
Steganography and Cryptography
in Digital Images

P1 Project – Steganography

Authors:
Kean Olsen
Mostafa Hassan
Nick Arge
Nicklas Søskov
William Pedersen

Supervisor:
Henning Thomsen

Semester:
1st Semester

Study Programme:
B.Eng, Cybersecurity

Date: December 21, 2025

Abstract

This project explores the integration of steganography and cryptography to
develop a convenient application for entities who prefer to securely hide and
retrieve data within digital images. The primary objective is to enhance
confidentiality within text-based communication by combining two security
layers: concealing any trace of communication through steganography and
protecting its content using AES encryption. The theoretical framework covers
a steganographic technique least significant bit (LSB), image file formats, and
security considerations, emphasizing the use of lossless formats such as portable
network graphics (PNG) for optimal data integrity. The implementation lever-
ages Python and libraries like Pillow and PyCryptodome to embed encrypted
messages using the LSB method, complemented by Euclid’s algorithm for a
structured method using Euclid’s algorithm and LSB data distribution. This
layered approach ensures robustness against detection and unauthorized ac-
cess, addressing challenges in modern cybersecurity where steganography is
increasingly exploited for covert communication. The project concludes with
an analysis of limitations, future prospects, and the balance between security,
data capacity, and performance.

1

Contents

1 Introduction 4

2 Problem Statement 4

3 Methods 4

4 Problem Analysis 5

5 Theoretical Framework 7
5.1 Steganography . 7

5.1.1 Text Steganography . 7
5.1.2 Image Steganography . 7
5.1.3 Audio Steganography . 8
5.1.4 Network/Protocol Steganography 8

5.2 Image File Formats . 8
5.2.1 JPEG . 10
5.2.2 PNG . 10
5.2.3 BMP . 11
5.2.4 Lossless vs. Lossy Compression 13

5.3 Least Significant Bit . 13
5.4 GCD and Euclid’s Algorithm in the Encoding Process 14

5.4.1 Process Overview . 14
5.4.2 Integration in Encoding . 15

5.5 Security Regarding Steganography 15
5.5.1 Encryption . 15
5.5.2 Decryption . 15
5.5.3 AES and RSA Encryption . 16
5.5.4 Steganography in Cybersecurity 17
5.5.5 Why is Steganography So Hard To Detect? 18
5.5.6 How To Defend Yourself Against Steganography 18

6 Analysis 19
6.1 Python . 19

6.1.1 Required Libarys . 19
6.2 PNG, Chosen File Format . 20
6.3 Layered Security . 21
6.4 AES . 21

2

6.5 LSBs role in the program . 22
6.6 Embedding The Information . 23

7 Implementation 24
7.1 Flowchart . 25
7.2 Steganography . 25
7.3 Cryptography . 29
7.4 Text-based User Interface . 33

8 Discussion 34
8.1 The Use of Steganography . 34
8.2 Security . 34
8.3 Limitations . 35
8.4 Future of Stegonography (AI) . 37

9 Perspectives 38

10 Conclusion 40

11 Appendix 41

3

1 Introduction

With the rapid growth of digital communication, guarding sensitive information has
become a serious challenge. Cryptographic methods have proven to be effective in
securing the content of communication over digital media, but they do not conceal
the existence of communication itself. This visibility of communication may attract
unwanted attention from bad actors, which increases the risk of targeted attacks.

Steganography offers a solution by hiding data within ordinary media, such as
images, masking the presence of communication. In addition to ensuring confi-
dentiality, encryption should be applied to the media, which is used to conceal
communication, as data may be extracted if no encryption is applied. This project
explores the integration of steganography and cryptography to develop a user-friendly
application capable of hiding and retrieving encrypted messages within digital images.
By utilizing the Least Significant Bit (LSB) technique, AES encryption, and a lossless
image format (PNG), the project aims to balance security, usability, and performance.
Euclid’s algorithm is implemented to distribute hidden data across the image, which
reduces detectable patterns while maintaining the means to reliably extract the data.

This report outlines the problem context, theoretical foundations, implementa-
tion, and an evaluation of the program, concluding with perspectives on future
improvements and application.

2 Problem Statement

How can a user-friendly application, enable users to hide and retrieve data in images
using steganography and cryptography, prioritizing confidentiality.

3 Methods

In this report, the aim was to investigate our problem and review relevant open-source
codes using LSB-steganography for data embedding. Many of our sources consist
of technical articles, documentation, and academic texts from reliable outlets. Our
sources are relevant documentation from the last 15 years ranging between 2012 to
current year.

We did not rely on many different methods in this project, as our project mainly

4

consisted of research, code review, analysis, and discussion based on our findings.

The development followed an Object-Oriented Programming (OOP) process, which
python primarily use. We first created a simple prototype "StegoV1". This prototype
led our path to "StegoV2" which improved on data decoding, and now included AES
cryptography.

4 Problem Analysis

With the ever-increasing communication over open and potentially insecure channels,
there is a growing need to protect sensitive information. While cryptography ensures
confidentiality, it does not conceal the fact that communication is taking place. Bad
actors may become attracted to communication between certain parties, so they
can intercept and analyze encrypted data. This limitation highlights the need for
complementary techniques that not only protect data confidentiality but also reduce
the likelihood of detection.

Steganography may be this complementary technique that can conceal informa-
tion within ordinary digital media, such as images, which conceal the presence of
communication. Combining cryptography and steganography provides a layered se-
curity approach by hiding and protecting a message and its content simultaneously.[1]

Improper implementation, such as the use of lossy image formats, will corrupt
hidden data during encryption, and using predictable embedding patterns will in-
crease detectability. These challenges show the necessity of combining steganographic
and cryptographic methods in a structured and secure manner.

Another aspect of the problem concerns usability. Many existing steganographic
solutions and tools are highly technical or lack intuitive interfaces, which limits their
accessibility. This has created a demand for a tool that allows users to hide and
retrieve data securely without the need for advanced technical knowledge.

This project addresses the problem statement:

"How can a user-friendly application, enable users to hide and retrieve data in
images using steganography and cryptography, prioritizing confidentiality."

5

By combining AES encryption with Least Significant Bit (LSB) image steganography,
with the lossless image format Portable Network Graphics (PNG) to preserve data
integrity. Additionally, an embedding approach, based on Euclid’s algorithm, is
implemented to distribute hidden data across the image, which reduces detectable
patterns while maintaining the means to reliably extract the data.[2]

In general, this project aims to achieve a balance between detectability and usability
in the design of a practical application for hidden and secure data communication.

6

5 Theoretical Framework

5.1 Steganography

Steganography (often shortened to stego) is a technique that enables a person to
hide text based messages, files or other forms of data within ordinary media such as
images, videos or audio files. The key idea behind steganography, is not to make
the message unreadable like cryptography does, but to conceal the existence of
the message. This is achieved by embedding the data you want to hide in such
a way that human senses can’t see it in the chosen media by either sight or hearing. [3]

Unlike other methods of keeping information secure like cryptography, which scram-
bles the content of the data into something unreadable, only readable if you have
the key used to decrypt it, stego focuses on keeping the communication itself hidden.
A way to look at it is the image as a Trojan horse, and the people inside are the
hidden data. When combining, they form the stego object which just looks like any
ordinary file. [3]

In some instances, stego can also use a secret key to hinder unwanted eyes from
reading or hearing the data, however, that is optional. [3]

Instead of measuring effectiveness by how well an algorithm can encrypt data,
the effectiveness is measured on how well the data is embedded and how discernible
it remains. Although, if alteration of the image is discovered, the data might be
vulnerable, and read by others than the recipient, especially if no encryption has
been applied alongside it.

