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Resumé

Afhandlingen bygger pa artiklen “Integrating Multi-Modal Spatial Data using Knowledge
Graphs — a Case Study of Microflora Danica” og et omfattende appendiks, der undersgger,
hvordan semantisk relaterede, heterogene og multimodale datasset kan integreres, nar
en af modaliteterne er spatial. Arbejdet tager udgangspunkt i et konkret case-studie
med det danske Microflora Danica (MfD)-dataseet, der indeholder geografisk annoterede
data omkring mikroorganismer, som er kombineret med miljgdata i form af rasterfiler fra
EcoDes-DK15 og jordbundskort. Malet er at skabe en fleksibel og preecis integration ved
hjeelp af Knowledge Graphs (KG’er), sa data kan analyseres pa tveers af modaliteter uden
tab af vaesentlig information.

Vi indleder med at praesentere de udfordringer, der opstar, nar forskellige typer data
skal kobles pa tveers af formater, oplgsninger, koordinatsystemer og semantiske strukturer.
Traditionelle integrationsmetoder er ofte begraenset til tabulaere eller vektorbaserede data,
mens rasterdata er mindre udforsket i denne kontekst. Vi gennemgar relateret arbe-
jde og identificerer et hul i forskningen: der findes ingen udbredt metode til at inte-
grere rasterdata direkte i KG’er uden at miste veesentlige detaljer eller uden at veere
ressourcekraevende for stgrre applikationer.

Det tekniske bidrag er en metode til at anvende Googles S2 Geometry som et fzelles
spatialt referencesystem. S2-geometrien opdeler Jorden hierarkisk i celler helt ned til cen-
timeter niveau, hvilket muligggr praecis kobling af bade vektor- og rasterdata uathaengigt af
deres oprindelige koordinatsystemer, oplgsninger eller transformationer til S2-geometrien.
Lokationerne fra MfDs jordbundsprgver, repraesenteres som punkter med GPS-koordinater,
kobles direkte til S2-celler, mens rasterceller fra miljgdata omsaettes til et tilsvarende seet
af S2-celler. Dette muligggr en ensartet kobling, hvor observationer for miljgmalinger,
habitattyper og mikroorganismer kan forbindes ved felles spatiale enheder.

En central problemstilling er balancen mellem hgj granularitet, som reducerer over-
daekning (omrader, hvor S2-celler streekker sig ud over rastercellens greenser), og de ggede
krav til lagringsplads, som hgj oplgsning medfgrer. Gennem evaluering af forskellige S2-
niveauer viser vi, at niveau 24 giver et acceptabelt informationstab pa blot 2,2%. Vi
benytter en “majority rule”’-strategi til at undga, at en S2-celle kobles til flere raster-
celler med forskellige vaerdier, hvilket ellers kunne skabe datakonflikter. Sammenligninger
med op- og nedskalering af rasterdata demonstrerer, at S2-baseret integration markant
reducerer informationstabet i forhold til andre metoder for at integrere forskellig data
repraesenteret i gitre. Hvorvidt man er villig til at acceptere et stgrre tab for at reducere
mengden af data bgr besluttes pa baggrund af ens domaene.

Dertilhgrende er et supplementerende appendiks, som uddybende detaljerer artiklen.
Heri beskriver vi den tekniske baggrund, der ligger som fundamentet for artiklen og dele
af appendikset. Desuden skematiserer vi sammenkoblingen mellem de forskellige datak-
ilder og redeggr for eventuelle uhensigtsmaessige designvalg fra det originale data. Hertil
beskriver vi, hvordan det kan korrigeres. Desuden har vi givet eksempler pa hver type af
data og beregnet statistik for at give en dybere forstaelse af tabellerne. Da artiklen havde
en begraensning i antallet af sider har vi uddybet de naevnte metoder til at repraesen-
tere data spatialt, samt sammenlignet de nsevnte metoder. Som fglge af beskrivelsen af
den tilgeengelige data samt forstaelsen af de forskellige mader at repreesentere data pa,
gennemgar vi, hvordan vi har transformeret dataen til RDF og giver eksempler herpa.

Slutvist beskriver vi, hvordan man kunne fortsaette arbejdet. Vi vil blandt andet
kunne reducere antallet af S2-celler med 81%, hvis vi aggregerer S2-celler op til deres



foreeldre-celler, hvor muligt. Derudover overvejer vi ogsa, hvordan designet af KG’en
kunne aendres for at reducere meengden af ngdvendig hukommelse nar man skal lave
forsporgsler pa grafen. Dette opnas ved at opdele grafen og kun benytte sig af de dele,
der er ngdvendige, for at besvare forespgrgslen. Vi inkluderer ogsa, hvordan det kunne
teenkes, at grafen kunne benyttes til at lave “machine learning”-modeller til yderligere
analyse.



Introduction to the Thesis

For our 44+4 PhD studies, we are both part of the interdisciplinary DarkScience Project,
“Illuminating Microbial Dark Matter through Data Science”. The overall objective of
this project is to develop new methods and approaches that enable access and analysis
of microbial species and their interaction with the environment. As part of the project,
we have developed a framework for integrating spatial heterogeneous data sources. The
framework employs a knowledge graph to semantically unify point-based observations of
microbial soil, sediment, and water samples from the Microflora Danica dataset with grid-
based environmental measurements. By leveraging the hierarchical discrete global grid,
S2 Geometry, to integrate all spatial data irrespective of format, the framework enables
integration of both current and future data sources with minimal information loss.

This work, constituting our Master’s Thesis, builds upon our publication presented at
the 7th Workshop on Semantic Web Solutions for Large-scale Biomedical Data Analytics
(SeWeBMeDA’24).

In addition to the paper, the thesis contains an appendix to support and complement
the study, allowing readers to refer to specific sections in the appendix for a more in-depth
understanding of selected topics, other perspectives not included in the published paper,
as well as considerations for future work.

Throughout the main paper, we have denoted the relevant appendix sections in the
margins to guide the reader to the supplementary material.
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Abstract

Integrating semantically related, multi-modal, heterogeneous data sources is challenging, especially if
one of the modalities includes spatial data, such as field measurements organized in geographical grids.
Since geographical grids can have different rotations, be translated along one or more axes, or have
different resolutions, a particular challenge when integrating such data is to reduce the information loss
from projecting different grids into a common format. In this paper, we study this problem and sketch a
method for integrating such spatial data using knowledge graphs. We discuss this solution in the context
of a real-world use case, where we integrate geographically annotated microbial data (Microflora Danica)
as well as environmental data to enable joint analysis. The first results of our experiments show that our
method reduces the information loss compared to baseline methods.
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1. Introduction

Integrating and linking semantically related heterogeneous and multi-modal data is an important
task that is often very challenging [1, 2]. While many works have focused on integrating tabular
data, defined over a fixed relational schema, recent years have seen a diversification into
combining multi-modal data (such as semi-structured data from different modalities) [3] and
data with a flexible schema [4].

The need for data integration appears in a multitude of domains. One such domain is the
study of microbiomes, i.e., the interaction between microbes and the environment they inhabit.
Understanding these interactions is essential for solving current and future environmental
challenges [5]. Such data is inherently multi-modal because the DNA sequence data is of
a different modality than the semantic relations between microbial species and the spatial
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information about their environments. Spatial information in general often refers to vector or
raster data. Vector data consists of (x, y, z)-coordinates associated with real-world measures of
a specific area, where the area’s shape is defined by vector coordinates and can take the form
of points, lines, polylines, and polygons. On the other hand, raster data is a defined grid over
an area where each grid cell has a measurement value. The raster file itself is associated with
information such as the geographical location and the height and width of the grid.

One method to facilitate the integration of multi-modal data is through a knowledge graph
(KG) [6]. An advantage of using KGs for data integration is that they can flexibly support
multiple modalities [7]. KGs can cover strings, images, and audio, as well as links between
them, effectively allowing heterogeneous data to be mapped directly without requiring any
transformations to conform to strict schemas required by other data integration solutions.
Another advantage is that KGs are associated with ontologies that clearly define the semantics
of the concepts in the data sources. In contrast, table and column headers in a relational database
are often only clearly defined in the mind of the designer [8].

In this paper, we present a case study for integrating spatial heterogeneous multi-modal data
sources using a KG. The case study is based on the Microflora Danica' (MfD) dataset, an archive
of microorganisms in Denmark. We present the challenges and possible solutions of enriching
this dataset with data from EcoDes-DK15 [9], a high-resolution dataset of ecological descriptors,
and soil maps of Denmark [10]. We focus on integrating the data along the spatial dimension,
as the datasets are connected through their geographical properties, i.e., GPS coordinates for
the MfD dataset and spatial raster maps for the EcoDes-DK15 and soil maps. The remainder
of this paper is structured as follows. First, in Section 2, we provide an overview of existing
approaches for integrating multi-modal data with a spatial component. Then, in Section 3, we
present the different data sources of our case study and their different modalities. Next, in
Section 4, we present our KG design for spatial integration and show how it can be extended
with microbial data. In Section 5, we evaluate our spatial integration approach based on the
information loss and compare it to a baseline method. Finally, Section 6 concludes the paper
with a summary and an outlook to future work.

2. Related Work

Data integration using KGs has recently gained attention, mainly due to their flexibility, but also
because of the advantages when dealing with heterogeneous multi-modal data [6, 11]. While
many studies have explored integrating or transforming spatial data into KGs, they focus mostly
on vector data [1, 12, 13, 14]. Integration of raster data has not been thoroughly explored.

