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Abstract: 

This report presents a rapid design strategy for 
an efficient implementation of a Reed-
Solomon (RS) decoder specified in ADSL 
standard ITU G.992.1 onto the Xilinx Virtex II 
FPGA and TigerSHARC ADSP-TS201 DSP. 
       ADSL is a home user-oriented modem 
technology that uses existing twisted-pair 
copper telephone lines to transport high-
bandwidth data, such as multimedia and video. 
       The project goes through the given system 
(i.e., RS decoder) analysis, its modeling, 
simulation, selection of a particular RS 
decoder over another for its further analysis 
and implementation onto the available types of 
architectures. 
       Before the actual implementation step, it 
is necessary to determine which type of 
architecture (DSP or FPGA) is the most 
suitable for the execution of the selected RS 
decoder. For that, algorithm characterization is 
performed. The main idea of characterization 
is to extract relevant information from the 
given algorithm to guide the designer towards 
an efficient algorithm-architecture matching. 
To this effect, different performance metrics 

are efficiently used in the project to rapidly 
stress the proper architecture style for the 
given RS decoding algorithms. 
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IInnttrroodduuccttiioonn  
 
 
Digital communication systems are used for transferring information data between 
separate remote points, which are connected by appropriate communication channels. 
The data being sent is usually affected by different channel errors (e.g., noise or 
interference) that worsen the quality of transmission link. The communication system 
performance and quality of transmissions can be increased by applying the Forward 

Error Correction (FEC) technique, which is used in almost all digital communication 
systems to improve performance with regards to Bit Error Rate (BER). Theoretically, 
FEC allows the maximum level of information in any channel. In practice, it reduces 
the cost for designing the communication system. 

This is also the case for Asymmetric Digital Subscriber Line (ADSL), which 
uses both Trellis coding and Reed-Solomon FEC to perform error corrections. In 
ADSL, the error correction algorithms used (especially decoding) are computationally 
complex and demanding compared to the other algorithms used (e.g., encoding, 
modulation, etc). Thus, to meet the given time constraints and to save hardware 
resources, an efficient implementation is preferred. With increasingly strict time-to-
market, a fast process of implementation is also required. 

 In order to realize fast and efficient implementations, the use of different 
design strategies/methodologies becomes very important. Without having a strictly 
defined design strategy, many development projects fail to create effective systems on 
time and within available budget. However, to develop an expedient design strategy, 
even both academics and commercial firms that specialized in devising such designs 
spend tremendous effort for that. 
 
 

1.1. Project Objective 
 
The main objective of the project is to investigate whether a fast design strategy for 
an efficient implementation of a Reed-Solomon (RS) decoder specified in ITU 
G.992.1 [1] (is the standard for ADSL) on the given target architectures (i.e., DSP 
and FPGA) can be provided or not. In order to accomplish this, the proposed design 
trajectory, described in Section 1.3, is evaluated. The design trajectory is based on the 
A

3
 framework. The main idea of this framework is presented in the next section. 
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1.2. A3 Framework 
 
The typical A3 framework consists of three related domains: Applications, Algorithms 
and Architectures (Figure 1.2.1). They are described below: 
 

 
 

Figure 1.2.1: Typical A
3
 framework. 

• Applications domain (first step): 

 
This domain is used for: 
 

1. Specifying the system; 

2. System analysis; 

3. Defining the main tasks that the system must perform. 
 
As we see in Figure 1.2.1, this domain has the relation with the “Algorithms” domain. 
This relation is “one-to-many” (1:N). It means that there may be a lot of algorithms in 
the “Algorithms” domain that can be used for a mathematical description of the 
system functionality. However, from existing algorithms we need to select only one, 
which best satisfies the given application requirements. 
 

• Algorithms domain (second step): 

 

This domain is mainly used for algorithms development, simulation and selection. 
From the simulation results we are able to see, which algorithm is more appropriate 
for the given application. Although sometimes it is difficult to find an optimal 
algorithm for the given application, and so the dashed line from the “Algorithms” 
domain to the “Applications” domain (see Figure 1.2.1) indicates that if such problem 
occurs, it is necessary to review the application and maybe it is useful to make some 
changes in the given specification to achieve better results. 

As shown in Figure 1.2.1, the “Algorithms” domain has the relation with the 
“Architectures” domain. This relation is “one-to-many” (1:N). It means that the 
chosen algorithm can be implemented on different types of architectures (e.g. GPP, 
DSP, FPGA, etc.), or different architectures of a particular type. 
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• Architectures domain (third step): 

 

In the “Architectures” domain the selected algorithm is implemented on the given 
architecture(s). As we see in Figure 1.2.1, this domain has the two dashed lines: one 
line is pointed to the “Algorithms” domain, meaning that not always the best 
algorithm for the given application will show the best result in a certain architecture, 
and so, in such case, we need to return one step back to the “Algorithms” domain for 
another algorithm selection. Other dashed line is pointed to the “Applications” 
domain, meaning that when we map an algorithm to the target architecture(s), the 
result of this mapping sometimes may not fulfill the given application requirements. 
In such case, it is necessary to review and possibly change these requirements. 
 
 

1.3. Design Trajectory 
 
The proposed design trajectory, shown in Figure 1.3.1, slightly differs from the 
typical A

3 framework, illustrated in Figure 1.2.1. Each particular domain of the 
proposed design trajectory is described below: 
 

• Applications domain: 

 
In this domain the ADSL technology with RS coding (i.e., encoding/decoding) are 
analyzed as the application of the project. 
 

• Algorithms domain: 

 
In this domain, first of all, the appropriate algorithms for RS coding are described in a 
structured way. In addition, the simulation of described algorithms is run to verify the 
functionality and evaluate the performance of the corresponding system. According to 
the limitations of the project (described in Section 1.4), the two different RS decoding 
algorithms are considered for their further analysis and implementation on the target 
architectures. 

For the reason that the implementation may be performed on different types of 
architectures (i.e., DSP and FPGA), the following question occurs: which type of 
architecture is the most suitable for the execution of a certain algorithm? In order to 
answer this question, algorithm characterization is an option. The main idea of 
characterization is to extract relevant information from the specification of an 
application (i.e., algorithm) to guide the designer towards an efficient algorithm-
architecture matching. For this purpose, different metrics can be efficiently used to 
rapidly stress the proper architecture style for the given application. In our case, this 
is referred to as a fast implementation. 
 

• Architectures domain: 

 
After the characterization of the given RS decoding algorithms, the implementation is 
performed. In order to implement the decoding algorithms, the two available devices 
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are used in the project: Xilinx Virtex II reconfigurable FPGA (v3000) and 
TigerSHARC ADSP-TS201 DSP. The functionalities of these devices are presented in 
Appendixes A and B, respectively. 

To verify that the obtained characterization results are true, the two decoding 
algorithms are first optimized (considering the capabilities of the target architectures) 
and then implemented both onto FPGA and DSP, resulting in four outputs: two 
architectures with two different algorithms in each (see Figure 1.3.1). For the desired 
verification, the corresponding implementation results are then compared with the 
characterization results. 

Finally, only one particular architecture with one particular algorithm, which 
best satisfy the defined cost function related to the ADSL requirements, is selected 
from existing implementation outputs. 
 

 
 

Figure 1.3.1: A3
 framework of the project. 

 
 

1.4. Project Limitations and System Constraints 
 
Because of the limited project period, a number of constraints have been made: 
 



Analyzing and Implementing a Reed-Solomon Decoder for Forward Error Correction in ADSL 

 

 15 

� It is decided to focus on the two commonly used RS decoding algorithms: 
Berlekamp-Massey and Euclidean algorithms (described in Chapter 3); 

� The erasure technique (described in Chapter 3) in RS decoding is not 
considered; 

� The programs for simulation and implementation of RS codes are built upon 
existing ones1, written in C/C++ language; 

� RS codes have a number of parameters, which can be modified. For the easier 
code optimization and implementation purposes, these parameters should be 
kept fixed. 

 
 

1.5. System Requirements 
 
There are several requirements for the system (i.e., RS decoder) to be developed 
during the project period: 
 

� The system should follow ITU G.992.1 [1], which defines the system to 
support a minimum of 6.144 Mbit/s downstream; 

� Changing the RS parameters, bit-error performance of RS codes changes as 
well. Since these parameters are selected to be constant in our case, we need 
to initially make a decision on the level of bit-error performance, which will 
correspond to a particular set of RS parameters. In order to feel the power of 
RS codes, it is decided to extract the highest available bit-error performance 
from RS codes and apply this performance to the system. 

 
 

1.6. Organization of the Report 
 
The report is divided into three parts. The first part consists of Chapters 2 and 3, 
where the ADSL technology with RS coding (i.e., encoding/decoding) are described 
as the application of the project. The second part is related to the “Algorithms” 
domain in the proposed design trajectory (Figure 1.3.1), and consists of Chapter 4, 
where the simulation is performed, and Chapter 5 (“Algorithm Characterization”). 
The last part of the report is related to the “Architectures” domain in the proposed 
design trajectory, and presented in Chapter 6 (“FPGA Implementation”), Chapter 7 
(“DSP Implementation”), and Chapter 8, which carries out the verification of the 
algorithm characterization results. 
 

                                                 
1 http://www.eccpage.com/ 



Analyzing and Implementing a Reed-Solomon Decoder for Forward Error Correction in ADSL 

 

 16 

 



Analyzing and Implementing a Reed-Solomon Decoder for Forward Error Correction in ADSL 

 

 17 

  

 

AADDSSLL  SSyysstteemm  
 
 
In recent years, Digital Subscriber Line (DSL) technology has been gaining 
popularity as a high speed network access technology, capable of the delivery of 
multimedia services over the existing telephone infrastructure. A major impairment 
for DSL is impulse noise in the telephone line. Lightning and switching equipment 
transients are common causes of impulse noise. However, current DSL services make 
use of forward error correction (FEC) techniques for improved resistance to noise 
interference in the data transmission. 

The current chapter explains the FEC mechanism and presents the background 
to Asymmetric DSL (ADSL) system, which is a particular version of DSL 
technology. 
 
 

2.1. Forward Error Correction in Transceivers 
 
Forward error correction (FEC) in transceiver (transmitter/receiver pair) is used to 
deliver information from a source (transmitter) to a destination (receiver) through a 
noisy communication channel with a minimum of errors. FEC allows a receiver in the 
system to perform Error Detection and Correction (EDAC) without requesting a 
retransmission of the corrupted data. FEC offers a number of benefits: 
 

� FEC enables a system to achieve high data reliability; 

� FEC results in greater effective throughput of user data, because valuable 
bandwidth is not being used to retransmit corrupted data; 

� FEC yields performance gains and low error rates for systems in which other 
options, such as increasing the transmitted power or installing noise-limiting 
components, are too expensive or impractical; 

� System costs can be reduced by eliminating an expensive or sensitive 
component and compensating for the lost performance by a suitable FEC 
scheme. 
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Figure 2.1.1 depicts a typical FEC communication scheme: 
 

 
 

Figure 2.1.1: FEC communication system. 

 

• Source encoder: 
 

In the source encoder of the transmitter (Figure 2.1.1), the message to be transmitted 
is transformed into a sequence of bits that represents the original message. These bits 
are then fed to the channel encoder. 
 

• Channel encoder: 
 
The channel encoder (or FEC encoder) is designed to perform error correction with 
the aim of converting an unreliable communication channel into a reliable one. The 
encoder adds redundancy to the data produced by the source encoder in the form of 
parity information. Then at the receiver, a channel decoder is able to exploit the 
redundancy in such a way that a reasonable number of errors introduced by the 
channel can be corrected. Without redundancy, the code would not allow us to detect 
the presence of errors and therefore would not have any error controlling properties. 
 

• Modulator: 

 
The coded data produced by the channel encoder is then mapped into analogue signal 
(waveforms) in the digital modulator, and fed to the channel. 
 

• Channel: 

 
The channel provides the communication link between the transmitter and receiver, 
and introduces various forms of corruption to the transmitted signal, like environment 
noise, attenuation, etc. The errors introduced by the communication channel are 
classified into two main categories: 
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− Random errors. The probability of error is independent from one 
transmitting symbol to the next. Random errors occur in the Additive 

White Gaussian Noise (AWGN) channel in which the transmitted signal 
suffers the addition of wide-band noise whose amplitude is a normally 
(Gaussian) distributed random variable; 

− Burst errors. The bit errors occur sequentially in very short time as 
groups. For example, impulse noise can cause a burst of errors. Impulse 
noise is a short burst of relatively high energy noise. 

 
Thus, the task of the receiver is to capture the transmitted signal, and remove the 
effects of the channel. 
 

• Demodulator: 
 
The demodulator converts the waveforms received from the channel into a binary 
sequence, which is fed to the channel decoder. 
 

• Channel decoder: 
 
The job of the channel decoder (or FEC decoder) is to decide what the transmitted 
information was. The channel decoder removes the redundancy introduced by the 
channel encoder in the transmitter, and attempts to detect and correct possible bit 
errors using the knowledge of the code used by the channel encoder and the 
redundancy contained in the received data. The frequency at which bit errors occur at 
the output of the channel decoder is a measure of the demodulator-decoder 
performance. Typically the bit error rate (BER) at this point is kept at a desired level 
so as to have acceptable quality of communication with minimum resource usage. 
 

• Source decoder: 
 
Finally, the source decoder tries to reconstruct the original message from the decoded 
data. This will be an estimation of the original message due to the possible corruption 
introduced to the data along its way through the communication link. 

 

2.1.1. Error-Control Codes 
 
FEC is also known as channel coding (realized by the FEC encoder/decoder), which 
is based on a specific error-control code. There are the two main types of error-
control codes used in communication systems: 
 

1. Block codes. Block codes are based strictly on finite field arithmetic. They can 
be used to either detect or correct errors; 

2. Convolutional codes. These codes are developed with a separate strong 
mathematical structure and are primarily used for real-time error correction. 



Analyzing and Implementing a Reed-Solomon Decoder for Forward Error Correction in ADSL 

 

 20 

The question of whether to choose block codes or convolutional codes depends on the 
following. When the environment consists predominately of random errors, 
convolutional codes provide a low bit error rate (BER) solution. However, when the 
environment consists mainly of burst errors, block codes often perform even better. 

Some applications, such as ADSL (described in the following section), use 
both convolutional and block codes. In such case, concatenated codes result in strong 
performance by operating in two steps. 
 
 

2.2. Overview of ADSL System 
 
Digital Subscriber Line (DSL) technology is a home user-oriented modem technology 
that uses existing twisted-pair copper telephone lines to transport high-bandwidth 
data, such as multimedia and video. The technology is attractive in the aspect that it 
utilizes the telephone system infrastructures, usually already installed in buildings and 
facilities. In the Plain Old Telephone System (POTS), only a fraction of the 
bandwidth of the copper loop (telephone line) is used, thus the DSL service is 
designed to use the excess bandwidth for downstream and upstream data 
transmission. DSL service is dedicated, point-to-point, public network access over 
twisted-pair copper wire on the local loop between a Network Service Provider 
(NSP’s) central office and the customer site. 

 Some other popular services, such as a standard dial-up modem or an ISDN 
line, also use the telephone lines to communicate. However, those services prevent 
the simultaneous operation of standard analog phone service on the same phone line. 
An important advantage of DSL is that it allows the POTS signal to co-exist with the 
DSL data signal. The POTS channel is split off from the digital modem by filters 
commonly called “splitters”, thus guaranteeing uninterrupted POTS. 

 Asymmetric Digital Subscriber Line (ADSL) is the most widely used DSL 
standard today. The term asymmetric reflects the difference between upstream and 
downstream bit rates in the transmission link. ADSL allows more bandwidth 
downstream – from an NSP’s Central Office (CO) to the customer site – than 
upstream from the subscriber to the central office. This asymmetry, combined with 
always-on access, makes ADSL ideal for Internet surfing, since users typically 
download much more information than they send. 

 ANSI standard T1.413 defines an ADSL system to transmit downstream and 
upstream data rates up to 6.8 Mbit/s and 640 kbit/s, respectively. ITU 
Recommendation G.992.1 [1] (is the standard for ADSL) defines a system based on 
T1.413 as a core, but expanded via three annexes to meet particular regional needs. 
The maximum data rates mentioned in the literature are about 8 Mbit/s downstream 
and 1 Mbit/s upstream, see [1] or [2]. 

 

2.2.1. Spectrum Allocation 
 
According to [1] (annex A), ADSL is designed to provide data transmission on loops 
up to 5 km over a 25 kHz – 1.1 MHz frequency band. An ADSL circuit connects an 
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ADSL modem on each end of a twisted-pair telephone line, creating three 
information channels – a downstream channel, an upstream channel, and a basic 
telephone service channel. Each of these channels has its own frequency band. The 
POTS band goes from near DC to approximately 4 kHz. A frequency guard band is 
placed between the POTS spectrum and the ADSL spectrum to help avoid 
interference. The ADSL spectrum (downstream and upstream bands) starts above the 
POTS band and extends up to approximately 1.1 MHz. There are actually two 
different ways that the ADSL spectrum can be arranged: to create multiple channels, 
ADSL modems divide the available bandwidth of a telephone line in one of two 
ways: Frequency-Division Multiplexing (FDM) or echo-cancellation, as shown in 
(Figure 2.2.1): [3] 
 

• Frequency-Division Multiplexing (FDM): 

 
In FDM mode, the upstream and downstream frequency bands are separated. Using 
FDM, the upstream channel allocation ranges from about 26 kHz to 138 kHz, and 
downstream ranges from 138 kHz to 1.1 MHz (Figure 2.2.1a). 
 

• Echo-cancellation: 

 
An alternative to FDM is to use echo-cancellation, which enables upstream and 
downstream signals to use the same spectrum (Figure 2.2.1b). The objective of echo-
cancellation is to enable the downstream data to use lower frequencies than are 
available in FDM mode. Using lower frequencies, we can achieve less signal 
attenuation, which theoretically allows faster downstream data rates on longer loops 
[2]. Echo-cancellation also adds more available spectrum to the downstream channel. 
 However, it does require echo-canceling circuitry to remove the reflection of 
the locally transmitted signal in the overlapped band. This certainly increases the 
complexity of digital signal processing in the receivers. 
 

 
 

Figure 2.2.1: Frequency spectrum usage by ADSL with: 

(a) FDM, and (b) echo-cancellation. 
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2.2.2. ADSL Modem 
 
Each ADSL modem consists of transmitter and receiver. A block diagram of a typical 
ADSL transmitter/receiver pair (transceiver) is shown in Figure 2.2.2. 
 

 
 

Figure 2.2.2: Block diagram of a typical ADSL modem. 

At the transmitter the information data to be sent is first protected, then modulated 
and finally transmitted. At the receiver the obtained data is first demodulated and then 
corrected from errors introduced by the communication channel. Each of these steps 
is briefly described in the following sections. The analog front end (Figure 2.2.2) is of 
no interest in our case, and its description is therefore beyond the scope of this report. 

 

2.2.3. Data Protection and Correction 
 
The physical layer of ADSL must ensure that data is transferred reliably across the 
channel, so the process of data protection is performed: Cyclic Redundancy Check 

(CRC) attachment, data coding (FEC technique) and interleaving are designed to 
provide this (Figure 2.2.3). 

 
Figure 2.2.3: Data protection and correction blocks of an ADSL modem, shown in Figure 2.2.2. 
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2.2.3.1. Cyclic Redundancy Check (CRC) 
 
CRC is a method used to detect errors in the received signal. This is done by 
converting the binary signal to a polynomial and then dividing it with a predefined 
polynomial called the key. The remainder in this division is called CRC. The signal 
together with the CRC is transmitted. The receiver performs the same operation as the 
transmitter, dividing the signal with the same predefined polynomial (key), and then 
checks the difference between the obtained reminder (CRC) at the receiver and CRC 
received from the transmitter. If the difference is zero, there is a high probability that 
the signal has been received correctly, otherwise an error has probably occurred. [4] 
 

2.2.3.2. Forward Error Correction (FEC) 
 
Reed-Solomon (RS) codes (are block codes) have been chosen for the FEC technique 
in ADSL [1]. The RS encoder takes k data symbols of 8-bits each (byte) and adds 
parity symbols (redundancy) to make an n symbol data block, called codeword. The 
maximum length (starting from n = 1) of a codeword with 8-bit symbols in ADSL is 
255 bytes. There are (n – k) redundant bytes. The ADSL standard requires support of 
all even numbers from 0 to 16 of redundancy bytes per codeword. This would allow 
for up to 8 bytes to be in error for every RS codeword. 

The essence of RS codes and the principles of RS encoding and decoding are 
presented in detail in the next chapter. 
 

2.2.3.3. Interleaving 
 
The purpose of the combination of an interleaver in the transmitter and a 
deinterleaver in the receiver is to spread burst of errors, which occur between several 
(usually the two), over many codewords, and thus reduce the number of errors in any 
one codeword to what can be corrected by the Reed-Solomon decoder. The two 
important parameters for the interleaver are the number of bytes per codeword, n, and 
the interleave depth, D. An interleaver of depth D reads D codewords of length n 

each and arranges them in a block (array) with D rows and n columns. Then the 
codewords in the formed array are convolutionally interleaved (see [2]) and fed to the 
channel. In the deinterleaver the bits are rearranged back to its original order. ADSL 
supports interleave depth which is a power of two from 1 to 64. 
 The higher interleave depth is, the more data can be interleaved, resulting in 
much more effective RS FEC performance. But increasing the interleave depth will 
cause additional latency or delay in the time the data is transmitted and the time it is 
available to the receiving user. 
 

2.2.3.4. Fast and Interleaved Paths 
 
There are actually two separate paths in the data protection and correction blocks of 
an ADSL modem: “fast” and interleaved. In the “fast” path the interleaving is not 
used. The interleaved path provides a lower error rate, but higher latency in 
comparison with the non-interleaved “fast” path. The increased latency normally 
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causes no problems for general data transmission, but digitized voice over a high-
latency path results in extremely unpleasant echo. For this reason, a minimum 
interleave depth (or no interleaving) is always used on data channels carrying voice 
traffic. As delay is added to voice transmissions, the problem of echo increases 
radically and requires additional treatment. 

Deciding on a compromise between burst error rate and latency for each data 
channel is a function of the Transmission Convergence (TC) layer in ADSL [2], 
which must combine the multiple input data channels and assign them to either the 
“fast” or the interleaved path. 

 

2.2.4. Modulation 
 
The physical layer of ADSL uses a multicarrier modulation technique, known as 
Discrete Multi-Tone (DMT), to create the ADSL signal. The basic idea of DMT is to 
split the available bandwidth into a large number of subchannels, where each 
subchannel uses Quadrature Amplitude Modulation (QAM) [5]. 
 With ADSL, the frequency band in DMT is divided into N narrowband 
channels (subchannels) of about ∆f = 4 kHz each for transmission, where each 
subchannel may be approximated by a flat transfer function |H|, as illustrated in 
Figure 2.2.4 [6]. In the downstream direction the maximum number of subchannels is 
N = 255, which are placed at frequencies n∆f , n = 1 to 255. In the upstream direction 
the maximum number of subchannels is N = 31, placed at n∆f , n = 1 to 31. 
 

 
 

Figure 2.2.4: An example of subchannels response. 

A DMT system transmits data in parallel over several narrowband channels. DMT is 
able to allocate data so that the throughput of every single subchannel is maximized 
by sending different numbers of bits on different subchannels. The number of bits on 
each subchannel depends on the Signal-to-Noise Ratio (SNR) of the corresponding 
subchannel, and this is referred to as bit-loading (described in Section 2.2.4.2). 

The DMT signal is formed by using an Inverse Fast Fourier Transform (IFFT) 
to generate orthogonal subchannels (don’t interfere with each other) at the transmitter. 
The data symbols at the transmitter are treated as being in the frequency domain and 
act as complex weights for the basis functions (orthogonal sinusoids at different 
frequencies) of the IFFT. The IFFT then converts the data symbols into a time-
domain “sum of sinusoids” signal. The block of IFFT output samples is known as a 
DMT symbol. This time-domain signal is transmitted across the channel, and an FFT 
is used at the receiver to bring the signal back into the frequency domain. 
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A simplified diagram of an ADSL modulation block is shown in Figure 2.2.5. 
 

 
 

Figure 2.2.5: A simplified diagram of the modulation block 

of an ADSL modem, shown in Figure 2.2.2. 

The DMT modulation consists in dividing the consecutive data into blocks and 
encoding them with Trellis Coded Modulation (TCM) into a set of N multibit 
complex symbols Zi (Figure 2.2.5). IFFT is then applied on the set of complex 
symbols. In the end, 2N real samples are generated and passed through a Digital-to-
Analogue (D/A) converter. [2] 
 

2.2.4.1. Trellis Coded Modulation (TCM) 
 
TCM, shown in Figure 2.2.5, is a technique combining Trellis (convolutional) coding 
and QAM modulation in a single operation. In particular, Trellis coding in TCM is a 
process of altering the QAM constellation to provide better performance in a noisy 
environment. TCM is a bandwidth efficient scheme, where the redundancy introduced 
by the coding does not expand the bandwidth. This allows reliable high data-rate 
communication over channels with limited bandwidth. 

The Trellis decoding is based on the Viterbi algorithm. Trellis coding together 
with Viterbi decoding are typically designed to reduce errors from AWGN. However, 
the nature of the decoding algorithm is such that the decoder can cause burst errors to 
occur if errors are made during the decoding process. Moreover, Trellis coding 
requires more complex transceivers, and Trellis capable chipsets may have a slightly 
higher internal power requirement. 

