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Abstract:

This thesis investigates the use of
Glimpse Proportion (GP) maximi-
sation as an optimisation objective
for Near-End Listening Enhancement
(NELE). Unlike conventional meth-
ods based on the Speech Intelligi-
bility Index (SII) or related met-
rics, the proposed approach employs
a differentiable formulation of GP,
enabling gradient-based optimisation
under energy-preservation constraints.
The method, introduced as GlimpseP,
applies frequency-dependent, time-
invariant spectral weighting and is
evaluated across multiple datasets
(DANTALE 1I, AEMST, TIMIT) and
noise conditions (stationary and com-
peting speaker). Results show consis-
tent improvements in objective intel-
ligibility metrics, with particular ad-
vantages in fluctuating noise where
glimpsing cues are most perceptu-
ally relevant. Compared to estab-
lished baselines such as FractileASI],
the proposed method demonstrates
comparable or superior performance
while maintaining robustness across
conditions. These findings confirm
the potential of GP as a perceptu-
ally grounded optimisation target for
NELE.
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Chapter 1

Introduction

1.1 Background

Being able to understand speech in noisy environments is a fundamental part of
human communication. Yet, everyday acoustic scenes often contain multiple com-
peting sound sources: background conversations in a café, traffic noise on a busy
street, or environmental sounds in urban spaces. For listeners with hearing impair-
ments, or even for normal-hearing listeners in particularly challenging conditions,
speech intelligibility can degrade significantly. This challenge has led to a long
tradition of research into models that predict intelligibility and into systems that
can enhance it.

A particular focus has been on Near-End Listening Enhancement (NELE). Un-
like conventional speech enhancement, which aims to recover a clean signal from
a noisy mixture, NELE modifies the playback signal at the listener’s side to make
speech more intelligible under local noise conditions. This makes the problem both
practically relevant and technically challenging, since the system cannot rely on
knowledge of the exact acoustic environment. Over the past two decades, NELE
has evolved from simple analytic solutions to more perceptually motivated and
even machine-learning-based strategies. However, most approaches have contin-
ued to optimise for predictors such as the Speech Intelligibility Index (SII) or its
derivatives, which are reliable in stationary noise but less accurate in more complex
listening environments.

1.2 Problem Statement

While traditional metrics like SII and STOI have provided valuable tools for optimi-
sation, they do not fully capture the way humans perceive speech in realistic noise.
In particular, in situations with fluctuating noise such as competing speakers, listen-
ers rely on brief moments where parts of the target speech become audible. This
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process, described by glimpsing theory, motivates the use of the Glimpse Proportion
(GP) as an intelligibility predictor. GP has been shown to correlate strongly with
listening test outcomes in dynamic noise, but despite this evidence it has rarely
been used as a direct optimisation target in NELE systems. Existing approaches
therefore miss the opportunity to align system design more closely with perceptual
principles.

1.3 Aims and Scope

This thesis addresses the above gap by exploring Glimpse Proportion as an opti-
misation objective for Near-End Listening Enhancement. A differentiable formula-
tion of GP is employed, making it suitable for gradient-based optimisation while
energy-preservation constraints. The approach is evaluated across multiple speech
corpora and noise conditions, and compared against established baselines that op-
timise for SlI-based metrics.

The central aim is to investigate whether optimising directly for GP can de-
liver consistent intelligibility improvements, particularly in non-stationary noise
where traditional approaches are less reliable. More broadly, the project seeks to
connect perceptual theory with practical signal processing, showing that models
inspired by how humans listen in noise can be translated into effective algorithmic
solutions.



Chapter 2

Literature Review

The sections that follow review State-of-the-Art knowledge on Speech intelligibility
predictors, Glimpse Proportion theory, Near-End Listening Enhancement systems,
and optimisation methods, and they conclude with a gap analysis that motivates
the present study.

2.1 Speech Intelligibility Predictors

The accurate prediction of speech intelligibility in noisy environments has long
been of important focus of speech and hearing science. Early standardised models,
the Speech Intelligibility Index SII [1] [20] and the Speech Transmission Index STI
[26], offer signal-based metrics that remain part of international standards. How-
ever, because they rely on long-term statistics, their accuracy declines when noise
fluctuates and temporal information becomes crucial.

To overcome these drawbacks, newer measures such as the Short-Time Objec-
tive Intelligibility STOI [28] and its extension ESTOI[14], employ short-time en-
velope correlation analyses between reference and processed speech, delivering
more robust predictions in non-stationary noise. Metrics designed for hearing-
aid purposes, HASPI[15] and HASQI [16], further refine predictions by modelling
auditory-periphery loss.

While these predictors represent significant progress, their performance re-
mains inconsistent in contexts dealing with Near-End Listening Enhancement (NELE)
[2] or reverberation. This has motivated research into models based on perceptual
principles. For instance, models employing glimpsing theory and spectro-temporal
approaches [6} 7].
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2.2 Glimpse Proportion Theory

The Glimpse Proportion (GP) concept, originally introduced by [3], showed that
intelligibility can be predicted from the fraction of time—frequency elements in
which the local signal-to-noise ratio (SNR) exceeds a fixed threshold. Listeners
effectively glimpse speech fragments in these regions and integrate them into a
coherent representation.

Following studies have demonstrated a strong correlation between GP and ac-
tual intelligibility measured in listening tests, particularly in non-static noisy and
reverberant environments. [3]|Extensions of GP have been proposed:

* High-Energy Glimpse Proportion (HEGP): assigns more weight to high-
energy glimpses, under the assumption that these contribute disproportion-
ately to intelligibility [29]

¢ Spectro-Temporal Glimpsing Index (STGI): integrates GP with modula-
tion transfer characteristics, thereby capturing both temporal modulation and
masking effects.

