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Preface

This master’s thesis considers the subject of nanostructured graphene in
the framework of the mean field Hubbard model. The thesis consists of 4
chapters and 2 appendices. The first chapter introduces the state of the art
of nanostructured graphene. The second chapter introduces the Hubbard
model and methods for solving the model. It is described how the model
was implemented and solved numerically. The third chapter presents and
discusses the results. Results are presented for 0D, 1D and 2D structures.
The conclusion is found in chapter 4.

In appendix A the key concepts of the second quantization are intro-
duced. Appendix B consists of an article made in collaboration with Mads
Lund Trolle and Thomas Garm Pedersen. The article considers a subset of
the results from chapter 3 in addition to DFT results.

Citations are denoted in square brackets, where the number corresponds
to a publication in the bibliography. Equations are referenced as (1.1).
Vectors are represented as r, matrices are denoted M and operators are
shown as Ô.
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Chapter 1

Introduction

Graphene is the first stable truly 2 dimensional material discovered and con-
sists of a single layer of carbon atoms. Its discovery in 2004 was rewarded
the Nobel prize in physics[1]. Graphene appears to be a new wonder ma-
terial for physicists, chemists and engineers, with a number of properties
ranging from e.g. high electron mobility, transparency, flexibility and high
mechanical strength [2]. This combination of many unique properties in a
single material may allow the emergence of new, disruptive technologies,
e.g. printable and flexible electronics. The material is also interesting from
a purely scientific point of view with a linear dispersion reminiscent of mass-
less relativistic particles.

Graphene can be manufactured in a number of ways. When graphene
was first discovered it was mechanically exfoliated from graphite in what
was to become known as the duct tape method. However, in order to intro-
duce graphene to commercial markets the production must be scalable for
mass production and the quality must be sufficient for the intended pur-
pose. Several production methods are currently being developed based on
either exfoliation of graphite samples or growth of graphene on a substrate.
Using chemical vapour deposition (CVD) on copper substrates large area
graphene samples have been produced[3]. Another method, synthesis on sil-
icon carbide (SiC), allows for domain sizes up to hundreds of micrometers
and control of the number of graphene layers grown. In order to improve
the quality of the produced graphene the domain size, number of layers and
doping level must be controlled. [2]

Graphene has been suggested as a promising candidate for production
of nanoscale transistors. However, in order to use graphene as a transistor
a major challenge must be overcome: The introduction of a band gap.
Pristine graphene is a semimetal with a vanishing band gap, and thus it

1



1. Introduction

will be impossible to turn the transistor off at ambient temperatures by
utilizing conventional Field Effect Transistor designs. [4, 5]

It has been shown experimentally that a band gap can be introduced
in graphene by confinement of the structure, in particular by patterning
the structure into one dimensional graphene nanoribbons (GNRs) [6–8].
Theoretical studies of GNRs predict a band gap opening which depends
on the width of the ribbon and the type of the edge [9, 10]. For zigzag
edges a peculiar antiferromagnetic ground state is found. Experimentally,
the presence of localized states on the edge of GNRs have been confirmed
in agreement with theoretical predictions [11].

Another method for introducing a band gap in graphene is the introduc-
tion of a periodic array of holes in the structure. These structures are known
as graphene antidot lattices (GALs) and can be produced with holes in the
sub 100 nm size [12–15]. While holes fabricated with lithographic methods
are expected to have irregular hole shapes it has been found that annealing
will allow the edges to reconstruct to armchair or zigzag edges [16, 17]. For
two dimensional patterning spin polarization has been observed [18, 19].

Theoretically the band gap of GALs have been determined for different
geometries and holes [20–27]. For armchair edges the band gap determined
using mean field methods are in agreement with less computationally de-
manding tight binding calculations. For zigzag edges a band gap is found
to open for some structures using mean field methods.

In this work we strive to systematically examine the dependence of the
band gap of GALs on the unit cell dimensions. This will be done in the
framework of a mean field model capturing the intricate spin behavior pre-
dicted by DFT calculations. The main focus will be on graphene nanos-
tructures with zigzag edges. To determine properties of unit cells with
thousands of atoms the computational demands of the DFT method are
excessive. We thus choose the Hubbard model, where the computational
demands are significantly lowered, but the interesting spin properties can
still be examined.
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Chapter 2

Methods

2.1 Hubbard Model
The Hubbard model is an idealized model for strongly interacting electrons
in a solid. It is a tight binding model with on-site Coulomb interactions.
It was originally developed to examine ferromagnetic properties originating
from the Coulomb interaction[28]. The Coulomb interaction is independent
of electron spin and does not favor any magnetic ordering. Thus ferromag-
netic properties arise because of quantum mechanical interactions between
electrons.

2.1.1 Tight-binding

We consider a lattice of Ns atoms. The nuclei are fixed at positionsRn. The
electrons of interest for electronic and optical properties are the electrons
which can be excited by low amounts of energy, the valence electrons. The
core electrons screen the attractive potential between the valence electrons
and the core and can be modeled using an appropriate pseudo potential
centered at Rn. The Hamiltonian of a single valence electron is then

Ĥ = − ~2

2m
∇2 +

Ns∑

n

V (r −Rn). (2.1)

In the case of infinitely separated atoms the eigenfunction of the Hamil-
tonian is a linear combination of atomic orbitals (LCAO) centered at the
lattice sites. In the tight binding method the electrons are assumed to be
tightly bound to a single atom with limited interaction with other atoms in
the lattice. Thus it is assumed that the electron wave function is spanned
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2. Methods

by a basis of atomic orbitals, and the molecular orbital is then a linear
combination of atomic orbitals centered at each lattice site Rn,

ψ(r) =
N∑

n

cnϕn(r −Rn), (2.2)

where ϕ is an atomic orbital, the index n is a composite index of the orbital
type and lattice site andN is the number of states in the basis. To determine
the coefficients cn ∈ C the electronic energy,

E =

〈
ψ
∣∣Ĥ
∣∣ψ
〉

〈ψ|ψ〉 , (2.3)

is minimized with respect to the coefficients cn. The terms in equation
(2.3) are quadratic in cn, so taking the partial derivative with respect to cn
and equating to zero results in a linear equation [29]. This is the secular
equation

N∑

n

(Hm,n − ESm,n)cn = 0, m = 1, 2, . . . , N, (2.4)

where Hm,n is the Hamiltonian matrix element of the atomic orbitals ϕm
and ϕn

Hm,n =
〈
ϕm
∣∣Ĥ
∣∣ϕn
〉

=

∫
ϕ∗m(r −Rm)Ĥϕn(r −Rn)dr, (2.5)

and Sm,n is the overlap matrix element

Sm,n =
〈
ϕm
∣∣ϕn
〉

=

∫
ϕ∗m(r −Rm)ϕn(r −Rn)dr.

The secular equation (2.4) can furthermore be expressed in the matrix
form

Hc = ESc, (2.6)

where H is the Hamiltonian matrix, S is the overlap matrix and c is a
vector of the coefficients cn. Ignoring the trivial solution c = 0, solving the
equation results in N values of E and N linearly independent choices of c.
The coefficients c are chosen to obey the normalization condition

〈
ψ
∣∣ψ
〉

=
N∑

m

N∑

n

c∗mcnSm,n = 1.
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2.1. Hubbard Model

Evaluating the matrix elements leads to three types of integrals, one-,
two- and three-center integrals depending on the number of atomic sites in-
volved in the integration. The matrix elements of the kinetic energy and the
overlap result in one- and two-center integrals, while the matrix elements
of the potential energy result in up to three-center integrals. Solving the
integrals is eased considerably by exploiting the symmetry of the atomic
orbitals in the basis. In the Slater-Koster approximation [30] the Hamil-
tonian matrix elements are approximated with two-center matrix elements
and fitted to theoretical or empirical data.

Crystal Structure

Utilizing the crystal symmetry the number of states in the basis N can be
reduced considerably. The crystal structure is defined by the translation
vector

T =
D∑

i

niai, ni ∈ Z,

where D is the dimensionality of the crystal and ai are the primitive vectors
spanning the unit cell. The positions of the atoms in the unit cell will be
denoted τm. Similarly the reciprocal lattice is defined by the reciprocal
lattice vector

G =
D∑

i

mibi, mi ∈ Z,

where the primitive reciprocal lattice vectors bi are defined by

ai · bj = 2πδij.

The Brillouin Zone is found from G as the Wigner-Seitz cell. Any physical
quantity f(r) is invariant for a translation T . The sites of the reciprocal
lattice G are the points for which the Fourier components of the Fourier
transform of f(r) are non-zero.

The electron density must be conserved for a translation T , and thus
the wavefunction must be conserved besides a phase change. According to
the Bloch theorem this phase change is

ψ(r + T ) = eik·Tψ(r), (2.7)

where k is the wave vector. When evaluating equations with the phase
k it is sufficient to consider k in the first Brillouin Zone as all possible
eigenstates are specified there, because ei(k+G)·T = eik·T . [31, 32]
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2. Methods

Incorporating the periodicity of crystals in Tight Binding calculations
is done by replacing the atomic orbitals in the LCAO (2.2) by Bloch sums
of atomic orbitals defined by

ϕn,k(r) = An,k
∑

T

eik·Tϕn[r − (T + τn)], (2.8)

where An,k is a normalization constant. Notice that T + τn = Rn. The
Bloch sums satisfy the Bloch theorem (2.7) and are orthonormal with re-
spect to k. Assuming the atomic orbitals are orthonormal, the normaliza-
tion constant is determined

1 =
〈
ϕn,k

∣∣ϕn,k
〉

= |An,k|2
∑

T1,T2

e−ik·T1eik·T2
〈
ϕn[r − (τn + T1)]

∣∣ϕn[r − (τn + T2)]
〉

= |An,k|2
∑

T1,T2

eik·(T2−T1)δT1,T2

= |An,k|2NT ⇔

|An,k|2 =
1

NT
.

NT is the number of unit cells included in the sum. Thus the magnitude of
An,k is N−1/2

T independent of n and k. By replacing the atomic orbitals in
(2.2) with Bloch sums, the electron wavefunction is

ψk(r) =
N∑

n

cn,kϕn,k(r) =
N∑

n

cn,k
∑

T

eik·Tϕn[r − (T + τn)],

where the normalization constant is contained in the coefficients cn,k. Al-
ternatively, by choosing the phase of An,k as eik·τn , the wavefunction will
be

ψk(r) =
N∑

n

cn,k
∑

T

eik·(T+τn)ϕn[r − (T + τn)].

Noting that Rn = T + τn this corresponds to summing over N atomic
orbitals per unit cell.

The matrix elements between the atomic orbitals in the unit cell with
T = 0 and any unit cell is introduced

Hm,n(T ) =

∫
ϕ∗m(r − τm)Ĥϕn[r − (T + τn)]dr,

Sm,n(T ) =

∫
ϕ∗m(r − τm)ϕn[r − (T + τn)]dr.

(2.9)
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2.1. Hubbard Model

The Hamiltonian matrix element of Bloch sums is now evaluated

Hm,n(k) =
〈
ϕm,k

∣∣Ĥ
∣∣ϕn,k

〉
=

A∗m,kAn,k
∑

T1,T2

eik·(T2−T1)
〈
ϕm[r − (T1 + τm)]

∣∣Ĥ
∣∣ϕn[r − (T2 + τn)]

〉
.

As all lattice points are indistinguishable all terms in the sum over T1 are
equal. Thus T1 is chosen as 0 and the result is

Hm,n(k) = A∗m,kAn,kNT
∑

T2

eik·T2
〈
ϕm(r − τm)

∣∣Ĥ
∣∣ϕn[r − (T2 + τn)]

〉

= A∗m,kAn,kNT
∑

T

eik·THm,n(T ).

Similar arguments can be used to evaluate the overlap matrix element
Sm,n(k). The magnitude of An,k was found to be N−1/2

T which cancels
the factor of NT . So for An,k = N

−1/2
T the matrix elements are

Hm,n(k) =
∑

T

eik·THm,n(T ), Sm,n(k) =
∑

T

eik·TSm,n(T ). (2.10)

Alternatively, by choosing the normalization constant as An,k = eik·τnN
−1/2
T

the matrix elements become

Hm,n(k) =
∑

T

eik·∆R(T )Hm,n(T ), Sm,n(k) =
∑

T

eik·∆R(T )Sm,n(T ),

(2.11)
where ∆R(T ) = T + τn − τm is the displacement vector between the sites
the matrix element (2.9) is evaluated for.
[32]

Many-Electron Wave Function

By solving the matrix equation (2.6) using the matrix elements of equa-
tion (2.10) or (2.11) N linearly independent sets of cm with corresponding
eigenvalues Em are obtained. The set of wavefunctions ψm(r) constitutes
a complete basis set of the Hamiltonian (2.1). As the Hamiltonian is inde-
pendent of spin the ψm(r) are doubly degenerate.

The linearly independent spin functions are chosen as eigenfunctions of
the ŝz spin operator and will be denoted α(ς), the spin up function, and β(ς),
the spin down function. The functions are orthonormal with eigenvalues 1

2
~

and −1
2
~ respectively. The eigenvalues will be represented with ↑ and ↓.

Thus the spinorbitals of the Hamiltonian (2.1) are ψm,↑(x) and ψm,↓(x),
where the argument x = {r, ς}.
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2. Methods

Considering a many-electron system the single-electron Hamiltonian
(2.1) will be denoted ĥi. Ignoring the electron-electron interaction for now,
the many-electron Hamiltonian is

Ĥ =
Ne∑

i

ĥi,

where Ne is the number of electrons in the system. The many-electron wave
function is the Slater determinant of the single-electron states ψm,σ(x). The
ground state can be formed by choosing the Ne spin orbitals with the lowest
eigenvalues Em. It is obtained using the anti-symmetrization operator (A.5)

ΨGS(x1,x2, . . . ,xNe) = Ŝ−

Ne∏

i=1

ψi(xi),

where i is the electron number and is a composite index for {m,σ}.

Tight Binding in Second Quantization

We consider a lattice consisting of Ns lattice sites which are atomic sites in
a solid. The sites are numbered 1, 2, . . . , Ns. For simplicity we consider a
single-orbital model where each atomic site carries a single non-degenerate
orbital. Furthermore the atomic orbitals are assumed to be orthogonal, so
the overlap matrix S is identical to the identity matrix I. In this model the
electrons can be thought of as living on the lattice sites and can tunnel to
nearby sites.