5.1.1 Text Steganography

Text steganography involves hidden information within the textbook, documents,
reports, or alternative textual data. Data are hidden with the help of each letter of
any given word. It is a very difficult method to execute as variations or changes in
any given secret data can change subtly. [4]

5.1.2 Image Steganography

Image steganography referse to the metode of hiding information often text-based
within a digital image, such as a PNG file. This is commonly achieved by making
changes to the pixel values withing the image to encoded the data, such as the least

7

significant bit (LSB) method being one of the most common techniques. While the
approach enables the embedding of information without making it visual apparent.
This limits the amount of data hidden without noticeable distortion in the image. [4]

5.1.3 Audio Steganography

Audio steganography is achieved by caching dispatches or secret information within
audiotape lines. [4]

5.1.4 Network/Protocol Steganography

Network or protocol steganography is a type of steganography which is defined by
caching dispatches or secret information within network protocols or dispatches. It
hides secret information in the usual flow of internet or network exertions. This
type of steganography is commonly used to bypass traditional antivirus and security
scanners, which rarely inspects image content at the bit level. [4]

5.2 Image File Formats

Choosing image file formats is essential to meet the goals of file size, number of bits
in a pixel, quality, layout, and ease of sharing. Some formats take up significant
space and do not compress well, while others compress more easily.

Another important aspect to think about is how easily the image file format is
edited. Some images can only be edited with certain editing software, while others
can be edited more easily. Additional considerations include animation capabilities,
color limits, data retention, and transparency features. [5]

Each color pixel in an image represented using color formats of 8, 16, 24, or 32 bits.[6]
In 16 bit color each pixel is represented using 16 bits or 2 bytes. There are 5 bits for
red, 6 bits for green, and 5 bits for blue. The total number of distinct colors in 16
bit is 65,536.

Figure 1: 16 bit color
[7]

8

For 24 bit color each pixel is represented by using 3 bytes. The 3 bytes represent
red, green, and blue, which is referred to the RGB colors. Each byte has 8 bits and
can represent 256 different shades, which is equivalent to 16,777,216 distinct colors.

Figure 2: 24 bit color
[7]

The 32 bit color is somewhat different as it is the same as 24 bit but has an extra
byte, which is used for transparency. This extra byte is often referred to as the alpha
component.

Figure 3: 32 bit color
[7]

Figure 4: Color depth comparison between 8-bit, 16-bit and 24-bit
[8]

9

5.2.1 JPEG

JPEG stands for Joint Photographic Experts Group. JPEG is the go-to file format
for digital images. As a natural upgrade to Graphics Interchange Format (GIF),
which only had 8 bits per pixel resulting in 256 distinct colors, JPEG was made to
have 24 bits per pixel, but lost the animation which GIF previously had.[9]

JPEG was made as a way to bring photo-realistic pictures to the average PC.
The solution JPEG brought about was lossy compression, which removed visual data
that the human eye could not see and averaged out color variation. The real value
of JPEG was the ability to store metadata. Data such as where and when a picture
was taken and also the camera settings when the picture was taken.[9]

JPEGs has various advantages including having a very small file size, using lossy
compression which removes elements humans cannot see, and the post-processing
being much easier as the white balancing and saturation in JPEGs are set with the
click of the shutter. Although the compression method saves a lot of space and
attempts to discard elements that cannot be seen, heavily compressed images still
suffer a loss in quality, which makes JPEG unsuitable for steganography. [9]

5.2.2 PNG

A newer file format is Portable Networks Graphics (PNG) which is popular because
it is 32 bits, therefore able to handle graphics with transparent or semi-transparent
backgrounds. PNG was launched in 1995 and is the evolution of the GIF format.
The GIF has several drawbacks, such as a required patent license and a limited range
of 256 colors. Therefore, PNG does not have a required patent license and has an
enormously expanded color range of 16 million colors. PNG images will not lose any
of their data when compressed. This is an advantage over JPEG files, where some
information and image quality disappear in the lossy compression process.[10]

As a single-image format, PNGs do not support animation like GIFs do. By retaining
all the original data when a PNG is compressed, a PNG file will generally be larger
in size than JPEGs. [10]

10

Figure 5: Comparing lossy and lossless compression
[11]

5.2.3 BMP

The BMP format is an uncompressed image file developed by Microsoft to display
high-quality images on Windows and store printable photos. This makes BMP
ideal for storing and displaying high-quality digital images. The lack of compression
generally creates a larger file size than, for example, JPEGs and PNGs, which is
great for hiding information within the picture.. BMP files are not a fixed bit size,
but they support various color depths with 24 bit being the most common.[12]

Microsoft originally developed the BMP format for its Windows operating sys-
tem to maintain the resolution of digital images on different screens and devices.
Nowadays, BMP files are also used on other devices such as the Mac and Android.
Microsoft developed the BMP file format as a solution to make their devices inde-
pendent of graphics adapter hardware. [12]

BMP is considered a device-independent bitmap (DIB). A DIB contains a color table
that describes how the pixel values correspond to the RGB color values. A DIB also
contains the following color and dimension information:

• The color format of the device on which the rectangular image was created.

• The resolution of the device on which the rectangular image was created.

• The palette for the device on which the image was created.

11

• An array of bits that maps RGB values to pixels in the rectangular image.

• Data compression identifier that indicates the data compression scheme used
to reduce the size of the array of bits. [13]

Although BMP has some advantages, it is still considered undesirable by web
developers and software developers due to the lack of compression.

Figure 6: Image file comparisons
[14]

12

5.2.4 Lossless vs. Lossy Compression

Image compression methods can be broadly designateds into lossless and lossy tech-
niques. Lossless compression retains all original data which means when an image
is compressed and later decompressed, it is identical to the original. This is very
crucial for steganography beacuse hidden information embedded in pixel bits remains
complete. Formats like PNG are lossless, making them excellent for storing hidden
data without risking corruption during compression.

Lossy compression used in formats such as JPEG removes data deemed visually
insignificant to reduce file size. This does improve storage efficiency although it can
distort or completely destroy hidden information and data embedded in the least
significant bits (LSB). Minor optimizations or encoding to JPEG can render the
concealed message unreadable.

For steganographic applications, lossless file formats are preferred because they
preserve pixel integrity, ensuring that the embedded data remains undetectable yet
recoverable. This makes PNG the optimal choice for projects requiring both security
and reliability when it comes to steganography. [15]

5.3 Least Significant Bit

LSB is a common method for hiding information within digital media by exploiting
the least significant bit (LSB) of a pixels sample values. These bits got very little
effect on the overall visual appearance of the file, so the changes that are being
applied are almost impossible to notice. The process in it self involves converting
the message into a sequence of bits and then by embedding them into the host file
by finding the LSB in the host file. This allows a large amount of data to be hidden
in the file while the changes would be minuscule and difficult to detect, unless the
person would zoom in on the picture and analyze the picture very thoroughly.

The LSB technique is common as it is efficient, simple and offers a high capac-
ity for embedding data. Nevertheless, it does have some weaknesses. If the file is
changed or processed into a different format, such as JPEG with certain optimizations
or compression settings, the hidden data can be affected or lost. But when talking
about PNG it is a lossless format and generally preserves embedded bits better than
for example JPEG, operations like resizing, filtering, or re-saving with different tools
will still be able to alter the least significant bits. It is also possible to detect patterns

13

introduced by LSB changes through analysis, without encryption the hidden message
can be easily recovered. For these reasons, modern approaches often combine LSB
steganography with encryption or randomization to make it more secure. [16]

5.4 GCD and Euclid’s Algorithm in the Encoding Process

Euclid’s algorithm is an effective method for finding the greatest common divisor
(GCD) of two integers, which means the largest number that divides both without
leaving a remainder. The pseudocode below illustrates how Euclid’s algorithm
operates within a broader encoding process.

