec Benchmarking Program" by O. Niamut. See e.g. appendix C for screenshots and
guide handed out to the test persons. Two HMM are used to estimate the wideband
envelope. An HMM having 8 states and 32 components used to estimate the normal way
(standard Baum-Welch training). To estimate using perceptual method 1, one with 16
states and 8 components are used. These two HMMs were the two yielding the lowest
LSD, which were available at the time the test was conducted.
To achieve the before mentioned objective, fifteen different files total are used to create
the samples used in the test. It is assumed that fifteen files is enough to be representative
of the TIMIT database. Test 1a consist of five samples, which are going to be rated. Test
1b consist of ten samples where five of them are the same as those in test 1a. The same
apply to test 1c. In test 2 the same files as in test 1a are compared to the corresponding
narrowband version. The specific files used in each of the tests can be found in appendix
A.
To assure no artifacts or anomalies are present, the speech files are listened to before they
are bandwidth extended. If some files contain artifacts or an unacceptable level of noise,
a new file is drawn randomly until fifteen files are obtained. The files which are used are
chosen randomly from the TIMIT database.

Test 1

The test is divided into two tests. Test 1 is further divided into three subtests, 1a, 1b and
1c, to ease rating for the subjects. These tests have a certain amount of samples which
are to be rated. A sample is a reference speech file together with different processed
versions of this reference. In our case a wideband, and versions utilizing different ways
of estimating the upper band are available. The number of versions which are going to
be rated, varies from two to four per test. The wideband version is the reference and is
given the highest rating. The test subject is therefore not required to rate the reference.
That is, we say that the original wideband is the best in terms of quality. By quality is
meant, what the subject prefers to listen to. The test subject is required to rate each of
the versions according to a degradation MOS score listed by [20]. The range of possible
ratings are shown in table 7.2. It should be noted that the versions of the speech file can
be rated using steps of 0.25.

T 1: J 
This test combines estimation of both the envelope and the excitation signal. The first
two versions are speech files which are synthesized using estimated wideband envelope
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Rating Speech Quality Level of Distortion

5 Excellent Imperceptible

4 Good Just perceptible but not annoying

3 Fair Perceptible and slightly annoying

2 Poor Annoying but not objectionable

1 Unsatisfactory Very annoying and objectionable

Table 7.2: The different possible ratings in the listening test. From [20, p.578]

(normal way). This is combined with estimating excitation by spectral translation and the
observation based approach. The two other files use perceptual training for estimation
of the wideband envelope and same scenario for excitation as the first two files. Table 7.3
shows the versions which are going to be evaluated in test 1a.

Version Envelope Excitation Comments

Reference – – Original wb

Est-ST Standard training Spectral Translation

Est-Obs Standard training Observation based method

Perc-ST Perceptual training Spectral translation

Perc-Obs Perceptual training Observation based method

Table 7.3: Versions used for evaluation in test 1a - Joint Evaluation. Envelope and
Excitation refers to the method used when synthesizing the different versions.

For each of the versions a MOS score is calculated. Because some of the same files are
used in test 1b and 1c, the score obtained here would be comparable with those of test 1b
and test 1c.

T 1: E    This test include a wideband speech signal
and two other signals. One which has been extended using original wb envelope and
spectral translation. The other one also uses original envelope but the observation method
to extend the excitation. Table 7.4 shows how this test is going to be conducted.

Version Envelope Excitation Comments

Reference – – Original wb

Org-ST Original Spectral Translation

Org-Obs Original Observation based method

Table 7.4: Versions used for evaluation of excitation.

This test should show if the observation based method of estimating excitation performs
better than regular spectral translation. Furthermore it should reveal if any unpleasant
artifacts are introduced by extending the excitation using the two methods. This test also
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gives a bound for the possible best which can be achieved, if the envelope was estimated
perfectly. This test is comparable with test 1a and 1c.

T 1: E   
Besides the wideband, this test includes two other files. Both files have been synthesized
using original excitation. The difference is that one of the files has been extended using
"normal" estimation, the other has been extended using Perceptual training. Table 7.5
shows the versions which are going to be evaluated.

Version Envelope Excitation Comments

Reference – – Original wb

Est-Org Standard training Original

Perc-Org Perceptual training Original

Table 7.5: Versions used for evaluation of envelope.

By using original excitation and only estimating the envelope in two different ways, this
test will show which of the two estimation methods produces the perceptually "best"
speech signal. Furthermore it shows the possible best which could be achieved if the
excitation was estimated perfectly.

Test 2

In test 2 the subjects are to decide whether or not he/she prefer the reference over each
of the extended versions in the test. The results from the test subjects are both highly
dependent on both rating-criterion and questions asked. They could e.g. be asked to
rate the versions in terms of the broadband feeling they experience. This question would
definitely bias the test person. The result we would get, is which one sounds the most
broad banded and not which one they like to listen to. This however is not the desired
outcome. Though a more detailed signal is created by the BWE algorithm it may intro-
duce artifacts, such as ringing, metallic sounds etc. Hopefully these artifacts are kept
at a minimum, such that the bandwidth extended versions are preferable compared to
the narrowband speech. Therefore this test should reveal, if this possible degrading has
reduced the overall perceptual quality compared to narrowband speech.