A single electron state with a fixed spin is a LCAO, which will be denoted

ϕ = (ϕi)i=1,2,...,Ns , (2.12)

where ϕi ∈ C is the vector component for site i and ϕ is thus identical to
the vector c in equation (2.6).

The single electron state can be defined using the fermion creation and
annihilation operators defined by equation (A.9). The set of quantum num-
bers consists of the site index i and the spin quantum number σ. Thus the
operator ĉ†i,σ creates an electron at site i with spin σ while the operator ĉi,σ
annihilates an electron at site i with spin σ. A new set of operators are
defined

Ĉ†σ(ϕ) =
Ns∑

i

ϕiĉ
†
i,σ, Ĉσ(ϕ) =

Ns∑

i

(ϕi)
∗ĉi,σ,

8



2.1. Hubbard Model

where ϕ is a single-electron state given by equation (2.12). These operators
satisfy the anticommutator relations

{
Ĉ†σ(ϕ), Ĉτ (ψ)

}
= δσ,τ

〈
ϕ,ψ

〉
,

{
Ĉσ(ϕ), Ĉτ (ψ)

}
=
{
Ĉ†σ(ϕ), Ĉ†τ (ψ)

}
= 0,

for any ϕ, ψ and σ, τ =↑, ↓.
〈
ϕ,ψ

〉
is the inner product between discrete

vector states ϕ and ψ. If the states ϕ and ψ are orthonormalized the
operators Ĉ†σ(ϕ) and Ĉσ(ϕ) will obey the anticommutator relations (A.6)
and (A.7), and are thus fermion creation and annihilation operators which
creates or annihilates an electron in state ϕ with spin σ. The single-electron
state ϕ with spin σ is thus obtained by

Ψ = Ĉ†σ(ϕ)
∣∣0
〉
.

The tunneling amplitude that an electron tunnels/hops from site j to i
with i 6= j is denoted ti,j. By tunneling the electron is annihilated at site j
and created at site i. The hopping Hamiltonian is then

Ĥhop =
∑

i,j,σ

ti,j ĉ
†
i,σ ĉj,σ. (2.13)

The Hamiltonian is a one-electron operator in second quantization as de-
scribed in equation (A.10). ti,j are matrix elements and corresponds to
the Hamiltonian matrix elements from equation (2.5). The single electron
Schrödinger equation is

ĤhopΨ = EΨ.

The equation has Ns eigenvalues Ej with corresponding eigenvectors ϕ(j).
The eigenvectors are orthogonal

〈
ϕ(j),ϕ(k)

〉
= δj,k. The Ne-electron wave-

function of the system is then

Ĉ†σ(ϕ(1)) · · · Ĉ†σ(ϕ(Ne))
∣∣0
〉
.

[33]

2.1.2 Electron-Electron Interaction

When adding multiple electrons to a system the electrons will repel each
other and the electron-electron repulsion must be included in the Hamil-
tonian. Thus the one-electron Ĥhop (2.13) is modified by inclusion of the
electron-electron repulsion. The operator is a two-electron operator which
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2. Methods

in second quantization is formulated as in equation (A.11). The Hamilto-
nian is then

Ĥ =
∑

i,j,σ

ti,j ĉ
†
i,σ ĉj,σ +

1

2

∑

σ1,σ2

∑

i,j,k,l

〈
i, j

∣∣∣∣
e2

4πε0|r2 − r1|

∣∣∣∣k, l
〉
ĉ†i,σ1 ĉ

†
j,σ2

ĉl,σ2 ĉk,σ1 .

The two-electron matrix element corresponds to (A.12). It involves 4 atomic
orbitals centered on the lattice sites i, j, k and l and can be written

〈
i, j

∣∣∣∣
e2

4πε0|r2 − r1|

∣∣∣∣k, l
〉

=

e2

4πε0

∫ ∫
ϕ∗(r2 −Ri)ϕ(r2 −Rk)ϕ

∗(r1 −Rj)ϕ(r1 −Rl)

|r2 − r1|
dr2dr1.

In the Hubbard model only the on-site matrix element is included and all
others are ignored. Thus the two-electron Coulomb interaction is treated
as a short range interaction. This is justified by the consideration that
the coulomb force is largest when two electrons are at the minimum possi-
ble distance. The Hubbard model is thus a minimum model for studying
properties of strongly interacting electron systems. By defining the value

U =

〈
i, i

∣∣∣∣
e2

4πε0|r2 − r1|

∣∣∣∣i, i
〉
,

the on-site two-electron interaction is

Ĥint =
U

2

∑

i,σ1,σ2

ĉ†i,σ1 ĉ
†
i,σ2
ĉi,σ2 ĉi,σ1 = U

∑

i

n̂i,↑n̂i,↓, (2.14)

where (A.8) was used. The Hubbard Hamiltonian is then

Ĥ = Ĥhop + Ĥint =
∑

i,j,σ

ti,j ĉ
†
i,σ ĉj,σ + U

∑

i

n̂i,↑n̂i,↓. (2.15)

When solving the model there are a number of symmetries which can
be exploited when choosing the basis sets. The Hubbard Hamiltonian com-
mutes with the operators for the total particle number Ne and the total
spin. As the total particle number is Ne = N↑ + N↓ and the total spin is
Sz = (N↑ − N↓)/2 conservation of spin and electron number corresponds
to conservation of N↑ and N↓. The model can then be solved with basis
states spanning the Hilbert space for a fixed N↑ and N↓. Furthermore, for
periodic systems the Hamiltonian commutes with the Translation operator,
so the basis functions can be chosen as Bloch sums as in equation (2.8).
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2.1. Hubbard Model

The Hubbard model can be seen as an approximation of the extended
Hubbard model where nonlocal Coulomb matrix elements are considered.
It was found by Schüler et al. [34] that the effective Hubbard U is reduced
by more than 50% compared to a purely local interaction.
[28, 33, 35]

Exact Diagonalization

We consider a lattice consisting of 2 atomic sites. The total number of
possible electron configurations is 4Ns . However if we fix the number of spin
up and down electrons the number of basis states reduces to the number of
ways Nσ can be distributed on Ns lattice sites. The number is

Nbasis =

(
Ns

N↑

)(
Ns

N↓

)
, (2.16)

where
(
N
M

)
is a binomial coefficient.

We choose the system at half filling corresponding to Ne = 2. The sys-
tem is chosen to have total spin Sz = 0 corresponding to N↑ = N↓ = 1.
Then the total number of basis states is 4. Choosing the default sorting
order of the quantum numbers as sorting by spin index first, then lattice
index, the basis states will be represented in the occupation number repre-
sentation

∣∣n1,↑, n2,↑, n1,↓, n2,↓
〉
. The basis states are

ϕ1 =
∣∣0, 1; 1, 0

〉
, ϕ2 =

∣∣1, 0; 1, 0
〉
, ϕ3 =

∣∣1, 0; 0, 1
〉
, ϕ4 =

∣∣0, 1; 0, 1
〉
.

We are now ready to consider the Hamiltonian matrix for the Hubbard
Hamiltonian (2.15) operating on a linear combination of the basis states.
The matrix elements ti,j are chosen as t1,1 = t2,2 = 0 and t1,2 = t2,1 = −t.
The values of t and U are real and positive. The Hamiltonian matrix is
then

H =

∣∣∣∣∣∣∣∣

0 −t 0 −t
−t U −t 0
0 −t 0 −t
−t 0 −t U

∣∣∣∣∣∣∣∣
.

The corresponding eigenvalue equation is Hc = Ec. This equation has the
characteristic equation and eigenvalues

E(U − E)(E(U − E) + 4t2) = 0⇔

E0 =
U −
√
U2 + 16t2

2
, E1 = 0, E2 = U, E3 =

U +
√
U2 + 16t2

2
.(2.17)

11



2. Methods

The ground state of the system has the energy E0. The eigenvector for this
eigenvalue is

c0 = N(2t,−E0, 2t,−E0),

where N is a normalization constant. After normalization the eigenvector
describes the ground state wave function. Notice that for U = 0 all basis
states are weighted equally. Reasonable choices of t and U for graphene are
t = 2.7 eV and U = 2.0 eV. For these constants the eigenvector is

c0 = (0.544, 0.452, 0.544, 0.452).

For the ground state the eigenvalues of the number operator n̂i,σ is 0.5 for
all combinations of i and σ. Thus in the ground state the electrons are
equally distributed.

The probability of observing the system in state ϕ1 or ϕ3 is 0.591 and is
the probability that the electrons are located at different atoms. Thus the
introduction of the on-site electron-electron repulsion has made it energeti-
cally favourable for the electrons to be at different atoms. This correlation
between the electrons lowers the total energy.

Using the Exact Diagonalization approach it is possible to solve the
Hubbard model exactly. However the size of the basis set (2.16) increases
rapidly with system size. For a system with 20 sites at half filling the
number of basis states is on the order of 1010. While the matrix H is very
sparse the computational demands are excessive. Thus in order to reduce
the size of the basis sets it is essential to exploit symmetries of the system.
For larger systems it is desirable to use approximate methods.
[35]

2.1.3 Mean Field Method

As it was seen for the system with 2 electrons the positions of the electrons
correlate in the Hubbard model. In a mean field method the electron-
electron interaction is included as an interaction between the electron and
the mean density of electrons in the system. In this scheme correlations are
included only on average, but the resulting Hamiltonian is a one-electron
operator allowing a smaller basis set to be chosen.

in the mean field method, the number operator is replaced by

n̂i,σ = 〈ni,σ〉+ δn̂i,σ,

12



2.1. Hubbard Model

which is the mean field 〈ni,σ〉 plus a small correction. Thus evaluating

n̂i,↑n̂i,↓ = 〈ni,↑〉〈ni,↓〉+ δn̂i,↑〈ni,↓〉+ δn̂i,↓〈ni,↑〉+ δn̂i,↑δn̂i,↓

≈ 〈ni,↑〉〈ni,↓〉+ (n̂i,↑ − 〈ni,↑〉)〈ni,↓〉+ (n̂i,↓ − 〈ni,↓〉)〈ni,↑〉
≈ n̂i,↑〈ni,↓〉+ n̂i,↓〈ni,↑〉 − 〈ni,↑〉〈ni,↓〉,

it is found that by neglecting the second order term δn̂i,↑δn̂i,↓ the interaction
operator (2.14) can be approximated as the interaction with the mean of
the number operator. The Hamiltonian of the Hubbard model in the mean
field approximation is then

Ĥ =
∑

i,j,σ

ti,j ĉ
†
i,σ ĉj,σ + U

∑

i

(
n̂i,↑〈ni,↓〉+ n̂i,↓〈ni,↑〉 − 〈ni,↑〉〈ni,↓〉

)
, (2.18)

which is a one-electron operator. In order to find the eigenstates of the
operator the mean of the number operator must be found. The average
occupation of site i is the electron density of site i, and thus

〈ni,σ〉 =
∑

j

fFD(Ej,σ)
∣∣∣ψ(j)

i,σ

∣∣∣
2

, (2.19)

where FFD is the Fermi-Dirac distribution function and Ej,σ is the eigen-
value of the eigenstate ψ(j)

σ . The electron density is then obtained by start-
ing with an initial guess and iterating until self-consistently, that is

nold = nnew. (2.20)

As the Hamiltonian is a single electron operator the total energy of the
many-electron system is found from

Etot =
∑

j,σ

fFD(Ej,σ)εj,σ − U
∑

i

〈ni,↑〉〈ni,↓〉. (2.21)

We now have the necessary tools for solving the Hubbard model and
obtaining the electron density. For describing the spin properties of the
system we introduce the local spin polarization

pi = 〈ni,↑〉 − 〈ni,↓〉. (2.22)

pi is thus the number of unpaired electrons on site i.
[36, 37]
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2. Methods

Example: Two-electron system

We now revisit the model system solved using exact diagonalization and
solve the two-electron system using the mean field approach. The basis
states are now one-electron states, and are

ϕ1 =
∣∣1, 0; 0, 0

〉
, ϕ2 =

∣∣0, 1; 0, 0
〉
, ϕ3 =

∣∣0, 0; 1, 0
〉
, ϕ4 =

∣∣0, 0; 0, 1
〉
.

For the chosen system at half filling the number of basis states is the same
as for exact diagonalization. However, in this case the number of basis
states scales linearly with the number of lattice sites as

Nbasis = 2Ns,

which is a significant improvement over (2.16). The Hamiltonian matrix is

H =

∣∣∣∣∣∣∣∣

U〈n1,↓〉 −t 0 0
−t U〈n2,↓〉 0 0
0 0 U〈n1,↑〉 −t
0 0 −t U〈n1,↑〉

∣∣∣∣∣∣∣∣
.

It is found that the spins only couple through the average electron density,
allowing the problem to be broken down to solving 2 characteristic equations
of order Ns. The eigenvalues of these equations are

(U〈n1,σ〉 − ε)(U〈n2,σ〉 − ε)− t2 = 0⇔

ε =
U ±

√
4t2 + U2 − 4U2〈n1,σ〉〈n2,σ〉

2
.

Assuming the electrons are evenly distributed like for the exact diagonal-
ization method, the lowest energy is found to be ε0 = U/2 − t with the
eigenvector c0 =

√
2/2(1, 1). It was tested that for a different start density

the system iterated to evenly distributed electrons. Using equation (2.21),
the total energy of the system is

Etot = 2ε0 − U/2 = U/2− 2t.

Using the values t = 2.7 eV and U = 2.0 eV the total energy of the system
is found to be EMF = −4.40 eV for the mean field calculation and EED =
−4.49 eV for the exact diagonalization calculation. Thus the correlation
energy is Ecor = 90meV. The same electron density was found using both
methods.

Changing units to t, we examine the total energy as a function of the
quantity U/t. The energy of the exact diagonalization approach is found

14



2.1. Hubbard Model

from equation (2.17), while the energy of the mean field approach is found
by iterating the electron density until convergence and applying equation
(2.21). The results are shown in figure 2.1. For U = 0 the energy is equal
for the two approaches. While the energy of the MF approach increases
linearly with U until U = 2t the ED energy increases slower. For U = t the
correlation energy is 4% of the ED energy and for U = 2t it is 19%. Thus
the importance of correlation increases significantly with U . At U = 2t
the mean field density becomes antiferromagnetic as shown in figure 2.1b.
While this decreases the rate of growth of the correlation energy, the electron
density is no longer in agreement with the electron density obtained using
the ED approach. In fact, the ED electron density remains paramagnetic
for all values of U . This demonstrates that for large values of U the effects
of correlation cannot be ignored.