1 START
2 INPUT x, y
3 WHILE y is not 0 DO
4 temp = y
5 y = x MODULO y
6 x = temp
7 END WHILE
8 OUTPUT x // x is the GCD
9 END

Figure 7: Pseudocode of GCD

5.4.1 Process Overview

The algorithm starts by taking two values, x and y, extracted from the input (which
in this case are the image pixel values). The decision point then checks whether y =
0:

• If yes, the algorithm returns x as the GCD

• If no, the algorithm replaces x with y and y with the remainder of x ÷ y and
then repeats the check

This loop continues until y becomes zero, ensuring that the last non-zero value of x
is the GCD. This particular principle works because any common divisor of x and
y also divides their remainder, preserving the set of common divisors through the
interactions.[17]

14

5.4.2 Integration in Encoding

Within the flowchart, Euclid’s algorithm is applied after retrieving numeric values
from the image. Upon computation of the GCD, it assists the encoding process by
ensuring a substantially lesser detectable pattern. [17]

5.5 Security Regarding Steganography

5.5.1 Encryption

Modern stenographic systems combine stenography and cryptography to create a
complex layered security approach. The operation typically involves encrypting a
message by using algorithms like AES (symmetric encryption) or RSA (asymmetric
encryption) before embedding it into the image. The encryption ensures that even if
an attacker detects and extracts the hidden data, the content reaming unreadable
without the correct decryption key.

The combining of these two methods ensures confidentiality because the encryption
protects the actual message from unauthorized access and steganography hides the
presence of the message, reducing the likelihood of detection, while keeping the
message safe.

In practical applications, this dual approach is widely used in secure communi-
cations, digital watermarking, and data protection for sensitive environments such
as government, healthcare and finance. Integrating steganography and encryption,
organizations can achieve robust security. [18]

5.5.2 Decryption

Decryption is the processes of converting encrypted data back to its original readable
form after it has been extracted from a steganographic object. The combination of
cryptography and steganography means that the hidden message is first encrypted
before embedding and at the receiver’s end, the reverse steps occur: extract the
ciphertext, then decrypt is using the correct key and algorithm.

This step is critical because steganography alone only hides the existence of the
message, without decryption the extracted data remains unintelligible. Common
algorithms include AES (symmetric encryption) and RSA (asymmetric encryption).
The security of decryption depends on proper key management because if the key is

15

lost or compromised, the message cannot be recovered. This layered approach makes
sure that the confidentiality is kept with the secure communication. [18]

5.5.3 AES and RSA Encryption

AES (Advanced Encryption Standard) is a globally adopted symmetric encryption
algorithm, utilizing the same encryption and decryption key. RSA on the other hand
is a asymmetric encryption algorithm which utilizes both parties, having a public
and private key. Using AES, both parties need to have attained the same key in a
confidential manner, before sharing secret messages. Using RSA, you encrypt your
secret message with your recipients public key. Afterwards, the recipient uses his
private key to decode the secret message. The figure below illustrates how these
different encryption methods work and what the different steps are whether you are
using symmetric (AES) or asymmetric (RSA) encryption.

Figure 8: AES and RSA Encryption
[19]

16

5.5.4 Steganography in Cybersecurity

Steganography is increasingly being exploited in cybersecurity as a method to conceal
malicious payloads within seemingly harmless images. This approach allows attackers
to bypass traditional security measures relatively easily due to outdated traditional
antivirus and security detection. Traditional antivirus and security detection focuses
on executable files and known signatures, rarely inspecting image files for hidden
binary patterns, which is the method we know as LSB embedding. Because of the
vast amount of image data exchanged every day, performing through analysis requires
significant resources, making detection even more challenging.

The concealed data in the stenographic content can include malware, ransomware or
command-and-control instructions which enables attackers to establish backdoors or
extract sensitive information without detection which is a big problem especially if
the attacker gets access to a high profile employee or CEO. [20]

Figure 9: Attack Patterns Regarding Steganography
[20]

17

5.5.5 Why is Steganography So Hard To Detect?

Detection in steganography with regard to images is challenging because of the
modifications introduced are almost invisible. Techniques like LSB embedding which
has been mentioned before, alter only the smallest bits of pixel value which has
almost no impact on the image appearance. This means that even high resolution
images with hidden data looks identical to their original form. Lossless formats like
PNG preserve these subtle changes, making the hidden data resilient against visual
distortions or imperfections.

The reason steganography is so hard to detect is because traditional antivirus
and security scanners rarely inspect image content at the bit level, allowing mali-
cious payloads to bypass the detection protocols. Attackers therefore often combine
steganography with encryption ensuring that even if the hidden data is extracted, it
remains unreadable without the correct key. These different factors collectively makes
steganography based attacks stealthy and difficult to identify using conventional
antivirus and security detection. [20]

5.5.6 How To Defend Yourself Against Steganography

When defending against steganography based threats it requires a multi layerd
approach. Organizations can deploy steganalysis tools to identify anomalies in
image structures or statistical patterns, implement strict content filtering policies
to limit image uploads and downloads in sensitive enviroments, and monitor net-
work traffic for unusual behavior that may indicate undercover communication or
anomalies. User education plays a critical role aswell reducing risk by promoting
awareness of the dangers associated with downloading images from untrusted sources.

With the growing use of steganography in cybercrime underscores the need for
integraing advanced detection methods and security practices. Understading these
attack vectors will help organizations mitigate the risks posed by this evolving threat.
[20]

18

6 Analysis

6.1 Python

In this project, we use python as our programming language. Python is a high-level
language with lots of versatility, and many modules/libraries, such as Pillow, which
we use to load an image, and manipulate it to our liking.

Python was created and released by Guido van Rossum in 1991. It’s designed
to to be easy to read and write, making it the ideal choice for beginners learning to
code. Opposed to C or Java, Python focuses on readability, and fast development,
rather than a deep control over hardware, such as memory blocks. [21]

When working with Python, there is no need for compiling the program before
execution, making it easier to debug, and apply fixes. That in turn makes running
Python code quite easy. We use an interpreter, which translates the code to "machine
language" line by line, as the program is running live.

Opposed to C, which translates (compiles) the entire program before execution.
By operating in such a way, the entire program needs to be recompiled whenever a
minor fix, or other changes has been made. This also makes it hard to know which
functions work, and which needs fixing. The error messages that C compilers give,
is not always fulfilling enough, to know what causes the error.

Python runs the program live, only terminating whenever it runs into an error,
making it easy to know when/where the program causes errors. Python is intuitive
and readable for human comprehension, which makes it easier to hand-off to each
other and continue the work. [22]

6.1.1 Required Libarys

To be able to make a functioning program, we have decided to use a few library’s
which are necessary to run the program the 2 is pillow and pycryptodome. Pillow is
a library that allows us to manipulate images and perform some image processing
tasks, its fast for our use case which is loading the image and then modify it with
the hidden message and save the new image. The next library is pycryptodome that
allows us to encrypt the message before embedding it to the image. In our case we
are only importing the AES function to encrypt our message with CBC mode. There
is one more module that we are using but it is not required since it is preinstalled

19

with python, but OS is just as important, we use it to read write and create a file
where we keep the key in.

6.2 PNG, Chosen File Format

Originally during the product planning phase, we wanted to use BMP files. We
wanted to use BMP image files, as they are highly versatile, which is an uncompressed
image file format making files very large in size, which makes it easier to hide data
within the color bits of the images. In addition, being able to be stored, displayed
across different devices and screens without losing quality, and are easy to edit and
compress with numerous different programs.

Due to PNG image files being a more widely used image file format and also
being lossless in image data, we chose to work further with PNG image files in our
project. Although the PNG image file format does not have as large a size as BMP,
it is still a lossless compressed format, which makes the file format bigger than file
formats like JPEG and other compressed file formats. PNG is a 32 bit file format
that opens up for more possibilities in regards to hiding data in the least significant
bit.

