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Chapter 1

Introduction

1.1 Introduction

Machine learning (ML) has rapidly evolved from a research discipline into a founda-
tional technology underpinning modern artificial intelligence (Al). By learning directly
from data, ML systems uncover complex patterns and improve predictive accuracy with-
out explicit programming [1]. This data-driven paradigm has enabled advances across
domains such as natural language processing, computer vision, healthcare, and cyberse-
curity. However, as ML systems increasingly operate on sensitive information, concerns
about privacy, transparency, and accountability have become central to their responsible
deployment.

The emergence of Machine Learning as a Service (MLaaS) has accelerated this trend.
Cloud-based platforms such as Google Cloud Al, Amazon SageMaker, and Microsoft
Azure ML democratize access to large-scale ML infrastructure by allowing users to train
and deploy models without managing the underlying resources. While MLaaS greatly
simplifies development, it also introduces new risks: models trained on personal or pro-
prietary data are exposed to external queries through public APIs, creating potential vec-
tors for privacy leakage. Understanding and mitigating these risks is therefore critical to
the secure adoption of MLaaS in sensitive sectors.

1.1.1 Privacy as a Central Concern in MLaa$S

The utility of ML systems depends on the quality and volume of their training data, which
frequently includes personally identifiable or confidential information. Even when explicit
identifiers are removed, latent patterns in the data may still encode sensitive attributes.
Providers often assume that once trained, models abstract away individual records, re-
vealing only aggregate behavior. However, research has shown that this assumption does
not hold universally: ML models can memorize training samples and inadvertently disclose
them through their outputs [2, 3]. This challenges the conventional view of models as neu-
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tral statistical abstractions and reframes them as potential carriers of private information.

The risk is amplified in MLaaS settings, where adversaries typically interact with de-
ployed models in a black-box manner. By issuing repeated queries and analysing confi-
dence outputs, an attacker may infer properties of the training data or determine whether
specific samples were included in it. Such disclosures not only threaten user trust but,
in regulated domains like healthcare or finance, may constitute direct violations of data
protection legislation.

1.1.2 Membership Inference Attacks as a Canonical Threat

Among the various privacy risks in ML, Membership Inference Attacks (MIAs) represent the
most fundamental test of confidentiality. In an MIA, the adversary seeks to determine
whether a given record was part of a model’s training dataset. Although this binary
question appears simple, its implications are significant: confirming a patient’s inclusion
in a medical training dataset can reveal a diagnosis, identifying a financial record can
disclose a transaction history. As Hu et al. observe, membership inference undermines
privacy at its core, since it exposes the very presence of individuals in a dataset [3].

The evolution of MIAs reflects their increasing practicality. Shokri et al. [2] first for-
malised the attack using shadow models to approximate target behaviour through con-
fidence scores. Subsequent studies demonstrated that even weaker adversaries—those
without detailed model knowledge—can perform effective MIAs using simple confidence
thresholds [4]. More recent work established that MIAs remain viable even when only pre-
dicted labels are available [5, 6], underscoring their relevance to real-world MLaa$S systems.
Parallel research by Carlini et al. [7] re-examined the foundations of privacy evaluation,
proposing likelihood-based attacks such as LiRA that quantify leakage more precisely in
low false-positive regimes.

1.1.3 Regulatory and Ethical Implications

The privacy vulnerabilities exposed by MIAs intersect directly with data protection law
and ethics. Under the General Data Protection Regulation (GDPR), any information relat-
ing to an identifiable individual is classified as personal data. A trained model that reveals
the membership status of individuals may therefore itself constitute personal data [8]. This
interpretation places models within the same regulatory framework as the datasets used
to train them, introducing obligations for transparency, accountability, and lawful process-
ing. Beyond legal definitions, the ethical dimension is clear: individuals contribute data
under the expectation that their participation will not expose them to harm. If models
leak information about specific contributors, this expectation and the societal trust in Al
systems is undermined.
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1.1.4 Problem Statement, Objectives, and Contributions

Machine learning models deployed through Machine Learning as a Service (MLaaS) plat-
forms can unintentionally expose sensitive information about their training data. A promi-
nent threat is the membership inference attack (MIA), where an adversary attempts to deter-
mine whether a specific record was part of the training set. Such attacks exploit differ-
ences in confidence, loss, or prediction behaviour between training and unseen examples,
potentially violating data confidentiality even when the underlying data are not directly
accessible.

This thesis investigates how these privacy leakages occur and how they can be mit-
igated without excessively compromising model utility. The focus lies on the combined
influence of regularisation and differential privacy (DP) on model generalisation and re-
sistance to membership inference across both natural and medical image domains. The
study examines three adversarial settings that represent progressively weaker forms of ac-
cess: a score-based attack relying on confidence scores, a shadow-model attack trained on
auxiliary data, and a transfer-based (label-only) attack operating on discrete outputs. To-
gether, these attacks approximate realistic MLaaS conditions, where the degree of output
visibility directly shapes privacy risk.

The research is guided by the following objectives:

1. To empirically evaluate membership inference attacks across natural (CIFAR-10, CIFAR-
100) and medical image datasets (OCTMNIST, RetinaMNIST, PathMNIST) under dif-
ferent adversarial assumptions.

2. To analyse the relationship between overfitting, regularisation, and privacy leakage,
using non-member accuracy as the principal measure of model utility.

3. To assess the impact of differentially private training (DP-SGD) on membership infer-
ence resistance, quantifying both privacy budgets (¢) and classification performance.

4. To examine how architectural choices, including model capacity and transfer learn-
ing, interact with privacy noise and influence the privacy-utility frontier.

In line with these objectives, the thesis addresses three central research questions:

RQ1: How do different privacy attacks perform against machine learning models trained
on medical and natural image datasets with varying levels of sensitivity and struc-
ture?

RQ2: What is the extent of privacy leakage due to membership inference in such models,
and which metric is more appropriate for quantifying this leakage?

RQ3: Which mitigation strategies can effectively reduce privacy leakage while maintaining
acceptable model utility?
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This thesis contributes to the empirical and practical understanding of privacy in ma-
chine learning through the following achievements:

* Cross-domain evaluation of attack models. The study provides a unified, multi-
dataset comparison of three membership inference attack types applied to models
trained under four distinct regimes: standard, regularised, DP-SGD, and DP-SGD
with regularisation. This design enables a systematic comparison of adversarial
strength and defensive effectiveness across domains.

¢ Insight into privacy-utility dynamics. The experiments show that privacy leakage
closely tracks overfitting and that both regularisation and differential privacy reduce
leakage by improving generalisation. Non-member accuracy is introduced as a ro-
bust indicator of model utility, allowing consistent comparison of privacy trade-offs
across datasets.

* Architectural and domain-level findings. Transfer learning stabilises DP-SGD on
complex datasets such as CIFAR-100, while smaller and more homogeneous med-
ical datasets exhibit lower leakage even without privacy noise, revealing domain-
dependent privacy resilience.

¢ Clarification of evaluation metrics. The study distinguishes between AUC and
TPR@FPR as complementary privacy metrics, showing that high theoretical separa-
bility does not necessarily imply actionable leakage when low-FPR detection remains
near zero.

¢ Integration of regulatory perspective. The results are framed within the concept of
Privacy by Design, linking algorithmic stability and differential privacy to practical
compliance and trustworthiness in MLaaS systems.

1.1.5 Thesis Structure

The remainder of this thesis is organised as follows. Chapter 2 introduces foundational
concepts in machine learning, privacy attacks, and defence mechanisms. Chapter 3 surveys
membership inference attacks, tracing their methodological evolution from shadow mod-
els to label-only settings. Chapter 4 outlines the experimental design, including datasets,
architectures, training regimes, and privacy accounting. Chapter 5 presents the empirical
results, while Chapter 6 interprets these findings across datasets and discusses their reg-
ulatory and ethical implications. Finally, Chapter 7 concludes the thesis by summarising
key insights and identifying future research directions.

The Appendix compiles all supplementary material referenced throughout the thesis,
including full training and validation curves, ROC plots, confidence distributions, and
comparative figures for each configuration. It also provides direct links to the correspond-
ing Google Colab notebooks and scripts, ensuring full transparency and reproducibility of
the experimental results.



Chapter 2

Machine Learning Background

Machine learning (ML) is the study of data—driven models that learn relationships between
inputs and outputs from sampled data, rather than being specified by hand. Early ideas
of machines that can learn trace back at least to Ross (1937) [9], and were popularized by
Samuel’s checkers program in 1959 [10]. Since then, advances in algorithms, data avail-
ability, and computation have progressively reduced prior constraints, enabling solutions
to increasingly complex tasks.

Today, ML underpins a broad spectrum of applications and infrastructures: perception
and language (computer vision, speech recognition, natural language processing), decision
and control (recommendation, forecasting, operations research, robotics), cyber—physical
and industrial systems (predictive maintenance, quality control, autonomous systems),
security and trust (anomaly detection, malware classification), scientific discovery (protein
folding, materials design), and large-scale cloud offerings under the umbrella of Machine
Learning as a Service (MLaaS). In each case, the core objective is the same: learn a mapping
that generalizes from observed data to unseen instances with reliable performance and
calibrated uncertainty.

This chapter introduces the mathematical and theoretical foundations needed for the
remainder of the thesis. We formalize learning problems and notation, review optimiza-
tion and generalization concepts, and discuss evaluation metrics and deployment inter-
faces that are later shown to be relevant for privacy. These fundamentals provide the basis
for analyzing how training dynamics and model behavior can expose sensitive information
in downstream settings.

2.1 Key Machine Learning Definitions

Machine learning (ML) is a meticulous domain that uses an excessive amount of termi-
nology derived from mathematics, statistics and programming. To make the next chapters
less facile, in this section we introduce some key definitions. Frequently, a set of input
data, X is collected along with their outcomes, y and the goal is to create a model that



2.2. Types of Machine Learning 6

learns from the data which after the learning process is able to make a prediction of the
outcome f# given some unseen input data. The data can be of any form including numer-
ical values, images, audio, video or a combination of the before-mentioned. A convenient
way to represent the data is by constructing a design matrix X where each row represents
a single example of the data, e.g. a patient, where each column represents the character-
istics of the example e.g. patient’s name, age or weight. The number of rows in X is then
the collected sample size X while the number of columns represents the total number of
features or characteristics, for each sample, D. Similarly, the collected outcomes from each
input example can be expressed as an N-dimensional vector, where each element repre-
sents the outcome of the nth example, if n = 1,...,N. In a mathematical sense, the input
data and their outcome can be written as:

X11 X12 - X1D n

X1 X222 - X2D 2
X=1. . . y=

XN1 XN2 -'° XND YN

where each row of X can be also be written in the form of a D-dimensional vector:

T
X1

X2

XD

In ML, we conceptualise an algorithm as a mathematical technique derived by statisti-
cians and mathematicians for a particular task implemented in code which will help us
find a relationship between the inputs and the output. Different algorithms make different
assumptions about the nature of this relationship and how it can be learned. For example,
Yy = wo + xw; is the linear regression equation for a single feature, which can be easily
written in code, making it an ML algorithm. For this example, an ML algorithm assumes
a linear relationship between x and y, which can be estimated through the parameters wy
and w;. Hence, the above algorithm would estimate the weights wp, w; that best map the
input data to the output variables y. In order to do so, we would need to have some pairs
of input, output examples x, y available, and then we could solve the above equation with
respect to wy and w; to find their estimations. We can define a model as an equation which
is formed by finding out the parameters wy, w; in the equation of the algorithm, i.e. for
this example y= @ + x@;. More, generally, a model is created by using available data and
an algorithm which,will enable us to find a way to predict new input data.

2.2 Types of Machine Learning

Machine Learning can solve numerous types of tasks, and subsequently, there are several
variations of algorithms available. One convenient approach to categorise the vast number
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of algorithms is across four categories:

1. Supervised Learning (SL): In SL, models are trained using labelled examples, i.e. a
design matrix of inputs X where the desired outputs y are known. There are two
types of SL tasks which are determined by the nature of the outputs.

(a)

(b)

Regression: In a regression problem, the outcome is continuous, or in other
words, the purpose is to predict a numeric value based on a set of inputs. An
example of regression is to predict the price of a house based on some of its
features, e.g. number of bedrooms, location, year of construction.

Classification: In classification the outcome is discrete, i.e. its value is a class or
a label describing a particular example, e.g. whether an example is a dog, a cat
or a bird. In other words, the goal in classification is to predict a discrete class
output based on a set of inputs.

It is possible to further split classification based on the number of classes:
¢ Binary classification: Outcome can only take one of two possible values.
Example: automated distinction of healthy patients and patients with can-
cer.
* Multi-class classification: More than two classes. Example: label assign-
ment of different flower species based on a set of features.

There is a wide range of SL algorithms that have been developed over the years, thus
one should choose an algorithm based on the nature of the data. Some of the most
critical SL algorithms are linear regression, logistic regression, k-nearest neighbors
(KNN), decision trees and random forests, support vector machines (SVMs), naive
Bayes, neural networks [11].

2. Unsupervised Learning (UL): In UL, models are trained using unlabeled examples,
i.e. inputs X where the desired output vector y is unknown, or we do not want to
use it. Instead of using labels, the model is allowed to work on its own to discover
information. Different task categories fall under UL.

(a)

(b)

()

Clustering: In clustering, the goal is to find structures and patterns in a collec-
tion of uncategorised data, i.e., those algorithms find natural groups/clusters in
the data. Some important clustering algorithms are K-Means and hierarchical
cluster analysis [11]

Anomaly Detection: Such tasks attempt to identify outliers in a dataset, i.e.,
observations that differ from the dataset’s normal behaviour [12]

Dimensionality Reduction: The idea of dimensionality reduction is about rep-
resenting data in a lower-dimensional space where certain properties are pre-
served as much as possible. It can be used to visualise high-dimensional data
in a lower-dimensional space.
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One way to achieve the above is by feature transformation, i.e., constructing
new features based on a group of features, also known as feature extraction.
Some important algorithms include Principal Component Analysis (PCA), Ker-
nel PCA, Metric Multidimensional Scaling (MDS), and Isomap.[13, 14]

3. Semi-supervised Learning (Semi-SL): In Semi-SL, models are trained using partially
labelled examples, i.e., inputs X where the desired output vector y is known only for
some instances. Most Semi-SL algorithms are a combination of both supervised and
unsupervised approaches.

This method is especially useful when extracting similar features from the data is
difficult or costly, and labelling examples is a time-consuming process for experts.
An example is in medical imaging such as CT scans, where labelling patients as
healthy or cancerous by a radiologist can be time-intensive. By labelling only a
small portion of the patients, a neural network can still gain significant accuracy
improvements compared to being completely unsupervised.

4. Reinforcement Learning (RL): Such algorithms have a distinctive training process.
The learning system (agent) observes the environment and selects and performs ac-
tions based on which it receives rewards or penalties. The agent must learn by itself
to choose the best strategy (policy) in order to maximise the reward over time. A pol-
icy defines what action the agent should choose when it is in a given situation.[15]

2.3 Model Training and Evaluation

We now focus on the technical aspects of supervised learning (SL): (i) identifying the task
type, (ii) selecting an algorithm and training a model, and (iii) measuring performance.

For example, we can train a model on the CIFAR-10 dataset, where the goal is to
categorise images into ten groups based on their content (e.g., airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck). In this case, the type of the ML task will be
multi-class classification.

To make the concepts that follow more comprehensible we will focus on a single input
example,

Xn = (x1,Xx2,...,XD),

which represents the nth row from an N x D design matrix, X, and the corresponding
output y,. To reduce the mathematical notation, in the following paragraphs we will refer
to x, and vy, as x and y respectively, unless specified otherwise.

We start with the assumption that x and y have an unknown joint probability density
function p(x,y), hence for some fixed values of x, y follows an unknown conditional distri-
bution p(y|x). In a probabilistic sense, the goal is to estimate the conditional distribution
of y given the input data.
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Usually, we are only interested in a point estimation of y rather than its distribution.
Hence, we are looking for a statistical function of x that can approximate the value of y,
based on the data it has seen. In other words, we are looking for a prediction function
f(x) that provides an estimate of y, 7, for any possible value of x, i.e.,

y~ f(x)=7.

More generally, ML is learning a function f that maps x to y, and in order to achieve
that, an algorithm learns this mapping function from the training data. However, as f
is unknown, one has to evaluate different algorithms and make assumptions in order to
approximate the underlying f. The assumptions we make streamline the learning process;
however, they can also limit it. SL algorithms segregate into two categories based on the
assumptions made, which are called parametric and non-parametric.

2.3.1 Parametric models

A learning model that summarises data with a set of parameters of fixed size (independent of the
number of training examples) is called a parametric model. No matter how much data you throw at
a parametric model, it will not change its mind about how many parameters it needs. [16].

In the parametric framework, we need to specify the form of f according to the rela-
tionship between x and y, which can be either linear or non-linear. For example, if we
assume that f is linear in x, then:

f(x) = Wy + w1X1 + WrXxy + - - - + WpXp.

An example of a non-linear relationship, i.e., where f is not linear in x, could be the

sigmoid function:
1
f(x> = U'(X) = 1t e—(wO+w]x1+w2x2+"'+waD)

where w = (wg, wy, ..., wp) is a vector containing the parameters of the model, also known
as the weight vector.

In the linear formula of f, we can observe that each element from the weight vector,
except one, is multiplied with a feature of the input vector. The term wy is called the bias
term, and in a single dimension (i.e., if x has only one feature), it can be interpreted as the
value of the intercept, that is, the value of f(x) when x = 0. For D-dimensional inputs x,
it can be thought of as the height of the function’s f(x) plane.

The second step in parametric modelling is to learn the parameters of the function
from the training data. To achieve that, we first need to understand the upcoming ideas.
In a loose sense, each prediction § made by f(x) can be really close to, or far from, the
corresponding real value of y. In any case, we need a measure that can help us evaluate
how close or far our prediction made by f(x) actually is. These metrics are called loss
functions L(y, ), and are written in terms of the true value y and the prediction .
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There is a rich collection of loss functions to choose from. For regression tasks, the
most common is the squared error loss, which can be expressed as:

As mentioned, a loss function corresponds to a single prediction. However, in ML
we usually have a collection of more than one training instance. Given an N x D design
matrix X, we obtain N input-output pairs (x4, y,)})_; drawn independently from p(x,y),
and we fit a prediction function f(X) on the observed data which results into a prediction
vector:

A

N

A

7= y.z ,with N corresponding loss functions {L(y,, 7))},

N
A function which can evaluate the quality of predictions generated by the model’s
prediction function is called the cost function, C(w). The cost function is the expectation of
the loss function with respect to p(x,y). That is:

C(w) =Ey3[L(y,7)] = Epxy) [L(y / L(y, f (x,y) dxdy.

The key point of the cost function is that the loss is a function of a given x, and the weight
vector w. Parametric ML focuses on the optimisation of the model’s parameters. That is,
to estimate the weight vector which minimises the cost function:

W = argmin C(w).

In real-life problems, the cost function lies in a multidimensional space, making the
computation of the cost’s integral infeasible or extremely hard. However, it can be approx-
imated by an average over the training loss instances, which is referred to as the training
cost. That is:

N
= /L(y,f(x)) p(x,y)dxdy =~ Z (Yn,Jn) = Cirain(W).

In summary, the parametric training process of a model in ML, assuming N input-
output pairs {(xn,yn)}n 1, is to find a prediction function f(x,), define a loss function,
and estimate the weight vector which minimises the cost function.

For regression, some well-known training cost functions are:

* Mean Squared Error (MSE):

Z

MSE = Y (v — f(x2))’

n=1
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e Mean Absolute Error (MAE):

MAE =

o -

Z \

In classification, while most of the terminology and ideas behind regression still ap-
ply, there are some significant differences. In contrast to regression models, classification
algorithms (classifiers) are probabilistic models in the sense that instead of trying to ap-
proximate the output values directly, they estimate the probability that a training instance
x, belongs to a class c.

The way the output of a classifier becomes a probability is by bounding the outcome
value between 0 and 1. For example, a well-known binary classifier, logistic regression, uses
a non-linear prediction function:

Flx) = o(wTx) = Hele € [0,1]

Then, the model’s prediction interpretation is equivalent to

Ply=c|xw) ~ f(x).

For such tasks, it is common to use the maximum likelihood as the training cost function. In
that way, the optimisation task is to maximise the probability of the data given w:

N

P(y [ x,w) = [T P(yn | xn,w).
n=1
Equivalently, instead of using the maximum likelihood with respect to w, it is more
practical to minimise the negative log-likelihood, also known as cross-entropy. For binary
classification, the cross-entropy is given by:

N
- ; {yn10g(pn) + (1= yu) log(1 — p) }

where y, € {0,1} and p, = f(x,, w), which in the case of logistic regression is equal
to o(w ' x,).

For multi-classification tasks, we calculate a separate cost for each class label per ob-
servation and sum the result. Then the cross-entropy is given by:

N C
- 2 Z Yn,c log(pu,c)
n=1c=1

where C > 2 is the number of classes, v, is a binary indicator (0 or 1) denoting whether
the class label c is the correct classification for observation n, and puc = P(yn = ¢ | xp, W)
is the predicted probability that observation n belongs to class c.
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2.3.2 Overfitting and Underfitting

Several complications may occur during training. If the underlying relationship of the
data is too complicated or our training data are too noisy, the estimated weights of our
model may adjust to the noise in such an extent that the model loses its ability to predict or
generalise well to new, unseen data. An opposite scenario is that the model is too simple,
it does not capture the underlying structure of the data, and thus it cannot predict well
during training nor generalise to new data. The first phenomenon is known as overfitting,
while the latter is known as underfitting[15]. There are plenty of solutions to tackle overfit-
ting. One is to simplify the model by selecting fewer input features. Other options are to
gather more training data, reduce the noise by removing possible outliers, or to constrain
the model.

Regarding the latter, it is possible to apply different regularisation approaches in the
cost function to penalise the weights for taking extreme values. In other words, one can
adjust the trade-off between generalisation and extreme weight fits. One way to do this is
L2 regularisation, where a hyperparameter A is applied to the weights in order to penalise
extreme fits during the cost function minimisation. For example, if the MSE training cost

function is:

N
Ctrain(w) = MSE = % Z (]/n _f(xﬂ))z

n=1

Then the L2 regularisation has the form:

1 Y 2 D >
Ctrain,)\(w) = N Z (y” _f(x”)) +A Z wy
n=1 d=1

where A € [0,00). If A = 0, then the two above functions are identical, meaning there is no
regularisation, whereas the more A increases, the smaller the weights will be.

To prevent underfitting, one can select a model with more features, create more in-
sightful features (feature engineering), or reduce the value of the regularisation parameter
A

A summary of what has been discussed so far is that after gathering the data, in para-
metric supervised learning (SL), we choose a prediction function and estimate the weights
by minimising the cost function while simultaneously constraining the extremeness of the
weight values. Nevertheless, the most important criterion for a good model is its ability to
generalise well to unseen data. Moreover, we may need to test several values of A in order
to compare which one is the best, or perhaps test different algorithms to see which yields
better predictions.

The way to achieve all of the above is to split our dataset into three new datasets. Each
of these new datasets has a different name and a different purpose, presented in the nect
section.
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2.3.3 Dataset Splits

1. Training Set: It contains most of the input-output pairs, and it is the set where all
the training process described occurs.

2. Validation Set: After training the parameters of different models or testing different
values for the regularisation parameter A, we evaluate the performance of all the
models on some held-out data, called validation data. The evaluation is done by
calculating a cost function, using the estimated weights found during training, along
with the validation data. The cost function used on the validation set is also called
the validation error, and it may be the same function used during training (e.g., MSE),
but a different one such as MAE can be used as well. The model which reports the
lowest validation error (i.e., the smallest cost function value) is the one we should
choose.

3. Test Set: After choosing our model, we need a set where we can report the generali-
sation error of our chosen model. In other words, the test set is only used to indicate
how well our already chosen model predicts unseen data.

It is important to note that in case one observes the generalisation test error and then
decides to adjust the model in a way that will decrease that error, the test data are no
longer unknown and permanently loses its purpose as any change made on the model is
overfitting to new data. Occasionally, the sample size may be limited and thus, splitting
the available dataset into threesubsets can decrease the training set size in such an extend
that it can affect the generalisation ability of the trained model.

2.3.4 Non-parametric Models

Non-parametric models make very few assumptions about the mapping function f, as
opposed to theparametric ones. Furthermore, non-parametric methods can also solve both
regression and classification tasks, and their performanceimprovement is analogous to the
amount of available data and arean ideal picking choice when the is no prior knowledge
about the data.

Non-parametric methods seek to best fit the training data in constructing the mapping func-
tion, whilst maintaining some ability to generalise to unseen data. As such, they are able to fit a
largenumber of functional forms [16].

A common misconception is that non-parametric algorithms do not have any parame-
ters. In aparametric model, we have a finite number of predefined parameters, whereas, in
non-parametric models, the number of parameters is potentially infinite, as the complexity
increases according to the number of training data. However, the form of the parameters
is not determined before training. If a non-parametric model is left completely uncon-
strained, it will mimic the structure of the data in the extent of overfitting. To prevent such
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cases, we should apply a form of regularisation applicable to the non-parametric frame-
work. Each non-parametric algorithm follows a different approach, and thus there is not
a general guideline for using them.

2.3.5 Model Evaluation

Usually after training a classifier (parametric or not) on the training set, we evaluate its
generalisation ability on the test set by using a confusion matrix. A confusion matrix is a
summarised table containing the predictions of the classifier, where the number of correct
and wrong predictions for each class is summarised as a count. The confusion matrix gives
an intuition regarding the overall performance and the type of errors of the classifier. In a
binary classification task where class 1 is denoted as positive, and a class 2 is denoted as
negative, the confusion matrix would look like:

‘ Class 1 predictions ‘ Class 2 predictions
Class 1 actual TP FN
Class 2 actual FP TN

Table 2.1: Confusion matrix for binary classification

where TP: number of true positives, i.e. observations that are positive and were pre-
dicted as positive.

FN: number of false negatives, i.e. observations that are positive and were predicted as
negative.

TN: number of true negatives, i.e. observations that are negative and were predicted
as negative.