GeoTriples [12] proposes a method for transforming spatial data in vector format into RDF.
The method extends the mapping languages RZRML? and RML? to define rules for mapping
structured and semi-structured, heterogeneous vector data to RDF graphs. They recognize that
spatial data also exists in raster format but only provide a framework for transforming spatial
vector data into RDF triples. TripleGeo [15] is a similar method, but the proposed framework
also does not support raster data.

'https://www.bio.aau.dk/forskning/projekter/microflora-danica
*https://www.w3.org/TR/r2rml/
*https://rml.io/specs/rml/



Tran et al. [16] propose an ETL process for integrating files in raster format to build an RDF
triple store over a designated area. They aggregate raster cells to extract a single value for a
territorial area, which leads to a loss of fine-grained information.

Zhu et al. [17] model observations as aggregations on discrete global grid systems, albeit
without providing an actual framework. Moreover, they describe the integration of singular
event geometries, such as wildfires, rather than integrating raster data.

Several hierarchical discrete global grids (HDGG) have been proposed to represent spatial
data, including H3*, Bing Maps Tile System®, and S2 Geometry®. Common among them is the
hierarchical division of the Earth into subsets. H3 utilizes hexagons, but, since hexagons cannot
be perfectly subdivided into smaller hexagons, child cells are only approximately contained
within their parent cells. Bing Maps Tile System projects the Earth onto a map; however, this
projection distorts the scales in proportion to the distance to the poles. The S2 Geometry
decomposes Earth into a hierarchy of cells. Instead of mapping points to a plane, S2 maps
them to a perfect sphere. Since Earth is closer to being a sphere than a plane, this creates less
distortion. At the top-most level of the S2 hierarchy, Earth is represented by six cells, perfectly
covering the Earth, with each lower level subdividing each cell into four children.

The KnowWhereGraph (KWG) [18, 19] is a KG using S2 Geometry as the spatial compo-
nent. The KWG focuses on how to model spatial data as RDF triples, but without providing a
framework for mapping between raster files and S2 Geometry. Additionally, they recognize the
advantages and limitations of the S2 Geometry as the spatial component but do not quantify
the error. Thus, our work is based upon the KWG, using it as a spatial layer to enable spatial
data integration.

3. Data Sources and Use Case Description

In this paper, we consider a use case where we want to integrate several real-world heterogeneous
data sources of microbes and ecological descriptors of their habitats, exploiting the capabilities
of KGs for flexible multi-modal integration of spatially related data. In this section, we describe
the available data sources and how they shape our case study.

The Microflora Danica Dataset. The Microflora Danica’ (MfD) dataset comprises more than
10, 000 measured samples collected from different sample sites in Denmark. The MfD dataset
was created to provide a database of all microbes in Denmark, and contains several different
modalities. Information on where each sample was taken is geographical vector data, and DNA
reads can be considered as very long strings. Each sample in the MfD dataset is sequenced at
least once, which is a process that constructs probable DNA reads from a sample. Through this
process, each sample is associated with approximately 10 million DNA reads, R, each being a
fragment of a full genome consisting of the four bases, Adenine (A), Thymine (T), Cytosine (C),
and Guanine (G), found in DNA, R € {A, T,C,G}". In total, the MfD contains 28 TB of reads.
The structure of the MfD dataset is shown in Figure 1. Each sample site is described in the
Fieldsample Metadata, which contains information such as GPS location and habitat type,

*https://www.uber.com/en-SE/blog/h3/
Shttps://learn.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system
Shttps://s2geometry.io
"https://www.bio.aau.dk/forskning/projekter/microflora-danica
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with the habitat types linked to three external taxonomies. Each sample is sequenced multiple
times, each sequencing being described in the Sequencing Metadata, linked to their related
sample site through a fieldsample_barcode. The Sequencing Metadata describes how each
sample was sequenced and handled in the laboratory. Each sequencing leads to a number of
reads, collected in a single file we denote as Read Data, connected to their related sequencing
through a sequence_id. In a Read Data file, there is, besides the reads themselves, a certainty
measure for each base of the reads. Finally, each site was sampled as part of different projects,
each project potentially collecting multiple samples. The projects are described in the Project
Metadata, containing information on the parties responsible for the projects. Each sample site

is linked to its related project through a project_id.
_ll Fieldsample
N Data
sequence_id
Besides information on the reads, sequences, and sample site, we are also provided a mapping

(| Metadata
from each sample to potential microbial species (taxons) present in that sample. Since reads
are only fragments of the complete genome of a taxon, the mappings are uncertain. They are
structured as shown in Table 1. Each Operational Taxonomic Unit (OTU) is a DNA sequence
that encodes a specific, potentially undiscovered taxon. Each MFD_X column represents a
fieldsample_barcode and shows how many reads from a sample site were mapped to that OTU.

ll Sequencing
] Metadata
fieldsample_barcode

Project
Metadata

project_id

Figure 1: Overview of the Microflora Danica dataset

Table 1

Mappings from sample sites to taxons
OTU MFD_1 MFD_2 .- Kingdom - Species
OTU_1 0 7 -+ Archaea - MFD_s 17257

OTU_2 633 482 -+ Bacteria - Cornyebacterium

Environmental Raster Files. The EcoDes-DK15 [9] and soil maps [10] datasets contain
measurements of ecological descriptors across Denmark, providing us a means to quantify the
microbial habitats of the MfD dataset. Both datasets are in the form of raster files, adding a new
modality that needs to be integrated besides the ones present in the MfD dataset.

A raster file is a matrix organized into a grid of rows and columns of raster cells, each cell
representing a geographical area. Each raster cell of a raster file is furthermore associated with
a value representing information about the geographical area, such as temperature or pH. In
total, the environmental data contains approximately 200 GB across approximately 100 files,
each containing a different type of measure.

A raster file contains the geo-location of the upper-left cell of its matrix and a transformation
matrix containing information on what translations and rotations are needed to get the rest
of the spatial locations of all the other cells. In our datasets, raster cells have a resolution of
10 x 10 meters, and the spatial location is given on the Universal Transverse Mercator (UTM)
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coordinate system. In the UTM coordinate system, each location is defined by the pair (e, n)
with e, easting, being the distance east of the Greenwich Meridian, and n, northing, being the
distance north of the equator.

The S2 Geometry. In order to handle the integration of raster files with potentially different
transformation matrices, we integrate them into a common grid, the S2 Geometry, as all raster
cells in a raster file can be mapped to a set of corresponding cells in the S2 Geometry, regardless
of the transformation matrix.

The S2 Geometry is a 31-level hierarchical grid that decomposes Earth into a hierarchy of
cells. At the top-most level (level 0) of the hierarchy, Earth is divided into six cells perfectly
covering it, while each higher level of granularity subdivides each cell into four children, such
that there are 24 cells at level 1, 96 cells at level 2, and so on.

4. Spatial Integration Approach

In this section, we present our KG design for spatial integration, demonstrating how the S2
Geometry can be adopted to independently integrate the spatial aspect of each data source.
Further, we show how we extend the KG design to integrate the rest of the MfD dataset. The
code is available on GitHub®.

Spatial Data. We build upon well-established ontologies to model the spatial dimension, as
shown in Table 2. The geo ontology is used to model the spatial relations between raster
cells, S2 cells, and MfD sample sites; the upper level ontology oboe is used to model the
environmental observations and measurements; and the kwg-ont ontology is the ontology of
the KnowWhereGraph.

Table 2
Ontologies for the spatial part of the KG design
Prefix IRI
geo <http://www.opengis.net/ont/geosparql#>
oboe <http://ecoinformatics.org/oboe/oboe.1.2/0boe-core.owl#>
kwg-ont  <http://stko-kwg.geog.ucsb.edu/lod/ontology#>
rdf <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

We can consider a raster file as a collection of raster cells, where each raster cell is associated
with at least one measurement. For raster files where their raster cells perfectly overlap one
another, such as they do in our use case, each raster cell is associated with multiple measurements
(pH value, soil salinity, etc.). This is modeled using the oboe concepts ObservationCollection,
Observation, Measurement, and MeasurementType; and properties hasMember, hasMeasurement,
hasValue, and containsMeasurementsOfType (see Figure 2).

To model the spatial relation between S2 Geometry and the MfD sample sites, we link each
site to the S2 cell that covers it, using the GPS location obtained from the MfD dataset, described
in Section 3. For the spatial relation between the raster cells and S2 Geometry, we associate

8https://github.com/MicrobialDarkMatter/MfD-spatial-integration



each raster cell with the set of S2 cells that covers it. To model these spatial relations between
raster cells, S2 cells, and MfD sample sites, we utilize the geo ontology properties coveredBy and
covers, see Figure 2, where the data from the raster files is colored in orange, the data from the
MI(D dataset is colored in blue, and the spatial integration layer, S2 Geometry, in bold.

( oboe:hasMeasurement .
oboe:hasValue{ oboe:Measurement mfd:RasterCell -geo:covers g-ont:S2Cellj«—geo:coveredBy—  mfd:Site
X o

oboe:containsMeasurementsOfType rdf-type oboe:hasMember

oboe:MeasurementType oboe:Observation mfd:RasterFile }rdf:type>( oboe:ObservationCollection

Figure 2: Central part of KG design regarding spatial data

Our current datasets do not have significant overlaps, so we do not have significant interop-
erability conflicts among them. However, in the future, we would like to integrate data from
different sources; therefore, a semantic alignment pipeline will be needed.