The ADSL standard gives as an option the possibility to Trellis code the 
modulation. Thus, Reed-Solomon (RS) and Trellis coding can be combined in a 
concatenated coding scheme (i.e., block codes + convolutional codes), resulting in 
strong performance by operating in two steps. In the concatenated coding scheme, RS 
is the outer code, and Trellis code is the inner code. The information is first encoded 
by the outer code, and then the encoded sequence is further encoded by the inner 
code. RS codes in ADSL are used as outer codes because of their ability to correct the 
burst errors from the inner decoder. 
 

2.2.4.2. Bit-loading 
 
In a DMT system the subchannels carry different number of bits depending on their 
respective SNR. This is referred to as bit-loading. Since the channel is stationary, the 
bit-loading factors are calculated in an initial ADSL training session. During initial 
training, the ADSL modem tests which of the available subchannels have an 
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acceptable SNR. If SNR is low, the corresponding noisy regions of the spectrum can 
be “loaded” with fewer bits. If SNR is not satisfied, the corresponding subchannels 
will not be used altogether, merely resulting in reduced throughput on an otherwise 
functional ADSL connection [2]. The SNR of subchannel j can be calculated as 
 

2

2
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j

jj

j

fHE
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σ
=  (2.2.1) 

 
where Ej is the average signal energy on subchannel j, |H( f j) |  is the transfer function 
of subchannel j in the sampled frequency fj (see Figure 2.2.4), and 2

jσ  is the noise 

variance. 
 
 

2.3. Summary 
 
This chapter explained the main concept of the FEC mechanism, and briefly 
described each block of the FEC system. Moreover, this chapter presented the 
background to ADSL system, which is a particular version of DSL technology. With 
ADSL, the functionality of each block of an ADSL modem was explained. 
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RReeeedd--SSoolloommoonn  CCooddeess  
 
 
The current chapter summarizes the essence of the Reed-Solomon (RS) codes and 
provides background information on finite field. Furthermore, this chapter introduces 
the general concept of finite field arithmetic implementation. Finally, the principles of 
RS encoding and decoding are explained. 
 In order to compose this chapter, the following literature was mainly used: [7], 
[8] and [9]. 
 
 

3.1. Introduction to Reed-Solomon Codes 
 
RS codes are error detection and correction (EDAC) scheme used in different forward 
error correction (FEC) techniques. These codes provide powerful correction, have 
high channel efficiency, and thus have a wide range of applications in digital 
communications and storage, e.g.: 
 

� Storage devices: Compact Disk (CD), DVD, etc; 

� Wireless or mobile communications: cellular phones, microwave links, etc; 

� Satellite communications; 

� Digital television / DVB; 

� High-speed modems: ADSL, VDSL, etc. 

 
As we will see later in this chapter, RS codes are particularly well suited for 
correcting burst errors. They are based on a special area of mathematics known as 
finite fields.  
 
 

3.2. Properties of Reed-Solomon Codes 
 
RS codes are linear block codes. A RS code is specified as RS(n, k) with m-bit 
symbols. RS(n, k) codes on m-bit symbols exist for all n and k for which 
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0 < k < n < 2m
 + 2 (3.2.1) 

 
where k is the number of data symbols being encoded, and n is the total number of 
code symbols in the encoded block, called codeword. This means that the RS encoder 
takes k data symbols of m-bits each and adds parity symbols (redundancy) to make an 
n symbol codeword. There are (n – k) parity symbols of m-bits each. For the most 
conventional RS(n, k) code, 
 

(n, k) = (2m
 – 1, (2m

 – 1) – 2t) (3.2.2) 
 
where t is the symbol-error correcting capability of the code, and (n – k) = 2t is the 
number of parity symbols. It means that the RS decoder can correct up to t symbols 
that contain errors in a codeword, that is, the code is capable of correcting any 
combination of t or fewer errors, where t can be expressed as 
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Equation (3.2.3) illustrates that for the case of RS codes, correcting t symbol errors 
requires no more than 2t parity symbols. For each error, one redundant symbol is used 
to locate the error in a codeword, and another redundant symbol is used to find its 
correct value. Denoting the number of errors with an unknown location as nerrors and 
the number of errors with known locations (erasures) as nerasures, the RS algorithm 
guarantees to correct a codeword, provided that the following is true 
 

2nerrors + nerasures  ≤ 2t (3.2.4) 
 
Expression (3.2.4) is called simultaneous error-correction and erasure-correction 
capability. Erasure information can often be supplied by the demodulator in a digital 
communication system. Nevertheless, the erasure technique is an additional feature 
that is sometimes incorporated into decoders for RS codes and requires separate 
handling. Thus, according to the system constraints, described in Section 1.4, we do 
not deal with erasures, and consider only error correction. 
 Keeping the same symbol size m, RS codes may be shortened by 
(conceptually) making a number of data symbols zero at the encoder, not transmitting 
them, and then re-inserting them at the decoder. For example, the RS(255, 223) code 
(m = 8) can be shortened to RS(200, 168) with the same m = 8. The encoder takes a 
block of 168 data bytes, (conceptually) adds 55 zero bytes, creates a RS(255, 223) 
codeword and transmits only the 168 data bytes and 32 parity bytes. 

 

3.2.1. Reed-Solomon Codes Perform Well Against Burst Noise 
 
Consider a popular Reed-Solomon code RS(255, 223), where each symbol is made up 
of m = 8 bits (such symbols are referred to as bytes). Since (n – k) = 32, Equation 
(3.2.3) indicates that this code can correct any 16 symbol errors in a codeword of 255 
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bytes. Now assume the presence of a noise burst, lasting for 128-bit durations and 
disturbing one codeword during transmission, as illustrated in Figure 3.2.1. 
 

 
 

Figure 3.2.1: A codeword of 255 bytes disturbed by 128-bit noise burst. 

In this example, a burst of noise that lasts for a duration of 128 contiguous bits 
corrupts exactly 16 symbols. The RS decoder for the (255, 223) code will correct any 

16 symbol errors without regard to the type of damage suffered by the symbol. In 
other words, when a decoder corrects a byte, it replaces the incorrect byte with the 
correct one, whether the error was caused by one bit being corrupted or all eight bits 
being corrupted. Thus if a symbol is wrong, it might as well be wrong in all of its bit 
positions. That is why RS codes are extremely popular because of their capacity to 
correct burst errors. 
 
 

3.3. Galois Fields 
 
The algorithms for RS encoding and decoding require algebraic operations over finite 
fields in which a polynomial is used to represent data sequences. Thus, in order to 
understand the encoding and decoding principles of RS codes, first of all it is 
necessary to venture into the area of finite fields known as Galois Fields (GF), since 
these codes are based on the use of Galois field arithmetic. 

 

3.3.1. Properties of Finite Field 
 
The formal properties of a finite field, which has a finite number of elements, are: [7] 
 

� There are two defined operations, namely addition and multiplication; 

� The result of adding or multiplying two elements from the field is always an 
element in the field; 

� One element of the field is the element zero, such that a + 0 = a for any 
element a in the field; 

� One element of the field is unity, such that a ⋅ 1 = a for any element a in the 
field; 

� For every element a in the field, there is an additive inverse element –a, such 
that a + (–a) = 0. This allows the operation of subtraction to be defined as 
addition of the inverse; 
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� For every non-zero element b in the field there is a multiplicative inverse 
element b

–1
, such that bb

–1 = 1. This allows the operation of division to be 
defined as multiplication by the inverse; 

� Both an addition and a multiplication operation that satisfy the commutative, 
associative, and distributive laws. 

 
These properties can be only satisfied if the field size is any prime number or any 
integer power of a prime. 

 

3.3.2. Prime Size Finite Field GF(p) 
 
For any prime number, p, there exists a finite field denoted GF(p) that contains p 

elements. The rules for a finite field with a prime number p of elements can be 
satisfied by carrying out the arithmetic modulo-p. 

In any prime size field, it can be proved that there is always at least one 
element whose powers constitute all the non-zero elements of the field. This element 
is said to be primitive. For example, in the field GF(7), the number 3 is primitive as 
 

30 = 1,    31 = 3,    32 = 2,    33 = 6,    34 = 4,    35 = 5 
 
Higher powers of 3 just repeat the pattern as 36 = 1, and so on. 
 

3.3.2.1. Binary Field GF(2) 
 
The simplest Galois field is GF(2), where p = 2. Its elements are the set {0, 1} under 
modulo-2 algebra. The addition and multiplication tables of GF(2) are shown in 
Tables 3.3.1 and 3.3.2. 
 

+ 0 1 

0 0 1 

1 1 0 
 

× 0 1 

0 0 0 

1 0 1  
Table 3.3.1: Modulo-2 addition (XOR operation). Table 3.3.2: Modulo-2 multiplication. 
 
There is a one-to-one correspondence between any binary number and a polynomial 
in that every binary number can be represented as a polynomial over GF(2), and 
conversely. A polynomial of degree D over GF(2) has the following general form: 
 

D

D XfXfXfXffXf +++++= ...)( 3
3

2
210  (3.3.1) 

 
where the coefficients f0,…, fD are the elements of GF(2). A binary number of (N + 1) 
bits can be represented as an abstract polynomial of degree N by taking the 
coefficients equal to the bits and the exponents of X equal to the bit locations. Thus, 
in the polynomial representation, a multiplication by X represents a shift to the left, 
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i.e. to one position earlier in the sequence. For example, the binary number 10011 is 
equivalent to the following polynomial: 
 

10011 ��  1 + X + X4  
 
The bit at the zero position (the coefficient of X0) is equal to 1, the bit at the first 
position (the coefficient of X) is equal to 1, the bit at the second position (the 
coefficient of X2) is equal to 0, and so on. 

 

3.3.3. Extensions to the Binary Field – GF(2
m

) 
 
As was mentioned, finite fields can also be created where the number of elements is 
an integer power of any prime number p. 

Let us suppose that we wish to create a finite field GF(q) and that we are 
going to take a primitive element of the field and assign the symbol α to it. The 
powers of α, α0 to αq–2, (q – 1) terms in all, form all the non-zero elements of the 
field. The element αq–1

 will be equal to α0, and higher powers of α will merely repeat 
the lower powers found in the finite field. In order to know how to add the powers of 
alpha, the best to understand this is to examine the case, where q = 2m (m is an 
integer). 
 For the field GF(2m) we know that 
 

12 −m

α  = α0 = 1 
 
Since in GF(2m) algebra, plus (+) and minus (–) are the same, the last one can be 
represented as follows: 
 

12 −m

α  + 1 = 0 
 

This will be satisfied if any of the factors of this polynomial are equal to zero. The 
factor that we choose here should be irreducible, and should not be a factor of 
(αn + 1) for any value of n less than (2m

 – 1); otherwise, alpha will not be primitive. 
Any polynomial that satisfies these properties is called a primitive polynomial, and it 
can be shown that there will always be a primitive polynomial and thus there will 
always be a primitive element. Moreover, the degree of the primitive polynomials for 
GF(2m) is always m. 

Now consider an example, where the field is GF(23). The factors of (α7 + 1) 
are 
 

α7 + 1 = (α  + 1)(α3 + α  + 1)(α3 + α2 + 1) 
 

Both the polynomials of degree 3 are primitive and so we choose, arbitrarily, the first, 
constructing the powers of a subject to the condition 
 

α3 + α  + 1 = 0 (3.3.2) 
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or 
 

α3 = –1 – α 
 
Since in GF(2m), +1 = –1, α3 can be represented as follows: 
 

α3 = 1 + α 
 

So the other non-zero elements of the field are now found to be 
 

α4  = α ⋅ α3  = α ⋅ (1 + α) = αααα + αααα2  

α5 = α ⋅ α4  = α ⋅ (α + α2) = α2  + α3  = α2  + (1 + α) = 1 + αααα + αααα2
 

α6  = α ⋅ α5  = α ⋅ (1 + α + α2) = α + α2 + α3 = 1 + αααα2  

α7 = α ⋅ α6  = α ⋅ (1 + α2) = α + α3  = 1 = αααα0  

 
Note that α7 = α0, and therefore the eight finite field elements (2m = 23 = 8) of 
GF(23), generated by (3.3.2), are {0, α0, α1, α2, α3, α4 , α5, α6}. Here we notice that 
each new power of alpha is α times the previous power of alpha. 

In general, extended Galois fields of class GF(2m) possess 2m elements, where 
m is the symbol size, that is, the size of an element (in bits). For example, in ADSL 
systems, the Galois field is always GF(28) = GF(256), where m = 8 (is fixed number). 
It is generated by the following primitive polynomial: 
 

1 + X2  + X3  + X4  + X8  (3.3.3) 
 
Due to the one-to-one mapping that exists between polynomials over GF(2) and 
binary numbers, the field elements of GF(28) are representable as binary numbers of 
eight bits each, that is, as bytes. The following section illustrates this with GF(23). 

In order to implement GF(2m) in software or hardware, the field elements can 
be represented by the contents of a binary Linear Feedback Shift Register (LFSR) 
formed from a primitive polynomial, see [10] or [11]. In our case, α is set to 2 to 
generate the field elements of GF(28) by means of (3.3.3). 

 

3.3.4. Representation of Finite Field Elements 
 
Let α be a primitive element of GF(23) such that the primitive polynomial 
 

p(α) = α3 + α  + 1 = 0 
 

The following table shows three different ways to represent elements in GF(23): 
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Power Polynomial 
Vector 

α 2α 1α 0 

– 0 0 0 0  
1 1 0 0 1  
α  α  0 1 0  
α 2 α 2 1 0 0  
α 3 1 + α  0 1 1  
α 4 α  + α 2 1 1 0  
α 5 1 + α  + α 2 1 1 1  
α 6 1 + α 2 1 0 1  

 

Table 3.3.3: Different representations of GF(2
3
) elements. 

The first column of Table 3.3.3 represents the powers of α. The second column shows 
the polynomial representation of the field elements. This polynomial representation 
was obtained in the previous section. And the last column of Table 3.3.3 is the vector 
representation of the field elements, where the coefficients of α2

, α1
 and α0, taken 

from the second column, are represented as binary numbers. A one-to-one 
correspondence between any binary number and a polynomial was explained in 
Section 3.3.2.1. 

Such representations of finite field elements are used to implement Galois 
field arithmetic. For example, when adding elements in GF(2m), the vector (binary) 
representation is the most useful, because a simple XOR operation is needed. 
However, when elements are going to be multiplied, the power representation is the 
most efficient. Using the power representation, a multiplication becomes simply an 
addition modulo (2m

 − 1). The polynomial representation may be appropriate when 
making operations modulo a polynomial. 

 

3.3.5. GF(2
m

) Arithmetic Implementation 
 
An opportune way to perform both additions and multiplications in GF(2m) is to use 
two look-up tables (antilog and log), with different interpretations of the address. This 
allows one to change between power representation and polynomial (vector) 
representation of an element of GF(2m). 
 The antilog table A(i) is used when performing additions. The table gives the 
value of a binary vector, represented as an integer in natural representation, A(i), that 
corresponds to the element α i. The log table L(i) is useful when performing 
multiplications. This table gives the value of a power of alpha, αL(i), that corresponds 
to the binary vector represented by the integer i. The relation between A(i) and L(i) is 
expressed as: 
 

αL(i) = A(i) (3.3.4) 
 
Now let’s form the antilog and log tables from Table 3.3.3, where α7 = 1. The 
corresponding log and antilog tables are the following: 
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Element, 

αααα i 

Address, 

i 

Antilog table, 

A(i) 

Log table, 

L(i) 

α 0 0 1 –1 
α 1 1 2 0 
α 2 2 4 1 
α 3 3 3 3 
α 4 4 6 2 
α 5 5 7 6 
α 6 6 5 4 
– 7 0 5 

 

Table 3.3.4: The log and antilog tables formed from Table 3.3.3. 

With obtained tables, Galois field addition is easy to implement both in software and 
hardware, as it is the same as modulo-2 addition (XOR operation). Consider the 
computation of an element γ  = α3 + α5. Using the antilog table, the computation of γ  
proceeds as follows: 
 

A(3) ⊕ A(5) = 3 ⊕ 7 = (011)2 ⊕ (111)2 = (100)2 = 4, where L(4) = 2  ⇒  α2 
 
where ⊕ is the XOR operation and (…)2 represents a binary number. Besides, it is not 
difficult to perform multiplication. For instance, let’s calculate the expression γ  = 
2 ⋅ 6. The result is 
 

γ  = A(L(2) + L(6)) = A(1 + 4) = A(5) = 7 
 
A zero element, which does not appear in the table, deserves special attention in the 
GF(2m) arithmetic implementation. 
 
 

3.4. Reed-Solomon Encoding 
 
The key to the RS encoding is to view the symbols of the message that is to be 
encoded as if they are the coefficients of a polynomial. As was described previously, 
when the RS encoder receives an information sequence, it creates encoded blocks 
consisting of n = (2m

 – 1) symbols each, where m is the symbol size in bits. The 
encoder divides the information bit sequence into message blocks of k = (n – 2t) 
symbols. Each message block is equivalent to a message polynomial of degree k – 1, 

denoted as 
 

1
1

2
210 ...)( −

−++++= k

k XmXmXmmXm  

 
where the coefficients m0, m1, … , mk–1 of the polynomial m(X) are the symbols of a 
message block. Moreover, these coefficients are elements of GF(2m). So the 
information sequence is mapped into an abstract polynomial by setting the 
coefficients equal to the symbol values. 
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Consider the Galois field GF(28), so the information sequence is divided into symbols 
of eight consecutive bits each (Figure 3.4.1). The first symbol in the sequence is 
00000001. In the power representation, 00000001 becomes α0 ∈ GF(28). Thus, α0 
becomes the coefficient of X 0

. The second symbol is 00000100, so the coefficient of 
X

1
 is α2. The third symbol is 11111101, so the coefficient of X 2

 is α80 and so on. 
 

 
 

Figure 3.4.1: The information bit sequence divided into symbols. 

 
The corresponding message polynomial is ...)( 28020 +++= XXXm ααα . 

 

3.4.1. Systematic Encoding 
 
The encoding of RS codes is performed in systematic form. In systematic encoding, 
the encoded block (codeword) is formed by simply appending parity (or redundant) 
symbols to the end of the k-symbols message block, as shown in Figure 3.4.2. In 
particular, codeword’s k-symbols message block consists of k consecutive 
coefficients of a message polynomial, and 2t parity symbols are the coefficients (from 
GF(2m)) of a redundant polynomial. 
 

Figure 3.4.2: A codeword is formed from message and parity symbols. 

Applying the polynomial notation, we can shift the information into the leftmost bits 
by multiplying by X 2t

, leaving a codeword of the form 
 

)()()( 2
XpXmXXc

t +=  (3.4.1) 
 
where c(X) is the codeword polynomial, m(X) is message polynomial and p(X) is the 
redundant polynomial. 
 The parity symbols are obtained from the redundant polynomial p(X), which is 
the remainder obtained by dividing X 2t

m(X) by the generator polynomial, which is 
expressed as 
 

)(mod))(()( 2
XgXmXXp

t=  (3.4.2) 
 

k message symbols 2t parity symbols 

Codeword of length n = k + 2t 
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So, a RS codeword is generated using a generator polynomial, which has such 
property that all valid codewords (i.e., not corrupted after transmission) are exactly 
divisible by the generator polynomial. The general form of the generator polynomial 
is: 
 

))...()()(()( 232 t
XXXXXg αααα ++++=  

= tt

t XXgXgXgg
212

12
2

210 ... +++++ −
−  

(3.4.3) 

 
where α is a primitive element in GF(2m), and g0, g1, … , g2t–1 are the coefficients 
from GF(2m). The degree of the generator polynomial is equal to the number of parity 
symbols. Since the generator polynomial is of degree 2t, there must be precisely 2t 

consecutive powers of α that are roots of this polynomial. We designate the roots of 
g(X) as α, α2, … , α2t. It is not necessary to start with the root α, because starting 
with any power of α is possible. The roots of a generator polynomial, g(X), must also 
be the roots of the codeword generated by g(X), because a valid codeword is of the 
following form: 
 

)()()( XgXqXc =  (3.4.4) 
 
where q(X) is a message-dependent polynomial. Therefore, an arbitrary codeword, 
when evaluated at any root of g(X), must yield zero, or in other words 
 

0)()( == i

valid

i
cg αα , where i = 1, 2, … , 2t (3.4.5) 

 

3.4.2. Implementation of Encoding 
 
A general circuit for parity calculation in encoder for RS codes is shown in Figure 
3.4.3. 
 

 
 

Figure 3.4.3: LFSR encoder for a RS code. 

It’s a linear feedback shift register (LFSR) circuit, or sometimes called, division 

circuit, where 
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Denotes an adder that adds two elements from GF(2m). 

 

Denotes a multiplier that multiples a field element from 
GF(2m) by a fixed element gi from the same field, where gi 
(i = 0, 1, … , 2t–1) is the coefficient of a given generator 
polynomial. 

 

Denotes a storage device (m-bits register) that is capable 
of storing a filed element pi from GF(2m), where pi (i = 0, 
1, … , 2t–1) is the coefficient of a redundant polynomial. 

 
After the information is completely shifted into the LFSR input, the contents of the 
registers form the parity symbols. Notice that the arithmetic operators carry out finite 
field addition or multiplication on complete symbols. For more information, see [8] or 
[11]. 
 
 

3.5. Reed-Solomon Decoding 
 
When a received codeword is fed to the RS decoder at the receiver for processing, the 
decoder first tries to verify whether this codeword appears in the dictionary of valid 
codewords. If it does not, errors must have occurred during transmission over a 
communication channel. This part of the decoder processing is called error detection. 
If errors are detected, the decoder attempts a reconstruction. This is called error 

correction. 
Figure 3.5.1 shows the block diagram of a decoder for RS codes. The decoder 

consists of digital circuits and processing elements to accomplish the following tasks: 
 

� Compute the syndromes; 

� Find the coefficients of the error-location polynomial σ(X). 

� Find the inverses of the roots of σ(X), that is, the locations of the errors; 

� Find the values of the errors; 

� Correct the received codeword with the error locations and values found. 

 

 
 

Figure 3.5.1: Architecture of a RS decoder with GF(2
m
) arithmetic. 
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3.5.1. Syndrome Calculation 
 
The syndrome accumulate is the first step in the RS decoding process. This is done to 
detect if there are any errors in the received codeword. 
 After encoding a given message, the codeword polynomial 
 

1
110 ...)( −

−+++= n

n XcXccXc  

 
is transmitted and affected by noise, and converted into a received polynomial r(X): 
 

1
110 ...)( −

−+++= n

n XrXrrXr  

 
which is related to the error polynomial e(X) and the codeword polynomial c(X) as 
follows: 
 

)()()( XeXcXr +=  (3.5.1) 
 
where the error pattern e(X) added by the channel is expressed as 
 

1
110 ...)()()( −

−+++=−= n

n XeXeeXcXrXe  

 
where ei = ri – ci is a symbol from GF(2m). 

From Expression (3.4.4) it can be seen that every valid codeword polynomial 
c(X) is a multiple of the generator polynomial g(X). Therefore, the roots of g(X) must 
also be the roots of c(X). Since r(X) = c(X) + e(X), then r(X) evaluated at each of the 
roots of g(X) should yield zero only when it is a valid codeword. Any errors will 
result in one or more of the computations yielding a non-zero result. So the 
computation of a syndrome symbol can be described as follows: 
 

)( i

i rS α= , i = 1, 2, … , 2t (3.5.2) 
 
where α, α2, α3, … , α2t are the roots of g(X). If r(X) were a valid codeword, it would 
cause each syndrome symbol Si to equal 0, or, if one or more syndromes are non-zero, 
errors have been detected. 
 The syndrome computation can be accomplished with a division circuit [8], 
shown in Figure 3.5.2. 
 

 
 

Figure 3.5.2: Syndrome computation circuit for RS codes over GF(2
m
). 
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3.5.1.1. Error Locations and Error Values 
 
Let us assume that the error polynomial e(X) contains v ≤ t non-zero elements, which 
means that during transmission v errors occurred, placed at positions 1jX , 2jX , … , 

vjX , where 0 ≤ j1 < j2 < ⋅ ⋅ ⋅  < jv ≤ (n – 1). Then 
 

v

v

j

j

j

j

j

j XeXeXeXe +++= ...)( 2

2

1

1
 

 
The indices 1, 2, … ν refer to the first, second, …, ν th errors, and the index j refers to 
the error location. Hence, to correct the corrupted codeword, we need to determine 
e(X), or in other words, we need to determine the error locations ijX  and the error 
values 

ij
e . 

Let us now define the error-location number as 
 

lj

l αβ = , where l = 1, 2, 3, … , v 

 
Next, the 2t syndrome symbols are obtained by substituting α i  into the received 
polynomial for i = 1, 2, … , 2t: 
 

vjjj v
eeerS βββα +++== ...)( 211 21

 
22

2
2

1
2

2 ...)(
21 vjjj v

eeerS βββα +++==  

M  
t

vj

t

j

t

j

t

t v
eeerS

22
2

2
1

2
2 ...)(

21
βββα +++==  

(3.5.3) 

 
In Expression (3.5.3), there are 2t unknowns (t error values and t locations), and 2t 

simultaneous equations. However, these 2t simultaneous equations cannot be solved 
in the usual way because they are non-linear (as some of the unknowns have 
exponents). Any technique that solves this system of equations is known as a Reed-

Solomon decoding algorithm, since solving the system of equations (3.5.3) constitutes 
the most computationally intensive operation in decoding RS codes. According to the 
limitations of the project (Section 1.4), we consider only the two commonly used RS 
decoding algorithms: 
 

1. Berlekamp-Massey algorithm. This is a computationally efficient method in 
terms of the number of operations in GF(2m); 

2. Euclidean algorithm. This one is less efficient, but tends to be more widely 
used in practice because it is easier to implement [10]. 