FP: number of false positives, i.e. observations that are negative and were predicted as
positive.

The table 2.1 is an example of binary classification results, however confusion matrices
can extend to multi-classification tasks following the same notion.

Through the content of confusion matrix we can further calculate the following metrics:

* Accuracy: It is defined as the total number of correct predictions made by the model,
(TP 4 TN), divided by the total number of predictions, (TP + FN + FP + TN):

TP+ TN
TP+ FN+FP+ TN’

Accuracy =

In some cases, accuracy can be a misleading metric. For instance, when dealing with
extremely imbalanced data (e.g., 99% of data is class 1 and 1% of data is class 2),
the accuracy is expected to be high. Even if one were to randomly predict a class,
chances are that 99% of the time, class 1 would be the right one.
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e Recall: The total number of true positives (TP) divided by the total number of
actual positives (TP + FN). This metric evaluates the ability of a model to find all
the relevant cases within a dataset for each class:

TP

Recall — m.

e Precision: The total number of true positives (TP) divided by the total number of
predicted positives (TP + FP). This metric evaluates the ability of a model to identify
only the relevant data points:

TP

Precision = TP+ P

* F1-Score: This metric is a blend of precision and recall, also referred to as the har-
monic mean of precision and recall:

E 2 x Precision x Recall
t= Precision + Recall

2.3.6 Optimasation of Parametric Models

The essence of a parametric model’s learning process is the selection of its parameters
along with a cost function which we then want to optimise. As discussed in Section 2.3,
during training, we seek the weights and the bias that minimise the training cost. It
is known from calculus that in order to find the minimum of a function, in this case
Ctrain (W), we can set the gradient vector of partial derivatives with respect to the parameter
vector equal to zero and find the global minimum. For a simplified model such as linear
regression or logistic regression, it is indeed possible to find the best fit of these weights
based on the training set. This is because the cost function has the property of convexity.

Convexity:

We call a cost function convex in the vector of weights if, when taking two points of
the function for w and w’ with w < w/, the line between C(w) and C(w’) lies above the
surface of the function. Formally:

Claw+ (1—a)w') < aC(w)+ (1—a)C(w'), V(w,w), 0<a<1

A useful property of a convex cost function is that there exists an optimisation method
that can track the parameters minimising the cost function as much as possible. On the
contrary, if a cost function is not convex, then the optimisation process may not be able to
find the global minimum, but instead only a local minimum, depending on the initialisa-
tion.
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Figure 2.1: A convex function (left) versus a non-convex function (right).

That being said, we can imagine several scenarios where much more complex models
are used, thus more parameters, making the calculation of the training cost’s gradient
extremely hard. To alleviate these situations and still be able to solve many optimisation
problems, we use gradient-based methods. The highlight of those methods is the usage of
gradient descent, (GD), which is an iterative algorithm with the following structure:

Algorithm 1 Gradient Descent

1: Initialise the weight vector w to a fixed value
2: fort =1to T do
3 W< W — 1 VyCirain(W)

Instead of calculating the weight vector that minimises the training cost, gradient de-
scent starts from an arbitrary point on the cost function. It calculates —V yCirain(W), i.€.,
the gradient direction indicating the direction where the cost decreases the most steeply.
Once the direction is found, we need to choose the step size we want our weights to move
towards that downward direction. That step size is represented by 7 or a and is called the
learning rate. After calculating the gradient direction multiplied by the learning rate, the
algorithm updates the parameter vector accordingly, with the gradient re-evaluated before
each update. Finally, it repeats this process for T iterations with the goal of convergence
to a minimum.

It is important to note that a small learning rate leads to slower convergence, while
a large one has the risk of missing the minimum, as shown in Figure 2.2. The learning
rate can be constant or adaptive during the optimisation process; for example, start with a
large value 3which decreases as the gradient of the cost gets closer to zero.
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Figure 2.2: small constant learning rate (left) versus large constant learning rate (right).

In traditional gradient descent (GD), each parameter vector update VwClrain (W) uses
the whole training dataset. Such methods are also known as batch methods. This is not
ideal for ML purposes, since a single parameter update requires the calculation over the
entire training set, which usually consists of thousands of training examples.

Typically, the calculated gradient in each update is large, making it easy for the op-
timiser to miss the minimum. Instead, a more practical way is to use a single training
example or a minibatch of examples, and try to improve the model a little, then train on
the next minibatch of examples, and so on until the method has used the whole training
dataset. Each full training round is called an epoch.

These methods are called stochastic or minibatch methods. Stochastic Gradient Descent
(SGD) is a minibatch method which performs an update based on the average gradient.
More specifically, the algorithm of SGD is:

Algorithm 2 Stochastic Gradient Descent
1: Initialise w
2. fort=1to T do
3: forb =1to B do > B = number of minibatches

4: w<—w—17§l(f)

where
(1) 1 N
8y = Vthrain,b<"V) = ﬁ Z VwLn
b p=1

is the training cost of the b-th minibatch, with N}, denoting the number of examples in
each minibatch and L, the training loss of the n-th example in the minibatch at the ¢-th
epoch.

In 2014, Kingma et al.[17] published the adaptive moment estimation (Adam) optimisation
algorithm, which is an extension of SGD, specifically designed for non-convex optimisation
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tasks. The main advantage of Adam is that it calculates individual learning rates for
each parameter, and its popularity indicates that it converges much faster than any other
optimisation algorithm for a majority of deep learning tasks. Specifically, each parameter
changes with a different learning rate, which is adapted during training. Adam adapts
the parameter learning rates based on the average of the first and second moment of the
gradients. The k-th moment, m; of a random variable A, refers to the expected value of
the random variable raised to the k-th power. That is,[m;(A) = E[A¥]. Specifically, during
training, the iterative algorithm calculates an exponential moving average of the gradient
(first moment) as well as the squared gradient (second moment), where two parameters
B1 and B», pre-specified by the user, control the decay rates of these moving averages.

2.4 Deep Learning

In many real-world problems, the solution of a task may be highly complex. In ma-
chine learning (ML), we typically train a model using structured data represented in a
design matrix X. This matrix contains features that are often the result of human expertise
through feature engineering. However, a natural question arises: how can we be confident
that the features extracted by a person are indeed the most informative for the ML task at
hand? Moreover, traditional ML algorithms are not inherently designed to directly process
unstructured data such as imagesor videos without substantial human intervention. These
limitations motivated the development of neural networks (NNs). Neural networks are a
class of ML architectures inspired by biological neurons, designed to recognise patterns
in data. Conceptually, NNs can be viewed as linear models augmented with additional
components called hidden layers, where the input data undergo a series of non-linear trans-
formations. These transformations enable the network to capture and model complex
relationships between inputs and outputs. Unlike classical models with a single weight
vector, NNs involve fitting a large number of parameters across multiple layers of compu-
tation. However, training NNs is a more demanding process: they typically require large
amounts of data, and their cost functions are no longer convex, which complicates optimi-
sation. The term deep learning refers to neural networks with two or more hidden layers. In
this chapter, we present the fundamental theory behind artificial neural networks (ANNs)
and convolutional neural networks (CNNs).

2.4.1 Artificial Neural Network

The behaviour of biological neurons served as inspiration for the development of artificial
neural networks (ANNSs). Yet, just as airplanes were inspired by birds without the need
to flap their wings [15], ANNSs differ significantly from biological neurons in their actual
functioning.

The perceptron, a fundamental form of ANN, was introduced in 1958 by Frank F.
Rosenblatt [18]. Later, in 1969, Marvin Minsky and Seymour Papert published their influ-
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ential book Perceptrons [19], which highlighted the severe limitations of perceptrons due to
the computational resources available at the time. This critique marked the beginning of
the period now known as the “Al Winter”.

A simplified description of a biological neuron is that it consists of a cell body contain-
ing a nucleus and other components, multiple branch-like structures called dendrites, and
a single long extension called the axon. The axon branches into smaller structures called
telodendria, each ending in a synaptic terminal. These terminals connect to the dendrites
of other neurons. In simple terms, a biological neuron receives input signals from many
other neurons via its dendrites, processes the information in its cell body, and transmits the
result through the axon to the synaptic terminals, which then relay the signal to connected
neurons. An illustration of a biological neuron is shown in Figure 2.3

Call body
II Aoton lclou&ng_r-:\ -
_\\/ \ \;}
rFa b =
\| | i I
Nucleus \ ,J ”/_‘ S — _,.-._{4
—11 7
[/
[

= Axon hilock J Synaplic lerminals

Sy
\ ~ Golgl apparatus
Endoplasmic \

reticulum | % f
~d

.
Mitochandrion ~Dendrite

N\
I
\
/ l‘"\\—\5 Dendritic branches

Figure 2.3: Illustration of biological neuron.

In analogy, for D features of a single training instance, a perceptron receives the input
values, multiplies each by an associated weight, and adds a bias term. These values are
combined and passed through an activation function f(x), producing a single output value
Figure 2.4.
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Figure 2.4: A simple biological neuron sketch in parallel with a single perceptron model.

Extending this idea, a more complex ANN architecture is formed by stacking multiple
layers of perceptrons, resulting in a multilayer perceptron (MLP), as illustrated in Figure 2.5.
In such networks, the outputs of one layer become the inputs of the next. This forward-
only flow of information gives rise to the term feedforward neural network. The first layer
is the input layer, which directly receives the data, while the last layer is the output layer,
containing one or more neurons that represent the final predictions. All layers between
them are called hidden layers. These hidden layers enable the network to capture complex
interactions and patterns in the data.

In fully connected architectures, each neuron in a layer is connected to every neuron in
the subsequent layer. While powerful, hidden layers are often difficult to interpret because
of their dense connectivity and their distance from the directly observable inputs and
outputs.
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Figure 2.5: Fully connected NN with 2 hidden layers.

2.4.2 Activation functions

Activation functions are a fundamental component of neural networks (NNs). They de-

0

termine the output behaviour of each neuron z;:’ by applying non-linear transformations

]
to the input 2"V Their most important role is introducing non-linearities into the net-

work, enabling NNs to learn complex, non-linear mappings between inputs and outputs.
Without activation functions, a network would be restricted to learning only linear rela-
tionships.

Since activation functions are applied to thousands or even millions of neurons during
training, must also be computationally efficient. Over the years, extensive research has
focused on their design and effectiveness [20]. Some common examples include:

¢ Step Function:

f(z)z{o' =

1, z>0

This function produces outputs of either 0 or 1. It is very rigid, as small changes in
z do not affect the output, making it unsuitable for most learning tasks.

¢ Sigmoid Function:
1

f(Z):m
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Unlike the step function, the sigmoid is smooth and sensitive to small changes in z,
providing a probabilistic interpretation. It is often used in the output layer for binary
classification problems.

¢ Rectified Linear Unit (ReLU):
f(z) = max(0,z)

ReLU is widely used in hidden layers because it helps address the vanishing gradient
problem and generally provides strong performance in practice.

For binary classification tasks, the activation function in the output layer is typically
the sigmoid function, as in logistic regression. For multi-class classification problems, the
softmax function is used. The final output layer consists of C neurons, each corresponding
to a possible class, and softmax converts their outputs into probabilities that sum to 1:

e%i

=— i=1,...,C.
C 4 7 4
ijlez

Softmax(z);

This allows the model to output class probabilities, with the predicted class being the
one with the highest probability. For example, if we use softmax for a classification task
with three classes {Dog, Cat, Airplane}, the output could be {Dog: 0.2, Cat: 0.7, Airplane:
0.1}. In this case, the network predicts that the image is a Cat with 70% confidence.

2.4.3 Convolutional Neural Networks

While fully connected neural networks (ANNSs) are capable of solving a variety of tasks,
they are not the most effective choice for image data. In a standard ANN, the input layer
is a flat, vertical layer of neurons corresponding to the features of a training sample. For
example, an image of size 100 x 100 pixels would be flattened into 10,000 input neu-
rons. Even with a relatively small hidden layer of 100 neurons, this setup would require
1,000, 000 connections — corresponding to 1,000, 000 weights and 100 biases — for a single
layer.

This exponential growth in the number of parameters, combined with the loss of spatial
structure due to flattening, makes ANNSs inefficient for image-related tasks. In flattened
layers, the positional relationships of pixels are ignored, meaning that a pixel is treated the
same regardless of its location. To overcome these limitations, convolutional neural networks
(CNNs) were developed, inspired by studies of the brain’s visual cortex, and have been
used for image recognition since the 1980s [15]. CNNs are specialised neural network
architectures particularly suited to image and video data, and they have proven effective
in tasks such as image classification, object detection, and segmentation.

In essence, 2D CNNs employ image kernels (also called filters or convolutional kernels),
which are small two-dimensional weight matrices applied across the entire image. The
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convolution operation begins at the top-left corner of the image, where an element-wise
multiplication between the kernel values and the corresponding pixel values is performed.
The results are summed and combined with a bias, producing a single output value, which
becomes the first neuron in the convolutional layer. To cover the entire image, the kernel
is shifted, or strided, across the image. The stride length is specified by the user but cannot
be less than one pixel.

When multiple kernels are applied, the result is a convolutional layer, where each kernel
learns to detect different features. These layers form the fundamental building blocks of
CNNs. One practical issue, however, is that as the kernel approaches the edges of an
image, it lacks values to operate on, leading to information loss. A common solution is to
use zero-padding, which pads the borders of the image with zeros, thereby preserving the
spatial dimensions of the image during convolution.
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Figure 2.6: Single Convolutional Kernel applied into a 2D grayscale image with stride of one pixel.

A CNN architecture is based on three main components: local receptive fields, shared
weights, and pooling.

Local Receptive Fields

Instead of creating full connections between the input layer and a convolutional layer,
CNN’s use connections restricted to localised regions of the input image. In other words,
each neuron in a convolutional layer is connected only to a small, specific region of the
input layer, as illustrated in Figure 2.6

This region in the input image is referred to as the local receptive field of the hidden
neuron. The same principle generalises to any convolutional layer, where each neuron
connects to its own local receptive field, as shown in Figure 2.7
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Figure 2.7: CNN layers with local receptive fields.

Shared Weights

As discussed earlier, each connection to a localised region of the input is formed by multi-
plying it with a convolutional kernel. This kernel is applied across all local receptive fields,
meaning that each connection shares the same weights and a common bias.

For example, consider the case in [signle conv], where the input is a 4 x 4 image and
a 2 x 2 convolutional kernel is applied. The output of a hidden neuron at position (j, k) is
computed as:

3 3
hidden;; = f (b + Z Z Wi aj+l,k+h> ,
l

=0h=0

where f is the activation function, b is the shared bias, w;) are the elements of the
convolutional kernel, and 4;;x; are the values from the corresponding local receptive
field.

This formulation implies that all neurons in the first hidden layer detect the same fea-
ture, but at different locations within the input image. The result of applying a particular
convolutional kernel is known as a feature map. Since each feature map corresponds to the
detection of a single pattern, CNNs typically employ multiple feature maps in order to
capture a variety of features from the input data.

The dimensions of a feature map depend on the size of the convolutional kernel, the
size of the input image, the padding, and the stride. Specifically, the width and height of
the feature map are given by:

Iy, — Fy +2P Iy — F,+2P

FMwidth = —+1, 1:"1\/[}1eight = Sh

+ ]-1
S'(U

where:
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Iy, I, are the input image’s width and height,

Fy, Fy, are the convolutional kernel’s width and height,

P is the padding size,

Sw, Sy are the stride in the width and height directions.

Pooling Layesrs

Another important component of CNNs is the use of pooling layers, which are typically
placed immediately after convolutional layers. Even with local connections, convolutional
layers can still produce a large number of parameters. The role of pooling is to reduce
the dimensionality of the feature maps, thereby simplifying the information passed to the
next layers.

A pooling layer condenses each feature map from the convolutional layer into a smaller,
more manageable representation. The most common types are max pooling and average
pooling. For example, with a 2 x 2 max-pooling layer, the output for each region it covers
is a single scalar: the maximum value within that region. The intuition is that once a
feature is detected, its precise location is less important than its approximate position
relative to other features. Pooling therefore reduces redundancy and lowers the number
of parameters, contributing to faster learning and improved generalisation.

In summary, the main differences between ANNs and CNNs lie in the structure of
the input layer, the use of local (rather than full) connectivity, and the introduction of
pooling layers to reduce parameters and accelerate training. Nevertheless, even in CNN
architectures it is still necessary to flatten the neurons before the output layer. Typically,
after the final convolutional and pooling layers, the neurons are vectorised into a fully
connected layer, which links directly to the output layer, as illustrated in Figure 2.8.

Regarding the training process, the fundamental objective remains the same: to adjust
the network’s weights and biases using training instances, optimised through the back-
propagation algorithm.
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Figure 2.8: Example of a CNN architecture.
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2.5 Privacy in Machine Learning

Machine learning (ML) systems depend fundamentally on access to data describing real
individuals and their behaviors. When these data are used for training, the resulting model
implicitly encodes statistical information about its sources. This raises a fundamental
question: to what extent can an observer infer properties of the training data from the
model itself? Privacy in machine learning therefore concerns the prevention of information
leakage about individual data records, whether through model parameters, intermediate
gradients, or observable outputs. A model is considered privacy-preserving when the
inclusion or exclusion of a single training record does not significantly affect its output
distribution [21, 2, 3].

From a theoretical standpoint, privacy can be formalized as a form of algorithmic sta-
bility. Let a learning algorithm A map a dataset D = {(x;,y;)}, to a trained model
My = A(D). Two datasets D and D’ are called adjacent if they differ by one individual
record. If, for every measurable subset S of possible outputs,

Pr[A(D) € S] < ¢ Pr[A(D’) € S|+,

then A satisfies (g, 6)-differential privacy (DP) [21]. This property guarantees that the model’s
behavior remains nearly unchanged by the presence or absence of any single data point.
Privacy can thus be interpreted as robustness to data perturbations, and a stable learning
process tends to generalize better while leaking less.

However, most practical ML models are not inherently stable. Complex neural net-
works, trained via stochastic gradient descent on high-dimensional data, can memorize
specific samples, particularly when training continues past the point of generalization.
This memorization manifests in measurable behavioral differences: a model often pre-
dicts its training samples with higher confidence, lower loss, or smaller input-perturbation
distances than unseen samples [22, 7]. Such discrepancies form the foundation of a broad
class of privacy attacks that exploit model behavior to infer hidden properties of the training
data.

Privacy concerns in ML therefore go beyond data confidentiality or access control. Even
if a model and its parameters are securely stored, information-theoretic leakage can occur
through legitimate queries. A model may be cryptographically secure yet statistically
transparent. This distinguishes privacy from conventional security, because the adversary
does not need to breach the system but can infer sensitive information simply by analyzing
outputs or gradients.

The implications of these risks are both technical and societal. From a technical per-
spective, they expose the fundamental tension between utility and privacy. A model that
completely obscures training influence is useless, whereas one that achieves high accuracy
often memorizes individual samples. From a societal perspective, privacy underpins trust:
individuals who contribute data to medical, financial, or behavioral datasets expect that
their participation will not be detectable or reconstructable. Under the European Union’s
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General Data Protection Regulation (GDPR), any model that allows re-identification or mem-
bership inference may itself constitute personal data [8], extending regulatory obligations
such as consent, transparency, and erasure rights to trained models.

In sum, privacy in machine learning refers to controlling what can be inferred about
specific training data from a model’s internal state or observable behavior. It is violated
whenever a model’s outputs reveal, even indirectly, the inclusion of individual records
or sensitive patterns derived from them. Formally, this leakage corresponds to instability
in the learning algorithm, and empirically it manifests as overfitting and memorization.
Modern research therefore approaches privacy not merely as a data-protection problem
but as a stability and generalization property of the learning process itself, motivating for-
mal frameworks such as differential privacy and empirical analyses through membership
inference attacks.

2.5.1 Privacy Threats in Machine Learning

Machine learning models are designed to identify patterns in data and generalize beyond
the samples used during training. However, their ability to memorize fine-grained details
can lead to the unintended exposure of sensitive information. Privacy attacks exploit this
property by probing a trained model to infer private facts about its training data, without
requiring direct access to the original dataset. These attacks differ from classical security
breaches: instead of stealing stored data, they extract knowledge from the model’s learned
parameters or observable behavior [3].

At their core, such attacks rely on differences between how a model behaves on data it
has seen during training and on data it encounters for the first time. Overfitted or unstable
models tend to respond to familiar inputs with higher confidence or smaller prediction
uncertainty, creating subtle but exploitable signals. An adversary can use these differences
to infer information about individual data records or population characteristics, thereby
violating the intended confidentiality of the training process.

Membership Inference Attacks

Membership Inference Attacks (MIAs) aim to determine whether a specific data record
was included in the training dataset of a model. Given a model f, and a sample (x,y),
the adversary’s goal is to infer whether (x, ) belongs to the set of training examples. This
decision is based on the model’s observable responses, such as its output probabilities,
prediction loss, or decision consistency under small input perturbations.

A successful membership inference indicates that the model’s behavior differs between
training and unseen data, meaning that the model has retained information specific to its
training examples. The consequences can be severe: in medical or financial contexts, con-
firming that an individual’s record was part of a training set may reveal private attributes
about that person, such as a disease diagnosis or participation in a sensitive study. Be-
cause membership inference directly quantifies how much influence a single record has
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on a model’s behavior, it has become a standard metric for evaluating privacy risk in
machine learning [2, 22, 7].

Model Inversion Attacks

Model Inversion Attacks target the reconstruction of input features or other sensitive at-
tributes from a trained model’s outputs. Instead of deciding whether a record is present,
the adversary attempts to infer unknown characteristics of a record given partial informa-
tion and access to model predictions. For example, a model that predicts disease likelihood
might inadvertently reveal genetic or demographic traits of its training participants. By
iteratively optimizing inputs to maximize the model’s confidence in a specific output class,
an attacker can approximate the underlying features that the model associates with that
class, thereby revealing sensitive details about the data distribution [23].

Property and Attribute Inference

Property or Attribute Inference Attacks seek to uncover global characteristics of the train-
ing dataset rather than individual samples. The adversary’s goal is to determine whether
the data used for training possess a certain statistical property, such as the proportion of
individuals from a specific demographic group or the presence of a sensitive label across
the dataset. These attacks were first demonstrated in centralized learning settings, where
an adversary could infer hidden properties of the dataset by analyzing model parame-
ters [24], and were later extended to collaborative and federated learning, where shared
gradients can reveal population-level statistics. [25].

Training Data Extraction Attacks

Training Data Extraction Attacks aim to recover explicit content from the training dataset
by exploiting memorization in large, overparameterized models. This threat is particu-
larly relevant for large language models, where a small fraction of parameters may store
verbatim text fragments or identifiers from the data used for training. When carefully
prompted, the model can reproduce these fragments, such as names, addresses, or pas-
sages, effectively leaking sensitive information [26]. Unlike membership inference, which
determines inclusion, extraction attacks recover the actual data content.

Privacy attacks in machine learning vary in scope, but they share a common founda-
tion: all exploit the instability of learning algorithms and the tendency of models to over-
fit. Membership inference measures whether a model treats training examples differently
from unseen ones, model inversion reconstructs representative features of the input space,
property inference uncovers statistical traits of the dataset, and extraction retrieves memo-
rized content directly. Collectively, these attacks demonstrate that modern ML models can
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reveal private information even when trained and deployed under standard security prac-
tices. Understanding these vulnerabilities is essential before discussing defense strategies
such as regularization, confidence masking, and differential privacy, which aim to reduce
or mathematically bound the leakage of information from trained models.

2.5.2 Defenses in Machine Learning

As privacy attacks reveal the ability of machine learning models to memorize and expose
training information, various defensive strategies have been developed to reduce or bound
this leakage. These defenses can be broadly categorized into empirical approaches, which
rely on improving generalization and reducing overfitting, and formal approaches, which
offer provable privacy guarantees grounded in mathematical definitions.

Empirical Defenses

Empirical defenses aim to make a model’s responses to training and unseen data sta-
tistically indistinguishable. Since membership inference success correlates strongly with
overfitting, methods that enhance generalization often provide partial mitigation against
privacy leakage[22, 4].

A common empirical strategy is regularization, which constrains model parameters
to prevent over-complex fitting. Typical examples include L; and L, weight penalties,
dropout layers, and early stopping, where training halts once the validation error stops
improving. These methods discourage memorization of rare or outlier samples, thereby
narrowing the gap between training and test performance. However, their privacy effect
is heuristic: they reduce the likelihood of leakage but do not provide any quantifiable
privacy bound.

Another group of empirical techniques focuses on controlling the information revealed
through model outputs. Prediction confidences can be sanitized by adding small random
perturbations or by returning only the top-k predicted classes. Adversarial regularization
and confidence masking further encourage models to produce similar output distributions
for members and non-members[27]. Although such methods can hinder confidence-based
membership inference, they remain vulnerable to attacks that exploit decision boundaries
or input perturbations, such as label-only or boundary-based MIAs[5]. For this reason,
empirical defenses are best viewed as mitigations rather than strict privacy guarantees.

Differential Privacy as a Formal Guarantee

While empirical techniques improve robustness through better generalization, they lack
formal assurances about the information contained in the trained model. Differential Pri-
vacy (DP) provides a theoretical foundation for privacy [21] that quantifies and limits the
effect of any single data record on the algorithm’s output. A randomized training algo-
rithm A satisfies (g, §)-differential privacy if, for any two datasets D and D’ differing in
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one record and for all subsets S of possible outputs,
Pr[A(D) € S] < ¢ Pr[A(D’) € S] +6.

In this formulation, ¢ (epsilon) represents the privacy budget, which measures how much
the output distribution may change due to the inclusion or exclusion of a single data
point. Smaller ¢ values indicate stronger privacy. The parameter § (delta) accounts for
a negligible probability that the guarantee might not hold, setting é close to zero yields
stronger protection. In practice, differential privacy is implemented by adding random
noise to sensitive computations, such as model gradients or aggregated statistics, thereby
masking the influence of individual data points.

The amount of noise added depends on the sensitivity of the underlying function and
on the desired privacy parameters (¢, 5). Higher noise levels provide stronger privacy but
can reduce model accuracy, introducing the classic privacy-utility trade-off[28]. Differential
privacy thus formalizes the concept of “privacy as stability”: the presence or absence of
any single record cannot significantly affect the learned model, limiting the success of
attacks such as membership inference.

