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Abstract:

The evaporator system is very important for refri-
geration and air conditioning systems because it
makes sure that heat is exchanged efficiently. But
its performance is affected by nonlinear behavior,
especially when the system gain is very large in
some operating situations. One of the biggest prob-
lems in controlling the evaporator system is keep-
ing the superheat levels just right. If the superheat
is too low, liquid refrigerant could go into the com-
pressor, which could break the system. Too much
superheat, on the other hand, makes cooling less
effective, which wastes energy. So, it’s very import-
ant to be able to control superheat levels exactly.To
solve this problem, two advanced control meth-
ods are suggested: Adaptive Fuzzy-Based Sliding
Mode Control This method uses a rule-based sys-
tem to dynamically change control settings to keep
stability and performance, even when there are
nonlinearities. Adaptive Fuzzy PID Control with
Adaptive Gains , this is a hybrid method that uses
fuzzy logic to constantly adjust the proportional
and integral gains, making sure the system works
best in all situations. The goal is to create an adapt-
ive control technique that makes the superheat at
the desired temperature while successfully hand-
ling changes in gain and delays in delivery. The
suggested control system must strike a compromise
between efficiency and system protection by keep-
ing superheat to a minimum and stopping liquid
from getting into the compressor. Choosing the
right control gains, fixing transport delay problems,
and changing control rules on the fly are all import-
ant design choices that will help the evaporator sys-
tem run smoothly and efficiently.

https://www.aau.dk
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Chapter 1

Introduction

1.1 Refrigeration Systems

Commercial and Industrial refrigeration systems are among the most significant energy-
consuming industries. They account for 15% of global electric energy consumption and
are expected to grow over the next few decades, significantly influencing CO2 emissions.
[1]

Cooling systems are essential to various industries such as air conditioning, food
storage, and pharmaceuticals. Most of these systems function through a vapor compres-
sion cycle, which includes four primary elements: the compressor, condenser, expansion
valve, and evaporator. The proper operation of these elements is crucial for enhancing
energy efficiency and reducing environmental impact. In this context, the evaporator
system is vital as it absorbs heat from the surrounding environment, thus providing the
necessary cooling effect [2].

Heat absorption by the evaporator is one of the most crucial steps in a vapor com-
pression refrigeration cycle. The evaporator is the component of the refrigeration system
through which the refrigerant fluid absorbs heat from the surrounding medium to create
the desired cooling, since the refrigerant fluid exists as a vapor after leaving the expan-
sion device. The refrigerant’s thermodynamic condition inside the evaporator determines
how well this heat transfer mechanism works. The heat transfer coefficient between the
evaporator surface and refrigerant is significantly higher in the two-phase (liquid vapor)
state than at a state where the refrigerant has completely vaporized. Therefore, to achieve
the desired cooling capacity at the evaporator, it is better for the evaporator to consist of
some mixture of liquid and vapor refrigerant instead of completely vaporized refrigerant
fluid [3].

There can, however, be an important operational constraint in this situation. Although
sending a two-phase refrigerant (a mixture of liquid and vapor refrigerant) will enhance

2
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the heat transfer in the evaporator, a refrigerant that is entering the compressor must be
vaporized. Allowing liquid refrigerant to enter the compressor can create conditions for
severe mechanical failure due to liquid slugging, when incompressible liquid droplets
hit the moving parts of the compressor. Liquid slugging will reduce the service life of a
compressor and could even cause immediate failure. Hence, the skill of the system oper-
ation is to balance the operation to obtain maximum cooling capacity in the evaporator
with providing vaporized refrigerant to the compressor [4].

To bring balance, engineers apply a particular parameter called superheat, which in-
directly measures the liquid fraction of the fluid in the evaporator. Superheat is the
temperature difference between the refrigerant fluid at the outlet of the evaporator relat-
ive to the saturation temperature of the refrigerant fluid at that pressure [2]. In practice,
this is done by measuring the inlet and outlet temperatures of the refrigerant. If the
refrigerant at the outlet is warmer than its saturation temperature, it means the refriger-
ant is fully vaporized and has been heated slightly above its boiling point, ensuring the
compressor is within its safe operating limits [4].

Superheat of just about 5K is a common compromise used in practice for refrigera-
tion. Studies throughout the years have indicated this value is a reasonable compromise
between maximizing system operation and minimizing the likelihood of damaging the
compressor. However, the actual minimum temperature could vary greatly across system
design, operation, and the evaporators themselves. Every evaporator has an intrinsic fea-
ture known as a minimum stable super-heating level. This is where the control system
continuously overshoots and undershoots, ultimately reducing the efficiency of opera-
tion and responding with an unstable behavior. This is another objective to not allow the
setpoint for super-heating to be set too low [4].

The expansion valve is the part of the cycle that connects the high-pressure side and
the low-pressure side. It controls the flow of refrigerant into the evaporator. The typ-
ical expansion valves used in real time applications are capillary tubes and thermostatic
expansion valves (TXVs). Both devices limit the flow in terms of refrigerant metering
control; however, they have limitations. Capillary tubes are easy to make and cheap but
have no flexibility, and TXVs now have more sophistication than capillary tubes but they
still have a lag in their response time and cannot operate effectively over a wide range of
operating conditions [4].

In refrigeration systems with highly variable operating conditions, expansion devices
are usually calibrated for worst-case conditions. This is done for safety, but at the expense
of efficiency. When the expansion valve is set to maintain too high a degree of superheat
for worst-case conditions, the system may run with significantly elevated superheat levels
for extended periods during normal operating conditions. This is a significant amount
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of time when the refrigerant being delivered is not optimal and therefore is impacting
system efficiency in a sizable way. Tassou and Al-Nizari (1993) illustrated this efficiency
loss using empirical studies. They showed that from 8K super-heating to 14K resulted in
a difference of approximately 9% in the coefficient of performance (COP) of a commer-
cial refrigeration system. The results emphasized the importance of accurate superheat
control. Even insignificant increases can have a measurable effect on the performance [4].

The maintenance of an optimal superheat temperature is crucial for enhancing the op-
erational efficiency of refrigeration systems and averting potential compressor damage.
The control of superheat can be achieved by adjusting the degree of valve opening [2].
Proper superheat control prevents liquid refrigerant from entering the compressor, which
could otherwise cause mechanical failure. In addition, it improves the energy efficiency
of the system and stabilizes its thermal performance under varying operating condi-
tions.Controlling the superheat temperature in refrigeration systems is a complex task,
primarily due to the nonlinear behavior inherent in evaporator dynamics and the sensit-
ivity of the system to varying operational conditions. The relationship between the valve
opening degree and superheat is highly nonlinear, which makes it difficult to achieve
accurate and stable control using conventional methods. Moreover, refrigeration systems
often operate under fluctuating thermal loads, varying ambient temperatures, and in-
consistent refrigerant flow rates, all of which introduce disturbances that significantly
affect system behavior. These changing conditions make it difficult to maintain optimal
superheat levels and can lead to performance degradation or even system instability if
not properly managed. While traditional PI and PID controllers are widely used, their
performance heavily depends on accurate tuning, which is complicated by the diversity
of system designs and operating environments. As such, there is a growing need for ad-
aptive and intelligent control methods that can respond dynamically to system changes
without relying on detailed mathematical models. Addressing these challenges is essen-
tial for improving the efficiency, reliability, and safety of modern refrigeration systems
[5].



Chapter 2

Problem Analysis

2.1 Motivation

Traditional control techniques, although commonly implemented, frequently struggle to
tackle the intricacies and variations present in these operations. Traditional controllers
like Proportional-Integral-Derivative (PID) controllers are often the preferred method
of control for their general simplicity, ease of implementation, and longevity. But these
controllers often make significant errors in the presence of nonlinear dynamics, time-
varying processes, and disturbances. The failure of (PID) controllers to respond to these
nonlinearities tends to lead to less efficient, and suboptimal operation [2]. Moreover, this
limitation contributes to higher energy consumption, which poses a significant challenge
in modern refrigeration applications where sustainability and energy efficiency are crit-
ical priorities [6].

To tackle these challenges, a joint research project has been started by Aalborg Uni-
versity and Danfoss to introduce complex adaptive control techniques into refrigeration
systems. The aim of this project is to improve the temperature control of the evaporator
subsystem which is a crucial subsystem managing the cooling process. As part of this
work, an adaptive control strategies for an existing model of the evaporator has been
formulated with the aim of simulating and mimicking its operating behavior to an extent
of accuracy. The model has not only been created for simulation but also as a predictor
to support the development and validation of control strategies.

Fundamentally, this model of evaporator is a structure that converts the physics and
dynamics of the system into mathematical expressions. Predictions are performed on
system parameters, focusing on the cooling air temperature Tair, since it is a critical
quantity to predict which plays a key role in system efficiency and user comfort. To
accomplish this, the model combines historical system data with input control signals,
thus making it possible for it to predict future states of the system with some level of

5
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reliability [7].