Spatial Integration. The spatial aspect of each data source is mapped to the S2 Geometry. The
integration can be split into two types: the vector-based GPS integration of the MfD sample
sites and the area-based integration of raster files. We focus on the integration of raster files
in this section, as the integration of the vector-based MfD sample sites simply requires us to
integrate the given coordinates directly to the covering S2 cell.

As described in Section 3, the S2 Geometry is a hierarchy of levels determining the granularity
of S2 cells. Increasing the granularity of the S2 level results in the area of each S2 cells being
lowered by a factor of 4. Therefore, the S2 level affects the number of S2 cells required to cover
each raster cell; a high granularity requires many S2 cells, whereas a low granularity requires
fewer. Consequently, lower granularities of the S2 level increase the over-coverage, i.e, the
area of S2 cells that covers an area outside their associated raster cells. The over-coverage is
illustrated for two different granularities of the S2 level in Figure 3, where the S2 cells (red) are
covering area outside the raster cell (green).

Ideally, a set of S2 cells covers each raster cell perfectly; how-
ever, this is not the case, and as such, choosing the highest gran-  tevet:20 Level: 24
ularity will yield the lowest possible over-coverage. The issue
with this is that each level quadruples storage requirements, as
each S2 cell has four child cells.

The EcoDes-DK15 and soil raster files have a resolution of 100
m?; hence, to minimize over-coverage, an S2 level of 24 is chosen
as S2 cells have an area of approximately 0.3 m? at that S2 level.

Irrespective of the S2 level, S2 cells over-covering a raster cell Figure 3: S2 cells covering
will overlap neighboring raster cells. This is not desirable since raster cells at dif-
each S2 cell should only correspond to one value per feature, e.g., ferent levels
we cannot associate two pH values with the same location. To
address this issue, we use a majority rule; however, one could also aggregate the values, as long
as they are continuous. The majority rule disassociates S2 cells from any raster cells in which
their centroids are not located. However, disassociating S2 cells from a raster will introduce
under-coverage, i.e., the sub-area of a raster cell that is not covered by any S2 cells.

Appendix D.3



A potential error introduced by over- and under-coverage is integrating an MfD site to an S2
cell corresponding to an incorrect raster cell. For example, in the left of Figure 3, the sample
site (cross) is linked to an S2 cell that covers the shown raster cell instead of an S2 cell covering
the raster cell below it. S2 cells of higher granularity diminishes this problem.

In general, the integration of raster files is challenging due to different raster files possibly
having different transformations, i.e., resolutions, rotations, and translations. However, utilizing
the S2 Geometry, the integration of raster files is independent across different transformations.
Thus, our approach affords the integration of arbitrary raster files.

Microbial Data. The MfD dataset contains sample-specific information such as metadata,
DNA reads, sequencing metadata, sample-to-OTU mappings, and habitat information of the
sample site. As the focus of this paper is on spatial integration, we omit details on this part;
however, we outline the design for this integration in Figure 4. Note that each entity has
properties, but due to limitations, we do not discuss metadata associated with the microbial
data. Each sample site, marked in blue, has a habitat type, such as 'forests’ or ’grasslands’,
which we map to a corresponding concept in the Environment Ontology, ENVO [20], marked
in green. Furthermore, each sample has a mapping to an OTU, which encodes for a specific
microbial taxon. These taxons are mapped to corresponding taxons in the the Taxonomy
Database ontology, NCBITaxon’, marked in green. Both the habitat and taxon mappings to
external ontologies require some entity resolution methods to account for, e.g., spelling errors.
Finally, since the DNA reads, marked in red, take up 28 TB of storage, we do not keep them
directly in the graph, but instead store a reference to an external key-value store.

Ve - N\
mfd:Sequence }—mfd: hasRead—> mfd:Read )

wgsBa:atitude wgss4longitude time:i |nXSDDate mfd:relatedProject mid:hasSequence

~_ 1
wgs84:Point rdf:type-  mfd:Site <—wgs84:location- mfd Sample oboe:hasMeasurement- oboe: hasVaIueM

mfd: hasHabltatType oboe:containsMeasurementsOfType
Natura2000:Concept
owl:sameAs owl:sameAs EMPO:Concept
mfd:HabitatType owl:sameAs> NCBITaxon:Species
owl:sameAs owl:: sameAs
\ EUNIS:Concept ENVO:EnvironmentalMaterial

Figure 4: Extending the KG design with MfD microbial data

latitude longitude

| date

d

5. Evaluation

In this section, we evaluate the proposed framework in terms of
the information loss of using the S2 Geometry as the integration
layer and compare it to a baseline method. Furthermore, we
highlight potential issues when using the S2 Geometry.

Information Loss. We observe two contributing factors to the Figure 5: Over- and under-
information loss from our integration to the S2 Geometry. The coverage
first type of information loss is over-coverage (Equation 1), where a part of the area of the

*https://obofoundry.org/ontology/ncbitaxon.html
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minimal set of covering S2 cells associated with a raster cell is outside the bounds of the raster
cell. The over-coverage is calculated as the proportionate area of the set of S2 cells not contained
within the raster cell. The second type of information loss results from the implementation of
the majority rule, and is denoted under-coverage (Equation 2), where a raster cell is only partly
covered by its associated minimal set of covering S2 cells. The under-coverage is calculated
as the proportionate area of the raster cell not contained within the set of S2 cells. These two
types of information loss are visualized in Figure 5, with the blue area being over-coverage and
the red area being under-coverage.
[Raster \ S,|

S, \ Rast
M (1) UC=z ————= (2)

oC =
S| |Raster|

Since the two contributing factors are equally unwanted, we define the information loss as
the harmonic mean of the over- and under-coverage (Equation 3). Due to the nature of the
harmonic mean, higher values are desirable; however, this is not the case for the over- and
under-coverage calculations. Therefore, we use the complement of each coverage. This yields
an information accuracy, which we subtract from 1 to get the loss.

(1-0C)-(1-UC)
(1-00)+(1-UuC)

Information Loss = 1 —2 (3)

The mean information loss for integrating with and without the majority rule is reported in
Figure 6 for different S2 levels, based on random sample of 100 raster cells. Low granularity
S2 levels have a mean information loss approaching 1, whereas higher granularities of the S2
level reduce the information loss. The advantage of using the majority rule is visible for higher
granularities, starting from S2 level 20. However, for low granularity S2 cells, the majority rule
introduces high under-coverage, as many raster cells become associated with no S2 cells, due to
the centroid of large S2 cells that covers many raster cells being located only within a single
raster cell.

The S2 levels 1 through 15 and 27 through 30 are not shown, as these approach an information
loss of 1 and 0, respectively. At S2 level 24, where the information loss is 0.022, the information
loss begins to stagnate with higher granularity of the S2 levels, which is an indication that this
is a suitable level to integrate the use case raster files into.

1 B w/o Majority Rule
B w Majority Rule
a 0.8
o
S o6
=4
£
S 04
L
S
0.2 II I
. Alnn. . _ _
26
S2 Level
Figure 6: S2 error comparison at different hierarchy levels, Figure 7: Upsampling and
with and without majority rule downsampling rasters

of different resolutions
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Using the S2 Geometry as the spatial layer is not without issues, especially when using a
granularity for the S2 cells. The grid of the raster files used for this case study is approximately
35,000 x 45,000, resulting in 1.575 billion raster cells. For an S2 level of 24, each raster cell is
linked to 625 S2 cells on average. Combining these two numbers yields a total of approximately
1 trillion triples. However, as the raster files for this case study lack measurements for raster
cells located in the ocean, the actual amount of integrated raster cells diminishes by around
75%, yielding approximately 250 billion triples solely for the integration of raster cells.

Up- and Downsampling. To evaluate the gain of using the S2 Geometry as an integration layer,
we compare it to using up- and downsampling for combining raster files of different resolutions.
Upsampling refers to taking a set of cells at a lower granularity and then aggregating them into
higher granularity and vice versa for downsampling. We exemplify the information loss from
up- and downsampling via two hypothetical resolutions 10 x 10 and 7.5 x 7.5 meters, in red and
blue, respectively, as illustrated in Figure 7.

In order to upsample and downsample, we define how the majority rule works in this setting.
For the highlighted red cell, we see that it is covered by four different blue cells. Since only two
of the blue cells have their centroids within the red cell, we downsample only into those two
cells. Conversely, we upsample the highlighted two blue cells into the single red cell in which
their centroids are located. We note that upsampling is more difficult than simply aggregating
if we deal with categorical attributes.

An information loss of 0.5 is obtained for upsampling into the 10 x 10 grid and 0.298 for
downsampling into the 7.5 x 7.5 grid. In comparison, integrating the two grids into the S2
Geometry at level 24 results in an information loss of 0.028 and 0.019, respectively.

6. Conclusion

In this paper, we have presented an approach for integrating multi-modal heterogeneous data
sources through a spatial KG layer in the context of integrating geographically annotated
microbial data and environmental features to enable joint analysis. While the emphasis has
been on integrating the spatial data sources, we have also discussed the design of the complete
multi-modal data integration of raster data, DNA reads, and ontologies. We propose an approach
based on the S2 Geometry that can integrate raster files of different resolutions, translations,
and rotations without performing significant aggregations of the raster cell measurements. In
the future, we plan to work on improving scalability given the large number of RDF triples
related to the use of the S2 Geometry as well as to capture provenance through the use of the
PROV-O ontology'°.
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Introduction to the Appendix

The appendix elaborates, adds perspective, and considers future directions for selected
parts of the main paper and, therefore, does not follow an explicit structure linking the
individual sections. However, we attempt to preserve a coherent flow throughout the
appendix.