T 2: P 
In this test the subject is to choose whether he/she prefers to listen to either the narrowband
(reference) or the versions. The result from this test should reflect if estimation has been
carried out such that the extended speech file is preferred to narrowband speech in terms
of perceptual quality.
This test shows if the estimated speech signal has a perceived higher quality than the
narrowband speech signal.
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Version Envelope Excitation Comments

Reference – – nb

Est-ST Standard training Spectral Translation

Est-Obs Standard training Observation based method

Perc-ST Perceptual training Spectral translation

Perc-Obs Perceptual training Observation based method

Table 7.6: Versions used in preference test.

7.2.2 Discussion of setup

The optimal setting would of course be as many samples in each setup as possible and as
many test subjects as possible. This is not always possible, therefore a compromise has
to be made. Only five samples have been chosen in test 1a. This has been done to reduce
the total time which it takes to do the test. By using the same five speech files in test 1b
and 1c makes it possible to compare them with test 1a.
Development of the test has been carried out in an iterative way. Different types of
tests/setups have been tried out, by letting people do the test. The test setup has then
been discussed and adjusted properly. In one of the first test setups, narrowband speech
was included in test 1a, 1b and 1c and test 2 was omitted. It was decided that narrowband
speech was removed from the first test, because preliminary test showed that it is difficult
to rate narrowband speech compared to wideband speech. By removing the narrowband
speech version, the subject only has to rate a degraded1 version of same bandwidth,
and not decide how he/she should rate wideband compared to narrowband speech. But
by removing the narrowband, no comparison of the estimated wideband signal and the
narrowband is conducted. In literature a MOS score of approx. 4 corresponds to what we
think of as "telephone-speech". One should therefore think that ratings obtained from test
1 could be compared to the score of "telephone-speech". That is not the case, because in a
wideband test the same scale is used, hence a wideband codec may have a MOS score of
3.9 even though it sounds much better than a narrowband codec with a MOS of 4.1 [27].
Therefore test 2 was included in the setup. By using MOS score in test 1a-c it makes it
possible to compare results from the test with MOS scores for different wideband speech
codecs. In this test it was decided that the subject should not rate the versions compared
to the narrowband, but instead make a preference. This was done in order to make it
easier for the subject, and because the rating of the estimated signal is already covered by
test 1.

Conduction of tests

The tests are conducted in a quiet room. During the test only the test person is in the
room. The speech files are played back on a standard pc using a set of Bayer Dynamics
DT990 headphones. Before the test, a short introduction was read aloud from a piece of
paper. The test person was then told to read the listening test guide in appendix C. The

1It is actually not degraded from wideband, but (hopefully) enhanced compared to narrowband. The test
subject however will perceive it as degraded compared to wideband. This is also what they are told in the
guide (appendix C)
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test person performed a "dummy" test to get familiar with the software. Until the real
test was commenced, the test person was allowed to ask any question he/she might have.
The duration of the test was on average 30 minutes for each person.

7.2.3 Results

Eighteen people have done the test. The results from test 1a, 1b, 1c can be seen in figure
7.5, 7.6, 7.7 and 7.8. Figure 7.5 shows how people have rated each of the versions from
the tests in Test 1a. The x-axis denotes how the version rated, is synthesized in the BWE
algorithm.
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Figure 7.5: Mean Opinion Scores for Test 1a,1b and 1c. The y-axis shows the MOS
score obtained in the test. The x-axis denotes the versions.

Mean and standard deviation is plotted for each of the versions. The asterisk denotes
mean value and the line is the standard deviation. For all versions, the standard deviation
is quite high, meaning that people have rated using both ends of the scale. From 1b and 1c
it is observed, that the mean-values and standard deviation are almost similar. Therefore
no method can be said to be preferred over another. The standard deviation in test 1a is
also observed to be more or less the same for all versions. The mean values, however, are
higher for the versions extended using spectral translation. In the case of both estimation
of envelope and estimation of excitation, spectral translation must be claimed to perform
better than the observation based method.
Figure 7.6 is included, as supplement to figure 7.5. This shows the frequency as a function
of the ratings for each version. This gives a more detailed picture of the distribution
compared to the previous figure. The method utilizing Perceptual envelope and spectral
translation has higher frequencies for higher ratings, which also is indicated on figure 7.5
as a higher mean value. The distribution seems to be bell-shaped.
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Figure 7.6: Distributions for each of the versions in test 1a.
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Figure 7.7: Distributions for each of the versions in test 1b.
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Figure 7.7 and figure 7.8 is plotted the same way as figure 7.6. In both test 1b and 1c
the two versions, i.e the red and blue color bars have almost equal frequency for each
of the ratings. One exception is in test 1b. Only one person rated one version in one
sample, to be very annoying and objectionable, for the method using original envelope
and observation based method.
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Figure 7.8: Distributions for each of the versions in test 1c.