The approach used in building this model is that of Gaussian Process Modeling GPM.
GPM is a capable statistical method that enables one to develop a probabilistic model
from a relatively short amount of observed data points. As an alternative to determin-
istic models, Gaussian Processes offer a flexible framework for understanding complex
system dynamics and quantify prediction uncertainty. This feature makes GPM espe-
cially suitable for systems like refrigeration, with very dynamic operating conditions, for
which deterministic models only might not be enough [7].

The existing system demonstrated expected performance under simulated conditions:

• Mean Squared Error (MSE) as low as 0.003◦C

• Tracking accuracy with maximum deviation of ±0.27◦C

• Ability to maintain stable air temperatures in test scenarios

The MPC-based strategy has a number of practical limitations despite these results,
especially when taking into account real-time deployment and long-term system flexib-
ility [7].

2.1.1 Practical Limitation

Using a Gaussian Process model to implement MPC presented significant difficulties that
compromise its applicability for plug-and-play industrial systems [7].

2.1.2 Optimization Problems Infeasibility

In approximately 10% of the scenarios, the Model Predictive Control (MPC) formulation
yielded infeasible solutions [7]. This problem could be caused by the model’s lineariza-
tion and the use of a lengthy prediction horizon, which could result in circumstances in
which the model is unable to identify a workable solution for the control inputs.

2.1.3 Negative Bias in Temperature Regulation

The cooling air’s temperature could be efficiently controlled by the MPC, although its
predictions showed a negative bias. This bias is probably caused by a large input-change
weight (R) relative to the error-weight, which can influence how aggressive the control
technique is [7].
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2.2 Need for Improved Weight Relationships

It might be possible to eliminate the negative bias by implementing a more aggressive
control method by modifying the weight relationship in the cost function. This indicates
that the current weight settings may not be optimal for achieving the desired control
performance.

2.2.1 Potential for Shorter Prediction Horizons

One idea to tackle the challenges of optimization problems is to work with a shorter
prediction horizon. This tweak might help the MPC stay feasible and boost its respons-
iveness to shifts in the system dynamics.

2.3 Model and Control Limitation

The GP-based MPC in the current model is significantly dependent on linearization and
adequately representative training datasets. Although, the evaporator system is non-
linear, varies over time, and is influenced by various disturbances including changes in
refrigerant properties, flow variations, and fluctuating loads. Multiple operational factors
restrict the effectiveness of Model Predictive Control MPC in regulating the superheat
temperature in an evaporator, even though it excels in systems with clearly defined dy-
namics and constraints [7]. Under field condition it is common for missing of critical
sensor data. For example, pressure sensors and inlet water temperature sensors are
prone to calibration drift, electrical noise, mechanical failure, or communication loss .
These measurements are crucial for the computation of thermodynamic properties such
as saturation temperature, enthalpy variation, or superheat margin. The absence of these
measurements may result in the model generating erroneous predictions and control in-
terventions. In these circumstances, conventional controllers demonstrate an inability to
adapt to novel operating conditions, as they do not possess a mechanism for re-tuning
the control gains. This deficiency culminates in an incapacity to uphold optimal control,
thereby resulting in suboptimal system performance characterized by increased over-
shoot, prolonged settling times, and, in certain instances, unstable system dynamics [7].
The failure to sustain effective regulation of superheat under such limitations presents
dangers not only to system efficiency but also to the safety of the hardwarespecifically
the compressor, which may incur damage due to the ingress of liquid refrigerant during
instances of evaporator flooding [7]. To address these challenges, the implementation
of adaptive fuzzy logic control strategies can enhance the system’s ability to maintain
optimal superheat levels despite the inherent uncertainties and nonlinearities present in
evaporator dynamics.



Chapter 3

Modeling

3.1 Pressure Enthalpy Diagram

The pressure-enthalpy diagram, shows the refrigerant starting its journey through the
vapor compression refrigeration (VCR) cycle at point 1, which is when the refriger-
ant enters the evaporator. During the transition between point 1 and 2, the refrigerant
absorbs heat from the surrounding environment, which causes it to change from a two-
phase mixture at the inlet of the evaporator to a superheated vapor at the outlet point [8].

From point 2 to 3 the refrigerant is in a superheated state as it is compressed, caus-
ing a little increase in pressure. By the time the refrigerant reaches a state at point 3,
it is now a high-pressure, high-temperature vapor that has entered the condenser. In
the condenser the refrigerant then rejects heat to the outside environment. As a result,
after the refrigerant leaves the condenser, which is represented by point 4, it is at a lower
temperature, typically in a saturated liquid or sub-cooled liquid state [8].

First, refrigerant passing between point 4 and point 1 goes through the expansion
valve. In this unit operation, the refrigerant experiences a sudden loss of pressure. After
the expansion process, the refrigerant then enters the evaporator as a two-phase liquid
and vapor mixture at point 1 meaning that the cycle is complete [8].

By incorporating electronic expansion valves (EEVs) and variable-speed compressors,
modern VCR systems can provide significantly more flexibility by implementing ad-
vanced control strategies to promote system efficiency and performance. In these applic-
ations, the control inputs are related to how far as the EEV is opened, which controls the
refrigerant mass flow rate at the evaporator inlet (ṁin), by controlling the compressor
speed during compressor operation, which controls the mass flow rate at the outlet
(ṁout), and also, through the speed of the evaporator fan, which controls the airflow
rate over the evaporator [8].

8
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Figure 3.1: Pressure Enthalpy Graph

3.2 Transfer function Model

Before the actual process of implementing control mechanism within the existing system
model, there is a need for a comprehensive analysis that involves not only the modeling
of the valve and evaporator but also the temperature superheat transfer function, all of
which is done to ensure that the entire system operates properly.

3.3 Transfer function of the evaporator

The dynamic behavior of the evaporator was obtained experimentally by applying step
excitation of the refrigerant mass flow rate at its inlet and recording the corresponding
variations in the superheat at the outlet. The resultant superheat response was fitted to
the (FOTS) First Order Time Delay model. The ratio between the inlet and outlet of the
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evaporators are put together as an open loop transfer function, which can be expressed
as a first order time delay.[9]

GE(p) =
∆Ts(p)
ṁr(p)

=
−KE

1 + θp
exp{−τp} (3.1)

Here:

∆Ts(p) - Temperature Superheat

ṁr(p) - mass flow rate

The above parameters vary with respect to the evaporation temperature and com-
pressor speed. Empirically, over various operating conditions the values for Ke, h and
q were expressed using regression analysis as a function of operating conditions. For
control implementation, the exponential delay term was approximated with a first order
term. [9]

Now, the Transfer function of the evaporator is expressed as:

GE(p) ≈ − KE

(1 + hp)(1 + qp)
(3.2)

Here:

KE Evaporator gain

h Time constant

q Transport delay

[9]
It is modeled as a second-order system characterized by a negative gain, indicating

that an increase in mass flow initially results in a decrease of superheat owing to transient
flooding conditions.

3.4 Transfer function of the expansion valve

The main function of the expansion valve is to regulate the mass flow rate entering the
evaporator to ensure smooth operation without hunting. The valve exhibits consistent
mass flow characteristics as a function of the stepper motor’s position, which operates
the expansion valve. Through experimentation, it was determined that the correlation
between the mass flow rate and the stepper motor position is linear, allowing for the
proportional gain Kv to be derived from the slope of the flowposition characteristic.
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The expansion valve transforms the valve opening control signal u(t) into the refri-
gerant mass flow ṁr(p) and is conventionally depicted as a first-order system or, as an
integrator.

The corresponding transfer function of the expansion valve is expressed as:

GV(p) =
ṁr(p)
U(p)

(3.3)

Here:

U(p) - Control Signal

ṁr(p) - mass flow rate

3.5 Superheat Temperature Transfer Function

The dynamic behavior of superheat within the evaporator can be articulated through the
subsequent transfer function:

GS(p)− 1.5e−10s

50s + 1
(3.4)

The Superheat Transfer Function was presented by "Professor Roozbeh". The super-
heat sensor is characterized as a first-order low-pass filter with a minor time delay and
negative polarity, thereby providing the measured superheat SHmeasured(t).

3.6 Normalization of Transfer Functions

The system is scaled by normalization form with the listed transfer functions of ex-
pansion valve, evaporator and superheat. Once the normalization is done the transfer
function looks like

Gplant(s) =
0.194925

2500s4 + 800s3 + 65s2 + s
(3.5)

The above transfer function can also be written as

Gplant(s) =
0.915

s(50s2 + 15s + 1)(50s + 1)
(3.6)
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3.7 Actual System Modeling Description

Evaporators within refrigeration systems employ a vapor-compression cycle mechanism
that facilitates the transfer of heat. The fundamental principle involves enabling the re-
frigerant to flow through the evaporators, wherein the heat exchange occurs between the
fluid circulating within the evaporator and the ambient air temperature. This process is
critical as it allows the refrigerant to absorb heat, transitioning from a liquid to a vapor
state, thus providing the necessary cooling effect in the system. To attain the necessary
superheat temperature, the superheat must exceed the temperature of the evaporator.
This ensures that the refrigerant is fully vaporized before it enters the compressor, pre-
venting potential damage and enhancing cooling efficiency [7].