 
Notice that all the elements involved in the computation of (3.5.3) belong to a Galois 
field, and so the operations of addition and multiplication are also done over GF(2m). 
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3.5.2. Berlekamp-Massey Algorithm 
 
If an error has been received, first of all it is necessary to learn the location of the 
error(s). The syndrome equations in (3.5.3) can be translated into a series of linear 
equations by defining the error-location polynomial: 
 

)1)...(1)(1()( 21 XXXX vβββσ +++=  

= 1 + σ1X  + σ2X
2  + … + σvX

v  (3.5.4) 

 
The roots of σ(X) are 1/β1, 1/β2, … , 1/βν. The reciprocal of the roots of σ(X) are the 
error-location numbers of the error pattern e(X). Note that σ(X) is an unknown 
polynomial whose coefficients must be determined. The Berlekamp-Massey 
algorithm basically consists of finding the coefficients of the error-location 
polynomial σ(X). 

The coefficients of σ(X) and the error-location numbers are related by the 
following equations: 
 

vv

v

ββββββσ

βββσ

σ

132212

211

0

...

...

1

−+++=

+++=

=

 

M  

vv βββσ L21=  

(3.5.5) 

 
This set of equations is known as the elementary symmetric functions and is related to 
the system of equations (3.5.3), where error values are assumed to have unit 
magnitude to keep the following equations simple to understand. This relation is 
 

0

0

0

312213

112

11

=+++

=+

=+

σσσ

σ

σ

SSS

SS

S

 

M  

0... 12111 =++++ −+ SSSS vvvv σσσ  

(3.5.6) 

 
where Si are the syndrome symbols. These equations are called Newton’s identities. 
The Berlekamp-Massey algorithm is an iterative way to find a minimum-degree 

polynomial that satisfies the Newton’s identities. The minimum-degree polynomial 
φ i(X) of an element α i  ∈ GF(2m) is the smallest degree polynomial that has α i  as a 
root. This is the same as to say that φ i(α

i) = 0. 
 The algorithm proceeds as follows: The first step of iteration is to determine a 
minimum-degree polynomial σ1(X) whose coefficients satisfy the first Newton’s 
identity described in (3.5.6). Then the second Newton’s identity is tested, that is, if 
the polynomial σ1(X) also satisfies the second Newton’s identity in (3.5.6), then 
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σ2(X) = σ1(X). Otherwise, the decoding procedure adds a correction term to σ1(X) in 
order to form the polynomial σ2(X), which able to satisfy the first two Newton’s 
identities. This procedure is subsequently applied to find σ3(X) and the following 
polynomials, until determination of the polynomial σ2t(X) is complete. Once the 
algorithm reaches this step, the polynomial σ2t(X) is adopted as the error-location 
polynomial σ(X), that is, σ(X) = σ2t(X), since this last polynomial satisfies the whole 
set of Newton’s identities of (3.5.6). After the determination of the error-location 
polynomial, the roots of this polynomial are calculated by applying the Chien search. 
 If the degree of σ(X) obtained by the Berlekamp-Massey algorithm exceeds t, 
this indicates that more than t errors have occurred and the codeword is therefore not 
correctable. 

The summary of the iterative steps of the Berlekamp-Massey algorithm can be 
found in [8] or [10]. 

 

3.5.3. Euclidean Algorithm 
 
We have seen that the Berlekamp-Massey algorithm can be used to construct the 
error-location polynomial. In this section, we show that the Euclidean algorithm can 
also be used to construct error-location polynomials. 

The Euclidean algorithm is a recursive technique to find the Greatest Common 

Divisor (GCD) between two polynomials (or integers). A common divisor g > 0 such 
that every common divisor of a and b divides g is called the greatest common divisor 
(GCD) and is denoted by (a, b). For polynomials, if either a(X) or b(X) is not zero, the 
common divisor g(X) such that every common divisor of a(X) and b(X) divides g(X) 
is referred to as GCD of a(X)  and b(X) and is denoted by (a(X), b(X)). 
 The main idea of the Euclidean algorithm is that it works by simple repeated 
division: Starting with two numbers, a and b, divide a by b to obtain a remainder. 
Then divide b by the remainder, to obtain a new remainder. Proceed in this manner, 
dividing the last divisor by the most recent remainder, until the remainder is 0. Then 
the last non-zero remainder is the greatest common divisor (a, b). 
 The Euclidean algorithm for decoding RS codes is established with the help of 
the following theorem: If g = (a, b) then there exist integers s and t such that 
 

g = (a, b) = as + bt 

 
For polynomials, if g(X) = (a(X), b(X)), then there are polynomials s(X) and t(X) such 

that 
 

g(X) = a(X)s(X) + b(X)t(X) (3.5.7) 
 
So the Euclidean algorithm in RS decoding computes g(X) = (a(X), b(X)) and also 
s(X) and t(X), and is sometimes called the extended Euclidean algorithm. 

Coming back to the decoding of RS codes, we are able to re-write (3.5.7) in 
the following form: 
 

)()()()( 2
XXSXXX

t σµ +=Λ  (3.5.8) 
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where Λ(X) is called the error-evaluation polynomial and plays the role of g(X) in 
(3.5.7), X2 t

 plays the role of a(X), µ(X) is some polynomial and plays the role of s(X), 
the syndrome polynomial S(X) plays the role of b(X), and the error-location 
polynomial σ(X), which is what we want to know, plays the role of t(X). 

The error-evaluation polynomial Λ(X) is expressed as 
 

t
XXSXX

2mod))()(()( σ=Λ  (3.5.9) 
 
The syndrome polynomial S(X) is described as 
 

12
2

2
321 ...)( −++++= t

t XSXSXSSXS  (3.5.10) 
 
where S1 , S2 , S3 , … , S2 t  are the syndrome symbols calculated as (3.5.2). 

Now keeping in mind that (3.5.8) in our case is equivalent to (3.5.7), let’s 
explain the steps of the extended Euclidean algorithm with the notation of (3.5.7). 
The following explanation is extracted from [7]. 
 The algorithm involves repeated division of polynomials until a remainder of 
degree < t is found. In order to perform this division, the long division technique is 
used. 

The first step is to divide a(X) by b(X) to find the quotient q1(X) and remainder 
r1(X), such that: 
 

)()()()( 11 XrXbXqXa +=  (3.5.11) 
 
If the degree of r1(X) is less than t, then we have reached our solution with s(X) = 1, 
t(X) = q1(X) and g(X) = r1(X). Otherwise, set t1(X) = q1(X) and proceed to the next 
stage. 

The second step is to divide b(X) by r1(X) giving 
 

)()()()( 212 XrXrXqXb +=  (3.5.12) 
 
Note that the degree of r2(X) must be less than that of r1(X) so that this process is 
reducing the degree of the remainder. If we eliminate r1(X) from Equations (3.5.11) 
and (3.5.12) we obtain 
 

)()(]1)()([)()( 2122 XrXbXtXqXaXq ++=  (3.5.13) 
 
Set t2(X) = q2(X)t1(X) + 1. If the degree of r2(X) is less than t, then t(X) = t2(X); 
otherwise, continue to the next step. 
 The third step continues in similar way, dividing r1(X) by r2(X): 
 

)()()()( 3221 XrXrXqXr +=  

 
Again the degree of the remainder is decreasing. Using Equations (3.5.12) and 
(3.5.13) to eliminate r1(X) and r2(X), gives 
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)()()]()()([)()]()(1[ 323132 XrXbXtXqXtXaXqXq ++=+  

 
If the degree of r3(X) is less than t, then t(X) = t3(X) = q3(X)t2(X) + t1(X). 
 The method continues in this way until a remainder of degree less than t is 
found, at each stage i = (1, 2, …) setting 
 

)()()()( 21 XtXtXqXt iiii −− +=   with {t0(X) = 1, t–1(X) = 0} (3.5.14) 
 
So the last calculated t i(X) corresponds to the desired error-location polynomial σ(X) 
in (3.5.8). Roots of the polynomial σ(X) can be obtained by using the Chien search, as 
described in the following section. 

 

3.5.4. Chien Search 
 
The next step in the RS decoding process is to find the roots of the determined error-
location polynomial σ(X), which is a polynomial whose roots are constructed to be 
the reciprocal of the locations where the errors occurred. There is no closed form 
solution for solving for the roots of σ(X). Since the root obviously has to be one of the 
elements of the field GF(2m), an exhaustive search by substituting each of the finite 
field elements in the error-location polynomial σ(X) and checking for the condition 
σ(α i) = 0 is the only way out. The Chien search is an effective algorithm to do this 
exhaustive search in an efficient manner. 
 Suppose, for example, that v = 3 and the error-location polynomial is 
 

σ(X) = 1 + σ1X  + σ2X
2  + σ3X

3  
 
We evaluate σ(X) at each non-zero element in GF(2m) in succession: 
 

X = 1,  α=X ,  2α=X ,  …  ,  X = 22 −m

α  
 
This gives us the following: 
 

3
3

2
21 )1()1()1(1)1( σσσσ +++=  

3
3

2
21 )()()(1)( ασασασασ +++=  
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3
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2
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2
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1
22 )()()(1)( −−−− +++=

mmmm

ασασασασ  

 
If in the above performed substitutions we obtain σ(α i) = 0, then the exponent of the 
inverse of the root α i is equal to the error-location index i. 
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3.5.5. Forney Algorithm 
 
Having found the error-location polynomial and its roots, there is still one more step 
in the RS decoding: we have to find the error values. In general, this is done using the 
Forney algorithm, where the error value at location lj

l αβ =  (1 ≤ l ≤ v) for a RS code 

is computed by 
 

)(

)(
1

1

−

−

′

Λ
=

l

l
jl

e
βσ

β
 (3.5.15) 

 
where Λ(X) is the error-evaluation polynomial, described as (3.5.9), and σ′(X) is the 
formal derivative of the error-location polynomial σ(X) with respect to X. It turns out 
that the derivative of any polynomial in the finite filed is simple to compute as odd 
powers can be zeroed out and even powers shifted down by one. This enables easy 
computation of the error values. 
 So having found the error locations and error values, we finally can form the 
error polynomial e(X) and correct the received polynomial r(X) just by adding (with 
XOR operation) these two polynomials together, as shown in Figure 3.5.1. 
 
 

3.6. Summary 
 
This chapter summarized the essence of RS codes and provided background 
information on finite fields known as Galois fields (the codes are based on the use of 
Galois field arithmetic). Furthermore, this chapter introduced the general concept of 
Galois field arithmetic implementation. Finally, the principles of RS encoding and 
decoding were explained. With RS decoding, the two commonly used RS decoding 
algorithms were presented: Berlekamp-Massey and Euclidean decoding algorithms. 
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PPeerrffoorrmmaannccee  EEvvaalluuaattiioonn  ooff  

RReeeedd--SSoolloommoonn  CCooddeess  
 
 
Before a real-time implementation is initiated, it is very helpful to perform a 
simulation of the given system: when the system is simulated and the practical 
performance is obtained, it is necessary to compare the obtained performance with the 
theoretical one to ensure that the system at hand works correctly. However, in order 
to simulate a particular system, first of all a model of that system should be 
developed. 
 This chapter introduces the conceptual modeling and simulation of Reed-
Solomon (RS) codes used in ADSL. Moreover, the simulation results are compared 
with the theoretical performance of RS codes. Finally, a decision on which RS code 
to use in its further implementation on the target architectures is made. 
 
 

4.1. Theoretical Performance of Reed-Solomon Codes 
 
According to the standard decoding algorithm of RS code, if the number of symbol 
errors in the received codeword is not larger than t (error correcting capability), the 
decoder can correct all of them. When the number of symbol errors is larger than t, 
the decoder either provides a mis-decoding result or declares decoding failure and 
passes the (uncorrectable) codeword unchanged. The concept of mis-decoding is 
described in Section 4.1.4. 

 

4.1.1. Code Rate 
 
The code rate of a code is given by: 
 

code rate = r = 
n

k
 (4.1.1) 
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where k is the number of information (message) symbols per codeword, and n is total 
number (information + redundancy) of code symbols per codeword. This definition 
holds for all codes whether RS codes or not. 
 Lower rate codes, characterized by small values of r, can generally correct 
more channel errors than higher rate codes and are thus more energy efficient. 
However, higher rate codes are more bandwidth efficient than lower rate codes, 
because the amount of overhead (in the form of parity symbols) is lower. Thus there 
is a trade-off between energy efficiency and bandwidth efficiency. 

 

4.1.2. Reed-Solomon Performance as a Function of Code Size 
 
For a code to successfully manage the effects of noise, the noise duration has to 
represent a relatively small percentage of the codeword. To ensure that this happens 
most of the time, the received noise should be averaged over a long period of time. 
Hence, error-correcting codes become more efficient (performance improves) as the 
codeword size increases (keeping the constant code rate). This is seen by the family 
of curves in Figure 4.1.1, where the code rate is held at a constant (k / n) = 0.92, while 
its codeword size increases from n = 51 symbols to n = 255 symbols (with m = 8 bits 
per symbol). Here, the codes with n < 255 are the shortened codes. On the other hand, 
as the codeword size increases (keeping the same code rate), the implementation of 
RS codes grows in complexity. 
 

 
 

Figure 4.1.1: Performance curves for different RS codes of rate 0.92. The shown 

RS codes are from the typical range, which can be found in the literature. 

Figure 4.1.1 presents the RS code performance in terms of PUE and channel bit error 
rate (BER), where PUE is the probability of an uncorrectable error, i.e., is the ratio of 
the number of uncorrectable codewords to the total number of received codewords, in 
the limiting case where the number of codewords received becomes large. Assuming 
that the symbol errors are independent and that no erasure information is available, 
the probability of an uncorrectable error for RS codes can be expressed as: [12] 
 



Analyzing and Implementing a Reed-Solomon Decoder for Forward Error Correction in ADSL 

 

 47 

in

SE

i
t

i

SE

i

nUE PPCP
−

=

−−= ∑ )1()(1
0

 (4.1.2) 

 
where n is the number of symbols per codeword, i

nC  is the binomial coefficient, and 

PSE is the channel symbol error rate. The binomial coefficient is evaluated as 
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PSE is the probability that the channel will change a symbol during the transmission of 
the message. Under the assumption of purely random bit errors, we can write: [12] 
 

m

BSE PP )1(1 −−=  

 
where m is the number of bits per symbol, and PB is the channel BER. 

In general, RS codes perform better as the bit error pattern becomes less 
random. The formulas presented in this section generally predict larger error 
probabilities than will be encountered with correlated or burst-type error patterns. 

 

4.1.2.1. Selection of Reed-Solomon Codeword Size 
 
Now taking into account that in our case the structure of RS codes can be as complex 
as required to achieve the highest available bit-error performance (according to the 
system requirements described in Section 1.5), and taking into account that the size of 
codewords should be fixed (according to the system constraints described in Section 
1.4), we select the maximum RS codeword size supported by ADSL, that is, n = 255 
symbols per codeword. As we see in Figure 4.1.1, the performance curve for the 
RS(255, 235) code, where n = 255, provides the best result in terms of BER and 
uncorrectable error as compared with other curves. So, a class of RS(255, k) codes is 
selected for its further analysis, simulation and implementation. 

 

4.1.3. Reed-Solomon Performance as a Function of 

Redundancy 
 
As we know from Chapter 2, on the transmitter side a forward error correcting (FEC) 
encoder adds redundancy to the data in the form of parity information. Then at the 
receiver a FEC decoder is able to exploit the redundancy in such a way that a 
reasonable number of channel errors can be corrected. In general, an RS decoder can 
detect and correct up to t incorrect symbols in a received codeword if there are 2t 
redundant symbols in the encoded message. Hence, the higher redundancy is (lower 
code rate), the more erroneous symbols can be corrected in a codeword, resulting in 
better bit-error performance. However, as the redundancy of a RS code increases, its 
implementation grows in complexity. Also, the bandwidth expansion must grow for 
any real-time communications application. 
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The curves in Figure 4.1.2 depict the probability of uncorrectable error PUE for a 
codeword size n fixed to 255, and t varying from 1 to 8 (what is supported by ADSL), 
as a function of the channel BER. 
 

 
 

Figure 4.1.2: RS(255, 255-2t) code performance as a function of redundancy. 

Notice that for BER below 10–2, the curve with t = 8 (Figure 4.1.2) exhibits a very 
steep slope. This is characteristic for good codes. This steep slope is preferred for data 
communications, since large improvements in output PUE are possible for small 
improvements in input BER. [12] 

 

4.1.4. Mis-decoding 
 
“Mis-decoding” is the name given to a wrong error detection and correction (EDAC) 
operation. In mis-decoding the received codeword contains a combination of errors 
such that the decoder misinterprets the situation and performs a mistaken correction 
(a “mis-decode”), which yields a totally wrong message codeword at the receiver. 
 From Section 3.2 we know that the simultaneous RS error-correction and 
erasure-correction capability can be expressed as 
 

2nerrors + nerasures  ≤ 2t (4.1.3) 
 
where nerrors is the number of errors with an unknown location, and nerasures is the 
number of errors with known locations (erasures). So the RS algorithm guarantees to 
correct a codeword, if the condition (4.1.3) is true. But if there are so many errors that 
this condition is not met, one of two situations occurs: 
 

1. The error is properly detected by the decoder and becomes a detected error 
(decoding failure is declared), or 

2. The erroneous message appears to the decoder as a correctable error and the 
error is corrected to the wrong codeword and becomes a decoding error (this is 
a mis-decoding). 
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In order to handle the second situation, an additional error detection operation is 
required, such as CRC, which was described in Section 2.2.3.1. 

For a reasonably high value of t (≥8) and n ≥ 5t, the probability of mis-
decoding is much smaller than that of decoding failure, and hence, can be ignored 
[13]. In such case, due to the excellent error detection capability of a RS code, no 
additional operation, such as CRC, is required for error detection. 
 
 

4.2. Simulation of Reed-Solomon Codes 
 
Before the practical implementation on the target architecture is initiated, it is 
necessary to perform a simulation of the given system to verify its functionality. 
In order to simulate a particular system, first of all a model of that system should be 
developed. 

 

4.2.1. FEC Model 
 
A system model tries to mimic some properties of a system. In order to model the 
static and dynamic properties of a system in a structured way, we supplement the 
mathematical framework by the notion of system models. A system model 
characterizes an abstract view of the systems under development. A system model 
both describes the static structure of its components and their behavior over time. 
 Our model corresponds to the FEC communication scheme, which is based on 
a RS error-control code, and illustrated in Figure 4.2.1. 
 

 
 

Figure 4.2.1: FEC model based on a RS code. 

The behavior of each block of the model, shown in Figure 4.2.1, is described in C 
programming language. The corresponding source code can be found in the enclosed 
CD of the report. A short description of each block is presented below: 
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• Reed-Solomon encoder/decoder (RS codec): 

 
The RS codec has three parameters, which can be modified: 
 

1. m = the number of bits per symbol; 

2. n = the codeword size in symbols; 

3. red = the number of redundant symbols. 

 
The Berlekamp-Massey algorithm is a popular choice to simulate RS decoders in 
software, because it is very efficient in terms of the number of GF(2m) operations. It 
must be noted that the Berlekamp-Massey algorithm is more efficient (in terms of 
operations) than the Euclidean algorithm [10]. Therefore, the Berlekamp-Massey 
algorithm is used in our model (Figure 4.2.1) to be simulated. 
 

• BPSK modulation/demodulation: 

 
As we know from Section 3.2.1, when a RS decoder corrects a symbol, it replaces the 
incorrect symbol with the correct one, whether the error was caused by one bit being 
corrupted or all symbol bits being corrupted. Thus, in case of simulation, it is not 
necessary to transmit all symbol bits over the channel. It is enough to transmit only 
one symbol bit and disturb it by the effects of the channel, since the simulation results 
will be the same whether we corrupt only one or all symbol bits. In such case, we 
obtain binary transmission over the channel. 

 With binary transmission, it is convenient to use a binary modulation. In our 
model (Figure 4.2.1), a Binary Phase Shift Keying (BPSK) modulation [14] is used, as 
it is easy to implement: in BPSK modulation, each data bit is transformed into a 
separate channel symbol (real amplitude): if the binary data value is 1, the channel 
symbol is –1, and if the binary data value is 0, the channel symbol is +1. 

 As mentioned in Section 2.1, the frequency at which bit errors occur at the 
output of the FEC decoder is a measure of the demodulator-decoder performance. 
This is valid when multilevel modulation [14] is used. With binary modulation, the 
frequency at which bit errors occur is a measure only of the decoder performance. 
Thus, using BPSK modulation, the simulation results in our case will depend only on 
the RS decoder performance. 
 

• AWGN channel: 

 
Coding performance curves are regularly shown for the AWGN channel. There are 
two reasons why this is so. First, burst-error mechanisms are often badly understood 
and there may be no generally accepted models that fit the real behaviour. The other 
reason is that most codes in use are primarily designed for random error channels (the 
only important codes where this is not the case are RS codes). For that reason, the 
AWGN channel is accepted as the basic model for a digital communication channel 
and therefore used as a standard channel model in our case. 

With the given model to be simulated (Figure 4.2.1), the data is transmitted 
over the AWGN channel, shown in Figure 4.2.2. 
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Figure 4.2.2: AWGN channel. 

In the AWGN channel, the transmitted signal s(t) gets disturbed by a simple additive 
white Gaussian noise (random noise) process n(t), and the received signal r(t) is given 
by 
 

r(t) = s(t) + n(t) 
 
As RS codes are particularly designed for correcting burst errors (but not random 
errors), the worst bit-error performance of RS codes can be evaluated when using the 
AWGN channel. 

 

4.2.2. FEC Model Simulation 
 
After a model is developed, it should be verified to ensure that its functionality is 
proper. It can be done by using a simulation mechanism. The main goal of simulation 

is to further the understanding of model algorithms and data structures inductively, 
based on observations of an algorithm in operation. 
 

4.2.2.1. Simulation Results 
 
In order to simulate the FEC model, shown in Figure 4.2.1, the RS codec parameters 
are set to: 
 

� m = 8; 

� n = 255; 

� red (the number of redundant symbols) = 2, 4, 6, 8, 10, 12, 14, 16 (what is 
supported by ADSL), and 32. 

 
The simulation results are depicted in Figure 4.2.3. From the simulation results, we 
observe that the performance of RS codes in terms of BER improves with the increase 
in redundancy. According to Section 4.1.3, this confirms the correctness of the model 
functionality. Furthermore, in Figure 4.2.3, we notice that the performance curves 
with t = 1…8 reach particular Eb/N0 values and then no longer have been improved 
in terms of BER. This indicates that the curves with t = 1…8 are not able to fully 
cope with the present noise level, that is, the error correcting capability of the 
corresponding RS codes is not high enough to correct all the errors introduced by the 
channel. The only way out is to greatly increase the transmitted signal power to 

 Transmitted 

signal 
s(t) 

Noise 

n(t) 

r(t) 

Received 

signal 
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reduce the non-desired effects of the channel. For example, the performance curve 
with t = 16 (Figure 4.2.3) is able to totally remove all the effects of the channel in 
received codewords starting at Eb/N0 of 13.5 dB. 
 

 
 

Figure 4.2.3: BER vs. SNR per bit (Eb /N 0) performance of RS(255, 255-red) 

for BPSK modulation, where red = 2t. 

 

4.2.3. Selection of Reed-Solomon Redundancy 
 
Now taking into account that in our case the structure of RS codes can be as complex 
as required to achieve the highest available bit-error performance (according to the 
system requirements described in Section 1.5), and taking into account that the 
number of redundant symbols should be fixed (according to the system constraints 
described in Section 1.4), we select the maximum RS redundancy supported by 
ADSL, that is, 2t = 16 redundant symbols per codeword. As we see in Figures 4.1.2 
and 4.2.3, the performance curves for the RS(255, 239) code, where 2t = 16, provide 
the best bit-error performance as compared with other curves. So, the RS(255, 239) 
code is selected for its further analysis and implementation on the target architectures. 
 

4.2.3.1. Advantages and Drawbacks of RS(255, 239) in ADSL 
 
The RS(255, 239) code is the most complex code in comparison with the other 
supported by ADSL RS codes, as the codeword size and redundancy of RS(255, 239) 
are the maximum available in ADSL. This certainly leads to high implementation 
complexity. However, we can takes several advantages of RS(255, 239) for ADSL: 
 

� The ADSL system is standardized to work at BER of 10–7 (utilizing both 
Trellis coding and RS FEC) [1]. As we see in Figure 4.2.3, the performance 
curve of RS(255, 239) almost reaches this BER in case of random noise (is the 
worst case for RS codes). It means that if Eb/N0, at which RS(255, 239) 
provides the best BER, is satisfied, Trellis coding in ADSL can be eliminated; 
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� With the RS(255, 239) code, the probability of mis-decoding is much smaller 
than that of decoding failure, and hence, can be ignored (see Section 4.1.4). In 
such case, the CRC operation in an ADSL modem can be eliminated. 

 
 

4.3. Summary 
 
This chapter introduced the conceptual modeling and simulation of the RS codes used 
in ADSL. Moreover, the simulation results were compared with the theoretical 
performance of RS codes to ensure that the system works correctly. Besides, 
according to the system constraints described in Section 1.4, and according to the 
system requirements described in Section 1.5, the RS(255, 239) code was selected 
over another from the simulation results for its further analysis and implementation 
on the target architectures. Finally, the advantages and drawbacks of RS(255, 239) for 
ADSL were presented. 
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AAllggoorriitthhmm  CChhaarraacctteerriizzaattiioonn  
 
 
As mentioned in Section 1.3, the main idea of algorithm characterization is to 
extract relevant information from the specification of an application (i.e., algorithm) 
to guide the designer towards an efficient algorithm-architecture matching. For this 
purpose, different metrics can be efficiently used to rapidly stress the proper 
architecture style for the given algorithm. Furthermore, these metrics can be properly 
combined in order to build a global metric able to suggest the most suitable type of 
architecture for the execution of an algorithm. 