The results from test 2 is presented in figure 7.9. More people prefer to listen to the
versions Est-ST and Perc-ST compared to narrowband speech. Especially the version
Perc-ST getting 74 votes against narrowband only getting 16. The two methods using the
observation based method get less votes than narrowband. That is, most people prefer to
listen to narrowband compared to using these methods.
The significance of the results for test 2 is evaluated using a simple sign test. The objective
is find if the methods Est-ST and Perc-ST are better compared to narrowband. Since we
have a set of matched-paired data the non-parametric sign test is applied. Assuming that
the probability that the extended speech is better than narrowband is p and is equal for
all test pairs (n), the following null and alternative hypotheses can be defined as:

- H0: p ≤ 0.5 "The extended speech is no better than narrowband"

- H1: p > 0.5

The listeners could only choose whether or not they preferred the extended speech over
narrowband. Therefore we can model the number of pairs (M), where extended speech
is preferred as binomial distribution B(n,p). The binomial pdf is depicted in figure 7.10.
The null hypothesis can be rejected if M is greater than the critical point found from the
cumulative binomial distribution function and a level of significance. The critical point
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Figure 7.9: Number of votes given to each version in the preference test.
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in our case with 90 matched pairs is 53 and 56 for a 95% and 99% level of confidence
respectively. From figure 7.9 it is seen that the methods Est-ST and Perc-ST score above
53, hence H0 is rejected with 95% level of confidence. The p-values (p-value = 1-FB(M))
for the sign test are:

Method p-value

Perc-ST 2.19 · 10−10

Est-ST 0.022

The null hypothesis is definitively rejected for Perc-ST and is rejected for Est-ST with
a 0.02 level of significance. Therefore the test shows the extended speech to be statis-
tical significantly better than narrowband speech with a level of confidence of 98% for
estimated (Standard Baum-Welch) and almost 100% for Perc-ST.

7.2.4 PESQ measure

To further evaluate the Bandwidth Extension Algorithm, the same speech files used in the
formal listening test are evaluated using the PESQ measure. PESQ stands for Perceptual
Evaluation of Speech Quality, and is an enhanced perceptual quality measurement for
voice quality in telecommunications. It is a program which take a reference file and
compare it to a degraded version. PESQ was specifically developed to be applicable to
end-to-end voice quality testing under real network conditions, like VoIP, ISDN, GSM
[13].
PESQ as defined by ITU-T P.862 is an originally an objective method for end-to-end
speech quality assessment of narrowband telephone networks and speech codecs [13]. A
wideband extension to ITU-T P.862 has been introduced with ITU-T P.862.2 which is used
to evaluate wideband telephone networks and speech codecs. This is the one utilized in
this test. The comparison between narrowband and the extended version can not directly
be compared as the PESQ-program requires a sampling rate of 16 kHz. The narrowband
speech signal is therefore upsampled before comparison. The narrowband version which
is upsampled is the same version we have available when doing estimation. That is the
lower band from 0-300 Hz is present. Figure 7.11 shows PESQ scores for the same files
and versions as in the listening test.
It should be noted that the reason nb gets different PESQ scores is because different
narrowband files are used in the tests. The first thing which is observed is that the
variance using the PESQ measure is lower than in the formal listening test. In test 1a it is
observed that narrowband gets a slightly better score than any of the estimated methods.
The difference however is not significant. It is a bit surprising that the extended versions
do not get a higher score than narrowband. It could be that the PESQ measure weighs
a serious error in the upper band harder than no spectral components being there at all.
This is only guessing and in order to fully understand the reason, a closer look at the
standard is required. In test 1b, where original envelope is used to synthesize the speech,
a high score is obtained for both methods with a turn of the scale for the observation
based method of creating the wideband excitation. Test 1c shows that no better scores
are achieved when using the PESQ evaluation software. Conclusion is that the extended
speech is as good as narrowband speech and that the spectral envelope is more significant
than excitation, when applying the PESQ measure.
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Figure 7.11: PESQ scores on same files used in listening test. In this plot however
the upsampled nb is also included.

7.2.5 Discussion of results

The combination of estimating the excitation based on the Observation method together
with original envelope, shows at least as good results as using spectral translation. When
estimating the envelope, the performance of this method decreases drastically. We suspect
the decrease in performance is caused by the noise we add in the upper band of the
excitation signal. Because the envelope is not estimated perfectly, the noise is not shaped
properly. This is audible and quite annoying to listen to. If however the extended speech
signal was played back using a set of standard pc-speakers these artifacts reduced to being
inaudible. Using this setup it was almost impossible to distinguish the extended from
the original wideband speech, whereas a clear difference was audible when compared
to narrowband speech. The test has shown that the method using perceptual envelope
and spectral translation is promising in test 1a. Furthermore it shows that people prefer
versions utilizing this method compared to narrowband with a level of confidence very
close to 100%. Therefore bandwidth extension is definitely feasible, and the methods
Org-ST or Perc-ST should be used.
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Chapter 8Summary and
Conclusion