Figure 10: BMP VS PNG
[23]

20

6.3 Layered Security

The goal is to only let the sender and recipient read/understand the data. To do
so, we cannot simply rely on a single security measure. We must assume that an
adversary might detect the steganography, and may be able to extract the hidden bits.
Therefore the use of AES is straightforward, as its implementation is also relatively
simple with python. Having this layered security, assures the goal of confidentiality.

6.4 AES

The symmetric encryption algorithm AES is widely adopted due to its efficiency, and
strong security properties. Our project focusses on steganograpyhy as a means to hide
data by obscurity. But as Shannon’s Maxxim states "The enemy knows the system"
We must assume that if our secret embedded data were to ever be compromised, the
contents of the data must still remain confidential. AES is the encryption standard
chosen by NIST (AES is even an abbreviation of Advanced Encryption Standard)
with good reason. AES is higly effecient, which allows it to run on farely primitive
hardware by today’s standards. The mathematical complexity, and large 128/256
bit-size key, also helps making it highly effective against brute-force attacks.

Figure 11: Block 00 and 01, 01 with padding
[24]

As AES is a block-cipher every block needs to be 16-byte/128bit. With that in mind
we do some padding to ensure that the length of the last block is 16-byte. We use
Pkcs#7, which essentially just repeats "0x0B" until the 16-byte mark is reacehed for
the last block.

21

6.5 LSBs role in the program

In the program, we have decided to hide the data in the least significant bit of
the color red. We chose to just manipulate one color because it simplifies the
implementation of the coding. The PNG image file format has 8 bits for a given
color stream in each byte, which means that the last bit has a very minor impact
on the value of the byte. The change is so minor that the difference cannot be seen
with a human eye.

Figure 12: Significant bit difference
[25]

It is possible to change 3 bits per pixel without the change being noticeable, as it
would be possible to change a bit in the colors green and blue aswell. This would
triple the capacity of the space to hide data. For data capacity to be stored in a
digital picture, the following mathematical formula can be used, where Capacity

is the number of pixels in the picture, W is the width of the picture and H is the
height;

Capacity = W ∗H

This would mean if a picture has the size 1920x1080 and only 1 color is being edited
then that would be 2,073,600 pixels, and also bits as we only use one bit in each
pixel. This equals approximately the possibility of 253 KB of hidden data. The bits
to KB value comes from the following formula where KB is the amount of data in
kilobytes, divided by 8 converts bits to bytes and divided by 1024 converts bytes to
kilobytes;

KB = bits/(8 ∗ 1024)

Using all 3 streams of colors increases the capacity of hidden data, which can be
seen using the same formula as before;

Capacity = 3 ∗W ∗H

For a picture with the size of 1920x1080 with 3 colors being edited, it would equal
6,220,800 bits, which is approximately 759 KB of hidden data.

22

It is important to note that any additional compression, conversions to different file
formats, image filters, and resizing would destroy embedded bits in a digital picture.

6.6 Embedding The Information

Euclid’s algorithm plays a crucial role when determining the embedding pattern for
steganography. The algorithm calculates the GCD of the image’s width and height,
which we then use to distribute the hidden bits across the image in a structured yet
obscure way. This approach ensures that the data is not concentrated in a single
region which reduces the likelihood of detection while maintaining consistency for
decoding.

The GCD based pattern works as follows: for each pixel at coordinates (i, j),
the algorithm checks if (i + 1) * (j + 1) is divisible by the GCD. If this is true that
specific pixel is selected for embedding a bit of the secret message. This method
introduces a deterministic but irregular distribution, making the hidden data harder
to detect through simple statistical analysis.

When using Euclid’s algorithm it provides two main benefits:

• Efficiency: The algorithm in it self is simple and fast, even for the larger
images, ensuring minimal overhead during encoding and decoding.

• Unpredictability: Spreading the data based on a mathematical pattern rather
than sequentially, the embedding process in it self becomes less predictable
which adds an extra layer of obscurity.

The integration of GCD in the steganographic process regarding our product
exhibits how classic algorithms can enhance modern security capability by combining
simplicity with effectiveness.

23

7 Implementation

Our program is split into multiple files: Stegov2 for Steganograhy and Crypto_utils

for Cryptography. This structure makes the files become more readable while also
making the maintenance simple since keeping the different functions and the structure
itself that inturn makes it easier to figure out where the bugs appeared from. As
an example if something is wrong with the encryption of the message. The bug is
most likely within the Crypto_utils or the function that calls it within the Stegov2.
in the beginning we had a different approach, where we used heavily inspiration
instead of interpreting in our own way, that is the reason behind version 2 stego. As
mentioned we have different files that do different things. In the next part will get
into each part separately and explain the functionality of the code.

24

7.1 Flowchart

A flowchart is a visual representation of a process using a variety of different shapes,
it helps making a complex process easier to understand.

Figure 13: Flowchart of the implementation
[7]

7.2 Steganography

The Stegov2 file as the name implies is where we embed and extract the message
that the user has inputted. In the implementation we will use both LSB and GCD.
Although, the message the user inputs needs to not only be encrypted it needs to
be converted to bytes that we then can embed in the image. So we start with the
text-to-binary that takes the message (msg) and sends it to a function within the
Crypto-utils file. After the message has been encrypted we need to convert it from
hexadecimal to bytes since the output from the Crypto-utils is hexadecimal. Then
we can return the message by taking the bytes and making them into 8-bit bytes.

25

1 def text_to_binary(msg):
2 ciphertext_hex = encrypt_data(msg)
3 ciphertext = bytes.fromhex(ciphertext_hex)
4 return ''.join(format(byte,'08b') for byte in ciphertext)

Figure 14: Text_To_Binary

For this part of the code we took the principles of Euclid’s algorithm for the function
gcd which is short for "greatest common divisor", so the function works by taking 2
numbers x and y, it then enters a loop and will continue as long as y is not zero.
inside the loop it replaces x with y and y with the remainder of y using python’s
parallel (tuple) assignment. when y becomes zero the loop stops and the current
value x is returned as the GCD.

1 def gcd(x,y):
2 while y != 0:
3 x, y=y, y % x
4 return x

Figure 15: GCD

But how does python’s parallel (tuple) assignment work? At first python looks at
the right hand side before making any assignments which is.

1 y, y % x

Figure 16: GCD

It evaluates both numbers using the old values of x and y, lets say x = 12 and y =
8, so the first value is 8 and it will get assigned to x and the second value 8 % 12
= 8, so 8 will be assigned to y.

1 (8,8)
2

3 x = 8
4 y = 8

Figure 17: Example on GCD

26

The get_image function loads an image from a file and returns some useful infor-
mation we need to process the image. it uses the Image.open function to load the
image from a file path and then converts the image to RGB color mode so that every
pixel is represented by 3 color values using .convert("RGB"). to access the pixels
we use .load() to return a pixel access object not an array from the library pillow,
this allows us to read or modify individual pixels using pixels[x, y] we then get the
image dimensions that we use for the gcd function with .size it returns a tuple with
the width and height. now we return the image object, the pixel access object and
the image dimensions.

1 def get_image(location):
2 img = Image.open(location).convert("RGB")
3 pixels = img.load()
4 w, h = img.size
5 return img, pixels, w, h

Figure 18: Get_Image

For the encode_image function we embed the secret message into the image using
LSB. first we convert the message to binary using the text_to_binary function.
each char is then represented as 8 bits. we then prepare the image for encoding by
locating and retrieving the necessary information with get_image function. The
embedding pattern is calculated using the GCD of the image width and height so
that its more spread out.