In Appendix A, we present the relevant background information that supports the
main paper, with a particular focus on the Resource Description Framework (RDF) as
the foundation for representing the data in a Knowledge Graph (KG). In Appendix B,
we give an in-depth introduction to each data source and how they are related. As the
source data does not follow best relational database management practices, we discuss
potential solutions to correcting the tables. Different options for representing spatial data
are described in Appendix C, where we discuss the advantages and limitations of the
individual approaches. The procedures of transforming the different data sources into a
KG are described in Appendix D. In Appendix E, the main paper is set in the scope of
the project, and we propose directions to expand upon the work as well as new avenues
to explore.

An overview of the relation of the sections in the main paper to the sections in the
appendix is given in Table 3.

Table 3: Relation between sections of the main paper and sections of the appendix.

Sections of the Main Paper Related Appendix

1. Introduction

2. Related Work C. Spatial Representation
3. Data Sources and Use Case Description B. Data

4. Spatial Integration Approach D. Pseudocode

5. Evaluation

6. Conclusion E. Future Work
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A Background

In this section, we give an overview of different relevant background information needed
to understand the key concepts used throughout the main paper and the appendix.

A.1 Resource Description Framework

Resource Description Framework (RDF) [21] is a framework designed to represent web-
based data. In the RDF framework, each entry (called an RDF statement) is a triple,
which consists of a subject, a predicate, and an object. A set of RDF statements is called
an RDF graph and can be visualized as a directed graph, with source nodes as subjects,
edges as predicates, and destination nodes as objects. An RDF graph containing a single
RDF statement is depicted in Figure 8.

Figure 8: An RDF graph consisting of a single RDF statement [21].

In RDF, the nodes can be either Internationalized Resource Identifiers (IRIs), literals,
or blank nodes. The edges in an RDF graph are also IRIs. An IRI is an identifier formed
using Unicode characters that uniquely identifies, but does not necessarily provide access
to, an online resource. A Uniform Resource Identifier (URI) is a special case of an IRI
that only permits ASCII characters in the identifier, and a URL is a special case of a URI
that also provides access to the online resource. A literal is a 3-tuple [ = (v, 7, \), where
v is a concrete value, such as a number, a string, or a date; 7 is an IRI of a resource that
identifies the data type of v; and A identifies the language of v if 7 is the IRI for the string
data type, and is an empty entry otherwise. Blank nodes are also identifiers, but they
only identify a resource locally. This means that two blank nodes in two different RDF
graphs refer to different resources with near certainty:.

A collection of resources with a common prefix, called a namespace IRI, is called an
RDF vocabulary. For example, https://schema.org is an RDF vocabulary, and provides
IRIs for resources, including;:

e https://schema.org/Person and
e https://schema.org/accountablePerson.

The namespace IRI is https://schema.org/. Namespace IRIs are often associated with
a shorthand version known as a namespace prefix. The namespace prefix associated with
https://schema.org/ is schema:, and the IRIs for the resources it describes can then be
written as, e.g., schema:Person. Note that these IRIs are cases of URLs. For example,
the schema:Person resource could be used to denote the type of other IRIs, such as
illustrated in Figure 9, where it denotes the type of two instances of people, who are
represented using their e-mail addresses.
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thhe@cs.aau.dk

rdf:type schema:accountablePerson

example:knows
example:knows

schema:Person https://ceur-ws.org/Vol-3726/paper1.pdf

rdf:type schema:accountablePerson

maco@cs.aau.dk

Figure 9: Example of namespace IRIs (schema, example and rdf) used in an RDF graph.

A.1.1 RDF Schema

RDF Schema (RDFS) [22] is an RDF vocabulary and a semantic extension of RDF that
offers tools to describe collections of related resources and the relationships connecting
them. It is expressed using RDF itself. These descriptions help define attributes of other
resources, including the domains and ranges associated with properties. The domain of a
property specifies the type of resources the property applies to, i.e., it specifies which class
of things can have that property. The range of a property specifies the types of values
that a property can take, i.e., it defines the class or datatype of the value the property
points to.

In RDFS, classes are used to group resources that share common characteristics. The
fundamental class construct is rdfs:Class, which is used to declare a resource as a
class using the rdf:type property. Instances can be assigned to classes, also using the
property rdf:type. As an example, consider Figure 10, where an IRI representing the
specific taxon Escherichia coli is typed as an instance of the class Tazon, which is itself
typed as an instance of Class.

rdf:type example:Taxon rdf:type example:EscherichiaColi

Figure 10: Example of the definition of a class using RDFS. Blue nodes represent classes,
and white nodes represent instances.

Properties in RDFS are described using the class rdf:Property. These properties
link resources to other resources or to literal values. RDFS allows the definition of
property characteristics through domain and range. The domain of a property spec-
ifies the class of the subject that the property applies to; for example, if a property
example:observedLocation has a domain example:Taxon, then this property can only
be used on resources classified as example:Taxon. The range of a property defines the
class or datatype of the object that the property points to; continuing the example, if
example:observedLocation has a range example:Site, the value of this property must
be a resource of type example:Site. This is illustrated in Figure 11, which expands upon
the example from Figure 10.
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rdf:type example:Taxon
rdf:type

example:EscherichiaColi

A
rdfs:domain
|

rdf:type

rdf:Property example:observedLocation example:observedLocation

I
rdfs:range

example:Aalborg

rdf:type example:Site

Figure 11: Example of the definition of range and domain for a property using RDFS.
Blue nodes represent classes, yellow nodes represent properties, and white nodes represent
instances.

Additional constructs in RDFS include rdfs:subClass0f, which allows the definition
of class hierarchies by indicating that one class is a subclass of another and thus inherits
its properties; and rdfs:subProperty0f, which defines hierarchies among properties.
Furthermore, rdfs:1label and rdfs:comment are used to provide human-readable names
and descriptions for resources. These constructs collectively form the foundation for

creating rich ontologies and schemas that enhance the expressiveness and interoperability
of RDF data.

A.2 Knowledge Graphs

A knowledge graph (KG) is commonly understood as a graph-structured knowledge
base whose nodes denote entities (or values) and whose edge labels denote typed relations,
and it integrates data and schema-level knowledge [23, 24]. Formally, we follow the RDF-
style modelling described in Appendix A.1 and view a KG as a directed, edge-labelled
graph G = (N, ). Here, N' C {Z U LU B} denotes a node as either an IRI Z, a literal L,
or a blank node B, and £ C N~ x Z x N denotes the set of edges, where source nodes
N~ =N\ L cannot be literals, since subjects in an RDF graph must be IRIs.

It is possible to think about a KG having two interconnected parts. First, there is
the part of the KG that deals with the ontology and schema, i.e., classes, properties, and
constrains, usually denoted the terminology box (TBox); and the part that deals with
the instantiations of actual entities, usually denoted the assertion box (ABox) [25]. For
example, the blue and yellow nodes of Figure 11, and the edges between them, would all
be part of the TBox, as they are high-level definitions of classes and constraints, while all
triples that has a white node as either the subject or object would be part of the ABox,
as they contain information on particular entities, namely that the Escherichia Coli has
been observed in Aalborg, and that Aalborg has the class Site.
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A.3 SPARQL

SPARQL is the W3C standard query language for RDF graphs, designed around graph
pattern matching [26]. The core building block is the triple pattern, which is an RDF
triple following specific conditions, e.g., the subject has to be of type ex:Site. Sets of
triple patterns form basic graph patterns, specifying all conditions to be met for the query
to return a match. Queries combine basic graph patterns with operators such as FILTER,
OPTIONAL, UNION, and MINUS, along with projection, ordering, limits, and aggregates.
Below is an example query that finds up to 10 sites and their observed taxa. For
each taxon, its English name is included if available. First, the prefixes are defined for
readability in the first three lines. Line 5 specifies the variables to be returned: ?site,
7taxon, and 7name. In the WHERE clause, it is specified that ?site must be an instance
of the ex:Site class (line 7), and must have an edge with label ex:observedTaxon to
7taxon (line 8); and it is also specified that ?taxon must be an instance of the ex:Taxon
class (line 9). Within the OPTIONAL block from line 10 to line 13, the query attempts
to retrieve a human-readable label for the taxon; the FILTER retains only English labels
(language tag matching “en”). If no English label exists, the solution is still returned
without ?name. The result set is limited to at most 10 results by LIMIT 10 on line 15.

PREFIX ex: <https://example.org/ontology #>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf -syntax —ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf -schema#>
SELECT 7site 7taxon 7name
WHERE {
?site rdf:type ex:Site ;
ex: observedTaxon 7taxon
?taxon rdf:type ex: Taxon
OPTIONAL {
?taxon rdfs:label 7name
FILTER (LANGMATCHES (LANG (?name), "en"))
b
+
LIMIT 10

The result from running the query could be the example shown in Table 4, where only
seven results matched the queried basic graph pattern.

Table 4: Example of result from SPARQL query.

?site 7taxon ?name

MfD_ 1241 OTU_2 Cornyebacterium
MfD_10093 OTU_7259

MfD_118 OTU 93371  MFD_s_328350
MfD_1241 OTU 4124 MFD_s_7312
MfD_4801 OTU_152092 Planococcus Kocurii
MfD_10142 OTU_14482 MFD_s 501

MfD_18 OTU_531
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A.4 Raster Maps

Raster files represent the world, or a subset thereof, as a regular set of cells in a grid.
The cells of a raster are typically evenly spaced squares. A value is attributed to each
raster cell and corresponds to a measurement at the particular spatial area. Raster files
are either created from images, representing continuous information of an area, or spatial
point measurements extrapolated by statistical or machine learning methods to provide
a map of estimated measurements over an entire region. This section is based on [27].