In this thesis we addressed the problem of artificial BandWidth Extension (BWE) of speech.
Bandwidth extension is motivated by the limited frequency range in ordinary telephone
networks. This limitation in bandwidth is due to standards from the old analogue tele-
phone networks. By reducing bandwidth, we simultaneously reduce the quality of the
speech signal. If the receiver is capable of playing wideband signals, quality of the speech
signal could be increased by processing the speech before playback. This is attractive as
the potential quality improvement comes without increasing the bit rate, i.e no extra in-
formation is required to be transmitted over the channel. All along this project, focus has
been to process narrowband speech signals (perform artificial BWE) without increasing
the amount of information sent over the channel and without modifying the transmitting
side. From our point of view, if side information are to be sent, the solution might as well
be to use a true wideband codec. The desire was to develop a feasible solution without
modifying the existing network, and only introducing modifications at the receiver.
It is chosen to use a parametric approach by using the source filter model, and thereby
exploiting characteristics in the speech production system. In this way it is possible to
utilize statistical tools for estimation.
To realize the BWE algorithm, four frameworks were presented, which all were transpar-
ent in the narrowband region. An analysis of these four resulted in a single framework
being chosen to realize the algorithm. The framework has the effect that the narrowband
region of the analysis filter is derived by linear prediction. Furthermore estimation can be
done in subbands, thus fewer features are needed during both estimation and training,
compared to the other frameworks.

Estimation and objective results

Three estimation rules based on a conventional codebook (vector quantization), a Gaus-
sian Mixture Model (GMM) and a Hidden Markov Model (HMM) were developed and
fully implemented in Matlab R©. Estimation using a simple and conventional codebook
indicated that correlation between narrowband and extensionband were limited, when
using the applied feature representation. An informal listening test also shows that esti-
mation using this method was not sufficient. Glitches were recognized and the extended
speech sounded a bit "sharp".
Applying a GMM and using full covariance matrices improved the speech quality con-
siderably. This was supported both by objective measures and informal listening test.
The codebook method achieves a maximum RMS Log Spectral Distortion (LSD) of 5.14
dB, whereas the best GMM (256 mixture components) achieves an RMS LSD of 4.16 dB.
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GMMs with model orders of 16 to 256 components have been trained. The increase in
performance however was not observed to be as high as expected when increasing the
model order. A GMM of 16 components, achieves an RMS LSD value of 4.24 dB compared
to a 256 component achieving 4.16 dB.
When training and estimation are done using diagonal matrices, the best result is achieved
using a GMM of 256 components which achieves an RMS LSD of 4.39 dB. Meaning that the
worst performing GMM with 16 components using full covariance matrices is actually 0.15
dB better than the best performing GMM of 256 components using diagonal covariance
matrices. This shows that using full covariance matrices contributes more to a better
estimate than increasing the order, at least for a model order of 16 or higher.
Implementing the HMM framework, and thereby being able to model frame dependen-
cies, did not increase the quality of estimation as much as expected. The best achieving
HMM was an HMM of 4 states and 64 mixture components. Estimation using this model,
achieves an RMS LSD of 4.15 dB. Compared to the GMM it is an increase of 0.01 dB. An
informal listening test also supported the fact that no audible enhancement was achieved
compared to the GMM. This is most likely a combination of both frame length and overlap
used, when processing the signal into frames.
The BWE algorithm was applied on narrowband speech using an HMM with 16 states
and 8 mixture components as estimator. This showed that for the extensionband, the
variations in the spectral envelope are very small and the formants are not estimated
correctly. On the other hand, no dominating peaks outside the formant frequencies, are
introduced in the upper part of the spectrum either. This would probably introduce
unwanted artifacts.

Listening tests

Despite the fact that the formants were not estimated correctly, informal listening tests
shows that the estimated speech signal provided good audible results. It is observed that
small changes in the objective measures result in large differences in the perceived quality.
In the case of the GMM with 256 components and diagonal covariance matrices versus
the GMM with 16 components and full covariance matrices only a difference of 0.15 dB
RMS LSD is observed. Despite the low difference in distortion, an informal listening test
surprisingly revealed a higher perceived quality for the GMM with full covariance ma-
trices. Informal listenings of the extended signal actually gave an experience of listening
to real wideband. A small weakness is however audible when extending files with a lot
of unvoiced sounds. The algorithm introduces a minor lisp to the speaker, which can
be heard using a pair of high-end headphones. Playback of the extended signal having
small artifacts on a set of pc-speakers reduced these effects to being practically inaudible.
Because the BWE algorithm works on speech signals, playback capabilities equivalent
to ordinary pc-speakers is more likely to be used. When artifacts are non-audible the
extended speech signal sounds much more pleasant than the corresponding narrowband
speech.
These results are furthermore supported in the formal listening test in which the extended
signals are fully estimated using HMM. These signals were ranked alongside extended
signals using both original envelope or original excitation. Some people even rated the
fully estimated speech signal to be as good as the original wideband in some cases. In the
preference test a total of 55 out of 90 votes were given to the estimated speech (standard
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Baum-Welch algorithm) and 35 votes were given to the narrowband signal. It is concluded
that the estimated speech is statistically significantly preferred over narrowband speech at
a confidence level of 98%. A total of 74 out of 90 votes goes to the estimated speech using
the proposed perceptual method and only 16 going to narrowband. For this new method
we conclude that the estimated speech is more preferable compared to narrowband with
a level of confidence of almost 100%

Conclusion

The promising results for the proposed method shows that including properties of the
auditory system into the features used in training, improves the perceived quality of
the extended speech. Artificial Bandwidth Extension, as presented here, is therefore
considered to be an attractive solution to provide wideband speech, in the transition
phase of going from the old telephone networks to real wideband telephony. Even
though the suggested BWE algorithm most likely could be implemented and utilized as
it is now, further research should be carried out to mature the technology completely.