These developments establish glimpse-based metrics as perceptually grounded
predictors that more closely mirror human performance than earlier models like
SII or STIL

2.3 NELE Systems

The Near-End Listening Enhancement (NELE) is a technique that improves speech
intelligibility in noisy environments by adaptively preprocessing speech signals
based on noise estimates. Unlike conventional speech enhancement systems, which
aim to recover a clean speech signal from noisy input. NELE systems aim to modify
the playback of speech signals at the listener’s side. It operates without prior
knowledge of the specific acoustic environment, making the problem inherently
more challenging.

Research into NELE was initiated by Sauert and Vary [23], who proposed
spectral power allocation optimised under perceptual constraints, yielding intel-
ligibility gains without raising overall signal power. Their later work incorpo-
rated explicit Speech Intelligibility Index (SII)-based optimisation while respect-
ing audio power limitations [22], followed by recursive closed-form solutions en-
abling efficient real-time implementation [25]. Extensions addressed band-limited
noise scenarios [24]. In parallel, Niermann introduced alternative formulations: a
time-domain linear prediction approach offering extremely low-latency enhance-
ment [19], noise-inverse speech shaping [18], and joint enhancement with far-end
noise reduction [17]. These developments compared time-domain and frequency-
domain solutions in terms of performance and computational cost.
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More recent research has broadened the NELE landscape. Taal et al. in [27]
approached NELE as an energy-constrained maximisation of an SII proxy, produc-
ing a closed-form Linear Time-Invariant (LTI) filter that shifts energy away from
sub-15 dB SNR bands toward more informative regions. Villani et al. [32] ex-
tended this idea with a gammatone-based, noise-robust LTI solution whose closed-
form, band-wise gains preserve overall energy while adapting to the long-term
speech- and noise-spectral statistics. Fuglsig et al. [9] pursued a “minimum pro-
cessing” method, minimising signal modification while maintaining intelligibility
gains. Chermaz and King [2] adopted a sound engineering perspective, fram-
ing NELE design within practical perceptual and audio engineering constraints.
Complementary perceptual optimisation strategies have also emerged: Crespo and
Hendriks [4, 5] introduced reinforcement methods grounded in perceptual distor-
tion measures, later refined by Hendriks et al. [12] through short-time SlI-based
optimisation accounting for additive noise and reverberation. These studies col-
lectively demonstrate NELE’s evolution from optimization driven by SII to diverse
algorithmic, perceptual, and engineering-based strategies, while highlighting the
persistent challenge of balancing enhancement in intelligibility with maintaining
naturalness, robustness, and computational feasibility.

24 Optimisation Techniques in Audio Processing

Speech intelligibility enhancement is often treated as an optimisation problem
based on perceptual metrics. Early approaches focused on simple analytic for-
mulations: for example, Taal et al. in [27] and Hendriks et al in [11] maximised
approximations of the Speech Intelligibility Index (SII) under power constraints,
leading to fast, closed-form frequency shaping methods, at the cost of using coarse
perceptual models. Later research introduced more computationally demanding
iterative methods, such as sequential quadratic programming for spectro-temporal
weights [8] or adaptive redistribution of spectral gains from SNR estimates [34],
which delivered measurable improvements in intelligibility and STOIL.

The latest developments move towards machine learning integration, where
differentiable versions of perceptual measures, such as a smoothed Glimpse Pro-
portion [31], are used as optimisation objectives for gradient-based methods. This
allows speech processing algorithms to be trained directly within modern Machine
Learning frameworks. Overall, the field balances a trade-off: lightweight closed-
form or simple iterative methods are practical for real-time NELE applications,
while gradient-based approaches offer potentially stronger gains but at a higher
computational cost.
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2.5 Gap Analysis

Research on Near-End Listening Enhancement (NELE) has shown many ways to
make speech more intelligible in noisy environments, but some gaps remain. Most
methods rely on traditional metrics like SII or STOI, which are useful but do not
fully reflect how humans actually perceive speech in noise. Measures based on
Glimpse Proportion (GP), which capture the listener’s ability to pick out speech
fragments, correlate better with intelligibility but have rarely been used as direct
optimisation targets in NELE.

Existing NELE systems also face trade-offs. Some approaches are computa-
tionally heavy, making real-time use difficult, while others use restrictive models
that may not work well in all conditions. Evaluations often focus on limited noise
types, so it is unclear how these systems perform in everyday noisy situations
with multiple noise sources. Additionally, few studies balance improvement with
maintaining natural-sounding speech.

This project addresses these gaps by exploring the use of Glimpse Proportion
as an optimisation objective for NELE. By benefitting from a differentiable GP
version, to directly optimise for. This approach aims to combine the perceptual
grounding of glimpse-based models with the flexibility of gradient-based optimi-
sation, offering a potential alternative to state-of-the-art NELE systems that is both
theoretically motivated and practically applicable.
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Methodology

As stated the goal of NELE systems is to maintain speech intelligibility and accept-
able quality even in the presence of unpredictable environmental noise at the lis-
tener’s location [12]. Along the same path, Glimpse Proportion, a well-established
and reliable metric of intelligibility [29} 30], has been used as an objective function
to optimise for intelligibility [30]. This work aims to make use of Glimpse Pro-
portion maximisation to enhance speech intelligibility and explore its potential for
achieving results comparable to state-of-the-art NELE systems.

3.1 Signal Model

In the Near-End Listening Enhancement (NELE) framework, the observed acoustic
scene is modelled as a linear superposition of a clean speech signal and an interfer-
ing noise signal. Let x(t) denote the clean speech waveform, and v(t) the additive
noise waveform. The observed signal y(t) at the listener’s ear is then given by

y(t) = x(t) +o(t). (3.1)

This additive model assumes linear propagation of sound sources without sig-
nificant non-linear distortions or reverberation. This is a commonly adopted as-
sumption in speech-enhancement and intelligibility research due to its tractability
and adequacy in many real-world scenarios

Time-Frequency Representation

To analyse the signals in the time—frequency domain, the Short-Time Discrete
Fourier Transform (STDFT) is applied. For an input signal x(t), its STDFT rep-
resentation is:
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N-1 kn
S(k, 1) = s(in+IH)w(n) exp | —12m— |, 3.2
(1) = X st 1H) () exp (-2 ) 62)

where k indexes the frequency bins, I the time frames, N is the FFT length, H
the hop size, and w(n) is the analysis window.