In a work by Ijäs and Harju [37], the correlation energy is fitted by an
exponential function in a local density approximation approach. For large U
this method increases the agreement between the total energy of the system
and the ED energy. However, the approach does not increase the agreement
between the electron densities for spin unpolarized systems. For highly
correlated systems the approximation δn̂i,↑δn̂i,↓ ≈ 0 is invalid, showing the
limits of mean field methods. In the majority of this work we choose U/t ≈
0.75 and use the mean field method. For electron-electron interactions of
this magnitude it remains to be seen whether magnetic ordering of the
ground state is caused by insufficient treatment of electron correlation.
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Figure 2.1: Comparison of total energy (a) and local spin polarization of
atom 1 (b) of 2 atom, 2 electron system.
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2.2 Implementation

In this work 0D, 1D and 2D nanostructured graphene is modeled using the
Hubbard model, which is solved using the mean field approximation. In this
section the method used for obtaining the electron density is described.

First, a suitable set of basis orbitals must be chosen for describing the
electronic properties of interest. The second shell electrons of carbon atoms
in graphene are either in sp2 orbitals, which participate in σ bonding in the
graphene plane, or in a pz orbital participating in π bonding out of plane.
The π electrons are loosely bound in a molecular orbital extending across
the whole molecule, while the σ electrons are tightly bound. We wish to
describe the low energy properties, and thus we choose a basis consisting of
a single π orbital per carbon atom.

As it was found that the spins can be dealt with separately, the Hamil-
tonian matrix H described by the mean field Hamiltonian (2.18) is of the
order N , where N is the number of atoms in the unit cell. We choose the
overlap matrix S = I, and thus overlap of the π orbitals is neglected. The
matrix elements are found from equations (2.11) and (2.9). For the π or-
bitals the Hamilton matrix elements in equation (2.9) depend only on the
distance between the atoms. The values of the interaction is determined by
either fitting to experimental results or by calculation [38].

The values of k in the matrix elements are discretized in the irreducible
Brillouin zone (IRBZ) For 1D and 2D systems. The number of indepen-
dent H that can be constructed is then 2Nk, where Nk is the number of
k points included in the discretization. In this work we consider 2 dimen-

Γ

K

M

Triangle
Circumcenter
Centroid
Even

Figure 2.2: First Brillouin zone and 12 times degenerate IRBZ of hexag-
onal lattice. The high symmetry points Γ, K and M are shown. The dots
represent different choices for discretization of k.

16



2.2. Implementation

sional hexagonal lattices with hexagonal Brillouin zones. The irreducible
Brillouin zone is 12 times degenerate within the first Brillouin zone. 4 types
of discretization were considered in this work shown in figure 2.2, and the
properties of the structures examined were invariant with respect to choice
of k point sampling for sufficiently high Nk. For 1D structures the results
were sampled with at least Nk = 512, and for the 2D structures the results
were sampled at Nk ≥ 45 with the triangle sampling shown in figure 2.2.
For the numerical integration the degeneracy of the k point in the first
Brillouin zone was considered by multiplying with the degeneracy.

We are now ready to discuss the iteration scheme for obtaining self-
consistent electron densities. The implementation was conducted in the
programming language Fortran 2008. This choice was made primarily be-
cause of the availability of optimized libraries and compilers from Intel[39]
for solving eigenvalue equations. Furthermore, with the introduction of
Fortran 2003 object oriented features are a part of the Fortran standard
allowing a higher level of abstraction in the code. The final program con-
sists of ∼ 5000 lines of code. Here, we limit the discussion to the most
important features.

The iteration routine is outlined in figure 2.3. We start with an input
electron density nin. H is determined from the Hamiltonian (2.18). The
eigenvalue problem is solved, and an output electron density nout is deter-

Input nin
Determine

H

Solve
eigenvalue
problem

Calculate
nout

Convergence?

Output
nout

Mix nin,
nout no

yes

Figure 2.3: Flow chart of routine for determining the electron density self-
consistently.
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2. Methods

mined. If the convergence check is fulfilled the routine is done, outputting
nout. Otherwise, a new input density is determined as a mix of nin and
nout and the routine continues until the convergence criterion is fulfilled.

As input density we choose either an antiferromagnetic or ferromagnetic
density where the edges are polarized. The electron density is normalized
to the correct number of electrons. It is found that for a paramagnetic start
density the routine does not converge. Thus it is required that the input
density breaks spin symmetry.

The most computationally demanding part of the routine is solving the
eigenvalue problem, and thus the limiting factor for how many atoms can
be included in the unit cell. The routine HEEVR from Intel Math Kernel
Library LAPACK95 [40] was used for obtaining the eigenvalues and eigen-
vectors of H. For 1D or 2D systems the number of independent Hamilton
matrices is 2Nk. Eigenvalues of these matrices can be found in parallel, and
thus a parallelization scheme was made using the openMP API [41]. This
approach decreased the calculation time by a factor equal to the number of
threads available for solving the problem.

The output electron density is determined from the eigenvalues and
eigenvectors. First, the Fermi energy EF is found. This is done by requiring
the total electron number to be N(1 + d), where d is the doping per unit
cell which introduces Nd charges. In this work we limit the discussion to
n-type doping by e.g. nitrogen. The Fermi energy is then found by solving
for EF

N(1 + d) = N−1
k

∑

j,σ

fFD(εj,σ, EF , T ),

where T is the temperature. The equation is solved using a binary search
algorithm. The electron density is then found using equation (2.19).

The convergence test of the algorithm ensures that the output density
is equal to the input density (2.20). For numerical stability we require

max(|nin − nout|) < 10−6

for both spins. For most systems solved using the routine the number of
iterations required are 10-20.

If the electron density did not converge, the electron densities nin and
nout are mixed for supplying a new guess for determining the new H. For
finding the ground state, no mixing was required for convergence. When in-
cluding temperature, doping or starting from a ferromagnetic density simple
mixing was applied using

n
(i+1)
in = α n

(i)
out + (1− α)n

(i)
in ,
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2.2. Implementation

where the superscript i is the iteration number and α is a constant deter-
mining how much of nout is included in the new input density. For the cases
where simple mixing was used α was chosen as 0.5. Thus mixing damp-
ens the charge redistribution between iterations [42]. For antiferromagnetic
states in nanostructured graphene, electrons localize on one of the sublat-
tices depending on their spin, e.g. spin up electrons on sublattice A and
spin down electrons on sublattice B. As the electron-electron repulsion of
the mean field Hamiltonian (2.18) only interact with onsite electrons of op-
posite spin only the minority spin electrons are repelled from the sublattice,
resulting in the antiferromagnetic states.

2.2.1 Density of states

The density of states of a 2D system with discretized k is

D(E) =
1

A

∑

i,k,σ

δ(εi,k,σ − E),

where A is the area, εi,k,σ is the eigenvalue with band index i, k point k
and spin σ. In order to include a finite broadening ~Γ the function can be
convoluted with e.g. a Gaussian lineshape

g(E,E0) =
2

~Γ

√
ln 2

π
exp

(
ln 2

[
−2

(E − E0)

~Γ

]2
)
,

here shown in the full width half maximum (FWHM) form. For systems
with a sufficiently high sampling of k points the density of states can then
be found. However, as the calculation time scales linearly with the number
of k points it is of interest to approximate D(E). In this work we use the
improved triangle method for 2D systems presented by Pedersen et al. [43].
The method can be used to evaluate integrals of the form

S(E) =

∫
F (k)δ(εi,σ(k)− E)d2k,

and is thus a useful method for evaluating properties involving the density
of states.

The projected density of states Pn(E) is the density of states projected
on an orbital ϕn. It is found using the equation

Pn(E) =
1

A

∑

i,k,σ

δ(εi,k,σ − E)〈ψi,k,σ|ϕn〉〈ϕn|ψi,k,σ〉,
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2. Methods

which for ϕn being a member of the orthonormalized set of orbitals spanning
ψi,k reduces the bra-ket’s to |cn,i,k,σ|2.

We address the optical response of the structures by means of linear
perturbation theory. The optical response is the interaction between the
optical electric field E oscillating at frequency ω and the current density J ,
which for local, isotropic media is given by

J (ω) = σ(ω)E(ω),

where σ is the conductivity of the material. The conductivity can be sepa-
rated in the intraband and the interband conductivity σ = σintra+σinter. In
this work we will deal with interband transitions. In linear response theory
the interband conductivity is

Re{σinter(ω)} =
e2

2πm2
0ω

∑

n,m

fnm
∣∣〈ψm

∣∣p̂
∣∣ψn
〉∣∣2δ(Emn − ~ω), (2.23)

where m0 is the electron mass, fnm = fFD(En) − fFD(Em). Assuming the
electron wavefunctions ψ are spanned by a set of orthogonal basis functions
ϕi the momentum matrix element is

〈
ψm
∣∣p̂
∣∣ψn
〉

=
∑

i,j

c∗m,jcn,i
〈
ϕj
∣∣p̂
∣∣ϕi
〉
.

It can be shown that

〈
ϕj
∣∣p̂
∣∣ϕi
〉

=
im0

~
〈
ϕj
∣∣[Ĥ0, r

]∣∣ϕi
〉
.

Thus, the matrix elements of the momentum operator are

〈
ψm
∣∣p̂
∣∣ψn
〉

=
im0

~
∑

i,j

c∗m,jcn,i(ri − rj)
〈
ϕj
∣∣Ĥ0

∣∣ϕi
〉

in an orthogonal basis with negligible intra-atomic contributions to the
momentum matrix elements as shown by Pedersen et al. [44]. The matrix
elements of the unperturbed Hamilton operator can be evaluated using
(2.11).

For systems at T = 0K (or systems with a significant band gap) the
values of fnm becomes zero for both n,m ∈ c or n,m ∈ v where c is the
index for conduction states and v is the index for valence states. We thus
only need to consider valence - conduction band transitions, and can restrict
n to c and m to v by multiplying by 2.
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2.2. Implementation

For spin degenerate systems it is sufficient to consider only 1 of the spins
and multiply by the degeneracy as the Hamiltonian commutes with the spin
operator. For other systems the full set of eigenvalues and eigenvectors must
be considered.

For crystal structures the basis set consists of the Bloch sums from equa-
tion (2.8). Thus the quantum number n corresponds to a band number and
a k point. We neglect Umklapp scattering and thus only direct transitions
where k is unchanged are considered. The matrix element is then

〈
ψm0,k

∣∣p̂
∣∣ψn,k

〉
=
im

~
∑

i,j

c∗m,j,kcn,i,k(ri − rj)
〈
ϕj,k

∣∣Ĥ0

∣∣ϕi,k
〉
.

By choosing the phase of the Bloch sums as in equation (2.11) the equation
becomes

〈
ψm,k

∣∣p̂
∣∣ψn,k

〉
=
im0

~
∑

i,j

c∗m,j,kcn,i,k∆Ri,je
ik·∆Ri,jHi,j

=
im0

~
∑

i,j

c∗m,j,kcn,i,k∇kHi,j(k). (2.24)

The optical conductivity can now be evaluated using the matrix elements
(2.24) in (2.23). The equation can be solved using the improved triangle
method by Pedersen et al. [43].
[45]
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Chapter 3

Results and discussion

The results of modeling graphene systems of 0, 1 and 2 periodic dimen-
sions in the Hubbard model are presented. We start by examining the spin
polarization and band gap dependence of the shape and dimensions of the
system. 1 dimensional structures are presented and compared to other mod-
els. 0 dimensional structures are examined for explaining why the systems
are spin polarized. The results for 2 dimensional systems are presented.
Ferromagnetic states are examined and the stability of spin polarized states
are examined with respect to temperature and doping. Finally we consider
optical response and how the Hubbard model changes the properties.

The calculations using the Hubbard model are conducted using the mean
field Hamiltonian (2.18). Tight binding calculations are performed using
third nearest neighbours (3NN) and orthogonal basis sets. The systems are
iterated using the iteration routine presented in section 2.2.

The parameters of the Hubbard model are chosen as U = 2.0 eV and
t1 = −2.7 eV for nearest neighbours, t2 = −0.2 eV for next nearest neigh-
bours and t3 = −0.18 eV for third nearest neighbours [46]. Unless otherwise
specified the systems are at half filling (1 electron per atom) and modeled
at an electron temperature of 0K.

3.1 Ribbons

Graphene nanoribbons are a class of nanostructured graphene with an in-
finitely periodic dimension and two edges. The two simplest types, the
zigzag nanoribbon (ZGNR) and the armchair nanoribbon (AGNR) will be
examined here. The unit cell of either type is characterized by a single pa-
rameter, the number of carbon dimers in the unit cell N . We denote zigzag
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3. Results and discussion

nanoribbons N -ZGNR and armchair nanoribbons N -AGNR. The width of
the nanoribbon is w = Na/2 for armchair nanoribbons and w = Na

√
3/2

for zigzag nanoribbons, where a = 2.461Å is the graphene lattice constant.
In this work the main goal is to examine the band gap of nanostructured

graphene, and thus the applied model must predict the bands accurately
close to the band gap. Ab initio calculations of the band structure by Son
et al. [9] showed that a nearest neighbour tight binding model is insufficient
for determining the band gap of armchair and zigzag nanoribbons. The
tight binding model only found a band gap for 2/3 of the armchair ribbons,
while in the ab initio calculations all ribbons displayed a band gap. To
improve the tight binding model we include interactions up to third nearest
neighbours and include the Hubbard interaction. The parameter set chosen
was optimized by Hancock et al. [46] for fitting the band structures of
ZGNRs and AGNRs.
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Figure 3.1: Bandstructure of a zigzag nanoribbon with N = 12. (a) is
determined using the 1NN tight binding model, (b) is determined using the
1NN Hubbard model, (c) is determined using the 3NN Hubbard model and
(d) is determined from ab initio calculations by Son et al. [9].
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A comparison of band structures for a 12-ZGNR is presented in figure
3.1. Starting from a 1NN tight binding model, it is found that inclusion of
the Hubbard term introduces a band gap of 0.254 eV. Introduction of third
nearest neighbour interactions reduces the direct band gap to 0.228 eV,
breaks the electron-hole symmetry and improves the agreement with ab
initio calculations.