Perspective

To further improve the artificial BWE algorithm and having implementation in mind,
further research could be carried in the following areas:

- Other models could be utilized to model the speech, e.g. sinusoidal modeling.

- Pitch estimation when extending excitation signal

- Incorporate state durations if an HMM is used for estimation

- Increasing the framelength to 30 ms and having no overlap, the advantages of the
HMM could probably be exploited better.

- A more intensive study of which features to utilize in both training and estimation

- Examine the impact of weighting or scaling of the elements of the feature vector.

- Make the algorithm robust towards noise

Bandwidth extension as presented here, has primarily focused on improving narrowband
telephone speech on a wideband capable terminal. Even after a transition phase where
true wideband exists in communication systems, there will be a need for BWE. It can
be incorporated into wideband speech codecs, in order to maintain low bit rates. The
concept of BWE can easily be extended to estimating "super-wideband", i.e. extending
speech signals from e.g. 8 kHz to 16 kHz. Finally historical recordings could be bandwidth
extended in order to obtain a wideband version of the recordings.
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Abbreviations

AR Auto Regressive

A-law Compander used in telephone networks in whole world except
North America and Japan[10, p. 343]

A/D Analog to Digital conversion

BWE Bandwidth Extension

CC Cepstral Coefficients

CELP Code Excited Linear Prediction

DFT Discrete Fourier Transform

D/A Digital to Analog conversion

eb extensionband

EM Expectation-Maximization

GMM Gaussian Mixture Model

GSM Global System for Mobile Communications

HMM Hidden Markov Model

IDFT Inverse Discrete Fourier Transform

ISDN Integrated Services Digital Network

LP Linear Prediction

LPC Linear Prediction Coding

LSD Log Spectral Distortion
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MFCC Mel Frequency Cepstral Coefficients

MMSE Minimum Mean Square Error

MOS Mean Opinion Score

µ-law Compander used in telephone networks in North America and
Japan[10, p. 343]

nb narrowband

pdf Probability density function

PESQ Perceptual Evaluation of Speech Quality

PSTN Public Switched Telephone Network

RMS Root Mean Square

SLP Selective Linear Prediction

TIMIT Speech data base database (See appendix A)

VoIP Voice over IP (Internet Protocol)

VQ Vector Quantizer

wb wideband
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Symbols

The notation (k; m) denotes the kth sample in the mth frame for a given signal, e.g. sn(k; m).
If k is replaced by ω, i.e. (ω; m) it denotes the angular frequency ω for the mth frame, e.g.
Φn(ω; m). Estimates are mark with the symbol ( ˆ ), e.g. Φ̂e which denotes the estimated
extensionband power spectrum.

Symbol Meaning

sw Wideband speech

sn Narrowband speech

un nb excitation signal

uw wb excitation signal

xac f Vector containing the first ten coefficients of the autocorrelation func-
tion.

xzcr Zero crossing rate.

xgi Gradient index.

xnrp Normalized relative frame energy

xk Local kurtosis

xsc Spectral centroid

xscl Feature vector containing scalar features: xscl = [xzcr, xgi, xnrp, xk, xsc]T

x Vector containing features extracted from narrowband speech

y Vector representing the extensionband envelope

z Vector obtained from stacking z =
[x
y
]

ym f cc Vector containing the MFCC for the extensionband

wm f cc Vector containing the MFCC for the wideband

wperc Stacked vector consisting of xscl and wm f cc or xac f , xscl and ym f cc

zcomp The complete feature vector in perceptual training.

A(z) Analysis filter

H(z) Synthesis filter

G(z) Glottal pulse model

Continued on next page
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Chapter 8 Summary and Conclusion

Symbol Meaning

V(z) Vocal tract model

R(z) Radiation model

Φn(ω; m) Power spectrum of a narrowband signal

Φw(ω; m) Power spectrum of a wideband signal

Φe(ω; m) Power spectrum of a extensionband signal

ARw Set of AR coefficients from which a wb envelope can be obtained

ARn Set of AR coefficients from which a nb envelope can be obtained

ARe Set of AR coefficients from which a eb envelope can be obtained

Aw(ω; m) Frequency response of the wb analysis filter.

Ae(ω; m) Frequency response of the eb analysis filter found using SLP.

Aet(ω; m) Frequency response of the translated eb analysis filter found using
SLP.

Nk Number of samples per frame.

d2
LSD Squared Log Spectral Distortion

d̄LSD RMS LSD

d̄LSD RMS LSD

dI Itakura distance

dI−S Itakura-Saito distance

c(n) The nth cepstral coefficient.

an The nth AR coefficient.

fs Sampling frequency.

Ωm Modulation frequency for spectral translation.