Other Privacy-Enhancing Frameworks

Additional privacy-preserving paradigms address information exposure from a systems
perspective. Federated learning allows multiple participants to collaboratively train a model
without sharing raw data instead, local models communicate gradient updates to a central
server. While this reduces direct data transfer, shared gradients can still leak informa-
tion about local datasets [25] and are often combined with differential privacy or encryp-
tion[29, 30]. Other frameworks, including secure aggregation, homomorphic encryption, and
multi-party computation, protect intermediate values during distributed training but impose
significant computational overhead and do not fully prevent statistical leakage.

Defending against privacy attacks requires balancing generalization performance, for-
mal guarantees, and computational feasibility. Regularization, early stopping, and confi-
dence masking offer lightweight, easily implemented mitigations but cannot provide prov-
able security. Differential privacy, in contrast, defines an explicit and quantifiable bound
on information leakage through the parameters ¢ and §, independent of the adversary’s
capabilities. Although the addition of noise inevitably reduces model accuracy, DP re-
mains the most reliable framework for guaranteeing that privacy loss stays within known
limits. The following chapters evaluate the effectiveness of these defenses empirically by
measuring how such techniques influence susceptibility to membership inference attacks.
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2.5.3 Evaluating Privacy Leakage in Machine Learning

The degree to which a model exposes information about its training data can be quantified
empirically through privacy risk metrics. These metrics assess how well an adversary can
discriminate between training samples (members) and unseen samples (non-members) based
on the model’s observable behavior. Evaluating privacy leakage therefore becomes a prob-
lem of binary classification, where the attack model’s predictions are compared against
the ground-truth membership status of data points [2, 22, 3].

ROC Curve and AUC.

The most widely adopted framework for this evaluation is the Receiver Operating Char-
acteristic (ROC) analysis. The ROC curve plots the True Positive Rate (TPR)—the frac-
tion of correctly identified members—against the False Positive Rate (FPR)—the fraction of
non-members incorrectly classified as members—as the attack decision threshold varies.
The overall area under this curve, known as the Area Under the Curve (AUC), provides a
threshold-independent measure of attack effectiveness. An AUC of 0.5 corresponds to ran-
dom guessing, whereas an AUC of 1.0 indicates a perfect separation between members and
non-members. In practice, higher AUC values signify that the target model exhibits more
distinguishable behavior between its training and unseen data, and thus greater privacy
leakage.

The ROC/AUC framework offers a convenient summary of the aggregate attack per-
formance across thresholds. However, as Carlini et al. [7] argue, it fails to reflect the
worst-case privacy loss. Average-case metrics such as AUC might appear benign even if an
attack can confidently identify a small subset of individuals with near certainty. From a
privacy and regulatory standpoint, even a handful of such disclosures constitutes a critical
failure.

TPR at Low False Positive Rates.

To better capture these high-confidence breaches, Carlini et al. [7] introduced the use of
True Positive Rate at low False Positive Rates (TPR@FPR). This metric evaluates the proportion
of correctly identified members when the number of false positives is constrained to a
very small percentage of non-members, typically 1% or 0.1%. The intuition mirrors that
of other security disciplines, such as intrusion detection, where systems are required to
detect genuine threats with negligible false alarms. A high TPR at an FPR of 0.1% implies
that an adversary can reveal at least a few training records with overwhelming certainty,
even if the average attack accuracy appears low.

From a mathematical perspective, if f(x) denotes the attack score assigned to a sample
x, then

. >
TPR@x = [{x € Dusain : f(x) > TD‘H, where 7, = min{7 : FPR(7) < a}.

| D train |
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This formulation explicitly constrains the acceptable false-positive rate « and evaluates the
adversary’s recall within that security boundary.

Interpretation and Use in Practice.

Both AUC and TPR@FPR metrics are complementary rather than competing. The AUC
provides an overall view of attack separability, which is useful for model-to-model or
defense comparisons. In contrast, low-FPR TPR focuses on the operational risk, the ability
of an attacker to extract verifiable private information under realistic constraints. Recent
empirical studies and auditing tools, such as ML Privacy Meter [8], adopt both metrics to
generate privacy risk reports for deployed models. In such tools, the ROC curve provides
an overview of the model’s global privacy posture, while the TPR@1% and TPR@0.1%
values indicate whether there exist outlier individuals at elevated exposure risk.

Overall, privacy evaluation metrics translate abstract leakage into quantifiable risk. A
model that exhibits high AUC or elevated TPR at low FPRs is considered privacy-vulnerable.
Conversely, defenses such as regularization or differential privacy aim to minimize these
indicators, aligning the model’s responses to members and non-members and thereby
reducing the adversary’s advantage.



Chapter 3

Related Work on Membership Infer-
ence Attacks

Membership Inference Attacks (MIAs) have undergone substantial methodological evo-
lution since their formal introduction. Early approaches relied on extensive adversarial
knowledge, computational resources, and strong assumptions about data distribution.
Over time, subsequent research has relaxed these requirements, demonstrating that ef-
fective attacks can succeed even when the adversary has limited access, such as observing
only predicted class labels. Recent work has further expanded the MIA paradigm be-
yond classical classification to include unsupervised learning, regression, and federated
architectures, underscoring the pervasiveness of privacy leakage across diverse machine
learning settings.

This chapter adopts a chronological structure to trace the progression of MIA method-
ologies. Each approach is analyzed in terms of its technical contribution, level of adver-
sarial access, and underlying assumptions. By situating these attacks within a unified
timeline, the chapter highlights how MIAs have evolved from theoretical demonstrations
to practical privacy threats. It concludes with a synthesis that categorizes attack variants
by their operational requirements and the privacy vulnerabilities they expose, offering a
conceptual framework for evaluating defenses in later chapters.

3.1 The Emergence of Membership Inference

Shokri et al. [2] laid the groundwork for Membership Inference Attack (MIA) research
by introducing a structured and modular pipeline. Their method trains multiple shadow
models that approximate the behavior of a target model by being trained on datasets drawn
from the same or similar distributions. The outputs of these shadow models are then used
to construct a new dataset labeled according to whether each data point was part of the
shadow model’s training set or not. This labeled dataset serves as input to a separate
inference model, which acts as the final attacker. Its task is to predict whether a given
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sample was part of the target model’s training data, based solely on the observable output
behavior of the target, such as prediction confidence vectors.

This framework formalized membership inference as a supervised learning task in its
own right, where the attacker learns to distinguish members from non-members by an-
alyzing the target model’s response patterns. Although highly effective, the technique
assumes black-box access to the model’s outputs, knowledge of the training data distri-
bution, and enough computational resources to train multiple auxiliary models. Still, the
architecture proved robust and adaptable, shaping the design of both later attacks and
defensive strategies. It introduced the central adversarial intuition that continues to un-
derpin MIA research: models behave differently on data they have seen during training
than on unseen data.

The novelty of this work also lies in its abstraction. The methodology is not bound
to any specific model architecture or dataset, making it applicable to diverse tasks such
as image or text classification. As a result, Shokri et al.’s approach became a reference
framework for subsequent studies, a blueprint for constructing attacks and a benchmark
for evaluating defenses. It marked the formal emergence of membership inference as
a distinct category of privacy attacks, establishing the foundation upon which all later
refinements were built.

3.2 Lowering the Barrier: Metric-Based and Loss-Based Simplifi-
cations

Following the foundational work of Shokri et al. [2], subsequent studies demonstrated that
membership inference could be achieved with far fewer assumptions and computational
requirements. This shift marked a move from complex shadow-model pipelines toward
simpler, more generalizable strategies that exploit intrinsic signals of overfitting.

3.2.1 Salem et al. (2018): Metric-Based Attacks and the ML-Leaks Paradigm

Salem et al. [4] introduced a series of simplifications to the original shadow model frame-
work, forming what later became known as the ML-Leaks paradigm. They showed that
effective membership inference attacks could be mounted with limited auxiliary data, re-
lying on only a single shadow model or even none at all. By using direct statistical metrics
such as prediction confidence, entropy, or top-k probability, their approach inferred mem-
bership status without the need for a trained inference network.

The authors also proposed several relaxed shadow-model configurations that deviated
from the original setup, including mismatched training distributions, heterogeneous archi-
tectures, and transfer learning from related domains. Despite these relaxations, the attacks
maintained strong predictive performance, demonstrating that the core leakage signal is
not dependent on architectural alignment but on general overfitting behavior. This work
opened the door to scalable membership audits of practical Machine Learning as a Service
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(MLaaS) APIs, where adversaries have limited visibility into training data and minimal
resources for replication. It established that privacy leakage is a general property of over-
parameterized models rather than a by-product of Shokri’s experimental design.

3.2.2 Yeom et al. (2018): Loss-Based Thresholding

Yeom et al. [22] introduced one of the earliest white-box membership inference attacks
that completely eliminated the need for shadow models. Their approach relies on the
observation that overfitted models tend to assign lower loss values to data points seen
during training compared to unseen samples. By computing the model’s per-sample loss
and comparing it against a fixed threshold, an adversary can predict whether a given
example was part of the training dataset.

This loss-based thresholding method is conceptually simple yet empirically effective. It
formalized the connection between overfitting, generalization gap, and membership leak-
age, showing that internal model metrics can serve as reliable privacy indicators. More-
over, it influenced the development of later theoretical analyses linking model loss dis-
tributions to privacy risk, positioning loss-based attacks as a baseline for evaluating both
empirical and differentially private defenses.

3.3 White-Box and Gradient-Based Attacks

As machine learning systems grew in complexity and collaborative learning architectures
emerged, researchers began to investigate attacks under stronger adversarial assumptions,
where internal model states are partially or fully exposed. This new generation of white-
box attacks leveraged gradients, parameters, and activations to design more powerful and
fine-grained inference techniques.

3.3.1 Nasr et al. (2019): Privacy Analysis Through White-Box Inference

Nasr et al. [27] conducted one of the first systematic studies of white-box membership in-
ference attacks, demonstrating that access to internal model information substantially am-
plifies privacy risk. Their proposed attack model aggregates multiple features including
prediction confidence, loss, gradients of the loss with respect to parameters, and interme-
diate layer activations to train a binary inference classifier distinguishing members from
non-members.

Their evaluation revealed that federated learning systems are particularly susceptible,
as periodic gradient updates shared among participants expose rich leakage channels.
An adversary can exploit these updates passively by monitoring shared parameters, or
actively by manipulating local model behavior to enhance separability between member
and non-member samples. This work firmly established white-box MIAs as a credible
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threat model in distributed learning environments and motivated subsequent defenses
based on gradient perturbation and differential privacy.

3.3.2 Leino & Fredrikson (2020): Calibration and Memorization

Leino and Fredrikson [31] deepened the analysis of white-box privacy leakage by con-
necting it to model calibration and memorization dynamics. They showed that poorly
calibrated models, where predicted confidence diverges from actual accuracy, tend to leak
membership information more readily. Their methodology used layer-wise activations
and confidence statistics to infer membership, revealing how training-time overconfidence
correlates with memorization of individual samples.

By introducing calibration curves and per-layer metrics into the inference process, the
authors provided a more diagnostic perspective on privacy risk, treating it as a measurable
artifact of learning dynamics rather than a purely post hoc outcome. Their findings also
informed a new class of defenses, such as temperature scaling and early stopping, which
improve calibration and thereby reduce leakage indirectly. This study bridged the con-
ceptual gap between memorization, generalization, and privacy, positioning calibration as
both a vulnerability metric and a defensive lens.

3.4 Label-Only, Contrastive, and Memorization-Aware Attacks

As machine learning applications diversified beyond classical supervised learning, new
membership inference techniques emerged that challenged prior assumptions about what
information was required to compromise privacy. Recent research has shown that even
models providing minimal outputs or trained without labels can still leak training infor-
mation through their internal representations or behavioral consistency.

3.4.1 Liu et al. (2021): Contrastive Representation Leakage

Liu et al. [32] introduced EncoderMI in their paper Membership Inference Attack against Gen-
erative Encoders, targeting self-supervised learning frameworks that rely on contrastive
objectives. Their work demonstrated that models trained without explicit labels can still
memorize training samples in ways that enable membership inference.

EncoderMI measures the similarity between latent representations of test samples and
those of known training samples. The assumption is that training data yield embeddings
that are more tightly clustered or more similar to each other than embeddings from unseen
examples. By computing cosine similarity and fitting statistical models to these distance
distributions, the attacker distinguishes members from non-members, even in the absence
of logits or labels.

This contribution was significant because it extended membership inference beyond
supervised contexts to representation learning systems, which are increasingly used in
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modern applications. EncoderMI showed that even models trained solely on contrastive
objectives, such as MoCo, BYOL, or SimSiam, remain vulnerable to privacy leakage. This
finding invalidated the assumption that supervision is necessary for memorization-based
attacks.

Its implications are far-reaching. In contemporary machine learning pipelines, large
foundation models and reusable encoders are trained on vast datasets and later fine-tuned
or integrated into downstream systems without transparency about the original training
data. EncoderMI revealed that such encoders can encode and leak membership informa-
tion through their learned feature spaces, underscoring the need for privacy-preserving
mechanisms that extend beyond the output layer.

3.4.2 Label-Only Attacks

The emergence of label-only membership inference attacks represented a turning point in
the privacy threat landscape. These attacks demonstrated that even models exposing only
a final class label, with no confidence scores, can still leak sensitive information. They
exploit how models respond to input perturbations, using the stability or robustness of
predicted labels as a signal of membership. Three major studies define the evolution of
this attack family.

Choquette-Choo et al. [33] introduced the first label-only attack achieving accuracy
comparable to traditional confidence-based approaches. Their insight was that training
samples produce more stable predictions under perturbations than unseen samples. By
repeatedly querying the target model with transformed versions of an input and observ-
ing label consistency, they inferred membership without access to probability vectors. This
multi-query framework effectively simulated confidence information through repeated de-
cision outcomes. However, it required thousands of queries per input, increasing compu-
tational cost and detectability in practical deployments.

Li and Zhang [34] later proposed two practical label-only methodologies under decision-
only constraints: the transfer attack and the boundary attack. The transfer attack constructs
a shadow dataset labeled by the target model to train a local surrogate, enabling con-
ventional score-based attacks through proxy modeling. The boundary attack, by contrast,
operates directly on the target model by introducing adversarial perturbations. Its core
assumption is that members lie farther from the decision boundary, requiring larger per-
turbations to alter their predicted label. The resulting perturbation magnitude becomes a
surrogate for membership likelihood. These methods demonstrated that even under mini-
mal access assumptions, adversaries can exploit geometric properties of the decision space
to infer membership.

Building on these developments, Peng et al. [6] proposed OSLO (One-Shot Label-Only),
a high-precision attack representing the current state of the art. OSLO overcomes the high
query complexity and low precision of previous methods by combining transfer-based
adversarial ideas with statistical hypothesis testing. It trains multiple surrogate models
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on public data to generate targeted adversarial examples for each input. If the example
fails to change the target model’s decision, the input is predicted as a member otherwise,
it is classified as a non-member. OSLO achieves strong results using a single query per
sample, with true positive rates up to 22 times higher than prior label-only methods under
low false positive constraints (FPR 0.1%). Its adaptive, per-sample perturbation budgets
make it both efficient and precise.

Collectively, label-only attacks demonstrate that even the most constrained model in-
terfaces are not immune to privacy risks. They reveal that robustness, long regarded as
a desirable property, can itself become an exploitable feature, as members tend to exhibit
higher prediction stability. These results challenge the sufficiency of confidence masking
or output truncation as defensive strategies.

3.4.3 Carlini et al. (2022): Membership Inference from First Principles

Carlini et al. [7] revisited the foundations of membership inference and proposed a rigor-
ous statistical framework for evaluating privacy risk. They observed that many previous
studies measured attack success through aggregate accuracy or AUC, which can be mis-
leading when false-positive rates are high. To address this, they introduced the Likelihood
Ratio Attack (LiRA), a method that interprets membership inference as a hypothesis-testing
problem. Rather than treating attack performance as a binary classification outcome, LiRA
compares how likely a model’s outputs are under two competing hypotheses: that a sam-
ple was included in training or that it was not. By estimating these likelihoods from
ensembles of shadow models, the attack produces a per-sample privacy score grounded
in statistical theory.

This reformulation established a principled way to quantify privacy leakage and en-
abled fair comparison of attacks across architectures and datasets. It also revealed that
the true privacy risk often lies in rare, atypical samples, not simply in overall overfitting.
Importantly, Carlini et al. emphasized that privacy evaluations should focus on realistic
low—false-positive settings, where even a few incorrect inferences can have severe impli-
cations. Their framework has since become a cornerstone of empirical privacy auditing,
providing the theoretical basis for subsequent work that connects membership inference
to memorization dynamics, most notably the analysis by Li et al. (2024).

3.4.4 Li et al. (2024): Reassessing Privacy Through Memorization

Building upon the formal framework introduced by Carlini et al. [7], Li et al. [35] reinter-
preted membership inference through the concept of memorization. Rather than evaluating
privacy leakage solely through statistical metrics such as accuracy or likelihood ratios, they
argued that the true risk stems from how much influence each individual sample exerts
on the trained model. A model that depends strongly on a specific record is said to have
memorized it, making that record inherently more vulnerable to inference.
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Using this lens, the authors analyzed a broad spectrum of membership inference at-
tacks, including confidence-, loss-, and entropy-based methods, as well as learned attack
classifiers. They found that many of these approaches correlate only weakly with genuine
memorization. In practice, they often identify easily classifiable, low-risk members while
failing to detect the atypical or outlier samples that the model has actually memorized.
This inconsistency highlights a crucial insight: privacy leakage cannot be inferred from
overall accuracy or generalization gap alone, but must be understood as a sample-specific
phenomenon.

To quantify this relationship, Li et al. compared existing attacks against empirically
measured memorization across multiple architectures and datasets. They showed that the
most consistent results with true memorization were achieved by likelihood-based meth-
ods such as LiRA, confirming that hypothesis-testing approaches better capture the causal
link between learning dynamics and privacy exposure. However, even these methods ex-
hibited variation across datasets and defense settings, suggesting that memorization is a
richer, multidimensional construct rather than a single numerical score.

Finally, the study examined how data enhancement techniques, such as data augmenta-
tion and adversarial training, affect privacy when viewed through memorization. Contrary
to common expectations, these strategies do not uniformly reduce risk. Data augmenta-
tion tends to redistribute memorization by lowering it for typical samples while increasing
it for rare or complex ones, whereas adversarial training can either mitigate or amplify
memorization depending on its configuration. These findings reveal that improvements in
robustness or generalization do not necessarily translate into stronger privacy.

Overall, Li et al. established memorization as a unifying framework for understanding
membership inference and evaluating defenses. By linking individual-sample influence to
empirical privacy risk, their work provides a practical foundation for future privacy audit-
ing tools and for developing training procedures that explicitly account for how models
remember, and potentially expose, the data on which they learn.

3.5 Summary and Conceptual Taxonomy

The evolution of membership inference reflects a steady broadening of both attack capa-
bility and theoretical understanding. Early frameworks required extensive auxiliary data
and multiple shadow models, while modern approaches succeed with minimal informa-
tion, including single-label outputs. In parallel, the field’s analytical focus has shifted from
heuristic metrics to statistically and causally grounded formulations.

Table 3.1 summarizes the major classes of MIAs by adversarial access, methodological
principle, and key contribution.

In summary, membership inference research has progressed from engineering attacks
to developing quantitative privacy diagnostics grounded in theory. The field now offers
both a taxonomy of adversarial access levels and a unifying perspective in which privacy
risk emerges from the statistical and memorization properties of the learning process itself.



3.5. Summary and Conceptual Taxonomy

40

Table 3.1: Taxonomy of membership inference attacks by access level and methodological principle.

Access Level

Representative Works

Core Insights and Contributions

Black-box (Con-
fidence)

White-box (Gra-
dient)

Representation-
Level (Con-
trastive)

Label-Only (De-
cision)

Formal / Statisti-
cal (Auditing)

Shokri et al. (2017); Salem
et al. (2018)

Nasr et al. (2019); Leino &
Fredrikson (2020)

Liu et al. (2021)

Choquette-Choo et
al.  (2021); Li &
Zhang (2021); Peng et
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Chapter 4

Methodology

This chapter presents the experimental methodology used to evaluate how training con-
figurations influence both model utility and privacy leakage under different adversarial
settings. Three types of membership inference attacks (MIAs) are implemented, represent-
ing a progression in attacker capability and realism:

1. Score-based attack: classical confidence-based MIA applied across multiple datasets.

2. One-shadow model attack: learning-based MIA using one auxiliary model [4] trained
on disjoint data .

3. Transfer (label-only) attack: strongest black-box variant using label-only access and
surrogate training [5] .

4.1 Experimental scope and principles

The primary objective is to quantify the relationship between generalisation and privacy
leakage in vision models trained with and without differential privacy. All experiments are
implemented in PyTorch with Opacus for DP-SGD training. Random seeds and determin-
istic backends are fixed to ensure reproducibility. Training and evaluation are performed
on a single GPU when available (device="cuda").

4.1.1 Training regimes

Each dataset or attack configuration follows one of four possible regimes:

1. Baseline: non-private, no explicit regularisation.

2. Regularised: dropout and/or early stopping (ES) to mitigate overfitting.
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3. DP: training with differentially private stochastic gradient descent (DP-SGD).

4. DP+Regularised: combination of DP-SGD and regularisation .

The DP mechanism follows the standard per-sample gradient clipping and Gaussian
noise addition implemented in Opacus. Noise multipliers ¢ € {0.5,0.8,1.0,1.2,1.5} are
tested, with clipping norm C=1.0 and  ~ 1/Ngain. All models use batch size 256 and
learning rate 10~3. Training proceeds for up to 100 epochs, with early stopping (patience
= 10) when enabled.

4.1.2 Evaluation metrics

Each attack is evaluated using three privacy metrics:
(i) AUC, (ii) TPR@0.1% (FPR = 0.001), (iii) TPR@1% (FPR = 0.01).

The Area Under the ROC Curve (AUC) measures overall separability between members and
non-members, while TPR@FPR values quantify attack success under strict false-positive
constraints, following best practices in security evaluation [3, 26]. Model utility is mea-
sured as top-1 test accuracy, representing true generalisation to unseen data.

4.2 Score-based membership inference attack

42,1 Threat model

The score-based attack represents the classical black-box MIA of Shokri et al. [2]. The
attacker can query the model fy and observe its softmax output vector. The assumption is
that training samples yield higher predicted confidence than unseen samples, making the
maximum softmax probability a useful membership indicator.

4.2.2 Attack formulation

For each queried sample x, the adversary computes:
s(x) = myaxfg(x)y,

where fy(x), denotes the predicted probability for class y. Membership is inferred by
thresholding s(x); higher values imply stronger evidence of membership. Sweeping the
threshold T across all possible values produces the ROC curve, from which AUC and
TPR@FPR are derived.
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4.2.3 Datasets and preprocessing

This attack is applied to five visual datasets: CIFAR-10, CIFAR-100, OCTMNIST, RetinaM-
NIST, and PathMNIST. Each dataset is split into training, validation, and test partitions
as shown in Table 4.1. A balanced evaluation set is created by combining equal numbers
of member (training) and non-member (test) samples. All images are normalised to [0, 1],
and medical datasets are resized to 28 x28 pixels. For transfer-learning runs, ImageNet
normalisation and resizing to 224 x224 are used.

Table 4.1: Dataset characteristics and membership-evaluation composition for the score-based attack.

Dataset Domain Input Classes Train/Val/Test MIA (M/NM)
CIFAR-10 Natural images  3x32x32 10 45k / 5k / 10k 10k / 10k
CIFAR-100 Natural images ~ 3x32x32 100 45k / 5k / 10k 10k / 10k
OCTMNIST Retinal OCT scans 3 x28x28 4 97k / 10k / 1k 5k / 5k
RetinaMNIST Fundus camera 3x28x%x28 5 1.1k / 0.1k / 0.4k 0.4k / 0.4k
PathMNIST Colon pathology ~ 3x28x28 9 90k / 10k / 7.2k 7.2k / 7.2k

424 Architectures and training regimes

The architectures used for the score-based experiments are listed in Table ??. Each model
family supports regularisation (dropout, early stopping) and DP training through the Opa-
cus engine. For DP-SGD configurations, BatchNorm layers are replaced with GroupNorm
to maintain privacy accounting consistency. All models are trained for up to 100 epochs
or until early stopping is triggered based on validation performance.

Table 4.2: Model families and corresponding training regimes for score-based MIA experiments.

Dataset Model type Regularization DP mechanism

CIFAR-10 CNN (Tanh / LeakyReLU) Dropout, ES DP-SGD (Opacus)
CIFAR-100 ResNet-18 / WideResNet-28-10  Dropout, ES ~ DP-SGD (BN—GN)
OCTMNIST ResNet-18 (28x28) Dropout, ES ~ DP-SGD (BN—GN)
RetinaMNIST ResNet-18 (28 x28) Dropout, ES DP-SGD (BN—GN)
PathMNIST ResNet-18 (28 x28) Dropout, ES ~ DP-S5GD (BN—GN)

4.2.5 Evaluation

For each configuration, we compute the ROC curve, AUC, TPR@0.1%, and TPR@1%. These
results serve as the baseline privacy benchmarks for comparison against the one-shadow
and transfer attacks, which target CIFAR-10 more specifically.
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4.3 One-shadow model membership inference attack (CIFAR-10)

4.3.1 Threat model

The one-shadow attack [4] assumes an adversary with black-box access to the target model
and a separate dataset from the same distribution. The attacker trains a single shadow
model g4 to emulate the target’s behaviour on member and non-member data, then learns
an attack classifier to distinguish them. The adversary observes softmax outputs (class
posterior probabilities) from the shadow model but never accesses the target’s parameters.

4.3.2 Dataset split

CIFAR-10. The CIFAR-10 dataset (60,000 images, 6,000 per class) is split into two disjoint,
class-balanced pools:
Dtarget = 30,000, Dghadow = 30,000.