1 binary = text_to_binary(msg) # convert message to binary
2 bit_index = 0 # index to keep track
3

4 img, pixels, w, h = get_image(image_location) # get image and its pixels
5 pattern = gcd(w, h) # calculate the pattern using gcd

Figure 19: Encode_Image

to embed the binary message, the function will iterate over all the pixels in the image.
For a pixel at coordinates (i, j), the pixel is selected for embedding if (i+1) * (j+1)
is divisible by the GCD. Each selected pixel’s red channel is modified to store one
bit of the message by changing its LSB while the green and blue channels remains
unchanged. Once all bits of the message are embedded the functions marks the end
of the message by setting the red channel of the next pixel in the GCD pattern to 0,

27

this allows us to find the marker later when we decode the message. after embedding
the full message and adding the end marker, the image is then returned.

1 for i in range(h): # iterate through height
2 for j in range(w): # iterate through width
3

4 # logic
5 if ((i + 1) * (j + 1)) % pattern == 0: # position matches the pattern
6

7 # check if we're out of bits
8 if bit_index >= len(binary):
9 # end marker → red = 0

10 r, g, b = pixels[j, i]
11 pixels[j, i] = (0, g, b)
12 return img
13

14 # read next bit
15 bit = int(binary[bit_index])
16 bit_index += 1
17

18 # modify LSB so the color red
19 r, g, b = pixels[j, i]
20 r = (r & ~1) | bit
21 pixels[j, i] = (r, g, b)
22 return img # return the image

Figure 20: Encode_Image

To decode the embedded binary message from the image, the image is loaded with
get_image providing the information needed to decode the message. the GCD
pattern is then calculated so we insure that we are reading the pixel in the same
sequence as in the encoding process. the function iterates over each pixel in the image.
if a pixel at (i, j) matches the embedding pattern, if (i+1) * (j+1) is divisible by
the GCD, the LSB of the red channel is extracted. the process continues until the
message marker is found, which was indicated by a pixel where the red value is 0. to
reconstruct the message all the bits are grouped into 8-bit sequences representing
individual bytes. these bytes are then converted into a hexadecimal string which is
the original message, if no data is found before finding a marker, an empty string is
returned. the function then outputs the hidden message in hexadecimal format to
further decrypt.

28

1 def decode_image(image_location):
2 img, pixels, w, h = get_image(image_location)
3 binary_data = []
4 pattern = gcd(w, h) # calculate the pattern using gcd
5

6 for i in range(h): # iterate through height
7 for j in range(w): # iterate through width
8 if ((i + 1) * (j + 1)) % pattern == 0: # position matches the pattern
9 r, g, b = pixels[j, i]

10 if r == 0:
11

12 if not binary_data:
13 return ''
14

15 list_of_bytes = [''.join(str(b) for b in binary_data[i:i+8])
16 for i in range(0, len(binary_data), 8)]
17 cipher_bytes = bytes(int(byte, 2)
18 for byte in list_of_bytes if len(byte) == 8)
19 return cipher_bytes.hex()
20 binary_data.append(r & 1)

Figure 21: Decode_Image

7.3 Cryptography

As mentioned in 6.4 under analysis that data encrypted with AES needs to be a
certain length. So, to make sure that the data is the 16 bytes we make a check. We
do that by first converting the message from a string to UTF-8 (bytes). Then we use
the modulo operator % which gives us the remainder. That means when we take the
length of the message to modulo 16 it will return a number that we then subtract
with 16 to know how much to add before it becomes 16 bytes even if the message is
16 bytes. Then we combine the message with the padding amount and return it.

1 def padding(msg):
2 if isinstance(msg, str):
3 msg = msg.encode('utf-8')
4 padding_length = 16 - len(msg) % 16
5 padding_bytes = bytes([padding_length] * padding_length)
6 return msg + padding_bytes

Figure 22: Padding

29

How do we handle the key used for encrypting or decrypting, for a more secure
encryption the load_key function manages the creation and retrieval of a symmetric
encryption key and an initialization vector (iv) that will add randomness so the same
message don’t look the same. It checks for an existing key file named .key. This
file is where we store both the encryption ket and the iv. if the .key file does not
exist or if the size is not 48 bytes, the function generated a random 32-byte ket and
a 16-byte iv, these values are then saved to the .key file as a single 48-byte sequence.
if the .key file exists and has the correct size 48-bytes, the function reads the file
and splits the data, the first 32 bytes are the encryption key and the remaining 16
bytes are the iv, and then returns it to be used.

1 def load_key():
2 if not os.path.exists(".key"):
3 key = os.urandom(32)
4 iv = os.urandom(16)
5 with open(".key", "wb") as key_file:
6 key_file.write(key + iv)
7 elif os.path.getsize(".key") != 48:
8 key = os.urandom(32)
9 iv = os.urandom(16)

10 with open(".key", "wb") as key_file:
11 key_file.write(key + iv)
12 elif os.path.getsize(".key") == 48:
13 with open(".key", "rb") as key_file:
14 data = key_file.read()
15 key = data[:32]
16 iv = data[32:]
17 return key, iv

Figure 23: Load_Key

the encrypt the users message we use the encrypt_data function which provides
a symmetric encryption using AES algorithm in CBC. first we load the key, the
32-byte symmetric key and the 16-byte iv. we then pad the message. The AES
cipher object is created using the loaded key, CBC mode and the loaded iv. The
ciphertext is then converted to a hexadecimal string hex(), if the encryption fails
the function prints and error message and returns nothing.

30

1 def encrypt_data(msg):
2 key, iv = load_key()
3 try:
4 padded_msg = padding(msg)
5 cipher = CryptoAES.new(key, CryptoAES.MODE_CBC, iv)
6 ciphertext = cipher.encrypt(padded_msg).hex()
7 return ciphertext
8 except Exception as e:
9 print("Encryption error:", e)

10 return None, None, None

Figure 24: Encrypt_Data

To decrypt the ciphertext we use the decrypt_data function which is just reversing
the process performed by encrypt_data, recovering the original message. it uses
AES in CBC mode with the pre-shared key and iv. We first load the key, the
32-byte symmetric key and the 16-byte iv. the imputed ciphertext which should be in
hexadecimal is then getting decrypted using the AES cipher object with the loaded
key, CBC mode and the loaded iv. then we remove the padding and decode from
bytes to a UTF-8 string recovering the original message. if it fails for any reason,
the function prints an error and returns nothing.

1 def decrypt_data(ciphertext_hex):
2 key, iv = load_key()
3 try:
4 ciphertext = bytes.fromhex(ciphertext_hex)
5 cipher = CryptoAES.new(key, CryptoAES.MODE_CBC, iv)
6 decrypted = cipher.decrypt(ciphertext)
7 print("Decrypted (raw):", decrypted)
8 return unpadding(decrypted).decode("utf-8")
9 except Exception as e:

10 print("Decryption error:", e)
11 return None

Figure 25: Decrypt_Data

As can be seen in the return function the function unpadding is getting called
with the parameter decrypted message.

The unpadding takes the message and looks at the last bytes and by looking from
the end of the string it can register how much padding has been added. If the last
part is 0x04 then there had been added 4 bytes of padding. Then it verifies that the

31

padding length is within the 16 byte block cipher that AES has the output. If its
over or under that then it could be incomplete data and the system breaks. Then
we return the message and removing the padding in bytes that then gets changed
from bytes to UTF-8 in decrypt.

1 def unpadding(msg):
2 padding_length = msg[-1]
3 if padding_length < 1 or padding_length > 16:
4 raise ValueError("Invalid padding encountered")
5 return msg[:-padding_length]

Figure 26: Unpadding

32

7.4 Text-based User Interface

We use a different file to handle the user interface for the steganography. it allows
the user to encode the messages within an image. it displays a banner and a brief
description of its purpose, it has an interactive menu where the user can pick to
either encode, decode or quit the program. the encoding workflow requires the user
to provide a path to the image and the message to hide, then the message is encoded
and encrypted which is saved to the specified output. For the decoding work flow the
user provides the path to the image and then decrypts it. And if the user chooses
to quit the program it will exit the loop. Any invalid options will tell the user to
choose a valid option.