ωe,l/ωe,u Lower/upper frequency in extensionband.

ωn,l/ωn,u Lower/upper frequency in narrowband.

σ2
un

Variance of the nb excitation signal

σ2
e Gain factor for the extensionband.

Φ̄2
n Mean value of the power spectrum in the nb interval (nb gain factor).

σ2
rel The ratio between eb and nb gain factor, i.e σ2

ue/Φ̄2
n

r(η; m) The auto correlation function.

ÂRw AR coefficients which are found after assembly.

k Sample index for wideband speech (16 kHz)

Continued on next page
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Symbol Meaning

k′ Sample index for narrowband speech (8 kHz)

T The number of observations extracted from the TIMIT database

Cx Codebook for x

Cy Codebook for y

Cz Codebook for z

M Number of mixture components in a HMM

N Number of states in a HMM

π Initial state distribution

A State transition matrix

ai j State transition probability

Θ Set of parameters defining a GMM

λ Set of parameters defining a HMM consist of; π, A, Θ

c jm Gain for the mth component in the jth state

µ jm Mean vector for the mth component in the jth state

Σ jm Covariance matrix the mth component in the jth state

p(·) Likelihood

P(·) Probability

L(·) Likelihood function

zt The tth observation

S j State j

αt( j) Forward-variable

βt( j) Backward-variable

ξt(i, j) Probability of being in state Si at time t and state S j at time t + 1

γt( j) Probability of being in state S j at time t

γt( j,m) Probability of being in state S j at time t with the mth component
generating the observation

Sct Scaling factor at time t

ε Convergence threshold

Ds(λ1, λ2) Distance measure between HMMs

η Sample lag in the auto correlation function
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Appendix ASpeech Database
and Telephone

Channel
This appendix concerns the database which has been used for training and test. For a quick
overview of the TIMIT database see table A.1. The degrading of speech is presented in section A.2.
See figure A.2 for a plot of the magnitude response of the filter used for degrading the speech.

In order to train and test the bandwidth extension algorithm recorded wideband speech is
necessary. This appendix clarifies the most important points about the wideband speech
database, which is used. Furthermore it discusses how this wideband speech is degraded,
such that it can be used in the bandwidth extension algorithm. The last section makes a
listing of the files from the database used in the listening test.

A.1 The TIMIT corpus

To be able to model the speech it is important to have a large set of data. This will give a
good representation of the distribution of data.
The TIMIT speech database is used. The TIMIT database is a corpus of speech utterances
spoken by American’s with 8 different accents (DR1-DR8). The database consists of
wideband speech recordings, sampled at 16 kHz.
All the information presented about the database originate from [7] and [3].
The database consists of 6300 utterances spoken by 630 speakers (70% male and 30%
female). Each speaker spoke two SA sentences, three SI sentences and five SX sentences.
SA, SI and SX defines the type of the sentence [7, p. 19]. SA is a dialect sentence. SX are
phonetically-compact sentences and were hand designed. They were designed to give a
good coverage of pairs of phones. SI sentences originate from existing text sources.
There are 2 SA, 450 SX and 1890 SI sentences. Each speaker read the same two SA
sentences. Each SX sentence was read by seven persons. Each SI sentence was only read
by one person.
To be able to evaluate the bandwidth extension algorithm some files (utterances) should
be reserved for evaluating, such that the evaluation is unbiased of the training. The TIMIT
documentation suggests a division of the material into a test and a training part and this
partition is adopted in our work. No speakers are present in both the training and test
parts. The division between training/test is 73%/27%.
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Chapter A Speech Database and Telephone Channel

The complete test set consist of 1344 sentence distributed as 8 sentences from 168 speakers
(112 males and 56 females). A subset of the complete test set has been suggested and
consist of 192 sentences (8 sentences from 24 speakers). The sentences originates from
two males and one female per dialect. The test subset is denoted “Core test set”.
The training set consist of 3696 sentences (8 sentences from 462 speakers). No sentences
with the same text appears in both the training and test material. It should be noted
that the two SA sentences from each person are not used. According to [7, p. 23] it
might skew the training models since the words contained in the SA sentences would be
over-represented.
Table A.1 gives an overview over the division of the TIMIT database for training and
testing. The models for extending the envelope is trained using approximately 3hrs of
speech.

Database Training Test Core Test Complete Listening test

Speakers 462 (326/136) 24 (16/8) 168 (112/56) 15 (9/6)

Sentences 3696 (2608/1088) 192 (128/64) 1344 (896/448) 15 (9/6)

Frames (Vectors) 1,131,655 58,269 413,418

Time 3hrs 8mins 9mins 1hrs 9mins

Table A.1: Overview of the TIMIT database. The numbers in parentheses denotes
the distribution between (Male/female). The number of frames is based on 20 ms
frames and 50% overlap. The column listening test is included to indicate the
distribution between male and female in the listening test.