The embedded geographic metadata of a raster file includes: (i) the cell resolution,
which describes the size of each, typically square, raster cell; (ii) the height and width
of the raster file, denoted as the number of raster cells in either direction; (iii) the orien-
tation, which is usually parallel to the coordinate reference system; (iv) the location of
top left cell to calculate the locations of the remaining cells with the resolution, height,
width, and orientation; and (v) the Coordinate Reference System (CRS), to map
the raster cells to corresponding locations, e.g., to latitude and longitude coordinates.

The cell resolution can vary across datasets, e.g., some data might be collected at
10 x 10 meters, whereas others might be collected at 1 x 1 kilometers. Halving the cell
resolution results in four times as many cells, so the cell resolution is often a trade-off
between the spatial resolution and data volume, which in turn affects the processing time
and storage requirements.

The coordinate reference system can, for example, be the European Terrestrial Ref-
erence System 1989 (ETRS89). Each location in the reference system is denoted by the
geodesic distance in meters from the equator (northing) and the Greenwich meridian
(easting). For example, the location for Aalborg, Denmark, could by ETRS89 be written
as (N 6,322,850; E 555,860).

(Nz?s,?,\o; E 10500)

[ CRS= ETRSSq
e 1 1 1
\Om
|
height =3

Widkth= S 2
Or\a&’w{‘on perallel with Cauetor \

| — — — —— — — — — — — — — o— — — — — —

Figure 12: Example of metadata of a simple raster file.

An example of the metadata of a simple raster file is visualized in Figure 12. The
example illustrates a cell resolution of 10 x 10 meters and a height and width of the raster
to be 3 and 5, respectively. Also, there is no rotation, as the grid is parallel to the equator.
Lastly, the CRS is ETRS89 and the location of the top left cell is (N 275,210; E 10,500).
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To calculate the locations of the remaining cells, if no rotation, the equation below

can be used:
T = Torigin + col - cell_resolution

(1)

Here, @oyigin corresponds to the location of the top left cell, and the row and col denote
the index of the row and column of interest. Thereby, calculations for the location of the
bottom right cell would be the following:

Y = Yorigin — row - cell_resolution

25 = 10,500 4+ 5 - 10
= 10,550

ys = 275,210 — 3- 10
= 275,240
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B Data

In Section 3 of the main paper, we briefly gave an overview of the different data sources we
wanted to integrate into a knowledge graph. In this part of the appendix, we reintroduce
the Microflora Danica project and explain the data sources in greater detail as well as
visualize them.

B.1 The Microflora Danica Dataset

Microflora Danica! (MfD) is
an ongoing project to create
a database of all microorgan-
isms that occur naturally in
Denmark. This work is im-
portant, as the role of micro-
bial organisms for addressing
both present and future chal-
lenges within a wide range of
topics cannot be overstated.
Solving environmental chal-
lenges, developing new an-
tibiotics, and the transforma-
tion of waste into valuable re-
sources are all possible chal-
lenges that microbial organ-
isms can contribute to. The
basis for this database is a
large number of spatially dis- Figure 13: MfD sample locations.

tributed samples across Den-

mark from soil, sediment, and water. These samples were then analyzed in a laboratory
to determine which microorganisms were found in the different samples. We denote this
collection of data sources as the Microflora Danica Dataset. A map of the sample locations
is shown in Figure 13.

The MfD Dataset consists of multiple, inter-referencing data tables as shown in Fig-
ure 14. The Fieldsample Metadata contains information on the samples from across
Denmark, such as the location and the sample type; the Habitat Metadata is a taxon-
omy for the different habitats of Denmark; Projects Metadata contains information on
the different projects that were part of collecting all the samples; Sequence Metadata
is information that is relevant to how each sample was processed in the laboratory; and
the Read Data contains the reads sequenced from each sample. Each data table, besides
the Read Data, is stored in a separate, non-normalized .csv file. Each arrow represents
a 1-to-n relation and also shows which columns are the foreign keys of the relation. The
dotted arrow from Environmental Raster Data to Fieldsample Metadata repre-
sents the integration of external environmental data with the MfD Dataset. We explain
each data table in detail in the following sections. The dotted arrow from Read Data
to Operational Taxonomic Unit Table represents the fact the Read Data was used
as a basis to construct the Operational Taxonomic Unit Table.

Thttps://www.en.bio.aau.dk/research/projects/microflora-danica
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ReadID

Read

ReadQuality

Y _
|Operational Taxonomic Unit Table

Figure 14: Overview of the different parts of the Microflora Danica dataset. Dashed parts
represent non-source data, which are either obtained from external parties or generated
through post-processing.
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extractionCol
extractionConc
extractionMethod
librarylD
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projectiD
sampleType
samplingDate
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mfdSampleType
mdfAreaType
mdfHab1
mfdHab2

mfdHab3

projectiD

projectName
description
extendedMetadata
people
responsible

comment

Habitat Metadata

B.1.1 Fieldsample Metadata

The Fieldsample Metadata source table contains information on the sample site where
a soil sample was taken, including the type of sample, the sampling date, the location,
and information about the environmental conditions of the site.

Of particular interest in this data table are the latitude and longitude columns, as
these are the foreign keys on which this table must be joined with the environmental

—

mfdSampleType
mfdAreaType
mfdHab1Code
mfdHab1
mfdHab2Code
mfdHab2
mfdHab3Code
mfdHab3
Natura2000
EUNIS

EMPO

raster files. A complete list and explanation of table columns is given in Table 5.
In Table 6, we provide an example row of the Fieldsample Metadata table.
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Table 5: Explanation of each column in the Fieldsample Metadata. Foreign keys are
labelled as FKey, and composite foreign keys are labelled as CFKey.

Column Key Description

fieldsampleBarcode Primary Key Unique identifer for the sampling site

projectID FKey — Projects Metadata Identifier for the project that contributed
the sample

sample Type Type of material sampled (soil, sediment,
water, etc.)

samplingDate Date of the sampling

latitude CFKey — EnvRasterData Latitude of the sampling site

longitude CFKey — EnvRasterData Longitude of the sampling site

habitat Type Composite of the mfdSampleType and mf-
dAreaType

habitat Type Number A four-digit code that uniquely encodes

for a specific combination of mfdSample-
Type, mfdAreaType, mfdHabl, mfdHab2,
and mfdHab3
sitename Common name for the sampling site
mfdSample Type CFKey — Habitat Metadata Level 1 (most coarse) of the MfD habitat
hierarchy. Approximately corresponds to

sampleType

mfdAreaType CFKey — Habitat Metadata Level 2 of the MfD habitat hierarchy

mfdHab1 CFKey — Habitat Metadata Textual description of level 3 of the MfD
habitat hierarchy

mfdHab2 CFKey — Habitat Metadata Textual description of level 4 of the MfD
habitat hierarchy

mfdHab3 CFKey — Habitat Metadata Textual description of level 5 of the MfD

habitat hierarchy

Table 6: Transposed example of Fieldsample Metadata row.

Column Example Value
fieldsampleBarcode ~ MFDO00001
projectlD P08_1

sampleType soil

samplingDate 2019-08-29
latitude 55.6771

longitude 9.2778

habitat Type natural soil
habitat TypeNumber 91EQ
mfdAreaType Natural

sitename 6r, Bindeballe By, Randbgl
mfdSampleType Soil

mfdHab1 Forests

mfdHab2 Temperate forests
mfdHab3 Alluvial woodland
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B.1.2 Habitat Metadata

The Habitat Metadata is a taxonomy of the habitats in Den-
mark. The habitats are divided into five separate levels, with —
the most coarse level being the mfdSampleType column, and the
finest level being the mfdHab3Code column. The hierarchy can
be seen in Figure 15.

Furthermore, each habXCode column is also associated with
a textual description of the habitat Moreover, each row of the
Habitat Metadata table contains a reference to three external Area Type
taxonomies, mapping the MfD habitats to Natura2000?, EUNIS?,
and EMPO*.

Natura2000 is a term for protected areas across the Euro-
pean Union. In Denmark, specifically, 9% of the landmass og
28% of the sea have been designated as part of Natura2000. The
Natura2000 ontology is a definition of the habitats of these pro-
tected areas. FEUNIS (European Nature Information System)
is a classification system for European habitats, maintained by Habitat 3
the European Environment Agency. EMPO (Earth Microbiome
Project Ontology) is an ontology of habitats for use worldwide.

It consists of a four-level taxonomy of habitats: L

Sample Type

Habitat 1

Habitat 2

e empo_0: Root level of the EMPO habitat taxonomy Figure 15: The hier-

e empo_1: Free-living, Host-associated, Control, or Unknown archy of the Habitat
Metadata taxonomy
e empo_2: Saline, Non-saline, Animal, Plant, or Fungus

e empo_3: The most specific habitat name

The columns of the Habitat Metadata are explained in de-
tail in Table 7, and an example row of the Habitat Metadata is given in Table 8.

We note that the source data contains some unexpected values. We expected that
each entry of the mfdHabXCode column would refer to precisely one entry of the mfdHabX
column, but that was not the case. For example, the code 1110 refers to three distinct
habitats - ‘Sandbanks’, ‘Enclosed water’, and ‘Lillebeelt’. It is possible that the value
1110 actually refers to the union of these three habitats, or perhaps there is an error in
the data. The statistics for how prevalent this unexpected observation is for each level of
the habitat hierarchy, as well as the number of missing values, are summarized in Table 9.