1 def main():
2 print_banner()
3 print("Steganography using GCD Pattern")
4 while True:
5 choice = input("Choose (e)ncode, (d)ecode or (q)uit: ").lower()
6 if choice == 'e':
7 image_location = input("Enter image file path: ")
8 msg = input("Enter message to hide: ")
9 encoded_img = encode_image(image_location, msg)

10 output_path = input("Enter output image file path: ")
11 encoded_img.save(output_path)
12 print(f"Message encoded and saved to {output_path}")
13 continue
14 elif choice == 'd':
15 image_location = input("Enter image file path: ")
16 hidden_msg = decode_image(image_location)
17 decrypted_msg = decrypt_data(hidden_msg)
18 print("Hidden message:", decrypted_msg)
19 continue
20 elif choice == 'q':
21 print("Quitting the program.")
22 break
23 else:
24 print("Invalid choice. Please choose 'e', 'd', or 'q'.")
25 continue

Figure 27: Main

33

8 Discussion

8.1 The Use of Steganography

The products primary strength lies in hiding data in an image without visibly
noticing it, making it particularly valuable in situations where discretion is critical.
Application regarding our product includes protecting privacy and securing sensitive
data without making it possible for adversaries to become aware of.

If we write bits in all three color channels (r, g and b), we get more space, but the
images is changed further and it becomes easier to detect with simple statistical
tests. If we only use a single LSB per pixel and keep the payload small, the image
changes less and the risk of detection drops because the size in particular does not
look suspicious. To avoid obvious patterns, we distribute bits across the image via a
GCD pattern and when possible switch channels in a key-driven way so changes are
harder to spot.[16]

8.2 Security

While hiding data in images reduces the likelihood of detection, it does not guar-
antee confidentiality if the content is extracted. To address this, our product uses
AES encryption before embedding, ensuring that even if an adversary discovers
the steganographic payload and gains knowledge to the data, the message remains
unreadable without the correct key. Poor key management on the other hand can
completely undermine security, even with the use of algorithms like AES. For example,
if encryption keys are stored in plain text or reused across multiple sessions, attackers
can easily compromise confidentiality. Keys must be generated using secure random
sources, stored in protected environments, and rotated periodically to reduce the
risk of exposure. Without keeping these practices in mind, steganography combined
with AES encryption only offers an illusion of security, as the hidden data becomes
vulnerable once the key is leaked or mismanaged.

Malicious actors often use techniques like LSB embedding to bypass traditional
antivirus and detection systems, which rarely inspect image files at the bit level. This
makes detection very difficult and resourceful for organizations and the modifications
introduced with LSB embedding it is almost invisible to see for the human eye, unless
you do a deep analysis of the image.[26]

34

Organizations often deploy steganalysis tools, enforce strict content filtering, and
monitor network traffic for anomalies. The big problem here is that organizations
often do not have the resources nor the time, or are not even aware. When they lack
steganalysis tools or are not even aware adversaries could do data exfiltration without
detection. If a breach occurs and the organization identifies it, finding the root cause
becomes harder because steganographic payloads are stealthy and the amount of files
and organizations receive is quite large. This can lead to a prolonged investigations,
higher recovery costs and reputational damage, especially if the organization complies
with GDPR.

8.3 Limitations

As we are utilizing the LSB method, changing the present RGB (red) value, the size
of the hidden data stored is highly affected by the number of pixels having an R value
<1 present in the picture. For example, if we had a pure black/blue/green image,
we would not be able to store any hidden data, as there are no pixels having any
R value. This means the "hidden storage capacity" linearly grows as the file size grows

Theoretically, we would be able to store 253.125 kb data in a 6075kb

Imagesize : 6075KB = 6075 ∗ 1024 = 6.220.800byte

Each pixel uses 3 bytes (RGB), so numer of pixels =:

6.220.800/3 = 2.073.600

We’re only altering the red channel storing 1 bit per pixel, that is 2.073.600 bits of
hidden data, converting to bytes, we have:

2.073.600/8 = 259200bytes = 253, 125kb

35

This means we have a theoretical ratio of "hidden storage capacity" of about 1:24
per file size But this is purely the case, if we have an image, where all the pixels
contain an R value of above 1. If that is not the case, the "hidden storage capacity"
could be greatly decreased. If we were to utilize all 3 RGB channels, the theoretical
capacity would be thrice as big, with a ratio of 1:8.

Another important limitation appear from the use of our GCD-based embedding
pattern. A pixel is only used for hiding a bit when (i + 1) * (j + 1) is divisible by
our GCD. This pattern increase obscurity and reduces the chances of detection, but
it also significantly decreases the effective data capacity of the image. Since only
one out of every GCD pixels is selected for embedding, the theoretical maximum
capacity W * H bits is reduced to W * H / GCD and for many common resolutions,
this reduction is significant. A 1920x1080 image has a GCD of 120 and if we place
that into our equation it looks as follows 1920 * 1080 / 120 = 17,280 bits[27]. This
means although our GCD-pattern improves security through irregular distribution,
it imposes a big constraint on payload size. As a result of this, the method becomes
inadequate for embedding larger messages and is highly dependent on the chosen
image capacity. Therefore images with a large shared divisor between width and
height suffer the most from this limitation.

Perhaps the biggest Limitation when deploying steganographic images, lies in the
distribution. If we send the file via typical messaging platforms, such as Messenger
or Instagram, the file would be further compressed, or even converted to a new
file format, ruining the embedded data. This results in, when delivering the PNG
with the embedded data, we have to transfer it to the recipient via a platform, that
does not alter the file whatsoever. This could be via E-mail or Microsoft Teams,
or any other platform that handles the transfer as a file-transfer rather than an
image-transfer.

36

8.4 Future of Stegonography (AI)

When speculating on the future of steganography, the biggest mover is of course, AI.
As seemingly everything else in this world, AI will also impact steganography. As
presented earlier, with steganography comes steganalysis tools to detect the existence
of hidden data. When analysing an image file, steganalysis detection consists of 3
types. Blind, Comparitive and Targeted.
Blind detection, is trying to uncover hidden data by analysing the picture for anoma-
lies, such as unnatural pixel values.
Comparative is comparing the original image, to the received image.
Targeted is focused on detecting specific known stegonagraphic algrorithms or pat-
terns.
AI brings GAN (Generative Adversarial Networks) utilizing Diffusion models, which
aims to decieve all 3 detection types. GAN works by a "Generator" generate a
realistic/natural image from scratch injecting hidden data during the denoising,
which is then parsed to a "Discriminator" which job is to evaluate the realism of the
image. This results in a seemingly "empty" image, which only decoders with the
right key can extract data from. [28]

The AI model learns to generate images with natural pixel distribution, spread-
ing the data across the entire image. Since the image is generated, not altered, theres
also no obvious artifacts or inconsistencies, further hindering Blind detection when
analyzing for anomalies. Comparative detection is useless, as the image was created
with the sole-purpose of exchanging hidden data, meaning there is no "clean" image
to compare it to.

AI may create its own stegonagraphic algorithms and patterns, being one step
ahead in the Targeted "cat and mouse" chase

37

9 Perspectives

A significant limitation of the current system is that users have to share their key,
in order to decode a message sent by another person. If this key is transmitted
through an insecure or unencrypted communication channel, it can be intercepted,
compromising everything. To address this, an implementation using Diffie-Hellman
key exchange was discussed as a potential improvement. this method would allow
two users to securely make a shared encryption key over an insecure channel without
ever having the send the actual key compromising it. due to time constrains, this
feature was not implemented, despite the fact it would significantly increase the
security and communication.