A.2 Simulating the telephone channel

The database consists of data recorded with a sampling frequency at 16 kHz. To evaluate
the algorithm the signal should be filtered such that it corresponds to transmitting the
speech over a telephone channel.
The telephone system was previously an analog system but is nowadays converted into a
digital system. The minimum bandwidth for the analog system was specified to be from
300 Hz to 3.4 kHz [22].
After the switch to a digital system the requirements from the analog system are still
used. The speech in the digital system is sampled at 8 kHz and the samples are quantized
using A-law or µ-law PCM (Pulse Code Modulation) [22]. Since the speech is sampled
at 8 kHz the sampled speech does not contain information above 4 kHz. The ITU-
T recommendation G.712 deals with transmission performance in PCM channels. It
recommends an attenuation on the analog input signal of at least 12.5 dB at 4 kHz [12,
Fig. 10]. This means that the speech at the receiver also is attenuated at these frequencies.
In the telephone channel it is likely to introduce different attenuation and phase shift
depending on frequency. These dependencies will change depending on the telephone
network, the country of the network etc. Therefore the same narrowband speech signal
transmitted in a different network will appear different at the receiver.
The bandwidth extension algorithm is implemented at the receiver and will therefore
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A.2 Simulating the telephone channel

be affected by these influences. In section 1.3 it is chosen to avoid these influences, and
assuming a channel with no ripples, phase shift etc.
The narrowband speech signal is obtained from the TIMIT database by either lowpass
or bandpass filtering it with a linear filter without ripple. If a bandpass filter is applied,
both the band below 300 Hz and above 3.4 kHz are removed. Using a lowpass filter only
attenuates the signal above 3.4 kHz.
The operation is seen in figure A.1. The filter is followed by a downsampling of a
factor 2. The downsampling assures that the bandwidth extension algorithm can not take
advantage of the attenuated signal in the upper band (>4 kHz). Furthermore a sampling
frequency of 8 kHz is achieved as in the telephone network.

Telephone BP
sw(k)

↓ 2

Downsampler sn(k′)

Figure A.1: Block diagram for reducing the bandwidth of the speech signals
(sw(k)) from the TIMIT database. The output data (sn(k′)) has sample frequency 8
kHz. The discrete indexes k′ and k denote 8 kHz and 16 kHz sample frequency
respectively.

In section 1.3 it was chosen to only estimate the upperband >3.4 kHz. Therefore the filter
in figure A.1 is implemented as a lowpass filter. The filter is chosen as a 300 tap FIR (linear
phase) filter with the following specifications:

Stop band 3.7 - 8 kHz

Transition band 3.4-3.7 kHz

Pass band 0 Hz - 3.4 kHz

The magnitude response of the filter is plotted in figure A.2.
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Figure A.2: Magnitude response of the filter for degrading the wideband speech.
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A.3 Utterances used in listening test

The files used in the listening test is presented in table A.2, A.4, A.5, A.3 for test 1a, 1b,
1c and 2 respectively. It should be noted that all the files originates from the complete
test set. The directories name DRX indicates it is the Xth dialect. The first letter in the
subfolder to DRX indicates (M)ale or (F)emale. E.g.

TEST_COMPLETE\DR3\MTHC0\SI1015.WAV

means the utterance SI1015 is spoken by a male speaker with dialect number 3 (North
Midland).

TEST_COMPLETE\DR3\MTHC0\SI1015.WAV

TEST_COMPLETE\DR4\FJMG0\SX191.WAV

TEST_COMPLETE\DR6\FMGD0\SI2194.WAV

TEST_COMPLETE\DR7\MRMS1\SX137.WAV

TEST_COMPLETE\DR2\MMDM2\SX102.WAV

Table A.2: Files used in test 1a

TIMIT\TEST_COMPLETE\DR3\MTHC0\SI1015.WAV

TIMIT\TEST_COMPLETE\DR4\FJMG0\SX191.WAV

TIMIT\TEST_COMPLETE\DR6\FMGD0\SI2194.WAV

TIMIT\TEST_COMPLETE\DR7\MRMS1\SX137.WAV

TIMIT\TEST_COMPLETE\DR2\MMDM2\SX102.WAV

Table A.3: Files used in test 2

TIMIT\TEST_COMPLETE\DR5\FGMD0\SX143.WAV

TIMIT\TEST_COMPLETE\DR4\FDMS0\SX318.WAV

TIMIT\TEST_COMPLETE\DR3\MRTK0\SI1093.WAV

TIMIT\TEST_COMPLETE\DR6\MESD0\SX372.WAV

TIMIT\TEST_COMPLETE\DR8\MRES0\SI1847.WAV

TIMIT\TEST_COMPLETE\DR3\MTHC0\SI1015.WAV

TIMIT\TEST_COMPLETE\DR4\FJMG0\SX191.WAV

TIMIT\TEST_COMPLETE\DR6\FMGD0\SI2194.WAV

TIMIT\TEST_COMPLETE\DR7\MRMS1\SX137.WAV

TIMIT\TEST_COMPLETE\DR2\MMDM2\SX102.WAV

Table A.4: Files used in test 1b

TIMIT\TEST_COMPLETE\DR3\FKMS0\SX320.WAV

TIMIT\TEST_COMPLETE\DR1\MWBT0\SI1553.WAV

TIMIT\TEST_COMPLETE\DR4\MBNS0\SI1220.WAV

TIMIT\TEST_COMPLETE\DR7\FCAU0\SX47.WAV

TIMIT\TEST_COMPLETE\DR6\MESD0\SI2262.WAV

TIMIT\TEST_COMPLETE\DR3\MTHC0\SI1015.WAV

TIMIT\TEST_COMPLETE\DR4\FJMG0\SX191.WAV

TIMIT\TEST_COMPLETE\DR6\FMGD0\SI2194.WAV

TIMIT\TEST_COMPLETE\DR7\MRMS1\SX137.WAV

TIMIT\TEST_COMPLETE\DR2\MMDM2\SX102.WAV

Table A.5: Files used in test 1c
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Appendix BVerification of
Extended Speech