Moreover, the table also has some other issues. First, there are no clear candidate keys.
The mfdHab3Code column would have been a candidate, if not for the issues discussed
above, resulting in each row not being uniquely identifiable using this column. Instead,
the entire combination of the habitat hierarchy is currently needed to uniquely identify
each row.

Zhttps://sgavmst.dk /natur-og-jagt /naturindsatser /natura-2000
3https://eunis.eea.europa.eu
4https://earthmicrobiome.org/protocols-and-standards/empo/
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Table 7: Explanation of each column in the Habitat Metadata. Composite primary
keys are labelled as CPrimary Key, foreign keys are labelled as FKey, and composite
foreign keys are labelled as CFKey.

Column Key Description
mfdSample Type CPrimary Key Level 1 of the MfD habitat hierarchy
CFKey — Fieldsample Metadata
mfdAreaType CPrimary Key Level 2 of the MfD habitat hierarchy
CFKey — Fieldsample Metadata

mfdHab1Code CPrimary Key Level 3 of the MfD habitat hierarchy

mfdHab1 CFKey — Fieldsample Metadata Textual description of level 3 of the MfD
habitat hierarchy

mfdHab2Code CPrimary Key Level 4 of the MfD habitat hierarchy

mfdHab2 CFKey — Fieldsample Metadata Textual description of level 4 of the MfD
habitat hierarchy

mfdHab3Code CPrimary Key Level 5 of the MfD habitat hierarchy

mfdHab3 CFKey — Fieldsample Metadata Textual description of level 5 of the MfD
habitat hierarchy

Natura2000 FKey — Natura2000 Foreign key linking the Microflora Dan-
ica habitat to the external ontology
Natura2000

EUNIS FKey — EUNIS Foreign key linking the Microflora Danica
habitat to the external ontology EUNIS

EMPO FKey — EMPO Foreign key linking the Microflora Danica

habitat to the external ontology EMPO

Table 8: Transposed example of the Habitat Metadata source table.

Column Example Value
mfdSample Type Soil

mfdAreaType Natural

mfdHab1Code 2000

mfdHab1 Dunes

mfdHab2Code 2100

mfdHab2 Sea dunes

mfdHab3code 2130

mfdHab3 Fixed dunes (grey dunes)
Natura2000 2130

FEUNIS N15

EMPO Free-living; Non-saline; Soil (non-saline)
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Table 9: Observation statistics for Habitat Metadata

Metric Value

Missing Values
habl 0 (0.00%)
hab2 33 (11.8%)
hab3 97 (34.8%)

Non-unique Codes
habl 6 (2.20%)
hab2 9 (3.23%)

hab3

14 (5.02%)

B.1.3 Sequence Metadata

The Sequence Metadata source table contains information on the sequencing pro-
cess that each sample was exposed to in the laboratory, such as sequencing method,
in-laboratory identifiers, and used solution concentrations.

Note that one fieldsample could have been sequenced multiple times, such that multi-
ple primary keys (sequenceID) could refer to the same foreign key (fieldsampleBarcode),
making the relation between this table and Fieldsample Metadata 1-to-n; however,
the majority of entities have unique foreign key entries.

Table 10: Explanation of each column in the Sequence Metadata Foreign keys are

labelled as FKey.

Column Key

Description

sequencelD Primary Key
FKey — Read Data

fieldsampleBarcode FKey — Fieldsample Metadata

extractionlD

original ExtractionID
extractionPlatelD
extractionRow
extractionCol
extractionConc
extractionMethod

librarylD

libraryPlatelD
libraryRow

libraryConc
libraryMethod

Unique identifier for the sequencing

Identifier for the sampling site

Identifier for the extract containing the
fieldsample

Some fieldsamples were extracted multi-
ple times, so this column links new extrac-
tions to old ones

Identifier for the extraction plate
Identifier for the extraction row. Included
as the last letter in the extractionID
Identifier for the extraction column. In-
cluded as the last number in the extrac-
tionID

The concentration of the extraction
Identifier for the extraction method
Identifier for the library used for sequenc-
ing

Identifier for the libary plate

Identifier for the library row. Included as
the last letter in the sequencelD

The concentration of the library

The library method used for sequencing

An example row of the Sequence Metadata is given in Table 11. To reiterate, the



information in this table is solely for experts to see the provenance of the sequencing of
the different soil samples.

Table 11: Transposed example of the Sequence Metadata source table.

Column Example Value
fieldsample_barcode ~ MFD00009
extraction_id EXT-MJ019-A1

original_extraction_id EXT-MJ019-A1
extractionplate_id EXT00001

extraction_row A

extraction_col 1

extraction_conc 55.67

extraction_method PowerSoil-Pro-HT

library_id LIB-MJO050-A1
libraryplate_id LIB00001

library_row A

library_conc 5.87675

library_method ILLUMINA-DNA-PREP.V1
seq_id LIB-MJ050-A1.02

B.1.4 Read Data

The Read Data consists of read files of the .fastq format®, which is the output format of
the utilized sequencing method, Illumina. Each file stores multiple reads, R;, which are
sequences of the four DNA bases Adenine (A), Thymine (T), Cytosine (C), and Guanine
(G), R; € {A,T,C,G,N}*, where N is used if the base was not able to be determined
in the sequencing. Aside from the reads themselves, a read file also contains a read ID
and a base-specific quality for each read. The .fastq format is a plain-text file that is
newline-delimited, such that each data entry takes up exactly four lines. The first line of
a read file is the read ID, the second is the read itself, the third is a ‘+’ sign used as a
separator between the read itself and the base quality, and the fourth is the base quality.
An example of a read file is in Figure 16.

@A00595:256:HSNHYDSX5:4:1101:4770:1016 1:N:0:TGCAAGATAA+NCGTCCTCAA
ANATGATCGCGCGCTGGCGCGAAGGCTTCGATATCGTCCACGCCAAGCGCTGCGAACGCGACGGCG. . .«
+
F#FFFFFFFFFFFFFFFFFFFF: FFF, FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF. . .
@A00595:256:H5NHYDSX5:4:1101:6253:1016 1:N:0:TGCAAGATAA+NCGTCCTCAA
CNTCGGTCTCGGTGCGATGCAGATCCTGGCGCTGCTGCCGGGCATCAGCCGGGACGGCATCGTGAT. ..
+
F#FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF. . .
@A00595:256:H5NHYDSX5:4:1101:11134:1016 1:N:0:TGCAAGATAA+NCGTCCTCAA
10 ANGACGGCCAGGCCCGCGGGGTGGTGCTGGAGAACGGCGACGAGATCCGCGCCCAGGTGATCGTGT. . .
11 +

12 F#FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF. . .

0 NO U A~ WN B

o

Figure 16: A snippet of a read file showing three data entries. Note that the reads and
base qualities have been truncated for readability.

knowledge.illumina.com/software/general /software-general-reference_material-list
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The quality of a base is an encoding of a quality score s € N.93) as an ASCII character
between ASCII(33) and ASCII(126). Formally, the encoding is given as

Q(s) = ASCII(s + 33).

For example, for the quality score s = 37, the corresponding quality in the .fastq file is F,
since Q(37) = ASCII(37 + 33) = ASCII(70) = F.

B.1.5 Projects Metadata

The soil samples were collected as part of a collaborative effort involving multiple projects
across different periods. The Projects Metadata source table provides information on
each of these contributing projects. A complete list and explanation of table columns is
shown below:

Column Description

projectID Unique identifier for the project

projectName Common name of the project

description Description of the project

extendedMetadata Freeform extra information when available

people Name and e-mail of research partners

responsible Name and e-mail of the person responsible for the project
comment Freeform comment to the project

An example hereof is shown in Table 12. Notably, due to the people and responsible
columns, the table does not follow the 1NF as these do not contain only atomic values.
For example, the people column contains two people. To solve the improper database
design, one would make another table for people with columns projectID and e-mail of
people. These would form a composite primary key. A similar table for responsible
would be made, following the same design. Separately, a third relational table should be
created with the e-mail as a primary key and the name as a column, which is linked to
both the people and the responsible tables through foreign keys.

Table 12: Transposed example of Projects Metadata source table.

Column Example Value

projectlD P04_1

projectName Agriculture - Potato

description Samples from potato fields looking at potato diseases...
extendedMetadata None

people John Doe <john@bio.aau.dk>; Jane Doe <jane@bio.aau.dk>
responsible Jane Doe <jane@bio.aau.dk>

comment Double check methods for inclusion in MfD.
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B.2 Operational Taxonomic Unit Table

The operational taxonomic unit (OTU) table is derived from

the Read Data and thereby is not part of the source data

for the MfD project. An OTU table records which species Kingdom
are present at the different sampling sites based on the reads |

returned from the sequencing. In the table, the structure of Phylum
which is shown in Table 13, the first column is OTU. Each |
OTU is an ID of a DNA sequence that corresponds to a mi- Class
croorganism (a tazon). Each MFD_z column corresponds to |
one fieldsampleBarcode from the Fieldsample Metadata Order
data table, and the entries in these columns are a count of |
how many occurrences of each OTU were observed in that Family
sampling site. Note that these columns are quite sparse, |
Genus

with 99.51% empty records, as not many microbial taxa are
present everywhere. The Kingdom, Phylum, Class, Order, |

Family, Genus, Species columns define the taxonomic hier- Species

archy that the taxon (OTU) corresponds to. The hierarchy is

shown in Figure 17. Following the hierarchy in Figure 17, hu- Figure 17: The taxonomy
mans have the following classification: Animalia (Kingdom), of organisms.