Band structures of AGNRs determined using the 3NN Hubbard model
are presented in figure 3.2 and compared to DFT calculations by Son et
al. [9]. In the low energy range the band structures are found to be in
agreement and the band gap is nonzero for all types of AGNR. In the AGNR
structures no spin polarization is found, and thus the Hubbard contribution
to the band gap is zero.

Using the 3NN Hubbard model, the band gap is calculated as a function
of width of the zigzag/armchair nanoribbon and presented in figure 3.3. It is
found that the band gap decreases for increasing width for all nanoribbons.
The armchair ribbons split in 3 groups depending on their size parameter
with the band gap following E3p > E3p+1 > E3p+2, where p is an integer.
Comparing to DFT LSDA calculations by Son et al. [9] the band gaps are
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Figure 3.2: (a), (b) and (c): Armchair bandstructures for N = 12, 13 and
14, respectively, determined using the 3NN Hubbard model. (d): Armchair
bandstructures for N = 12, 13 and 14 from ab initio calculations by Son
et al. [9].
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found to be lower for the 3p and 3p+ 2 groups. This is caused by inclusion
of structure relaxation in the DFT calculations. According to Son et al. [9]
the bond length between edge atoms decreases by ∼ 3.5%, and as found by
Hancock et al. [46] modifying the t1 edge parameter to 1.06t1 will improve
the agreement between the models. Considering 2D structure relaxation
the C-C bond lengths are found in the range [0.96; 1.02]a0, where a0 is the
C-C bond length for pristine graphene [47, 48]. This increases the band gap
by up to 15% [47].

In the ground state of armchair nanoribbons the total and local magnetic
moments are zero. For zigzag nanoribbons a local magnetic moment is
found at the edges which decays further into the bulk as shown in figure
3.4. The orientation of the magnetic moments at the opposing edges is
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Figure 3.3: Band gap as a function of width of nanoribbon. (a) and (c) are
determined using the 3NN Hubbard model while (b) and (d) are determined
from ab initio calculations by Son et al. [9]. (a) and (b) are for armchair
nanoribbons while (c) and (d) are for zigzag nanoribbons. In (c) and (d)
the band gap is shown as the solid line ( ), while the dashed line ( ) is
the gap at k = π

a
.
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antiparrallel with a total magnetic moment of zero. The orientation of the
magnetic moments alternate with the sublattice, and thus the ground state
is antiferromagnetic.

In figure 3.4 the spin density obtained using the Hubbard model and il-
lustrated using Slater-type orbitals is compared to the spin density obtained
by Son et al. [9]. The results are in agreement with the largest differences
appearing at the edge caused by structure relaxation and terminating hy-
drogen atoms included in the ab initio model. By relaxing the structure the
edge atom bond lengths decrease by ∼ 2%, which can be modeled by using
tedge = 1.03t1 for the t1 parameter for edge atoms [46, 48]. It was shown by
Fürst et al. [23] that dangling σ bonds lift the spin degeneracy and change
the band structure near the Fermi level. Thus in the Hubbard model it is
assumed dangling σ bonds are passivated by hydrogen.

The local spin polarization defined by equation (2.22) as a function of
ribbon width is plotted in figure 3.5. Summing the spin density of half of
the ribbon the total polarization converges towards 1

3
unpaired electrons.

The spin polarization of the edge atom stabilizes for smaller N at ≈ 0.25
unpaired electrons.

The contributions to the electron density of the bands are shown in
figure 3.6 for a 12-ZGNR. It is found that the contributions to the electron
density of bands 1-11 are approximately equal for all atoms. Band 12 is

(a)

(b)

(c)

Figure 3.4: Spin density plot of a 12-ZGNR. (a) is determined using the
3NN Hubbard model and shows the local spin density as the radius of the
circles. Red is spin up and blue is spin down. In figure (b) the weights shown
in (a) are applied to Slater-type orbitals for illustrating the spin density and
comparing to ab initio results of Son et al. [9] in (c).
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3. Results and discussion

the highest occupied band and is found to contribute the most to the spin
density at the edges. The states of band 12 are found to be a mix of bulk
states and edge states which decrease exponentially with distance from the
edge atom.

The projected density of states on the left edge atom shown in figure
3.7 shows that the states with energy within 0.5 eV of the Fermi level are
the edge states. Spin up states are located below the Fermi level in band
12 while spin down states are located above the Fermi level in band 13.
Examining the edge projection of states in band 12 it is found that for
k < 2π

3a
the states are bulk states, while for k > 2π

3a
the localization of the

states on the edge atom increases until k = π
a
, where the states are located

only on the edge atom. By symmetry and reversal of spins, all arguments
are valid for the other edge.

We now examine the metastable ferromagnetic state presented in figure
3.8a. The state is obtained by preparing the system in a ferromagnetic
state and iterating until a self-consistent electron density is obtained. The
spin symmetry of the band structure is broken and the resulting system is
metallic with spin up and spin down bands crossing the fermi level as shown
in figure 3.8b. For increasing ribbon width, this crossover point approaches
k = 2π

3a
. Thus the total magnetic moment approaches 2/3µB as shown in

figure 3.8c per unit cell, corresponding to 1/3 unpaired electrons per edge.
The difference between the ferromagnetic and antiferromagnetic states

is a spin flip of either edge, and thus the magnetic interaction between the
edges can be examined by determining the energy difference between the
states. This is shown in figure 3.8d calculated using the 3NN Hubbard
model. The calculated energy difference is smaller than the energy differ-
ence calculated by Pisani et al. [49] shown in figure 3.8e using DFT LSDA
and GGA-PBE, but the results are of the same magnitude and less than
10meV. However, using the B3LYP functional, Pisani et al. [49] report
∆E ≈ 25meV for N ∼ 8 allowing room temperature magnetic ordering.
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Figure 3.5: Spin polarization of half of ribbon ( ) and edge atom ( ).
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Figure 3.6: (a) Electron density of spin up ( ) and spin down ( ) elec-
trons for a 12-ZGNR. The atom index is the atoms of the unit cell numbered
from one edge to the other. (b) Contribution to the electron density of bands
1-11 (↑ , ↓ ) and band 12 (↑ , ↓ ).
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Figure 3.7: All figures are for a 12-ZGNR. The edge atom in the plots is the
left edge atom in the unit cell (figure 3.4). Top left: Band structure. Top
right: Density of states ( ), projected density of states on the edge atom
for spin up ( ) and spin down ( ). Bottom left: Projection of eigen-
states in the highest occupied band (band 12) on the edge atom. Determined
using 〈ψ12,k,σ|ϕedge〉, where the first index is the band number, second index
the k value, third index the spin and ϕedge is the π orbital of the edge atom.

is spin up and spin down.
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Figure 3.8: Metastable ferromagnetic state of zigzag nanoribbons. (a) Spin
density plot of a 12-ZGNR in the ferromagnetic state. (b) Band structure
of the 12-ZGNR with red being spin up bands and blue being spin down
bands. (c) Total magnetic moment per unit cell as a function of nanoribbon
width. (d) Difference in total energy per unit cell between ferromagnetic
and antiferromagnetic states as a function of ribbon width determined using
the 3NN Hubbard model in equation (2.21). (e) Energy difference between
ferromagnetic and antiferromagnetic states as a function of ribbon width
determined using DFT LSDA (circle) and GGA-PBE (plus) by Pisani et
al. [49].
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3. Results and discussion

3.2 Nanoflakes
Different geometries of 0-dimensional graphene flakes are examined in the
Hubbard model to determine spin properties of the systems. As larger 1-
or 2- dimensional systems in some cases can be considered to consist of
arrays of these flakes some properties might be predicted by examining 0-
dimensional structures. Because of their simplicity the 0D structures are
examined to explain the origin of spin polarization.

We first examine triangular graphene flakes of the type presented in
figure 3.9a. The ground state is found to be ferromagnetic (FM) in the
Hubbard model. The total spin of the ground state increases linearly with
the size as shown in figure 3.9d, and is proportional to the sublattice imbal-
ance NA−NB as predicted by Lieb’s theorem. This spin polarization causes
the introduction of an energy gap between the highest occupied molecular
orbital and lowest unoccupied molecular orbital states (from now on de-
noted the band gap) compared to the approximately zero band gap found
in tight binding calculations as shown in figure 3.9c. The band gap is found
to decrease with the size of the flake.

Combining two triangular flakes a bowtie geometry can be made as
presented in figure 3.9b. The state presented in figure 3.9b is the ground
state, and has total spin Sz = 0. This is in accordance with Lieb’s theorem,
as the sublattices are balanced. However, two domains with opposing spin
polarization are found. This is predicted by graph theory for hexagonal
graphs, which predicts the number of zero energy states as the nullity η
of the graph [50]. The nullity of the structure is η = 2α − N , where α is
the maximum number of non-adjacent atoms and N is the total number of
atoms. The nullity of the structure in figure 3.9b is 2. According to the
Stoner criterion, the system becomes magnetic when the exchange energy
gain is larger than the kinetic energy penalty for spin polarizing the system.
The kinetic energy penalty is proportional to the energy of the state and
the exchange energy gain is proportional to U , and thus the zero energy
states become spin polarized. [51]

The size of the bowtie flake is given by two parameters, size S corre-
sponding to the triangle size and width W corresponding to the number of
atoms joining the triangle-like domains. The ground state is found to be
antiferromagnetic (AFM). A plot of the band gap and spin for increasing
size is presented in figure 3.9e and for increasing width in figure 3.9f. It is
found that the band gap decreases for increasing size which agrees with the
result for triangular domains. It is found that the band gap of the antifer-
romagnetic system is independent of the width of the bowtie for S−W > 1
or W > 2.
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Figure 3.9: Ground state spin density of triangle (a) and bowtie (b) graphene
flakes. The spin is shown as red (spin up) and blue (spin down) circles where
the radius is the magnitude of the spin density. The band gap is shown in
(c) and total spin in (d) for increasing size of triangle flakes. The band gap
for increasing size of bowtie flakes is shown in (e) and increasing width of
bowtie flakes in (f). The band gap is shown for antiferromagnetic states
and for tight binding calculations.
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3. Results and discussion

We now examine square graphene flakes of the type presented in figure
3.10a. The graphene flakes are characterized by the size S, which is the
number of hexagons along the zigzag direction, and the width W , which is
the number of dimer atom pairs along the armchair direction. The ground
state in figure 3.10a is spin polarized at the zigzag edge, while the armchair
edge is only spin polarized at the boundary to the zigzag edge. The fer-
romagnetic state presented in figure 3.10b is a local minimum obtained by
starting from a ferromagnetic density and iterating. The electron density is
similar to the antiferromagnetic state with local deviations under 1% to the
densities of the antiferromagnetic state 3.10a with the spin down and spin
up densities have been flipped above the middle. The ferromagnetic state
can be excited by a magnetic field, and has total spin equal to the sum of
the magnitude of the spins of the spin up and down domains in figure 3.10a.

For increasing size the band gap is presented in figure 3.10c and total
spin in figure 3.10d. For S < 4 no spin polarization is found, and the band
gap consists only of the tight binding contribution. For S ≥ 4 the system
is spin polarized. The band gap of the antiferromagnetic state is approx-
imately constant, while the band gap of the ferromagnetic state decreases
with the size and increases with the total spin of the state. We expect that
for S →∞ the band gap for ferromagnetic states closes in agreement with
the results for ZGNRs. The total spin is seen to change when S increases
by ≈ 5. For the 6-ZGNR case, it is found that the number of spin polarized
electrons per edge is ≈ 0.25 from figure 3.5. This is consistent with the spin
increasing by 1 for S increasing by 4, which we thus expect for larger sizes
when the effects of the edge diminishes.

The band gap of the ground state is presented in figure 3.10e for in-
creasing width. For small sizes < 7 it is seen that the band gap of the
examined structures is in one of two groups, even width and odd width.
This behavior is caused by the choice of unit cells. For even width the total
system is antiferromagnetic, while for odd width the sublattices are unbal-
anced resulting in a total spin of 0.5. The band gap is dominated by this
behavior for small S, while for large S the band gap is found to decrease
for increasing width consistent with results for ZGNRs. We note that the
tight binding band gap of odd width square flakes is 0, as a spin degenerate
zero energy state is found at the Fermi energy.

34



3.2. Nanoflakes

S
W

(a) S = 5,W = 5 (b)

2 7 12 17
0.0

0.5

1.0

S

B
an

d
G

ap
[e
V

] AFM
FM
TB

(c) W = 6

2 7 12 17
0

1

2

3

4

S

T
ot

al
Sp

in

AFM
FM

(d) W = 6

2 7 12 17
0.0

0.2

0.4

0.6

0.8

1.0

S

B
an

d
G

ap
[e
V

] W

6 8
7 9

(e)

Figure 3.10: (a) Ground state spin density of square graphene flakes. The
spin is shown as red (spin up) and blue (spin down) circles where the ra-
dius is the magnitude of the spin density. (b) is a ferromagnetic state. The
band gap is shown in (c) and total spin in (d) for increasing size of square
flakes for antiferromagnetic states, ferromagnetic states and for tight bind-
ing calculations. (e) Comparison of band gap for the ground state of square
graphene flakes with varying widths.
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3. Results and discussion

We now consider rhombic and hexagonal flakes. The size S of rhombic
flakes as presented in figure 3.11a and hexagonal flakes as presented in figure
3.11c is controlled by a single parameter, the number of hexagons along an
edge. It is found that below a critical size the system is unpolarized. The
critical size is 4 for rhombs, 9 for antiferromagnetic hexagons and 10 for
ferromagnetic hexagons as can be seen in figures 3.11d and 3.11f. Below
these values the band gaps consist only of the tight binding contribution,
while for higher values the antiferromagnetic band gap is found to be higher
than the ferromagnetic band gap. Furthermore it can be seen that the
maximum local spin polarization stabilizes at a constant value for both the
antiferromagnetic and ferromagnetic systems.

For all examined zigzag structures with balanced numbers of A and B
atoms over a certain size, the antiferromagnetic state is the ground state.
The edges are spin polarized with alternating majority spin at the A and B
edges. For unbalanced lattices there is no minimum size requirements for
magnetism.