Perceptual Filterbank Representation

Although the STDFT provides uniform spectral partitioning, human auditory per-
ception is non-uniform across frequency. The cochlea (part of the inner ear that
converts sound vibrations into electrical signals for the brain to interpret) exhibits
filters of roughly constant Equivalent Rectangular Bandwidth (ERB). To emulate
this, the STDFT magnitude spectra are passed through a Gammatone filterbank, a
standard auditory model offering more perceptually relevant frequency resolution.

Originally proposed by Schofield and Patterson et al., the gammatone filter ap-
proximates human auditory filters well in both amplitude and phase characteristics
and has since become a foundational tool in auditory modelling Its implementa-
tion has been widely adopted in auditory modelling toolboxes, emphasising both
biological fidelity and computational efficiency

3.2 Spectral Weighting Strategy

To improve speech intelligibility in noisy environments, a spectral weighting strat-
egy is implemented. This strategy applies time-invariant, band-specific gains to
the time-frequency (T-F) representation of the received signal to optimise the com-
ponents that are crucial for perception.

Definition of Spectral Weights

Let g(k) represent the gain applied to the k-th frequency channel. Given the
Time-Frequency representation S(k, /) and V (k,[) , obtained from the Gammatone
filter bank decomposition of the clean speech signal x(t) and noise signal v(t) , the
enhanced representation is described as:

S(k,1) = g(k) - S(k,1). (3.3)

The gain g(k) is constant across time frames [ for each frequency channel k,
meaning that gains are frequency-dependent but time-invariant. Such an approach
simplifies optimisation and avoids excessive time-based fluctuations that might
introduce temporal artefacts.
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Perceptual Motivation

The gain vector g(k) is designed to match human hearing by functioning within an
auditory-inspired filterbank model, specifically using Gammatone channels. This
approach ensures that vital frequency areas for speech intelligibility receive differ-
entiated treatment. This non-uniform spectral weighting follows auditory mask-
ing, where the weights are adjusted according to the human sensitivity across
frequency bands.

Optimisation Relation with Glimpse Proportion

In this project, the spectral weighting method is directly linked to optimising for
the Glimpse Proportion (GP) metric. By adjusting the spectral gain for each fre-
quency band, the optimisation algorithm selectively boosts or reduces specific fre-
quency components to maximise the GP. The GP measures the fraction of time-
frequency units where the local signal-to-noise ratio surpasses a defined threshold,
representing clear glimpses of the speech signal. This perceptually driven spectral
weighting enhances speech components that contribute most to intelligibility in
noisy conditions while minimising distortion and preserving perceptual relevance.

3.3 Objective Function

The core of this work is the notion of Glimpse Proportion, a perceptual metric
that quantifies how many time—frequency regions glimpses of the speech signal
exceed the noise level by a certain threshold, and which correlates strongly with
intelligibility [3]Formally, the Glimpse proportion is defined as:

1 K L
K—zz {SNR(k,1) > 6}, (3.4)
k=11=1

where 6 is the SNR threshold for a glimpse.

The definition shows the binary nature of the metric, hence making it
non-differentiable. In order to apply optimisation, there is a need for a differ-
entiable version of glimpse proportion. Following prior work in the context of
intelligibility-oriented enhancement [31]a sigmoid function is applied to the SNR,
to maintain a smooth function:

0<SNR(k,l)—9> _ 1
B SNR(k,)—0Y)’
p 1+exp (—#>

(3.5)

where f is a scale parameter that controls the sharpness of the transition, how hard
the threshold is.
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Thus, the differentiable GP objective becomes:

SNR(k, 1) — 9)_ 56

1 K L
ik (U
This formulation approximates the binary GP, enabling the computation of gradi-

ents with respect to optimisation variables such as the frequency band gains g(k).
The optimisation goal is:

max GP(g(k);S(k,1),V (k1))
g(k)

3.4 Constraints

In addition to maximising the differentiable Glimpse Proportion (GP), the optimi-
sation problem requires constraints to ensure that the resulting enhanced signal
remains perceptually natural, physically consistent, and comparable in energy to
the original clean speech.

Energy Preservation

A key constraint is that the total energy of the enhanced signal §(t) should match
that of the clean speech x(t). Without such a constraint, the optimiser could triv-
ially increase GP by uniformly amplifying all frequency bands, leading to loudness
mismatches and unrealistic listening conditions. Energy preservation is formulated
as

Z 2Z|5k1 ZZ|Skl (3.7)

k=1

where S(k,1) and S(k, 1) denote the clean and enhanced speech representations
in the time—frequency domain.

3.5 Optimisation Strategy

The objective function defined in Section 3.3|and the constraint in Section (3.4] to-
gether form a non-linear constrained optimisation problem. The optimisation vari-
able is the gain vector ¢ = [¢(1),4(2),...,g(K)] applied to the frequency channels.

Problem Formulation

The problem is summarised as:

max GP(g(k);S(k,1),V (k1))
8(k)
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K K
st. Y g2 YIStk D2 = Y. YISk D)2
k=1 1 k=1 1

This formulation is non-linear in both the objective and the constraint, requiring
the use of numerical optimisation techniques.

Optimization Method

The Sequential Least Squares Programming (SLSQP) algorithm, as provided by
the scipy.optimize.minimize package, is used to solve the constrained optimisa-
tion problem in this work. SLSQP is a gradient-based optimisation method that
belongs to the family of sequential quadratic programming (SQP) techniques. In
each iteration, SLSQP solves a quadratic programming sub-problem that approx-
imates the original non-linear objective and linearises the constraints, making it
highly effective for problems where both the objective and constraints are differ-
entiable but potentially non-linear. SLSQP can directly handle both equality and
inequality constraints as well as variable bounds. The algorithm iteratively refines
its solution by computing search directions and step sizes, ultimately converging
to a local optimum that satisfies the Karush-Kuhn-Tucker (KKT) conditions, as-
suming sufficient regularity.