To obtain a global metric, several subtasks should be performed: 1) an 
analysis of the available architectures to determine their relevant features; 2) the 
definition of a set of patterns able to identify subsets of the algorithm specification 
that could exploit the identified architectural features, and 3) the definition of a set of 
metrics able to provide meaningful indications useful to make design choices. Each of 
these subtasks is presented below in the current chapter. 
 
 

5.1. Architectural Features 
 
This section describes the analysis performed to detect the most relevant exploitable 
architectural features of the given processing elements (i.e., DSP and FPGA). 

 

5.1.1. DSP Architectural Features 
 
Digital Signal Processor (DSP) is a microprocessor specifically designed to handle 
digital signal processing (i.e., stream-based processing) tasks, such as filtering or 
correlation. Current DSPs, involving advanced addressing, efficient interfaces, and 
powerful functional units, such as fast multipliers and barrel shifters, provide superior 
performances in limited application spaces. Many DSP processors today employ an 
internal Harvard Architecture (the same for the given DSP, see Appendix B). The 
Harvard architecture uses different memories for their instructions and data, requiring 
dedicated buses for each of them. Hence, the architectural features included in the 
given DSP allow concurrent fetching of instructions and operands, concurrent 



Analyzing and Implementing a Reed-Solomon Decoder for Forward Error Correction in ADSL 

 

 56 

execution of arithmetic operations (e.g., sums and multiplications), fast management 
of loops, and fast access to sequential memory location (e.g., array). Further info can 
be found in [15], [16] and Appendix B. 

 

5.1.2. FPGA Architectural Features 
 
A Field-Programmable Gate Array (FPGA) is a large-scale integrated circuit that can 
be programmed after it is manufactured rather than being limited to a predetermined, 
unchangeable hardware function. The term “field-programmable” refers to the ability 
to change the operation of the device “in the field”, while “gate array” is a somewhat 
dated reference to the basic internal architecture that makes this after-the-fact 
reprogramming possible. An FPGA device, with its inherently scalable parallelism, 
can be used to implement just about any hardware design. The ability to manipulate 
FPGA logic at the gate level allows designers to create a custom processor that can 
efficiently implement exactly the function the application requires, simultaneously 
performing N application subfunctions in parallel. As N increases, the advantage of 
FPGAs becomes even more significant. Further info can be found in Appendix A. 

Moreover, FPGA devices are more suitable to perform bit-manipulation 

operations (Boolean operators, shifting, etc.) than DSPs. [15] 
 
 

5.2. Performance Metrics 
 
Performance metrics are the mean of evaluating a given design specification to test its 
particular properties. Considering the architectural features previously described, i.e.:  
 

� in case of DSP: circular addressing, Multiply and Accumulate (MAC) 
operations, and Harvard architecture, and 

� in case of FPGA: inherent parallelism and bit-manipulation operations, 
 
it is possible to define a set of patterns able to identify subsets of the specification that 
match some of these features, and a set of metrics that quantify such matching. 
Finally, these metrics can be properly combined in order to build a global metric, 
called affinity [15], able to suggest the most suitable processing element for the 
execution of a given algorithm. 

 

5.2.1. Data Oriented Metric 
 
The goal of this metric is to take into account the type of data involved in the 
execution of an algorithm (a more clear idea of this metric will be presented later): 
 

• Data Ratio (DRm,t). “For each method (or function) m and for each allowed 
type t (e.g., int, float, etc.), DRm,t is defined as the fraction of declarations 
of type t with respect to the total number of declarations made in m” [15]. 
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5.2.2. DSP Oriented Metrics 
 
The purpose of DSP oriented metrics is to identify functionalities suitable to be 
executed by a DSP device by considering those issues that exploit the most relevant 
architectural features of such processing element: circular addressing, MAC 
operations, and Harvard architecture. 
 

5.2.2.1. Circular Addressing 
 
Circular addressing is used to create a circular buffer. The buffer is created in DSP 
memory and is very useful in such DSP algorithms, as filtering or correlation, where 
data needs to be updated. This addressing mode (i.e., circular) is used in conjunction 
with a circular buffer to update samples by shifting data without the overhead created 
by shifting data directly. As a pointer reaches the end of a circular buffer that contains 
the last element (sample) in the buffer and is then incremented, the pointer is 
automatically wrapped around or points to the beginning of the buffer that contains 
the first element. 

So the use of a circular buffer in an algorithm can be identified (more or less 
explicitly) by portions of the source code (written in C/C++ language) that try to shift 
array (i.e., buffer) elements of one or more positions: 
 

• Strong Circularity Degree (SCDm). “For each method m, SCDm is the ratio 
between the number of source lines that contain expressions of the form v[i] = 
v[i ± K] and the total number of lines, where v is an array (or a row/column of 
a matrix), and K is a constant” [15]; 

• Weak Circularity Degree (WCDm). “For each method m, WCDm is the ratio 
between the number of source lines that contain expressions of the form 
v[K] = f(v[i]) or q = f(v[i]) and the total number of lines, where v is an array 
(or a row/column of a matrix), K is a constant, and f(v[i]) is an expression 
involving v[i]” [15]. 

 

5.2.2.2. MAC Operations 
 

Now consider the C code fragment (Code 5.2.1) that computes the inner (or dot) 
product, which is useful for many DSP algorithms (e.g., filtering), of two arrays, x 
and y, each having N elements: 
 

result = 0; 

for(i=0; i<N; i++) 

  result += x[i] * y[i]; 

 
Code 5.2.1: Sum of products. 

A DSP device incorporates several features aimed at optimizing such a loops. These 
features are usually DSP specific, and with the given DSP, their description can be 
found in [16]. So the use of a dot product in an algorithm can be identified by 
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portions of the source code that express a particular mix of operations (i.e., a sum and 
a multiplication) that DSP can optimize: 
 

• Strong MAC Degree (SMDm). “For each method m, SMDm is the ratio 
between the number of source lines inside a loop that contain expressions of 
the form s = s + ax * ay and the total number of lines” [15]; 

• Weak MAC Degree (WMDm). “For each method m, WMDm is the ratio 
between the number of source lines that contain, outside a loop, expressions of 
the form s = s + ax * ay and the total number of lines” [15]. 

 

5.2.2.3. Harvard Architecture 
 
The Harvard architecture allows a processor to fetch instructions from memory while 
concurrently reading or writing data to another memory location. Thus, for the 
concurrent memory access, the goal is to identify subsets of an algorithm able to 
exploit concurrent memory accesses to data and instructions: [15] 
 

• Strong Harvard Degree (SHDm). “For each method m, SHDm is the ratio 
between the number of source lines that contain, inside a loop, expressions 
with the structure v[i] <op> w[i] or q <op> w[i] and the total number of lines, 
where v and w are arrays, and <op> is an operator different from the 
assignment one (i.e., ‘=’)” [15]; 

• Weak Harvard Degree (WHDm). “For each method m, WHDm is the ratio 
between the number of source lines that contain, outside a loop, expressions 
with the v[i] <op> w[i] or q <op> w[i] and the total number of lines, where v 
and w are arrays, and <op>  is an operator different from the assignment” [15]. 

 

5.2.3. FPGA Oriented Metrics 
 
The goal of these metrics is to highlight relevant FPGA features: the high degree of 
inherent parallelism, and fast handling of bit-manipulation operations. 

In particular, the inherent parallelism refers to the ability to perform many 
actions simultaneously, that is, appropriate parts of an algorithm can be executed 
concurrently in FPGA, which definitely requires more resource usage (e.g., memory 
elements, logic gates) at a certain time. On the other hand, the more parts of an 
algorithm are performed in parallel, the higher speed performance of this algorithm 
can be achieved. Thus, the following two metrics are proposed: 
 

• Strong Parallelism Degree (SPDm). For each method m, SPDm is the ratio 
between the number of source lines inside a loop that can be executed in 
parallel and the total number of lines; 

• Weak Parallelism Degree (WPDm). For each method m, WPDm is the ratio 
between the number of source lines outside a loop that can be executed in 
parallel and the total number of lines. 
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For bit-manipulation, the goal is to identify regular functionalities that significantly 
rely on such operations, as shifting (by a constant), AND, OR, XOR. Therefore, the 
following metric is defined: 
 

• Bit Manipulation Rate (BMRm). “For each method m, BMRm is the ratio 
between the number of source lines that contain bit-manipulation operations 
and the total number of lines” [15]. 

 

5.2.4. Difference between Strong and Weak Degrees 
 
As can be observed, some of the metrics previously defined are divided into strong 
and weak degrees. The difference between these two degrees is that a certain code 
part (inside a loop) taken into account in calculating the strong degree of a particular 
architectural feature can benefit more from that feature than a certain code part 
(outside a loop) taken into account in calculating the corresponding metric of weak 
degree. Here, with the increase in the number of loop iterations, the benefit from a 
particular architectural feature could grow as well. For example, as the array length 
becomes large in Code 5.2.1, the ratio of time spent in such loops to the time spent 
outside the loops becomes even more significant (see [16]). So, in order to distinguish 
between code parts that can significantly benefit from a particular architectural 
feature and code parts that are not able to gain much from the feature, the following 
steps are proposed. 

 As was mentioned above, the higher number of loop iterations is, the more an 
appropriate code part inside that loop can benefit from a particular architectural 
feature. Now let’s divide all loops in a code into highly computational and non-highly 

computational. Not making any clear definitions at the moment, let’s say that a highly 
computational loop is a loop that contains a relatively high number of iterations, and 
may require the most computations in the entire code. So, a non-highly computational 
loop is a code part different from highly computational loop. Now let’s make some 
corrections in the definitions of the following metrics: SCDm, SMDm, SHDm, SPDm, 
WCDm, WMDm, WHDm, WPDm. The correction within SCDm, SMDm, SHDm, SPDm is 
that the specified subsets of the code that can exploit the corresponding architectural 
features should now be identified inside highly computational loops, and the 
correction within WCDm, WMDm, WHDm, WPDm is that appropriate subsets of the 
code should now be identified outside highly computational loops. Let’s denote the 
modified metrics as SCD2m, SMD2m, SHD2m, SPD2m, WCD2m, WMD2m, WHD2m, 
WPD2m (second version of metrics), respectively. 

After this correction, we can state that certain code parts (inside highly 
computational loops) taken into account in calculating SCD2m, SMD2m, SHD2m, 
SPD2m will benefit much more from the corresponding architectural features than 
certain code parts (outside highly computational loops) taken into account in 
calculating WCD2m, WMD2m, WHD2m, WPD2m. In order to make sure that this is 
true, and to understand more clearly why this correction was made, let’s move to the 
next section, which includes an analysis of both metric versions. 
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5.2.5. Selection of Defined Metrics 
 
Once the metrics have been defined, they have to be taken into account in defining 
the affinity, which towards a certain processing element depends on the degree 
(strong and weak) of a particular set of metrics. Considering both strong and weak 
degrees for the affinity, the matching (provided by this affinity) between an algorithm 
and a certain processing element may become less precise as compared with the case 
where only the strong degree is considered. The following subsection gives an 
explanation why this is so. 
 

5.2.5.1. Selection of FPGA Oriented Metrics 
 
Now let’s consider and analyze the following C code fragment: 
 

void main() 

{ 

  ... 

 

  for(i=0; i<1024; i++) // “First” loop 

  { 

    a[i] = a[i] + i; // statement #1 

    b[i] = b[i] * 2; // statement #2 

    c[i] = c[i] * 3; // statement #3 

  } 

 

  for(i=0; i<8; i++) // “Second” loop 

  { 

    j = i * 64;   // statement #4 

    k = i * 128;   // statement #5 

    out[i] = a[j]+b[k]+c[k-j]; // statement #6 

  } 

   

  out[0] = out[0] * 2;  // statement #7 

  out[1] = out[1] * 0.5;  // statement #8 

  out[2] = out[2] * 5;  // statement #9 

M M 
  out[7] = out[7] * 1.3;  // statement #14 

} 

 

Code 5.2.2: C source code, which is used as the example in the current section. 

We can observe that there are two loops (“first” and “second”) in the code shown 
above. Now let us assume that each code statement (line of code ending with a 
semicolon) takes only one clock cycle to be performed in FPGA1. Hence, the body of 
the “first” loop takes 1024 * 3 = 3072 cycles, the body of the “second” loop takes 
8 * 3 = 24 cycles, and the last eight statements (#7, #8, ..., #14) take 8 cycles overall. 
At this point we can state that the “first” loop is highly computational, as it takes 
almost all cycles of the total number (i.e., 3072 + 24 + 8 = 3104) of code cycles. 
Consequently, the “second” loop differs from a highly computational loop, as it takes 
only 24 cycles out of 3104 code cycles. Therefore, considering the correction made in 
Section 5.2.4, the “first” loop should be involved in computing the strong parallelism 

                                                 
1 As with Handel-C language, see Chapter 6. 
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degree (SPD2m) metric, and the “second” loop with statements #7…#14 should be 
involved in computing the weak parallelism degree (WPD2m) metric. With SPDm and 
WPDm metrics, the “first” and “second” loops should be involved in computing 
SPDm, and statements #7…#14 should be involved in computing WPDm. So the 
desired code parts for obtaining parallelism metrics are found; the following step is to 
locate (within these parts) such statements that can be executed in parallel. 

As we notice, there are no data dependencies between the statements inside 
the “first” loop body (Code 5.2.2). It means that all three statements (#1, #2 and #3) 
can be executed in parallel, i.e., in the same clock cycle. So if we perform these 
statements at the same time, the “first” loop body will take only 1024 cycles instead 
of 3072 cycles. Such reduction in the number of cycles will make the entire code to 
operate in FPGA about three times faster in comparison with the same code, where 
parallelism is not expressed. For example, if we perform the same steps with the 
“second” loop (Code 5.2.2), where statements #4 and #5 do not have any data 
dependencies and therefore can be executed in parallel, the entire code will take only 
24 – (8 * 2) = 8 cycles less (i.e, 3104 – 8 = 3096). Such reduction in the number of 
cycles is so minor that it (almost) will not change the common speed performance of 
the entire code in FPGA. Finally, if we perform the same steps with statements 
#7…#14 (Code 5.2.2), which do not have any data dependencies between each other 
and therefore can be executed at the same time, the entire code will take only 7 cycles 
less (i.e, 3104 – 7 = 3095). Such reduction in the number of cycles is so minor that it 
(almost) will not change the speed performance of the whole code as well. 

And now the question occurs: should a designer waste his valuable design 
time searching data dependencies for the affinity computation and parallelism 
expression in such code parts, as the “second” loop with statements #7…#14 (Code 
5.2.2), if FPGA cannot benefit much from them? In order to answer this question, 
first of all let’s calculate the given parallelism metrics (considering only source lines 
with statements) for Code 5.2.2. The corresponding results are shown in Table 5.2.1. 
 

SPD WPD SPD2 WPD2 

(3+2)/14 = 0.357 8/14 = 0.571 3/14 = 0.214 (2+8)/14 = 0.714 

 

Table 5.2.1: Parallelism metric results of Code 5.2.2. 

Now let’s define a global parallelism metric G (is not yet the affinity) as the sum of 
strong and weak parallelism degrees: G = SPDm + WPDm, and let us assume that the 
global metric G of 1 towards an FPGA device indicates a perfect matching, while G 
of 0 indicates no matching at all. So, G for the parallelism metrics, shown in Table 
5.2.1, is equal to: 
 

G1 = SPD + WPD = 0.357 + 0.571 = 0.928, 
 

G21 = SPD2 + WPD2 = 0.214 + 0.714 = 0.928 
 
Here we notice that the values of G1 = G21 = 0.928 are almost equal to 1, indicating a 
very high matching between FPGA and Code 5.2.2. However, at the beginning of 
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Section 5.2.5, it was mentioned that considering both strong and weak degrees for a 
global metric, the matching (provided by this metric) between an algorithm and a 
certain processing element may become less precise as compared with the case where 
only the strong degree is considered. To ensure that this is true, let’s try to consider 
only the strong degree for the global parallelism metric. It means that in this case we 
should not search any data dependencies in the corresponding code parts for the 
estimation of weak parallelism degree, and accordingly we should not express any 
parallelism within those code parts for the implementation onto FPGA (i.e., we just 
skip those code parts). Thus, G for the metrics, shown in Table 5.2.1, is now equal to: 
 

G2 = SPD = 0.357, 
 

G22 = SPD2 = 0.214 
 
Here we notice that G2 and G22 differ greatly from G1 and G21 previously calculated. 
At this point the following issue is faced: which of the pairs (G1, G21) or (G2, G22) 
provides more precise matching between FPGA and Code 5.2.2, ensuring higher 
execution performance of Code 5.2.2 in terms of speed? At first, it seems to us that if 
the values of (G1, G21) are much higher than those given by (G2, G22), then the 
corresponding execution performance in case of (G1, G21) should be much higher 
than in case of (G2, G22) as well. However, if we believe that this is so, we will be 
misguided! In order to prove this assertion, first of all let’s compare G1 and G2 with 
the appropriate implementation results expressed in terms of execution time, which 
can be calculated as 
 

CF

NC
texe =  

 
where texe is the execution time of code in seconds, and NC is the number of clock 
cycles required to execute the code in hardware, which operates at CF clock 
frequency. So, with G1, first we express possible parallelism within the statements in 
the “first” and “second” loops (Code 5.2.2), involving these statements in computing 
SPD; second we express possible parallelism within statements #7…#14 (Code 
5.2.2), involving them in computing WPD, and finally, after parallelism is expressed, 
we obtain the following execution time of Code 5.2.2 (when CF, for example, is 
equal to 1 kHz): 
 

(sec) 1.041
1000

1161024
1 =

++
=exet   ↔  G1 = 0.928 

 
With G2, we express possible parallelism only within the statements in the “first” and 
“second” loops (Code 5.2.2), involving these statements in computing SPD. So the 
corresponding execution time of Code 5.2.2 is now equal to: 
 

(sec) 1.048
1000

8161024
2 =

++
=exet   ↔  G2 = 0.357 
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Now let’s return to the question: which of the global metrics G1 or G2 provides more 
precise matching between FPGA and Code 5.2.2, ensuring higher execution 
performance of Code 5.2.2 in terms of speed? As we notice, texe1 ≈ texe2, but the value 
of G1 differs from the value of G2 about three times. Since with G2 we do not involve 
in the parallelism exploitation statements #7…#14, which do not gain from the use of 
corresponding architectural feature (i.e., inherent parallelism of FPGA), it turns out 
that G2 provides much more precise matching between FPGA and Code 5.2.2. When 
we involve these statements (i.e., #7…#14), they greatly increase the value of a 
global metric G, resulting in G1, but (almost) do not increase the execution 
performance of Code 5.2.2 (texe1 ≈ texe2), or in other words, Code 5.2.2 does not 
benefit from the use of inherent parallelism of FPGA in statements #7…#14. 

 So, from the analysis made above, we have received evidence that considering 
both strong and weak degrees (i.e., SPD and WPD) for the global metric, the 
matching (provided by this metric) between the code and an FPGA device becomes 
less precise as compared with the case where only the strong degree is considered. 

However, with G2, this is not always true. For example, if in Code 5.2.2 we 
start reducing the number of iterations both in the “first” and “second” loops 
(especially in the “first” loop), and start increasing the number of statements, which 
can be executed in parallel, outside these loops, we will obtain the opposite situation: 
now the appropriate code parts inside these loops will gain less from the 
corresponding architectural feature with the reduction in the number of loop 
iterations, but the code parts outside these loops will gain more from the feature with 
the increase in the number of appropriate statements outside the loops. We can do this 
until the code parts inside the “first” and “second” loops are able to gain nothing from 
the inherent parallelism of FPGA, and until the rest code parts (outside the loops) are 
able to gain a lot from this architectural feature, resulting in much higher execution 
performance. In this case, the value of G2 = SPD may become close to zero, 
indicating no matching at all. However, this possible small value of G2 will indicate 
an incorrect matching between FPGA and Code 5.2.2, as the code parts (inside the 
“first” and “second” loops), which now do not gain from the parallelism of FPGA, are 
taken here in exploiting that parallelism and calculating the corresponding global 
metric G2, but the code parts (outside the loops), which can now benefit a lot from the 
inherent parallelism, are not taken in exploiting it and obtaining G2. 

 In order to solve this problem, which can occur without being noticed when 
using G2, we should consider the correction, made in Section 5.2.4, that is, instead of  
G2 we need to use G22 = SPD2. This will distinguish between such code parts that 
can benefit a lot from the corresponding architectural feature and such code parts that 
are not able to gain much from the feature. With G22, only the code parts (i.e., highly 
computational loops) that can gain a lot are taken into account in obtaining the 
corresponding global metric (i.e., G22). In case of Code 5.2.2, the “first” loop is 
considered as highly computational, and therefore it is taken in calculating G22. 

When using G22, we even obtain more precise matching between FPGA and 
Code 5.2.2 than when using G2, since now we do not consider for the global metric 
the “second” loop (Code 5.2.2), which does not gain from the inherent parallelism of 
FPGA as much as the “first” loop does. To make sure that in case of G22 we do not 
suffer from a loss in performance, let’s obtain the corresponding execution time 
(when clock frequency CF = 1 kHz): 
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(sec) 1.056
1000

8241024
3 =

++
=exet   ↔  G22 = 0.214 

 
As we notice, texe1 ≈ texe2 ≈ texe3. So, it appears that when using G22 = SPD2, we do not 
need to search data dependencies between statements for the global metric 
computation and parallelism expression in such code parts, as the “second” loop with 
statements #7…#14, since they do not benefit from the corresponding feature of 
FPGA (i.e., inherent parallelism). 

The only problem here is that sometimes, if a code is complex, it can be 
difficult to find highly computational loops for SPD2m. However, the appropriate 
steps are proposed later for that, which ensure rapid and easy distinction between 
highly computational loops and other code parts. 
 

• Bit-manipulation rate (BMRm) metric: 

 
As we know from Section 5.1.2, one of the features of FPGAs is that they provide 
fast handling of bit-manipulation operations. It means that we can benefit from a 
code, which includes these operations. However, this is only valid if there are no 
operations different from bit-manipulation ones. In FPGAs, such operations, as 
division/modulo, multiplication, addition/subtraction, and shifting by a variable, 
produce much more complex hardware than bit-manipulation operations do. Thus, all 
operations here different from bit-manipulation are regarded as complex. Besides, the 
more complex a line of code (statement with a more complex operation) is, the longer 
it will take to execute in FPGA, and the lower the design clock rate will be. 

Now let’s consider the following C code fragment, which shows a mixture of 
simple and complex operations: 
 

a = b & c; // AND (simple) operation 

a = d ^ e; // XOR (simple) operation 

a = a | e; // OR (simple) operation 

a = b * c; // multiplication (complex) operation 

 
The first three lines of code are simple, but the fourth is complex. The clock rate of 
the whole design will be limited by the fourth line. For the reason that the use of 
complex operations (e.g., addition/subtraction) in the given Reed-Solomon (RS) 
decoding algorithms is unavoidable (see the source code), the entire design is 
therefore limited by these operations. It means that we will not gain from the use of 
bit-manipulation operations in the given RS decoder. Therefore, the bit manipulation 
rate (BMRm) metric for the affinity should not be considered in our case. 
 

• Outcome: 

 
After we sum up the analysis made with Code 5.2.2 and BMRm, we can definitely 
state that for the best matching between an FPGA device and the given RS decoding 
algorithms, the best is to take only the SPD2m metric (defined in Section 5.2.4) into 
account in obtaining the affinity. Thus, we choose only SPD2m over another FPGA 
oriented metrics for the affinity. 
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5.2.5.2. Selection of DSP Oriented Metrics 
 
If we take a suitable fragment of code for DSP and start analyzing it as we did with 
Code 5.2.2 in the previous section, we will obtain similar results, that is, if we 
consider both strong and weak degrees for the affinity, the matching (provided by this 
affinity) between an algorithm and DSP may become less precise as compared with 
the case where only the strong degree is considered. Accordingly, if we use SCD2m, 
SMD2m and SHD2m (defined in Section 5.2.4) instead of SCDm, SMDm, SHDm for the 
affinity calculation, we can achieve even more precise matching (see Section 5.2.5.1). 
Thus, we choose only SCD2m, SMD2m and SHD2m over another DSP oriented metrics 
for the affinity. 
 