Within each pool we create stratified subsets:

Dtarget : 23,000 train, 2,000 val, 5,000 test;
Dghadow : 14,000 train, 1,000 val, 15,000 out.

All splits preserve per-class balance and are mutually disjoint.

PathMNIST. PathMNIST (107,180 patches) is handled with a global concatenation of
the original train/val/test partitions followed by a reproducible global shuffle (fixed
RNG seed). Fixed, non-stratified counts are allocated as:

Dtarget : 40,552 train, 3,039 val, 10,000 test;
Dahadow : 25,009 train, 1,786 val, 26,794 out.

These index sets are non-overlapping and cover the entire dataset. Because the split is
not class-stratified, per-class counts may vary across splits; we keep this design to reflect
realistic clinical imbalances.

4.3.3 Model architecture

Target and shadow models share the same lightweight TanhCNN template. For CIFAR-
10 the network outputs 10 logits, for PathMNIST the same template is used with a 9-logit
output head. Implementation details (two 3 x 3 conv layers with tanh + 2 X 2 max-pooling,
a 128-unit FC, optional dropout controlled by p) follow the codebase; we omit further low-
level specifics here for brevity. Dropout probability p is toggled to model Baseline (no
dropout), Regularised, and DP+Regularised regimes.
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4.3.4 Attack construction

For both datasets the attack pipeline is identical:

1. Train the shadow model on Dghadow, train and validate on Dghadow,val-

2. For every sample in Dgpadow train (embers, label m=1) and Dghadow,out (NON-members,
label m=0), query the trained shadow model and extract features: the top-3 predicted
probabilities (sorted descending) and the predicted class label.

3. Assemble a binary attack dataset of feature vectors and membership labels (features, m).
Train a binary classifier (the attack model) on this dataset.

4. To evaluate leakage, query the target model on its own training set (Dtarget,train, true
members) and on held-out non-members (Dtarget test). Apply the trained attack model
to these predictions to produce membership scores and compute evaluation metrics
(ROC, AUC, and TPR at low FPR thresholds).

All choices (top-3 posteriors, use of predicted class, and the single-shadow workflow)
match the canonical shadow model, black-box attack methodology [2, 4] used elsewhere
in this work.

4.3.5 Training regimes and evaluation

The shadow and target models are trained under four regimes: Baseline, Regularised
(dropout p = 0.3, early stopping), DP (noise multiplier ¢ € {0.8,1.2}), and DP + Reg-
ularised (DP-SGD with the same ¢ values combined with dropout and early stopping).
Both shadow and target models are trained for up to 100 epochs, or until early stopping
is triggered on the respective validation split. The attack model is trained without DP
constraints.

Privacy leakage is quantified using Area Under the ROC Curve (AUC) and low-FPR
diagnostics (TPR@0.1% and TPR@1%). Evaluation is performed on balanced membership
evaluation sets: for CIFAR-10 we use 5,000 members and 5,000 non-members, for PathM-
NIST we use 10,000 members and 10,000 non-members. These metrics measure how effec-
tively a learned discriminator recovers membership compared to simple threshold-based
baselines, with special emphasis on performance at very low false-positive rates relevant
to practical adversaries.

4.4 Transfer (label-only) membership inference attack (CIFAR-10)

441 Threat model

The transfer (label-only) attack [5] models the most restrictive black-box adversary. The
attacker can query the target model fy but only observes the top-1 predicted class label,
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not confidence scores or logits. The attacker also controls a large, disjoint dataset drawn
from the same distribution. This auxiliary data is relabelled by querying the target model,
and then used to train a surrogate model that imitates the target’s decision boundary.

4.4.2 Dataset split

CIFAR-10. We explicitly separate a small “private” target model from a data-rich attacker.
CIFAR-10 is partitioned as:

Target:  Diarget = 3,000 (100 train, 100 val, 100 test per class),
Shadow: Dgpadgow = 45,000 (4,500 per class).

The remaining 15,000 samples (1,500 per class) are discarded. The evaluation pool for
membership inference consists of 1,000 members (the target training set) and 1,000 non-
members (the target test set), with 100 per class in each.

PathMNIST. We apply the same logic to PathMNIST (9-class histopathology patches).
After concatenating the original train/val/test splits into a single indexed pool, we
sample per class using fixed quotas:

Target:  Dhiarget = 300 per class (100 train, 100 val, 100 test per class),
Shadow: Dghadow = 4,500 per class.

For each class ¢, we first allocate 100 samples t0 Diarget train, 100 t0 Diargetval, and 100 to
Dtarget test, and then assign up to 4,500 further samples of that class to Dgagow- If a rare
class does not have enough examples to satisfy the full 4,500 shadow quota, the shadow
portion for that class is reduced accordingly. As in CIFAR-10, evaluation uses two balanced
sets drawn from the target model only: members taken from Diarget train (100 per class) and
non-members from Diarget test (100 per class), i.e. 1,000 vs. 1,000 when 10 classes are present
and ~ 900 vs. ~ 900 in the 9-class case, subject to class availability.

All index sets are non-overlapping: no image used to train the target ever appears in
the attacker’s shadow pool.

4.4.3 Model architecture

Both the target model and the attacker’s surrogate model use the same small TanhCNN used
in the one-shadow setting. This network consists of two 3 x3 convolutional layers with tanh
activations and 2 x2 max-pooling, followed by a fully connected layer of 128 units (again
with tanh), optional dropout, and a final linear output layer. The only difference between
datasets is the output dimensionality: 10 logits for CIFAR-10, 9 logits for PathMNIST. We
intentionally keep the architecture simple and aligned across target and surrogate, so that
attack success reflects the label-only pipeline rather than model capacity differences.
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4.4.4 Attack procedure

The transfer (label-only) attack is carried out in three stages: shadow dataset relabeling,
shadow model training, and membership inference.

Shadow dataset relabeling. The adversary possesses a shadow dataset Dgpaqow drawn
from the same distribution as the target dataset Diarget. To train a shadow model, the
adversary first queries the target model,that acts as an oracle, f on each x € Dgpaqow and
records only the top-1 predicted label. The resulting relabelled pairs (x, J = arg max fp(x))
link the shadow dataset to the target’s decision behaviour, enabling the next stage of model
imitation.

Shadow model training. The adversary trains a shadow model S on the relabelled dataset
(x,7) € Dshadow using standard supervised learning with cross-entropy loss, SGD/Adam
optimisation, and optional early stopping. A small validation split of Dgpaqow is used to
tune hyperparameters and to later calibrate the membership threshold.

Membership inference. Given a candidate input x with ground-truth label y, the adver-
sary computes the shadow model’s cross-entropy loss:

K
Lcp(x;8) = =) 12 log pi(x; ),
i=1

where p;(x;S) is the predicted probability for class i, 1;;_,; is the one-hot encoding of the
true label, and K is the number of classes. If Lcg(x;S) is smaller than a threshold T (esti-
mated from the shadow validation set), the sample is classified as a member; otherwise, it
is considered a non-member. This decision rule is applied identically across both CIFAR-10
and PathMNIST, using their respective target models for relabeling and the same TanhCNN
architecture (10 logits for CIFAR-10, 9 logits for PathMNIST).

4.4.5 Training regimes and evaluation

The target model is trained under four regimes: Baseline, Regularised (dropout p =
0.3), DP (noise multiplier o € {0.8,1.2}), and DP + Regularised (DP-SGD with the same
o values combined with dropout). To intentionally induce overfitting and thus amplify
potential membership signals, the target model is trained for 200 epochs, whereas the
shadow model is trained for 100 epochs using the same optimisation settings. The Shadow
model is always trained non-privately.

Privacy leakage is quantified using AUC and low-FPR diagnostics (TPR@0.1% and
TPR@1%). Evaluation is conducted on balanced membership evaluation sets derived from
the target model: for CIFAR-10 we use 1,000 members and 1,000 non-members; for PathM-
NIST we use 900 members and 900 non-members (100 per class across nine classes, subject
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to class availability). This setup reflects a realistic MLaaS scenario in which an adver-
sary trains a strong surrogate from label-only outputs and tests membership under strict
low-FPR conditions.



Chapter 5

Results

This chapter presents the empirical findings of this study, evaluating how differential
privacy and regularisation influence both model utility and privacy leakage across all
datasets. Three classes of membership inference attacks are considered: (1) a score-based
attack using model confidence scores, (2) a shadow-model attack trained on auxiliary
data from the same distribution, and (3) a transfer attack operating in a label-only setting.
While the score-based experiments additionally report classification accuracy and privacy
budgets (¢) to capture the privacy—utility trade-off, the shadow and transfer attacks focus
solely on privacy leakage, expressed through ROC-based metrics.

For all experiments, target models are trained under four regimes: (1) standard non-
private, (2) regularised (dropout + early stopping), (3) DP-SGD with varying noise multi-
pliers o, and (4) DP-SGD combined with regularisation. Differential privacy budgets are
computed using the Opacus accountant at the retained checkpoint, and classification re-
sults are reported separately for member (training) and non-member (held-out) samples to
expose overfitting behaviour.

Privacy leakage is quantified using the Area Under the ROC Curve (AUC) and the
true positive rate (TPR) at low false positive rates (FPR = 0.1% and 1%), which measure
how effectively an adversary can distinguish members from non-members. Across all
datasets, a consistent trend emerges: non-private baselines show strong overfitting and
high leakage (AUC > 50%), regularisation mitigates this effect, and DP-SGD, especially
when combined with dropout and early stopping, reduces attack success to near-random
levels (AUC ~ 50%, TPR =~ 0). These results collectively demonstrate that the combination
of differential privacy and regularisation provides effective empirical protection against
membership inference.
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5.1 Score-Based Attack

5.1.1 CIFAR-10

The CIFAR-10 experiments evaluate two lightweight convolutional architectures trained
under four regimes: (1) standard non-private, (2) regularised (dropout + early stopping),
(3) DP-SGD, and (4) DP-SGD combined with regularisation. All metrics correspond to the
final run of each configuration; for runs with early stopping, the checkpoint with the lowest
validation loss is used. For differentially private models, the privacy budget ¢ is obtained
from the Opacus accountant at the final epoch of the selected checkpoint. The ROC and
AUC values are computed using the membership-flagged combined evaluation set intro-
duced in Chapter 4. Complete training curves, ROC plots, confidence distributions, and
Colab notebooks for each configuration are provided in Appendix A.

Results

Table 5.1 summarises the classification performance for each configuration, reporting accu-
racy separately for members and non-members to capture both memorisation and gener-
alisation effects. Table 5.2 reports the aggregate privacy leakage in terms of the AUC of the
ROC curve for confidence-based membership inference attacks, while Table 5.3 provides
finer-grained insight using the true-positive rate (TPR) under very low false-positive-rate
(FPR) regimes (0.1 % and 1 %),

Table 5.1: CIFAR-10 utility metrics per configuration. Results correspond to the final run of each model; “-”
indicates non-DP runs.

Regime Model o e Acc. Members %) Acc. (Non-members %)
Standard TanhCNN - - 100.0 66.62
Regularised (ES) LeakyDropCNN - - 81.25 71.33
DP-5GD TanhCNN 0.5 32.63 66.20 61.31
DP-SGD TanhCNN 1.0 445 58.96 56.59
DP-SGD TanhCNN 1.5 233 56.16 54.75
DP-SGD + Regularised LeakyDropCNN (ES) 0.5 21.92 53.93 51.81
DP-SGD + Regularised LeakyDropCNN (ES) 1.0 2.90 45.13 43.46
DP-SGD + Regularised LeakyDropCNN (ES) 12 2.12 44.26 4415

DP-5GD + Regularised LeakyDropCNN (ES) 1.5 1.56 43.75 43.49
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Table 5.2: CIFAR-10 privacy metric (AUC of the ROC for confidence-based MIA). Final run per configuration.

Regime Model o AUC% (ROCQC)
Standard TanhCNN - 72.3
Regularised (ES) LeakyDropCNN - 52.2
DP-SGD TanhCNN 0.5 514
DP-SGD TanhCNN 1.0 50.7
DP-SGD TanhCNN 1.5 51.0
DP-5GD + Regularised LeakyDropCNN (ES) 0.5 50.1
DP-5GD + Regularised LeakyDropCNN (ES) 1.0 499
DP-SGD + Regularised LeakyDropCNN (ES) 1.2 50.3
DP-SGD + Regularised LeakyDropCNN (ES) 1.5 49.9

Table 5.3: CIFAR-10 privacy metrics based on True Positive Rate (TPR) at low False Positive Rates (FPR) for
confidence-based membership inference attacks. Final run per configuration.

Regime Model o TPR@0.1% FPR TPR@1% FPR
Standard TanhCNN - 0.0000 0.0000
Regularised (ES) LeakyDropCNN - 0.0006 0.0088
DP-SGD TanhCNN 0.5 0.0000 0.0124
DP-SGD TanhCNN 1.0 0.0009 0.0104
DP-SGD TanhCNN 1.5 0.0012 0.0110
DP-SGD + Regularised LeakyDropCNN (ES) 0.5 0.0006 0.0109
DP-SGD + Regularised LeakyDropCNN (ES) 1.0 0.0009 0.0095
DP-SGD + Regularised LeakyDropCNN (ES) 1.2 0.0011 0.0096
DP-SGD + Regularised LeakyDropCNN (ES) 1.5 0.0013 0.0092

The non-private baseline (TanhCNN) shows complete memorisation of its training data
(100% member accuracy) and clear overfitting, reflected in the highest privacy leakage
(AUC = 72.3%). Introducing regularisation (LeakyDropCNN) reduces this gap between
members and non-members (81.3% vs. 71.3%) and lowers the AUC to 52.2%, confirming
that improved generalisation mitigates membership inference risk.

As the noise multiplier ¢ increases under DP-SGD, both utility and privacy budget
¢ decline, while AUC values approach 50% and TPRs at 0.1%-1% FPR drop near zero,
indicating negligible leakage. The combined DP-SGD + regularised configurations achieve
the strongest privacy protection (AUC 50%, TPR@1% 0.01) albeit at the cost of reduced
accuracy. Overall, the results illustrate a clear privacy-utility trade-off: regularisation and
differential privacy both suppress overfitting and make members and non-members nearly
indistinguishable.
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5.1.2 CIFAR-100

The CIFAR-100 experiments evaluate three architectures of differing capacity and initial-
ization: (1) a ResNet-18 model trained only on Cifar-100 on the native 32 x 32 inputs, (2) a
ResNet-18 model using ImageNet-1K [36] pretrained weights with a frozen backbone, and
(3) a WideResNet-28-10 trained from non-pretrained weights. Each architecture is trained
under four regimes: standard non-private, regularised (dropout + early stopping), DP-
SGD, and DP-SGD with regularisation. For the non-pretrained ResNet-18, only one dif-
ferentially private configuration is evaluated (¢ = 1.0), as it primarily serves to contrast
transfer learning with full retraining under privacy noise. All metrics correspond to the
final run of each configuration, and for early-stopped runs, the checkpoint with the lowest
validation loss is used. For differentially private models, the privacy budget ¢ is obtained
from the Opacus accountant at the epoch of the retained checkpoint. Complete figures,
including training curves, ROC plots, confidence distributions, and Colab notebooks, are
provided in Appendix A.

Results

Table 5.4 reports model utility in terms of member and non-member accuracies and privacy
budgets, while able 5.5 presents the AUC scores of the confidence-based membership
inference attack, and Table 5.6 details the corresponding true positive rates (TPR) at low
false positive rates (FPR = 0.1% and 1% For transfer-learning experiments (ResNet-18),
input images are resized to 224 x 224 and normalized with ImageNet statistics while the
WideResNet and the ResNet uses the native CIFAR-100 normalization and 32x32 inputs.
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Table 5.4: CIFAR-100 utility metrics per configuration. “~” denotes non-DP runs.

Regime Model Lo e Acc. (Members %) Acc. (Non-members
Standard ResNet-18 (transfer) - - 73.80 59.86
Regularised (ES) ResNet-18 (transfer + ES) - - 69.68 60.89
DP-SGD ResNet-18 (transfer) 0.5 31.32 59.87 54.37
DP-SGD ResNet-18 (transfer) 1.0 4.24 53.90 49.65
DP-SGD ResNet-18 (transfer) 1.2 3.08 52.28 48.76
DP-SGD ResNet-18 (transfer) 1.5 221 50.05 46.99
DP-SGD + Regularised ResNet-18 (transfer + ES) 0.5 20.90 59.18 55.56
DP-SGD + Regularised ResNet-18 (transfer + ES) 1.0 3.13 53.44 51.29
DP-SGD + Regularised ResNet-18 (transfer + ES) 1.2 296 52.32 50.07
DP-SGD + Regularised ResNet-18 (transfer + ES) 1.5 1.87 51.24 47.60
Standard ResNet-18 (non-pretrained) - - 99.78 54.31
Regularised (ES) ResNet-18 (non-pretrained + ES) - - 59.62 48.11
DP-SGD ResNet-18 (non-pretrained) 1.0 2.83 14.08 12.57
DP-SGD + Regularised ResNet-18 (non-pretrained + ES) 1.0 2.83 12.87 12.29
Standard WideResNet-28-10 - - 94.46 54.26
Regularised (ES) WideResNet-28-10 + ES - - 76.04 57.58
DP-SGD WideResNet-28-10 1.0 297 15.55 14.61

DP-5GD + Regularised WideResNet-28-10 + ES 1.0 297 13.62 12.95
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Table 5.5: CIFAR-100 privacy metric (AUC of the ROC for confidence-based MIA). Final run per configuration.

Regime Model o AUC% (ROCQ)
Standard ResNet-18 (transfer) - 52.0
Regularised (ES) ResNet-18 (transfer + ES) - 52.0
DP-SGD ResNet-18 (transfer) 0.5 52.0
DP-SGD ResNet-18 (transfer) 1.0 51.0
DP-SGD ResNet-18 (transfer) 1.2 51.0
DP-SGD ResNet-18 (transfer) 1.5 51.0
DP-SGD + Regularised ResNet-18 (transfer + ES) 0.5 51.0
DP-SGD + Regularised ResNet-18 (transfer + ES) 1.0 51.0
DP-SGD + Regularised ResNet-18 (transfer + ES) 12 51.0
DP-SGD + Regularised ResNet-18 (transfer + ES) 1.5 52.0
Standard ResNet-18 (non-pretrained) - 84.0
Regularised (ES) ResNet-18 (non-pretrained + ES) - 54.0
DP-SGD ResNet-18 (non-pretrained) 1.0 50.0
DP-SGD + Regularised ResNet-18 (non-pretrained + ES) 1.0 50.0
Standard WideResNet-28-10 - 72.0
Regularised (ES) WideResNet-28-10 + ES - 56.0
DP-SGD WideResNet-28-10 1.0 51.0
DP-SGD + Regularised WideResNet-28-10 + ES 1.0 50.0

Table 5.6: CIFAR-100 privacy metrics based on True Positive Rate (TPR) at low False Positive Rates (FPR) for
confidence-based membership inference attacks. Final run per configuration.

Regime Model oc TPR@0.1% FPR TPR@1.0% FPR
Standard ResNet-18 (transfer) - 0.0004 0.0098
Regularised (ES) ResNet-18 (transfer + ES) - 0.0009 0.0098
DP-SGD ResNet-18 (transfer) 0.5 0.0006 0.0084
DP-SGD ResNet-18 (transfer) 1.0 0.0008 0.0087
DP-SGD ResNet-18 (transfer) 1.2 0.0020 0.0117
DP-SGD ResNet-18 (transfer) 1.5 0.0007 0.0112
DP-SGD + Regularised ResNet-18 (transfer + ES) 0.5 0.0013 0.0118
DP-5GD + Regularised ResNet-18 (transfer + ES) 1.0 0.0017 0.0122
DP-SGD + Regularised ResNet-18 (transfer + ES) 1.2 0.0010 0.0121
DP-SGD + Regularised ResNet-18 (transfer + ES) 1.5 0.0009 0.0107
Standard ResNet-18 (non-pretrained) - 0.0000 0.0000
Regularised (ES) ResNet-18 (non-pretrained + ES) - 0.0004 0.0126
DP-SGD ResNet-18 (non-pretrained) 1.0 0.0012 0.0114

DP-SGD + Regularised ResNet-18 (non-pretrained + ES) 1.0 0.0010 0.0116
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Table 5.4 reports classification utility and privacy budgets, while Table 5.5 presents the
AUC scores of the confidence-based membership inference attack, and Table 5.6 details the
corresponding true positive rates (TPR) at low false positive rates (FPR = 0.1% and 1%).

For the transfer-learning ResNet-18 (ImageNet-initialised, 224 x224 inputs), accuracy
remains around 50% across the non-private and regularised settings, with AUC values
near 51-52% and TPRs below 1%. These near-random privacy scores indicate that member
and non-member samples are largely indistinguishable, even without differential privacy.
As the DP-S5GD noise multiplier ¢ increases, both accuracy and ¢ decline, yet AUC and
low-FPR TPRs remain stable, confirming that privacy risk is already minimal.

In contrast, the non-pretrained ResNet-18 and WideResNet-28-10 baselines trained
from scratch show strong overfitting (approximately 100% member vs. 54% non-member
accuracy) and significantly higher leakage (AUC = 0.84 and 0.72). Applying early stopping
or DP-SGD reduces these to random-guess levels (AUC ~ 50%, TPR@1% < 0.01), while
also lowering utility. Overall, CIFAR-100 follows the same trend as CIFAR-10: regulari-
sation, pre-training, and differential privacy each suppress overfitting and drive privacy
metrics toward randomness, strengthening resistance to membership inference at the cost
of accuracy.

51.3 OCTMNIST

The OCTMNIST experiments evaluate a compact ResNet-18 architecture adapted for 28 x
28 retinal OCT images from the MedMNIST collection [37]. All models share the same
backbone, differing only by the use of dropout, early stopping, and differentially private
optimization. Specifically, the four regimes include: standard non-private, regularised
(dropout + early stopping), DP-SGD, and DP-SGD with regularisation. All results cor-
respond to the final run of each configuration, with early-stopped models restored from
the checkpoint achieving the lowest validation loss. For DP runs, the privacy budget ¢ is
computed by the Opacus accountant at the final epoch of the selected checkpoint. Training
and evaluation follow the same unified protocol described in Chapter 4. Complete training
curves, ROC plots, confidence distributions, and Colab notebooks for each configuration
are available in Appendix A.

Results

Tables 5.7-5.9 summarise the OCTMNIST experiments. Table 5.7 reports member and
non-member accuracies with the corresponding privacy budgets, Table 5.8 presents AUC
values for the confidence-based MIA, and Table 5.9 details the true positive rates (TPR) at
low false positive rates (FPR = 0.1% and 1%).
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Table 5.7: OCTMNIST utility metrics per configuration. Results correspond to the final run of each model;
“—” indicates non-DP runs.

Regime Model o & Acc. (Members %) Acc. (Non-members 9
Standard ResNet-18 (28x28) - - 99.76 92.86
Regularised (ES) ResNet-18 + Dropout (p=0.2) - - 94.66 92.18
DP-SGD ResNet-18 (28x28) 1.0 283 84.98 85.20
DP-SGD ResNet-18 (28x28) 12 218 85.06 84.68
DP-SGD ResNet-18 (28x28) 15 1.50 83.26 83.48
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.0 2.33 82.30 82.76
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.2 1.28 79.68 79.62
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.5 0.85 77.88 77.86

Table 5.8: OCTMNIST privacy metric (AUC of the ROC for confidence-based MIA). Final run per configura-
tion.

Regime Model o AUC% (ROCQC)
Standard ResNet-18 (28x28) - 55.0
Regularised (ES) ResNet-18 + Dropout (p=0.2) - 51.0
DP-SGD ResNet-18 (28x28) 1.0 49.0
DP-SGD ResNet-18 (28x28) 1.2 49.0
DP-SGD ResNet-18 (28x28) 1.5 50.0
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.0 50.0
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.2 50.0
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.5 50.0

Table 5.9: OCTMNIST privacy metrics based on True Positive Rate (TPR) at low False Positive Rates (FPR) for
confidence-based membership inference attacks. Final run per configuration.

Regime Model o TPR@0.1% FPR TPR@1.0% FPR
Standard ResNet-18 (28x28) - 0.0000 0.0000
Regularised (ES) ResNet-18 + Dropout (p=0.2) - 0.0000 0.0118
DP-SGD ResNet-18 (28x28) 1.0 0.0004 0.0100
DP-SGD ResNet-18 (28x28) 1.2 0.0018 0.0130
DP-SGD ResNet-18 (28x28) 15 0.0022 0.0120
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.0 0.0008 0.0068
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.2 0.0006 0.0106

DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.5 0.0010 0.0102
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The non-private ResNet-18 baseline achieves high accuracy on unseen data (92.9%)
with a small membership gap and moderate leakage (AUC = 55%). Adding dropout
and early stopping narrows the gap and reduces the AUC to near-random levels (51%),
confirming that regularisation mitigates overfitting without harming utility.

Under differential privacy, both accuracy and ¢ decrease slightly as the noise multiplier
o increases, but privacy metrics stabilise: AUC ~ 49-50% and TPR values below 1% even
at 1% FPR. Combining DP-SGD with regularisation yields the most balanced trade-off,
maintaining accuracy around 78-83% while eliminating measurable membership leakage.
Overall, OCTMNIST demonstrates strong resilience to inference attacks, with DP and reg-
ularisation jointly achieving high utility and near-perfect privacy.

5.1.4 RetinaMNIST

The RetinaMNIST experiments evaluate a ResNet-18 model adapted for 28 x 28 retinal
fundus images from the MedMNIST collection [37]. All configurations share the same
backbone while varying in the use of dropout, early stopping, and differentially private
optimisation. The four regimes examined are: (1) standard non-private, (2) regularised
(dropout + early stopping), (3) DP-SGD, and (4) DP-SGD combined with regularisation.
All metrics correspond to the final run of each configuration; for early-stopped runs, the
checkpoint with the lowest validation loss is restored. The privacy budget ¢ for DP models
is obtained from the Opacus accountant at the final epoch of the selected checkpoint.
All experiments follow the same unified training and evaluation protocol described in
Chapter 4. Full training curves, ROC plots, confidence distributions, and Colab notebooks
for each configuration are provided in Appendix A.