Initialization and Convergence

The optimisation is initialised with a flat gain vector, g(k) = 1 Vk, corresponding
to no initial enhancement. This setup guarantees that the optimiser starts from the
unprocessed state, avoiding bias towards particular spectral regions. The iterative
SLSQP algorithm refines the gains using gradient information derived from the
differentiable GP formulation. Convergence is evaluated by examining changes
in the objective function and constraint fulfilment, with early stopping applied if
improvements fall below a set threshold.

Application of Optimized Gains

Once the optimal gain vector ¢(k) is obtained, it is applied to the time—frequency
representation:

S(k,1) = g(k) - S(k,1). (3.8)
This results in an enhanced time—frequency representation with spectrally weighted
glimpses.
Resynthesis

The enhanced time-frequency representation is transformed back into the time do-
main using a filterbank-based synthesis approach consistent with the Gammatone
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analysis This ensures proper reconstruction within the constraints of the filterbank
implementation and preserves the perceptual alignment of the auditory-inspired
analysis.

3.6 Baselines

To meaningfully evaluate the proposed method, its performance must be compared
against appropriate baseline NELE systems. Speech signals are then observed un-
der the following conditions: unprocessed, using OptimalASII, using FractileASI],
and the proposed method.

Unprocessed Speech

The most basic reference point is the unmodified speech signal, y(t) = x(t) + v(f),
which remains unchanged. This establishes a performance floor and guarantees
that any gains in intelligibility result from the enhancement technique itself, rather
than from advantageous testing conditions.

Optimal ASII

OptimalASII [27], demonstrates substantial intelligibility improvements in station-
ary noise conditions, particularly in speech-shaped noise scenarios, with improve-
ments most pronounced at lower SNR conditions, for example, improving intelli-
gibility from 17.3% to 50.6% words correct in controlled listening tests. However,
the method exhibits limitations when applied to fluctuating noise sources, such as
competing speaker scenarios, where, despite improved objective SII predictions,
actual listening test results showed decreased intelligibility performance due to
the SII's reduced reliability as a predictor for non-stationary noise. This baseline
provides an important comparison point for the proposed Glimpse Proportion op-
timisation approach, as both methods share fundamental characteristics, including
time-invariant spectral processing, energy conservation constraint, and perceptu-
ally motivated optimisation. The proposed method’s use of Glimpse Proportion
could potentially address OptimalASII’s limitations in competing speaker scenar-
ios.

Fractal ASII

In FractalASII [32], there are extensive evaluations in both stationary and fluctuat-
ing noise conditions that demonstrate the method yields significant intelligibility
gains compared to unprocessed speech and other LTI-based methods like Opti-
malASII. In stationary white and speech-shaped noise, the method achieves up
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to a 35% increase in word recognition scores at low SNRs, while in more com-
plex, non-stationary noise scenarios, it consistently outperforms traditional spec-
tral subtraction and Wiener filtering approaches. However, because the filter is
time-invariant, it cannot track rapid noise fluctuations as effectively as adaptive or
time-varying methods, leading to reduced performance in highly dynamic acous-
tic environments. Nonetheless, its low computational complexity and robustness
to noise estimation errors make it a practical baseline for comparison against more
sophisticated, time-variant enhancement algorithms.

3.7 Signal Resources

This section presents the speech and noise datasets used in the study, along with
the objective metrics and conditions applied to evaluate intelligibility.

3.71 DANTAIE II

The Danish Matrix Test is a standardised corpus used to assess speech intelligibility
by determining speech reception thresholds (SRTs) in noisy conditions. This test
is part of the Matrix Sentence Tests family, which has been adopted in over 20
languages to facilitate cross-linguistic studies on intelligibility [33]]. Each sentence
follows the structure:

Name Verb Numeral Adjective Object

Index Name Verb  Numeral Adjective Object

0 Anders  ejer ti gamle jakker

1 Birgit havde fem rode kasser

2 Ingrid ser syv peene ringe

3 Ulla kobte tre nye blomster
4 Niels vandt seks fine skabe

5 Kirsten  far tolv flotte masker

6 Henning solgte otte smukke  biler

7 Per laner  fjorten store huse

8 Linda valgte ni hvide gaver

9 Michael  finder  tyve sjove planter

Table 3.1: Sentence material (DANTALE II)

Each category has ten different options, see table The recorded sentences were
formed by randomly choosing one of the ten alternatives for each word. This
approach guarantees that the sentences are grammatically correct, yet their con-
tent remains unpredictable. Additionally, to form the final dataset, the recorded
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sentences were segmented into individual words so the sentences would main-
tain realistic speech characteristics, especially co-articulation; therefore, listening
experiments would be valid and reliable.

3.7.2 AEMST

The American English Matrix Sentence Test is the English-language equivalent of
the Matrix test family. Like DANTALE, it employs a 50-word lexicon organised
into five categories: Name, Verb, Numeral, Adjective, Object. Sentences follow the
same fixed grammatical structure, ensuring comparability across languages.

Index Name  Verb Number Adjective Noun
0 Peter Got Three Large Desks
1 Kathy  Sees Nine Small Chairs
2 Lucy Brought Seven Old Tables
3 Alan Gives Eight Dark Toys
4 Rachel  Sold Four Heavy Spoons
5 William Prefers  Nineteen Green Windows
6 Steven = Has Two Cheap Sofas
7 Thomas Kept Fifteen Pretty Rings
8 Doris Ordered Twelve Red Flowers
9 Nina Wants Sixty White Houses

Table 3.2: Sentence material from matrix test (AEMST)

3.7.3 TIMIT

The TIMIT Acoustic-Phonetic Continuous Speech Corpus [10] was created by DARPA
and distributed by the Linguistic Data Consortium (LDC). TIMIT differs from Ma-
trix tests, which feature sentences with no semantic predictability. Instead, TIMIT
comprises phonetically diverse read sentences intended to contain the entire range
of phonemes found in American English.