Another feature that ended up not being implemented due to lack of time, is
alternating between RGB color channels when embedding data. in our current
implementation, we only use the red channel to store the hidden bits, whilst it is
simple and effective, distributing the embedded data across red, green and blue
channels could increase both the capacity and security of the process, in theory
making it less prone to detection.

Additionally implementing color alternation would be more difficult despite the
fact its more secure, however it would require a precise method to determine which
color to use at each embedding position. this logic would need to be flawlessly
mirrored in the decoding process to avoid data corruption. Furthermore, managing
channel switching and bit positions would increase the risk of synchronization errors
or bugs. Due to time constraints and the added complexity, this feature was consid-
ered but not implemented.

Another feature we discussed was implementing file validation using SHA-256 hashing
to verify that the program has not been tampered with. By generating a SHA-256
hash of the original program files, users could compare their local version to a trusted
hash, to know wether it has been modified or tampered with.

A further quality of life improvement that could have been added if time allowed to,
is calculation a maximum text size per image, as well as implementing a graphical
user interface (GUI). in the current implementation, the program does not tell the
user if the image they have selected or is the necessary size to store the whole
encrypted message, which can lead to incomplete or failed encoding. A capacity
check based on the image height and width would allow the program to tell the user

38

their approximate maximum message size.

Furthermore, the program is operated entirely through a command line, which
is less intuitive for non technical users. Developing a GUI would make the program
more accessible by allowing the user to select images, enter messages and save the
output through visual controls.

39

10 Conclusion

This project set out to explore how steganography and cryptography can be com-
bined into a user-friendly application capable of securely embedding and retrieving
hidden messages within digital images. With the integration of AES encryption,
LSB embedding and a GCD-based distribution pattern with euclid’s algorithm, the
product demonstrates a layered security approach that obscures the existence of
communication and protects its content.

Practical implementation and theoretical research presents that while steganog-
raphy alone provides concealment, it remains vulnerable if the data embedded is
extracted. Likewise with cryptography, alone it protects the message, but cannot hide
different types of communication, that has taken place within a messaging platform.
By merging these two methods the product offers both secrecy and confidentiality,
strengthening the overall security. The use of PNG as the chosen image format, has
proved effective because of its lossless nature persevering the embedded bits without
degradation. The use of Euclid’s algorithm was to distribute hidden data which
reduced predictable patterns and minimized detectability.

Despite the strengths of our product, it does have its limitations. The GCD-based
embedding pattern significantly reduces capacity in images with large GCDs and the
usage of only the red color channel further constrains storage that can be hidden
inside the image. Other practical challenges such as message size limitations, key-
sharing requirements, and risk of file compression depending on the communication
platform, highlights areas where future improvements are necessary.

The product itself, works as a strong foundation for future development, and shows
the potential of steganography as a relevant security technique in the modern cyber-
security landscape, which is increasingly challenged by data interception and digital
surveillance.

Overall, the project demonstrates that combining cryptography and steganogra-
phy can create a robust solution for covert data communication. With further
enhancements such as secure key exchange, GUI, multi-channel embedding and
capacity estimation, the product could be even more secure and user-friendly.

40

11 Appendix

https://github.com/Mostafa4800/Hidden-Within

41

References

[1] Cham Springer. Cryptstego. https://link.springer.com/chapter/10.1007/
978-3-031-56728-5_44, Accessed: 2025-12-19.

[2] Molta Danlami. Hybridization of cryptography and steganography to achieve se-
cret communication. https://ijaem.net/issue_dcp/Hybridization%20of%

20Cryptography%20and%20Steganography%20to%20Achieve%20Secret%

20Communication.pdf, Accessed: 2025-12-19.

[3] Nagham Hamid, Abid Yahya, R Badlishah Ahmad, and Osamah M Al-Qershi.
Image steganography techniques: an overview. International Journal of Com-
puter Science and Security (IJCSS), 6(3):168–187, 2012.

[4] GeeksforGeeks. What is steganography? https://www.geeksforgeeks.org/

computer-networks/what-is-steganography/, Accessed: 2025-11-14.

[5] Adobe. A guide to image file formats and image file types. https://www.adobe.
com/acrobat/hub/guide-to-image-file-formats, Accessed: 2025-11-14.

[6] Willamette University. Image file formats. https://people.willamette.edu/
~gorr/classes/GeneralGraphics/imageFormats/, Accessed: 2025-12-06.

[7] William Ette. Image file formats. https://people.willamette.edu/~gorr/

classes/GeneralGraphics/imageFormats/, Accessed: 2025-12-01.

[8] Lyna. What is color depth and why does it mat-
ter for lcd displays? https://huaxianjing.com/

color-depth-processing-for-lcd-panels-with-led-backlighting/,
Accessed: 2025-12-19.

[9] Adobe. Jpeg files. https://www.adobe.com/creativecloud/file-types/

image/raster/jpeg-file.html, Accessed: 2025-11-11.

[10] Adobe. Png files. https://www.adobe.com/creativecloud/file-types/

image/raster/png-file.html, Accessed: 2025-11-11.

[11] Johannes Siipola. What’s the best lossless image format? com-
paring png, webp, avif, and jpeg xl. https://siipo.la/blog/

whats-the-best-lossless-image-format-comparing-png-webp-avif-and-jpeg-xl,
Accessed: 2025-12-19.

42

https://link.springer.com/chapter/10.1007/978-3-031-56728-5_44
https://link.springer.com/chapter/10.1007/978-3-031-56728-5_44
https://ijaem.net/issue_dcp/Hybridization%20of%20Cryptography%20and%20Steganography%20to%20Achieve%20Secret%20Communication.pdf
https://ijaem.net/issue_dcp/Hybridization%20of%20Cryptography%20and%20Steganography%20to%20Achieve%20Secret%20Communication.pdf
https://ijaem.net/issue_dcp/Hybridization%20of%20Cryptography%20and%20Steganography%20to%20Achieve%20Secret%20Communication.pdf
https://www.geeksforgeeks.org/computer-networks/what-is-steganography/
https://www.geeksforgeeks.org/computer-networks/what-is-steganography/
https://www.adobe.com/acrobat/hub/guide-to-image-file-formats
https://www.adobe.com/acrobat/hub/guide-to-image-file-formats
https://people.willamette.edu/~gorr/classes/GeneralGraphics/imageFormats/
https://people.willamette.edu/~gorr/classes/GeneralGraphics/imageFormats/
https://people.willamette.edu/~gorr/classes/GeneralGraphics/imageFormats/
https://people.willamette.edu/~gorr/classes/GeneralGraphics/imageFormats/
https://huaxianjing.com/color-depth-processing-for-lcd-panels-with-led-backlighting/
https://huaxianjing.com/color-depth-processing-for-lcd-panels-with-led-backlighting/
https://www.adobe.com/creativecloud/file-types/image/raster/jpeg-file.html
https://www.adobe.com/creativecloud/file-types/image/raster/jpeg-file.html
https://www.adobe.com/creativecloud/file-types/image/raster/png-file.html
https://www.adobe.com/creativecloud/file-types/image/raster/png-file.html
https://siipo.la/blog/whats-the-best-lossless-image-format-comparing-png-webp-avif-and-jpeg-xl
https://siipo.la/blog/whats-the-best-lossless-image-format-comparing-png-webp-avif-and-jpeg-xl

[12] Adobe. Bmp files. https://www.adobe.com/dk/creativecloud/file-types/
image/raster/bmp-file.html, Accessed: 2025-11-11.

[13] Microsoft. Dib files. https://learn.microsoft.com/en-us/windows/win32/
gdi/device-independent-bitmaps, Accessed: 2025-11-11.

[14] Shumon Saha. Jpeg vs png vs bmp vs gif vs svg. https://superuser.com/

questions/53600/jpeg-vs-png-vs-bmp-vs-gif-vs-svg, Accessed: 2025-11-
14.