The existing model is comprised of two section:

• Mixture Zone

• Superheat Zone

Figure 3.2: Two-Phase Zone

In the mixture zone, the liquid refrigerant is transitioning from liquid to vapor and
then enters the Superheat Zone. The process of evaporation takes place as the refrigerant
in the zone is in the transition state that is being vaporized from the liquid state to the
gas state [7].

A more detailed diagrammatic representation of the Evaporator system is depicted,
the diagram is taken for more detailed thermodynamical equations.

The dynamic temperature changes of the walls of the mixture zone describe the tem-
perature change of the mixture zone.
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Figure 3.3: Two-Phase Zone With Parameters
[7]

Ṫwallmix =
Q̇air-wallmix + Q̇wallISH-wallmix − Q̇wallmix-mix

Mwallmix cp,wall
(3.7)

Taking into account the dynamics of the valve, the mathematical representation of the
mass flow of the refrigerant flowing through the valve is expressed as:

Ṁmix,in = OD · Kv

√
(ρliq(1 − γ) + ρgasγ)(Prec − Pe)

[
kg
s

]
[7] (3.8)

where:

• OD is the valve opening degree in percent [.]

• Kv is the valve flow constant
[

kg
s
√

Bar kg m−3

]
• ρ is the density of the medium

[
kg
m3

]
• γ is the void mean fraction [.]

• P is the pressure [Bar]

• ∆hlg is the specific latent heat
[

kJ
kg

]
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The governing mass flow refrigerant equations represent the pressure difference,
which is determined by the upstream pressure (Prec) and downstream pressure (Pe) is
the driving force for the refrigerant transport into the evaporator.A pressure difference
flow of high-pressure sub-cooled liquid refrigerant, which swiftly expands through the
valve opening. Consequently, a low-pressure, two-phase refrigerant mixture flows into
the evaporator, initiating the heat absorption process essential for phase change [7].

The valve Opening and closing should be governed by valve transfer function equa-
tion:

OD =
ODCTRL

τ · s + 1
[7] (3.9)

where:

• ODCTRL Control Signal

• τ Valve Time Constant

The variation of wall temperature within the superheat zone is governed by dynamic
heat transfer equations that model energy exchange between the wall and the refriger-
ant vapor. In contrast to the mixture zone, the wall experiences heat loss or gain due
to conduction and mass flow where the superheat zone exhibits a similar mechanism,
along with an inverted sign for the conduction terms. In effect, heat that is absorbed in
one region may correspond to a reduction in the other, ensuring conservation of energy
across the system [7].

The below equations characterize the rate of temperature change at the wall surface,
which is influenced by the heat energy transferred from the vapor during evaporation[7].

ṪwallSH =
Q̇air-wallSH − Q̇wallSH-wallmix − Q̇wallSH-vapor

MwallSHCpwall

[
K
s

]
Ṫvapor =

Q̇wallSH-vapor − Q̇vapor-vapor,in

MvaporCpvapor

[
K
s

] (3.10)

In order to calculate the mass of the refrigerant vapor in the superheat zone by re-
ferring to the look-up table. Based on the look-up table, the given parameters such as
evaporator pressure Pe and the vapor temperature, the corresponding vapor density can
be retrieved. Once the density is identified, the mass of vapor within the superheated re-
gion is calculated by multiplying this value by the spatial volume occupied by the vapor
[7].

The volume of the evaporator given by [7]:
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V =
Mmix, max

ρliq(P, T)(1 − γ) + ρgas(P, T)γ
≡ constant (3.11)

The mass of vapor is given by [7]:

Mvapor = (V − Vmix(P, T)) ρgas(P, T) (3.12)

where:

Vmin volume occupied by the mixture in the evaporator.

When determining the evaporator’s volume distribution, a parameter involving the
maximum mass mixture which represents a fully flooded state. This parameter is used
to estimate the total volume of the evaporator. By subtracting the volume occupied by
the two-phase mixture from this total, the remaining volume available for superheated
vapor is obtained [7].

Vmix(P, T) =
Mmix

ρliq(P, T)(1 − γ) + ρgas(P, T)γ

[
m3
]

(3.13)

Once the volume of superheated vapor within the evaporator has been determined,
the corresponding length of the superheat zone can be calculated:

lSH =
V − Vmix(P, T)

V
L [m] (3.14)

[7]

3.7.1 Temperature Superheat Reference

According to the Gaussian Process Model, evaporator’s performance and compressor’s
safety depend on maintaining a suitable Tair for cooling while guaranteeing safer super-
heat levels TSH respectively. The primary goal of the evaporator in this Gaussian process
model is to cool the air to a specific temperature, T(air), and to maintain an evaporator
superheat of 8K, which is 8K above the evaporator temperature.

Cascade Control

The dual objective supports the cascade control methodology. The outer loop calculates
the difference between the the desired air temperature Tair,re f and the measured air tem-
perature Tair. The error is fed to the PI controller providing the reference for superheat
TSH,re f . A target for the inner loop that makes the actual superheat TSH follows these
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reference values is TSH,re f . Using a PI controller, this inner loop calculates the necessary
valve opening degree based on the error terms.

Figure 3.4: Cascade Control for TSH and Tair

The Valve OD is used as a shared actuator between Tair and TSH. Within the cascade
control framework, the Tair is controlled indirectly by manipulating the superheat TSH.
When Tair > Tair,re f , the outer-loop controller decreases TSH,re f ; in contrast, when Tair
< Tair,re f , the outer-loop controller increases TSH,re f . After receiving this reference, the
inner-loop controller constantly compares TSH to TSH,re f and adjusts the expansion valve
opening degree OD in an effort to reduce errors. As TSH,re f decreases, more refrigerant
flows, increasing the mixture zone and improving latent heat transfer, which lowers Tair.
In contrast, raising TSH,re f causes the heat transfer area to reduce, limit refrigerant flow,
and raise Tair. The outer loop controls thermal performance through this hierarchical
structure, while the inner loop maintains refrigerant safety and dynamic tracking. The
single actuation of the Valve will result in the influence of both Tair and TSH. The defrost
function eliminates ice buildup by injecting additional heat into the controller.

To ensure a safe operation, boundary layers are implemented which is the saturation
bounds where Tair maintained within 5◦C and TSH 8K above the evaporator temperature



Chapter 4

Control Strategies

The provided GP Model uses a Linear Model Predictive Control (LMPC) framework to
develop control strategies for regulating the air temperature Tair effectively. The primary
objective of this control is to regulate the Air Temperature Tair by adjusting the opening
degree of the valveOD [7].

The dynamic behavior of the system is represented using Gaussian Process Model
that allows for the predictive mechanism. The GP model’s predictive capabilities, is de-
signed to estimate how variations in the valve position will affect air temperature over a
extended period of time. GP model establishes a correlation between the measured air
temperature and the previous valve setting, thereby providing significant understanding
of the system’s dynamics. The implementation of Gaussian Process Modeling enables a
more accurate prediction of the air temperature in refrigeration systems. While GP model
offers insights about the behavior of the system, its computing complexity and intrinsic
non-linearity make it less appropriate for real-time control implementation. To mitigate
this limitation, the GP Model is linearized at a specific operating condition which will
reflect the normal behavior of the system [7].

Prior to implementing Adaptive Controllers in GP Model, it is essential to develop,
implement and validate Non-Adaptive Controllers using the transfer function mentioned
in the modelling section. This provides the foundation for comprehending the dynamic
properties of the system and their response to different inputs. This allows the con-
trol design to be analyzed more easily. With this foundational structure in place, the
transition to Adaptive Controllers can be carried out with certainty to ensure improved
performance and stability in regulating the superheat temperature. The adaptive control-
lers might leverage real-time data to adjust control parameters dynamically, enhancing
the system’s responsiveness to varying operational superheat conditions, for which im-
plementation of control strategies needs to be done.

17
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4.1 Traditional PID controller

In Industrial applications such as HVAC, PID controllers remains the choice of prefer-
ence die to their simple design, easy implementation and robust operations. Although
PID have been working around for decades, their popularity has continued to grow sig-
nificantly because of the advancement in tuning techniques that make it easier to adapt
the controller to different process requirements and improve overall system performance.
One such tuning technique is the Ziegler-Nichols method [10]. With the Ziegler-Nichols
technique, the Proportional-Integral-Derivative (PID) controller was tuned using the de-
rived transfer functions which is mentioned in section 3.6.