TIMIT contains recordings from 630 speakers of eight major American English
dialect regions. Each speaker reads ten sentences, producing a total of 6300 sen-
tences. Even though TIMIT sentences make sense together as a normal sentence,
they are still read aloud by the speakers, not as natural or spontaneous conversa-
tion.

It includes different types of sentences for speakers to read, see Table Di-
alect sentences, made of two special sentences created to highlight different di-
alects; phonetically-compact sentences, with 450 sentences designed to cover many
important pairs of speech sounds; and 1890 phonetically-diverse sentences picked
from existing text sources, such as books and plays.
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Dialect Region #Male #Female Total
New England 31 (63%) 18 (27%) 49 (8%)
Northern 71 (70%) 31 (30%) 102 (16%)

North Midland 79 (67%) 23 (23%) 102 (16%)
South Midland 69 (69%) 31 (31%) 100 (16%)

Southern 62 (63%) 36 (37%) 98 (16%)

New York City 30 (65%) 16 (35%) 46 (7%)
Western 74 (74%) 26 (26%) 100 (16%)

Army Brat (moved) 22 (67%) 11 (33%) 33 (5%)
Total 438 (70%) 192 (30%) 630 (100%)

Table 3.3: Dialect distribution of TIMIT speakers

Sentence Type #Sentences #Speakers Total #Sentences/Speaker

Dialect 2 630 1260 2
Compact 450 7 3150 5
Diverse 1890 1 1890 3
Total 2342 6300 10

Table 3.4: TIMIT speech material

3.74 ISTS

Unlike typical speech recordings that have words and meaning, the International
Speech Test Signal [13] is made to sound like real speech but cannot be under-
stood as sentences or words. ISTS was created by taking short pieces of real speech
recorded from six different female speakers speaking various languages: English,
Arabic, Chinese, French, German, Spanish. These pieces were cut and smoothly
stitched together to make one continuous sound. Even though it is not understand-
able speech, ISTS preserves long-term average speech spectrum attributes, keeping
the natural rhythm, tone, and pattern of real conversations. In the current project,
this dataset is used as a competitor speaker noise due to its characteristics that
can create a realistic scene, similar to being in a noisy place with multiple people
talking.

3.7.5 UrbanSound8k

UrbanSound8K is a collection of sounds recorded from real urban environments
[21]. It has 8,732 short audio clips. The sounds go from steady noise to very
variable noise and are grouped into 10 categories like air conditioner, car horn,
children playing, dog barking, drilling, engine idling, gunshot, jackhammer,
siren, and street music. These were chosen because they represent common city
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Language Age From Fundamental frequency [Hz]
Arabic 37  Oran, Algeria 204
English 29  USA and Germany 194
French 25  Nantes, West France 201
German 33  Oldenburg, Lower Saxony 205
Mandarin 26 Henan, Middle-East China 208
Spanish 26  Zamora, Castile and Leon 207

Table 3.5: Properties of the six selected female speakers: age, provenance, and median fundamental
frequency.

noises that can interfere with hearing speech.

3.8 Evaluation Metrics and Conditions

The performance of the current enhancement method is assessed using established
objective intelligibility measures, multiple noise conditions, and diverse speech
datasets. This ensures that results are both reproducible and comparable with
prior work in the field.

Objective Intelligibility Metrics

Three intelligibility-oriented metrics are employed:

¢ Glimpse Proportion (GP): Measures the proportion of time—frequency tiles
where the local SNR exceeds a threshold. GP has been shown to correlate
strongly with human intelligibility in noise.

¢ High-Energy Glimpse Proportion (HEGP): A variant of GP that emphasises
high-energy regions of the speech signal, under the assumption that energetic
glimpses contribute more to intelligibility

¢ Speech Transmission Index-Glimpse Index (STGI): A hybrid metric com-
bining the Speech Transmission Index with glimpse analysis. STGI captures
both modulation transfer characteristics and masking effects, offering a more
comprehensive measure of intelligibility in complex noise

Together, these metrics provide a robust evaluation of both raw glimpse avail-
ability and perceptual relevance, aligning the evaluation with the theoretical moti-
vation of this project.
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Noise Characteristics

Two types of noise signals are considered in this work:

* Speech-Shaped Noise (SSN): A stationary noise whose spectrum matches
that of speech. It provides controlled conditions, particularly when spectral
overlap is high.

¢ Competing-Speaker Noise (CP): Non-stationary background noise with vary-
ing intensity and spectral content—representing realistic listening environ-
ments.

The combination of SSN and CP enables evaluation across controlled condi-
tions, reflecting the range of listening challenges users may encounter. In experi-
mental studies, SSN is often used to simulate steady-state masking, while real-life
noises such as competing speech offer more complex intelligibility challenges.

Three different SSN samples are used. Each matches the long-term average
spectrum of the corresponding speech material (DANTALE, AEMST, TIMIT). As
for competing speaker noise, two samples are taken from ISTS dataset[13]. Finally,
for the environmental, UrbanSound8k dataset [21]. Experiments are conducted
at multiple signal-to-noise ratios (SNRs) to evaluate robustness across varying de-
grees of noise interference.

Dataset conditions
To ensure generality across languages, speakers, and recording conditions, three
datasets are used. DANTALE, AEMST and TIMIT see Section

Evaluation Protocol

For each condition (noise type, SNR, and dataset), intelligibility metrics (GP, HEGP,
STGI) are computed for:

1. The unprocessed speech signal x(t).
2. Enhanced signals obtained with alternative baselines (Section [3.6).
3. The proposed GP-optimized enhancement method.

This protocol is thought to guarantee equal treatment of all methods, allow-
ing for a quantitative evaluation of how effectively the proposed system enhances
intelligibility.