[15] Arpit Bhayani. Everything that you need to know about im-
age steganography. https://www.codementor.io/@arpitbhayani/

internals-of-image-steganography-12qsxcxjsh.

[16] Daniel Lerch. Lsb steganography in images and audio. https://daniellerch.
me/stego/intro/lsb-en/, Accessed: 2025-11-18.

[17] William Dunham. Euclidean algorithm. https://www.britannica.com/

science/Euclidean-algorithm, Accessed: 2025-11-14.

[18] David Tidmarsh. What is steganography in cybersecurity? https:

//www.eccouncil.org/cybersecurity-exchange/ethical-hacking/

what-is-steganography-guide-meaning-types-tools/, Accessed: 2025-11-
16.

[19] Researchgate. Block diagram of symmetric and asymmet-
ric keycryptography. https://www.researchgate.net/figure/

Block-Diagram-of-Symmetric-and-Asymmetric-key-cryptography_fig1_

337689228, Accessed: 2025-12-9.

[20] Lorenzo Langeli. Malware hidden inside images: How steganography
works and how to protect yourself. https://8bitsecurity.com/posts/

malware-hidden-inside-images-how-steganography-works-and-how-to-protect-yourself,
Accessed: 2025-12-9.

[21] GeeksforGeeks. C vs c++ vs java vs python vs javascript. https://www.

geeksforgeeks.org/java/c-vs-java-vs-python/, Accessed: 2025-11-10.

[22] GeeksforGeeks. Difference between compiler and inter-
preter. https://www.geeksforgeeks.org/compiler-design/

difference-between-compiler-and-interpreter/, Accessed: 2025-11-
16.

43

https://www.adobe.com/dk/creativecloud/file-types/image/raster/bmp-file.html
https://www.adobe.com/dk/creativecloud/file-types/image/raster/bmp-file.html
https://learn.microsoft.com/en-us/windows/win32/gdi/device-independent-bitmaps
https://learn.microsoft.com/en-us/windows/win32/gdi/device-independent-bitmaps
https://superuser.com/questions/53600/jpeg-vs-png-vs-bmp-vs-gif-vs-svg
https://superuser.com/questions/53600/jpeg-vs-png-vs-bmp-vs-gif-vs-svg
https://www.codementor.io/@arpitbhayani/internals-of-image-steganography-12qsxcxjsh
https://www.codementor.io/@arpitbhayani/internals-of-image-steganography-12qsxcxjsh
https://daniellerch.me/stego/intro/lsb-en/
https://daniellerch.me/stego/intro/lsb-en/
https://www.britannica.com/science/Euclidean-algorithm
https://www.britannica.com/science/Euclidean-algorithm
https://www.eccouncil.org/cybersecurity-exchange/ethical-hacking/what-is-steganography-guide-meaning-types-tools/
https://www.eccouncil.org/cybersecurity-exchange/ethical-hacking/what-is-steganography-guide-meaning-types-tools/
https://www.eccouncil.org/cybersecurity-exchange/ethical-hacking/what-is-steganography-guide-meaning-types-tools/
https://www.researchgate.net/figure/Block-Diagram-of-Symmetric-and-Asymmetric-key-cryptography_fig1_337689228
https://www.researchgate.net/figure/Block-Diagram-of-Symmetric-and-Asymmetric-key-cryptography_fig1_337689228
https://www.researchgate.net/figure/Block-Diagram-of-Symmetric-and-Asymmetric-key-cryptography_fig1_337689228
https://8bitsecurity.com/posts/malware-hidden-inside-images-how-steganography-works-and-how-to-protect-yourself
https://8bitsecurity.com/posts/malware-hidden-inside-images-how-steganography-works-and-how-to-protect-yourself
https://www.geeksforgeeks.org/java/c-vs-java-vs-python/
https://www.geeksforgeeks.org/java/c-vs-java-vs-python/
https://www.geeksforgeeks.org/compiler-design/difference-between-compiler-and-interpreter/
https://www.geeksforgeeks.org/compiler-design/difference-between-compiler-and-interpreter/

[23] Leon Olagh. Bmp vs. png. https://proshotmediagroup.com/blog/

bmp-vs-jpeg/, Accessed: 2025-12-05.

[24] Chad Mando. Aes-cbc padding explained. https://thinkinginbytes.com/

posts/aes-cbc-padding-explained/, Accessed: 2025-12-11.

[25] BoiteAKlou. Steganography tutorial: Least significant bit (lsb). https:

//www.boiteaklou.fr/Steganography-Least-Significant-Bit.html, Ac-
cessed: 2025-12-09.

[26] Paranoid Cybersecurity. Case study: Caminho malware loader
conceals .net payloads inside images via lsb steganography.
https://www.paranoidcybersecurity.com/case-study-slug/threat/

caminho-malware-loader-conceals-net-payloads-inside-images-via-lsb-steganography,
Accessed: 2025-12-17.

[27] Mathportal. Find gcd of 1920 1080. https://www.mathportal.org/

calculators/popular-problems/gcd.php?rb1=primefactmethod&val1=

1920%201080, Accessed: 2025-12-17.

[28] Mehdi Mirza Bing Xu David Warde-Farley Sherjil Ozair Aaron Courville
Yoshua Bengio Ian J. Goodfellow, Jean Pouget-Abadie. Generative adver-
sarial nets. https://proceedings.neurips.cc/paper_files/paper/2014/

file/f033ed80deb0234979a61f95710dbe25-Paper.pdf, Accessed: 2025-12-
17.

44

https://proshotmediagroup.com/blog/bmp-vs-jpeg/
https://proshotmediagroup.com/blog/bmp-vs-jpeg/
https://thinkinginbytes.com/posts/aes-cbc-padding-explained/
https://thinkinginbytes.com/posts/aes-cbc-padding-explained/
https://www.boiteaklou.fr/Steganography-Least-Significant-Bit.html
https://www.boiteaklou.fr/Steganography-Least-Significant-Bit.html
https://www.paranoidcybersecurity.com/case-study-slug/threat/caminho-malware-loader-conceals-net-payloads-inside-images-via-lsb-steganography
https://www.paranoidcybersecurity.com/case-study-slug/threat/caminho-malware-loader-conceals-net-payloads-inside-images-via-lsb-steganography
https://www.mathportal.org/calculators/popular-problems/gcd.php?rb1=primefactmethod&val1=1920%201080
https://www.mathportal.org/calculators/popular-problems/gcd.php?rb1=primefactmethod&val1=1920%201080
https://www.mathportal.org/calculators/popular-problems/gcd.php?rb1=primefactmethod&val1=1920%201080
https://proceedings.neurips.cc/paper_files/paper/2014/file/f033ed80deb0234979a61f95710dbe25-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/f033ed80deb0234979a61f95710dbe25-Paper.pdf

	Introduction
	Problem Statement
	Methods
	Problem Analysis
	Theoretical Framework
	Steganography
	Text Steganography
	Image Steganography
	Audio Steganography
	Network/Protocol Steganography

	Image File Formats
	JPEG
	PNG
	BMP
	Lossless vs. Lossy Compression

	Least Significant Bit
	GCD and Euclid’s Algorithm in the Encoding Process
	Process Overview
	Integration in Encoding

	Security Regarding Steganography
	Encryption
	Decryption
	AES and RSA Encryption
	Steganography in Cybersecurity
	Why is Steganography So Hard To Detect?
	How To Defend Yourself Against Steganography

	Analysis
	Python
	Required Libarys

	PNG, Chosen File Format
	Layered Security
	AES
	LSBs role in the program
	Embedding The Information

	Implementation
	Flowchart
	Steganography
	Cryptography
	Text-based User Interface

	Discussion
	The Use of Steganography
	Security
	Limitations
	Future of Stegonography (AI)

	Perspectives
	Conclusion
	Appendix