Results

Tables 5.10-5.12 summarise the RetinaMNIST results. Table 5.10 reports member and non-
member accuracies with corresponding privacy budgets, Table 5.11 lists the AUC scores
from confidence-based membership inference, and Table 5.12 presents TPR values at low
false positive rates (FPR = 0.1% and 1%).
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Table 5.10: RetinaMNIST utility metrics per configuration. Results correspond to the final run of each model;
“—” indicates non-DP runs.

Regime Model o £ Acc. (Members %) Acc. (Non-members
Standard ResNet-18 (28x28) - - 92.75 51.75
Regularised (ES) ResNet-18 + Dropout (p=0.2) - - 91.00 49.00
DP-SGD ResNet-18 (28x28) 0.5 155.24 61.00 54.50
DP-SGD ResNet-18 (28x28) 1.0 3517 57.50 53.00
DP-SGD ResNet-18 (28x28) 12 2523 54.00 52.25
DP-SGD ResNet-18 (28x28) 1.5 17.31 55.00 52.00

DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 0.5 58.53 51.75 53.75
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.0 15.16 49.25 55.25
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.2 6.18 41.75 43.50
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.5 4.34 41.75 43.50

Table 5.11: RetinaMNIST privacy metric (AUC of the ROC for confidence-based MIA). Final run per configu-
ration.

Regime Model o AUC% (ROCQC)
Standard ResNet-18 (28x28) - 79.0
Regularised (ES) ResNet-18 + Dropout (p=0.2) - 65.0
DP-SGD ResNet-18 (28x28) 0.5 50.0
DP-SGD ResNet-18 (28x28) 1.0 49.0
DP-SGD ResNet-18 (28x28) 1.2 50.0
DP-SGD ResNet-18 (28x28) 15 50.0
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 0.5 47.0
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.0 50.0
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.2 48.0
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.5 47.0
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Table 5.12: RetinaMNIST privacy metrics based on True Positive Rate (TPR) at low False Positive Rates (FPR)
for confidence-based membership inference attacks. Final run per configuration.

Regime Model o TPR@0.1% FPR TPR@1.0% FPR
Standard ResNet-18 (28x28) - 0.0100 0.0300
Regularised (ES) ResNet-18 + Dropout (p=0.2) - 0.0075 0.0200
DP-SGD ResNet-18 (28x28) 0.5 0.0050 0.0075
DP-SGD ResNet-18 (28x28) 1.0 0.0025 0.0125
DP-SGD ResNet-18 (28x28) 12 0.0025 0.0125
DP-SGD ResNet-18 (28x28) 15 0.0025 0.0075
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 0.5 0.0150 0.0225
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.0 0.0000 0.0250
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.2 0.0000 0.0150
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.5 0.0000 0.0150

The non-private baseline exhibits clear overfitting, reaching 92.8% member accuracy
but only 51.8% on non-members, with a high leakage level (AUC = 79%) and a TPR@1%
FPR of 0.03, indicating that an adversary can successfully identify a subset of training
samples even under tight precision constraints. Introducing dropout and early stopping
reduces this gap and lowers the AUC to 65%, showing that regularisation mitigates mem-
orisation but does not fully stabilise learning on such a small dataset.

Under differential privacy, both accuracy and privacy budget ¢ decline with increasing
noise, while privacy leakage is effectively neutralised: AUC values converge to ~50%
and TPRs fall below 1% at 1% FPR. The combined DP-SGD + regularised configurations
achieve the most balanced outcome, maintaining non-member accuracy around 55% while
eliminating measurable leakage. However, given the limited dataset size (1.6k samples),
the observed reduction in AUC under strong noise is likely driven by underfitting rather
than genuine improvements in generalisation. Overall, RetinaMNIST demonstrates that
privacy-preserving optimisation can fully suppress membership signals, though at the
cost of reduced learning capacity on data-scarce domains.

5.1.5 PathMNIST

The PathMNIST experiments evaluate a ResNet-18 model adapted for 28 x 28 histopathol-
ogy images from the MedMNIST collection [37]. All models share the same backbone
and differ only by the use of dropout, early stopping, and differentially private optimi-
sation. As in previous datasets, four regimes are considered: (1) standard non-private,
(2) regularised (dropout + early stopping), (3) DP-SGD, and (4) DP-SGD combined with
regularisation. Each result corresponds to the final run of the given configuration, with
early-stopped models restored from the checkpoint yielding the lowest validation loss.
For DP runs, the privacy budget ¢ is recorded from the Opacus accountant at the final
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epoch of the retained checkpoint. All experiments follow the unified training and evalu-
ation pipeline introduced in Chapter 4. Complete training curves, ROC plots, confidence
distributions, and Colab notebooks are available in Appendix A.

Results

Tables 5.13-5.15 summarise the PathMNIST experiments. Table 5.13 reports classification
accuracy and privacy budgets, Table 5.14 lists the AUC values for confidence-based mem-
bership inference, and Table 5.15 presents the corresponding true positive rates (TPR) at
low false positive rates (FPR = 0.1% and 1%).

Table 5.13: PathMNIST utility metrics per configuration. Results correspond to the final run of each model;
“~" indicates non-DP runs.

Regime Model Lo e Acc. Members %) Acc. (Non-members
Standard ResNet-18 (28x28) - - 99.97 89.36
Regularised (ES) ResNet-18 + Dropout (p=0.2) - - 99.50 89.60
DP-SGD ResNet-18 (28x28) 05 22.56 87.26 79.47
DP-SGD ResNet-18 (28x28) 1.0 295 83.59 80.43
DP-SGD ResNet-18 (28x28) 12 217 83.43 79.42
DP-SGD ResNet-18 (28x28) 15 1.56 81.18 75.89
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 0.5 18.45 84.48 80.24
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.0 1.40 74.22 73.55
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.2 1.00 72.34 74.39
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.5 0.90 73.23 71.43

Table 5.14: PathMNIST privacy metric (AUC of the ROC for confidence-based MIA). Final run per configura-
tion.

Regime Model o AUC% (ROQ)
Standard ResNet-18 (28x28) - 68.0
Regularised (ES) ResNet-18 + Dropout (p=0.2) - 61.0
DP-SGD ResNet-18 (28x28) 0.5 59.0
DP-SGD ResNet-18 (28x28) 1.0 59.0
DP-SGD ResNet-18 (28x28) 1.2 59.0
DP-SGD ResNet-18 (28x28) 1.5 58.0
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 0.5 60.0
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.0 54.0
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.2 50.0

DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.5 52.0
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Table 5.15: PathMNIST privacy metrics based on True Positive Rate (TPR) at low False Positive Rates (FPR)
for confidence-based membership inference attacks. Final run per configuration.

Regime Model o TPR@0.1% FPR TPR@1.0% FPR
Standard ResNet-18 (28x28) - 0.0000 0.0000
Regularised (ES) ResNet-18 + Dropout (p=0.2) - 0.0000 0.0000
DP-SGD ResNet-18 (28x28) 0.5 0.0000 0.0348
DP-SGD ResNet-18 (28x28) 1.0 0.0031 0.0298
DP-SGD ResNet-18 (28x28) 12 0.0025 0.0231
DP-SGD ResNet-18 (28x28) 15 0.0046 0.0436
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 0.5 0.0000 0.0192
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.0 0.0038 0.0242
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.2 0.0078 0.0237
DP-SGD + Regularised ResNet-18 + Dropout (p=0.2, ES) 1.5 0.0045 0.0240

The non-private baseline achieves high test accuracy (89.4%) but shows moderate pri-
vacy leakage with an AUC of 68%. At low-FPR thresholds, the attack reaches TPR@1% ~
0.03, revealing a small but measurable membership advantage. Introducing dropout and
early stopping maintains accuracy (89.6%) while lowering the AUC to 61%, confirming
that regularisation reduces overfitting and improves privacy resilience.

Under differential privacy, increasing the noise multiplier ¢ gradually reduces both
accuracy and the privacy budget ¢, while also lowering leakage. Between ¢ = 0.5 and
o = 1.2, TPR@1% decreases from 0.035 to 0.023, and the AUC drops to 59%. At c = 1.5, a
minor rebound in TPR (0.044) is observed, likely due to statistical variance, yet the overall
AUC remains low (58%), indicating stable privacy protection. The combined DP-SGD +
regularised configurations achieve the best trade-off: accuracy remains above 70%, while
AUC values converge to 50-52%, signifying near-complete resistance to confidence-based
inference. Overall, PathMNIST demonstrates that differential privacy and light regularisa-
tion jointly suppress overfitting and membership leakage while maintaining solid predic-
tive performance.

5.2 One Shadow-Model Attack

To ensure full transparency and reproducibility of the presented experiments, all Google
Colab notebooks used to implement and evaluate the shadow-model attack pipelines are
included in Appendix B. These notebooks document the complete workflow, from dataset
preparation and model training to privacy evaluation and result generation, allowing in-
dependent verification and future reuse of this work.
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5.2.1 CIFAR-10

Table 5.16 and Figure 5.1 summarise the results of the shadow-model membership infer-
ence attack on CIFAR-10.

Table 5.16: CIFAR-10 privacy metrics (AUC and low-FPR TPRs for Shadow-Model MIA). Final run per con-
figuration.

Regime Model o AUC% (ROC) TPR@0.1% FPR TPR@1% FPR
Standard TanhCNN - 82.3 0.0000 0.0000
Regularised (ES) TanhCNN (Dropout p = 0.3) - 55.9 0.0010 0.0086
DP-SGD TanhCNN 0.8 50.7 0.0014 0.0096
DP-SGD TanhCNN 12 499 0.0010 0.0058
DP-SGD + Regularised TanhCNN (Dropout p = 0.3, ES) 0.8 49.1 0.0004 0.0096
DP-SGD + Regularised TanhCNN (Dropout p = 0.3, ES) 1.2 50.0 0.0004 0.0070

The standard non-private TanhCNN exhibits the strongest privacy leakage, reaching an
AUC of 82.3%. However, despite the high overall separability, the corresponding low-FPR
metrics (TPR@0.1% and TPR@1%) remain at zero, indicating that the attack’s confidence
is concentrated in the mid-range of the ROC curve rather than at the stringent detection
thresholds that matter most for privacy. This behaviour suggests that while the model
clearly overfits to its training members, the adversary cannot identify them with high
precision under strict FPR constraints.

Introducing regularisation through dropout (p = 0.3) and early stopping drastically
reduces the attack’s success, lowering the AUC to 55.9%. The ROC curve flattens towards
the diagonal, confirming that regularisation mitigates overfitting-induced leakage. When
differential privacy is applied (DP-SGD with ¢ = 0.8 and ¢ = 1.2), the AUC values con-
verge around 50%, with negligible TPR values across all low-FPR points. Combining DP-
SGD with regularisation further stabilises this effect, producing ROC curves that almost
overlap with the random baseline. Overall, the progression from standard to regularised
and DP-trained regimes demonstrates a consistent monotonic improvement in privacy:
as noise injection and regularisation increase, the shadow attack’s advantage effectively
disappears.
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Membership Inference Attack — ROC Comparison
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Figure 5.1: ROC curves for Shadow-Model MIA on Cifar10.

5.2.2 PathMNIST

Table 5.17 and Figure 5.2 report the shadow-model membership inference results on PathM-
NIST.

Table 5.17: PathMNIST privacy metrics (AUC and low-FPR TPRs for Shadow-Model MIA). Final run per
configuration.

Regime Model o AUC% (ROC) TPR@0.1% FPR TPR@1% FPR
Standard TanhCNN - 59.2 0.0000 0.0089
Regularised (ES) TanhCNN (Dropout p = 0.3) - 53.4 0.0017 0.0095
DP-SGD TanhCNN 0.8 499 0.0011 0.0097
DP-SGD TanhCNN 12 49.9 0.0019 0.0101
DP-SGD + Regularised TanhCNN (Dropout p = 0.3, ES) 0.8 50.5 0.0010 0.0080
DP-SGD + Regularised TanhCNN (Dropout p = 0.3, ES) 1.2 50.1 0.0011 0.0095

Compared to CIFAR-10, the overall attack success is notably weaker, with all AUC



5.2. One Shadow-Model Attack 64

values clustering near random guessing. The standard non-private TanhCNN achieves
an AUC of 59.2%, indicating only a mild privacy leakage. Despite this, both TPR@0.1%
and TPR@1% remain close to zero, meaning that even the strongest attack configuration
cannot confidently identify individual members at strict false-positive thresholds. This
combination of moderate AUC but flat low-FPR performance suggests that the model’s
overfitting is limited and that its leakage occurs only in high-FPR regions of the ROC
curve.

Adding dropout and early stopping slightly reduces the AUC to 53.4%, further align-
ing the curve with the random baseline. When differential privacy is introduced (DP-SGD,
o = 0.8 and ¢ = 1.2), the AUC values approach 50% and the low-FPR TPRs remain below
0.01, confirming minimal attack advantage. The combination of DP-SGD and regularisa-
tion yields similar results, producing nearly identical ROC curves to the random diagonal.
Overall, the PathMNIST shadow-attack results highlight a consistently low level of privacy
risk across all configurations, with differential privacy and regularisation jointly ensuring
that membership inference becomes practically infeasible.
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Membership Inference Attack — ROC Comparison
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Figure 5.2: ROC curves for Shadow-Model MIA on PathMNIST.

5.3 Transfer Attack

To ensure full transparency and reproducibility of the presented experiments, all Google
Colab notebooks used to implement and evaluate the shadow-model attack pipelines are
included in Appendix B. These notebooks document the complete workflow, from dataset
preparation and model training to privacy evaluation and result generation, allowing in-
dependent verification and future reuse of this work.

5.3.1 CIFAR-10

Table 5.18 and Figure 5.3 summarise the results of the transfer-based membership inference
attack on CIFAR-10.
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Table 5.18: CIFAR-10 privacy metrics (AUC and low-FPR TPRs for Transfer MIA). Final run per configuration.

Regime Model o AUC% (ROC) TPR@0.1% FPR TPR@1% FPR
Standard TanhCNN - 77.1 0.0000 0.0000
Regularised (ES) TanhCNN (Dropout p = 0.3) - 60.5 0.0000 0.0020
DP-SGD TanhCNN 0.8 53.8 0.0050 0.0190
DP-SGD TanhCNN 12 53.7 0.0010 0.0190
DP-SGD + Regularised TanhCNN (Dropout p = 0.3, ES) 0.8 53.0 0.0030 0.0120
DP-SGD + Regularised TanhCNN (Dropout p = 0.3, ES) 1.2 52.5 0.0020 0.0170

The standard non-private TanhCNN exhibits a clear privacy vulnerability, achieving
an AUC of 77.1%. However, similar to the shadow-model setting, both TPR@0.1% and
TPR@1% remain at zero, indicating that while the attack succeeds overall, it fails to reli-
ably identify individual training samples under strict false-positive constraints. This be-
haviour reflects a high average separability that does not translate into confident low-FPR
detection.

Introducing dropout (p = 0.3) and early stopping significantly reduces the AUC to
60.5%, aligning the ROC curve closer to the random baseline. When differential privacy is
applied (DP-SGD with ¢ = 0.8 and ¢ = 1.2), the attack advantage further diminishes, with
AUC values converging near 53%. Although small positive TPR values appear at low FPRs
(below 0.02), they remain negligible and statistically insignificant. Combining DP-SGD
with regularisation yields the most privacy-preserving configuration, with AUC values
near 52% and flat ROC curves indistinguishable from random guessing. Overall, the
transfer attack confirms the same privacy trend observed in the shadow-model experiment:
regularisation and differential privacy jointly suppress membership leakage, reducing the
adversary’s advantage to a near-random level.
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Membership Inference Attack — ROC Comparison
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Figure 5.3: ROC curves for Tranfer MIA on Cifar-10.

5.3.2 PathMNIST

67

Table 5.19 and Figure ?? present the results of the transfer-based membership inference

attack on PathMNIST.

Table 5.19: PathMNIST privacy metrics (AUC and low-FPR TPRs for Transfer MIA). Final run per configura-

tion.
Regime Model o AUC% (ROC) TPR@0.1% FPR TPR@1% FPR
Standard TanhCNN - 64.7 0.0000 0.0000
Regularised (ES) TanhCNN (Dropout p = 0.3) - 64.9 0.0000 0.0000
DP-SGD TanhCNN 0.8 52.9 0.0000 0.0000
DP-SGD TanhCNN 12 51.2 0.0000 0.0000
DP-SGD + Regularised TanhCNN (Dropout p = 0.3, ES) 0.8 51.9 0.0000 0.0000
DP-SGD + Regularised TanhCNN (Dropout p = 0.3, ES) 1.2 51.2 0.0000 0.0000

Overall, the attack exhibits very limited success across all regimes, with AUC values
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hovering near random-guessing levels and no measurable advantage at low false-positive
thresholds. The standard and regularised TanhCNN models both yield AUCs around 65%,
indicating a weak but detectable signal of membership leakage. However, TPR@0.1% and
TPR@1% remain zero, meaning that the adversary cannot identify training members with
any confidence in the low-FPR region. This behaviour suggests that while the transfer
model captures minor differences between member and non-member data distributions,
these differences vanish under strict precision constraints.

Applying differential privacy (DP-SGD) with noise multipliers ¢ = 0.8 and ¢ = 1.2
further reduces the AUC to approximately 51-53%, bringing the ROC curve nearly onto
the random baseline. The combination of DP-SGD with dropout and early stopping has a
similar effect, producing indistinguishable curves and confirming that the model achieves
strong privacy protection. Overall, the transfer-attack results indicate that the PathMNIST
domain offers high intrinsic resilience to membership inference, and that the addition of
differential privacy and regularisation fully suppresses any residual leakage signal.

Membership Inference Attack — ROC Comparison
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Figure 5.4: ROC curves for Tranfer MIA on PathMNIST.



Chapter 6

Discussion

This chapter interprets and consolidates the empirical findings presented in Chapter 5,
examining how differential privacy and regularisation jointly influence model general-
isation and vulnerability to membership inference. The analysis extends across three
attack paradigms—score-based, shadow-model, and transfer-based—each capturing dif-
ferent levels of adversarial knowledge and access. Together, these experiments offer a
comprehensive view of how privacy leakage manifests under varying model architectures,
datasets, and training constraints.

Throughout this discussion, utility refers to the model’s non-member accuracy, repre-
senting its ability to generalise to unseen data. Privacy leakage is primarily quantified
through the Area Under the Receiver Operating Characteristic Curve (AUC) and the True
Positive Rate (TPR) at fixed low False Positive Rates (FPR). These complementary metrics
respectively describe a model’s predictive usefulness and its empirical resilience against
membership inference.

The discussion proceeds by interpreting results across both natural and medical image
domains, analysing how overfitting, regularisation, and differential privacy affect leakage
behaviour. It also reflects on the comparative strengths of each attack type, the trade-off
between privacy and performance, and the influence of model capacity and data regime
on vulnerability. Overall, this chapter seeks to integrate the quantitative evidence into a
coherent understanding of how design and training choices determine privacy outcomes
in machine learning models.

6.1 Cross-Dataset Patterns in Membership Leakage

This study examined the extent of privacy leakage arising from membership inference
across both natural and medical image models. The results consistently demonstrate that
leakage is strongly linked to model overfitting and memorisation behaviour, regardless of
the specific attack methodology. Across all datasets, the non-private baselines achieved
nearly perfect training accuracy but considerably lower accuracy on unseen samples, re-
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sulting in clear separability between member and non-member data. This separability
is precisely what membership inference attacks exploit: when a model encodes training
samples more confidently or distinctly than unseen data, adversaries can infer member-
ship with accuracy well above chance.

In the natural image domain, this effect was most evident in CIFAR-10 and CIFAR-100
when models were trained from scratch. The baseline TaunhCNN in CIFAR-10 completely
memorised its training set (100% member accuracy, 66.6% non-member accuracy), produc-
ing the highest leakage across all evaluated attacks, with AUC values exceeding 70% in the
score-based setting and similarly elevated results under shadow and transfer evaluations.
Likewise, the non-pretrained ResNet-18 and WideResNet-28-10 models on CIFAR-100 ex-
hibited pronounced leakage (AUC up to 84%), confirming that high-capacity architectures
without regularisation are particularly vulnerable to membership inference. These results
align with prior findings that attack success scales with the generalisation gap [2, 3].

In contrast, medical image datasets revealed considerably lower leakage even under
non-private training. For OCTMNIST, the baseline model already generalised well, achiev-
ing over 92% accuracy on non-member samples with a moderate leakage level (AUC ~
55%). PathMNIST displayed a slightly stronger signal (AUC ~ 68%), while RetinaMNIST,
which is smaller and noisier, showed more pronounced overfitting and the highest leakage
among the medical datasets (AUC =~ 79%). These results suggest that privacy risk varies
substantially across domains and data regimes. High-resolution, data-rich tasks such as
CIFAR encourage memorisation, whereas smaller or less complex medical datasets tend
to be implicitly regularised through limited diversity.

Across all datasets and attack types, introducing explicit regularisation (dropout and
early stopping) significantly reduced privacy leakage. For example, in CIFAR-10, the AUC
dropped from 72.3% to 52.2% once regularisation was applied, while in CIFAR-100, both
shadow and transfer attacks fell to near-random levels. This demonstrates that controlling
overfitting through standard training discipline provides consistent privacy benefits across
different adversarial models.

The addition of differential privacy (DP-SGD) further reduced leakage to near-random
levels in every experimental setting. When ¢ increased beyond 1.0, AUC values consis-
tently converged around 50%, and low-FPR true positive rates approached zero for all
attack families. These results confirm that differentially private training enforces model
stability and limits per-sample memorisation, leading to empirical indistinguishability be-
tween member and non-member predictions. At the same time, a predictable performance
trade-off emerged, as accuracy declined proportionally to the privacy noise and lower ¢
budgets were observed.

Taken together, these cross-dataset findings reveal that membership inference leakage
is not uniform across models or data types. Instead, it emerges when models overfit,
diminishes when they generalise well, and can be almost entirely suppressed through the
combined use of regularisation and differential privacy. This supports the broader view
that privacy risk is an emergent property of learning dynamics rather than an intrinsic
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vulnerability of neural networks.

6.2 Utility—Privacy Trade-off and Practical Deployability

The experimental results clearly reveal a fundamental trade-off between model utility and
privacy protection. It is important to note that utility was only measured and evaluated
within the score-based attack experiments, where the same trained models were assessed
both for predictive performance and for their susceptibility to confidence-based member-
ship inference. The shadow and transfer attacks focused exclusively on privacy leakage,
using ROC-derived metrics to isolate adversarial performance from model accuracy. This
separation ensures that the privacy-utility relationship discussed here reflects the intrin-
sic tension between prediction quality and privacy loss, rather than differences in attack
methodology.

Across all datasets, differential privacy through DP-SGD provided the strongest em-
pirical defence, reducing attack AUCs to near-random levels. However, this came with a
measurable decrease in non-member accuracy, most notably in smaller or more complex
tasks. On CIFAR-10, accuracy dropped from 66.6% in the baseline to approximately 44%
for the DP-SGD + regularised model at ¢ = 1.5, where privacy leakage became negligible.
Similarly, in PathMNIST, non-member accuracy decreased from 89.4% to roughly 71% as
o increased and ¢ fell below 1. The same pattern appeared in RetinaMNIST, where privacy
was effectively restored but overall accuracy fell to around 43%. These results confirm
that privacy protection under strong noise budgets imposes a quantifiable cost on model
utility.

Regularisation, in contrast, offered a more balanced outcome. Dropout and early stop-
ping consistently reduced overfitting and improved generalisation without severe accuracy
penalties. In CIFAR-10, for instance, the regularised non-private model improved non-
member accuracy by nearly 5% while cutting privacy leakage by more than 20 percentage
points in AUC. This indicates that conventional training stabilisation can meaningfully
improve privacy resilience even in the absence of formal privacy mechanisms. When com-
bined with DP-SGD, these methods further enhanced stability, allowing models to achieve
low leakage at smaller noise multipliers, thereby retaining more utility for a given privacy
budget.

From a practical perspective, the acceptable point along this privacy-utility contin-
uum depends on the application domain. In medical imaging, where data sensitivity is
paramount, the substantial reduction in leakage achieved by DP-SGD is often worth the
moderate loss in accuracy. Models trained on OCTMNIST or PathMNIST maintained
clinically meaningful performance while offering strong empirical privacy. Conversely, in
general-purpose computer vision tasks such as CIFAR-10 or CIFAR-100, where utility is
the primary design goal, applying strong DP noise may be excessive if regularisation alone
can reduce leakage to near-random levels.

These findings suggest that no single mitigation strategy universally optimises both
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objectives. Differential privacy guarantees formal protection at the cost of predictive accu-
racy, whereas regularisation provides practical mitigation with minimal degradation. In
practice, the best-performing models in this study were those that combined both tech-
niques: moderate DP noise (¢ < 1.0) together with dropout and early stopping produced
stable models with balanced privacy and utility. Such configurations align with real-world
constraints in MLaaS scenarios, where slight reductions in accuracy are acceptable if they
significantly diminish the risk of user data disclosure.

6.3 Evaluating ROC vs TPR@FPR Metrics

The results across all attack types reveal that the choice of evaluation metric critically
shapes the interpretation of privacy leakage. In this work, privacy exposure was assessed
using two complementary indicators derived from the Receiver Operating Characteristic
(ROCQ): the Area Under the Curve (AUC) and the True Positive Rate (TPR) at fixed low False
Positive Rates (FPR). Although both originate from the same curve, they capture fundamen-
tally different aspects of attack success and therefore lead to distinct conclusions about the
severity of privacy risk.

The AUC provides a global measure of separability between members and non-members
across all possible classification thresholds. A high AUC indicates that an adversary, in
principle, could distinguish between the two groups with high probability if allowed to
freely choose the decision boundary. However, AUC does not account for operational con-
straints such as precision or acceptable error rates. In practice, an attacker cannot afford a
high proportion of false positives when identifying members, especially when the underly-
ing population is large. For this reason, privacy evaluations often emphasise performance
at very low FPR levels, typically 0.1% and 1%, as these reflect realistic and high-confidence
attack scenarios [26].