Chapter 4

Results

4.0.1 Model performance comparison under gp metric

Since the optimization is performed on the differentiable version of the GP, the
GlimpseP model is expected to perform particularly well when evaluated using
the GP metric. Table presents the results for three models: two baselines, Un-
processed and FractileASSI, and the proposed GlimpseP method. The evaluation
was conducted on the Dantale II, AEMST, and TIMIT datasets, using SSN and ISTS
as competing speaker (CS) noise types.

Speech Method SSN s

-15dB  -10dB  -5dB 0dB | -15dB -10dB -5dB 0dB
g Unprocessed | 0.18069 1.296  5.027  11.860 | 22.939 30.028 38.953 48.692
% FractileASII 8587 15.265 22.659 31.527 | 35.328 42.524 51.127 60.050
A GlimpseP 6.787 17.254 26.401 35.923 | 39.646 47.054 55.146 63.192
— Unprocessed | 1.457 4.12 9.35 17.79 | 27.215 35.010 43.278 52.907
é FractileASII 8.566  14.314 20.828 28.751 | 33.539 41.114 49.037 57.85
< GlimpseP 8.8480 15.666 23.351 32.208 | 37.606 45.585 53.225 61.533
- Unprocessed | 1.135  3.271  7.107 12987 | 21.988 29.889 37.440 45.616
E Fractile ASII 7417  13.133 20.069 28.115 | 32.101 40.105 47.973 56.486
a GlimpseP 6.9668 13.694 21.542 30.217 | 35.529 43.856 51.657 59.383

Table 4.1: Performance evaluated with glimpse propotion metric for Unprocessed, FractileASII, and
GlimpseP method, for different datasets and noise conditions.

The proposed method consistently demonstrates strong performance across all
datasets, noise types, and SNR levels. Even at extreme negative SNRs; for instance,
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on -15 dB SSN for DANTALE GlimpseP achieves substantial GP values 6.787,
significantly higher than unprocessed speech and comparable to or slightly better
than FractileASII. At higher SNRs, the advantages of Glimpsel> become more pro-
nounced; for example, at -5 dB SSN for DANTALE, GP reaches 26.401, exceeding
the FractileASII method by over 4 points. GlimpseP shows a strong advantage
over both baselines, especially in highly masked conditions, indicating its effec-
tiveness in extreme noise.While FractileASII closes the gap slightly, GlimpseP still
maintains a clear improvement, demonstrating robustness across varying noise
levels. Improvements are consistent for both SSN and CS noise types, suggesting
the method generalises across different masking characteristics. Even in the case
of TIMIT, where GlimpseP generally shows slightly lower GP than AEMST and
DANTALE, likely due to variations in speech content and recording conditions,
but GlimpseP still improves intelligibility consistently.

4.0.2 Model performance comparison under STGI and HEGP
The same evaluation as in Section was performed, this time the analysis being
under STGI and HEGP for each Dataset.

Dantale II

Figures and display the performance of Dantale II when evaluating the
methods under STGI and HEGP

DANTALE SSN DANTALE ISTS
1.0 1.00
0.9 0.95
0.8 0.90
0.7 0.85
G 0.6 o
& £ 0.80
0.5
0.75
0.4
unprocessed 0.70 unprocessed
0.3 —e— fractasii —e— fractasii
0.2 —=— glimpsep 0.65 —=— glimpsep
15 -0 -5 0 5 10 15 -0 -5 0 5 10
SNR [dB] SNR [dB]
(a) Speech-Signal-Noise (b) Competing speaker

Figure 4.1: Performance of baselines and proposed model using Dantale II speech signal under STGI
metric

Performance of GlimpseP evaluated on STGI in SSN (see Figuref.1a) is not as
good compared to Section A reason for this result could be the nature of
SSN, spectrally and temporally dense. Such masking signal, challenges the pro-
cess of optimising glimpses. In contrast, when the noise is a Competing Speaker,
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Figure GlimpseP performance improves and even surpasses FractileASIIL. The
attribution to this outcome might be to CP fluctuation characteristics, which again
is a good scene for a model like GlimpseP.

Figure displays the a sort of expected performance of GlimpseP under
HEGP. Due to the bases of the metric. It weights glimpses by their energy con-
tribution in the speech signal. Compared to STGI, HEGP is not as sensitive to
modulation chnages. Hence, the better results for GlimpseP in Figure

DANTALE SSN DANTALE ISTS
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0.801
0.74
0.751
0.6+
0.701
57 5
0.65 1
9 0.4 T
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0.3
0.551
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011 —— fractasii 0.504 —e— fractasii
’ —=— glimpsep 0.451 —=— glimpsep
0.0 '

-15

-10

5 0 5 10
SNR [dB]

-15

-10

5 0 5 10
SNR [dB]

(a) Speech-Signal-Noise (b) Competing speaker

Figure 4.2: Performance of baselines and proposed model using Dantale II speech signal under
HEGP metric

AEMST

Figures [4.3|and {.4] display the performance of AEMST when evaluating the meth-
ods under STGI and HEGP, respectively.

AEMST SSN AEMST ISTS
1.04 1.00
0.9 0.954
08 0.901
— 0.7 —
2 ©0.85
2] 0.61 (2]
0.801
0.5
unprocessed 0.754 unprocessed
0.4 —e— fractasii ’ —e— fractasii
03 —=— glimpsep 0.70 —=— glimpsep
-15 -10 -5 0 5 10 -15 -10 -5 0 5 10
SNR [dB] SNR [dB]

(a) Speech-Signal-Noise (b) Competing speaker

Figure 4.3: Performance of baselines and proposed model using AEMST speech signal under STGI
metric

When evaluating AEMST under the STGI metric, the pattern is similar to that
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observed with DANTALE II. In stationary SSN, GlimpseP performs comparably
to FractileASII across SNRs, with a slight disadvantage at mid-range SNRs. How-
ever, in competing-speaker noise the advantage of GlimpseP becomes clearer, as
it consistently outperforms both the baseline and the unprocessed condition. This
suggests that GlimpseP is more effective at exploiting the temporal fluctuations of
competing speech, which aligns with its perceptual motivation.