This chapter is included to convince the reader, that the bandwidth extension algorithm
do not modify the narrowband region of the extended speech compared to narrowband.
Furthermore it visualizes how the extended speech signal looks like compared to the
original wideband. The estimation method used in this example, is the proposed per-
ceptual method for estimating the envelope using a HMM with 8 states and 16 mixture
components. and spectral translation for extending the excitation signal. Estimation was
carried out using an HMM with 16 states and 8 mixture components. Figure B.1 shows
a speech signal in the time domain. This signal is plotted together with the original
(wideband) envelopes obtained from an LP analysis, the estimated envelopes from the
BWE algorithm and the difference between the two. We observe that all the nuances and
peaks does not get estimated correct, nevertheless the overall picture matches the plot of
the original wideband envelopes fairly well. For the extensionband, the variations in the
spectral envelope is very small and the formants are not estimated correctly. On the other
hand, no dominating peaks outside the formant frequencies, are introduced in the upper
part of the spectrum either. This will probably introduce unwanted artifacts.
The difference shows small variations in the narrowband region. These variations are
however constant in each frame and it shows like streaks in the plot. This is the result of
slight estimation errors of the relative gain. But as the analysis and synthesis are mutual
inverse it only modifies the extensionband slightly.

Figure B.2 shows the same speech signal together with short term power spectra of
the narrowband, wideband, estimated wideband and the difference between original
and estimated respectively. The plot shows that wideband and estimated wideband are
almost identical, which also is supported by the difference plot in the narrowband region.
If looking closely, very small variations can be observed in the difference plot in the
narrowband region. This is due to aliasing from spectral translation. A small study, in
which the estimated speech signal was low pass filtered and listened to, confirmed that
it was not possible to hear any audible differences between narrowband and the lowpass
filtered version.
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Figure B.1: Speech signal plotted together with original envelopes of an LP
analysis, estimated envelopes and the difference between the two. The small
varying colors in the narrowband region is a slightly wrong estimation of gain.
The speech recording is /DR2/FPAS0/SX44.WAV.
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Figure B.2: Speech signal, the corresponding short power spectrum for narrow-
band, wideband and estimated wideband respectively. The bottom plot shows
the difference between estimated and original wideband. The speech recording
is /DR2/FPAS0/SX44.WAV.
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Appendix CListening Test Guide

Test 1

In the first test you have a reference version of speech, and then you have to rate the other
versions which have been more or less degraded. The ratings you can make use of are
listed in table C.1. The files can be rated from 1 to 5. The rating can be done in steps of 0.25.

Rating Speech Quality Level of Distortion

5 Excellent Imperceptible

4 Good Just perceptible but not annoying

3 Fair Perceptible and slightly annoying

2 Poor Annoying but not objectionable

1 Unsatisfactory Very annoying and objectionable

Table C.1: The different possible ratings in the listening test.

Figure C.1 shows the program which you will use to rank the different versions in test 1.

Figure C.1: Screenshot of test 1.

Procedure for Test 1:
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Chapter C Listening Test Guide

1. Choose a sample to rate in the dropdown box.

2. Start the ranking: Begin by listening to the reference (press the "P" button below
the left bar). Listen to the remaining versions. Rate the versions based on your
preferences according to table 7.2 . If you can not distinguish which is the best of
the two versions, rate them equally. You can use the "Sort ranking" button to ease
comparison.

3. Continue until you have rated all versions in this sample. Chose the next sample in
the dropdown box.

4. Continue with this procedure until all samples have been evaluated.

5. When finished, push the "Exit" button. Please do not close the window, as the results
will not be stored.

Test 1 is divided into three subtests; 1a, 1b and 1c. Information in the prompt will guide
you through the three tests.

Test 2

In the second test you have a reference and four versions. For each of version you have
to specify whether you prefer to listen to the version or the reference. This is indicated
by either choosing "Better than reference" or "Worse than reference".
Figure C.2 shows the program which you will be using in test 2.

Figure C.2: Screenshot of test 2.

Procedure for Test 2:

1. Choose a sample to rate in the dropdown box.

2. Play the reference and then version 1. Choose if you prefer listening to version 1 or
the reference. In doubt take the best guess.
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3. Repeat 1. for all versions

4. Continue with this procedure until all samples have been evaluated.

5. When finished, push the "Exit" button. Please do not close the window, as the results
will not be stored.

The complete test is estimated to last approximately 20 minutes. Please feel free to ask
questions.

Thank you for your help!

Group 1092
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