We define the angle between the edges as the angle between the normal
vectors of the edges and denote the place the edges meet as the edge corner.
The critical size for onset of spin polarization is found to depend on the angle
between the edges. For a zigzag edge corner with an angle of 60◦ the new
edge is a zigzag edge, but with a change of sublattice. This corresponds to a
change of spin polarization as shown for bowtie, rhomb and hexagon flakes.
In the hexagonal flake, where all edge corners are 60◦, the largest critical
size of S = 9 is found. For zigzag edge corners of 120◦ the edge belongs to
the same sublattice. This was the case for corners in the triangle, bowtie
and rhomb flakes. In the triangle structure with only 120◦ corners no critical
size was found, all structures were spin polarized. Finally for edge corners
of 90◦ the corner connects a zigzag edge with an armchair edge. This is the
case for square graphene flakes, where the critical size is found to be S = 4.

The most important parameter determining the critical size is the choice
of Hubbard U . Bhowmick and Shenoy [52] found that for U = 2t the number
of repeat units of zigzag edge atoms is 3-4 for onset of spin polarization,
while for U = 1.2t the number of repeat units is 5-6. In their work the
main focus was zigzag-armchair corners of 30◦. In this work our choice of
Hubbard U ≈ 0.75t1 and inclusion of third nearest neighbour interactions
result in critical sizes of 4-9 depending on the edge corner angle.
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Figure 3.11: Ground state spin density of rhombic (a) and hexagonal (c)
graphene flakes. The spin is shown as red (spin up) and blue (spin down)
circles where the radius is the magnitude of the spin density. (b) is a fer-
romagnetic rhombic state. The band gap is shown to the left and maximum
local spin polarization determined using equation (2.22) to the right for in-
creasing size of rhombic flakes (d), (e) and hexagonal flakes (f), (g). The
band gap is shown for antiferromagnetic states, ferromagnetic states and
for tight binding calculations.
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3.3 Triangular Antidot Lattices

In this work, we study triangular graphene antidot lattices. As zigzag edges
are a requisite for spin polarization, the types of holes studied will be hexag-
onal holes with zigzag edges, in the following denoted graphene hexagonal
antidot lattices (GHALs). The structures studied can be described with a
set of parameters L, S and W , where L is the unit cell side length, S is
the side length of the antidot hole and W the smallest width separating
holes from different unit cells. For the chosen structures 2 of the parame-
ters are sufficient to describe the structures uniquely, so we choose the set
{W,S} for emphasizing the importance of the actual graphene structure.
For converting the parameters to physical dimensions parameters along a
zigzag edge are multiplied by a = 2.461Å, the graphene lattice constant,
and parameters along an armchair edge are multiplied by a

√
3

2
.

We start by examining GHALs with unit cells of the type shown in figure
3.12a. This structure can be described as ZGNRs of width W = 2(L − S)
and finite length S joined in a lattice. Thus for large holes spin polarized
edges are expected and a band gap approximately equal to those of ZGNRs
shown in figure 3.3c. Furthermore, for vanishing holes the structure reduces
to intrinsic graphene with no spin polarization and band gap. We thus
expect a transition region to exist and seek to identify the size evolution
of the properties. Previously, Yu et al. [27] showed the existence of an
antiferromagnetic ground state for GHALs with sufficiently large unit cells
using DFT GGA calculations.

The ground state spin density of the {W = 6, S = 8} structure is shown
in figure 3.12b. It is seen that the edges of the hole are spin polarized with
opposite spin direction for either sublattice resulting in an antiferromagnetic
ground state. This is consistent with the ground state results for ZGNRs
and hexagonal flakes. The spin density is seen to increase with the distance
to the junction. We thus introduce the max spin polarization as a variable
for quantifying the spin polarization.

The band gap and maximum spin polarization is shown in figure 3.12c
for a variety of {W,S} pairs. It is found that for S < 6 the structures
are paramagnetic, no spin polarization is found. For S ≥ 6 the structure
becomes spin polarized. The maximum spin polarization increases with S
for 6 ≥ S < 10 and then stabilizes at a value approximately equal to the
ZGNR edge atom polarization.

For S < 6 the band gap determined using the Hubbard model is equal to
the band gap determined using tight binding. For S ≥ 6 the tight binding
band gap goes to zero while the Hubbard band gap increases with the spin
polarization and stabilizes at a value within 0.05 eV of the corresponding
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Figure 3.12: Triangular GHAL with even width. (a) Shaded region: Unit
cell of {W = 6, S = 8} and L = 11 GHAL with carbon atoms colored
red for sublattice A and blue for sublattice B. a1 and a2 are the unit cell
lattice vectors and the parameters L, S and W are shown. (b) Ground state
spin density of the structure shown in (a). (c) Top: Band gaps of GHALs
calculated using the Hubbard ( ) and tight binding ( ) model. The color
shows the width W of the corresponding ZGNR and the band gaps of the
ZGNRs are shown in the shaded region. Bottom: Max spin polarization of
GHALs for different edge lengths and widths.
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3. Results and discussion

ZGNR value. Thus for large holes the electronic properties are dominated
by the ZGNR parts of the structure with the junctions being less signifi-
cant. The band gap is determined primarily by the width W with a size
dependence shown in figure 3.3c.

The spin polarization and band gaps obtained with the Hubbard model
are in agreement with DFT LSDA calculations by Trolle et al. [53]. Fur-
thermore the DFT calculations agree with a critical size S = 6 as the onset
for spin polarization.

Examining the edge spin polarization shown in figure 3.13 it is found
that the spin polarization increases for the first 4 atoms from the junction
and then stabilizes at ≈ 0.24. Thus for S ≥ 8 the spin density of the middle
edge atoms resembles that of ZGNR edge atoms shown in figure 3.5. The
maximum spin polarization shown in figure 3.12c thus quantifies how much
the middle of the ZGNR slabs resemble ZGNRs. For larger edge lengths
it is seen that the spin polarization fluctuates with 2 maxima for S = 13
and 3 for S = 17. This is caused by edge states of higher order becoming
available.

The band structure and density of states for a {4, 8} GHAL is shown in
figure 3.14. The bands close to the Fermi energy are found to be approxi-
mately dispersionless and in groups of 3. Because of the bands being spin
degenerate, a group of bands then corresponds to 1 electron per edge in the
unit cell. By examining the projected density of states on the edge atoms
it is found that the states closest to the Fermi level are the main contrib-
utors to the edge spin polarization, as the degree of localization decreases
for lower energy states and the contributions are canceled by approximately
equal localization of spin down states.

To the best of our knowledge this is the first systematic study of the band
gap behaviour in GHALs with holes large enough for spin polarization to
occur. The simple scaling law Egap ≈ αN

1/2
rem/Ntot, whereNrem is the number

of atoms removed in the hole, Ntot the total number of atoms in the unit
cell without the hole and α a fitting parameter, was proposed by Pedersen
et al. [20] for circular holes. The model was extended to both armchair and
zigzag triangular and rhombic holes by Liu et al. [25] by setting α from
4 to 25 eV. Both zigzag triangular and rhombic holes are spin polarized.
For hexagonal holes with even width Ouyang et al. [24] showed that by
introduction of an exponential function the scaling law could be applied to
spin unpolarized GHALs.
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Figure 3.13: Spin polarization of atoms along the S line in figure 3.12a.
All atoms except the first and last are edge atoms. The spin polarization is
shown for W = 6 and S = 6, 8, 13 and 17. The spin polarization is found to
increase for the first four edge atoms to a value of ≈ 0.24 and then fluctuate
around the value.
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Figure 3.14: Band structure and density of states of {4, 8} GHAL. The
low energy bands are found in groups of 3 very flat bands. In the density
of states plot the projected density of states on sublattice A edge atoms is
shown as red lines for spin up and blue lines for spin down. It is found that
the states closest to the Fermi level are most localized on the edge atoms with
the majority of the spin up states below the Fermi level and the majority of
the spin down states above the Fermi level.
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By considering the area of the hexagonal unit cells the ratio N1/2
rem/Ntot

for GHALs can be shown to be

N
1/2
rem

Ntot

=
(2Ahole/AgrapheneUC)1/2

2AUC/AgrapheneUC
=

S√
6(S +W/2)2 ,

where A is the area of the subscript. Thus for S → ∞ and constant W
N

1/2
rem/Ntot → 0. However for large S the band gap depends only on W , and

thus the simple scaling law cannot be applied to spin polarized GHALs.
This is shown in figure 3.15, where it is seen that the scaling law fits for the
smallest values of S (1 and 2). For 2 < S < 6 the modifications by Ouyang
et al. [24] are needed, but for S ≥ 6 no scaling with N1/2

rem/Ntot is found.
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Figure 3.15: Comparison of band gap with the scaling law Egap ≈
αN

1/2
rem/Ntot proposed by Pedersen et al. [20]. The value α = 19 eV was

chosen as an adequate fit for the values S ≤ 2. In the plot, values with
S < 6 are represented with a star ( ) and values with S ≥ 6 are repre-
sented with a dot (). For S ≥ 6 the band gap stabilizes and is constant with
N

1/2
rem/Ntot. The highest value of S shown is S = 40.

3.3.1 Other unit cells

The band gap of GHALs with small holes has been shown to depend on the
specific unit cells resulting in either semiconducting or metallic behaviour
[21, 24, 54]. We thus extend the discussion to unit cells predicted as metallic.
First unit cells of the type shown in figure 3.16a are examined, where the
width W is uneven. For large holes a spin polarized antiferromagnetic
ground state is found as presented in figure 3.16b.

The bandgap and maximum spin polarization is presented in figure
3.16c. The emergence of spin polarization is found to be S = 5, an edge
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Figure 3.16: Triangular GHAL with uneven width. (a) The shaded region is
the unit cell with parameters {5, 8} and L = 10.5. Compared to unit cells of
even W (figure 3.12a), the unit cell is slightly rotated. (b) Ground state spin
density of the GHAL shown in (a). (c) Band gap and max spin polarization
of uneven width triangular GHAL with properties of corresponding ZGNRs
shown in the shaded region.
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length 1 shorther than for the even width case. The spin polarization then
increases to approximately the ZGNR edge value. For S < 5 the band
gap is zero, but for S ≥ 5 the spin polarization opens a band gap which is
∼ 0.05 eV smaller than the ZGNR band gap.

It was shown by Ouyang et al. [24] that for GHALs with uneven width
the band gap was zero for small holes. This is confirmed here, but for larger
holes an appreciable band gap opens. Thus, while the tight binding band
gap is only significant for small holes and even widths, the spin polarization
band gap is significant for larger holes and independent of the specific unit
cell configuration.

We now examine GHALs where the graphene layer has been rotated 30◦.
Thus the unit cell vectors are at an angle of 30◦ or 90◦ to the carbon bonds,
unlike the previous cases where the unit cell vector was parallel or at an
angle of 60◦ to the carbon bonds. The unit cell is shown in figure 3.17a and
is seen to consist of triangular domains of side length S with junctions of
width W to three other triangles. We define the parameter L as the length
of the edge of the unit cell, and thus W = L − 2S. We use the notation
{W,S}R for defining unit cells of rotated GHALs.

Using 1NN tight binding calculations, Petersen et al. [21] showed that
for L = 3n with n being an integer a significant band gap was found, while
for other cases the structure was metallic. This is also the case for 3NN
tight binding as shown in figure 3.17c. The band gap of the semiconducting
structures is seen to decrease with increasing edge length being ≈ 0 eV for
S ≥ 6.

Including the Hubbard interaction the system becomes spin polarized.
The spin polarization is seen to begin at 3 ≤ S < 6 for W < 8. An example
of the antiferromagnetic ground state is shown in figure 3.17a, where the
triangular domains are seen to be spin polarized as either spin up or down.
For small widths the edges of the triangles can interact with each other,
lowering the energy barrier for spin polarization and resulting in holes of
smaller edge lengths being spin polarized. For S ≥ 6 all examined structures
are spin polarized with a maximum spin polarization ≈ 0.25 for increasing
S.

The spin polarization introduces a band gap for all structures regardless
of L value. For the examined parameters the band gap is found to be from
0.1 eV to 0.3 eV and decrease with the edge length. This is also the case for
bowtie flakes shown in figure 3.9, and the band gap is found to be of the
same magnitude as for bowties. The band gap is found to decrease with
increasing W , but no clear order is present.

It is concluded that the spin polarization band gap is a significant effect
for GHALs with zigzag edges. While the tight binding band gap decreases
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Figure 3.17: (a) Unit cell of rotated triangular GHAL with parameters
{2, 6}R and L = 14. (b) Ground state spin density of the GHAL shown
in (a). (c) Band gaps of rotated triangular GHALs determined using the
tight binding model (top) and Hubbard model (middle). Petersen et al. [21]
determined that for L = 3n where n is an integer the structure was semi-
conducting in a 1NN TB model, and thus we label those structures with a
star ( ) and metallic structures with a dot ( ). The bottom plot is the max
spin polarization.
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3. Results and discussion

with hole size and becomes insignificant the spin polarization band gap is
significant for large holes and depends on the dimensions and arrangement
of the remaining atoms.

3.3.2 Ferromagnetic States

By preparing the GHAL systems in a ferromagnetic electron configuration
and iterating until convergence, a metastable ferromagnetic electron config-
uration is found. We consider GHALs with even width of the type shown
in figure 3.12a. A ferromagnetic spin density is shown in figure 3.18a. It is
found that the spin density is similar to the spin density of the antiferro-
magnetic configuration with all spins being aligned.

Examining the spin resolved density of states shown in figure 3.18b it
is seen that 1 spin down and 3 spin up groups of bands are just below the
Fermi level. Each group consist of 3 bands, and thus there is a surplus of 6
spin up electrons per unit cell, 1 for each edge. The band gap is found as the
minimum energy required for excitation of an electron to a conduction band
where the spin is conserved. We note that the spin splitting gap between
the valence spin up and conduction spin down bands is significantly smaller
than the band gap.

The band gap and total spin is shown in figure 3.18c for GHALs. It
is seen that the onset of spin polarization varies from 6 ≤ S < 9. The
majority of the total spins have the value 3n where n is an integer, with the
total spin increasing with increased edge length. Thus the balance of spin
up and spin down bands shifts with groups of 3 bands at a time, resulting in
the number of unpaired electrons increasing with 1 per edge. Furthermore
it is seen that for W = 16 and S > 13 the total spin increases when S
increases with 3, corresponding to 1 electron added for 3 edge atoms. This
is in correspondence with the 1/3 unpaired electrons per edge found for
ZGNRs of large widths.