The HEGP evaluation for AEMST reinforces this observation. Because HEGP
emphasises high-energy glimpses, the improvements from GlimpseP are more pro-
nounced, especially under competing-speaker conditions. While FractileASII and
GlimpseP remain close in stationary SSN, GlimpseP consistently shows higher
scores at more adverse SNRs. This indicates that the method is particularly suc-
cessful at preserving or enhancing the more energetic parts of speech, which are
crucial for intelligibility.

AEMST SSN AEMST ISTS

0.8

0.7

0.6

& % 0.70
2os o
T T

0.4 0.65

0.3 unprocessed 0.60 unprocessed

—— fractasii —— fractasii
0.2 —=— glimpsep 0.55 —=— glimpsep
a5 -0 -5 0 5 10 15 -1 -5 0 5 10
SNR [dB] SNR [dB]
(a) Speech-Signal-Noise (b) Competing speaker

Figure 4.4: Performance of baselines and proposed model using AEMST speech signal under HEGP
metric

TIMIT

Figures4.5/and 4.6|display the performance of TIMIT when evaluating the methods
under STGI and HEGP, respectively.
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TIMIT SSN TIMIT ISTS
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Figure 4.5: Performance of baselines and proposed model using TIMIT speech signal under STGI
metric
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Figure 4.6: Performance of baselines and proposed model using TIMIT speech signal under HEGP
metric

For the TIMIT dataset, the evaluation under STGI again shows mixed results. In
stationary SSN, GlimpseP performs similarly to FractileASII, with only minor dif-
ferences across SNRs. In contrast, under competing-speaker conditions GlimpseP
shows stronger relative gains, surpassing the baseline in most cases. This pattern
is consistent with the hypothesis that glimpsing-based optimisation is particularly
suited to fluctuating maskers such as overlapping speech, while being less domi-
nant in dense, stationary noise. The HEGP results for TIMIT show that GlimpseP
consistently provides improvements over the unprocessed condition and performs
on par with FractileASII in SSN. In competing-speaker noise, however, GlimpseP
maintains a clearer advantage, especially at lower SNRs. Taken together, these
results suggest that while performance on TIMIT is slightly less pronounced com-
pared to the matrix test datasets, the general trends hold: glimpse-based optimisa-
tion yields the largest benefits in non-stationary interference.
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Discussion

5.1 Interpretation of Results

The experimental results presented in Chapter 4 show that the Glimpse Propor-
tion maximisation method (GlimpseP) consistently improves objective intelligibil-
ity metrics compared to both unprocessed speech and established NELE baselines.
The advantages are most apparent under severe noise conditions, where listen-
ers are expected to rely heavily on glimpses for speech perception. For example,
in -15 dB SSN scenarios, GlimpseP improves gp scores over both unprocessed
and FractileASII signals. This supports the hypothesis that directly optimising for
glimpsing is beneficial precisely in situations where only fragments of speech are
available to the listener.

A closer look at the datasets reveals additional insights. For DANTALE II
and AEMST, the method shows robust improvements across both stationary and
fluctuating noise conditions. For TIMIT, the glimpse proportions are somewhat
smaller, which may be attributed to the fact that the SSN for the evaluation is a
signal that matches the long-term spectrum of speech used in Dantale II. Unlike
matrix tests, TIMIT features phonetically diverse and semantically coherent sen-
tences. Still, even in this more difficult setting, GlimpseP maintains improvements
over the baselines, which suggests good generalisation across speech types.

The comparison across noise types also highlights the strengths of the ap-
proach. In stationary SSN, improvements are present but sometimes less pro-
nounced under alternative metrics such as STGI. In contrast, in Competing Speaker
noise, the advantages become clearer. This matches expectations from glimps-
ing theory, which was originally motivated by perception in fluctuating maskers.
These results therefore reinforce the perceptual credibility of the chosen optimisa-
tion target.
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5.2 Comparison with Related Work

Situating these findings in the broader literature, GlimpseP can be viewed as a
natural continuation of earlier NELE research. Early systems by Sauert and Vary
[23, 22] demonstrated that perceptually motivated optimisation was possible, but
they remained tied to SII, which is less reliable in dynamic noise. Taal et al. [28]
extended this line of work by formulating closed-form solutions that are com-
putationally attractive, but again were limited by the SII predictor. More recent
approaches, such as Villani et al.

As for FractileASII method, the name reference for [32] work in the current
document, it is important to acknowlegde the role of their approach in NELE sys-
tems. They demonstrated that sophisticated intelligibility-driven optimisation can
achieve state-of-the-art performance without requiring expensive computations
and data requirements of e.g. deep learning approaches. Relevant to emphasize
then that GlimpseP, the current work, achieved comparable results, in regards to
intelligibility.

The present study differs by directly addressing a gap identified in the lit-
erature review: despite strong evidence for the predictive power of GP [3, 29],
glimpse-based metrics had rarely been used as direct objectives for optimisation.
By introducing an optimisation for a differentiable version of GP and energy-
constrained framework, this thesis contributes a concrete demonstration of how
perceptual models can be operationalised in NELE. The fact that GlimpseP per-
forms particularly well in Competing Speaker conditions highlights the validity of
this perceptual grounding.

At the same time, the limitations under STGI connect to findings by Hendriks
et al. [12], who showed that incorporating modulation transfer functions and rever-
beration into intelligibility measures is crucial for realistic scenarios. This indicates
that glimpse-based optimisation, while valuable, may be insufficient in isolation.
A future direction could then be the integration of glimpsing with modulation-
sensitive metrics, or the use of hybrid objectives that combine the strengths of
different predictors.