In contrast, TPR@FPR focuses on the adversary’s practical success under strict precision
requirements. It measures how many true members can be identified before exceeding a
fixed, low number of false alarms. A model can exhibit a high AUC while maintaining
near-zero TPR at 1% FPR, meaning that although separability exists in theory, it cannot be
reliably exploited in realistic conditions. This distinction proved crucial in interpreting the
experimental outcomes of this study.

Across datasets, several baseline models displayed high AUC values but very low TPR
at low FPR thresholds. For example, the non-private TanhCNN on CIFAR-10 achieved an
AUC of 72.3%, yet the corresponding TPR@1% was effectively zero. Similarly, the strong
leakage observed in the CIFAR-100 baseline (AUC up to 84%) did not translate into mea-
surable success at FPR < 1%. These findings indicate that, although the models exposed
confidence-based differences between training and unseen samples, adversaries could not
leverage these differences to reliably identify individual members without incurring a
large number of false positives. In operational terms, the privacy leakage was therefore
limited.
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The same pattern persisted across shadow and transfer attacks. Even when AUC val-
ues were moderately above 0.6 in non-private configurations, the TPR at 1% FPR remained
below 0.01 in almost all cases. Once regularisation or differential privacy was applied, both
metrics converged near random-guessing levels (AUC ~ 0.5, TPR ~ 0). This demonstrates
that the defences not only reduced theoretical separability but also eliminated any mean-
ingful exploitability.

These observations highlight the importance of reporting both global and local metrics
when assessing membership inference risk. While AUC provides an upper bound on
potential leakage, TPR@FPR reflects the realistic probability that a privacy breach could
occur in practice. In this study, even the strongest attacks failed to achieve significant
TPR at low FPR, suggesting that the evaluated models, despite measurable separability in
some cases, do not present an actionable privacy threat under realistic adversarial settings.
Together, these metrics confirm that differential privacy and regularisation substantially
narrow the gap between member and non-member predictions, achieving both theoretical
and practical resistance to membership inference.

6.4 Attack Surface Under Different Adversary Capabilities

The three membership inference attack paradigms examined in this study—score-based,
shadow-model, and transfer-based—represent different levels of adversarial knowledge
and access. Analysing them together provides a comprehensive understanding of how
privacy leakage emerges under realistic Machine Learning as a Service (MLaaS) condi-
tions.

The score-based attack assumes the strongest adversary, with full access to the model’s
predicted confidence scores or probability vectors. This setting is frequently used in re-
search but is less common in deployed systems, where public APIs often expose only
class labels. Because confidence outputs contain detailed information about model un-
certainty, they form a direct channel through which membership signals can be detected.
As expected, the score-based attack achieved the highest leakage levels across all datasets,
with non-private baselines reaching up to 84% AUC on CIFAR-100 and 79% on RetinaM-
NIST. Once regularisation or differential privacy was applied, however, attack performance
dropped to random-guessing levels (AUC ~ 0.5, TPR@1% ~ 0). This confirms that both
defences effectively suppress the most informative leakage source.

The shadow-model attack represents a weaker yet more adaptive adversary. Here, the
attacker trains auxiliary models on data drawn from the same distribution to approximate
the behaviour of the target. This method does not require direct access to the target’s
confidence scores and instead relies on learning a mapping between model outputs and
membership status. In this study, the shadow attacks followed the same general trend as
the score-based ones. Overfitted baselines leaked strongly, while regularised or differen-
tially private models achieved near-random performance. For example, on CIFAR-10 the
non-private baseline reached an AUC of 82.3%, whereas all DP-regularised configurations



6.5. Influence of Model Capacity, Pretraining, and Data Regime 74

converged to 50%. This consistency across attack types shows that the privacy benefits of
differential privacy generalise beyond the specific scoring mechanism used by the adver-
sary.

The transfer-based attack (label-only setting) models the most restricted adversary,
who observes only the predicted class labels of the target model. This scenario reflects real
MLaaS deployments, where providers typically return discrete predictions rather than
confidence distributions. Although earlier studies reported that membership information
can sometimes be inferred from label margins or decision boundary behaviour [2, 3], the
transfer attacks in this work performed near random guessing across all datasets. Even
for non-private models, AUC values rarely exceeded 65%, and the true positive rate at 1%
false positive rate was effectively zero. When differential privacy or regularisation was
applied, leakage disappeared entirely, with ROC curves overlapping the random baseline.

Overall, the experiments reveal a clear ordering of privacy risk based on the adversary’s
access. Score-based attacks pose the highest risk because they exploit detailed probabilis-
tic outputs. Shadow-model attacks can reproduce similar leakage if auxiliary data are
available, but their success still depends on the generalisation gap of the target. Transfer
attacks, which rely only on predicted labels, show negligible success and pose little prac-
tical threat under normal service constraints. Despite these differences, all three attack
types converged to random-guessing behaviour once differential privacy and regularisa-
tion were combined. This demonstrates that the evaluated defences provide consistent and
robust protection even against the strongest feasible adversary in MLaaS settings.

6.5 Influence of Model Capacity, Pretraining, and Data Regime

Model architecture and data characteristics play a decisive role in determining both the
magnitude of privacy leakage and the effectiveness of mitigation strategies. The results
demonstrate that the same defence mechanisms behave differently depending on the net-
work’s capacity, the use of pretraining, and the underlying dataset complexity.

High-capacity models trained from scratch, such as the non-pretrained ResNet-18 and
WideResNet-28-10 on CIFAR-100, displayed the strongest overfitting and consequently the
highest privacy leakage. These models achieved nearly perfect accuracy on their training
sets but failed to generalise to unseen data, resulting in wide confidence gaps that enabled
successful membership inference. This behaviour is consistent with the understanding
that deep networks with large parameter counts tend to memorise training samples when
the dataset size is limited or regularisation is insufficient [3].

By contrast, the ImageNet-pretrained ResNet-18 on CIFAR-100 exhibited almost no
measurable leakage, even without differential privacy. Despite operating on the same
data distribution, its AUC remained close to 0.5 across all regimes. This outcome indicates
that transfer learning inherently stabilises training by providing strong, generalisable fea-
ture representations. Because the pretrained backbone already captures domain-agnostic
patterns, the fine-tuning process requires less adaptation to individual samples, thereby
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reducing memorisation and mitigating membership risk. These findings suggest that pre-
training can act as an implicit regulariser that naturally enhances privacy without explicit
noise injection.

Similar trends were observed across the medical datasets. In OCTMNIST and PathM-
NIST, the architectures maintained high accuracy and low leakage, which can be attributed
to the moderate model capacity and the limited visual diversity of the datasets. In contrast,
RetinaMNIST exhibited the highest leakage among the medical tasks, reflecting its smaller
size and higher label noise. These characteristics make the model more prone to overfit-
ting and amplify the impact of memorised samples on the decision boundary. Although
differential privacy successfully reduced this leakage, it also degraded accuracy sharply,
showing that data-scarce domains face a narrower privacy-utility margin.

Taken together, the results highlight that privacy leakage is a product of the interaction
between model capacity, training dynamics, and data complexity rather than an inherent
weakness of neural networks. Large models trained from scratch on limited data are more
likely to memorise specific examples and therefore reveal membership information. Pre-
trained architectures, on the other hand, benefit from a stable feature space that generalises
better and leaks less, even in the absence of explicit privacy constraints. These observa-
tions reinforce the idea that architectural and data-centric choices can complement formal
privacy mechanisms, providing a practical foundation for privacy-aware model design.

6.6 Limitations and Threat Model Gaps

While the experimental findings provide a consistent picture of how differential privacy
and regularisation mitigate membership inference, several methodological limitations and
threat model assumptions must be acknowledged. These constraints define the scope of
the results and highlight potential directions for future work.

First, all attacks were conducted under a black-box setting, where the adversary inter-
acts with the model only through its predictions. This reflects realistic MLaaS conditions
but excludes stronger white-box adversaries that could exploit gradients, activations, or
training checkpoints to recover sensitive information. Extending the evaluation to white-
box or hybrid-access settings would provide a more complete understanding of model
vulnerability.

Second, the analysis focused on three primary attack paradigms: score-based, shadow-
model, and transfer-based. Although these cover a wide range of adversarial capabilities,
they do not represent the full spectrum of possible membership inference strategies. Other
attack formulations that adapt dynamically to model confidence distributions or exploit
auxiliary information may achieve stronger results and could be explored in future work.

Third, all differentially private models were trained using the Opacus implementation
of DP-SGD with Gaussian noise and a single-accountant framework for privacy budget
computation. While this approach offers a well-established and reproducible baseline, it
does not capture the full variety of differential privacy mechanisms or accounting tech-
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niques. Alternative methods, such as Rényi differential privacy or per-layer clipping ad-
justments, may yield different privacy—utility trade-offs and deserve further investigation.

Fourth, each configuration was evaluated using a single run of the final checkpoint.
Although care was taken to control random seeds and ensure reproducible training condi-
tions, the inherent stochasticity of both SGD and DP noise introduces run-to-run variability
that can influence AUC and TPR results. Repeating experiments and reporting aggregated
statistics would increase the robustness and generalisability of the conclusions.

Finally, the experiments were limited to image classification datasets of moderate size
with balanced label distributions. Privacy behaviour may differ in other modalities, such as
text, tabular, or multimodal data, where overfitting dynamics and representational biases
differ significantly. The relationship between dataset diversity, model scale, and member-
ship leakage therefore warrants additional empirical study.

Recognising these limitations helps situate the findings within a realistic experimental
scope. The observed trends of reduced leakage through regularisation and differential pri-
vacy remain consistent across all datasets and attack types. Expanding the threat model
and experimental range would enable a more complete understanding of how these de-
fences perform in larger and more complex settings.. The observed trends—reduced leak-
age through regularisation and differential privacy—remain consistent across all tested
datasets and attack types. Expanding the threat model and experimental scope would
enable a more comprehensive understanding of how these defences scale to larger archi-
tectures and more complex adversarial conditions.

6.7 Implications for MLaaS and Future Work

The results of this study have direct implications for the design and deployment of Ma-
chine Learning as a Service (MLaaS) systems. They show that the extent of membership
inference risk depends strongly on how models are trained, what outputs are exposed to
users, and which privacy mechanisms are applied. In practice, privacy protection should
be approached as a design decision that balances predictive performance, interpretability,
and user trust.

From a deployment perspective, the experiments confirm that exposing detailed con-
fidence scores or probability distributions greatly increases privacy risk. APIs that return
only discrete class labels, as seen in the transfer-based attack evaluations, provide a sig-
nificantly safer interface. This finding suggests that privacy-by-design principles can be
implemented not only through algorithmic defences but also through careful control of
model outputs. Limiting access to softmax probabilities or intermediate activations can
effectively reduce the attack surface without requiring changes to the underlying training
process.

At the algorithmic level, the combined use of differential privacy and regularisation
proved to be the most reliable mitigation strategy. Moderate DP noise, applied together
with dropout and early stopping, achieved strong empirical privacy while maintaining
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acceptable accuracy. Such configurations are particularly suitable for medical and high-
sensitivity applications, where the cost of reduced utility is outweighed by the benefit of
stronger data protection. For large-scale consumer models where utility is paramount,
standard regularisation may already be sufficient to keep membership risk near random
levels. This suggests that privacy-preserving model training should be context-dependent
rather than uniform across all applications.

The findings also highlight the importance of transparency in communicating privacy
guarantees to users of MLaaS platforms. Reporting privacy budgets, regularisation set-
tings, and validation performance can help service providers demonstrate compliance with
principles such as data minimisation and privacy by design, as described in the General
Data Protection Regulation (GDPR). Such transparency strengthens user confidence and
promotes responsible model deployment.

Future research should extend these experiments in three main directions. First, larger
and more diverse datasets should be examined to evaluate how privacy leakage scales with
model capacity and domain complexity. Second, investigations could include adaptive
adversaries and gradient-based access models to bridge the gap between black-box and
white-box settings. Third, integrating privacy auditing tools and memorisation metrics
would allow for continuous monitoring of leakage risk in deployed systems.

In summary, the empirical evidence presented in this thesis suggests that privacy-aware
design is both achievable and practical within MLaaS frameworks. Restricting output ac-
cess, combining differential privacy with regularisation, and ensuring transparent report-
ing can jointly provide strong protection against membership inference while preserving
the essential utility of modern machine learning models.



Chapter 7

Conclusion

This chapter concludes the thesis by integrating the experimental findings and theoret-
ical insights into a unified perspective on privacy risks in machine learning. It revisits
the core research aim, summarises the main contributions, and provides direct answers
to the guiding research questions. The discussion here moves from detailed analysis to-
ward synthesis, outlining what the results collectively reveal about privacy leakage, model
behaviour, and practical defence strategies.

The overarching goal of this work was to examine how machine learning models
trained on both natural and medical image datasets are affected by membership inference
attacks and how different defence mechanisms influence this vulnerability. The study ex-
plored the interplay between model generalisation, regularisation, and differential privacy,
assessing how these factors jointly determine the trade-off between utility and privacy.

To achieve this goal, models were trained under four regimes: standard non-private,
regularised (with dropout and early stopping), differentially private (DP-SGD), and a com-
bined DP-SGD + regularised configuration. Privacy was evaluated under three black-box
adversarial settings representing increasing restrictions of access and realism: a score-
based attack using output confidences, a shadow-model attack leveraging auxiliary data,
and a transfer-based attack operating on label-only outputs. Together, these experiments
provided a comprehensive assessment of privacy leakage across both natural and medical
image domains.

The following sections summarise the key findings and present concise answers to the
three research questions formulated in Chapter 1:

1. RQ1: How do different privacy attacks perform against machine learning models
trained on medical and natural image datasets with varying levels of sensitivity and
structure?

2. RQ2: What is the extent of privacy leakage due to membership inference in such
models, and which metric is more appropriate for quantifying this leakage?
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3. RQ3: Which mitigation strategies can effectively reduce privacy leakage while main-
taining acceptable model utility?

By addressing these questions, this chapter summarises how adversarial strength,
model design, and dataset characteristics jointly shape the privacy landscape of modern
image-based machine learning systems.

7.1 Answers to the Research Questions

RQ1: Performance of Different Privacy Attacks Across Datasets

The three evaluated attack paradigms revealed a consistent hierarchy of effectiveness
across both natural and medical image datasets. Score-based attacks, which rely on model
confidence scores, were the most capable of identifying training samples because they ex-
ploit detailed information in the output probabilities. Shadow-model attacks, which train
auxiliary models on data drawn from the same distribution, reproduced similar leakage
patterns but achieved slightly lower accuracy. Transfer-based attacks, which operate only
on predicted class labels, were the least effective and typically indistinguishable from ran-
dom guessing.

Across all datasets, leakage appeared strongest in overfitted non-private models and
weakest in regularised or differentially private configurations. Natural image datasets
such as CIFAR-10 and CIFAR-100 exhibited greater susceptibility to membership inference
due to their complexity and the higher capacity of the networks trained on them. Medi-
cal datasets showed weaker leakage overall, particularly in OCTMNIST and PathMNIST,
where models generalised well and produced fewer membership cues. These observa-
tions demonstrate that adversarial strength, model exposure, and dataset structure jointly
determine the extent of privacy risk.

RQ2: Extent and Measurement of Privacy Leakage

Privacy leakage was directly related to the degree of overfitting observed during training.
Models with large gaps between training and test accuracy enabled stronger attacks, while
well-regularised and differentially private models produced nearly indistinguishable out-
puts for members and non-members. Leakage was quantified using two complementary
metrics: the Area Under the ROC Curve (AUC) and the True Positive Rate (TPR) at fixed
low False Positive Rates (FPR). AUC captured global separability between the two classes,
whereas TPR@FPR reflected the adversary’s success under realistic precision constraints.
Several models achieved moderately high AUC values yet retained near-zero TPR at 1%
FPR, indicating that apparent separability rarely translated into effective exploitation. To-
gether, these metrics provided a complete picture of both theoretical and practical privacy
risk.
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RQ3: Effective Mitigation Strategies for Privacy Leakage

Differential privacy and regularisation each reduced membership inference risk, although
with different trade-offs. Differential privacy, implemented through DP-SGD, enforced
stability in the learning process and achieved the strongest overall protection. When the
noise multiplier ¢ exceeded 1.0, AUC values approached 0.5 and TPR at 1% FPR fell
to zero across all datasets, signalling near-complete resistance to attack. This level of
privacy, however, required accepting lower model accuracy, particularly for smaller or
noisier datasets such as RetinaMNIST.

Regularisation through dropout and early stopping achieved weaker but more effi-
cient protection by reducing overfitting without severely impacting performance. Com-
bining these techniques with DP-SGD allowed models to reach comparable privacy levels
at lower noise multipliers, preserving higher accuracy for a given privacy budget. This
joint strategy offers a practical balance between privacy and utility for real-world MLaaS
deployments, providing strong empirical protection while maintaining functional predic-
tive capability.

7.2 Contributions and Significance

This work makes several contributions to the empirical study of privacy in machine learn-
ing. It advances understanding of how membership inference attacks interact with model
design, data characteristics, and training regimes, and it provides evidence for effective
defence strategies that balance utility and protection.

Comprehensive cross-domain evaluation. The study presents a unified analysis of
membership inference across both natural and medical image datasets. By applying the
same experimental framework to CIFAR-10, CIFAR-100, OCTMNIST, RetinaMNIST, and
PathMNIST, it captures how dataset structure and sensitivity influence leakage behaviour.
This comparison extends prior work that typically focused on either generic benchmarks
or a single application domain.

Systematic comparison of attack paradigms. Three black-box attack classes were im-
plemented and evaluated under identical conditions: score-based, shadow-model, and
transfer-based. Their relative performance establishes a clear hierarchy of adversarial
strength and demonstrates that privacy risk diminishes rapidly as model access becomes
more limited. This provides practical insight into which threat models are realistic for
MLaaS deployments.

Empirical analysis of the privacy-utility relationship. By measuring non-member
accuracy and privacy metrics side by side, the experiments quantify how defences alter
the balance between predictive performance and resistance to inference. The results show
that differential privacy and regularisation converge toward the same goal of reducing
overfitting, although through different mechanisms. Their combination proved to be the
most consistent way to maintain generalisation while eliminating measurable leakage.
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Clarification of evaluation metrics. The distinction between the Area Under the ROC
Curve and the True Positive Rate at fixed low False Positive Rates is analysed both theo-
retically and empirically. This dual-metric view highlights that high AUC values do not
necessarily indicate practical vulnerability when TPR at low FPR remains near zero. It
establishes a more accurate and operational definition of privacy risk for future studies.

Guidance for privacy-aware model design. The findings demonstrate that moderate
DP noise combined with dropout and early stopping provides strong empirical protec-
tion with tolerable accuracy loss. This approach offers a realistic blueprint for privacy-
preserving training in MLaaS environments, where service providers must balance regu-
latory compliance, computational efficiency, and model performance.

Together, these contributions advance the empirical understanding of membership in-
ference and provide actionable insights for designing, evaluating, and deploying privacy-
resilient machine learning models.

7.3 Closing Reflection

The investigation conducted in this thesis demonstrates that privacy and generalisation
are deeply connected aspects of modern machine learning. Through a unified evaluation
of multiple attack paradigms, datasets, and defence strategies, it becomes clear that mod-
els which generalise well also protect their training data more effectively. Regularisation
and differential privacy each contribute to this stability by limiting memorisation and pro-
moting robustness to small perturbations. The findings therefore support the view that
privacy should not be treated as an external constraint added after training, but as a prop-
erty that emerges from sound model design and optimisation. Continued exploration of
this relationship between privacy, learning dynamics, and generalisation will be essential
for building machine learning systems that are both effective and trustworthy in practice.

In this context, the guiding philosophy of Privacy by Design provides a valuable per-
spective. It seeks to accommodate all legitimate interests and objectives in a positive-sum,
“win-win” manner, rather than through a dated, zero-sum approach where unnecessary
trade-offs are made. Privacy by Design avoids the pretence of false dichotomies such as
privacy versus security, demonstrating that it is both possible and preferable to achieve
strong privacy protection and high system performance simultaneously[38].
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Appendix A

Supplementary figures and notebooks

This appendix provides the complete set of visual and diagnostic results for every model
configuration discussed in Chapter 5. Each dataset section contains one subsection per
training regime, including the baseline (no dropout, no early stopping), the regularised
model, the DP-SGD model, and the DP-SGD model with regularisation. For each configu-
ration, the following figures are included:

¢ Training and validation accuracy/loss curves across epochs.

* ROC curve for the confidence-based membership inference attack.
¢ Confidence distributions comparing members and non-members.
* Accuracy comparison between members and non-members.

Where relevant, a link to the corresponding interactive Colab notebook is also provided
for full reproducibility. All figures use data from the final run of each configuration, as
reported in Chapter 5.

A1 CIFAR-10

A.11 Baseline (no dropout, no early stopping)

LINK: https://colab.research.google.com/drive/1iu9UQR1y-WNSWRPRuglgEA-dmsCJjKDk?
usp=sharing
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https://colab.research.google.com/drive/1iu9UQR1y-WN5WRPRuglgEA-dmsCJjKDk?usp=sharing
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Figure A.1: Training and validation performance for the CIFAR-10 baseline model.
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Figure A.2: ROC curve for confidence-based MIA (CIFAR-10 baseline).
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Figure A.3: Confidence distributions for members vs non-members (CIFAR-10 baseline).
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Figure A.4: Accuracy comparison for members and non-members (CIFAR-10 baseline).

A.1.2 Regularised (dropout + early stopping)

Link: https://colab.research.google.com/drive/1Qc9XARafGAbIBCFxnawFVPWbOOYRE0JJ?
usp=sharing


https://colab.research.google.com/drive/1Qc9XARafGAbIBCFxnawFVPWb00YR60JJ?usp=sharing
https://colab.research.google.com/drive/1Qc9XARafGAbIBCFxnawFVPWb00YR60JJ?usp=sharing
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Figure A.5: Training and validation performance for the CIFAR-10 Regularised model.
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Figure A.6: ROC curve for confidence-based MIA (CIFAR-10 Regularised).

20



A.1. CIFAR-10 90

CIFAR-10 * Model2_LeakyDrop: Confidence Distribution — Members vs Non-members

3500 I Non-members (original test)
i Members (from training set)

25001

2000 1

Number of images
=
&
=]
53

1000 1

500 4

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 920 95 100
Max confidence (%)

Figure A.7: Confidence distributions for members vs non-members (CIFAR-10 Regularised.
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Figure A.8: Accuracy comparison for members and non-members (CIFAR-10 Regularised).

A.1.3 DP-SGD (TanhCNN)

Link: https://colab.research.google.com/drive/1mNV_J7ep39MhNE5-X14RIpGKQ5HOVmMVR?
usp=sharing


https://colab.research.google.com/drive/1mNV_J7ep39MhNE5-X14RIpGKQ5HoVmvR?usp=sharing
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Figure A.9: Training and validation performance for the CIFAR-10 DP-No-Regularised with € = 0.5.
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Figure A.10: ROC curve for confidence-based MIA (CIFAR-10 DP-No-Regularised with & = 0.5).
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Figure A.11: Confidence distributions for members vs non-members (CIFAR-10 DP-No-Regularised with € =

0.5.
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Figure A.12: Accuracy comparison for members and non-members CIFAR-10 DP-No-Regularised with & =

0.5).
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Figure A.13: Training and validation performance for the CIFAR-10 DP-No-Regularised with ¢ = 1.0.
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Figure A.14: ROC curve for confidence-based MIA (CIFAR-10 DP-No-Regularised with & = 1.0).
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Figure A.15: Confidence distributions for members vs non-members (CIFAR-10 DP-No-Regularised with € =

0.5.
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Figure A.16: Accuracy comparison for members and non-members CIFAR-10 DP-No-Regularised with & =

1.0).
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Figure A.17: Training and validation performance for the CIFAR-10 DP-No-Regularised with ¢ = 1.5.
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Figure A.18: ROC curve for confidence-based MIA (CIFAR-10 DP-No-Regularised with & = 1.5).
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Figure A.19: Confidence distributions for members vs non-members (CIFAR-10 DP-No-Regularised with € =
1.5.
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Figure A.20: Accuracy comparison for members and non-members CIFAR-10 DP-No-Regularised with & =
1.5).

A14 DP-SGD + Regularised (LeakyDropCNN + ES)

LINK: https://colab.research.google.com/drive/1Sn0-azBkU3skAB11s1785EhkI2MAHESP?
usp=sharing


https://colab.research.google.com/drive/1Sn0-azBkU3skABl1s1785EhkI2MAHE8P?usp=sharing
https://colab.research.google.com/drive/1Sn0-azBkU3skABl1s1785EhkI2MAHE8P?usp=sharing
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Figure A.21: Training and validation performance for the CIFAR-10 DP-Regularised with & = 0.5.
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Figure A.22: ROC curve for confidence-based MIA (CIFAR-10 DP-Regularised with & = 0.5).
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Figure A.23: Confidence distributions for members vs non-members (CIFAR-10 DP-Regularised with € = 0.5.
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Figure A.24: Accuracy comparison for members and non-members CIFAR-10 DP-Regularised with ¢ = 0.5).
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Figure A.25: Training and validation performance for the CIFAR-10 DP-Regularised with & = 1.0.

CIFAR-10 * Model2_LeakyDrop — ROC of Confidence as Membership Predictor
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Figure A.26: ROC curve for confidence-based MIA (CIFAR-10 DP-Regularised with e = 1.0).
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CIFAR-10 « Model2_LeakyDrop: Confidence Distribution — Members vs Non-members
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Figure A.27: Confidence distributions for members vs non-members (CIFAR-10 DP-Regularised with € = 1.0.

CIIIE)%R-IO * Model2_LeakyDrop — Accuracy on Members vs Non-members
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Figure A.28: Accuracy comparison for members and non-members CIFAR-10 DP-Regularised with ¢ = 1.0).
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Figure A.29: Training and validation performance for the CIFAR-10 DP-Regularised with & = 1.2.

CIFAR-10 * Model2_LeakyDrop — ROC of Confidence as Membership Predictor
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Figure A.30: ROC curve for confidence-based MIA (CIFAR-10 DP-Regularised with e = 1.2).
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CIFAR-10 * Model2_LeakyDrop: Confidence Distribution — Members vs Non-members
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Figure A.31: Confidence distributions for members vs non-members (CIFAR-10 DP-Regularised with € = 1.2.