The band gap is found to decrease with increasing edge length and
increase when the total spin increases by 3. This is in agreement with
the results for square graphene flakes shown in figure 3.10. For the cases
where the total spin takes values 6= 3n the band gap decreases dramatically,
corresponding to a transition within a group of 3 bands. For the case of
S → ∞ it is expected that the band gap goes to zero as in the ZGNR
case, and for the largest holes explored here where S = 20 the band gap is
approximately 0.1 eV.

The magnetic interaction energy, the difference between the total energy
of the ferromagnetic and antiferromagnetic states, is presented in figure 3.19
for some of the structures examined. The energy is divided by 3S, so it is
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Figure 3.18: (a) Metastable ferromagnetic spin density of {4, 8} GHAL. (b)
Spin resolved density of states of {4, 8} GHAL. (c) Band gap (top) and total
spin (bottom) of ferromagnetic states in GHALs. The total spin is found
to mainly increase in steps of 3. When the total spin is different from 3n
with n an integer the corresponding band gap is significantly lower. The
systems {10, 6} and {12, 6} converged to an antiferromagnetic electronic
configuration.
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the magnetic interaction energy per 2 edge atoms corresponding to the
ZGNR unit cell and the energy can be directly compared to figure 3.8d
(assuming no contribution from the junctions). The magnetic interaction
energy is found to be positive for S ≥ 6 corresponding to the emergence of
antiferromagnetic states. After the onset of ferromagnetism, the magnitude
of the magnetic interaction is found to be in the interval from 2.5 to 7.5meV.
This is in agreement with the magnitudes found for ZGNRs.
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Figure 3.19: Difference in total energy per 2 edge atoms between ferro-
magnetic and antiferromagnetic states of GHALs (left) and ZGNRs (right,
shaded region) determined using the 3NN Hubbard model in equation (2.21).

3.3.3 Stability of spin polarization

It was shown in figure 3.14 that above the Fermi level a number of states lo-
calized on the same edge and sublattice but with opposite spin are present.
Thus modifying the distribution of electrons by doping or temperature
might modify the spin properties and quench the band gap. Here, we ex-
plore how the band gap and spin polarization of antiferromagnetic GHALs
with even width are modified by temperature and electron doping.

We assume the electrons are either injected by a charge reservoir or that
the dopant concentration is sufficiently small that the electronic properties
are not changed significantly. We thus model the added electrons as a shift
of the Fermi energy supplying additional electrons. P doping is not consid-
ered in this work. The calculations were conducted at room temperature.

In figure 3.20 it is shown how the band gap and spin polarization of
different GHALs are modified by a fractional doping up to 1%. The band
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gap is assumed to be across the same valence-conduction transition as the
undoped case as the doping concentrations are low. While the spin polar-
ization is still significant, the band gap and max spin polarization is found
to decrease linearly with doping concentration. As the spin polarization
approaches 0 the band gap decreases nonlinearly. This is an effect caused
by the finite temperature. The band gap decreases with the spin polar-
ization, reducing to the tight binding value when the structure becomes
paramagnetic.

Describing the rate of change in polarization as ∆pmax = −α∆n, where
α is a proportionality factor and ∆n is the doping concentration, it is found
that for a fixed hole size S, α increases with increased width W of the
structure. For a fixed width α is found to decrease with increased hole size.
This can be explained by noting that the doping applied is proportional to
the number of atoms in the unit cell and the number of unpaired electrons
is proportional to the number of edge atoms (1/3 per atom for W → ∞
and S →∞ as shown in figure 3.5). Thus it is found that
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Figure 3.20: Band gap and max spin polarization for even width GHALs as
a function of electron doping. The doping corresponds to adding electrons
as a fraction of the number of atoms in the unit cell.
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α ∝ Nedge

Natoms

=
6S

1.5W 2 + 6SW
,

where Nedge is the number of edge atoms and Natoms the number of
atoms per unit cell. For S → ∞ the ratio Nedge/Natoms reduces to W−1,
the ZGNR case.

In order to fully address the case of substitutional doping the effects
of including dopant atoms must be addressed further, e.g. using methods
as presented by Pedersen and Pedersen [55]. Furthermore, it was shown
by Jung and MacDonald [56] that the phase diagram of doped ZGNRs
switches between ferromagnetic, antiferromagnetic and paramagnetic states
for increased doping, which was not considered in this work.

Next we consider the temperature stability of the spin polarization in
GHALs. We model the antiferromagnetic systems by applying finite tem-
perature Fermi-Dirac statistics for calculating the electron density. The
results are shown in figure 3.21. It is found that for temperatures above
≈ 1000K the spin polarization goes to zero, and the band gap decreases to
the tight binding value. Thus at a temperature of ≈ 1000K the structure
becomes paramagnetic with no spin order. For antiferromagnetic materials
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Figure 3.21: Band gap and max spin polarization for even width GHALs as
a function of temperature.
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this temperature is known as the Néel temperature.
At room temperatures the band gap and spin polarization is close to

the 0K case. The local polarization decreases smoothly with the temper-
ature until it reaches the Néel temperature. Thus the antiferromagnetic /
paramagnetic transition is classified as a second order transition [31]. As
the temperature increases, electrons are excited to states above the band
gap. These conduction states are localized on the edges with spin opposite
to the valence edge states, thus lowering the spin polarization. This lowers
the band gap, allowing more electrons to be excited across the band gap.

The results indicate that for room temperatures and low doping the ef-
fects of spin polarization of zigzag GHALs are significant and modify the
band gap of the structures significantly. In the present discussion of tem-
perature effects the effect of spin correlation length is ignored. According
to calculations by Yazyev and Katsnelson [57], the spin correlation length
is on the order of ∼ 1 nm at room temperature, limiting the long range
magnetic ordering in graphene structures.

3.3.4 Optical response

For demonstrating the effect of inclusion of the Hubbard interaction we cal-
culate the optical conductivity of a set of GHALs including and excluding
the Hubbard interaction. The results are shown in figure 3.22. It is found
that for S < 6 the optical properties are approximately equal with and
without the Hubbard interaction. This is expected as before the onset of
polarization the band structures are identical. For S ≥ 6 the antiferromag-
netic ground states appears, and the band gap stabilizes at a fixed value.
This is seen in the optical spectrum as the absorption edge is shifted to
higher energies compared to the tight binding calculations.

In the calculations of the optical spectra a broadening of 20meV was
introduced by convolution with a Gaussian line shape function as suggested
by Pedersen et al. [43]. The inhomogeneous broadening is introduced as
fabrication of samples will introduce irregularities, and variations of shape,
size of holes and geometrical disorder will broaden the peaks in the optical
spectra. The broadening blurs the details of the spectra. An extensive
study of disorder in graphene was conducted by Yuan et al. [58], who found
that a considerable amount of geometrical disorder was required before the
features of the optical spectra were indistinguishable.
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Chapter 4

Conclusion

In the framework of the mean field Hubbard model with third nearest neigh-
bour interactions it was found that zigzag edges of nanostructured graphene
become antiferromagnetic with local magnetic moments up to ≈ µB/3 per
zigzag edge atom. Critical sizes for the number of zigzag edge atoms were
identified above which the zigzag edge became spin polarized. The critical
size was found to depend on the edge corner angle and was for 0D structures
found to be 9 graphene lattice constants for 120◦ corners and 4 graphene
lattice constants for 90◦ corners. For 60◦ angles no critical size was found.

For all structures examined the band gap was found to decrease with
increased size of the smallest dimension of the structure. For hexagonal
holes in a triangular lattice the band gap is found to depend on the width
of the corresponding ZGNR. For large holes the band gaps are found to
be within 0.05 eV of the band gap of the corresponding ZGNR. Thus the
band gaps of these structures cannot be approximated with the scaling law
proposed by Pedersen et al. [20]. The inclusion of electron-electron repulsion
blue shifted the optical response of the structures.

For a metastable ferromagnetic state for hexagonal holes in a trian-
gular lattice, the band gap was found to decrease for increased hole size
approaching zero for infinite size. The magnetic interaction energy was
found to decrease with the width of the structure and for small widths it
was ∼ 5meV.

The antiferromagnetic state of hexagonal holes in a triangular lattice
was found to depolarize for a temperature of ∼ 1000K and doping of ∼
1% impurities. At room temperatures and low doping the electric and
optical properties are changed significantly by inclusion of electron-electron
interactions in a mean field approach.
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Appendix A

Second Quantization

In quantum physics, observables are represented by Hermitian operators
and quantum states are represented by state vectors in a Hilbert space.
The set of all eigenvectors of an Hermitian operator forms a complete basis
set of the Hilbert space. The time-evolution of a state is governed by the
Schrödinger equation

i~∂t|Ψ(t)〉 = Ĥ|Ψ(t)〉,
where ∂t is the time-derivative and |Ψ(t)〉 is the ket for a state vector in
Dirac notation with a corresponding bra given as (|Ψ〉)† = 〈Ψ|.

For stationary states where Ĥ is independent of time the time dependent
part can be separated from the ket

|Ψ(t)〉 = |ψ〉e−iEt/~,

where E is the energy eigenvalue for the state |ψ〉. The energy is found
from the eigenvalue equation

Ĥ|ψ〉 = E|ψ〉, (A.1)

which is the time-independent Schrödinger equation. The eigenstates are
normalizable and are labeled with a set of quantum numbers ν. As the
Hamiltonian is a Hermitian operator the set of eigenstates for (A.1) con-
stitutes a complete set, which is a complete basis set of the Hilbert space.
This is formulated as the completeness of states

∑

ν

|ν〉〈ν| = 1. (A.2)

Any state of the system can be represented as a linear combination of the
eigenstates of the Hamiltonian. The eigenstates are orthogonal with each
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A. Second Quantization

other which for normalized eigenstates can be expressed as

〈ψνj |ψνk〉 = δj,k.

In order to obtain the wave function of a particle in state |ν〉, the inner
product of the position bra 〈r| is taken with the ket

〈r|ν〉 = ψν(r)

[36]

Many-particle systems

The wavefunction of a system consisting of N identical particles is

ψ(r1, r2, . . . , rN), (A.3)

which is interpreted by taking the absolute square, which is the probability
of finding each of the N particles inside the volume drj surrounding the
point rj for j ∈ N :

|ψ(r1, r2, . . . , rN)|2
N∏

j=1

drj.

Identical particles are indistinguishable. Thus by interchange of two
coordinates in the N -particle wavefunction the same physical state results.
Thus the state function can at most differ by a prefactor. For fermions
such as electrons, the prefactor has the value −1, so by interchanging two
electrons from the wavefunction (A.3) the result is

ψ(r1, . . . , ri, . . . , rj, . . . , rN) = −ψ(r1, . . . , rj, . . . , ri, . . . , rN) (A.4)

The N -particle wavefunction (A.3) can be expressed as a linear combi-
nation of a complete, orthonomal set of single-particle states {ψν(r)}. How-
ever, in order to satisfy the requirement of indistinguishability the basis for
the N -particle wavefunction is chosen to obey the requirement of indistin-
guishability. This is achieved by using the fermionic anti-symmetrization
operator Ŝ−, which is defined

Ŝ−

N∏

j=1

ψνj(rj) =

∣∣∣∣∣∣∣∣∣

ψν1(r1) ψν1(r2) · · · ψν1(rN)
ψν2(r1) ψν2(r2) · · · ψν2(rN)

...
... . . . ...

ψνN (r1) ψνN (r2) · · · ψνN (rN)

∣∣∣∣∣∣∣∣∣
. (A.5)
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Thus the fermionic anti-symmetrization operator operating on a product of
single-particle states forms a determinant. By interchange of two electrons
the determinant obeys equation (A.4). The normalized determinant is de-
noted the Slater determinant, and the basis for the N -particle wavefunction
is chosen as Slater determinants.

In second quantization, the Slater determinant of an N electron state is

|nν1 , nν2 , nν3 , . . .〉,
∑

j

nνj = N,

where nνj is the occupation number of the state |νj〉. For fermions the
occupation number is either 0 or 1 in agreement with the Pauli exclusion
principle. The basis of the state is the complete and ordered set of single-
particle states {|ν1〉, |ν2〉, |ν3〉, . . .}.

The relation between the basis states of the first and second quantization
is

Ŝ−
∣∣ψνn1

(r1)
〉∣∣ψνn2

(r2)
〉
· · ·
∣∣ψνnN

(rN)
〉

= ĉ†νn1
ĉ†νn2
· · · ĉ†νnN

|0〉,
where the operator ĉ†νj is the fermion creation operator. The Hermitian
conjugate of the creation operator is the fermion annihilation operator, ĉνj .
The operators either lowers or raises the occupation number by one. Thus
by operating on a state

ĉ†νj
∣∣. . . , nνj−1

, nνj , nνj+1
, . . .

〉
= C+(nνj)

∣∣. . . , nνj−1
, nνj + 1, nνj+1

, . . .
〉
,

ĉνj
∣∣. . . , nνj−1

, nνj , nνj+1
, . . .

〉
= C−(nνj)

∣∣. . . , nνj−1
, nνj − 1, nνj+1

, . . .
〉
.

The normalization constants C−(1) = C+(0) are chosen to be 1. As an
unoccupied state cannot be emptied further, operation of the annihilation
operator on an empty state must yield ĉνj |. . . , 0, . . .〉 = 0, so the normaliza-
tion constant C−(0) = 0.

As the basis states must obey the fermionic antisymmetry for inter-
change of electron coordinates, the following must be obeyed:

ĉ†νj ĉ
†
νk

∣∣. . . , nνj = 0, . . . , nνk = 0, . . .
〉

= −ĉ†νk ĉ
†
νj

∣∣. . . , nνk = 0, . . . , nνj = 0, . . .
〉
.

For this to be true the creation operators must anticommute, and by Her-
mitian conjugation also the annihilation operators. This leads to the anti-
commutator relations

{
ĉ†νj , ĉ

†
νk

}
=
{
ĉνj , ĉνk

}
= 0. (A.6)

Furthermore we require that ĉ†νj and ĉνk anticommute for j 6= k:
{
ĉ†νj , ĉνk

}
= δνj ,νk . (A.7)
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A consequence of (A.6) is the identity (ĉ†νj)
2 = (ĉνj)

2 = 0. Thus both the
creation and annihilation operators will annihilate a state if they act on the
state twice. We now define the number operator as

n̂νj = ĉ†νj ĉνj . (A.8)

Making n̂νj operate twice results in

(n̂νj)
2 = ĉ†νj ĉνj ĉ

†
νj
ĉνj = ĉ†νj(ĉνj ĉ

†
νj

)ĉνj = ĉ†νj(1− ĉ†νj ĉνj)ĉνj = ĉ†νj ĉνj = n̂νj ,

where (A.7) was used. This can be restated as

n̂νj(n̂νj − 1) = 0,

and thus the eigenvalues of n̂νj can only be either 0 or 1. The operation of
the fermionic annihilation and creation operators can then be summarized
as

n̂ν |nν〉 = nν |nν〉, nν = 0, 1

ĉν |0〉 = 0, ĉ†ν |0〉 = |1〉, ĉν |1〉 = |0〉, ĉ†ν |1〉 = 0. (A.9)

One- and Two-electron Operators

We start by examining the one-electron operator for the kinetic energy. The
operator is

T̂j = − ~2

2m
∇2
rj
.