This process makes it simpler to tweak the PID parameters to improve the system’s
stability and responsiveness. Furthermore, tuning the controller significantly improves
system operations by reducing overshoot and optimizing settling times, ensuring proper
regulation of the superheat temperature.

Figure 4.1: Conventional PID Controller

The gain values obtained are

• Kp = 0.01

• Ki = 0.1166e-7
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• Kd = 0.001

which were determined to achieve a desirable balance between responsiveness and sta-
bility in controlling the superheat temperature.

4.2 Fuzzy PID Control

Most of the work was carried out using MATLAB Toolbox named Fuzzy Logic Designer,
which allows the development of fuzzy inference systems to model and control the su-
perheat temperature. The Fuzzy Logic Designer enables the creation of fuzzy rules and
membership functions, facilitating enhanced control over superheat temperature dynam-
ics.

4.2.1 Fuzzy PID Architecture

The structure of the fuzzy control system comprises four principal components:

• the Fuzzification

• The knowledge base,

• Inference mechanism

• the Defuzzification

This design allows for effective handling of the nonlinear dynamics inherent in su-
perheat control [11].

The configuration of a fuzzy controller requires tuning of four parameters:

• Determination of the Sampling Time: The sampling interval of the controller is
selected with respect to the plant model.

• Normalization of the gain parameters: The normalization of the gain parameters
involves scaling the input variables to ensure that the fuzzy controller operates
across different operating conditions.

• Formulation of rules: The formulation of rules involves the relationship between
the inputs and the outputs of the fuzzy inference system.

• Specification of Membership Functions: For the non linear relationship between
the the inputs and the outputs, appropriate membership functions shapes are defined
to capture the system’s behavior
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[2]

Fuzzification Inference Defuzzification

Knowledge Base

Rule Base Data Base

e

Δe
U

Figure 4.2: Architecture of Fuzzy

The diagram presented above illustrates the implementation of the fuzzy logic con-
troller.

Fuzzification Process

The first process is the fuzzification of input variables. These inputs are termed as crisp
values. The process of fuzzification is to convert the crisp numerical inputs into fuzzy
values in fuzzy sets, allowing the controller to interpret the input. Since digital systems
typically process information in binary form, they are not inherited to interpret vague
or uncertain data directly. To address this, crisp inputs must be translated into linguistic
variables such as "low," "moderate," and "high," or Small, Zero and Big which can be
evaluated within the framework of fuzzy logic [12].

Depending on the system, the linguistic variables may differ. Assigning membership
values to the crisp inputs considered to be a step in the fuzzification process. This con-
version method involves designating the appropriate membership functions to correlate
the crisp inputs with fuzzy sets, which enables the controller to process information in a
way that resembles human reasoning. [12].

In fuzzy logic notation, this relationship is typically expressed using the Greek letter
µ [12].
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There are many techniques for constructing the membership functions. The character-
istics of these functions influence which rules are activated, the strength of the activation,
and the smoothness of the controller’s output response.

There are 3 key features of membership function:

• Core

• Boundary

• Support

CORE

Boundary Boundary0

1

Support

X

µ

Figure 4.3: Features of Membership Function

Generally, The membership assumes values ranges defined by the user with respect
to the system.
Consider a Fuzzy Set A which can be represented by pair
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A = (x, ţ(x)) | x X A = {(x, µ(x)) | x ∈ X}

Here,

• A - Fuzzy Set

• x - Value

• µ - Membership Function

• εUniverse of Disclosure

Core
This lets the controller make smart choices based on linguistic variables. This ensures

confident decision by defining values that are full membership in the set A [12].
A = {x | µ(x) = 1}

Support
The support of a fuzzy set A comprises of every element in the universe of discourse

that has a degree of membership greater than zero. If an element has any degree of
relation with the set, even it is small, it is associated with the support [12].

A = {x | µA(x) > 0}

Boundary
For fuzzy set A, the range of all elements in the set is between 0 and 1 in the region

of universe x, but the membership function is incomplete [12].
A = {x | 0 < µA(x) < 1}

Along with the 3 key features of the membership function there are other features
such as cross-over points, normality, classification of fuzzy sets which put together will
shape the controllers response, robustness to noise and stability.

It is evident that selection and design of appropriate membership function is im-
portant as they determine which inputs are construed in accordance with fuzzy prin-
ciples. In practice, membership functions can take upon various shapes such as triangu-
lar, trapezoidal, Gaussian, or bell-shaped with each shape holding Its own advantages
depending on the nature of the system and its performance requirement [12].

A triangular membership function is defined by straight line segments with three
points: starting at the minimum of zero, reaching a maximum of one, and settling again
at zero. With three parameters, it is easy to frame and tune the rules, making it a straight-
forward and preferred choice for a membership function.
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A trapezoidal function takes the shape of a trapezoid, defined by four points, which
allows for flexibility in modeling. Behavior at the edges are considered crucial. The
waveform in the function takes a linear ramp and a flat top. When mapping the mem-
bership functions even when the inputs exceed the modelled ranges the rule is preserved
and not deviated improving the robustness. The choice of membership functions directly
influences the controller’s performance, as trapezoidal functions are often preferred for
their flexibility and ease of implementation in fuzzy systems.

Systems which require dynamic variation in a shorter time span, it is preferred to use
a triangular or trapezoidal waveform.

In cases where good accuracy, smooth peaks, and easier tuning are required, the
Gaussian or sigmoid waveform is preferred. However, it has a disadvantage: long-tailed
structures may activate distant rules slightly [13]. With respect to varying operating
conditions the selection of appropriate membership functions, the appropriate selection
of membership functions is essential for optimal control performance, as they have a
direct influence on the system’s responsiveness and managing nonlinear dynamics [14]

4.2.2 Knowledge Base

The Fuzzy Inference system is known to be the core component in the Fuzzy Logic Sys-
tem. The knowledge base includes data bases with membership functions and fuzzy
rules that are essential for guiding the fuzzy inference system in processing inputs to
achieve the desired control outcomes. Decision making mechanism is an important part
in the Inference system, the rules are formulated as antecedent (IF) and the consequent
(THEN) parts [15]. These rules are generally described in a manner similar to how hu-
mans make decisions in the presence of uncertain information. These rules represents
expert knowledge or intuitive reasoning regarding the relationship between inputs and
the desired outputs [2].

There are 2 most commonly used Inference Method:
Mamdani Inference Method:
Mamdani systems are defined that the rules are formulated in a specific way. The

Mamdani inference method employs fuzzy logic principle in both the antecedent (IF)
and consequent (THEN) parts of the fuzzy rules. The underlying principle involves rep-
resenting both the inputs and outputs where the representation of the output remains
in fuzzy set unless defuzzification process is applied. The Mamdani inference method’s
linguistic transparency facilitates better understanding and interpretation of fuzzy rules,
making it a popular choice in various applications of fuzzy logic control. Its rules are
similar to the way of human-reasoning delivering intuitiveness that enhances the inter-
pretability of the control system, making it easier to adjust and tune the rules as needed.
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In practice, Mamdani works well with non-linear systems, however dealing with large
number of rules and detailed membership functions requires intensive computation [13].

TakagiSugeno (TS) Inference Method:
Unlike the Mamadni method, the T-S Inference generates crisp output by using the

linear combination as a mathematical function of input variables. The Takagi-Sugeno
method’s avoids generating fuzzy set as an output rather respond numerically thus re-
ducing the complexity of the computation involved [13]. The mathematical approach of
this Inference system favors with data-driven approach, thus enabling integration with
neural network learning and optimization based parameter tuning. Together, these char-
acteristics improve the system’s ability to learn and adapt [13].

Despite of this benefits, the use of mathematical approach would lead to challenges
to derive the input-output fuzzy relationship. T-S Method would have trouble working
with Non-Linear systems because the model assumes the the relationship between inputs
and outputs is linear. Therefore, careful consideration must be taken into account while
selecting the inference method for non-linear systems.

In theory, the membership functions of a fuzzy sets can assume wide variety of
forms, but considering in real-time applications, when computational efficiency is cru-
cial, a uniform membership function shape is preferred. There are bell shaped, trian-
gular, trapezoidal and exponential shapes are used whereas trapezoidal and triangular
membership functions are commonly favored due to their due to their simple parametric
representation, minimal computational overhead, and ease of implementation [15]. Here,
the two inputs for the system are transformed into Linguistic Variables.

4.2.3 Defuzzification

The last step in the Fuzzy Logic Control is the is the defuzzification process, which con-
verts the fuzzy output from the inference engine into a actionable crisp value that will be
used as output control signal from the controller. Defuzzification can also be referred to
as the "rounding off" method [12]. There are various techniques for defuzzification such
as

• (1) Max-membership principle,

• (2) Centroid method,

• (3) Weighted average method,
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• (4) Meanmax membership,

• (5) Center of sums,

• (6) Centre of largest area,

• (7) First of maxima or last of maxima

[12]

Each has its own distinct characteristics, which work well according to the application
of the system and the choice of inference method used.