5.2.5.3. Threshold for Highly Computational Loops 
 
An additional problem here is that if we want to calculate the metrics previously 
selected, we need to distinguish between highly computational loops and other code 
parts. In order to do this, we need to define a threshold, which should be related to the 
total number of code cycles. In general, this threshold should skip over a particular 
amount of non-highly computational loops in a code for the affinity estimation. As we 
saw in Section 5.2.5.1, when we skip certain code parts, we can suffer from a loss in 
performance. Thus, the main purpose of our threshold is to identify how much we can 
lose in performance, and then to use this limit for searching highly computational 
loops in a code. 
 Now let us assume that the implementation output of RS decoder is measured 
in Mbit/s (bit rate), and can be calculated as 
 

NC

BSCF
BR

⋅
=  (5.2.1) 

 
where NC is the number of cycles (latency) required to decode one codeword of BS 
bits on the device’s hardware, which operates at CF clock frequency, and BR is a bit 
rate (throughput) of the decoder. 
 Now let’s consider that in the used RS decoding algorithm all code parts are 
taken into account in exploiting particular architectural features and calculating the 
corresponding affinities. Hence, the bit rate is equal to: 
 

1NC

BSCF
BR

⋅
=  (5.2.2) 

 
Now let us consider that if we skip over a particular amount of non-highly 
computational loops in a code for the affinity estimation, we can lose, for example, 
one-twentieth of BR in (5.2.2), that is, if BR = 1 Mbit/s, we can lose 1/20 = 0.05 
Mbit/s of 1 Mbit/s, if BR = 10 Mbit/s, we can lose 10/20 = 0.5 Mbit/s of 10 Mbit/s, if 
BR = 100 Mbit/s, we can lose 100/20 = 5 Mbit/s of 100 Mbit/s, and so on. In this 
case, the bit rate is expressed as 
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2NC

BSCF
pBR

⋅
=−  (5.2.3) 

 
where p = BR/20 (one-twentieth of BR). As we observe, the number of clock cycles 
in (5.2.3) required to decode one codeword differs (is increased) from the number of 
cycles in (5.2.2). In order to find this difference, we need to equate (5.2.2) with 
(5.2.3): 
 

1
1

2 NC
pBR

BRNC
NC >

−

⋅
=  (5.2.4) 

 
Now let’s define the following proportion: 
 

NC1  –––  100% 
NC2  –––  X % 

(5.2.5) 

 
From (5.2.5), we obtain 
 

%
100










−

⋅
=

pBR

BR
X  (5.2.6) 

 
So, the desired threshold can now be calculated as 
 

%100
100

%100% 







−

−

⋅
=−=

pBR

BR
XTh  (5.2.7) 

 
where Th is the threshold in percents. It means that if a certain loop (or code part) in a 
given code takes less than Th% of the total number of clock cycles required to 
execute the code, that loop (code part) is considered as non-highly computational. 
Moreover, the total number of cycles required by all non-highly computational loops 
(code parts) should not exceed this threshold. It must also be noted that if the total 
number of cycles required by all non-highly computational loops (code parts) exceeds 
the obtained threshold, the corresponding code parts (beyond this threshold) should 
be interpreted as highly computational. In case of p = BR/20, the threshold is equal: 
 

%26.5
19

100
100

20

100
100

100
==−









−

⋅
=−

−

⋅
=

BR
BR

BR

pBR

BR
Th  

 
This obtained threshold (Th = 5.26%) is chosen in our case for distinction between 
highly computational loops and other code parts. 

Nevertheless, the higher code complexity is, the more difficult it becomes to 
find highly computational loops (with defined threshold). In such case, different 
exploration tools that can quickly survey the design space and report the appropriate 
information are invaluable. To do this, the Design-Trotter tool [17] is used in our 
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case, which, in addition, gives an opportunity to analyze data dependencies between 
different statements in a given code. This tool is presented later in the current chapter. 

 

5.2.6. The Affinity 
 
“The affinity Am = [

mmm HWDSPGPP AAA ] of a method (or function) m is a triplet of values 

in the interval [0, 1] that provides a quantification of the matching between the 
structural and functional features of the functionality implemented by the method and 
the architectural features for each one of the considered processing elements (i.e., 
GPP, DSP, ASIC/FPGA)” [15]. In our case, the affinity is defined as Am = 
[

mm FPGADSP AA ], since the implementation is performed only on DSP and FPGA. 

An affinity of 1 towards a processing element indicates a perfect matching, 
while a 0 affinity indicates no matching at all. The affinity can be expressed by a 
normalization function applied to a linear combination of the selected metrics, with 
weights that depend on the considered processing element. 

In order to estimate the affinity, first of all we need to deal with the data ratio 
(DRm,t) metric both for DSP and FPGA. The given DSP supports both fixed- and 
floating-point computation (see Appendix B), and no additional clock cycles are 
required for floating-point computation. With FPGAs, the use of floating-point 
arithmetic is inefficient, since it is more complex than integer or fixed-point 
arithmetic and tends to require more hardware. As follows from the above, only the 
DRm,(float) metric, which takes into account the floating-point type of data, is 
meaningful for the given DSP. Thus, the affinity towards the DSP device in our case 
involves: the strong degrees of circularity, MAC and Harvard (i.e., SCD2m, SMD2m, 
SHD2m), and the number of variables of floating-point type (i.e., float). Intuitively, 
the affinity towards FPGA involves only the strong degree of parallelism (SPD2m). 
Therefore, it is possible to evaluate the affinity for each method m as follows: 
 

)( T

m

T

m CWfA ⋅=  (5.2.8) 
 
where 
 
Am = [

mm FPGADSP AA ], 

 









=

01000

10111
W , 

 
and Cm is a 5-element row vector collecting, in this order, the costs SCD2m, SHD2m, 
SMD2m, SPD2m, and DRm,(float): 

[ ])(, floatmmmmmm DRSPD2SMD2SHD2SCD2C =
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The weights of the matrix W are set to 1 when the associated metric is meaningful for 
a given processing element, 0 otherwise. Thus, the affinity represents the sum of all 
the contributions determined by each relevant metric. Since such a sum could be 
greater than one, the following function is applied to obtain values in the interval 
[0, 1] allowing a direct comparison between affinity values related to different 
processing elements: [15] 
 

2/

)2arctan(
)(

2

π

πX
Xf =  (5.2.9) 

 
This normalization function is the arctangent one, as it is limited to the [–π/2, π/2] 
interval when X varies from –∞ to ∞. In order to normalize the affinity in the interval 
[0, 1], it is scaled of a π/2 factor. Finally, to better discriminate between low and high 
affinity values, a quadratic form is used in (5.2.9). 

The function f(X) in (5.2.9), when applied to T

mCW ⋅ , provides affinity values 

that are directly comparable. Therefore, it can be used to choose the best processing 
element for a given algorithm. 
 
 

5.3. The Design-Trotter Tool 
 
The Design-Trotter tool [17] is an experimental framework for guiding system 
designers. The main features of Design-Trotter are the characterization of the 
application by means of different metrics, the exploration of the application 
parallelism by means of dynamic trade-off curves and the possibilities of performance 
estimations onto existing target architectures. So, for the desired design space 
exploration, the following steps are performed in Design-Trotter: 
 

1. C code to Hierarchical Control and Data Flow Graph (HCDFG) conversion; 

2. Algorithm characterization by means of orientation and parallelism metrics; 

3. Parallelism exploration. 

 

5.3.1. C to HCDFG Conversion 
 
The input language of Design-Trotter is a large subset of the C language. This allows 
us to quickly import the given RS decoding algorithms (written in C) to the tool. 

In this step, the tool converts the C source code into a HCDFG (Figure 5.3.1). 
The HCDFG model is the internal representation of Design-Trotter and includes only 
HCDFGs and CDFGs. A CDFG contains only elementary conditional nodes and 
DFGs. A DFG contains only elementary memory and processing nodes (represents a 
sequence of non-conditional operations). A processing node represents a processing 
(arithmetic or logic) operation. A memory node represents a data-transfer (memory 
operation). A conditional node represents a test operation (if, for, case, etc.). So, 
actually, a certain function described in the C source code is a HCDFG.  [17] 
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Figure 5.3.1: Example of HCDFG (with internal representation) and its corresponding C code. [18] 

 

5.3.2. Algorithm Characterization in Design-Trotter 
 
In this step, an abstract characterization, without any architectural assumptions, of the 
algorithm is performed. As we know, algorithm (or function) characterization, in 
general, guides the designer in his architectural choices. In Design Trotter, the 
characterization step has the two following objectives: [17] 
 

1. The first one is used to sort the application functions according to their 
criticity. The criticity of a function is expressed as: 

 

CP

NbOp
=γ  (5.3.1) 

 
where NbOp is the sum of data-transfer plus processing operations, and CP is 
the critical path of the function, that is, the value of the longest path 
considering processing and data-transfer operations (i.e., the longest chain of 
sequential operations). This γ (gamma) metric provides a first indication about 
the potential parallelism of the function; 

2. The second objective is to indicate the function orientation, that is, the nature 
of the dominant types of operations in that function. By counting tests (or 
control), data-transfers and processing operations within the HCDFG 
representation, we obtain ratios, which indicate the control and memory 
orientations of the function. However, algorithm characterization by means of 
these orientations is unusable for the selected metrics estimation, and therefore 
is not considered in the project. 
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5.3.2.1. γγγγ  Metric 

 
For a DFG graph γ  is defined in (5.3.1). γ  indicates the average parallelism available 
in a certain function. A function with a high γ  value (high parallelism) can benefit 
from an architecture offering high parallelism capabilities (e.g., FPGAs). From a 
consumption point of view, a function with a high parallelism (high γ) offers the 
opportunity to increase the speed performance by exploiting the spatial parallelism in 
hardware. On the other hand, a function with a low γ  value has a rather sequential 
execution. For example, if γ_= 1, then the function is purely sequential, and there is 
hardly any chance of obtaining efficient hardware implementations. In such case, it is 
better to use sequential processors (e.g., GPP), since they are less expensive than 
FPGAs. 
 In our case, γ  is used to determine the level of parallelism in a certain function 
before estimating the strong parallelism degree (SPD2m) metric: if γ_= 1, then the 
function is purely sequential and SPD2m of this function will be equal to zero; 
therefore, no further steps are needed for SPD2m calculation. Otherwise (if γ_> 1), we 
should perform the appropriate steps in order to obtain SPD2m. So evaluating γ, we 
can reduce, to some extent, our design time. 

Now let’s obtain γ  for each part of the given RS decoder (Figure 5.3.2). The 
corresponding results are depicted in Table 5.3.1. Actually, the RS decoder, shown in 
Figure 5.3.2, differs from the typical decoder, illustrated in Figure 3.5.1. The 
difference is that there are only three blocks instead of four (see Figure 3.5.1) in the 
given decoder: the Chien search in our case is combined with the Forney algorithm. 
This slightly reduces the memory usage in hardware and somewhat increases the 
execution performance in terms of speed. 
 

 
 

Figure 5.3.2: Block diagram of the given RS decoder with Galois field arithmetic. 

 
Syndrome 

calculation 
Euclidean 

algorithm 
Berlekamp-Massey 

algorithm 
Chien search with integrated 

Forney algorithm 

γγγγ  value 1.896 3.074 1.754 3.393 

 

Table 5.3.1: Characterization of the given RS decoder by means of γ (gamma) metric. 

As we see in Table 5.3.1, all γ  values are greater than 1, meaning that none of the 
corresponding SPD2m metrics, most likely, is equal to zero. Thus, SPD2m needs to be 
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calculated (as described in Section 5.2.4) for each block of the given RS decoder. 
Moreover, in Table 5.3.1 we observe relatively high parallelism (high γ value) in the 
Euclidean algorithm, and in the Chien search with the integrated Forney algorithm. It 
means that these blocks may benefit from an architecture offering high parallelism 
capabilities (e.g., FPGA), resulting in higher execution performance of the entire 
algorithm. 

 

5.3.3. Parallelism Exploration 
 
In this Design-Trotter step, the exploration of the algorithm parallelism is performed. 
Its principle is to schedule, as described in the next section, the algorithm onto an 
abstract architectural model (defined in Section 5.3.5) for many time constraints. 
“The different time constraints express as many possible solutions: for a given time 
constraint, a certain quantity of operations has to be executed simultaneously, which 
implies that a sufficient quantity of operators has to be available on the architecture. 
The solutions generated by the Design-Totter tool are represented with a convenient 
2D graphical form using trade-off curves, which represent the number of required 
operators (resource usage) vs. the number of clock cycles (cycle-budget)” [19]. Thus, 
they provide estimations to evaluate the acceleration potential of a hardware 
implementation. 

Now let’s obtain in Design-Trotter the resource vs. cycle-budget trade-off 
curves of the given RS decoder (Figure 5.3.2). The corresponding results are depicted 
in Figure 5.3.3, where ALU represents the arithmetic-logic unit that calculates 
arithmetic and logic operations between two numbers. So, as shown in Figure 5.3.3, 
the following resources are used to execute the given decoder: 
 

• ALU: the maximum number of ALUs that must be used at a certain point(s) in 
time; 

• RAM_WRITE: the maximum number of simultaneous memory write accesses 
at a certain point(s) in time; 

• RAM_READ: the maximum number of simultaneous read accesses (at a 
certain point(s) in time) from memory elements that store the variable data. 

 
Now let’s take two different solutions, for example, the first (#1) and the last (#6) 
from Figure 5.3.3d, where the ALU curve overlaps the RAM_WRITE curve (Table 
5.3.2). 
 

Solution

# 

Number 

of cycles 
ALU RAM_WRITE RAM_READ 

1 64112 1 1 1 

6 27735 3 3 6 

 

Table 5.3.2: Different resource usage of the first and the last solutions taken from Figure 5.3.3d. 
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Figure 5.3.3: Resource vs. cycle-budget trade-off curves of the given RS decoder – RS(255, 239): 

(a) Syndrome calculation, (b) Euclidean algorithm, (c) Berlekamp-Massey algorithm, 

(d) Chien search with integrated Forney algorithm. 

As we see both in Table 5.3.2 and Figure 5.3.3, the first taken solution is purely 
sequential, i.e., at this point all operations of the error-estimation block (Chien search 
with integrated Forney algorithm) are performed in a sequential manner. This takes 
the most time for executing the error-estimation block of the RS decoder. On the 
other hand, the minimum number of different operation resources is needed here. So 
in this case, the number of 64112 cycles (latency) is required to find the error 
positions and error values in a certain codeword. With the last taken solution, the 
maximum available parallelism for the error-estimation block is achieved, where 
therefore this block operates in the fastest way as compared with other solutions. So 
in this case, it takes only 27735 cycles. However, this correspondingly requires more 
resource usage at a certain time, or to be more precise, solution #6 is the most 
expensive in terms of resources. 

Solution #1 

Solution #2 

Solution #6 
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5.3.4. Scheduling 
 
The idea here is to estimate resources and bandwidth costs for several time 
constraints (expressed in number of cycles). At this point, Design-Trotter computes 
trade-off curves (defined in the previous section) by using a time-constrained 
scheduler that minimizes the amount of resources as well as the bandwidth, i.e., data-
transfers between different memory elements. The scheduling principle is a time-
constrained list-scheduling heuristic, where the number of resources of type i 

allocated at the beginning of scheduling is given by the upper bound: [20] 
 

C

i

i
T

operationsNb
resourcesNb =  (5.3.2) 

 

where TC is the number of cycles allocated to the estimated function. Heuristics, such 
as list-scheduling, allow rapid computation of the resource/cycle-budget trade-off 
curves. However, one of the drawbacks of list-scheduling is its linear handling of the 
scheduling. This can lead to inaccurate resource allocation, see [20]. 
 

5.3.4.1. Schedule Details 
 
In addition to the resource/cycle-budget trade-off curves, Design-Trotter gives an 
opportunity to analyze the schedule details. In order to see the schedule details, we 
click (in Design-Trotter) on the desired solution from the trade-off curves that we 
want to analyze; this opens a new window showing the schedule details for all the 
hierarchy levels of the algorithm. The information provided by the schedule details 
allows us to quickly determine data dependencies between different code statements 
and estimate cycle-budgets of desired code parts. This is very useful for the selected 
metrics calculation. 

In our case, the purely sequential solutions, taken from the desired trade-off 
curves, are used to analyze cycle-budgets needed for distinction between highly 
computational loops and other code parts, and the solutions of maximum available 
parallelism are used to analyze all possible data dependencies for the calculation of 
strong parallelism degree (SPD2m) metric, and for parallelism expression in a code. 

 

5.3.5. Architecture Specification 
 
Before scheduling, the designer should describe the abstract architectural model, that 
is, he should specify the types of operators (e.g., ‘+’, ‘–‘, ‘/’, and so on) to use and a 
number of cycles is associated to every type of operator, possibly corresponding to a 
given implementation device. Regarding the memory part, the designer should define 
the number of levels of the hierarchy and the number of cycles associated for each 
type of access. 

With the trade-off curves, shown in Figure 5.3.3, the system-level is used, 
which permits exposure and exploration of the potential parallelism of the algorithm 
before choosing or building the target architecture. For that, all existing types of 
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processing (logic and arithmetic) operations in our case are combined in a single unit, 
called ALU, and only one clock cycle is associated to every type of operation 
(memory/processing). 
 
 

5.4. The Affinity Results 
 
In order to obtain the affinity, defined in (5.2.8), first of all we need to calculate the 
selected metrics. Their values for each block of the given RS decoder (Figure 5.3.2) 
are shown in Table 5.4.1. 
 

 
Syndrome 

calculation 

Euclidean 

algorithm 

Berlekamp-

Massey 

algorithm 

Chien search 

with integrated 

Forney 

algorithm 

Entire RS 

decoder with 

Euclidean alg. 

Entire RS 

decoder with 

BM1 alg. 

SCD2m 0 0.007 0.051 0 0.015 0.019 

SHD2m 0.077 0.131 0.051 0.056 0.108 0.057 

SMD2m 0 0 0 0 0 0 

SPD2m 0.462 0.482 0.077 0.481 0.48 0.33 

DRm,(float) 0 0 0 0 0 0 

 
Table 5.4.1: The values of the selected metrics for the given RS decoder. 

So, the affinity is now formed from Table 5.4.1, and the corresponding results are 
presented in Table 5.4.2. As we observe in Table 5.4.2, the AFPGA values for the three 
following RS decoding blocks are relatively high: syndrome calculation, Euclidean 
algorithm, and the Chien search with the integrated Forney algorithm. It means that 
these blocks will benefit from an FPGA architecture, which offers high parallelism 
capabilities, resulting in higher execution performance (in terms of speed) of the 
entire algorithm. With ADSP, the affinity values for all RS blocks are almost close to 
zero, meaning that none of these blocks will benefit much from the DSP features. 
 

 
Syndrome 

calculation 

Euclidean 

algorithm 

Berlekamp-

Massey 

algorithm 

Chien search 

with integrated 

Forney 

algorithm 

Entire RS 

decoder with 

Euclidean alg. 

Entire RS 

decoder with 

BM alg. 

ADSP 0.024 0.077 0.042 0.012 0.06 0.023 

AFPGA 0.591 0.617 0.024 0.617 0.616 0.382 

 
Table 5.4.2: The affinity results for the given RS decoder. 

 
 
                                                 
1 BM – Berlekamp-Massey 
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5.5. Summary 
 
This chapter presented in detail the process of algorithm characterization. The 
characterization (affinity) results indicated that the given FPGA device is more 
suitable for the execution of the RS decoder than the given DSP. So the general 
characterization process can be summarized in the following steps: 
 

1. First, we need to carry out an analysis of the available architectures to 
determine their relevant features; 

2. Second, we need to define a set of appropriate metrics to identify subsets of 
the algorithm specification that could exploit the determined architectural 
features; 

3. If possible, the defined metrics need to be divided into strong and weak 
degrees; 

4. Then, we have to distinguish between code parts (in algorithm) taken into 
account in estimating the strong degree and code parts taken into account in 
estimating the weak degree; 

5. In order to rapidly distinguish between strong and weak degrees: a) an 
appropriate threshold should be defined, and b) the Design-Trotter tool can be 
used to perform a subsequent analysis of an algorithm for the corresponding 
metrics calculation; 

6. After distinction, only the strong degree must be considered for the affinity 
computation; 

7. Finally, the corresponding metrics of strong degree should be combined to 
obtain the resulting affinity. 
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FFPPGGAA  IImmpplleemmeennttaattiioonn  
 
 
In Chapter 5, we performed the algorithm characterization of the given Reed-
Solomon (RS) decoder. The characterization results pointed out that an FPGA device 
is more suitable for the execution of this decoder than DSP. In order to verify that it is 
true (or false), first of all the given decoding algorithms should be optimized 
considering the appropriate capabilities of the target architectures. Then the 
implementation of these algorithms should be performed both onto FPGA and DSP. 
And finally, for the desired verification, the corresponding implementation results 
should be compared with the characterization results. 
 The current chapter introduces the implementation process of the given RS 
decoder onto the given FPGA (described in Appendix A). 
 
 

6.1. FPGA Design Flow 
 
Figure 6.1.1 presents a generic FPGA design flow. The successive process phases 
(blocks) of Figure 6.1.1 are described as follows: [21] 
 

� Design Entry: creation of design files using schematic editor or hardware 
description language (e.g., Verilog, VHDL). A more detailed description of 
hardware description languages is presented in Section 6.2; 

� Design Synthesis: a process that starts from a high level of logic abstraction 
(typically Verilog or VHDL) and automatically creates a lower level of logic 
abstraction using a library of primitives; 

� Partition (or Mapping): a process assigning to each logic element a specific 
physical element that actually implements the logic function in a configurable 
device; 

� Place: maps logic into specific locations in the target FPGA chip; 

� Route: connections of the mapped logic; 

� Program Generation: a user’s configuration bit-stream file is generated to 
program the device; 
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� Device Programming: downloading the bit-stream to the FPGA; 

� Design Verification: simulation is used to check functionalities. The 
simulation can be done at different levels. The functional or behavioral 
simulation does not take into account component or interconnection delays. 
The timing simulation uses back-annotated delay information extracted from 
the circuit. Other reports are generated to verify other implementation results, 
such as maximum frequency or delay, and resource utilization. 

 

 
 

Figure 6.1.1: FPGA generic design flow. 

The partition (or mapping), place, and route processes are commonly referred to as 
design implementation. 

 

6.1.1. The ISE  Design Flow 
 
To apply the described above design flow to the given FPGA device, the Integrated 

Software Environment (ISE) suite from Xilinx is used in the project. The ISE 
allows us to take our design from design entry through Xilinx device programming. 
The generic ISE design flow (Figure 6.1.2) comprises the following steps: [22] 
 

� Design Entry. It is the first step in the ISE design flow. During design entry, 
we create our source files based on our design objectives using a hardware 
description language, such as VHDL, Verilog, or using a schematic; 

� Design Synthesis. It is run after design entry. During this step, VHDL, 
Verilog, or mixed language designs become netlist (described in the next 
section) files that are accepted as input to the design implementation step; 
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� Design Implementation. After synthesis, we run design implementation, which 
converts the logical design into a physical file format that can be downloaded 
to the selected target device; 

� Xilinx Device Programming. After generating a programming bit-stream file 
from the physical file, we configure our device. During configuration, we 
download these bit-stream files from a host computer to a Xilinx device; 

� Design Verification. We can verify the functionality of our design at several 
points in the design flow. We can use simulator software to verify the 
functionality and timing of our design or a portion of the design. The 
simulator interprets VHDL or Verilog code into circuit functionality and 
displays logical results of the described hardware language to determine 
correct circuit operation. We can also run in-circuit verification after 
programming our device. 

 

 
 

Figure 6.1.2: The ISE design flow. [22] 
 

 

6.2. Hardware Description Languages 
 
“A Hardware Description Language (HDL) is a computer language designed for 
formal description of electronic circuits. It can describe a circuit operation, its 
structure, and the input stimuli to verify the operation (using simulation).  A HDL 
model is a text-based description of the temporal behavior and/or the structure of an 
electronic system. In contrast to a software programming language, the HDL syntax 
and semantics include explicit notations for expressing time and concurrencies, which 
are the primary attributes of hardware” [21]. The two main players in this field are 
VHDL and Verilog. Languages, whose only characteristics are to express circuit 
connectivity within a hierarchy of blocks, are properly classified as netlist languages. 
One of the most popular netlist formats and industry standards is Electronic Data 

Interchange Format (EDIF). 
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Traditional programming languages, such as C/C++, are sometimes used for 
describing electronic circuits. As these languages do not include any capability for 
expressing time explicitly and consequently, they are not proper hardware description 
languages. However, several products based on C/C++ have appeared, e.g., SystemC 
Handel-C. 

 

6.2.1. Handel-C 
 
Handel-C [23] is a “simple” programming language designed to enable the 
compilation of programs into synchronous, usually FPGA based, hardware 
implementations. Handel-C is not a hardware description language though; rather it is 
a programming language aimed at compiling high level algorithms into gate level 
hardware. Handel-C uses much of the syntax of conventional C language with the 
addition of inherent parallelism. Therefore it was decided to use Handel-C in the 
project for fast and easy transition from C-based algorithms to FPGA hardware 
solutions. For that, the DK Design Suite from Celoxica is used, which provides a 
complete design flow for implementing high-level language algorithms into 
hardware. Algorithms can be written directly in Handel-C, or ported from ANSI-C or 
C++. In the DK-suite, Handel-C code can be compiled to VHDL, Verilog, or directly 
to EDIF (this last format is used in our case). This allows us to use DK as the 
intermediate between the given RS decoding algorithms (written in C) and the ISE 
tools, see Figure 6.2.1. 
 

 
Figure 6.2.1: The design flow from C language to a complete hardware implementation. 
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6.2.1.1. Comparison of Handel-C and ANSI-C 
 
Handel-C has many similarities to ANSI-C. Nevertheless, Handel-C is a language for 
digital logic design. This means that the way in which DK interprets it may different 
to the way in which compilers interpret ANSI-C for software design. Handel-C has 
some extensions to ANSI-C, to allow additional functionality for hardware design. 
However, it also lacks some ANSI-C constructs which are not appropriate to 
hardware implementation. 

This section summarizes only those important extensions to ANSI-C, which 
are used in the project. Other differences between Handel-C and ANSI-C can be 
found in [23]. 
 

• Statement timing: 

 
When DK compiles Handel-C code for hardware implementation, it generates all the 
logic required to execute each line of code in a single clock cycle. Thus, the basic rule 
for cycles used in a Handel-C program is: assignment (i.e., ‘=’) takes one clock cycle. 

Some simple examples with their timings are shown below: 
 

x = y;   // first statement 

x = (y * b) + (c * d); // second statement 

 
Each of these statements takes only one clock cycle in Handel-C. However, the more 
complex a line of code (or statement) is, the longer it will take to execute, and the 
lower the design clock rate will be. 
 