Using the completeness of states (A.2) this can be rewritten as

T̂j =
∑

νa,νb

∣∣ψνb(rj)
〉〈
ψνb(rj)

∣∣T̂j
∣∣ψνa(rj)

〉〈
ψνa(rj)

∣∣

=
∑

νa,νb

Tνa,νb|ψνb(rj)〉〈ψνa(rj)|, (A.10)

where Tνa,νb is the matrix element of the operator T̂j for the quantum num-
bers νa and νb, which is

Tνa,νb = − ~2

2m

∫
ψ∗νb(rj)∇

2
rj
ψνa(rj).

The total kinetic energy of an N -particle system is then

T̂tot =
N∑

j=1

T̂j.
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A two-electron operator, such as the operator for the Coulomb interac-
tion which is V (rj, rk) = e2

4πε0|rj−rk|
, is expressed as

V̂j,k =
∑

νa,νb,νc,νd

Vνc,νd,νa,νb|ψνc(rj)〉|ψνd(rk)〉〈ψνa(rj)|〈ψνb(rk)|, (A.11)

where

Vνc,νd,νa,νb =

∫
ψ∗νc(rj)ψ

∗
νd

(rk)V (rj, rk)ψνa(rj)ψνb(rk)drjdrk. (A.12)

The total interaction energy is then

V̂tot =
N∑

j>k

V̂j,k =
1

2

N∑

j 6=k

V̂j,k.

As the ground state electronic Hamiltonian only involves one and two elec-
tron operators, we now have the tools for describing quantum systems in
the second quantization.
[36]
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Introducing a periodic array of holes, i.e. an antidot lattice, in a graphene sheet has been sug-
gested as a route towards the tantalizing objective of ”opening the gap” in this otherwise zero-gap
semiconductor. Combining density functional and mean-field Hubbard tight-binding methods we
study the effect of spin-polarization on graphene antidot lattices (GALs). Focusing on GALs with
extended zigzag edges, we systematically investigate the geometry dependence of spin-polarization,
electronic structure, and band gaps. A scaling law for the band gap is established demonstrating
marked deviations form circular holes without spin-polarization. Furthermore, we estimate the ro-
bustness of the magnetic ordering against raised temperature and doping and, finally, consider how
the optical properties are modified by spin-polarization. Our results demonstrate that large, stable
band gaps are expected for a range of geometries.

I. INTRODUCTION

Graphene is today one of the most intensively stud-
ied novel materials with promising applications within,
e.g., flexible two-dimensional electronics or transistor
technology1. These capabilities are facilitated by the ex-
traordinary room-temperature electron mobility2 in ex-
cess of 105 cm2V−1s−1 of exfoliated graphene. Impor-
tantly, graphene can now be synthesized on wafer scale
using chemical vapour deposition techniques3. However,
one of the short-comings of graphene remains its van-
ishing band gap limiting applications as a substitute for
the materials used today in semiconductor devices. Sev-
eral strategies including confinement in nanoribbons4,5

and biased bilayer structures6,7 have been suggested with
the ultimate goal of ”opening the gap”. Also, peri-
odic arrays of holes, so-called graphene antidot lattices
(GALs), have been proposed as a route towards large-
scale gapped graphene8. Since their proposal, the phys-
ical properties of GALs have been the subject of in-
tense theoretical research focusing on, e.g., their elec-
tronic structure9–19, optical properties20 or transport
capabilities21–25. Many of these calculations are, with
some exceptions10,13,14,16–19, performed neglecting ef-
fects of spin-polarization, even though this phenomenon
has been demonstrated in recent experiments on zigzag
graphene nanoribbons (ZGNRs) using scanning tun-
nelling spectroscopic methods26. Quite generally, ex-
tended regions of zigzag edges in graphene nanostruc-
tures favor spin-polarization. This is readily observed by
inclusion of a mean-field Hubbard interaction in a tight-
binding scheme, which modifies the electronic structure
drastically near the band gap27–29. In fact, neglecting
spin-polarization, ZGNRs are semi-metals characterized
by two degenerate, dispersion-less bands at the Fermi
level, developing a band gap of several hundred meV
with inclusion of a Hubbard-type interaction - a trend
also supported by more complex ab initio approaches5.

The near-perfect zigzag edges necessary for support-
ing spin-polarization in the aforementioned experiment

can be attributed to the production of the ZGNRs by
”un-zipping” carbon nanotubes. While any edges real-
istically produced in GALs, usually fabricated by litho-
graphic methods30–33, are considerably more disordered,
post-process annealing has been shown to reconstruct
disordered edges of single holes into zigzag or armchair
shapes34,35, making extended regions of these two edge
types experimentally feasible. Recently, magnetic force
microscopy has revealed spin-polarized zigzag edges in
hexagonal GALs on the 100 nm scale fabricated us-
ing a nano-porous alumina template36. Thus, with
other GAL fabrication techniques approaching the 10
nm regime30,31, special attention towards the theoretical
understanding of the magnetic properties and resulting
band gap modulations of antidots with extended zigzag
edges is warranted.

GALs containing a dissimilar number of atoms in the
A and B sub-lattices are by Lieb’s theorem37 predicted to
display a net magnetic moment in their ground state, and
extensive work has been done on the microscopic mod-
elling of these ferromagnetic systems14,18,38. In addition,
GALs with an identical number of A- and B-atoms are re-
ported to display local spin-polarization at zigzag edges,
even though their net magnetic moment vanishes14,16.
However, this only occurs for larger holes with smaller
ones remaining completely un-polarized38. To our knowl-
edge, no systematic study has been performed on the
anti-ferromagnetic spin ordering of GALs with hexago-
nal holes of varying dimensions, and we therefore here
consider spin-polarization in two families of GALs with
hexagonal holes in a triangular lattice. These antidots
might be envisaged as particularly well ordered recon-
structions of roughly circular holes into ones dominated
by zigzag edges. Also, this is exactly the structure
used by Shimizu et al. to interpret their experimental
results36, see Fig. 1. We follow the nomenclature of Ref.
12 and denote such lattices, for which all lattice vectors
are oriented parallel to carbon-carbon bonds as ”trian-
gular” GALs. Calculations neglecting spin-polarization
have predicted these structures to be semiconducting
with band gaps decreasing with increasing unit cell size

B. Large and stable band gaps in spin-polarized graphene
antidot lattices
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(i.e., with holes constituting a smaller fractions of the
unit cell).10,22 However, upon rotating the holes further
by π/6 around the hole centre axes, making the angle be-
tween GAL lattice vector and carbon-carbon bond π/6,
only structures with a unit cell edge length of (3n+3)a0
(n an arbitrary integer and a0 the graphene lattice con-
stant) were found to retain a sizeable band gap9,12. Fol-
lowing Ref. 12, we term these ”rotated triangular” GALs,
and the question remains to what extent this simple rule
for band gap opening transfers to the spin-polarized case.
In this paper, we seek to identify the geometrical re-

quirements for GALs supporting spin-polarization, and
furthermore consider the effects on the electronic struc-
ture of GALs with unit cells and holes on the nm
scale. The limits of small and large holes resemble spin-
unpolarized graphene and spin-polarized ZGNRs, respec-
tively, and we therefore aim to identify the critical size
for the transition. Hence, the minimum edge length re-
quired will be identified for both lattice types. We seek to
identify to what extent simple rules for band gap opening
found neglecting spin-magnetization remain valid in the
spin-polarized cases. Additionally, we consider the stabil-
ity of the polarization with respect to raised temperatures
and chemical doping and finally consider the modulation
of the linear optical spectra due to inclusion of spin. The
applied theoretical frameworks will be presented in the
following section. Then, results for the magnitude and
stability of spin-polarization and band gaps are shown
in Section III along with the optical response. Finally,
conclusions are given in Section IV.

II. METHODS

Hexagonal graphene antidots in a triangular lattice can
be characterized by a unit-cell edge length parameter L
and hole edge length S, both in units of a0. These are
defined as the number of zigzags along the edges shown in
Fig. 1 for triangular GALs, agreeing with the nomencla-

S

W

Figure 1. Excerpt of triangular GAL with hexagonal holes.
W , S and L represent the sub-ribbon width, edge length and
unit cell size, respectively, whereas ~a1 and ~a2 are triagonal
GAL lattice vectors parallel to carbon-carbon bonds. The
edges are zigzags of alternating carbon atoms from the A and
B sub-lattice illustrated by blue and red atoms, respectively.
The dashed line indicates the unit cell.

ture of, e.g., Refs. 12, 22, and 38, making the illustrated
GAL an {L = 10, S = 7} structure. Alternatively, the
structure can be envisaged as consisting of interconnected
zigzag sub-ribbons of length S and width W = L−S, the
latter indicating the number of armchairs, each of length√
3a0, connecting the two sub-ribbon edges indicated in

Fig. 1. Hence, the limiting case of large S should ap-
proach the case of infinite ZGNRs of width W , whereas
the case of small S approaches pristine graphene with no
spin-polarization. This means that a transition region in
S and L must exist where the ground state evolves from
having a vanishing spin-polarization to a finite one.
We apply a model based on density-functional theory

(DFT) in the local spin-density approximation (LSDA)
as implemented in the SIESTA package39 to investigate
structures with small unit cells. We verify its agree-
ment with a much simpler mean-field Hubbard tight-
binding model, and use this to consider structures with
unit cells of several thousand atoms beyond the scope
of DFT. Here, characteristic properties such as optical
gaps and spin-polarization become asymptotic, allowing
for extrapolation to the behaviour of even larger systems.

A. Density-functional theory model

In the DFT model, all dangling bonds are hydrogen-
terminated, removing them from the band gap. A
double-ζ basis, with an extra polarized term (i.e., a
DZP basis) and Troullier-Martins pseudopotentials40

with only 2s and 2p electrons treated as valence for car-
bon, are used. Exchange-correlation is handled in the
Perdew-Zunger parameterization41. A modest 2 × 2 × 1
Monkhorst-Pack k-grid was found to be sufficient for k-

DFT
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Figure 2. spin-polarization of {W = 2, S = 8} triangular
GAL, comparing the z-integrated DFT density with the onsite
HTB density. Note that the DFT density is plotted as a
contour plot, with contour lines at values shown in the left
bar while the HTB model is a scatter plot, with dot sizes and
color indicating the onsite Hubbard spin density difference.
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space integration due to the relatively flat bands and
semiconducting nature of the GALs investigated, ex-
cept for the specific case of S = 5 where the spin-
polarization was found to vanish with increasing k-grid
sampling, making an 8 × 8 × 1 grid necessary. Addi-
tionally, several hundred iterations were required to fully
converge the spin-densities of S = 5 structures, whereas
only tens of iterations were necessary with S 6= 5. A
reciprocal wave vector cut-off of 150 Ry was found to
be sufficient. Un-relaxed structures with ideal carbon-
carbon and hydrogen-carbon bond lengths, respectively
2.46/

√
3 Å and 1.09 Å, were used.

B. Hubbard tight-binding model

Generally, the out-of-plane π-electron system of planar
conjugated carbon structures decouples from the in-plane
σ system, and since the π-electrons govern optical and
electronic properties of the states in the vicinity of the
Fermi level we only include these in the Hubbard tight-
binding (HTB) treatment. In the mean-field (Hartree-
Fock) approximation, the Hubbard Hamiltonian becomes

Ĥ =
∑

i,j,σ

tij ĉ
†
iσ ĉjσ + U

∑

i,σ

n̂iσ〈n̂i,−σ〉, (1)

where ĉiσ and ĉ†iσ are, respectively, annihilation and cre-
ation operators of electrons in atomic π-orbitals at lat-
tice site i with spin σ. tij is the tight-binding hopping
parameter between sites i and j, whereas U is the Hub-
bard interaction parameter coupling the −σ spin density
〈n̂i,−σ〉 to the σ density through the occupation number

operator n̂iσ = ĉ†iσ ĉiσ. In the following, we take U = 2.0
eV and include up to third-nearest neighbour interaction
using hopping integrals t1 = −2.7 eV, t2 = −0.2 eV
and t3 = −0.18 eV. These Hubbard and tight-binding
parameters were previously shown to reproduce DFT
LSDA results for ZGNRs42, and we here confirm that
they are transferable to GAL structures by comparison
with our SIESTA model. Using this Hamiltonian, the
initially anti-ferromagnetic densities are iterated to self-
consistency.

III. RESULTS AND DISCUSSION

As already discussed, at sufficiently large S the
GALs under investigation are expected to display anti-
ferromagnetic behaviour akin to what is observed for
ZGNRs. This is indeed what we find, with an example
shown in Fig. 2 where anti-ferromagnetic ordering is seen
with respect to the A andB sub-lattices indicated by blue
and red atoms in Fig. 1. At the armchair corners joining
two oppositely polarized edges, polarization is strongly
suppressed while a maximum is found at the edge centre
atom. All spin-polarized GALs investigated here follow
this general trend, and below we present a systematic
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Figure 3. Density of states calculated using our HTB model
for a few triangular GALs, with sub-ribbon width W = 2 and
varying edge length S, projected onto the edge-atoms of the
A sub-lattice (red and black curves) in addition to the total
density of states (green curve).

investigation of the influence of the dimensions (i.e. W
and S) on spin-polarization and band gaps. However, we
first make some general comments on the modulation of
the electronic structure upon including spin-polarization
in the problem.