CIIIE)%R-IO * Model2_LeakyDrop — Accuracy on Members vs Non-members
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Figure A.32: Accuracy comparison for members and non-members CIFAR-10 DP-Regularised with ¢ = 1.2).
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Figure A.33: Training and validation performance for the CIFAR-10 DP-Regularised with & = 1.5.

CIFAR-10 * Model2_LeakyDrop — ROC of Confidence as Membership Predictor
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Figure A.34: ROC curve for confidence-based MIA (CIFAR-10 DP-Regularised with ¢ = 1.5).
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CIFAR-10 * Model2_LeakyDrop: Confidence Distribution — Members vs Non-members
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Figure A.35: Confidence distributions for members vs non-members (CIFAR-10 DP-Regularised with € = 1.5.

CIIIE)%R-IO * Model2_LeakyDrop — Accuracy on Members vs Non-members
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Figure A.36: Accuracy comparison for members and non-members CIFAR-10 DP-Regularised with ¢ = 1.5).

A.2 Cifar-100

A.2.1 ResNetl18 /w Transfer
Baseline

Link: https://colab.research.google.com/drive/1NcocoSXUSFIofDLOVACJVhzbSUy_Q2437
usp=sharing
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Figure A.37: Training and validation performance for the CIFAR-100 /w Transfer-Baseline model.
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Figure A.38: ROC curve for confidence-based MIA (CIFAR-100 /w Transfer-Baseline model).
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Figure A.39: Confidence distributions for members vs non-members (CIFAR-100 /w Transfer-Baseline model.
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Figure A.40: Accuracy comparison for members and non-members (CIFAR-100 /w Transfer-Baseline model).

Regularized

LINK: https://colab.research.google.com/drive/1X05mI3MX_qcO8KmQrvBW7sBPGDhUuJI37
usp=sharing


https://colab.research.google.com/drive/1XO5mI3MX_qc08KmQrvBW7sBPGDhUuJI3?usp=sharing
https://colab.research.google.com/drive/1XO5mI3MX_qc08KmQrvBW7sBPGDhUuJI3?usp=sharing
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CIFAR-100 + ResNet-18 « Model B (no DP) | Dropout=0.20 | Early stop: start@20, patience=10 — Loss
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Figure A.41: Training and validation performance for the CIFAR-100 /w Transfer-Regularized model.
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Figure A.42: ROC curve for confidence-based MIA (CIFAR-100 /w Transfer-Regularized model).
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CIFAR-100 « ResNet-18 (Model B) — Confidence Distribution
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Figure A.43: Confidence distributions for members vs non-members (CIFAR-100 /w Transfer-Regularized
model.
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Figure A.44: Accuracy comparison for members and non-members (CIFAR-100 /w Transfer-Regularized
model).

DP no Regularisation

Epsilone=0.5 LINK:https://colab.research.google.com/drive/1QM-KebxZFgCf1jc4x31tpkW7_
mY4AbY_7usp=sharing


https://colab.research.google.com/drive/1QM-Ke5xZFgCf1jc4x31tpkW7_mY4AbY_?usp=sharing
https://colab.research.google.com/drive/1QM-Ke5xZFgCf1jc4x31tpkW7_mY4AbY_?usp=sharing

A.2. Cifar-100
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CIFAR-100 « ResNet-18 (DP, no dropout, no early stop) | 6=0.5 | clip=1.0 — Loss
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Figure A.45: Training and validation performance for the CIFAR-100 /w Transfer + DP +Epsilon ¢ = 0.5.

CIFAR-100 ResNet-18 (DP): ROC of Confidence as Membership Predictor
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Figure A.46: ROC curve for confidence-based MIA (CIFAR-100 /w Transfer + DP + Epsilon ¢ = 0.5).
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ResNet-18 (DP): Confidence distribution — Members vs Non-members
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Figure A.47: Confidence distributions for members vs non-members (CIFAR-100 + DP + Epsilon € = 0.5.
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Figure A.48: Accuracy comparison for members and non-members (CIFAR-100 + DP + Epsilon € = 0.5).

Epsilon e =1.0 LINK:https://colab.research.google.com/drive/17VsQoEb-02irZ2jogvtPQ4KoI0-srk,
7usp=sharing


https://colab.research.google.com/drive/17VsQoEb-o2irZ2jogvtPQ4KoI0-srkg_?usp=sharing
https://colab.research.google.com/drive/17VsQoEb-o2irZ2jogvtPQ4KoI0-srkg_?usp=sharing

A.2. Cifar-100
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CIFAR-100 « ResNet-18 (DP, no dropout, no early stop) | 6=1.0 | clip=1.0 — Loss
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(b) Loss.

Figure A.49: Training and validation performance for the CIFAR-100 /w Transfer + DP +Epsilon ¢ = 1.0.

CIFAR-100 ResNet-18 (DP): ROC of Confidence as Membership Predictor
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Figure A.50: ROC curve for confidence-based MIA (CIFAR-100 /w Transfer + DP + Epsilon ¢ = 1.0).
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ResNet-18 (DP): Confidence distribution — Members vs Non-members
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Figure A.51: Confidence distributions for members vs non-members (CIFAR-100 + DP + Epsilon € = 1.0.
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Figure A.52: Accuracy comparison for members and non-members (CIFAR-100 + DP + Epsilon € = 1.0).

Epsilone=1.2 LINK:https://colab.research.google.com/drive/16HpmOvyDafER2_KUeLPKITPTeMW3VA:
usp=sharing


https://colab.research.google.com/drive/16HpmOvyDafER2_KUeLPKITPTeMW3VAnL?usp=sharing
https://colab.research.google.com/drive/16HpmOvyDafER2_KUeLPKITPTeMW3VAnL?usp=sharing

A.2. Cifar-100
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Figure A.53: Training and validation performance for the CIFAR-100 /w Transfer + DP +Epsilon ¢ = 1.2.

CIFAR-100 ResNet-18 (DP): ROC of Confidence as Membership Predictor
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Figure A.54: ROC curve for confidence-based MIA (CIFAR-100 /w Transfer + DP + Epsilon ¢ = 1.2).
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ResNet-18 (DP): Confidence distribution — Members vs Non-members
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Figure A.55: Confidence distributions for members vs non-members (CIFAR-100 + DP + Epsilon e = 1.2.
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Figure A.56: Accuracy comparison for members and non-members (CIFAR-100 + DP + Epsilon € = 1.2).

Epsilone=1.5 LINK:https://colab.research.google.com/drive/1npHt02No5aMMTRhKDsN801QW80UJ49]
7usp=sharing
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CIFAR-100 « ResNet-18 (DP, no dropout, no early stop) | 6=1.5 | clip=1.0 — Loss
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Figure A.57: Training and validation performance for the CIFAR-100 /w Transfer + DP +Epsilon ¢ = 1.5.

CIFAR-100 ResNet-18 (DP): ROC of Confidence as Membership Predictor
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Figure A.58: ROC curve for confidence-based MIA (CIFAR-100 /w Transfer + DP + Epsilon ¢ = 1.5).
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ResNet-18 (DP): Confidence distribution — Members vs Non-members

1000

mmm Non-members (orig test)
Members (from train pool)

Number of images

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 920 95 100
Max confidence (%)

Figure A.59: Confidence distributions for members vs non-members (CIFAR-100 + DP + Epsilon € = 1.5.
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Figure A.60: Accuracy comparison for members and non-members (CIFAR-100 + DP + Epsilon € = 1.5).

DP + Regularisation

Epsilone=0.5 LINK:https://colab.research.google.com/drive/1fz0mfPy3QiRagq5MMxKWWQc-Tnv1FyE:
usp=sharing
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CIFAR-100 » ResNet-18 (DP) | Dropout=0.20 | 0=0.5 | clip=1.0 — Loss
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Figure A.61: Training and validation performance for the CIFAR-100 /w Transfer-Regularized model + DP
+Epsilon € = 0.5.

CIFAR-100 ResNet-18 (DP): ROC of Confidence as Membership Predictor
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Figure A.62: ROC curve for confidence-based MIA (CIFAR-100 /w Transfer-Regularized model + DP + Ep-
silon ¢ = 0.5).
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ResNet-18 (DP): Confidence distribution — Members vs Non-members

= Non-members (orig test)
Members (from train pool)

-
=]
S

Number of images

H

0 5 10 15 20 25 30 35 40 a5 50 55 60 65 70 75 80 85 90 95 100
Max confidence (%)

Figure A.63: Confidence distributions for members vs non-members (CIFAR-100 /w Transfer-Regularized
model + DP + Epsilon € = 0.5.
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Figure A.64: Accuracy comparison for members and non-members (CIFAR-100 /w Transfer-Regularized
model + DP + Epsilon € = 0.5).

Epsilone=1.0 LINK:https://colab.research.google.com/drive/1AINTr4ZtG3TTIJES8HAXOF2LfGk65K _
W3Z7usp=sharing
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Figure A.65: Training and validation performance for the CIFAR-100 /w Transfer-Regularized model + DP +
Epsilon ¢ = 1.0.
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Figure A.66: ROC curve for confidence-based MIA (CIFAR-100 /w Transfer-Regularized model + DP + Ep-
silon ¢ = 1.0).
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ResNet-18 (DP): Confidence distribution — Members vs Non-members
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Figure A.67: Confidence distributions for members vs non-members (CIFAR-100 /w Transfer-Regularized
model + DP + Epsilon € = 1.0.
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Figure A.68: Accuracy comparison for members and non-members (CIFAR-100 /w Transfer-Regularized
model + DP + Epsilon € = 1.0).

Epsilone=1.2 LINK:https://colab.research.google.com/drive/100UvML3dpmv1h-uV6RazXh1yN2AYtt:!
usp=sharing
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Figure A.69: Training and validation performance for the CIFAR-100 /w Transfer-Regularized model + DP +
Epsilon € = 1.2.

CIFAR-100 ResNet-18 (DP): ROC of Confidence as Membership Predictor
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Figure A.70: ROC curve for confidence-based MIA (CIFAR-100 /w Transfer-Regularized model + DP + Ep-
silon & = 1.2).
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ResNet-18 (DP): Confidence distribution — Members vs Non-members
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Figure A.71: Confidence distributions for members vs non-members (CIFAR-100 /w Transfer-Regularized
model + DP + Epsilon e = 1.2.

106 ResNet-18 (DP): Accuracy on Members vs Non-members
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Figure A.72: Accuracy comparison for members and non-members (CIFAR-100 /w Transfer-Regularized
model + DP + Epsilon € = 1.2).

Epsilone=1.5 LINK:https://colab.research.google.com/drive/171X8hRf0tiHLJI31NHB-UfTABwc4S0cl
usp=sharing


https://colab.research.google.com/drive/171X8hRf0tiHLJ31NHB-UfTABwc4SOcOm?usp=sharing
https://colab.research.google.com/drive/171X8hRf0tiHLJ31NHB-UfTABwc4SOcOm?usp=sharing

A.2. Cifar-100 123

CIFAR-100 « ResNet-18 (DP) | Dropout=0.20 | 0=1.5 | clip=1.0 — Loss

CIFAR-100 « ResNet-18 (DP) | Dropout=0.20 | 0=1.5 | clip=1.0 — Accuracy
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Figure A.73: Training and validation performance for the CIFAR-100 /w Transfer-Regularized model + DP +
Epsilon € = 1.5.

CIFAR-100 ResNet-18 (DP): ROC of Confidence as Membership Predictor
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Figure A.74: ROC curve for confidence-based MIA (CIFAR-100 /w Transfer-Regularized model + DP + Ep-
silon & = 1.5).
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ResNet-18 (DP): Confidence distribution — Members vs Non-members
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Figure A.75: Confidence distributions for members vs non-members (CIFAR-100 /w Transfer-Regularized
model + DP + Epsilon € = 1.5.

106 ResNet-18 (DP): Accuracy on Members vs Non-members
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Figure A.76: Accuracy comparison for members and non-members (CIFAR-100 /w Transfer-Regularized
model + DP + Epsilon € = 1.5).

A.2.2 Resnet
Baseline

LINK: https://colab.research.google.com/drive/1dRk9wGILTESDCWQIG8Ic4ZhDnYf _kAOT?
usp=sharing


https://colab.research.google.com/drive/1dRk9wGILTE5DCWq9G8Ic4ZhDnYf_kAOT?usp=sharing
https://colab.research.google.com/drive/1dRk9wGILTE5DCWq9G8Ic4ZhDnYf_kAOT?usp=sharing
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CIFAR-100 » ResNet-18 (32x32) | Dropout=0.00 | No Early Stop | LR: constant 0.001 — Loss

CIFAR-100 = ResNet-18 (32x32) | Dropout=0.00 | No Early Stop | LR: constant 0.001 — Accuracy
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Figure A.77: Training and validation performance for the CIFAR-100 ResNet-18 (non-pretrained) baseline
model.

CIFAR-100 « ResNet-18 (32x32) « Drop0.00+ES — Confidence-Based MIA ROC
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Figure A.78: ROC curve for confidence-based MIA (CIFAR-100 ResNet-18 non-pretrained baseline model).
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CIFAR-100 « ResNet-18 (32x32) « Drop0.00 + ES — Confidence Distribution
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Figure A.79: Confidence distributions for members vs non-members (CIFAR-100 ResNet-18 non-pretrained
baseline model).

CIFAR-100 = ResNet-18 (32x32)
Model Drop0.00 + ES
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Figure A.80: Accuracy comparison for members and non-members (CIFAR-100 ResNet-18 non-pretrained
baseline model).
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Regularised

CIFAR-100 * ResNet-18 (32x32) | Dropout=0.00 | Early Stop@4 | LR: constant 0.001 — Loss
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Figure A.81: Training and validation performance for the CIFAR-100 ResNet-18 (non-pretrained) Regularised
model.
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Figure A.82: ROC curve for confidence-based MIA (CIFAR-100 ResNet-18 non-pretrained Regularised model).
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CIFAR-100 « ResNet-18 (32x32) « Drop0.20 + ES — Confidence Distribution
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Figure A.83: Confidence distributions for members vs non-members (CIFAR-100 ResNet-18 non-pretrained
Regularised model).
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Figure A.84: Accuracy comparison for members and non-members (CIFAR-100 ResNet-18 non-pretrained
Regularised model).

DP no Regularisation with Epsilon ¢ = 1.0

LINK: https://colab.research.google.com/drive/1-5P17DtmiuFBrT6ZsdajEK4YoyalRjo4?
usp=sharing


https://colab.research.google.com/drive/1-5Pl7DtmiuFBrT6ZsdajEK4YoyaLRjo4?usp=sharing
https://colab.research.google.com/drive/1-5Pl7DtmiuFBrT6ZsdajEK4YoyaLRjo4?usp=sharing
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CIFAR-100 * ResNet-18 (32x32) | Dropout=0.00 | no Early Stop | DP-SGD (0=1.00) | LR: constant 0.001 — Loss

CIFAR-100 * ResNet-18 (32x32) | Dropout=0.00 | no Early Stop | DP-SGD (0=1.00) | LR: constant 0.001 — Accuracy
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Figure A.85: Training and validation performance for the CIFAR-100 ResNet-18 (non-pretrained) with DP No
Regularised model.
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Figure A.86: ROC curve for confidence-based MIA (CIFAR-100 ResNet-18 non-pretrained with DP No Regu-
larised model).
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CIFAR-100 « ResNet-18 (32x32) « Drop0.00 ES — Confidence Distribution
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Figure A.87: Confidence distributions for members vs non-members (CIFAR-100 ResNet-18 non-pretrained
with DP No Regularised model).
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Figure A.88: Accuracy comparison for members and non-members (CIFAR-100 ResNet-18 non-pretrained
with DP No Regularised model).
DP + Regularisation with Epsilon ¢ = 1.0

LINK: https://colab.research.google.com/drive/1dRkOwGILTESDCWq9G8Ic4ZhDnYf _kAQT?
usp=sharing


https://colab.research.google.com/drive/1dRk9wGILTE5DCWq9G8Ic4ZhDnYf_kAOT?usp=sharing
https://colab.research.google.com/drive/1dRk9wGILTE5DCWq9G8Ic4ZhDnYf_kAOT?usp=sharing
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CIFAR-100 * ResNet-18 (32x32) | Dropout=0.00 | no Early Stop | DP-SGD (0=1.00) | LR: constant 0.001 — Loss

CIFAR-100 * ResNet-18 (32x32) | Dropout=0.00 | no Early Stop | DP-SGD (0=1.00) | LR: constant 0.001 — Accuracy
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Figure A.89: Training and validation performance for the CIFAR-100 ResNet-18 (non-pretrained) with DP
Regularised model.
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Figure A.90: ROC curve for confidence-based MIA (CIFAR-100 ResNet-18 non-pretrained with DP Regu-
larised model).
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CIFAR-100 « ResNet-18 (32x32) « Drop0.00 ES — Confidence Distribution
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Figure A.91: Confidence distributions for members vs non-members (CIFAR-100 ResNet-18 non-pretrained
with DP Regularised model).
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Figure A.92: Accuracy comparison for members and non-members (CIFAR-100 ResNet-18 non-pretrained
with DP Regularised model).

A.2.3 WideResNet

Baseline

Link: https://colab.research.google.com/drive/1e63jZ2D6U2yWuYXV57_gJbWXCBIcg318z?
usp=sharing


https://colab.research.google.com/drive/1e6jZ2D6U2yWuYXV57_gJbWXCBIcg3I8z?usp=sharing
https://colab.research.google.com/drive/1e6jZ2D6U2yWuYXV57_gJbWXCBIcg3I8z?usp=sharing

A.2. Cifar-100
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CIFAR-100: Loss
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Figure A.93: Training and validation performance for the CIFAR-100 WideResNet Baseline model.
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Figure A.94: ROC curve for confidence-based MIA (CIFAR-100 WideResNet Baseline model).
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Confidence Distribution: Training vs Non-Training Data
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Figure A.95: Confidence distributions for members vs non-members (CIFAR-100 WideResNet Baseline model.
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Figure A.96: Accuracy comparison for members and non-members (CIFAR-100 WideResNet Baseline model).

Regularised (dropout + early stopping)

Link: https://colab.research.google.com/drive/1pM0X9xpGaaBhH3aSk-Y-_I-1nfHPjUP7?
usp=sharing


https://colab.research.google.com/drive/1pMOX9xpGaaBhH3aSk-Y-_I-lnfHPjUP7?usp=sharing
https://colab.research.google.com/drive/1pMOX9xpGaaBhH3aSk-Y-_I-lnfHPjUP7?usp=sharing
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CIFAR-100: Loss (Model 2, Dropout=0.20, ES Patience=10)
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Figure A.97: Training and

validation performance for the CIFAR-100 WideResNet Regularised model.

Model 2: ROC Curve for Confidence as Membership Predictor
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Figure A.98: ROC curve for confidence-based MIA (CIFAR-100 WideResNet Regularised model).
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Model 2: Confidence Distribution (Training vs Non-Training)
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Figure A.99: Confidence distributions for members vs non-members (CIFAR-100 WideResNet Regularised
model.

lggodel 2: Accuracy on Training vs Non-Training Data
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Figure A.100: Accuracy comparison for members and non-members (CIFAR-100 WideResNet Regularised
model).

DP no Regularization with ¢ = 1.0)

Link: https://colab.research.google.com/drive/10aukKT1mywdK4RGxxrstq4mW6k510q2Nw?
usp=sharing


https://colab.research.google.com/drive/10auKT1mywdK4RGxxrstq4mW6k5loq2Nw?usp=sharing
https://colab.research.google.com/drive/10auKT1mywdK4RGxxrstq4mW6k5loq2Nw?usp=sharing

A.2. Cifar-100
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CIFAR-100: Loss (Model 2, Dropout=0.35, ES Patience=10)
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Figure A.101: Training and validation performance for the CIFAR-100 DP-WideResNet-No-Regularised

model.

Model 2: ROC Curve for Confidence as Membership Predictor
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Figure A.102: ROC curve for confidence-based MIA (CIFAR-100 DP-WideResNet-No-Regularised model).
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Model 2: Confidence Distribution (Training vs Non-Training)
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Figure A.103: Confidence distributions for members vs non-members (CIFAR-100 DP-WideResNet-No-
Regularised model.
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Figure A.104: Accuracy comparison for members and non-members (CIFAR-100 DP-WideResNet-No-
Regularised model).

DP with ¢ = 1.0 + Regularization

Link: https://colab.research.google.com/drive/11xeulssXF6yDHlan8Xm4EnAbizE9q-Ad?
usp=sharing


https://colab.research.google.com/drive/11xeuAssXF6yDHlan8Xm4EnAbizE9q-Ad?usp=sharing
https://colab.research.google.com/drive/11xeuAssXF6yDHlan8Xm4EnAbizE9q-Ad?usp=sharing
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CIFAR-100: Loss (Model 2, Dropout=0.2, ES Patience=10)
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Figure A.105: Training and validation performance for the CIFAR-100 DP-WideResNet-Regularised model.

Model 2: ROC Curve for Confidence as Membership Predictor
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Figure A.106: ROC curve for confidence-based MIA (CIFAR-100 DP-WideResNet-Regularised model).
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Model 2: Confidence Distribution (Training vs Non-Training)
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Figure A.107: Confidence distributions for members vs non-members (CIFAR-100 DP-WideResNet-
Regularised model.
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Figure A.108: Accuracy comparison for members and non-members (CIFAR-100 DP-WideResNet-Regularised
model).

A.3 OCTMNIST

A.3.1 Baseline

LINK: https://colab.research.google.com/drive/1-gHy8pKhAg1OhY9RCA1ZD-6uoXqSSTwZ?
usp=sharing


https://colab.research.google.com/drive/1-gHy8pKhAg10hY9RCA1ZD-6uoXqSSTwZ?usp=sharing
https://colab.research.google.com/drive/1-gHy8pKhAg10hY9RCA1ZD-6uoXqSSTwZ?usp=sharing
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OCTMNIST « ResNet-18 (28x28) | Model A (No DP, No Early Stop) | LR milestones: 50 & 75 — Loss

OCTMNIST « ResNet-18 (28x28) | Model A (No DP, No Early Stop) | LR milestones: 50 & 75 — Accuracy
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Figure A.109: Training and validation performance for the OCTMNIST baseline model.
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Figure A.110: ROC curve for confidence-based MIA (OCTMNIST baseline).
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OCTMNIST « ResNet-18 (28x28) « Model A (No DP, No Early Stop) — Confidence Distribution
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Figure A.111: Confidence distributions for members vs non-members (OCTMNIST baseline).
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Figure A.112: Accuracy comparison for members and non-members (OCTMNIST baseline).

A.3.2 Regularised

LINK: https://colab.research.google.com/drive/1SjQyLi_njIX10GrEjPJbMq5jAGEd1psF?
usp=sharing


https://colab.research.google.com/drive/1SjQyLi_njIXlOGrEjPJbMq5jAGEd1psF?usp=sharing
https://colab.research.google.com/drive/1SjQyLi_njIXlOGrEjPJbMq5jAGEd1psF?usp=sharing
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OCTMNIST = ResNet-18 (28x28) | Dropout=0.20 | Early Stop | LR: constant 0.001 — Loss
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Figure A.113: Training and validation performance for the OCTMNIST Regularised model.
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Figure A.114: ROC curve for confidence-based MIA (OCTMNIST Regularised).
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Figure A.115: Confidence distributions for members vs non-members (OCTMNIST Regularised).
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Figure A.116: Accuracy comparison for members and non-members (OCTMNIST Regularised).

A.3.3 DP no Regularization

LINK: https://colab.research.google.com/drive/1aYACuvIKdXSGp5vgT2VFBgTiY_HxASnn?
usp=sharing


https://colab.research.google.com/drive/1aYACuvIKdXSGp5vgT2VFBgTiY_HxASnn?usp=sharing
https://colab.research.google.com/drive/1aYACuvIKdXSGp5vgT2VFBgTiY_HxASnn?usp=sharing

A.3. OCTMNIST
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OCTMNIST * ResNet-18 (28x28) | Dropout=0.00 | Early Stop | DP-SGD (0=1.00) | LR: constant 0.001 — Loss
16

Figure A.117: Training and validation performance for the OCTMNIST No Regularisation with e = 1.0 .

Figure A.118: ROC curve for confidence-based MIA ( OCTMNIST No Regularisation with ¢ = 1.0 ).
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Figure A.119
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: Confidence distributions for members vs non-members (OCTMNIST No Regularisation with ¢

Figure A.120: Accuracy comparison for members and non-members (OCTMNIST No Regularisation with & =

1.0).
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Epsilon e = 1.2

OCTMNIST * ResNet-18 (28x28) | Dropout=0.00 | Early Stop | DP-SGD (0=1.20) | LR: constant 0.001 — Loss
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Figure A.121: Training and validation performance for the OCTMNIST No Regularisation with e =1.2 .
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Figure A.122: ROC curve for confidence-based MIA ( OCTMNIST No Regularisation with ¢ =1.2 ).
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Figure A.123
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: Confidence distributions for members vs non-members (OCTMNIST No Regularisation with ¢

Figure A.124: Accuracy comparison for members and non-members (OCTMNIST No Regularisation with & =

1.2).
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Epsilon

e=1.5
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OCTMNIST * ResNet-18 (28x28) | Dropout=0.00 | Early Stop | DP-SGD (0=1.50) | LR: constant 0.001 — Loss
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Figure A.125: Training and validation performance for the OCTMNIST No Regularisation with e = 1.5 .

Figure A.126: ROC curve for confidence-based MIA ( OCTMNIST No Regularisation with ¢ = 1.5).
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Figure A.127: Confidence distributions for members vs non-members (OCTMNIST No Regularisation with &
=15).
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Figure A.128: Accuracy comparison for members and non-members (OCTMNIST No Regularisation with & =
15).