• Parallelism: 

 
Handel-C implicitly executes instructions sequentially, but when targeting hardware it 
is extremely important to make as much use as possible of parallelism. For this 
reason, Handel-C also has a parallel composition keyword par to allow statements in 
a block to be executed in parallel. 
 The following example executes three assignment statements sequentially (it 
takes 3 cycles): 
 

x = a; 

y = b * 2; 

z = c * 3; 

 
In contrast, the following example executes all three assignments in parallel and in 
the same clock cycle: 
 

par 

{ 

  x = a; 

  y = b * 2; 

  z = c * 3; 

} 
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With the par example, three specific pieces of hardware are built to perform these 
three assignments at the same time. It requires more amount of hardware than the 
corresponding sequential example. 

In our case, the par statement presents an integral part in exploiting one of the 
most important features of FPGA, i.e., the high degree of inherent parallelism. 
 

• Arrays and memories (RAM): 
 
“Handel-C supports arrays used in the same way as in C, however, there are 
implications resulting from the way arrays are implemented in hardware. An array 
can be seen as a collection of variables which can all be accessed in parallel, with 
elements either specified explicitly or indexed by a variable. Explicit access to 
individual array elements is efficient, but indexing through an array can generate 
significant amounts of hardware, particularly if it is done from more than one point in 
the code”. [24] 

If random access into an array cannot be avoided (this applies to our case), it 
is better to use a RAM instead of array, simply by adding the ram keyword at the start 
of the array declaration: 
 

ram int buff[256]; 

 
This will create a more efficient structure in hardware, that is, RAMs are normally 
more efficient to implement in terms of hardware resources than arrays, but they only 
allow one location to be accessed in any one clock cycle. 
 

• Macro procedures: 

 
In Handel-C, placing a block of code in a function means that one copy of the code 
will exist in hardware, and every time the function is called, only this single copy of 
the code will be used, i.e., calls to functions in Handel-C result in a single shared 
piece of hardware. This is equivalent to an ANSI-C function, resulting in a single 
shared section of machine code. However, if the code block is needed to be called 
several times in parallel, a single function cannot be used, as multiple copies of the 
code are required. The way out is to use a macro procedure in Handel-C, or declare 
arrays of functions. A macro procedure builds a fresh copy of the code every time it is 
called. With arrays of functions, a specified number of copies is built, which can then 
be called in parallel. However, multiple sequential calls to a single function will result 
in complex circuitry at the entry and exit points of the function, leading to the 
following trade-offs: [24] 
 

− A function may take up less space in hardware than a macro procedure; 

− Using a macro procedure will generally result in a higher clock rate of the 
whole design. 

 
The following example illustrates the use of a macro procedure: 
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macro proc output(x, y) 

{ 

  var1 = x; 

  var2 = y; 

} 

 

output(a+b, c*d); // first call 

output(c*d, a+b); // second call 

 
The first call writes a+b expression to the variable var1, and c*d to var2. The 
other call writes expressions in opposite way. 
 

6.2.1.2. Handel-C Code Optimization 
 
A common goal in digital hardware design is to produce circuits, which are small and 
run at a high clock rate. This section illustrates some important Handel-C coding 
styles (used in the project), which result in fast designs. 
 

• Complex statements: 
 
As was mentioned in Section 6.2.1.1, the more complex a line of code (statement) is, 
the longer it will take to execute, and the lower the design clock rate will be. 
Therefore, sometimes it is better to break a complex statement up into several simpler 
statements and execute them in parallel. 
 Now consider the following example: 
 

x1 = y;       // first statement 

x2 = (y * b) + (c * d); // second statement 

 
Each of these statements takes only one clock cycle in Handel-C. However, the clock 
rate of the whole design will be limited by the second statement, since it is more 
complex than the first one. So it would be better to break the second statement up into 
several simpler statements as follows: 
 

par 

{ 

  tmp1 = y * b; 

  tmp2 = c * d; 

} 

x2 = tmp1 + tmp2; 
 
Although the modified code will take three cycles to execute instead of two, this will 
be better overall, as the whole design will now be able to run at a higher clock rate. 
 

• Cycle efficiency of loops: 
 
“As Handel-C is very close to C, it is common to port code directly from C to 
Handel-C, modifying it to add parallelism. There are several areas where common 
coding styles in C will not produce the most efficient hardware design in Handel-C, 
and in the area of control statements it is the for() loop, which is not ideal. for() 
loops are supported by Handel-C, but because of the control portion of the loop 
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typically contains an assignment, it must use a clock cycle. This is because the 
Handel-C timing model requires every assignment to take a single clock cycle” [24]. 
The result is that for() loops have a single clock cycle overhead, so the example 
below takes 40 cycles to execute, rather than 20: 
 

for(i=0; i<20; i++) 

{ 

  buff[i] = 0; 

} 

 
To improve the performance, a while() loop should be used instead, as shown 
below: 
 

i = 0; 

while(i < 20) 

{ 

  par 

  { 

    buff[i] = 0; 

    i++; 

  } 

} 

 
In this example the loop will now take 21 clock cycles instead of 40. 
 

• Timing efficient use of memories: 
 
As a memory of any sort includes addressing logic, there is always an inherent delay 
in accessing it. For that reason, a memory access is considered as a complex operation 
to include in a statement [24]. Thus, it is better to use an additional register for the 
address, and to re-use this register whenever the memory is accessed at different 
points in the code, as shown below: 
 

MemoryAddress = addr * 5; // set up address first 

 

par 

{ 

  // Access memory, and set up next address 

  a = Memory[MemoryAddress]; 

  MemoryAddress = addr + a; 

} 

 

Memory[MemoryAddress] = a; // access memory again 
 

• Parallel replicators: 
 
Parallel replicators can be used in Handel-C to build complex program structures 
quickly and allow them to be parameterized. Parallel replicators are used in the same 
way as for() loops, except that during compilation they are expanded so that all 
iterations are implemented individually, and can be executed in parallel. [23] 

So, the following code: 
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par(i=0; i<3; i++) 

{ 

  a[i] = b[i]; 

} 

 
expands to: 
 

par 

{ 

  a[0] = b[0]; 

  a[1] = b[1]; 

  a[2] = b[2]; 

} 

 
 

6.3. Implementation Results and Analysis 
 
In our case, the implementation is splitted up into four parts. The implementation of 
each part onto FPGA is performed separately. They are described below: 
 

1. First, the given RS decoding algorithms, written in C language, are converted 
to Handel-C not using any Handel-C extensions to ANSI-C, and not applying 
any optimization techniques, described in Section 6.2.1.2; 

2. Second, in addition to the first part, the two following Handel-C extensions to 
ANSI-C, described in Section 6.2.1.1, are used: all possible arrays (with 
random access to) are replaced by RAMs, and all frequently called 
subfunctions are replaced by macro procedures. Moreover, the Handel-C code 
is now optimized, as described in Section 6.2.1.2 (only parallel replicators are 
not utilized for the present); 

3. In the third part (is an update of the second part), the inherent parallelism of 
FPGA starts being exploited. At this point, parallelism is expressed within 
those code statements, which do not have access to the antilog and log look-up 
tables (described in Section 3.3.5) stored in RAMs, by using the par keyword 
in Handel-C; 

4. For the reason that the look-up tables are stored in RAMs, they only allow one 
location to be accessed in any one clock cycle. In order to allow parallel 
access to the look-up tables, a specified number of their copies is built, which 
can then be accessed separately in parallel. So, in this final implementation 
part (is an update of the third part), parallelism is expressed within all possible 
code statements (now including access to the copies of look-up tables) by 
using the par keyword. It must also be noted that the statements, which are 
taken at this step into account in exploiting parallelism, they are taken as well 
into account in calculating the corresponding strong parallelism degree 
(SPD2m) metric for the affinity in (5.2.8). 

 
The results of each implementation part described above are presented for each block 
of the given RS decoder, shown in Figure 5.3.2. The corresponding implementation 
results in terms of timing performance are depicted in Table 6.3.1. 
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PPaarrtt  ##11::  

Original source 

code 

Syndrome 

calculation 

Euclidean 

algorithm 

Berlekamp-

Massey 

algorithm 

Chien 

search with 

integrated 

Forney 

algorithm 

Entire RS 

decoder with 

Euclidean 

algorithm 

Entire RS 

decoder 

with BM1 

algorithm 

Latency in cycles 21198 6286 1776 41151 68635 64125 

FPGA clock 

frequency in MHz 
— — — — 30.118 28.538 

Bit rate of RS 

decoder in Mbit/s — — — — 0.84 0.85 

PPaarrtt  ##22::  

Part #1 + 

Handel-C code 

optimization + 

Handel-C 

extensions 

      

Latency in cycles  20945 6175 2391 36377 63497 59713 

FPGA clock 

frequency in MHz  
— — — — 72.093 73.319 

Bit rate of RS 

decoder in Mbit/s  — — — — 2.17 2.35 

PPaarrtt  ##33::  

Part #2 + 

expression of some 

parallelism 

      

Latency in cycles  9147 3191 1812 33565 45903 44524 

FPGA clock 

frequency in MHz  
— — — — 73.954 70.897 

Bit rate of RS 

decoder in Mbit/s — — — — 3.08 3.05 

PPaarrtt  ##44::  

Part #3 + 

expression of 

maximum available 

parallelism 

      

Latency in cycles 9147 1774 1812 9798 20719 20757 

FPGA clock 

frequency in MHz 
— — — — 84.774 77.604 

Bit rate of RS 

decoder in Mbit/s 
— — — — 7.82 7.15 

 
Table 6.3.1: Implementation results in terms of timing 

performance of the given RS decoder – RS(255, 239). 

                                                 
1 BM – Berlekamp-Massey 
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The corresponding implementation results in terms of resource usage are shown in 
Table 6.3.2. 
 

Implementation 

part # 

Entire RS decoder with 

Euclidean algorithm 

Entire RS decoder with 

Berlekamp-Massey algorithm 

1 83% 75% 

2 9% 6% 

3 27% 18% 

4 48% 37% 

 

Table 6.3.2: Implementation results in terms of resource usage (device 

utilization in percents) of the given RS decoder – RS(255, 239). 

As we observe both in Tables 6.3.1 and 6.3.2, the first implementation part provides 
the worst results in all terms: the number of cycles (latency) required to decode one 
codeword on FPGA is the highest, the bit rate (throughput) of the decoder is the 
lowest, and hardware resource (e.g., memory elements, logic gates) usage is the 
highest as compared to other implementation parts. With the second implementation 
part, where all operations of the decoder are still performed in a sequential manner, 
the latency is slightly reduced, and the design clock speed is greatly increased as 
compared to the first part. Moreover, the second part requires the lowest resource 
usage in comparison with other implementation parts. With the third implementation 
part, some parallelism is expressed in the code. This results in lower latency, but in 
higher resource usage as compared to the second part. Finally, with the last 
implementation part, the maximum available parallelism is applied. This results in the 
lowest latency, but in the highest hardware resource usage as compared to other 
implementation parts. Moreover, the fourth implementation part provides the highest 
clock speed, and the highest bit rate of the given decoder. Here, the achieved bit rates 
(7.82 Mbit/s and 7.15 Mbit/s) satisfy the ITU G.992.1 requirements in [1], which 
define the system to support a minimum of 6.144 Mbit/s downstream. 
 
 

6.4. Summary 
 
This chapter introduced the implementation process of the given RS decoder (written 
in C language) onto the given FPGA. For that, the Handel-C language was used in the 
project for fast and easy transition from C-based algorithms to FPGA hardware 
solutions. Moreover, this chapter summarized several important Handel-C extensions 
to ANSI-C, which were used in the project to achieve higher performance. In 
addition, Handel-C optimization was presented, which results in fast designs. With 
the actual implementation, it was splitted up into four parts. The implementation of 
each part onto FPGA was performed separately. The last implementation part (of 
maximum available parallelism) provided the highest bit rate of the decoder: 7.82 
Mbit/s using Euclidean algorithm, and 7.15 Mbit/s using Berlekamp-Massey 
algorithm. These both bit rates satisfy the ITU G.992.1 requirements in [1]. 
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DDSSPP  IImmpplleemmeennttaattiioonn  
 
 
“Assembly language (or assembler) is a low-level programming language and is a 
more human readable form of machine language. Assembler is close to a one-to-one 
correspondence between symbolic instructions and executable machine codes. 
Programming in assembler gives direct access to key machine features essential for 
implementing certain kinds of low-level routines” [25]. Therefore, high quality hand 
crafted programs written in assembly language for DSP processors can run much 
faster and use much less memory and other resources than a similar program written 
in a high-level language (e.g. C/C++). However, assembly language is much harder to 
program than high-level languages, since the designer must pay attention to far more 
detail and must have an intimate knowledge of the DSP processor in use. Moreover, 
hand programming of applications in assembly language for DSPs becomes 
unacceptable as applications increase in complexity. 

So, writing efficient assembly code for DSP architectures is a very challenging 
task, which slows down the development and sometimes leaves the product 
development team with a completely non-portable, confusing, and unmanageable 
source base. In order to reduce such heavy programming load, and consequently 
reduce the implementation time (or time-to-market), software tools, such as high-
level languages and their compilers, are very important. Many programming tools and 
compilers are provided by vendors and researchers. With the given DSP processor, 
the VisualDSP++


 compiler [26] is presented for the desired implementations of 

different applications, which can be written both in low-level (i.e., assembly) and 
high-level (i.e., C/C++) programming languages. 

The current chapter introduces the implementation process of the given Reed-
Solomon (RS) decoder onto the given DSP device (described in Appendix B) with 
VisualDSP++. 
 
 

7.1. VisualDSP++ Environment 
 
The VisualDSP++ environment lets programmers develop and debug applications. 
VisualDSP++ includes: [26] 
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� Integrated Development and Debugging Environment (IDDE); 

� C/C++ optimizing compiler; 

� Assembler and linker; 

� Simulator software. 
 
The VisualDSP++ IDDE provides complete graphical control of the edit, build, and 
debug process. The C/C++ compiler has been developed by the vendor for efficient 
translation of C/C++ code to DSP assembly. The C/C++ compiler (ccts) processes 
our C/C++ source files and produces TigerSHARC assembler source files. The 
assembler source files are assembled by the TigerSHARC assembler (easmts). The 
assembler creates Executable and Linkable Format (ELF) object files that can be 
linked (using the linker) to create an executable file. Moreover, depending on the 
selected target DSP processor, VisualDSP++ gives an opportunity to simulate the 
processor. 

 

7.1.1. Optimizing Performance with VisualDSP++ 
 
In contrast to Handel-C in DK-suite, the C/C++ compiler in VisualDSP++ is able to 
automatically optimize the C/C++ code by exploiting the appropriate architectural 
features. Here, the compiler tries to efficiently compile the C/C++ code written in a 
straightforward manner to assembly code. However, at times it is difficult for the 
compiler to generate efficient assembly code that respects tight real-time constraints. 
This is mainly due to the use of DSP specific architectural features that is sometimes 
complicated for the compiler to exploit in a given C/C++ code. However, it is known 
that it is possible to improve the quality of generated assembly code by modifying (or 
tuning) the original C/C++ source code for the target compiler. For that, first we must 
understand the compiler optimizer, and must understand how to access the features of 
the processor. After, we can tune our application to achieve the best possible code 
from the compiler. 

However, before optimizing we need to make sure that the given code is 
functional and yields correct results. One needs to realize that if a C-coded algorithm 
is functional and its execution speed is satisfactory, there is no need to optimize 
further. But if the performance of the code is not adequate, we should use the 
compiler optimizer. If the performance desired is still not achieved, we can tune the 
code for the target compiler, and then re-optimize it with this compiler. Finally, if 
performance is still not satisfactory, we can rewrite the time-critical sections of the 
code in assembly, resulting in hand-optimized code. In spite of that, the last presented 
optimization step is a time and cost consuming task, because it requires a thorough 
knowledge of both the processor architecture and the algorithm to write an efficient 
assembly code. Therefore, this last step is not considered in the project (according to 
the project design strategy, see Section 1.1). The other optimization steps are 
presented in the following sections. 
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7.1.2. Using the Compiler Optimizer 

 
The general intention of compiler optimizations is to generate correct code that 
executes fast and is small in size. It must be noted that not all optimizations are 
suitable for every application or possible all the time. Therefore, the compiler 
optimizer has a number of configurations, or optimization levels, which can be 
applied when needed. The following list (based on [27]) identifies several 
optimization levels. The levels are notionally ordered with least optimization listed 
first and most optimization listed last: 
 

• Default: 

 
The compiler does not perform any optimization by default when none of the 
compiler optimization switches is enabled in VisualDSP++ project options. 
 

• Procedural Optimizations (PO): 
 
The compiler performs standard optimization on each procedure (or function) in the 
code being compiled. The optimizations can be directed to favor optimizations for 
speed or code size, or a factor between these two (-Ov num switch). As there is a 
trade-off between speed and code size, -Ov num switch directs the compiler to 
produce code that is optimized for speed versus size. The num variable (integer 
number) indicates a sliding scale between 0 and 100, which is the probability that a 
linear piece of generated code will be optimized for speed or for size. At num = 0, all 
code blocks are optimized for size. This is achieved by performing all optimizations 
except those that increase code size. At num = 100, all blocks are optimized for speed. 
At any point in between, the decision is based upon num and how many times a 
certain block is expected to be executed – the “execution count” of the block. Figure 
7.1.1 demonstrates this relationship. 
 

 
 

Figure 7.1.1: -Ov switch optimization curve. [27] 

 
 
 



Analyzing and Implementing a Reed-Solomon Decoder for Forward Error Correction in ADSL 

 

 92 

• Profile-Guided Optimizations (PGO): 

 
There are many program characteristics that cannot be known statically at compile-
time, but can be provided by means of PGO, which is an optimization technique that 
uses collected profile information generated from running the application to guide the 
compiler optimizer’s decisions. The VisualDSP++ profiler determines the number of 
clock cycles spent executing instructions, amount of memory read or writes, etc. The 
compiler can use this information to achieve better optimization results. PGO should 
always be performed as the very last optimization step. 
 

• Automatic Function Inlining (AFI): 

 
The compiler’s inline keyword causes a function to be “expanded” where it is 
called, i.e., it indicates that functions should have code generated inline at the point of 
call. Doing this avoids various costs, such as program flow latencies, function entry 
and exit instructions. So the automatic inlining switch enables the inline expansion of 
C/C++ functions, which are not necessarily declared inline in the source code. 

The intent of performing this optimization is to improve run-time 
performance, at the possible cost of increasing the size of the final program. Thus, 
inlining has a code size-to-performance trade-off that should be considered when it is 
used. When AFI is enabled, the compiler automatically inlines small, frequently 
executed functions where possible. 
 

• Interprocedural Optimizations (IPO): 
 
IPO is a whole-program analysis. It improves performance in codes containing many 
frequently used functions of small or medium length. IPO tries to reduce or eliminate 
duplicate identical calculations, inefficient use of memory, and to simplify iterative 
sequences, such as loops. For example, if there is a call to another function that 
occurs within a loop, IPO will inline (if possible) this called function. Additionally, 
IPO re-orders the functions for better memory layout. 

 

7.1.3. Tuning the Code for the Target Compiler 
 
The main strategy for tuning a program is to present the algorithm in a way that gives 
the compiler optimizer excellent visibility of the operations and data, and hence a 
greater ability to exploit DSP specific architectural features in a given code. 

This section summarizes only those tuning techniques, which are used in our 
case to help the optimizer better exploit the identified architectural features (described 
in Section 5.2.2). Other tuning techniques can be found in [27]. 
 

7.1.3.1. Quad-Word-Aligning 
 
To make most efficient use of the hardware, it must be kept fed with data. In many 
algorithms, the balance of data accesses to computations is such that, to keep the 
hardware fully utilized, data must be fetched with loads wider than 32 bits (a word). 
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The given DSP device is able to load/access a quad-word data (128 bits). For that, the 
hardware requires that references to memory be naturally aligned. Therefore, 128-bit 
references must be at quad-word-aligned addresses. Thus, for the most efficient code 
to be generated by the compiler, we have to be ensured that data buffers are quad-
word-aligned. 

In general, the compiler helps to establish the alignment of array data. 
However, sometimes the compiler is not able to do this automatically because of 
complex data structures. In order to make sure that data buffers are always quad-
word-aligned, we can use the appropriate compiler’s pragma (all_aligned). By 
prefixing a for loop with this pragma, it is asserted to the compiler that every pointer 
variable in the loop is aligned on a quad-word boundary at the beginning of the first 
iteration. The following code fragment uses all_aligned pragma to inform 
compiler of alignment of a[] and b[]: 
 

#pragma all_aligned 

for(i=0; i<256; i++) 

{ 

  a[i] = b[i]; 

} 

 

7.1.3.2. Putting Arrays into Different Memory Blocks 
 
The internal memory of the given DSP processor is divided into six blocks. Placing 
program instructions and data in different memory blocks, enables the DSP to support 
two memory operations on a single instruction line, combined with a compute 
instruction. However, two memory operations can be performed at the same time only 
if the two corresponding addresses are situated in different memory blocks (if both 
access the same block, then a stall will be incurred). In order to allow two memory 
accesses to occur simultaneously without incurring a stall, we need to put arrays into 
different memory blocks. This can be done by using different_banks pragma, 
which asserts to the compiler that any two independent memory accesses in the loop 
may be issued together without incurring a stall. 
 The following code fragment uses different memory blocks to allow 
simultaneous accesses to a[] and b[]: 
 

#pragma different_banks 

for(i=0; i<256; i++) 

{ 

  sum += a[i] * b[i]; 

} 
 
 

7.2. Implementation Results and Analysis 
 
In our case, the implementation is splitted up into three parts. The implementation of 
each part onto DSP is performed separately. A short description of each part is 
presented below: 
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1. In the first part, code optimization is not used at all; 

2. In the second part, the given code is tuned for the target compiler, as described 
in Section 7.1.3, and the procedural optimization (PO) is enabled in the 
compiler. Here, PO is directed to favor optimizations for code size (num = 0), 
i.e., all code blocks are optimized for size. This is achieved by performing all 
optimizations except those that increase code size. Those optimizations that 
increase code size do not exploit directly specific architectural features; they 
use various source code modification techniques, such as loop unrolling [27]; 

3. In order to achieve the maximum speed performance, all possible optimization 
techniques should be considered. So in the last implementation step, all 
optimizations presented before are now utilized: code tuning, PO (num = 100), 
profile-guided optimization (PGO), automatic function inlining (AFI), 
interprocedural optimization (IPO). 

 
The results of each implementation part (described above) are presented for each 
block of the given RS decoder, shown in Figure 5.3.2. The corresponding 
implementation results in terms of timing performance are depicted in Table 7.2.1. 
 

PPaarrtt  ##11::  

No optimizations 

Syndrome 

calculation 

Euclidean 

algorithm 

Berlekamp-

Massey 

algorithm 

Chien search 

with integrated 

Forney 

algorithm 

Entire RS 

decoder with 

Euclidean 

algorithm 

Entire RS 

decoder 

with BM1 

algorithm 

Latency in cycles 411055 92293 35154 681243 1184591 1127452 

Bit rate of RS 

decoder in Mbit/s — — — — 0.97 1.02 

PPaarrtt  ##22::  

Using PO and 

code tuning 

      

Latency in cycles  191437 34733 16138 379163 605333 586738 

Bit rate of RS 

decoder in Mbit/s  — — — — 1.9 1.96 

PPaarrtt  ##33::  

Using all possible 

optimizations: 

code tuning, PO, 

PGO, AFI, IPO 

      

Latency in cycles 139530 17975 9750 150995 308500 300275 

Bit rate of RS 

decoder in Mbit/s 
— — — — 3.72 3.82 

 
Table 7.2.1: Implementation results in terms of timing performance of the given RS 

decoder – RS(255, 239). The device clock speed is constant (600 MHz). 

                                                 
1 BM – Berlekamp-Massey 
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As we observe in Table 7.2.1, the first implementation part, where optimization is not 
used, provides the worst results in terms of speed performance as compared to other 
parts: here the bit rate of the decoder is only about 1 Mbit/s. With the second 
implementation part, where the source code is tuned and the procedural optimization 
(PO) is applied, the bit rate is increased about twice as compared to the first part. 
Finally, the last implementation part, were all possible optimization techniques are 
utilized, provides the highest bit rate in comparison with other implementation parts: 
the bit rate here is about twice the bit rate of the second implementation part. 
However, the achieved bit rates (3.72 Mbit/s and 3.82 Mbit/s) do not satisfy ITU 
G.992.1 [1], which defines the system to support a minimum of 6.144 Mbit/s. 
 
 

7.3. DSP Implementation Results vs. FPGA Results 
 
Now let’s compare the DSP implementation results (in terms of bit rate) with the 
corresponding FPGA implementation results. For that, let’s combine Table 7.2.1 with 
Table 6.3.1, resulting in Table 7.3.1. 
 

 DSP FPGA 

Implementation 

part 

Bit rate in Mbit/s 

using Euclidean 

algorithm 

Bit rate in Mbit/s 

using Berlekamp-

Massey algorithm 

Bit rate in Mbit/s 

using Euclidean 

algorithm 

Bit rate in Mbit/s 

using Berlekamp-

Massey algorithm 

#1 0.97 1.02 0.84 0.85 

#2 1.9 1.96 2.17 2.35 

#3 3.72 3.82 3.08 3.05 

#4 — — 7.82 7.15 

 

Table 7.3.1: Comparison of bit rate in DSP with bit rate in FPGA. 

As can be seen in Table 7.3.1, the bit rates in the implementation parts #1, #2 and #3 
of both DSP and FPGA are similar. However, the DSP device runs at 600 MHz, while 
the clock frequency in FPGA varies only from 29 to 85 MHz. Moreover, FPGA offers 
a fourth solution (implementation part #4), which is not provided by DSP. 
 