Chordata (Phylum), Mammalia (Class), Primates (Order),

Hominidae (Family), Homo (Genus), Homo sapiens (Species).

Table 13: The structure of the OTU table

OoOTU MFD1 MFD2 ... Kingdom --- Species
OTU_1 0 7 c. Archaea --- MFD_s_17257

OTU_2 633 482 .-+ Bacteria --- Cornyebacterium

The 0TU table does not follow the normal forms of database design, as the sample
sites are stored in a wide format with a column for each separate site. Instead, to adhere
to the normal forms, the OTU table should first be split into two subtables, one for the
counts and one for the taxonomy. The first subtable should contain one column for
the OTU (as it does), one for the fieldsample Barcode, and one for the count, as shown in
Table 14. The primary key would be the combination of OTU and fieldsample Barcode, and
fieldsampleBarcode would be a foreign key to the Fieldsample Metadata and Sequence
Metadata source tables. Furthermore, any count of 0 does not need to be included in
the new table.

Intuitively, the taxonomic hierarchy does not follow the second normal form, as the
children are dependent on their parents. To normalize it, we would create a table for each
level of the hierarchy, each with three columns (parent_id, child_id, child_label), resulting
in six tables. The child_id column would act as the primary key in these tables, and the
parent_id column would act as a foreign key to the next-courser level in the hierarchy. A
seventh table, for the coarsest level of the hierarchy Kingdom would have two columns:
kingdom_id (primary key) and kingdom_label.

To elaborate on Table 13, we report some statistics for the data in Figure 18 and
Table 15. Figure 18a shows the number of taxa for each site, summarized in a violin plot.
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Table 14: Revised structure of counts part of the OTU table. No entry of the composite
primary key OTU and fieldsample Barcode means that the OTU was not observed at the
site, resulting in a count of 0.

OTU fieldsampleBarcode count

OTU_1 MFD_2 7
OTU_2 MFD_1 633

OTU_2 MFD_2 482

Looking into the number of unique taxa per site, the 25th percentile is 705, the median is
1,051, the 75th percentile is 1,345, and the average is 1,038, which provides information
on how rich the biodiversity is at each sampling site. In total, 10,609 sites are included in
the OTU table with 211,517 different taxa. On average, 50% of the taxa are included in
10% or fewer sites. Only a few sites have a high prevalence of taxa, with the three highest
having 5,259, 4,442, and 3,843 different taxa, which is all less than 2.5% of all observed
taxa.

Figure 18b illustrates the number of sites per taxa on a logarithmic scale. The majority
of taxa are present in only a small number of sites. This is further illustrated by the 25th
percentile, median, and 75th percentile values, which are 2, 5, and 18 sites, respectively.
The average is 52 sites per taxa; however, this is highly influenced by some taxa being
present in more than half the sites. For example, only 268 (0.13%) of the taxa are present
in more than half the sites, and only 3,221 (1.52%) taxa are present in more than 5% of
sites. In contrast, 136,624 (64.49%) taxa occur in fewer than 10 sites with 41,530 (19.63%
of total) taxa only occurring once.

Although the number of taxa per site is fairly evenly distributed, the sites per taxa is
very skewed.
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(a) Number of taxa per site. (b) Number of sites per taxa in log scale.

Figure 18: Violin plots for the OTU table.

30



The taxonomic hierarchy is shown in the last seven columns of Table 13, where each
taxon is mapped to the corresponding level in the hierarchy for which it is possible — some
taxa cannot be mapped or assigned a new rank as they are not close enough in comparison
to the reference database taxa or different enough to be a new taxon. Table 15 summarizes
the unique taxa for each hierarchical rank and the number of unknown taxa. For example,
within the Kingdom rank, we observe 3 different taxa and they are all mapped, whereas
for the species, we observe 175,732 unique taxa with 35,786 unable to be mapped.

Table 15: Taxon statistics for OTU table.

Taxon Metric Kingdom Phylum Class Order Family Genus Species

Unique taxa 3 94 368 1,332 5,253 39,101 175,732
No taxa 0 3 93 407 1,508 5,748 35,786

B.3 Environmental Raster Files

The 17 available raster files include information such as pH, temperature, elevation, and
salinity, each at a 10 x 10 meter resolution. They cover the entirety of Denmark, resulting
in a width of approximately 45,000 raster cells and a height of approximately 35,000 raster
cells. In total, this results in roughly 1.575 billion raster cells. As the measurements are
only made inland in Denmark, all other raster cells can be ignored, and effectively, only
about 400 million of raster cells include information. An example of a raster file is shown
in Figure 19, measuring the annual mean temperature of locations in Denmark.
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Figure 19: Example of a raster file measuring annual mean temperature.

Some of the raster files are created from LiDAR images, which reduces the uncer-
tainty, as individual raster cell values are not estimated. However, other raster files are
extrapolated based on spatial point measurements, adding uncertainty to the value of the
raster cells that lie far from the point observations. An example of a LIDAR image is the
elevation raster file, whereas the pH raster file is created by extrapolation methods. The
raster files come from external parties and are therefore not part of the source MfD data.

The spatial integration deals with linking each raster cell with the spatial point lo-
cations of the MfD samples. We describe ways to represent spatial information in Ap-
pendix C.
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C Spatial Representation

In this section, we explore various approaches to spatial data representation, outlining
the advantages and disadvantages of each. Specifically, we introduce and examine the
capabilities of various Hierarchical Discrete Global Grids (HDGGs) [28] and GeoSPARQL
[29], assessing if they are applicable for our spatial knowledge representation.

C.1 Hierarchical Discrete Global Grids

In 2. Related Work of our main paper, we briefly described three hierarchical discrete
global grids (HDGGs) for spatial representational mapping. In this section, we describe
the three grids: H3% Bing Maps Tile System’, and S2 Geometry®, while elaborating their
strengths and weaknesses as well as our reasoning for using the S2 Geometry.

C.1.1 H3

The hexagonal hierarchical spatial index, H3, by Uber, divides the Earth into hexagons
covering the whole world. H3 has 16 different resolution levels, dividing the Earth from
122 cells down to approximately 570 trillion cells. At the lowest possible granularity, each
cell is 0.9 m?.

A key advantage of using hexagons is their ability to wrap around the Earth without
distorting individual cells, besides the slight curvature to avoid sharp angles. This ensures
that all cells at a given resolution remain the same size. Most of the distortion comes
from the fact that the Earth is not a perfect sphere, but the projection loss is minimal.
The H3 grid is illustrated in Figure 20.

However, one drawback of the H3 hexagonal grid system is the parent/child mismatch
that arises during resolution changes. Because H3 uses a hierarchical structure, where
each hexagon is subdivided into seven smaller hexagons, the resulting children do not
perfectly nest within their parent. This leads to uneven spatial representation and poten-
tial inconsistencies when aggregating or downsampling data across resolutions, especially
in edge regions.

Integrating microbial data, where small changes may have huge implications, such
aggregation errors can potentially misplace the location of microbial species or the envi-
ronmental features of the sampling site.
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Figure 20: Visualization of H3S.

Shttps://www.uber.com/en-SE/blog/h3/
"https://learn.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system
8https://s2geometry.io
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C.1.2 Bing Maps Tile System

The Bing Maps Tile System” is based on the Mercator projection, dividing Earth into a
2-dimensional map with 256 - 2! x 256 - 2! cells at the top level and 256 - 223 x 256 - 223
cells at the lowest granularity at level 23. With the cells being squares, the topology is
simple, and each parent cell perfectly contains its child cells.

However, the Mercator projection comes with the cost of significant distortion, espe-
cially near the poles. The projection stretches the map vertically as latitude increases,
causing cells near the poles to appear much larger than those near the equator, despite
representing much smaller areas on the Earth’s surface. This projection loss leads to poor
spatial uniformity and can introduce bias in spatial analyses, particularly for global-scale
applications.

C.1.3 S2 Geometry

The S2 Geometry by Google divides the Earth into a cube, which is then rounded to
mimic a sphere. The six faces of the cube can each be perfectly divided into four child
cells for a total of 31 levels of resolution. At the finest resolution, each cell corresponds
to approximately 0.7 cm?. Because the S2 Geometry projects Earth onto the faces of a
cube, some distortion occurs: child cells near the center of each face are slightly larger
to accommodate the Earth’s curvature. Although this distortion is less severe than that
of the Mercator projection, the resulting cells are not equal in size, which may introduce
additional noise. An illustration of the S2 Geometry is shown in Figure 21, where, looking
at the green grid cells, the distortion is visible by the fact that the grid cells are not of
equal size.

Figure 21: Visualization of the S2 Geometry®.
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The S2 Geometry uses a 64-bit cell ID for each cell, where the hierarchy is inherent.
The cell ID is given by the face as a 3-bit number, followed by each child-level given by
a 2-bit number, with the final bit after the last child always being 1. Assume that the
granularity is k, then the S2 ID is given as [face|[child])*[10°~2*]. For example, if we want
to find the ID of the first child of the second face cell, then the bit number for the child
is 01, and the bit number for the face is 010, yielding an ID of 010 01 100...0. This is
illustrated in Figure 22.