Max-membership principle
This method is also termed a height method. The Max-Membership function selects

the output value(s) as which the function achieves its maximum [12].

It can be expressed mathematically by,

µA(y∗) > µA(y)

Here, y is the defuzzified output.

µ

yy*

1

Figure 4.4: Max Membership Method
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In the Inference mechanism the rule firing stage involves computing the firing strength
by combining the the membership values µA(y) associated with each input variable using
logical operator. Furthermore, the firing strength determines the degree of activation for
each fuzzy rule and impacts the formulation of the output fuzzy set during the aggreg-
ation process. At the point where the aggregated fuzzy output set exhibits the highest
degree of membership, the defuzzification out is determined. This method is preferred
where quick approximation is sufficient [16]

Center of Gravity (COG) Method
After the fuzzy inference, the result of the aggregated output membership function,

that represents the combination of all activated rules as the output. This approach identi-
fies the center point of the area under the output membership function, Mathematically,
it involves computing the weighted average of all possible output values, weighted by
their corresponding membership degrees. Mathematically, this involves calculating the
weighted average of all possible output values, where the weights correspond to their
respective membership degrees [16]

y∗ =
∫

µÃ(y) · y dy∫
µÃ(y) dy

µ

yy*

1

Figure 4.5: Center of Gravity Method
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The COG method is the mostly preferred method for defuzzification. This prefer-
ence for the Center of Gravity (COG) method is based on its effectiveness in producing
smooth and accurate output values, making it particularly suitable for applications in-
volving fuzzy logic control [17]

Weighted average method
The weighted average method is applicable only when the output membership func-

tions are symmetrical, as it cannot effectively handle asymmetrical distributions. In this
approach, each output membership function is assigned a weight based on its maximum
membership value, and the final crisp output is calculated as the weighted average of
these values [12]

Mathematically it can be represented as

y∗ =
∑ µÃ(ȳi) · ȳi

∑ µÃ(ȳi)

4.2.4 Implementation of Fuzzy PID

As mentioned in section 3.2 the implementation goal is to achieve good reference track-
ing performance for the transfer function model. This is done to test the performance of
non-adaptive controllers with constant gains. The equation 3.6 represents the 4th order
transfer function that includes the behavior of the evaporator, superheat and the valve
dynamics. From the transfer function, the denominator polynomial represents a factor
s that indicates the presence of integrator in the plant, Nonetheless, it suggests that any
controller containing integral action must be carefully tuned to avoid destabilizing the
system.

4.2.5 Fuzzy PID Block Structure

The Fuzzy PID can be designed or a black box structure which is readily available can be
used, rather than the conventional PID form. Here, the a black box structure is utilized
for control implementation. The structure of a fuzzy PID was deigned in a parallel con-
figuration manner. The strength of fuzzy PID controller’s architecture uses the positive
aspects of proportional-integral PI and proportional-derivative PD control action under
the fuzzy framework, while overcoming the complexities involved in designing and tun-
ing a three-dimensional usually fuzzy rule required in traditional fuzzy PID designs
[18]. In accordance with each branch, the PD branch controls the transient response char-
acteristics, especially the rise time and overshoot reduction, while the PI branch rectifies
the error in order to attain zero steady-state deviation from the setpoint [18].
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Figure 4.6: Fuzzy PID Block Structure

4.2.6 Normalization of Controller Inputs

According to the conventional design, there are two inputs, and both branches share the
same inputs. The inputs to the fuzzy inference system must be normalized to fit within
the fuzzy domain, typically defined over the interval [−1, 1]. Two primary input signals
are used:

• Normalized Error E(k)

E(k) = Ce · e(k) (4.1)

• Normalized Rate of Change of Error Ẏ(k)

Ẏ(k) = −Cd ·
dy(k)

dk
(4.2)

Here,

• e(k) : the tracking error between the reference r(k) and actual output y(k).

• Ce and Cd : normalization gains selected to scale the error and rate of change of
error into the fuzzy domain.

The derivative term is based on the change in system output rather than the change
in error. This design prevents derivative kick, a phenomenon where sudden changes in
the reference signal cause large spikes in the derivative term.

Now, the change in error can also be denoted in terms of output difference:

Ẏ(k) = −
(
y(k)− y(k − 1)

)
(4.3)

Thus, the controller only responds to changes in the plant output, not to sudden
deviations in the setpoint.

4.2.7 Scaling Factors in Fuzzy PID Design

In order to ensure that the fuzzy PID controller exhibits dynamic behavior similar to that
of a conventional PID controller, it is necessary to scale the constants Ce, Cd, C0, and C1.
The gain values Kp, Ki, and Kd of the conventional PID are obtained through the Ziegler–
Nichols tuning method, which facilitates the adjustment of these constants to optimize
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the fuzzy PID controller’s performance [19].

Here,

• Ce is set to 0.1 to ensure that the error input falls within the fuzzy logic domain.

• Cd is linked to the derivative path and ensures consistency between fuzzy and
classical derivative action:

Cd =
2KiCe

Kp −
√

K2
p − 4KiKd

(4.4)

[19]
Based on these scaling factors, the values of C0 and C1 are derived as:

C0 = CeKi, C1 = CdKd (4.5)

[19]

Fuzzy Inference System Design

The fuzzy inference system (FIS) employs a Mamdani inference method that includes
Gaussian and triangular membership functions to capture nonlinearities in the control
behavior.

Input Membership Functions

The inputs are described using linguistically defined fuzzy sets:

Level (e) : {Low, Ok, High}, Rate (Ẏ) : {Negative, None, Positive}

Output Membership Functions

The output of the FIS corresponds to the control actions required to regulate the valve.
The output variable valve is defined by five fuzzy sets:

• Close Fast

• Close Slow

• No Change

• Open Slow

• Open Fast
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Figure 4.7: Level Membership Function

Figure 4.8: Output membership functions for valve control actions.

Rule Base

The formulation of rules was based on expert knowledge and research conducted on
evaporator systems [17]. By evaluating the inputs (level and rate) alongside the response
of the control action, the valve’s behavior was analyzed to assist in the formulation of the
rules.

A lookup table of fuzzy rules was developed as shown in Table 4.1.

Table 4.1: Map of Fuzzy Rules

Error (Level) Rate Negative Rate Zero Rate Positive
Low Open_Fast Open_Fast Open_Fast
Okay Open_Slow No_Change Close_Slow
High Close_Fast Close_Fast Close_Fast

The fuzzy rule base is also expressed explicitly as:

• Rule 1: If level is okay, then valve is no_change.

• Rule 2: If level is low, then valve is open_fast.
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• Rule 3: If level is high, then valve is close_fast.

• Rule 4: If level is okay and rate is positive, then valve is close_slow.

• Rule 5: If level is okay and rate is negative, then valve is open_slow.

The result of rule evaluation is an aggregated fuzzy output that describes the control
response under current operating conditions [17].

Defuzzification

In the defuzzification process, the Center of Gravity (COG) method is applied due to its
accuracy and smoothness [17]. The fuzzy outputs are combined and defuzzified into a
single normalized control effort u f (t).

The fuzzy controller output is expressed as:

u(t) = uPI(t) + uPD(t) (4.6)

u(t) = C0

∫
u f (t) dt + C1u f (t) (4.7)

where:

• C0: the output gain associated with the PI branch

• C1: the gain associated with the PD branch

[19]

Gain Scheduling Behavior

Classical PID controllers operate with fixed gains, making them less responsive in sys-
tems with varying dynamics [4]. In contrast, the fuzzy logic controller adapts its control
action based on real-time input conditions. This adaptive adjustment is referred to as
gain scheduling, where the controller modifies its effective gains dynamically according
to the error and rate of change of error [4].
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4.3 Adaptive Fuzzy PID

It is a known fact that the PID controllers are commonly used industrial control because
of its simplicity, intuitive design, and efficiency across many operating circumstances.
Nevertheless, , conventional PID controllers often struggle with nonlinearities, delays
and time-varying dynamics, leading to less than optimal performance in complex sys-
tems such as refrigeration [20]. Introducing Adaptivity approach into the conventional
PID method can significantly improve the performance by managing the challenges of
non linear dynamics and varying operational conditions, since PID controllers uses con-
stant gains and manually tuned values [20]. The adaptability of the varying parameters
is executed using an adjustment mechanism, enabling real-time modifications to the con-
trol parameters and improving the ability of the system to respond to changing superheat
condition.

The expression for the PID control can be written as

u(k) = Kpe(k) + KiTs

n

∑
i=1

e(i) +
Kd
Ts

∆e(k) (4.8)

Ts is the sampling time frequency.