 

7.4. Summary 
 
This chapter introduced the implementation process of the RS decoder onto the given 
DSP device. For that, the VisualDSP++ compiler was used in the project. In addition, 
different optimizations (provided by VisualDSP++) were presented. With the actual 
implementation, it was splitted up into three parts. The last implementation part 
(highest optimization level) provided the highest bit rate of the decoder: 3.72 Mbit/s 
using Euclidean algorithm, and 3.82 Mbit/s using Berlekamp-Massey algorithm. 
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AAffffiinniittyy  RReessuullttss  EEvvaalluuaattiioonn  
 
 
After the implementation of the desired system (i.e., Reed-Solomon (RS) decoder) 
has been performed both onto FPGA and DSP devices, the comparison of the 
implementation results with the corresponding algorithm characterization results must 
be carried out to verify that the characterization results are true. So the current chapter 
goes through this verification. 
 
 

8.1. Evaluation of Affinity towards FPGA 
 
Now let’s compare the obtained FPGA implementation results in terms of latency 
with the corresponding algorithm characterization results, i.e., with AFPGA in Table 
5.4.2. For that, first of all we need to define the ratio between the latency of a 
particular RS decoder block in the second implementation part (Table 6.3.1) and the 
latency of the same block in the fourth implementation part (Table 6.3.1) as follows: 
 

4#

2#
1

partinBblockofcyclesinLatency

partinBblockofcyclesinLatency
RL =  (8.1.1) 

 
The ratio RL1 in (8.1.1) shows us how many times the latency of a particular decoder 
block, where the maximum available parallelism is expressed, is lower than the 
latency of the same block, where parallelism is not expressed at all. This will help us 
to compare the results of AFPGA with the benefit derived from the use of 
corresponding parallelism in the code for the FPGA implementation (Table 8.1.1). 
 

 
Syndrome 

calculation 

Euclidean 

algorithm 

Berlekamp-Massey 

algorithm 

Chien search with 

integrated Forney 

algorithm 

AFPGA 0.591 0.617 0.024 0.617 

RL1 2.29 3.48 1.32 3.71 

 

Table 8.1.1: Comparison of FPGA results in terms of latency with the corresponding affinity results. 
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Now let’s compare AFPGA with RL1 in case of Berlekamp-Massey algorithm (Table 
8.1.1). As we see, AFPGA = 0.024, meaning that the Berlekamp-Massey algorithm is 
highly serial and parallelism cannot be efficiently applied here. This is confirmed by 
the corresponding ratio RL1 = 1.32, which indicates that the parallelism, taken into 
account in obtaining AFPGA = 0.024, reduces latency of the decoder only 1.32 times in 
hardware. For instance, with the Euclidean algorithm, the value of AFPGA = 0.617 is 
relatively high. It means that this algorithm has a regular structure and can be highly 
parallelized. This is confirmed by the corresponding ratio RL1 = 3.48 (Table 8.1.1), 
which indicates that the parallelism, taken into account in obtaining AFPGA = 0.617, 
reduces latency of the decoder about 3.5 times in FPGA. In the final analysis, we can 
observe similar comparison results in case of syndrome calculation and Chien search 
with the integrated Forney algorithm. 

So, after we sum up the analysis made in this section, we can state that the 
obtained affinity towards FPGA (Tables 5.4.2 and 8.1.1) indicates correct matching 
between the hardware and the given RS decoding algorithms. 
 
 

8.2. Evaluation of Affinity towards DSP 
 
Now let’s compare the obtained DSP implementation results in terms of latency with 
the corresponding algorithm characterization results, i.e., with ADSP in Table 5.4.2. 
For that, first of all we need to define the ratio between the latency of a particular RS 
decoder block in the first implementation part (Table 7.2.1) and the latency of the 
same block in the second implementation part (Table 7.2.1) as follows: 
 

2#

1#
2

partinBblockofcyclesinLatency

partinBblockofcyclesinLatency
RL =  (8.2.1) 

 
The ratio RL2 in (8.2.1) shows us how many times the latency of a particular decoder 
block, which is not optimization, is higher than the latency of the same block, which 
is optimized by means of procedural optimization (PO) and code tuning. 
 Now let’s define the ratio between the latency of a particular RS decoder 
block in the first implementation part (Table 7.2.1) and the latency of the same block 
in the third implementation part (Table 7.2.1) as follows: 
 

3#

1#
3

partinBblockofcyclesinLatency

partinBblockofcyclesinLatency
RL =  (8.2.2) 

 
The ratio RL3 in (8.2.2) shows us how many times the latency of a particular decoder 
block, which is not optimization, is higher than the latency of the same block, which 
is optimized by means of all possible optimization techniques. 

It must be noted that RL2 is more appropriate to comparison of the obtained 
DSP implementation results with the corresponding affinity results than RL3, because 
the optimizations in RL3 use various source code modification techniques, such as 
loop unrolling [27], inlining and so on, which improve speed performance at the 
possible cost of increasing the size of the entire code. Therefore, these optimizations 
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do not exploit directly specific architectural features. With RL2, the chosen level of 
optimizations here is more restricted within the use of various code modification 
techniques. The optimizations in RL2 are mainly related to the exploitation of the 
architectural features taken into account in calculating the conformable ADSP. 
Accordingly, RL2 should be used to make more accurate comparison of the DSP 
implementation results with the corresponding affinity results (Table 8.2.1). 
 

 
Syndrome 

calculation 

Euclidean 

algorithm 

Berlekamp-Massey 

algorithm 

Chien search with 

integrated Forney 

algorithm 

ADSP 0.024 0.077 0.042 0.012 

RL2 2.15 2.66 2.18 1.8 

ADSP / RL2 0.011 0.028 0.019 0.007 

 

Table 8.2.1: Comparison of DSP implementation results in terms 

of latency with the corresponding affinity results. 

As we observe in Table 8.2.1, the ratios between all ADSP and corresponding RL2 
results (i.e., ADSP / RL2) are limited within the narrow interval. This implies that if we 
perform a descending (or ascending) sort on the values of each row (i.e., on ADSP and 
RL2) separately in Table 8.2.1, we will obtain an equivalent table: 
 

 ADSP RL2 ADSP / RL2 

Euclidean algorithm 0.077 2.66 0.028 

Berlekamp-Massey algorithm 0.042 2.18 0.019 

Syndrome calculation 0.024 2.15 0.011 

Chien search with integrated 
Forney algorithm 0.012 1.8 0.007 

 
Table 8.2.2: Result of a descending sort on ADSP and RL2 values in Table 8.2.1. 

Comparing Table 8.2.2 with Table 8.2.1, we notice that the relation between ADSP and 
corresponding RL2 in Table 8.2.2 is exactly the same as in Table 8.2.1. It means that 
the obtained affinity towards DSP (Tables 5.4.2 and 8.2.1) indicates correct matching 
between the device and the given RS decoding algorithms. 
 
 

8.3. General Affinity Evaluation 
 
After we carried out the desired verification of the algorithm characterization results, 
we made sure that the affinities towards FPGA and DSP indicate correct matching 
between the corresponding devices and RS decoding algorithms. However, the 
verification was performed separately both for FPGA and DSP. This does not allow 

Highest 

value 

Lowest 

value 
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us to easily see which type of architecture (i.e., FPGA or DSP) is the most suitable for 
the execution of the decoder. In order to duck the issue, we need to combine Table 
8.1.1 with Table 8.2.1, resulting in Table 8.3.1, and perform a general analysis of the 
obtained table: 
 

 
Syndrome 

calculation 

Euclidean 

algorithm 

Berlekamp-Massey 

algorithm 

Chien search with 

integrated Forney 

algorithm 

AFPGA 0.591 0.617 0.024 0.617 

ADSP 0.024 0.077 0.042 0.012 

RL1 2.29 3.48 1.32 3.71 

RL2 2.15 2.66 2.18 1.8 

 

Table 8.3.1: Combination of Tables 8.1.1 and 8.2.1. 

As we observe in Table 8.3.1, the values of AFPGA greatly differ from the 
corresponding values of ADSP (exception only with the Berlekamp-Massey algorithm), 
meaning that in general FPGA is more suitable for the execution of the decoder than 
DSP. However, when we compare RL1 with corresponding RL2, we notice that this is 
not so, because the exploitation of the architectural features of both FPGA and DSP 
increases the decoder’s performance in terms of latency about the same number of 
times. Therefore, at present, we may assert that the affinity results in Table 8.3.1 
cannot precisely point out the most suitable type of architecture. The problem here is 
mostly in ADSP and corresponding RL2, since the chosen level of optimizations in RL2 
exploits not only those DSP features that are taken into account in calculating the 
conformable ADSP, but in addition to this, the optimizations in RL2 perform various 
source code modification techniques to achieve higher speed performance, see [27]. 

 However, one important detail has been omitted. Now let’s return to the 
FPGA implementation results in Table 6.3.1, where we observe that the design clock 
speed of FPGA grows with the increase in the level of expressed parallelism. It means 
that the exploitation of the corresponding FPGA feature (i.e., inherent parallelism) is 
able not only to decrease the latency, but to increase the clock frequency as well. This 
important detail was not taken into account for the affinity validation. In order to 
improve the current situation, we need to make some changes in RL1 and RL2. The 
modification within RL1 and RL2 is that the ratios should now calculate not the 
differences between latencies, but the differences between bit rates, expressed as 
(5.2.1), since Expression (5.2.1) involves both the device clock speed and latency. 
Let’s denote the modified ratios as RBR1 and RBR2, respectively: 
 

2#

4#
1

partindecodertheofrateBit

partindecodertheofrateBit
RBR =  (8.3.1) 

 

1#

2#
2

partindecodertheofrateBit

partindecodertheofrateBit
RBR =  (8.3.2) 
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The ratio RBR1 in (8.3.1) shows us how many times the bit rate of the decoder in the 
fourth FPGA implementation part (Table 6.3.1), where the maximum available 
parallelism is expressed, is higher than the bit rate of the same decoder in the second 
FPGA implementation part (Table 6.3.1), where parallelism is not expressed at all. 
The ratio RBR2 in (8.3.2) shows us how many times the bit rate of the decoder in the 
second DSP implementation part (Table 7.2.1), where the procedural optimization 
(PO) and code tuning are applied, is higher than the bit rate of the same decoder in the 
first DSP implementation part (Table 7.2.1), where none of the presented 
optimization techniques is used. 
 Now let’s compare AFPGA and ADSP with corresponding RBR1 and RBR2, 
resulting in Table 8.3.2. 
 

 
Entire RS decoder with 

Euclidean algorithm 

Entire RS decoder 

with Berlekamp-

Massey algorithm 

AFPGA 0.616 0.382 

ADSP 0.06 0.023 

RBR1 3.6 3.04 

RBR2 1.96 1.92 

Maximum bit 

rate in FPGA 
7.82 Mbit/s 7.15 Mbit/s 

Maximum bit 

rate in DSP 
3.72 Mbit/s 3.82 Mbit/s 

 

Table 8.3.2: Comparison of AFPGA and ADSP with corresponding 

RBR1 and RBR2, and maximum bit rates of the decoder. 

At last, Table 8.3.2 gladdens the eye. Now the affinity results in Table 8.3.2 are able 
to point out more or less precisely the most suitable type of architecture for the 
execution of the given RS decoder. This type is FPGA, and this is confirmed by the 
fact that the performance of the decoder in terms of bit rate in FPGA is about twice 
the bit rate of the same decoder in DSP (comparing RBR1 with RBR2, and comparing 
the maximum bit rate in FPGA with the maximum bit rate in DSP). 
 So, after we sum up the analysis made in this section, we can affirm that the 
assertion made at the end of Chapter 5 that FPGA is more suitable for the execution 
of the decoder than DSP (before performing the actual implementation) is true. 
 
 

8.4. Cost Function 
 
Even if the algorithm characterization results towards available architectures are true, 
it doesn’t mean that the designer should rely upon the obtained affinity and use the 
proposed (by this affinity) architecture for commercial activity. Maybe from a 
commercial point of view, the use of non-suitable (for the execution of a given 
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application) architecture is more beneficial in terms of market price than the use of 
another architecture, which was proposed by the affinity. In order to estimate this, a 
cost function may be defined. A cost function is usually related to different selection 
criteria. However, having more than one criterion, it is difficult to identify the most 
suitable. For that reason, we have to make a trade-off by setting up a cost function 
with different priorities for each criterion. But in our case, the issue can be managed 
without defining a particular trade-off, since there are only few parameters (criteria). 

Let us suppose that the final product (i.e., RS decoder) is going to be put into 
mass production (e.g., thousands of units). This will compensate, to some extent, such 
costs, as a salary for the designer, purchasing of different development tools (e.g., 
DK-Suite, ISE tool, VisualDSP++), and so on. In this case, the selection of the most 
beneficial (in terms of market price) architecture over another should be based mainly 
on the following two criteria: low unit price and satisfactory time constraint. 

Now let’s assume that a RS decoder must follow ITU G.992.1 [1], which 
defines the system to support a minimum of 6.144 Mbit/s downstream. So in this case 
let’s determine which of the given devices (i.e., FPGA or DSP) is more beneficial for 
commercial activity. For that, we need to consider the current market prices, which 
can be found, for example, in [28] (Table 8.4.1). 
 

 FPGA DSP 

Device price ≈ $480 ≈ $470 

Maximum bit 

rate of the given 

RS decoder 

7.82 Mbit/s 
(using Euclidean algorithm) 

3.82 Mbit/s 
(using Berlekamp-Massey algorithm) 

 

Table 8.4.1: Comparison of device prices with the maximum 

achieved bit rates of the given RS decoder. 

As can be observed in Table 8.4.1, the prices of both devices are very similar, but the 
maximum bit rates differ about two times. Moreover, the highest bit rate in DSP (3.82 
Mbit/s) does not satisfy ITU G.992.1, which define the system to support a minimum 
of 6.144 Mbit/s. It means that the DSP is not suitable for the commercial purpose, as 
it does not satisfy the given performance requirements. However, this can be 
improved by taking the two DSP processors for parallel performing of the two 
identical RS decoders. In such case, the bit rate can be increased up to 3.82*2 = 7.64 
Mbit/s. This obtained bit rate now satisfies the performance requirements, and is 
similar to the bit rate in FPGA (7.82 Mbit/s). Nevertheless, the price of the two 
parallel DSPs is about twice the price of a single FPGA (Table 8.4.1). So, as follows 
from the above, the given FPGA should be selected for mass productions, since it 
cheaper than the two parallel DSPs about two times, and provides timing performance 
similar to that in the two DSPs (7.82 Mbit/s ≈ 7.64 Mbit/s). 
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8.5. Summary 
 
This chapter carried out the comparison of the DSP and FPGA implementation results 
with the corresponding algorithm characterization results to verify that the obtained 
characterization results are true. After the desired comparison, we made sure that the 
characterization results are true. This was confirmed by the fact that the achieved 
performance of the RS decoder in terms of bit rate in FPGA is about twice the 
maximum bit rate of the same decoder in DSP. Moreover, it was estimated that the 
given FPGA is more beneficial in terms of market price than the given DSP device. 
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CCoonncclluussiioonn  
 
 
The main project objective was to investigate whether a fast design strategy for an 
efficient implementation of a Reed-Solomon decoder specified in ITU G.992.1 [1] 
(standard for ADSL) on the given target architectures (i.e., DSP and FPGA) can be 
provided or not. In order to accomplish this, the proposed design trajectory (described 
in Section 1.3) was evaluated. 
 
 

9.1. General Summary 
 
This section contains a summary of the main issues discussed in the report as well as 
the important results obtained. 
 

• ADSL technology: 

 
Digital subscriber line (DSL) technology is a home user-oriented modem technology 
that uses existing twisted-pair copper telephone lines to transport high-bandwidth 
data, such as multimedia and video. DSL service is dedicated, point-to-point, public 
network access over twisted-pair copper wire on the local loop between a network 
service provider (NSP’s) central office and the customer site. 

 Asymmetric digital subscriber line (ADSL) is the most widely used DSL 
standard today. The term asymmetric reflects the difference between upstream and 
downstream bit rates in the transmission link. ADSL allows more bandwidth 
downstream – from an NSP’s central office to the customer site – than upstream from 
the subscriber to the central office. This asymmetry, combined with always-on access, 
makes ADSL ideal for Internet surfing, since users typically download much more 
information than they send. 
 

• Reed-Solomon FEC in ADSL: 

 

The integral part of each ADSL modem is the forward error correction (FEC) 
technique, which is used to deliver information from a source (transmitter) to a 
destination (receiver) through a noisy communication channel with a minimum of 
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errors. FEC allows a receiver in the system to perform error detection and correction 
without requesting a retransmission of the corrupted data. 

Reed-Solomon (RS) codes have been chosen for the FEC technique in ADSL. 
Here, a RS code is specified as RS(n, k) with 8-bit (byte) symbols: the RS encoder in 
the transmitter takes k data symbols of 8 bits each and adds parity symbols 
(redundancy) to make an n symbol data block, called codeword. The maximum length 
(starting from n = 1) of a codeword with 8-bit symbols in ADSL is 255 bytes. There 
are (n – k) redundant bytes. The ADSL standard requires support of all even numbers 
from 0 to 16 of redundancy bytes per codeword. This would allow for up to 8 bytes to 
be in error for every RS codeword. The RS decoder at the receiver removes the 
redundancy introduced by the RS encoder at the transmitter, and attempts to detect 
and correct possible bit errors using the knowledge of the code used by the channel 
encoder and the redundancy contained in the received data. 
 

• System simulation: 
 
Before a real-time implementation was initiated, it was very helpful to perform a 
simulation of the given system (i.e., RS decoder): after the system was simulated 
and the practical performance was obtained, it was necessary to compare the obtained 
performance with the theoretical one to ensure that the system at hand works 
correctly. Besides, according to the system constraints described in Section 1.4, and 
according to the system requirements described in Section 1.5, the RS(255, 239) code 
was selected over another from the simulation results for its further analysis and 
implementation on the target architectures. 

 The RS(255, 239) code provides the best bit-error performance, but it is the 
most complex code in comparison with the other supported by ADSL RS codes, as 
the codeword size and redundancy of RS(255, 239) are the maximum available in 
ADSL. This certainly leads to high implementation complexity. However, from the 
corresponding analysis it was found out that the RS(255, 239) code takes several 
advantages for ADSL: 1) if SNR per bit (Eb/N0), at which RS(255, 239) provides the 
best BER, is satisfied, Trellis coding in ADSL can be eliminated; 2) the CRC 
operation in an ADSL modem can be eliminated as well. 
 

• Algorithm characterization: 
 
According to the proposed design trajectory, it was necessary to determine (before the 
implementation step) which type of architecture (DSP or FPGA) is the most suitable 
for the execution of the given RS decoder. For that, algorithm characterization was 
performed. The main idea of characterization is to extract relevant information from 
the given algorithm to guide the designer towards an efficient algorithm-architecture 
matching. For this purpose, different performance metrics were efficiently used in the 
project to rapidly stress the proper architecture style for the RS decoding algorithms. 

 Performance metrics are the mean of evaluating a given design specification 
to test its particular properties. These metrics can be properly combined in order to 
build a global metric (the affinity) able to suggest the most suitable type of 
architecture for the execution of an algorithm. To obtain the affinity for the given RS 
decoder, the following two subtasks were performed: 
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1. First, an analysis of the available architectures was carried out to determine 
their relevant features. With the given DSP, the following architectural 
features of such processing element were identified: circular addressing, 
multiply and accumulate (MAC) operations, and Harvard architecture. With 
FPGA, the following two features were considered: inherent parallelism and 
fast handling of bit-manipulation operations; 

2. Second, a set of appropriate metrics was defined to identify subsets of the 
algorithm specification that could exploit the determined architectural 
features. Then, the metrics were classified into two groups: DSP oriented and 
FPGA oriented. The purpose of DSP oriented metrics is to identify 
functionalities suitable to be executed by a DSP device by considering those 
issues that exploit the most relevant architectural features of such processing 
element. The goal of FPGA oriented metrics is to highlight relevant FPGA 
features. 

 
In our case, some of the defined metrics were divided into strong and weak degrees. 
The difference between these two degrees is that certain source code parts taken into 
account in calculating the strong degree of a particular architectural feature can 
benefit more from that feature than certain code parts taken into account in 
calculating the corresponding metric of weak degree. In order to rapidly distinguish 
between code parts taken into account in estimating the strong degree and code parts 
taken into account in estimating the weak degree, the Design-Trotter tool was used in 
the project. 

So, once the metrics have been defined, they have to be taken into account in 
defining the affinity, which towards a certain processing element depends on the 
degree (strong and weak) of a particular set of metrics. From the corresponding 
analysis it was found out that considering both strong and weak degrees for the 
affinity, the matching (provided by this affinity) between an algorithm and a certain 
processing element may become less precise as compared with the case where only 
the strong degree is considered. For that reason, only the strong degree of metrics was 
chosen for the affinity computation. 
 

• Affinity evaluation: 
 
After a proper combination of the selected metrics, the corresponding affinity was 
obtained. The affinity results pointed out that an FPGA device is more suitable for the 
execution of the given RS decoder than DSP. In order to verify that it is true (or 
false), first of all the decoding algorithms were optimized considering the appropriate 
capabilities of the target architectures. Then the implementation of these algorithms 
was performed both onto FPGA and DSP. And finally, for the desired verification, 
the corresponding implementation results were compared with the algorithm 
characterization (affinity) results. After this comparison, we made sure that the 
characterization results are true. This was confirmed by the fact that the maximum 
achieved performance of the decoder in terms of bit rate in FPGA is about twice the 
maximum bit rate of the same decoder in DSP (referring to the implementation 
results). 
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• Implementation results: 
 
The maximum achieved bit rate of the RS decoder in FPGA is 7.82 Mbit/s (using 
Euclidean algorithm), and the maximum achieved bit rate of the decoder in DSP is 
3.82 Mbit/s (using Berlekamp-Massey algorithm). It must also be noted that the 
achieved bit rate in FPGA (i.e., 7.82 Mbit/s) satisfied the ITU G.992.1 requirements 
in [1], which define the system to support a minimum of 6.144 Mbit/s downstream. 
However, with the given DSP, this requirement is not satisfied. 
 

• Outcome: 
 
So, in the last analysis, we can affirm that the proposed design trajectory was 
successfully applied. This trajectory has presented a rapid process of an efficient 
implementation of the RS decoder onto the available architectures (DSP and FPGA). 
 
 

9.2. Applying the Proposed Design Trajectory to 

Other Types of Applications 
 
This section presents the main steps of a rapid design strategy for an efficient 
implementation of an algorithm(s) in use considering available types of architectures 
(e.g., GPP, DSP, FPGA). For that, the proposed design trajectory (described in 
Section 1.3) is changed to a generic form (Figure 9.2.1). This generic form is 
described below: 
 

 
 

Figure 9.2.1: A generic form of the design trajectory, described in Section 1.3. 

• Applications domain: 

 
This domain should be used mostly for: 
 

1. Specifying the system; 

2. System analysis; 

3. Defining the main tasks that the system must perform. 
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• Algorithms domain: 

 

This domain should be used for: 
 

1. Algorithm(s) development and simulation; 

2. Algorithm characterization. 
 
From the simulation results we need to select only those algorithms which satisfy the 
appropriate application requirements. After that, the characterization should be 
performed (as described in Chapter 5) on the selected algorithms. From the obtained 
characterization (affinity) results, we have to find the highest affinity value. This 
highest value will correspond to a particular algorithm, and to a particular type of 
architecture. 
 

• Architectures domain: 

 

Finally, we implement the algorithm proposed by the affinity onto the corresponding 
architecture, which is proposed by this affinity as well. 
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PPPPPPPPrrrrrrrrooooooooggggggggrrrrrrrraaaaaaaammmmmmmmmmmmmmmmaaaaaaaabbbbbbbblllllllleeeeeeee        LLLLLLLLooooooooggggggggiiiiiiiicccccccc  
 
 
All logic devices can be classified into two broad categories: fixed and 
programmable. “Circuits in a fixed logic device are permanent: they perform one 
function or set of functions, and once manufactured, they cannot be changed. With 
the Programmable Logic Devices (PLDs), ready-made parts can be modified at any 
time to perform any number of functions. A key benefit of using PLDs is that, during 
the design phase, designers can change the circuitry as often as they want until the 
design operates satisfactorily. PLDs are based on rewritable memory technology: to 
modify the design, the device only needs to be reprogrammed. Reusability is a further 
attractive feature of PLDs. Within programmable logic devices, two major types 
deserve to be highlighted: the Complex Programmable Logic Device (CPLD) and 
Field Programmable Gate Array (FPGA)” [29]. They are described below. 

Moreover, the particular FPGA device (i.e., Xilinx Virtex-II) used in the 
project is described in this appendix (i.e., in Section A.3). 
 
 

A.1. Programmable Logic Devices (PLDs) 
 
The original programmable logic devices (PLDs) were the first chips that could be 
used as hardware implementation of a flexible digital logic design. “A PLD is made 
of a fully connected set of macrocells. These macrocells typically consist of some 
combinational logic (i.e., AND/OR gates and a flip-flop), see Figure A.1.1. A small 
Boolean equation can thus be built within each macrocell. This equation will convert 
the state of some binary inputs into a binary output and, if necessary, store that output 
in a flip-flop until the next clock edge”. [29] 
 “As chip densities increased, PLD manufacturers naturally developed their 
products toward larger parts, called Complex Programmable Logic Devices (CPLDs). 
In a certain respect, CPLDs can be described as several PLDs (plus some 
programmable interconnection) in a single chip. The larger size of a CPLD allows 
implementing either more logic equations or more complicated designs” [29]. A 
block diagram of a typical CPLD is shown in Figure A.1.2, where each logic block is 
equivalent to one PLD. Because CPLDs can hold larger designs than PLDs, their 
potential uses are quite wide-ranging. 
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Figure A.1.1: Typical PLD architecture. [29] 
 
 

 
 

Figure A.1.2: Internal structure of a theoretical CPLD. [29] 
 

 

CPLDs are based on one of three process technologies: 
 

� Erasable Programmable Read-Only Memory (EPROM); 

� Electrically Erasable Programmable Read-Only Memory (EEPROM), or 

� FLASH memory. 