Finally, it is worth noting the relationship to machine-learning-based approaches.
Recent work has shown that differentiable perceptual measures can serve as train-
ing objectives for neural models [31]. While the present study does not employ
Learning architectures, it demonstrates the feasibility of gradient-based optimi-
sation with glimpse-inspired objectives, thus bridging the gap between classical
NELE frameworks and modern data-driven approaches.
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5.3 Limitations

Despite its promising results, the study has several limitations. First, the optimisa-
tion is designed for a single metric. Although GP has strong perceptual support,
speech understanding is influenced by other cues such as temporal modulation
and listener adaptation, which are not explicitly represented. The mixed results
under STGI display this drawback.

Second, the evaluation relied entirely on objective predictors. While these mea-
sures are widely used and correlate with listening tests, they cannot fully replace
subjective evaluations. Without human experiments, it remains unclear whether
the optimal gains translate directly into perceptual benefits, or whether they intro-
duce undesirable artefacts such as unnatural timbre or increased listening effort.

Third, the optimisation procedure itself imposes constraints. The SLSQP method
guarantees convergence under smooth differentiable objectives, but it remains a lo-
cal optimiser and may not find globally optimal gain patterns.

Another limitation is the use of time-invariant spectral weights. This design
choice simplifies the problem and avoids temporal distortions, but it limits adapt-
ability to rapid changes in noise. In everyday listening environments, noise often
fluctuates on short timescales, and fixed gains could not be enough to capture these
dynamics.

Finally, the experiments did not address computational cost or latency, both of
which are critical in real-world NELE applications such as hearing aids or mobile
devices. While the optimisation was tractable in an offline research setting, its
applicability for real-time usage is still under consideration.

5.4 Alternative approaches

Several alternative approaches could have been explored to address the limitations
above. A multi-objective optimisation framework, combining GP with STGI or
with other metrics like STOI or ESTOI, could have reduced dependence on a single
predictor and produced more balanced improvements. Such a framework would
likely be more computationally demanding, but could yield results that generalise
better across metrics and conditions.

The optimisation process itself could also be refined. Using closed-form SII so-
lutions as an initialisation, followed by GP-based fine-tuning, might have reduced
convergence time and improved stability.

Finally, including a small-scale, informal, listening test would have added im-
portant evidence about perceptual outcomes. Even if limited in scope, such a test
could have clarified whether the objective gains correspond to actual improvements
in intelligibility and whether the enhanced speech remained natural.
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5.5 Summary

In summary, the results confirm that glimpse-based optimisation is a viable and
effective strategy for NELE systems, particularly in fluctuating noise conditions
where traditional SII-driven approaches struggle. The method leverages a percep-
tually motivated predictor, achieves consistent objective improvements, and offers
a bridge between classical auditory modelling and gradient-based optimisation.
At the same time, the work highlights the need to combine glimpsing with other
perceptual models, to validate results through listening tests, and to address com-
putational and real-time constraints. Taken together, these points suggest that
GlimpseP represents a useful step forward.
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Conclusion and Future Work

6.1 Summary of Findings

The aim of this thesis was to address the gap identified in Chapter 2: although
Glimpse Proportion (GP) has been shown to correlate strongly with human intelli-
gibility in noisy conditions, it had rarely been used as a direct optimisation target
in Near-End Listening Enhancement (NELE) systems. Existing approaches were
largely built on the Speech Intelligibility Index (SII) or its short-time extensions,
which are effective in stationary noise but less reliable in fluctuating maskers. The
central research question was therefore whether intelligibility improvements could
be obtained by maximising a differentiable version of GP within a constrained
optimisation framework.

The results confirm that this approach is feasible and effective. The proposed
method (GlimpseP) consistently outperformed unprocessed speech and matched
or slightly exceeded strong baselines such as FractileASII across multiple datasets
and noise conditions. The advantages were particularly pronounced in Competing
Speaker scenarios, where glimpsing can be perceptually critical. This demonstrates
that the method not only follows theoretical motivations but also delivers practical
outcomes. In more stationary noise, improvements were still observed, although
performance under STGI showed that temporal modulation aspects were not fully
captured by the current formulation.

In addition to validating the potential of GP as an optimisation target, the thesis
also contributed a differentiable GP formulation and an application of gradient-
based optimisation in an auditory-inspired framework. These elements extend the
methodological toolbox for NELE and open possibilities for further research.
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6.2 Future Work

While the findings are encouraging, several limitations point to directions for fu-
ture work. First, the method remains tied to a single metric. A promising extension
would be multi-objective optimisation, balancing GP with STGI, STOI, or ESTO], to
better capture temporal and reverberation effects. Such an approach could reduce
the dependence on any single predictor and produce more robust results.

Second, the gains in this thesis were time-invariant across frequency bands. A
logical next step would be to explore time-varying or adaptive filters that respond
to short-term fluctuations in noise. This could further enhance performance in
dynamic environments, although it raises additional challenges in terms of com-
plexity.

Third, all evaluations were objective. Conducting subjective listening tests is
crucial for validating whether improvements measured by predictors translate into
real perceptual benefits. Such tests would also allow for assessment of speech
naturalness and listening effort, which are important considerations for practical
use.

Finally, integration into machine-learning frameworks presents another avenue.
The differentiable GP objective developed here could be embedded in training
pipelines for neural enhancement models, combining perceptual grounding with
the flexibility of data-driven approaches. Similarly, issues of computational effi-
ciency and latency must be addressed to make the method suitable for real-time
applications such as hearing aids or communication devices.

6.3 Closing Remarks

In conclusion, this thesis has shown that glimpse-based optimisation is a viable
and promising direction for NELE. By building directly on perceptual theory, the
proposed method delivers measurable improvements where needed: in fluctuat-
ing noise environments. At the same time, the work highlights that intelligibility
optimisation is a multifaceted problem, requiring the combination of several pre-
dictors, validation with human listeners, and careful attention to implementation
constraints. The contributions made here therefore represent both a step forward in
theory-driven enhancement and a foundation for continued research in this area.
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