Figure 4.9: Architecture Of Adaptive Fuzzy PID
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Fuzzification

The fuzzification process converts temperature errors and changes in error values into
fuzzy sets. This allows the controller to make well-informed choices based on linguistic
variables and membership functions [21]. Here, The fuzzy controller modifies the con-
ventional PID by applying fuzzy reasoning to control the PID parameters. In accordance
with the design specifications, the fuzzy controller applied for PID parameter tuning is
formulated with two input variables and three corresponding outputs. In this adaptive
fuzzy PID framework, the two primary inputs are the error in the superheat temperat-
ure, denoted as "e", and the rate of change of error, denoted as "∆e" [22].

e(k) = TSHREFERENCE − TSHMEASURED (4.9)
∆e(k) = e(k)− e(k − 1) (4.10)

In this case, seven membership functions were employed to facilitate the conversion
between crisp values into fuzzy values. This number is widely recognized for systems
exhibiting significant nonlinearity. Declaring membership function less than seven comes
with its own compromise of the responsiveness, whereas incorporating with more than
seven membership can lead to higher computational complexity and affect real-time im-
plementation [17]. The fuzzy inputs are characterized by assigning membership func-
tions with linguistic terms such as negative large (NL), negative medium (NM), negat-
ive small (NS), zero (ZE), positive small (PS), positive medium (PM) and positive large
(PL) [23]. The domain of disclosure for superheat error and rate of change of superheat
error is set within a range of [-1 1].

The controller gains are normalized using the following linear transformation for
convenience :

K′
p =

Kp − Kpmin

Kpmax − Kpmin

(4.11)

K′
d =

Kd − Kdmin

Kdmax − Kdmin

(4.12)

In this frame work, the adjustment of PID parameters relies on the inputs of Temper-
ature Superheat error e(k) and rate of change of error ∆e. To simplify the tuning process,
the integral time constant is linked proportionally to the derivative time constant [23].

Ti = α ∗ Td (4.13)

Here, α is termed as the scaling factor. The dimensionless gain ratio, α, indicates how
strong the integral action is in comparison to the derivative action [23]. Now, the integral
gain can be reformulated as
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Figure 4.10: Temperature Superheat Error

Ki =
Kp

αTd
=

K2
p

αKd
(4.14)

Since in the time constant Td = Kd
Kp

Fuzzy Rules

The primary objective is to maintain the superheat temperature close to the setpoint
while minimizing overshoot, oscillations, and control effort.Following the approach of
Zhao et al. The fuzzy rules were designed based on the step response experimentation
[23]. Fuzzy rules were established for different operational phases of the system by ana-
lyzing the dynamic properties of superheat temperature in regard to changes in valve
position. A significant effort from the controller is necessary during the initial transient
phase to achieve a rapid rise time and quickly, guide the system towards the superheat
reference. Thus, gain value Kp should be large enough to achieve fast reaction whereas,
gain value of Kd should be small in order to avoid suppressing the initial action [23].
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Figure 4.11: Rate of Change of Error

This behavior is formulated as fuzzy rules

If e(k) is PB and ∆e(k) is ZO, then Kp is Big, Kd is Small, α = 2 (4.15)

As mentioned earlier above, the relative strength is the ratio between integral and
derivative time constant which will compute the Ki gain values. Here based on the
constant values of α aggressiveness of the control is decided.

• When α value ranges between 1 to 2 the integral action is stronger and promotes
faster steady state convergence [23].

• When α value ranges 3 and more than 3 the integral action is weaker and reduces
overshooting [23].

Now, any further increases should be stopped by the control during the overshoot
period. In this region, the controller should use a smaller Kp, a larger Kd, and a weaker
integral action. This scenario occurs when the superheat approaches steady state [23].

This behavior is formulated as fuzzy rules

If e(k) is ZO and ∆e(k) is NB, then Kp is Small, Kd is Big, α = 5 (4.16)
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These rules, when combined, form a set of 49 fuzzy rules with seven linguistic levels
for input errors and the rate at which they change.
These rules are represented in a table

∆e(k)
e(k) NB NM NS ZO PS PM PB
NB B B B B B B B
NM S B B B B B B
NS S S B B B B S
ZO S S S B S S S
PS S S B B B B S
PM S B B B B B S
PB B B B B B B B

Table 4.2: Fuzzy Tuning Rules for K′
p of Valve Opening Degree

[23]

∆e(k)
e(k) NB NM NS ZO PS PM PB
NB S S S S S S S
NM B B S S S B B
NS B B B B B B B
ZO B B B B B B B
PS B B B B B B B
PM B B S S S B B
PB S S S S S S S

Table 4.3: Fuzzy Tuning Rules for K′
d of Valve Opening Degree

[23]

Defuzzification

The defuzzification process converts fuzzy values from the inference system into crisp
values because the controller cannot process fuzzy values. The fuzzy inference system
calculates the truth value µ of each rule, also known as the degree of membership func-
tion, by multiplying the membership values from the inputs.

µi = µAi

(
e(k)

)
· µBi

(
∆e(k)

)
(4.17)

Here,

• µAimembership function values for error
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∆e(k)
e(k) NB NM NS ZO PS PM PB
NB 2 2 2 2 2 2 2
NM 3 3 2 2 2 3 3
NS 4 3 3 2 3 3 4
ZO 5 4 3 3 3 4 5
PS 4 3 3 2 3 3 4
PM 3 3 2 2 2 3 3
PB 2 2 2 2 2 2 2

Table 4.4: Fuzzy Tuning Rules for α of Valve Opening Degree
[23]

• µBimembership function values for rate of change of error

[23]
The output membership function consists of two curves which are represented by

"Big" B or "Small" S. While operating at a particular point when the need for the valve
opening degree to be large the gain is on the B curve and vice versa when the gains are
need to be small.

The output membership functions are defined using two linguistic terms: "Big" B and
"Small" S, each corresponding to a specific fuzzy set represented by a distinct and inde-
pendent curve. During operation, when the control system requires a bigger valve open-
ing, the associated gain corresponds with the "Big" membership function. In contrast,
when a lesser control effort is sufficient, the gain aligns with the "Small" membership
function [23].

All values in the fuzzy inference system are scaled between 0 and 1, as it works with
normalized inputs.

n

∑
i=1

µi = 1 (4.18)

The normalized gains K′
p and K′

d can be calculated through defuzzification using the
center of gravity approach, based on the values of µi [23].

K′
p =

m

∑
i=1

µiK′
p,i (4.19)

K′
d =

m

∑
i=1

µiK′
d,i (4.20)
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α =
m

∑
i=1

µiαi (4.21)

The values of K′
p and K′

d that correspond to the grade of the memebership function
µi for the ith rule are denoted by K′

p,i and K′
d,i, respectively [23]. Upon defuzzification,

the normalized values are interpolated within the specific ranges to compute the actual
values of Kp, Ki and Kd. From the equations 4.15 and 4.14 the gains are computed using
following formulas:

Kp = (Kp,max − Kp,min) · K′
p + Kp,min (4.22)

Kd = (Kd,max − Kd,min) · K′
d + Kd,min (4.23)

Ki =
K2

p

α · Kd
(4.24)

Here, the fuzzy logic controller’s normalized outputs are denoted by K′
p and K′

d. The
minimum and maximum acceptable values fori Kp are indicated by Kp,min and Kp,max,
while those for Kd are represented as Kd,min and Kd,max.

The permissible lower and upper bounds for PID controller gains can be found by
observing the system’s behavior.To determine these limits, a commonly used technique
called the Ziegler-Nichols (Z-N) tuning method was used [23]. Two significant values are
determined using this procedure Ku and Tu these values are obtained from the existing
Gaussian Process Model.

These are the suggested ranges for the gains:

Kp,min = 0.32Ku, Kp,max = 0.60Ku (4.25)

Kd,min = 0.08KuTu, Kd,max = 0.15KuTu (4.26)

Here, Tu - Time of oscillation which was obtained through trial and error method.

Numerous simulations and research were carried out to establish the basis for the
formulation of the given bounded values [23].

Although there are several comparable techniques to construct the Adaptive Fuzzy
PID, these are one method for fuzzy gain scheduling. The implementation of the fuzzy
rules is the only modification. The rule clearly makes direct use of raw profits gains.
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Figure 4.12: Universe of Discourse for Gain K′
p

In this case, the rules are formulated as

If e(k) is A and ∆e(k) is B, then U is C

The well-defined "IF-Then" statements that link the valve response to the system fuzzy
conditions comprise the rule basis. Each rule correlates the fuzzy input conditions with
corresponding control actions, which are defined by the knowledge base, that is essential
for the fuzzy controller.

These relationships are expressed through a set of linguistic rules, for example :

• If the superheat error is negative large (NL) and the rate of change of superheat
error is Negative Large (NL), this indicates that the superheat temperature is very
low and dropping drastically, which would lead to flood-back. Now, the controller
must respond immediately and the valve should be closed [2].