 
EPROM-based CPLDs are usually One-Time Programmable (OTP). Once 
programmed, an EPROM can be erased only by exposing it to strong ultraviolet light. 
With EEPROM and FLASH, they can be programmed and erased electrically. 
However, not all EEPROM- and FLASH-based devices are programmable while 
soldered on a board. [30] 
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A.2. Basic FPGA Concepts 

 

A field-programmable gate array (FPGA) is a large-scale integrated circuit that can be 
programmed after it is manufactured rather than being limited to a predetermined, 
unchangeable hardware function. The term "field-programmable" refers to the ability 
to change the operation of the device "in the field," while "gate array" is a somewhat 
dated reference to the basic internal architecture that makes this after-the-fact 
reprogramming possible. These FPGAs can be used to implement just about any 
hardware design. 
 “The basic FPGA architecture consists of a two-dimensional array of 
programmable logic blocks and flip-flops with means for the user to configure: a) the 
function of each logic blocks, b) the inputs/outputs (I/O), and c) the interconnection 
between blocks (Figure A.2.1). Families of FPGAs differ from each other by the 
physical means for implementing user programmability, arrangement of 
interconnection wires, and basic functionality of the logic blocks”. [29] 
 

 
 

Figure A.2.1: Basic architecture of FPGA. [29] 
 

 

A.2.1. Programming Methods 
 
The information presented in this section is extracted from [29]. 
 

There are three main types of programmability: 
 

� Static Random Access Memory (SRAM) Based (e.g., Xilinx, Altera): 
FPGA connections are achieved using pass-transistors, transmission gates, or 
multiplexers (MUXs) that are controlled by SRAM cells (Figure A.2.2a). This 
technology allows fast in-circuit reconfiguration. The major disadvantages are 
the size of the chip, required by the SRAM technology, and the needs of some 
external source (usually external nonvolatile memory chips) to load the chip 
configuration. The FPGA can be programmed an unlimited number of times; 
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� Anti-fuse Technology (e.g., Actel, Quicklogic): an anti-fuse remains in a 
high-impedance state (i.e., the wire is not being driven to a logical high or a 
logical low) until it is programmed into a low-impedance or “fused” state 
(Figure A.2.2b). This technology can be used only once on OTP devices. It is 
less expensive than the SRAM technology; 

� EPROM/EEPROM Technology (various PLDs): this method is the same as 
that used in EPROM/EEPROM memories. The configuration is stored within 
the device, that is, without external memory. Generally, in-circuit 
reprogramming is not possible. 

 

 
 

Figure A.2.2: Programming methods: a) SRAM connection; b) Anti-fuse. 
 

 

A.2.2. Look-Up Tables 
 

The way logic functions are implemented in a FPGA is another key feature. Logic 
blocks that carry out logical functions are usually Look-Up Tables (LUTs), 
implemented as memory, or multiplexer and memory (Figure A.2.3). A 2n × 1 
memory can implement any n-bit function. Typical sizes for n are 2, 3, 4, or 5. 
 

 
 

Figure A.2.3: Look-up table implemented as: a) memory, or b) multiplexer and memory. [29] 
 

 

In Figure A.2.3a, an n-bit LUT is implemented as a 2n × 1 memory: the input address 
selects one of 2n memory locations. The memory locations (e.g., SRAM cells) are 
normally loaded with values from the user’s configuration bit-stream. 
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In Figure A.2.3b, the multiplexer control inputs are the LUT inputs. The result is a 
general-purpose “logic gate.” An n-LUT can implement any n-bit function. An n-
LUT is a direct implementation of a function truth table. Each memory cell holds the 
value of the function corresponding to one input combination. An example of a 3-
LUT is shown in Figure A.2.4. 
 

 
 

Figure A.2.4: Configuring a LUT, which is required to perform the function: y = (a & b) | !c. This 

is achieved by loading the 3-LUT with the appropriate function output values. [30] 
 

 

A.2.3. FPGA Logic Block 
 
There are two fundamental incarnations of the programmable logic blocks: MUX-

based and LUT-based: 
 

• MUX-based: 

 

As an example of a MUX-based approach, consider one way in which the 3-input 
function 
 

y = (a & b) | c 
 

could be implemented using a block containing only multiplexers (Figure A.2.5). The 
device can be programmed such that each input to the block is presented with a logic 
0, a logic 1, or the true or inverse version of a signal (a, b, or c in this case) coming 
from another block or from a primary input to the device. This allows each block to 
be configured in myriad ways to implement a plethora of possible functions. 
 

• LUT-based: 

 
A simplified FPGA logic block can be designed with a LUT (typically a 4-input 
LUT), implementing a combinational logic function, and a register (flip-flop) that 
optionally stores the output of the logic generator (LUT), see Figure A.2.6. The 
number of LUTs in the logic block usually ranges from 2 to 4. The idea of 
programming these LUTs is shown in Figure A.2.4. 
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Figure A.2.5: MUX-based logic block. The x shown on the input to the central multiplexer 

indicates that we don’t care whether this input is connected to a 0 or a 1. [30] 
 

 

 
 

Figure A.2.6: LUT-based logic block. [29] 
 

 

A.3. Xilinx  Specifics 
 
This section is devoted to the description of the Xilinx Virtex-II device family, since 
this FPGA is used in the project. Virtex-II devices contain the following resources 
(Figure A.3.1): 
 

� Configurable Logic Blocks (CLBs); 

� Input/Output Blocks (IOBs); 

� RAM blocks; 

� Dedicated multipliers; 
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� Programmable Interconnections (PIs); 

� Digital Clock Manager (DCM); 

� Other resources: three-state buffers, global clock buffers, and so on. 

 

 
 

Figure A.3.1: Example of distribution of CLBs, IOBs, PIs, RAM 

blocks, DCMs, multipliers in Virtex-II device. 
 

 

A.3.1. Configurable Logic Blocks 
 
The core building block in a modern FPGA (the same for Virtex-II) from Xilinx is 
called a logic cell (LC). An LC comprises a 4-input LUT (which also acts as a 16 × 1 
RAM or a 16-bit shift register), a multiplexer, and a register, which can be configured 
to act as a flip-flop, as shown in Figure A.3.2. 
 

 
 

Figure A.3.2: A simplified view of a Xilinx LC. [30] 
 
In addition to the LUT, MUX, and register, the LC also contains a smattering of other 
elements, including some special fast carry logic for use in arithmetic operations. 
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This special carry logic boosts the performance of logical functions such as counters 
and arithmetic functions such as adders. 

The next step up the hierarchy is what Xilinx calls a slice. A slice contains two 
logic cells (Figure A.3.3). With the slice, each logic cell’s LUT, MUX, and register 
have their own data inputs and outputs; the slice has one set of clock, clock enable, 
and set/reset signals common to both logic cells. 
 

 
 

Figure A.3.3: A slice containing two logic cells. [30] 
 

 

And moving one more level up the hierarchy, we come to what Xilinx calls a 
configurable logic block (CLB). Depending on the FPGA family, CLBs contain 
different number of slices. Virtex-II FPGA holds four slices per CLB (Figure A.3.4). 
 

 
 

Figure A.3.4: A CLB containing four slices. The fast programmable interconnect 

is used to connect neighboring slices within the CLB. [30] 
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So a CLB equates to a single logic block in our original visualization of “islands” of 
programmable logic in a “sea” of programmable interconnect. 
 

A.3.1.1. Distributed RAMs and Shift Registers 

 
Previously, it was noted that each 4-bit LUT can be used as a 16 × 1 RAM. So all of 
the LUTs within the CLB, shown in Figure A.3.4, can be configured together to 
implement the following: 
 

� Single-port (16 × 8)-bit SRAM; 

� Single-port (32 × 4)-bit SRAM; 

� Single-port (64 × 2)-bit SRAM; 

� Single-port (128 × 1)-bit SRAM; 

� Dual-port (16 × 4)-bit SRAM; 

� Dual-port (32 × 2)-bit SRAM; 

� Dual-port (64 × 1)-bit SRAM. 

 

“Alternatively, each 4-bit LUT can be used as a 16-bit shift register. In this case, there 
are special dedicated connections between the logic cells within a slice and between 
the slices themselves. This allows the LUTs within a single CLB to be configured 
together to implement a shift register containing up to 128 bits as required”. [30] 

 

A.3.2. RAM Blocks 
 
A lot of applications require the use of memory, so Xilinx FPGA includes relatively 
large chunks of embedded (or dedicated) RAM, called RAM blocks. These memory 
blocks are organized in columns along the chip (Figure A.3.1). In Virtex-II, each 
block is a fully synchronous dual-ported 18-kbit RAM, with independent control 
signals for each port. The data width of the two ports can be configured 
independently. Moreover, each block of RAM can be used independently, or multiple 
blocks can be combined together to implement larger memory blocks. There are 96 
RAM blocks in Virtex-II. [31] 

 

A.3.3. Dedicated Multipliers 

 
Some functions, like multipliers, are inherently slow if they are implemented by 
connecting a large number of programmable logic blocks together. Since these 
functions are required by a lot of applications, many FPGAs incorporate special hard-
wired (or dedicated) multiplier blocks. With Xilinx, these are located in close 
proximity to the embedded RAM blocks (Figure A.3.1). 

In Virtex-II, the dedicated multiplier block is a (18 x 18)-bit multiplier and is 
optimized for operations based on the RAM block content on one port. The 18 x 18 
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multiplier can be used independently of the RAM block resource. There are 96 
dedicated multipliers in Virtex-II. [31] 

 

A.3.4. Input/Output Blocks 
 
The input/output blocks (IOBs) provide the interface between the FPGA and the 
outside world (Figure A.3.1). The Xilinx IOB includes inputs and outputs that support 
a wide variety of I/O signaling standards. IOBs have storage elements that act as 
registers (flip-flops). IOBs are programmable and can be categorized as follows: [29] 
 

� Input Path: A buffer in the IOB input path is routing the input signals either 
directly to internal logic or through an optional input flip-flop; 

� Output Path: The output path includes a three-state output buffer that drives 
the output signal onto the pad. The output signal can be routed to the buffer 
directly from the internal logic or through an optional IOB output flip-flop; 

� Bidirectional Block: This can be any combination of input and output 
configurations. 

 

A.3.5. Digital Clock Manager 
 
“All of the synchronous elements inside an FPGA (e.g., registers inside the CLBs) 
need to be driven by a clock signal. Such a clock signal typically originates in the 
outside world, comes into the FPGA via a special clock input pin, and is then routed 
through the device and connected to the appropriate components”. [30] 
 “Consider a simplified representation that omits the programmable logic 
blocks and shows only the clock tree and the registers (configured to act as flip-flops) 
to which it is connected (Figure A.3.5)”. [30] 
 

 
 

Figure A.3.5: A simple clock tree. [30] 
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“This is called a clock tree because the main clock signal branches again and again 
(the flip-flops can be considered as the “leaves” on the end of the branches). This 
structure is used to ensure that all of the flip-flops see their versions of the clock 
signal as close together as possible” [30]. In reality, multiple clock pins are available, 
and thus there are multiple clock domains (clock trees) inside the device. 
 “Instead of configuring a clock pin to connect directly into an internal clock 
tree, that pin can be used to drive a special hard-wired block, called a clock manager, 
which generates a number of daughter clocks (Figure A.3.6)”. [30] 
 

 
 

Figure A.3.6: A clock manager generates daughter clocks. [30] 
 

 

These daughter clocks may be used to drive internal clock trees or external output 
pins that can be used to provide clocking services to other devices on the host circuit 
board. 

Each family of FPGAs has its own type of clock manager. In the Xilinx world, 
a clock manager as described here is referred to as a digital clock manager (DCM) 
(Figure A.3.1). In Virtex-II, up to 12 DCM blocks are available. [31] 

 

A.3.6. Programmable Routing 
 
So, the internal configurable logic of FPGA includes four major elements organized 
in a regular array: CLBs, RAM blocks, dedicated multipliers, DCM blocks. All of 
these elements are interconnected by special programmable routing resources, called 
General Routing Matrix (GRM). The GRM is an array of routing switches. Each 
programmable element is tied to a switch matrix, allowing multiple connections to the 
GRM (Figure A.3.7). The GRM is controlled by values stored in static memory cells. 
These values are loaded in the memory cells during configuration and can be 
reloaded. The overall programmable interconnection is hierarchical. [31] 
 Most Virtex-II signals are routed using the global routing resources, which are 
located in horizontal and vertical routing channels between each switch matrix. 
Horizontal and vertical routing resources for each row or column include (Figure 
A.3.8): [31] 
 

� Long Lines: bidirectional wires that distribute signals across the device. 
Vertical and horizontal long lines span the full height and width of the device; 
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� Hex Lines route signals to every third or sixth block away in all four 
directions; 

� Double Lines: route signals to every first or second block away in all four 
directions; 

� Direct Lines: route signals to neighboring blocks – vertically, horizontally, 
and diagonally; 

� Fast Lines: internal CLB local interconnections from LUT outputs to LUT 
inputs. 

 

 
 

Figure A.3.7: Routing in Virtex II device. [29] 
 

 

 
 

Figure A.3.8: Hierarchical routing resources in Virtex-II. [29] 
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The TigerSHARC ADSP-TS201 processor (Figure B.1.1) is a static superscalar 128-
bit processor of DSP type suited for fixed and floating point operations. Fixed and 
floating point operations are performed with the same amount of processor core clock 
cycles. The processor operates at 600 MHz clock frequency, and consists of the 
following main parts: two computational blocks, 24M bit of on-chip Dynamic RAM 
(DRAM) with six 4K word caches (one per memory block), integrated I/O 
peripherals, a host processor interface, Direct Memory Access (DMA) controllers, 
Low-Voltage Differential Signaling (LVDS) link ports, and shared bus connectivity 
for multiprocessing. The main features of the ADSP-TS201 processor are: [32] 
 

� Dual computational blocks: X and Y – each consisting of a Arithmetic Logic 

Unit (ALU), multiplier, Communications Logic Unit (CLU), shifter and a 32-
word register file; 

� Dual Integer ALUs (IALUs) J and K, each contains a 32-word register file; 

� Program sequencer – controls the program flow and contains an Instruction 

Alignment Buffer (IAB), Branch Target Buffer (BTB), Program Counter (PC), 
address fetch mechanism and interrupt manager; 

� Three 128-bit buses providing high bandwidth connectivity between internal 
memory and the rest of the processor core (computational blocks, IALUs, 
program sequencer, and System-On-a-Chip (SOC) interface); 

� A 128-bit bus providing high bandwidth connectivity between internal 
memory and external I/O peripherals (DMA, external port, and link ports); 

� 24M bits of internal memory organized as six 4M bit blocks. Each block 
contains 128K words by 32 bits and connects to the crossbar through its own 
buffers and a 128K bit four way set associative cache. 
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B.1. Computational Blocks 
 
As illustrated in Figure B.1.1, the ADSP-TS201 processor core includes the two 
computational blocks X and Y. Each of these blocks contains a 32 by 32-bit register 
file and four independent computation units: ALU, multiplier, CLU and shifter. The 
computational blocks and their units can operate in parallel. 
 

 
 

Figure B.1.1: Architecture of the ADSP-TS201 processor core. [33] 

B.1.1. Arithmetic Logic Unit (ALU) 
 

ALU, shown in Figure B.1.1, is a 64-bit unit. It performs arithmetic operations 
(addition, subtraction) on fixed point and floating point data. Moreover, it performs 
logical and data conversion (expand, compact) operations on fixed point data. The 
source and destination of most ALU operations is the register file. The register file in 
computational block X consists of 32 registers (XR0 through XR31), and the register 
file in Y consists of YR0 through YR31 registers. Depending on data type (fixed or 
floating point) ALU can support parallel operation on different length (8, 16, 32, 64 
bit) operands. [34] 

Figure B.1.2 illustrates an example of the parallel addition on fixed point, byte 
size data. 
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Figure B.1.2: An example of parallel addition on fixed point, byte size data. 

B.1.2. Multiplier 
 
A multiplier unit (Figure B.1.1) performs multiply operations on both fixed and 
floating point data, and performs multiply-accumulate (MAC) operations on fixed 
point data. The multiplier takes operands from the register file, and returns the result 
to the register file or to the one of the special purpose registers (e.g., accumulator). 
The TigerSHARC ADSP-TS201 processor uses the MR accumulator (Figure B.1.3) to 
store the result of fixed point MAC operations. The multiplier transfers the result of 
the MR register to the register file before the other accumulate operation are 
proceeded. A multiplier unit also performs complex number MAC operations on 
fixed point data, and executes data compaction operations on accumulated results 
when moving data to the register file in fixed point formats. [34] 

The example of fixed point 32-bit MAC is shown in Figure B.1.3. 
 

 
Figure B.1.3: Fixed point 32-bit multiply-accumulate (MAC) operation. 

 
In Figure B.1.3, we can see that the result of MAC operation is 32-bit wide. The 
additional M4 register’s eight bits store the overflow of MAC operations. 
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B.1.3. Shifter 
 
The shifter is a 64-bit unit, which can operate on one 64-bit, one or two 32-bit, two or 
four 16-bit, four or eight 8-bit fixed point operands. The shifter takes operands from 
the register file and returns the result to the register file as well. A shifting unit 
performs the following operations: [34] 
 

� Shift and rotate bit field, from off-scale left to off-scale right; 

� Bit manipulation (bit set, clear, toggle, and test); 

� Bit field manipulation (field extract and deposit); 

� Scaling factor identification, 16-bit block floating-point; 

� Extract exponent; 

� Count number of leading ones or zeros. 
 
The logical shift and arithmetic shift operations are shown as examples in Figures 
B.1.4 and B.1.5. The operand stored in R5 register is shifted by four (the number 
stored in R4 register) and the result is stored in R6 register. The left shift is proceeded 
when the value in R4 register is positive; and to the right when it is negative. 

 
 

(a) R5 shifted left by R4 = 4 (b) R5 shifted right by R4 = -4 
 

Figure B.1.4: Logical shift by four: (a) shift to the left, (b) shift to the right. 
 

 
 

(a) R5 shifted left by R4 = 4 (b) R5 shifted right by R4 = -4 
 

Figure B.1.5: Arithmetic shift by four: (a) shift to the left, (b) shift to the right. 
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B.1.4. Communications Logic Unit (CLU) 
 
“The communicational logic unit (CLU) is a 128-bit unit, which performs specialized 
communications functions. It supports Viterbi decoding, turbo-code decoding, Code 
Division Multiple access (CDMA) decoding, despreading operations, and complex 
correlation. The functions also can be applied in non-communicational algorithms. 
CLU includes 32 Trellis Registers (TR) and 4 Trellis History Register (THR). CLU 
takes its inputs from the register file or TR and THR registers, and then returns its 
result to the register file or TR and THR registers. CLU operates on fixed point data” 
[34]. A CLU unit supports the following operations: 
 

� Jacobian logarithm for turbo decode (TMAX); 

� CDMA despreader (DESPREAD); 

� CDMA cross correlations (XCORRS); 

� Polynomial reordering (PERMUTE); 

� Trellis add, compare, select (ACS). 

 
 

B.2. Integer ALU 
 
The ADSP-TS201 processor core contains the two independent integer ALUs 
(IALUs), denoted as J-IALU and K-IALU (Figure B.1.1). IALUs support regular 
fixed point ALU operations and data addressing operations. IALUs provide memory 
addresses when data is transferred between memory and registers. IALUs enable 
simultaneous addresses for two memory accesses (read or write). IALUs contain two 
register files (J0 thought J31 registers for J-IALU, and K0 thought K31 registers for 
K-IALU) and eight dedicated registers for circular buffer addressing. All IALU 
registers are 32-bit wide, memory-mapped, universal registers. [34] 

IALU data addressing operations provide memory read and write access for 
loading data to registers and storing to memory. For memory reads and writes, the 
IALU provides two types of addressing: direct and indirect. 
 
 

B.3. Program Sequencer 
 
The ADSP-TS201 processor core also contains a program sequencer (Figure B.1.1) 
for managing program execution. The main sequencer functions are following: [34] 
 

� Instruction fetch from memory; 

� Instruction line extraction from the fetched data; 

� Instruction line decoding for sending the instruction to particular execution 
unit; 
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� Program flow control instruction execution; 

� Program stalls monitoring. 
 
The mentioned functions are performed by the following program sequencer main 
elements: instruction alignment buffer (IAB) and branch target buffer (BTB). 

 

B.3.1. Instruction Line Structure 
 
The ADSP-TS201 processor executes from one to four 32-bit instruction slots in an 
instruction line. An instruction is a 32-bit word that activates one or more of the 
TigerSHARC processor’s execution units to carry out an operation. Instruction line 
(Figure B.3.1) consists of up to four 32-bit instruction slots. Instructions on an 
instruction line are executed in parallel. One instruction line is executed with a 
throughput of one processor core clock cycle. [34] 
 

 
 

Figure B.3.1: Instruction line structure. 

 

B.3.2. Instruction Alignment Buffer (IAB) 
 

Instruction alignment buffer (Figure B.3.2) is a six quad word FIFO buffer. It buffers 
the fetched instructions and keeps the fetch unit independent from the rest of the 
instruction pipeline. This independence lets the fetch unit to run when the other parts 
of the pipeline are stalled. IAB also aligns the fetched words to instruction lines and 
distributes for execution. The alignment guarantees that instruction lines are able to 
execute in parallel. The sequencer fetches a quad-word wide instruction from memory 
and then writes the word into the IAB. Program sequencer extracts instruction lines 
consisting of one, two, three or four instructions from IAB for the processor to decode 
or execute. [34] 
 The Most Significant Bit (MSB) of an instruction word (Figure B.3.2) 
indicates whether it is a regular instruction slot or the slot at the end of an instruction 
line. If the MSB is equal to 0, it means that it is a regular instruction slot, which ends 
with single semicolon (Figure B.3.1). MSB equa1 to 1 indicates the end of instruction 
line, which ends with double semicolon (Figure B.3.1). 
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Figure B.3.2: Structure of Instruction Alignment Buffer. 

 

B.3.3. Branch Target Buffer (BTB) 
 

“Other significant program sequencer part is branch target buffer (BTB). It is used to 
reduce branch delays for conditional and unconditional instructions. The program 
sequencer writes information about every predicted branch into BTB. The BTB 
entries make up an associative memory that records a history of predicted branches. 
The BTB examines the flow of addresses during the first pipeline stage. When the 
BTB recognizes the address of an instruction that caused a jump on a previous pass of 
the program code it substitutes the corresponding destination address as the fetch 
address for the following instruction. When a branch is currently cached and correctly 
predicted, the performance loss due to branching is reduced from either nine or five 
stall cycles to zero.” [34] 

 

 

B.4. Memory and Buses 
 
Some of microprocessors use a single address and single data bus for memory access. 
This type of memory architecture is called Von Neumann architecture. However, DSP 
processors may require greater data throughput than Von Neumann architecture 
provides, and so many DSPs use memory architectures that have separate address and 
data buses for program and data storage. The two sets of buses let the processor fetch 
a data word and an instruction simultaneously. This type of memory architecture is 
called Harvard architecture. TigerSHARC DSP uses a Super Harvard architecture. 
This memory architecture has program and data buses, but provides a single, unified 
address space for program and data storage. The data memory bus carries only data, 
and the program memory bus handles instructions or data. 
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B.4.1. Buses 
 
The ADSP-TS201 processor architecture contains four buses (J-bus, K-bus, I-Bus, S-
bus) connected to its internal memory (Figure B.4.1). J-bus, K-bus and I-bus are used 
for memory accesses to computation units, integer ALUs and program sequencer 
(Figure B.1.1). S-bus is used for memory accesses to processor’s peripherals (external 
port and link ports). S-bus also can provide data transfers between internal memory 
and other processors without interrupting main processor’s core accesses to its 
memory. During a single cycle, the processor core uses the independent J-bus and K-
bus for simultaneous access to data from two different memory blocks. The 
processor’s internal bus architecture lets the core and I/O access twelve 32-bit data 
words and four 32-bit instructions each cycle. 
 

 
 

Figure B.4.1: Structure of processor’s internal memory and buses. [34] 

 

B.4.2. Memory 
 
The ADSP-TS201 processor core contains a large embedded DRAM internal memory 
and provides access to external memory through the processor’s external port. The 
processor’s internal memory has 24M bits of embedded DRAM memory. The 
memory is divided into six blocks of 4M bits (128K words of 32 bits). Instructions 
and data can be stored in each memory block. When the data and instructions are 
placed in different memory blocks, the processor is able to access data and fetch 
instructions simultaneously, because one access to particular memory blocks is 
available per processor clock cycle. Each memory block contains a 128K bit cache, 
which enables accesses with no latency induced by bus stalls. Internal memory blocks 
connect to the four 128-bit wide internal buses through a crossbar interface 
connection (Figure B.4.1), enabling the processor to perform four memory transfers 
in the same cycle. The embedded DRAM works in a one half frequency clock. The 
largest access to the embedded DRAM is of 8 words, 256 bits. To keep full execution 
performance, the memory system provides the processor core with up to 4 accesses 
per cycle from different blocks. [34] 
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