A.3.4 DP + Regularisation

LINK:https://colab.research.google.com/drive/1CeBQJ9Tm6 JUSKEZVKBcFnC17bQ5y jVyN?
usp=sharing


https://colab.research.google.com/drive/1CeBQJ9Tm6JU5kEZVKBcFnCl7bQ5yjVyN?usp=sharing
https://colab.research.google.com/drive/1CeBQJ9Tm6JU5kEZVKBcFnCl7bQ5yjVyN?usp=sharing
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Epsilon ¢ = 1.0

OCTMNIST * ResNet-18 (28x28) | Dropout=0.20 | Early Stop | DP-SGD (0=1.00) | LR: constant 0.001 — Loss
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Figure A.129: Training and validation performance for the OCTMNIST + Regularisation with ¢ = 1.0 .
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Figure A.130: ROC curve for confidence-based MIA ( OCTMNIST + Regularisation with e = 1.0 ).
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Figure A.131: Confidence distributions for members vs non-members (OCTMNIST + Regularisation with € =
1.0).
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Figure A.132: Accuracy comparison for members and non-members (OCTMNIST + Regularisation with e =
1.0).
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Epsilon e = 1.2
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OCTMNIST * ResNet-18 (28x28) | Dropout=0.20 | Early Stop | DP-SGD (0=1.20) | LR: constant 0.001 — Loss
16

Figure A.133: Training and validation performance for the OCTMNIST + Regularisation with e = 1.2 .
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Figure A.134: ROC curve for confidence-based MIA ( OCTMNIST + Regularisation with e = 1.2).
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Figure A.135: Confidence distributions for members vs non-members (OCTMNIST + Regularisation with € =
12).
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Figure A.136: Accuracy comparison for members and non-members (OCTMNIST + Regularisation with e =
12).
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Epsilon ¢ = 1.5

OCTMNIST * ResNet-18 (28x28) | Dropout=0.00 | Early Stop | DP-SGD (0=1.50) | LR: constant 0.001 — Loss
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Figure A.137: Training and validation performance for the OCTMNIST + Regularisation with e = 1.5 .
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Figure A.138: ROC curve for confidence-based MIA ( OCTMNIST + Regularisation with e = 1.5).
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Figure A.139: Confidence distributions for members vs non-members (OCTMNIST + Regularisation with € =
15).
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Figure A.140: Accuracy comparison for members and non-members (OCTMNIST + Regularisation with € =
15).

A4 RetinaMNIST

A.4.1 Baseline

LINK: https://colab.research.google.com/drive/1AKulWLEbgXAF6qtaver5BGk4rwD9xIn07
usp=sharing


https://colab.research.google.com/drive/1AKu1WLEbgXAF6qtaver5BGk4rwD9xInO?usp=sharing
https://colab.research.google.com/drive/1AKu1WLEbgXAF6qtaver5BGk4rwD9xInO?usp=sharing

A4. RetinaMNIST
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RetinaMNIST « ResNet-18 (28x28) | Model (Dropout=0.00,No Early Stop) | LR: constant 0.001 — Loss
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Figure A.141: Training and validation performance for the RetinaMNIST baseline model.
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Figure A.142: ROC curve for confidence-based MIA (RetinaMNIST baseline).
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Figure A.143: Confidence distributions for members vs non-members (RetinaMNIST baseline).
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Figure A.144: Accuracy comparison for members and non-members (RetinaMNIST baseline).
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A.4.2 Regularized
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RetinaMNIST « ResNet-18 (28x28) | Model (Dropout=0.20, Early Stop) | LR: constant 0.001 — Loss
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Figure A.145: Training and validation performance for the RetinaMNIST Regularised model.
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Figure A.146: ROC curve for confidence-based MIA (RetinaMNIST baseline).



A.4. RetinaMNIST 160

RetinaMNIST + ResNet-18 (28x28) * Dropout + Early Stop — Confidence Distribution

== Non-members (validation set)
Members (training set)
300

2504

N
=1
3

H
&
e

Number of samples

,_.
=
S

0 T T T T u T T U—
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Max confidence (%)

Figure A.147: Confidence distributions for members vs non-members (RetinaMNIST Regularised).
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Figure A.148: Accuracy comparison for members and non-members (RetinaMNIST Regularised).

A.4.3 DP no Regularisation

LINK: https://colab.research.google.com/drive/1I1fY9CfeCMNvpU-dtn2RLI-VPpKxulrov?
usp=sharing


https://colab.research.google.com/drive/1IfY9CfeCMNvpU-dtn2RL9-VPpKxulrov?usp=sharing
https://colab.research.google.com/drive/1IfY9CfeCMNvpU-dtn2RL9-VPpKxulrov?usp=sharing
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Epsilon ¢ = 0.5

RetinaMNIST + ResNet-18 (28x28) | Dropout=0.00 | No Early Stop | DP-SGD (0=0.50) | LR: constant 0.001 — Loss
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Figure A.149: Training and validation performance for the RetinaMNIST No Regularisation with e = 0.5 .
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Figure A.150: ROC curve for confidence-based MIA ( RetinaMNIST No Regularisation with e = 0.5 ).
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Figure A.151: Confidence distributions for members vs non-members (RetinaMNIST No Regularisation with
e=05).
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Figure A.152: Accuracy comparison for members and non-members (RetinaMNIST No Regularisation with &
=05).
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Epsilon ¢ = 1.0

RetinaMNIST + ResNet-18 (28x28) | Dropout=0.00 | No Early Stop | DP-SGD (0=1.00) | LR: constant 0.001 — Loss
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Figure A.153: Training and validation performance for the RetinaMNIST No Regularisation with ¢ = 1.0 .
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Figure A.154: ROC curve for confidence-based MIA ( RetinaMNIST No Regularisation with ¢ = 1.0 ).
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Figure A.155
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: Confidence distributions for members vs non-members (RetinaMNIST No Regularisation with

Figure A.156: Accuracy comparison for members and non-members (RetinaMNIST No Regularisation with &

=1.0).
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Epsilon e = 1.2

RetinaMNIST + ResNet-18 (28x28) | Dropout=0.00 | No Early Stop | DP-SGD (0=1.20) | LR: constant 0.001 — Loss
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Figure A.157: Training and validation performance for the RetinaMNIST No Regularisation with e = 1.2 .
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Figure A.158: ROC curve for confidence-based MIA ( RetinaMNIST No Regularisation with ¢ = 1.2 ).



A.4. RetinaMNIST

Figure A.159
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: Confidence distributions for members vs non-members (RetinaMNIST No Regularisation with

Figure A.160: Accuracy comparison for members and non-members (RetinaMNIST No Regularisation with e

=12).
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Epsilon ¢ = 1.5

RetinaMNIST + ResNet-18 (28x28) | Dropout=0.00 | No Early Stop | DP-SGD (0=1.50) | LR: constant 0.001 — Loss
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Figure A.161: Training and validation performance for the RetinaMNIST No Regularisation with ¢ = 1.5 .
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Figure A.162: ROC curve for confidence-based MIA ( RetinaMNIST No Regularisation with ¢ = 1.5 ).
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Figure A.163: Confidence distributions for members vs non-members (RetinaMNIST No Regularisation with
e=15).
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Figure A.164: Accuracy comparison for members and non-members (RetinaMNIST No Regularisation with &
=15).

A.4.4 DP + Regularisation

LINK: https://colab.research.google.com/drive/10CBORCStKs21NqFFX50VEKktmiW9dC547
usp=sharing


https://colab.research.google.com/drive/1OCB9RCStKs21NqFFX50VEKktmiW9dC54?usp=sharing
https://colab.research.google.com/drive/1OCB9RCStKs21NqFFX50VEKktmiW9dC54?usp=sharing
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Epsilon ¢ = 0.5

RetinaMNIST « ResNet-18 (28x28) | Dropout=0.20 | Early Stop | DP-SGD (0=0.50) | LR: constant 0.001 — Loss
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Figure A.165: Training and validation performance for the RetinaMNIST + Regularisation with e = 0.5 .
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Figure A.166: ROC curve for confidence-based MIA ( RetinaMNIST + Regularisation with e = 0.5).
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: Confidence distributions for members vs non-members (RetinaMNIST + Regularisation with &

Figure A.168: Accuracy comparison for members and non-members (RetinaMNIST + Regularisation with & =

0.5).
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Epsilon ¢ = 1.0
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RetinaMNIST « ResNet-18 (28x28) | Dropout=1.00 | Early Stop | DP-SGD (0=1.00) | LR: constant 0.001 — Loss
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Figure A.169: Training and validation performance for the RetinaMNIST + Regularisation with e = 1.0 .
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Figure A.170: ROC curve for confidence-based MIA ( RetinaMNIST + Regularisation with e = 1.0 ).
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Figure A.171
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: Confidence distributions for members vs non-members (RetinaMNIST + Regularisation with &

Figure A.172: Accuracy comparison for members and non-members (RetinaMNIST + Regularisation with & =

1.0).
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RetinaMNIST « ResNet-18 (28x28) | Dropout=0.20 | Early Stop | DP-SGD (0=1.20) | LR: constant 0.001 — Loss
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Figure A.173: Training and validation performance for the RetinaMNIST + Regularisation with e = 1.2 .
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Figure A.174: ROC curve for confidence-based MIA ( RetinaMNIST + Regularisation with e = 1.2).
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Figure A.175: Confidence distributions for members vs non-members (RetinaMNIST + Regularisation with &

=12).
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Figure A.176: Accuracy comparison for members and non-members (RetinaMNIST + Regularisation with & =

1.2).
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Epsilon ¢ = 1.5
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Figure A.177: Training and validation performance for the RetinaMNIST + Regularisation with e = 1.5 .
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Figure A.178: ROC curve for confidence-based MIA ( RetinaMNIST + Regularisation with e = 1.5).
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Figure A.179: Confidence distributions for members vs non-members (RetinaMNIST + Regularisation with &
=15).
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Figure A.180: Accuracy comparison for members and non-members (RetinaMNIST + Regularisation with ¢ =
15).

A.5 PathMNIST

A.5.1 Baseline

LINK: https://colab.research.google.com/drive/1sMi8ViLR5g-p6s-Hrdfm-Ec3QEYT1SqY?
usp=sharing


https://colab.research.google.com/drive/1sMi8ViLR5g-p6s-Hrdfm-Ec3QEYT1SqY?usp=sharing
https://colab.research.google.com/drive/1sMi8ViLR5g-p6s-Hrdfm-Ec3QEYT1SqY?usp=sharing
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Figure A.181: Training and validation performance for the PathMNIST baseline model.
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Figure A.182: ROC curve for confidence-based MIA (PathMNIST baseline).
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Figure A.183: Confidence distributions for members vs non-members (PathMNIST baseline).
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Figure A.184: Accuracy comparison for members and non-members (PathMNIST baseline).

A.5.2 Regularised

LINK: https://colab.research.google.com/drive/1IvHNmswCjTmmdCMDcMOAden59xXY7xGM?
usp=sharing


https://colab.research.google.com/drive/1IvHNmswCjTmmdCMDcM0Aden59xXY7xGM?usp=sharing
https://colab.research.google.com/drive/1IvHNmswCjTmmdCMDcM0Aden59xXY7xGM?usp=sharing
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Figure A.185: Training and validation performance for the PathMNIST Regularised) model.
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Figure A.186: ROC curve for confidence-based MIA (PathMNIST Regularised).
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Figure A.187: Confidence distributions for members vs non-members (PathMNIST Regularised)).
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Figure A.188: Accuracy comparison for members and non-members (PathMNIST Regularised)).

A.5.3 DP no Regularisation

LINK: https://colab.research.google.com/drive/12TvBtby07iEKBsFLQuKRoqO1MQvzV6TO?
usp=sharing


https://colab.research.google.com/drive/12TvBtby07iEKBsFLQuKRoqO1MQvzV6TO?usp=sharing
https://colab.research.google.com/drive/12TvBtby07iEKBsFLQuKRoqO1MQvzV6TO?usp=sharing
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Figure A.189: Training and validation performance for the PathMNIST No Regularisation with e = 0.5 .
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Figure A.190: ROC curve for confidence-based MIA ( PathMNIST No Regularisation with ¢ = 0.5).
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Figure A.191: Confidence distributions for members vs non-members (PathMNIST No Regularisation with &

=05).
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Figure A.192: Accuracy comparison for members and non-members (PathMNIST No Regularisation with & =

0.5).
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e=1.0
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Figure A.193: Training and validation performance for the PathMNIST No Regularisation with ¢ = 1.0 .
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Figure A.194: ROC curve for confidence-based MIA ( PathMNIST No Regularisation with € = 1.0 ).
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Figure A.195: Confidence distributions for members vs non-members (PathMNIST No Regularisation with &
=1.0).
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Figure A.196: Accuracy comparison for members and non-members (PathMNIST No Regularisation with & =
1.0).
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PathMNIST » ResNet-18 (28x28) | Dropout=0.00 | No Early Stop | LR: constant 0.001 — Loss
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Figure A.197: Training and validation performance for the PathMNIST No Regularisation with e = 1.2 .
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Figure A.198: ROC curve for confidence-based MIA ( PathMNIST No Regularisation with e = 1.2 ).
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Figure A.199: Confidence distributions for members vs non-members (PathMNIST No Regularisation with &
=12).

PathMNIST « ResNet-18 (28x28)
Model No (No Dropout + No Early Stop)

100 Accuracy on Members vs Non-members

80 +

60 -

Accuracy (%)

20

T
Members Non-members

Figure A.200: Accuracy comparison for members and non-members (PathMNIST No Regularisation with & =
12).
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e=1.5
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Figure A.201: Training and validation performance for the PathMNIST No Regularisation with ¢ = 1.5 .
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Figure A.202: ROC curve for confidence-based MIA ( PathMNIST No Regularisation with e = 1.5).
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Figure A.203: Confidence distributions for members vs non-members (PathMNIST No Regularisation with &
=15).
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Figure A.204: Accuracy comparison for members and non-members (PathMNIST No Regularisation with & =
15).
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A.5.4 DP + Regularisastion
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PathMNIST « ResNet-18 (28x28) | Dropout=0.00 | Early Stop | DP-SGD (0=0.50) | LR: constant 0.001 — Loss

PathMNIST » ResNet-18 (28x28) | Dropout=0.00 | Early Stop | DP-SGD (0=0.50) | LR: constant 0.001 — Accuracy
pic)

08

06

— Vvalidation accuracy
Training accuracy

o 10 20 30 40 50 60 70
Epoch

(@) Accuracy.

Figure A.205: Training and validation performance for the PathMNIST + Regularisation with e = 0.5 .
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Figure A.206: ROC curve for confidence-based MIA ( PathMNIST + Regularisation with e = 0.5).
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Figure A.207: Confidence distributions for members vs non-members (PathMNIST + Regularisation with € =

0.5).
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Figure A.208: Accuracy comparison for members and non-members (PathMNIST + Regularisation with ¢ =

0.5).
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Figure A.209: Training and validation performance for the PathMNIST + Regularisation with e = 1.0 .
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Figure A.210: ROC curve for confidence-based MIA ( PathMNIST + Regularisation with e = 1.0 ).
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: Confidence distributions for members vs non-members (PathMNIST + Regularisation with € =

Figure A.212: Accuracy comparison for members and non-members (PathMNIST + Regularisation with ¢ =

1.0).
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Figure A.213: Training and validation performance for the PathMNIST + Regularisation with e = 1.2 .
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Figure A.214: ROC curve for confidence-based MIA ( PathMNIST + Regularisation with e = 1.2)).
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Figure A.215: Confidence distributions for members vs non-members (PathMNIST + Regularisation with € =

1.2).
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Figure A.216: Accuracy comparison for members and non-members (PathMNIST + Regularisation with ¢ =

1.2).
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Figure A.217: Training and validation performance for the PathMNIST + Regularisation with e = 1.5 .
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Figure A.218: ROC curve for confidence-based MIA ( PathMNIST + Regularisation with e = 1.5).



A.5. PathMNIST

Figure A.219
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Appendix B

Shadow + Transfer Notebooks

B.1 Shadow Experiments

B.1.1 CIFAR-10

Table B.1: Google Colab notebooks for Shadow attack experiments on CIFAR-10.

Configuration = Notebook Link

Baseline https://colab.research.google.com/drive/1ShAt6KxBR2LvNOhEwWDa jfgMEOG5NLNA?
usp=sharing

Regularised https://colab.research.google.com/drive/1mkygpINcOSr4-RIcJTqxVLqyEvTy_
6bU?usp=sharing

DP08-NoReg https://colab.research.google.com/drive/1JdC9smDd1gIN4 _
mfKgNm- cTxWo4Qw9Dm?usp=sharing

DP12-NoReg https://colab.research.google.com/drive/1JdC9smDd1gIN4 _
mfKgNm- cTxWo4Qw9Dm7usp=sharing

DP08-Reg https://colab.research.google.com/drive/10B2bEDxzb- c2DJAwy9mqjSLoYfIm5ICs?
usp=sharing
DP12-Reg https://colab.research.google.com/drive/1PuvyNk7MopcKCHaIPD-FswJ9D2FntCCO?

usp=sharing
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https://colab.research.google.com/drive/1ShAt6KxBR2LvN9hEwWDajfgME0G5NLNd?usp=sharing
https://colab.research.google.com/drive/1ShAt6KxBR2LvN9hEwWDajfgME0G5NLNd?usp=sharing
https://colab.research.google.com/drive/1mkygpINc0Sr4-RIcJTqxVLqyEvTy_6bU?usp=sharing
https://colab.research.google.com/drive/1mkygpINc0Sr4-RIcJTqxVLqyEvTy_6bU?usp=sharing
https://colab.research.google.com/drive/1JdC9smDdlgJN4_mfKgNm-cTxWo4Qw9Dm?usp=sharing
https://colab.research.google.com/drive/1JdC9smDdlgJN4_mfKgNm-cTxWo4Qw9Dm?usp=sharing
https://colab.research.google.com/drive/1JdC9smDdlgJN4_mfKgNm-cTxWo4Qw9Dm?usp=sharing
https://colab.research.google.com/drive/1JdC9smDdlgJN4_mfKgNm-cTxWo4Qw9Dm?usp=sharing
https://colab.research.google.com/drive/1OB2bEDxzb-c2DJAwy9mqjSLoYf9m5ICs?usp=sharing
https://colab.research.google.com/drive/1OB2bEDxzb-c2DJAwy9mqjSLoYf9m5ICs?usp=sharing
https://colab.research.google.com/drive/1PuvyNk7MopcKCHaIPD-FswJ9D2FntCC0?usp=sharing
https://colab.research.google.com/drive/1PuvyNk7MopcKCHaIPD-FswJ9D2FntCC0?usp=sharing

B.2. Transfer Experiments

B.1.2

PathMNIST

Table B.2: Google Colab notebooks for Shadow attack experiments on PathMNIST.

Configuration = Notebook Link

Baseline https://colab.research.google.com/drive/19u6QZbx6tDefgVS5In40WSbD4hdqsIGI?
usp=sharing
Regularised https://colab.research.google.com/drive/1yD6weEOc5s091i-mMtT-yDmPRPYPYm2g?

usp=sharing

DP08-NoReg https://colab.research.google.com/drive/1XU4V481BQL-negEmmWLBP9- 19NDWhDww?
usp=sharing

DP12-NoReg https://colab.research.google.com/drive/1f46EpEGbwthLfhOw68vcDcSHRNKTO58p?
usp=sharing

DP08-Reg https://colab.research.google.com/drive/1Gg4k0qtXSMn1YT19j_
MMJPf£XKuNgMSp67usp=sharing
DP12-Reg https://colab.research.google.com/drive/1VnvDArKagV86ZCIh7UsdX0ZC3y-KT-JY?

usp=sharing

B.2

B.2.1

Transfer Experiments

CIFAR-10

Table B.3: Google Colab notebooks for Transfer attack experiments on CIFAR-10.

Configuration = Notebook Link

Baseline https://colab.research.google.com/drive/1XIrszUlqkueF227rMI jHx19y4iAU-kMF?
usp=sharing
Regularised https://colab.research.google.com/drive/14sGxCbCuGaFFOyvsaUAgL3f0_

TKpdt2T?usp=sharing

DP08-NoReg https://colab.research.google.com/drive/1yd-BOwXR2X0Wqd_BCsUc1yXZoMHtCD_
k?7usp=sharing

DP12-NoReg https://colab.research.google.com/drive/1EDv8eHt IRWuoulav8Zt7HhHs jgLQ8_
J97usp=sharing

DP08-Reg https://colab.research.google.com/drive/1£5D2AmEfr0iGuUMaazKA-33-oQNb46YT?
usp=sharing
DP12-Reg https://colab.research.google.com/drive/19r6RAxqVpul _xP3syFThZJ-cOEF1B_

1K7usp=sharing
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https://colab.research.google.com/drive/19u6QZbx6tDefgVS5Jn4OWSbD4hdqsIGI?usp=sharing
https://colab.research.google.com/drive/19u6QZbx6tDefgVS5Jn4OWSbD4hdqsIGI?usp=sharing
https://colab.research.google.com/drive/1yD6weE0c5s091i-mMtT-yDmPRPYPYm2g?usp=sharing
https://colab.research.google.com/drive/1yD6weE0c5s091i-mMtT-yDmPRPYPYm2g?usp=sharing
https://colab.research.google.com/drive/1XU4V48lBQL-negEmmWLBP9-l9NDWhDww?usp=sharing
https://colab.research.google.com/drive/1XU4V48lBQL-negEmmWLBP9-l9NDWhDww?usp=sharing
https://colab.research.google.com/drive/1f46EpEGbwthLfhOw68vcDcSHRnKTO58p?usp=sharing
https://colab.research.google.com/drive/1f46EpEGbwthLfhOw68vcDcSHRnKTO58p?usp=sharing
https://colab.research.google.com/drive/1Gg4k0qtXSMn1YTl9j_MMJPfXKuNgMSp6?usp=sharing
https://colab.research.google.com/drive/1Gg4k0qtXSMn1YTl9j_MMJPfXKuNgMSp6?usp=sharing
https://colab.research.google.com/drive/1VnvDArKagV86ZCIh7UsdX0ZC3y-KT-JY?usp=sharing
https://colab.research.google.com/drive/1VnvDArKagV86ZCIh7UsdX0ZC3y-KT-JY?usp=sharing
https://colab.research.google.com/drive/1XIrszU1qkueF227rMIjHxl9y4iAU-kMF?usp=sharing
https://colab.research.google.com/drive/1XIrszU1qkueF227rMIjHxl9y4iAU-kMF?usp=sharing
https://colab.research.google.com/drive/14sGxCbCuGaFF0yvsaUAgL3fO_TKpdt2T?usp=sharing
https://colab.research.google.com/drive/14sGxCbCuGaFF0yvsaUAgL3fO_TKpdt2T?usp=sharing
https://colab.research.google.com/drive/1yd-BOwXR2X0Wqd_BCsUc1yXZoMHtCD_k?usp=sharing
https://colab.research.google.com/drive/1yd-BOwXR2X0Wqd_BCsUc1yXZoMHtCD_k?usp=sharing
https://colab.research.google.com/drive/1EDv8eHtIRWuou1av8Zt7HhHsjgLQ8_J9?usp=sharing
https://colab.research.google.com/drive/1EDv8eHtIRWuou1av8Zt7HhHsjgLQ8_J9?usp=sharing
https://colab.research.google.com/drive/1f5D2AmEfr0iGuUMaazKA-33-oQNb46YT?usp=sharing
https://colab.research.google.com/drive/1f5D2AmEfr0iGuUMaazKA-33-oQNb46YT?usp=sharing
https://colab.research.google.com/drive/19r6RAxqVpul_xP3syFThZJ-cOEF1B_1K?usp=sharing
https://colab.research.google.com/drive/19r6RAxqVpul_xP3syFThZJ-cOEF1B_1K?usp=sharing

B.2. Transfer Experiments

B.2.2 PathMNIST

Table B.4: Google Colab notebooks for Transfer attack experiments on PathMNIST.

Configuration = Notebook Link

Baseline https://colab.research.google.com/drive/1SJT_bQTqF6xTn5H-gl0jYOQilxj_
1x4j?usp=sharing

Regularised https://colab.research.google.com/drive/1VP37_CtfcycKgMeGa-k20ZmNZyY1UmLM?
usp=sharing

DP08-NoReg https://colab.research.google.com/drive/10R2W4z0Se_b_
3sz0gnmt0IELntI0aDNg?usp=sharing

DP12-NoReg https://colab.research.google.com/drive/1XgQvbU2hnTDX10s33F2JHoFHBgpDj-bm?
usp=sharing

DP08-Reg https://colab.research.google.com/drive/11utICzPEgOM4Vmm1iJVExvG_
hQsRVh6D7usp=sharing

DP12-Reg https://colab.research.google.com/drive/1zhbJD8AGEvVVLAFIHbQCzDD2Qnkxa9QHa?

usp=sharing
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https://colab.research.google.com/drive/1SJT_bQTqF6xTn5H-glOjY0Qilxj_lx4j?usp=sharing
https://colab.research.google.com/drive/1SJT_bQTqF6xTn5H-glOjY0Qilxj_lx4j?usp=sharing
https://colab.research.google.com/drive/1VP37_CtfcycKgMeGa-k2OZmNZyYlUmLM?usp=sharing
https://colab.research.google.com/drive/1VP37_CtfcycKgMeGa-k2OZmNZyYlUmLM?usp=sharing
https://colab.research.google.com/drive/10R2W4z0Se_b_3sz0qnmtOIELntIOaDNg?usp=sharing
https://colab.research.google.com/drive/10R2W4z0Se_b_3sz0qnmtOIELntIOaDNg?usp=sharing
https://colab.research.google.com/drive/1XgQvbU2hnTDX1os33F2JHoFHBgpDj-bm?usp=sharing
https://colab.research.google.com/drive/1XgQvbU2hnTDX1os33F2JHoFHBgpDj-bm?usp=sharing
https://colab.research.google.com/drive/1lutICzPEg0M4VmmliJVfxvG_hQsRVh6D?usp=sharing
https://colab.research.google.com/drive/1lutICzPEg0M4VmmliJVfxvG_hQsRVh6D?usp=sharing
https://colab.research.google.com/drive/1zhbJD8AGEvvLdFIHbQCzDD2Qnkxa9QHa?usp=sharing
https://colab.research.google.com/drive/1zhbJD8AGEvvLdFIHbQCzDD2Qnkxa9QHa?usp=sharing
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