• If the Superheat error is Negative Medium (NM) and the the rate of change of
superheat error is Negative Large (NL), this indicates a slower drop in the tem-
perature of the superheat which is still a issue. Now the controller must respond
immediately and the valve should be closed [2].
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Figure 4.13: Universe Of Disclosure for Gain K′
d

e ∆e (change in error)
NL NM NS Z PS PM PL

NL NL NL NL NM NS Z PS
NM NL NL NM NS Z PS PM
NS NL NM NS Z PS PM PL
Z NM NS Z PS PM PL PL
PS NS Z PS PM PL PL PL
PM Z PS PM PL PL PL PL
PL PS PM PL PL PL PL PL

Table 4.5: Rule Table

• If the superheat error is Zero (ZE) and the rate of change of superheat error is Zero
(ZE), then system is stable, and no action is required on the valve [2].

Similarly all 49 rules are framed based on this domain knowledge of the temperature
of the superheat. The fuzzy rules considers the reasoning into control logic which acts as
a catalyst to frame the rules respective to Fuzzy PID. Unlike traditional PID controllers,
which depend on fixed parameters, fuzzy inference uses linguistic mappings to dynam-
ically understand the system state and modify the control output [2].
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Figure 4.14: Universe Of Disclosure for Alpha

The controllers operates by continuously monitoring the data from the Model and
calculates for error (e) the rate of change of error ∆e. A fuzzy inference system processes
these inputs to generate an output that provides the corrective action, in this case the
change in the valve’s opening percentage [2]. Here, the current valve opening dynamic-
ally scales the fuzzy controller’s output based on the following relation:

u′(t) = ∆u′(t) · u(t) + u(t) (4.27)

Here,

• u(t): current percentage opening of the electronic expansion valve (EEV).

• ∆u′(t): output from the fuzzy inference system.

• u′(t): updated valve opening.

When the valve is fully open, which indicates a high evaporator load, the formulation
allows the controller to adjust. The fuzzy-PI control in this case allows for larger cor-
rective actions. In contrast, the fuzzy-PI control permits smaller adjustments when the
valve is almost closed, indicating a low evaporator load. The control output can be scaled
according to the current valve position, which allows the system to react to various load
scenarios [2].
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4.3.1 Implementation of Sliding Mode Controller

Sliding Mode Control (SMC) is considered a robust control method that can effectively
handle disturbances and uncertainties [24]. A variable structure control technique is
implemented for the given plant model. The design of the SMC controller occurs in two
steps. The first step involves defining a sliding surface that represents the desired system
behavior, ensuring stability under varying conditions. Subsequently, the control law is
designed to drive the system state towards this surface, compensating for uncertainties
and disturbances.

In (SMC), it is essential to derive a state–space representation of the model [24].
However, in Sections 3.6 and 3.7, the model is represented as a fourth–order transfer
function.

State–Space Representation

The state–space representation is expressed as:

ẋ(t) = Ax(t) + Bu(t) (4.28)
y(t) = Cx(t) + Du(t) (4.29)

with the state vectors defined as:

x(t) =
[
y(t) ẏ(t) ÿ(t) y(3)(t)

]T
, xd(t) =

[
yd(t) ẏd(t) ÿd(t) y(3)d (t)

]T

The controllable canonical form is applied to obtain the matrices:

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 −0.32 −0.026 −0.0004

 , B =


0
0
0
1

 ,

C =
[
0.00036596 0 0 0

]
, D = 0

Sliding Surface Design

The state trajectories must reach the sliding surface for the system to attain equilibrium
[24]. The system’s sliding surface must capture the fourth–order behavior required for
tracking superheat dynamics. It is defined as:

s(t) = c1e1(t) + c2e2(t) + c3e3(t) + e4(t)

Here, c1, c2, c3 ∈ R are design constants that determine the convergence dynamics
and relative weighting of the error terms. The tuning of these parameters influences the
responsiveness of the controller and ensures sliding stability.
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Control Law Design in Sliding Mode Control

Let

x(t) =
[
y(t) ẏ(t) ÿ(t) ...y (t)

]T , xd(t) =
[
yd(t) ẏd(t) ÿd(t)

...y d(t)
]T

represent the system states and the desired trajectory, respectively.
The tracking error is then defined as:

e(t) = x(t)− xd(t)

The objective of SMC is to ensure that the sliding surface s(t) → 0 and to maintain
the system trajectories at or near this condition. In order for the states to converge
to the equilibrium defined by the sliding surface, a control law must be designed that
ensures the state trajectories are driven towards and maintained on this surface, thereby
effectively regulating the superheat dynamics [24].

During the convergence phase, system states are sensitive to disturbances and uncer-
tainties. Therefore, the reaching phase should be as short as possible [24].

The SMC control law can be divided into two components:

1. Equivalent Control

2. Switching Control

Equivalent Control. Under ideal system conditions, the control input that drives the
system trajectories along the sliding surface is called the equivalent control, ueq(t) [25].
The sliding surface is defined as:

s(t) = c1e1(t) + c2e2(t) + c3e3(t) + e4(t) = 0

To maintain the system on the sliding surface, the derivative is set to zero:

ṡ(t) = 0

Solving for the equivalent control yields:

ueq(t) = − 1
B4

(
c1x2 + c2x3 + c3x4 + A4,:x

)
where

• A4,: represents the last row of the state matrix A

• B4 is the last element of input matrix B.
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Switching Control: The switching control component ensures that the system remains
on the sliding surface despite uncertainties and external disturbances [nonlinear_control_book].
The reaching dynamics are governed by the switching law.

Conventional SMC uses the discontinuous sign(s) function, which can lead to high-
frequency oscillations known as chattering [25]. To mitigate this, the signum function is
replaced with a smooth hyperbolic tangent function [25]:

usw(t) = −K(t) · tanh
(

s
φ

)
where φ is the boundary layer coefficient that defines the thickness of the boundary

layer around the sliding surface [matlab_reachinglaw].
The adaptive gain K(t) improves convergence behavior where a higher K(t) acceler-

ates convergence but may cause larger steady-state error. On the other hand, a lower
K(t) reduces oscillations but results in slower convergence. Therefore, there is a need to
dynamically switch between high gain and low gain depending upon the error.

Total Control Law. The complete SMC law is expressed as:

u(t) = ueq(t) + usw(t)

This combined control ensures both robustness against disturbances and convergence
of the system trajectories to the sliding surface equilibrium which is shown in the Results
section.

4.3.2 Adaptive Fuzzy Sliding Model Control

Conventional sliding mode control (SMC) relies on a fixed control gain combined with
a boundary layer. In the Control theory, (SMC) is known for its robustness, the control-
ler may frequently results in a fast switching of the control signal known as chattering,
which may cause the expansion valve to open and close rapidly in refrigeration systems.
This may affect the overall efficiency of the system and increase actuator wear [25]. In
order to respond to the time-varying and nonlinear dynamics of the evaporator, an ad-
aptive SMC framework that can modify its control action is been proposed.

On designing the Adaptive Fuzzy Sliding Model Control AFSMC there are two steps
which are followed:

• Designing the Adaptive Fuzzy method

• Designing the Sliding Mode Control SMC
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Figure 4.15: Sliding Mode Control

The representation of Adaptive Fuzzy SMC:
The valve opening degree is a combination of these two methods. Combining both

design strategies achieves the AFSMC. As per the fuzzy design architecture, the inputs
are declared as temperature superheat tracking error e, rate of change of error ė and eint
which prevents actuator saturation, This eint is known as the integral error.

eint is bounded between
eint ∈ [−5, 5]

The goal is to reduce e to 0 while also preventing valve chattering and complying
with actuator limits. The control response is varying for the non linear evaporator dy-
namics where a fixed parameter may fail to balance the response, the implementation of
an adaptive sliding surface, whose coefficients dynamically change with the magnitude
of error terms, helps mitigate these issues.

The Siding Surface s(t) is defined as:

s(t) = λ0(t) eint(t) + λ1(t) e(t) + λ2(t) ė(t) (4.30)
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Figure 4.16: Block Diagram of Adaptive Fuzzy SMC

Here, the values of λ are the weighing coefficients which are obtained through trial
and error tuning method.

• λ0(t) Integral coefficient

• λ1(t) Proportional coefficient

• λ2(t) Derivative coefficient

λ0(t) = 5 + 3 |eint(t)| (4.31)
λ1(t) = 4 + 2 |e(t)| (4.32)
λ2(t) = 0.5 (4.33)

The sliding surface is designed in such a way as to make the control law more re-
sponsive by altering the impact of each error component in real time [26]. The weighting
factors λ0(t) and λ1(t) are defined as increasing functions of the absolute values of the
integral and proportional errors, respectively. These adaptive gains increase directly pro-
portional to how far the system moves away from the set point, whether due to a large
steady-state offset or a rapid transient change. Because of this, the sliding surface s(t)
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becomes more sensitive to ongoing deviations, prompting the control law to take greater
corrective actions to get the system back on track. The weights λ0(t) and λ1(t) decreases
when the tracking error and integral error are small, indicating that system is close to
the reference. The controller responds to more gently as a result, which prevents it from
making excessive adjustments to the valve while the system remains stable [26].