In Fig. 3, we display the density of states calculated
for each spin projected onto the edge-atoms of the A sub-
lattice PA(E, σ) for a W = 2 structure and a few edge
lengths. Note that the same quantity for the B sub-
lattice is found by simply interchanging spin index due
to the anti-ferromagnetic symmetry of the sub-lattices,
as can be readily seen from the spin-density difference in
Fig. 2. By inspection of the electron wave function, the
edge-localization of the states nearest the band gap was
confirmed and it is clearly observed by comparison with
the total density of states D(E) that these dominate in
this energy region. Additionally, at S > 5 the edge-states
become spin-polarized with a clear difference in up and
down densities. Interestingly, the opposite polarization is
observed for edge-states just above the band gap, hinting
at why spin-polarization is suppressed by occupying the
lowest conduction band states by, e.g., doping. Further-
more, only states near the band gap are polarized, while
states with significant weight near the edges extending
further into the valence/conduction band range remain
unpolarized. This trend can be seen by comparing the

B. Large and stable band gaps in spin-polarized graphene
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weakly polarized (i.e. small difference between PA(E, ↑)
and PA(E, ↓)) peaks near -0.35 eV for the S = 8 struc-
ture in Fig. 3 with the strongly polarized peaks near
-0.18 eV, where the projected density of states is almost
exclusively spin down.
In order to systematically quantify the degree of spin-

polarization in the investigated GALs, we use ”maximum
spin-polarization”. In general, this value is simply the
absolute spin density difference (onsite occupation for the
HTB model and out-of-plane integrated density for the
DFT model) found at the middle of (any) sub-ribbon
edge.

A. Spin-polarization and band gap

In Fig. 4, we consider the scaling of the maximum spin-
polarization (lower panel) and band gap (upper panel)
with edge length S and width W . We find a characteris-
tic length of S = 5 above which structures of all widths
W are spin-polarized. Both DFT and HTB results dis-
play this behaviour, which can simply be interpreted as
a competition between the energy gain due to polariza-
tion of the zigzag sub-ribbons and the energy penalty of
polarizing the armchair corners. We note that Ref. 16 re-
ports DFT calculations showing a weakly spin-polarized
S = 5 structure in contrast to our findings. However,
their calculations were performed using a 2 × 2 × 1 k-
point sampling, which we found insufficient as discussed
previously.
As demonstrated in the upper panel of Fig. 4, the on-

set of spin-polarization coincides with a dramatic open-
ing of the band gap in comparison to the unpolarized
case for S > 5. Hence, spin-polarization breaks the
tendency of decreasing band gap with S and leads to
gaps tending asymptotically to values resembling those
of spin-polarized infinite ZGNRs of similar widths W .
Conversely, in calculations excluding Hubbard interac-
tion (i.e., setting U = 0 eV in Eq. 1) the band gap de-
creases monotonically with increasing S, although with
weak oscillations at S > 10 due to confinement effects
depending on edge lengths. Hence, the band gaps of
even relatively large GALs are expected to be on the
order of hundreds of meV, as opposed to our previous
predictions for circular holes without spin-polarization8,
enforcing the idea of utilizing GALs in semiconductor
devices.
For circular, unpolarized holes, a simple scaling law

was proposed by Pedersen et al.8 for the band gap Eg ≈
αN

1/2
rem/Ntot , with Nrem indicating the number atoms re-

moved from a unit cell that would otherwise contain Ntot

atoms and α a fitting parameter. For the present case,

in which N
1/2
rem/Ntot = S/[

√
6(W +S)2], we note that the

band gap dependency only follows such simple scaling law
for the smallest holes as demonstrated in Fig. 5. In the
original work, α = 25 eV was found by fitting to tight-
binding band gaps for circular holes, whereas α was set to
values ranging from ∼ 4 to 25 eV by Liu et al.14 allowing
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Figure 4. Band gap (top) and maximum spin-polarization
(bottom) of triangular GALs of varying dimensions calcu-
lated using the Hubbard model. The band gap is seen to
vanish with increasing hole size for fixed W if spin is ne-
glected (dashed-dotted lines). However, the Hubbard inter-
action term introduces a finite band gap resembling those
of ZGNRs, shown in the shaded region, for large hole sizes.
A band gap increase is seen at edge lengths S larger than
five for all structures, matching the onset of spin-polarization.
DFT results are shown in the insets, where the onset of spin-
polarization is in full agreement with the HTB model. Ad-
ditionally, the DFT and HTB band gaps are in reasonable
agreement, with the position of the band gap minimum near
S = 5 reproduced by both methods.

fits to triangular and rhombohedral holes. Hence, this
law is widely used as a benchmark for comparing band
gaps in GALs of varying geometries. For very small holes,
S = {1, 2}, a good fit can be made to our results using
α = 19 eV (shown as the black line of Fig. 5) for a wide
range of unit cell sizes L. However, with edge lengths
S > 2 this tendency is broken. By adjusting the value of
α and introducing corrections similar to those in Ref. 14
reasonable fits in a large range of L can still be obtained
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Figure 5. Comparison of the tight-binding models including
(HTB) and neglecting (TB) Hubbard interaction with scaling
rule of Ref. 8 (full black line).

for 2 < S < 6. At S > 5, spin-polarization sets in which
increases the band gap, causing a non-linear behaviour

in N
1/2
rem/Ntot clearly seen near N

1/2
rem/Ntot = 0.04 for the

S = 6 structure. Hence, for structures with larger holes
(S > 5), significant deviations between the simple scal-
ing law and our results are found, becoming increasingly
severe with hole size. In the limit of very small holes,
however, the simple scaling law does seem to hold, as
is seen in the left panel of Fig. 5. In this regime, inclu-
sion of spin-polarization actually improves the agreement
between the scaling law and the tight-binding models.
For the structures produced experimentally by Shimizu

et al.36, we can estimate N
1/2
rem/Ntot ∼ 10−3 based on

the atomic force microscopy images presented in that
letter. Other fabrication techniques, such as block co-

polymer methods30, allow N
1/2
rem/Ntot ∼ 0.01. Hence,

experimentally available structures are well within the
regime considered here. However, we do not expect struc-
tures with extended zigzag edges to follow the above scal-
ing law. Rather, band gaps in such structures must ap-
proach those of the nanoribbons comprising the struc-
ture. For example, the case of large S and modest W
is better described by the scaling rule presented in Ref.
5: Eg ≈ 9.33 eV · Å/(w + 15.0Å) for band gaps in spin-
polarized, infinite graphene zigzag nanoribbons of width
w = W

√
3a0.

In Ref. 14, results for rhombohedral holes in a trian-
gular lattice with zigzag edges calculated using a nearest
neighbour Hubbard tight-binding model were reported.
There, a band gap increase from ∼ 250 meV to ∼ 500
meV with hole side length varying from 5a0 to 10a0 for
constant unit-cell side length 14a0 was found. The op-
posite holds true for increasing unit cell size (between
10a0 and 15a0) with constant hole side length (5a0).

Additionally, they found the ground state to be anti-
ferromagnetically spin-polarized. These results agree
closely with ours, even though their calculations are per-
formed for rhombohedral holes.
Hence, the existence of a relatively short edge-length

over which spin-polarization becomes a dominating ef-
fect suggests that this may indeed not be negligible in
experimentally feasible systems. The question remains,
however, how robust this magnetic ordering is against,
e.g., temperature increase and doping levels, as will be
discussed below.

B. Band gap rules for rotated hole

In Ref. 12, Petersen et al. formulated a semi-empirical
rule stating that only every third rotated triangular GAL
displays a significant band gap, requiring L = 3n + 3,
where n is an integer and the unit cell size L for the ro-
tated structure is defined as the number of zigzags along
the unit cell edge indicated in Fig. 6. Similarily, Ouyang
et al.15 observed an alternating semiconducting/metallic
behaviour of triangular GALs with hole separation dis-
tance. Recently, Liu et al.9 demonstrated that these re-
sults are particular realizations of a universal rule gov-
erning band gap opening in all triangular super lattices
spanned by integer combinations of graphene lattice vec-
tors. We have considered a range of rotated triangular
unit cells, both including and excluding Hubbard inter-
action, and verify this rule in the latter case. However,
upon including Hubbard interaction the rotated triangu-
lar structures are found to be anti-ferromagnetically spin
polarized, breaking the A-B sub-lattice symmetry. This,
in turn, induces a band gap comparable to those in Fig.
4.
This is exemplified by the results in Fig. 6. No com-

mon threshold edge length S, above which all structures
are spin-polarized, could be found for these structures.
Instead this threshold depends on the width parame-
ter W , in contrast to what is observed in Fig. 4. The
spin-polarization (not shown) increases abruptly exactly
at edge lengths where the band gaps including and ex-
cluding Hubbard interaction diverge, similarly to Fig. 4.
Band gap openings similar to the ones observed here are
expected for other structures, why care should be taken
in generalizing the aforementioned band gap rules to any
structure containing extended, possibly spin-polarized
zigzag edges.

C. Doping and temperature effects

Band gaps induced by spin-polarization in ZGNRs are
known to close by doping43. Here, we consider to what
extent a similar effect is found for the anti-ferromagnetic
ordering of GALs. We investigate the effects of both
thermal excitations and carriers injected by dopants or
charge reservoirs such as a metallic substrate. Thermal

B. Large and stable band gaps in spin-polarized graphene
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Figure 6. Band gaps of a few rotated triangular GALs calcu-
lated using the HTB model. Structures which are metallic in
the absence of Hubbard interaction are denoted by circles as
indicated by the ”M” in the legend, whereas squares indicate
semiconducting structures, denoted by ”S” in the legend. The
full and dashed lines indicate results including and excluding
Hubbard interaction, respectively. The inset illustrates the
unit cell (full black line) of the rotated triangular structure,
together with the side length parameters S and L in addition
to a width parameter W = L− 2S.

excitations are included by applying finite temperature
Fermi-Dirac statistics when calculating the electron den-
sity. Thus, the bottom conduction bands displaying a
spin-polarization opposite that of the top valence bands
contribute to the charge density, causing an overall re-
duction in spin-polarization. This, in turn, causes a re-
duction of the band gap which allows the thermal exci-
tation of further conduction band electrons reducing the
band gap even more. The results are shown in Fig. 7
for structures of the type presented in Fig. 1, where it is
clearly observed how all GALs depolarize near 1000 K,
regardless of band gap.

Charge carriers injected (at zero temperature) by, e.g.,
chemical doping can be treated by adjusting the Fermi-
level into the conduction band range at an energy yield-
ing an electron number satisfying the chosen doping
level, and the results are displayed in Fig. 8. A clear
spin-depolarization (and hence decreasing band gap) is
observed with increasing number of injected electrons.
However, for all ribbons a complete depolarization is only
observed at relatively high doping levels close to one per-
cent increase in electrons per unit cell relative to the in-
trinsic case. Additionally, all GALs appear increasingly
sensitive towards doping with increasing W for constant
S. This trend can be understood by noting that the
number of edge-states is proportional to the edge length
S, while the number of doping electrons scales with the
number of atoms per unit cell (the doping levels are given
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Figure 7. Band gap and maximum spin-polarization of several
triangular GALs at varying temperatures calculated using the
HTB model. All species tend to depolarize at temperatures
larger than approximately 1000 K, regardless of band gap.

in percentages of electrons per unit cell) and hence W .
Thus, with increasingW and constant S, the doping level
per edge-state increases. These edge-states are energet-
ically located near the conduction band minimum with
spin-polarization anti-symmetric to those of the top va-
lence bands, as discussed previously. It follows that occu-
pation of conduction band edge-states causes an overall
spin-depolarization. We note that in order to accurately
model chemical doping at the highest levels considered
here, modulations of the band structure should be taken
into account44,45, but this complication is ignored here.

D. Linear optical response

Noting the dramatic effects of spin-polarization on the
band structure near the band gap, we expect substan-
tial modifications of the optical properties of GALs rel-
ative to results calculated neglecting Hubbard interac-
tion, e.g., in Ref. 20. We calculate the optical conduc-
tivity using the method described in that paper both
including and excluding Hubbard interaction for trian-
gular GALs of W = 2, and present the results in Fig.
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Figure 8. Band gap and maximum spin-polarization of trian-
gular GALs calculated for various doping levels and structure
parameters using the HTB model.

9. The optical spectra for small holes (S < 5) are nearly
identical regardless of Hubbard interaction, however, for
larger structures (S > 5) dramatic modulations in the
optical spectra are found. Most notably, the band edge
transition is blue-shifted by several hundred meV due to
spin-polarization as might be expected due to the chang-
ing band gap. Additionally, the peak shapes tend to
differ slightly for larger holes due to the flattening of
the edge-state bands upon inclusion of Hubbard interac-
tion. We note that the results presented here are calcu-
lated neglecting complications such as excitonic effects or
electron-phonon interaction. While such phenomena are
expected to affect the optical response to some extent, the
single-particle spectra remain an important first approx-
imation, demonstrating the impact of spin-polarization
on a readily measurable quantity. An equally dramatic
impact on the transport properties of GALs with hole
edge lengths larger than 5a0 might also be expected.

IV. CONCLUSION

The ground state electron densities of graphene anti-
dot structures with hexagonal holes in a triangular lattice
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Figure 9. Optical response of various triangular W = 2 GALs
from the HTB model in units of the static conductivity of
graphene σ0 = e2/(4~).

display anti-ferromagnetic spin-polarization similarly to
what is observed for graphene zigzag nanoribbons, but
only for hole sizes with an edge length larger than five
graphene lattice constants. This has a large effect on the
band structure near the Fermi level, with a substantial
band gap increase of several hundred meV. Also, struc-
tures with a rotated hole, previously reported to display
an alternating semiconducting/metallic behaviour with
increasing unit cell size, were found to be purely semi-
conducting with the inclusion of spin-polarization and
modest hole sizes. For antidots with extended zigzag
edges, this result questions the validity of simple scaling
laws and rules for band gap opening based on calculations
neglecting spin-polarization.

The states near the band gap are localized at the
graphene edges and display a strong spin-polarization,
with the states just above or below the Fermi level be-
ing oppositely polarized. Thus, with increasing temper-
ature and doping, electrons occupy edge bands on both
sides of the band gap. This results in a net reduction
of the spin-polarization and consequently reduced band
gaps. However, the spin-polarization is only negligible at
temperatures larger than ∼ 1000 K and doping at the
percent level, enforcing that spin-polarization should be
included in any study of larger graphene antidot lattices
having zigzag edges. The increased band gap has a clear
impact on the optical properties of GALs, demonstrating
the importance of including this type of interaction when

B. Large and stable band gaps in spin-polarized graphene
antidot lattices
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calculating physical observables such as optical response.
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