Normalizing the input signals to the fuzzy logic controller is necessary for fuzzy
inference to function within a limited computational domain. Since the fuzzy rule base
is specified across a finite universe of discourse, often within the interval [−1, 1], the raw
inputs must be properly scaled [26].

enorm = max
(

min(e, 1),−1
)

(4.34)

ėnorm = max
(

min(ė, 1),−1
)

(4.35)

The inputs of the fuzzy system stays within the specific range that aligns with the
defined membership function.
Each membership function is implemented as a triangular function:

µterm(x) =


0, x ≤ a or x ≥ c
x − a
b − a

, a < x ≤ b
c − x
c − b

, b < x < c

(4.36)

The rules are made up of 3X3, there triangular membership function are represented
for error e

Linguistic Term Label Triangular Range [a, b, c]
Negative N [−1.5, −1.0, 0.0]

Zero Z [−0.5, 0.0, 0.5]
Positive P [0.0, 1.0, 1.5]

Table 4.6: Triangular Membership Function Parameters

This rule table represents the membership functions for ė

Linguistic Term Label Triangular Range [a, b, c]
Negative N [−1.5, −1.0, 0.0]

Zero Z [−0.5, 0.0, 0.5]
Positive P [0.0, 1.0, 1.5]

Table 4.7: Triangular Membership Function Parameters
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Rule No. IF Error e is... AND ė is... THEN Switching Gain η is...
1 Negative (N) Negative (N) High (1.00)
2 Negative (N) Zero (Z) Medium–High (0.75)
3 Negative (N) Positive (P) Low (0.50)
4 Zero (Z) Negative (N) Medium–High (0.75)
5 Zero (Z) Zero (Z) Medium (0.50)
6 Zero (Z) Positive (P) Medium–High (0.75)
7 Positive (P) Negative (N) Low (0.50)
8 Positive (P) Zero (Z) Medium–High (0.75)
9 Positive (P) Positive (P) High (1.00)

Table 4.8: Fuzzy Rules for Switching Gain η

The rules are portrayed in the following format:
With weights wij = µe(i) ∗ µė(j), The weights wij is used to calculate the numerator

and the denominator to subsequently find the Valve OD gain. When the denominator is
less than 0, the valve OD is limited to a value of 0.35. Contrary, when the denominator
is greater than 0 the gain of Valve OD is calculated to be in the range of 0.35 and 1.

η = max

(
∑i,j wij ηij

∑i,j wij
, ηmin

)
, ηmin = 0.35 (4.37)

In a conventional SMC the boundary layer is fixed, whereas in case of AFSMC the a
proposal of adaptive boundary is discussed below:

φ(|s|) = 0.02 + 0.06e−|s|, sat(s) =
s

|s|+ φ(|s|) . (4.38)

Here, φ(|s|) is defined adaptive boundary layer which dictates the frequent switch-
ing. The less the value of φ(|s|) results in frequent switching which in turn leads to
accelerated wear and tear of the valve. In contrary, when the value of φ(|s|) is larger, the
frequency of the switching is reduced whereas the system doesn’t perform as expected.
Therefore, the value of φ(|s|) plays a crucial role in finding the balance between the sys-
tem performance and valve operation.

Similarly, in case of sat(s), there is a requirement to normalize the boundary layer
before combining it with the adaptive fuzzy gains.

The Valve OD signal is a combination of both adaptive fuzzy gains η and normalized
boundary layer sat(s). Thereby, the equation combines both adaptive fuzzy logic and
adaptive SMC to work in unison as one master control.
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Lyapunov Stability

The stability of the proposed (AFSMC) system is demonstrated through a Lyapunov-
based analysis. The sliding surface s(t) is defined to select a standard candidate Lya-
punov function [26]. Finding the appropriate energy function is one of the difficult parts.
In this scenario, the most widely used energy function is used [25]. THe commom quad-
ratic function used in SMC;

V(s) = 1
2 s2 (4.39)

To show that the closed-loop system is asymptotically stable, it is sufficient to show
that the time derivative of the Lyapunov function, V̇(s), is negative definite for all s 6= 0
[25].

Taking the time derivative gives:

V̇(s) = s ṡ (4.40)

The control law formulated acts on the system to drive the s to 0. Under specific
circumstances, the control term dominates the evolution of s due to the matched system
dynamics, where the control input impacts the sliding variable. Now, the derivative of
the Lyapunov function can be expressed as:

V̇(s) = s · ṡ = −η · s2

|s|+ φ(|s|) (4.41)

Since η > 0 and φ(|s|) > 0 for all s, then V̇(s) < 0.
When system energy decreases over the period of time, the states move towards the

sliding surface which is s = 0.

This ensures that the controller guides the superheat temperature towards the refer-
ence [25]. Together, the boundary layer function φ(|s|) and the adaptive gain selected
via fuzzy logic guarantee that V̇(S) < 0. Thus, while reducing chattering and maintain-
ing resilience to model errors and disturbances, the AFSMC offers asymptotic Lyapunov
stability.



Chapter 5

Simulation and Results

5.1 Results Using Transfer Function

The simulation results were obtained by taking fourth order transfer function which com-
prises of system dynamics of expansion valve, Evaporator and temperature superheat.

There were two stages to the validation of the suggested controllers’ performance:

• Reference Tracking Verification - to make sure that any control strategy can reliably
follow the reference trajectory without having to adjust.

Control Evaluation: to see how much better tracking accuracy, disturbance rejec-
tion, and robustness got once the adaptive part was included.

5.2 Reference Tracking Performance

The controllers such as PID, fuzzy-PID and SMC controllers were implemented to the
fourth order system transfer function, from the results it is evident that the given control-
lers were able to follow the reference. SMC was seems performing well when compared
to other controllers but when checking in close proximity there were chattering to be
found. The MRAC controllers follows the same trajectory as PID because the gains of
the PID and MRAC were same. The fuzzy-PID follows the reference with minimal
overshoot, but the concern the rise is slower when compared to other controllers.

5.2.1 Adaptive SMC control

The adaptive SMC control shows faster convergence with respect to the reference. Also,
when a disturbance occurs, the adaptive SMC controller mitigates the disturbance and
adapts to the temperature superheat reference. One disadvantage of the adaptive SMC

50
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Figure 5.1: Adaptive SMC control of Temperature Superheat

Figure 5.2: Adaptive SMC control Valve Opening Degree

controller is its inability to mitigate chattering effects in the valve OD.
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5.2.2 Adaptive Fuzzy PID

Figure 5.3: Adaptive Fuzzy PID of Temperature Superheat

Figure 5.4: Adaptive Fuzzy PID of the Valve OD

The Adaptive Fuzzy PID control provides smooth trajectory but when noticing keenly
the overtime is is higher which shouldn’t be in the case of an Adaptive Fuzzy PID. The
valve Opening degree consists of Chattering effects generating not a smooth actuation.

5.3 Adaptive Fuzzy SMC

The Adaptive Fuzzy SMC ensures a faster convergence and by nature it is a robust
controller which can been seen from the above results. The chattering is completely
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Figure 5.5: Adaptive Fuzzy SMC of TSH and the Valve OD

mitigated in the Adaptive Fuzzy SMC controller where as other adaptive controllers
found to have either heavy chattering or minimal chattering.

5.4 Total Simulation
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Figure 5.8: All Controllers Valve Actuation
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Figure 5.9: Valve Opening Degree
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Figure 5.10: Superheat Temperature

Figure 5.11: Universe of discourse for rate of change of superheat error



5.5. Adaptive Fuzzy PID with different rules 57

Figure 5.12: Universe of discourse for Valve



Chapter 6

Conclusion

The thesis concludes that each and every controller has it’s own merits and demerits.
Among the control candidates, the Adaptive Fuzzy SMC found to be promising and
offering the possibilities of adaptiveness with a balance of adaptability, handling disturb-
ances without noticeable overshoot and with a Valve with no chattering thus providing
a smooth actuation which prevents the valve frpom actual wear and tear. The tradi-
tional PI settled quick whereas fuzzy PID settled more slowly and were more sensitive
to changes in the operating point, while conventional SMC reached the setpoint rap-
idly but at the expense of increased switching activity.The simulations are supported by
the Lyapunov analysis, which shows that the selected Lyapunov candidate converges to
zero and declines monotonically, suggesting asymptotic stability of the closed loop in
the tested operating region and s(t)0. In practice, this translates to less actuator wear and
more stable thermodynamic functioning through stricter superheat control and softer
valve action. When combined, these results support the choice of Adaptive Fuzzy SMC
as the superheat loop’s preferred controller.

6.1 Future Work

The control implementation can be carried out further by using Reinforcement learning,
trying out with different Fuzzy Rules. Also In order to find the efficiency of the temper-
ature superheat a compressor can be modeled so the COP efficiency of the superheat can
be found.
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