S2 Level O (face cells) S2 Level 1 (first child cells)

0 1 2 000.00: | 00001 | oot oo | ovtons | otoros: | otoron
0001 0011 0101 oo 100 | oooin | oot ior | ostits | otorior | osoris
3 4 5 oirion | onon | 000 | sorors | woeroar | 16nons
0111 1001 1011 o0 | o | oot | sorsi | et | onin

Figure 22: Visualization of the 64-bit ID of the S2 Geometry. The trailing 1 is colored
gray to distinguish it from the rest of the ID. Trailing zeroes are pruned for readability.

C.1.4 Comparison

Each of the HDGGs comes with advantages and limitations. Table 16 shows an overview
of how each grid corresponds to the following metrics: cell type, resolution levels, lowest
granularity, distortion, and topological guarantees. Some are not directly comparable in
the sense that one is better than another, whereas others can be ordered. For example,
a hexagonal shape is not necessarily better or worse than a square shape, whereas low
distortion is better than high, and no distortion is preferred.

H3 Bing S2
Cell Type Hexagon Square Quadrilateral
Resolution Levels 16 23 31
Lowest Granularity 0.9 m? Differs 0.7 cm?
Distortion Negligible High Moderate

Topological Guarantees Parent/Child Loss Perfect Perfect

Table 16: Comparison of spatial hierarchical indexing schemes.

The lowest granularity for Bing does not make sense to calculate or report, as, for the
lowest resolution level, the area of cells near the poles has a vastly different area than
those near the equator. Thereby, the distortion is high for Bing.

In summary, while both H3 and S2 have their merits, we ultimately preferred the
perfect topological guarantees offered by S2 as we found the moderate distortion to be
negligible. Moreover, the fine granularity made it possible to reduce the loss moving from
raster files to the S2 Geometry even less. H3 did not offer topological guarantees as the
parent cells did not fully cover the child cells; as such, S2 was the ideal approach for our
use case. Bing was excluded from consideration due to its high distortion.
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C.2 GeoSPARQL

When working with Knowledge Graphs (KGs) and spatial data, GeoSPARQL [29] is
a geospatial extension to SPARQL, standardized by the Open Geospatial Consortium
(OGC). GeoSPARQL also defines an ontology for describing spatial features, geometries,
relationships, and coordinate reference systems. Additionally, GeoSPARQL introduces
spatial functions to query geometries for operations such as distances, intersections, and
containment.

Despite GeoSPARQL’s strengths, such as enabling geospatial queries within RDF and
supporting advanced spatial reasoning like identifying rivers that cross forests, it poses
challenges for large-scale applications. The queries of GeoSPARQL are computationally
complex, not scaling well with the increase of spatial components. Thereby, it effectively
makes GeoSPARQL impractical for large-scale applications [30].

For our use case, we are looking at a grid of approximately 35,000 x 45,000 cells,
corresponding to 1.575 billion cells, that each would need to be represented by a polygon
within the GeoSPARQL framework. However, due to 75% of the raster cells covering the
sea, where no measurements are available, the effective number of raster cells is closer to
400 million. This impracticality is further validated by [31], stating that storing raster
files in RDF is reasonable, but may not be suitable for queries, as they may simply time
out.
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D Pseudocode

In this section, we describe the general implementation of converting our data, described
in Appendix B, to RDF triples. We use the Python libraries RDFLib? and BabelGrid!® for
constructing our RDF triple files and mapping raster cells to the S2 geometry, respectively.
For background on RDF, please read Appendix A.1.

D.1 Metadata to RDF

The process of converting the MfD dataset to RDF is very similar for the different meta-
data source tables described in Appendix B.1. Therefore, we only describe the process
for converting the Projects Metadata source table.

First, we identify how the columns are related using the normalized projects metadata
table, as outlined in Appendix B.1.5. We see that all columns except the names and
emails are related to the projectID and therefore we create triples with the projectID as
the subject. For the names columns, the email is the primary key, and therefore becomes
the subject for the remaining triples. The resulting triples are shown in Table 17.

Table 17: Links for Projects Metadata source table.

Subject Predicate Object

projectlD rdfs:label projectName
projectlD schema:description description
projectlD mfd:extendedDescription  extendedMetadata
projectID schema:identifier projectID

projectlD prov:wasAttributedTo people.email
people.email schema:givenName people. firstname
people.email schema:familyName people. familyname
projectlD schema:accountablePerson responsible.email
responsible.email schema:givenName responsible. firstname
responsible.email schema:familyName responsible. familyname
projectlD schema:comment comment

The pseudocode implementation for transforming the Projects Metadata source
table, without prefixes and class definitions, into RDF triples, is shown in Algorithm 1.
Most notably, we need to normalize the column of people and responsible. We do this
in lines 9-11 and 13-15 for people and responsible, respectively. A person involved in the
project can also be responsible for the project. In this case, two triples with different
predicates from the projectID to the e-mail are created, one with wasAttributedTo and
another with responsible.

9https://rdflib.readthedocs.io/en/stable/
Ohttps://github.com/EL-BID /Babel Grid
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Algorithm 1 Project Metadata to RDF

1: G < Graph()
2: for each row in projects_table do
3: projectID ¢ row["projectID"]

4: G.write(projectID label row["projectName"])

5: G.write(projectID description row["description"])

6: G.write(projectID extendedDescription row["extendedMetadata"])
7: G.write(projectID comment row["comment'"])

8: for each person in row["people"] do

9: G.write(projectID wasAttributedTo person.email)

10: G.write(person.email givenName person.firstname)

11: G.write(person.email familyName person.familyname)

12: for each responsible in row["responsible"] do

13: G.write(projectID accountablePerson responsible.email)

14: G.write(responsible.email givenName responsible.firstname)
15: G.write(responsible.email familyName responsible.familyname)

D.2 Operational Taxonomic Units to RDF

The Operational Taxonomic Unit table illustrated in Table 13 does not adhere to best
practices for relational database design, as discussed in Appendix B.2. To reiterate, the
entries of fieldsampleBarcode appear as columns, while the last seven columns redundantly
store taxonomic information.

When transforming each row to RDF, we consider each fieldsampleBarcode with the
presence of a species, i.e., all non-zero entries, and make a triple for the corresponding
OTU. Additionally, we create a link from each OTU to the corresponding species. For
the remaining taxonomic tree, we create a link from the child to the parent until the root,
i.e., Kingdom. Following this logic, we obtain the below triple file when transforming the
first line of Table 13. Additionally, the corresponding RDF graph is shown in Figure 23.

mfd:MFD_2
rdf : type mfd:Sample ;
oboe:hasMeasurement _:measurementA

_:measurementA
rdf :type oboe:Measurement ;
oboe:hasValue 7 ;
oboe:containsMeasurementsOfType mfd:0TU_1

mfd:0TU_1

rdf :type mfd:0TU ;

owl :sameAs mfd:MFD_s_17257
mfd:MFD_s_17257

rdf :type mfd:Species ;

rdfs:subClass0f mfd:some_level

mfd: some_level
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rdfs:subClass0f mfd:Archaea

mfd:Archaea
rdf :type mfd:Kingdom

rdf:type mfd:Sample

0
!

oboe:hasMeasurement

7 [«—oboe:hasValue—{ _:measurementA }—rdf:type—>{ oboe:Measurement
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Figure 23: First line of Table 13 converted into RDF. The taxonomic hierarchy is shown
through the some_level node.

We obtain the RDF files through the pseudo-implementation provided in Algorithm 2.

The prefixes are omitted for ease of interpretability, yet they are described in Main
Paper Figure 4. For each row in the OTU table, corresponding to a single OTU, we
create links between the fieldsample and measurementID in line 7, links between the
measurementID and the measured value in line 8, and links between the measurementID
and the OTU in line 9. Additionally, we create a link from the OTU to the corresponding
species in line 10. Lastly, we write the hierarchy in the while loop in line 12.
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Algorithm 2 Transform OTU Table Row to RDF
1: G < Graph()

2: for each row in otu_table do
3: for each sample in row do

4: if sample is observed then

5: measurementID < blankNode ()

6: G.write(sample type Sample)

T G.write(sample hasMeasurement measurementID)

8: G.write(measurementID hasValue row[sample])

9: G.write(measurementID containsMeasurements0fType row[0TU])
10: G.write(row[0TU] sameAs row[species])

11: while not at root do

12: G.write(child subClass0f parent)

13: G.write(child type get_taxon_level of(child))

D.3 Raster Files to RDF

Converting the raster files to RDF is simple, yet computationally expensive. For each
of the approximately 400 million raster cells, we need to retrieve the corresponding S2
cells at level 24, as decided in the evaluation from Figure 6. We parallelize the task of
retrieving the S2 cells to speed up our implementation. The pseudocode implementation
is provided in Algorithm 3.

Algorithm 3 Convert Raster Cells to RDF

1: G < Graph()
2: for each rasterCell in parallel do
3: measurementID <— blankNode ()

4: G.write(rasterCell.ID hasMeasurement measurementID)
5: G.write(measurementID hasValue rasterCell.value)

6: G.write(measurementID type Measurement)

7 s82Cells <- calculateCoveredS2Cells(rasterCell)

8: for each s2Cell in s2Cells do

9: G.write(rasterCell.ID covers s2Cell)

10: G.write(s2Cell type S2Cell)

For each unique raster cell, we generate a measurementlID in line 3. Identical raster
cells, but from different raster files, will thereby have different measurementIDs for each of
the different measurements as written through lines 4-6. Finally, we calculate the covering
S2 cells of the raster cell and create a link between them as seen through lines 7-10.

We omit the prefixes in the pseudocode implementation; however, the prefixes are
shown in Figure 24 and described in Main Paper Figure 2.
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loboe:Measurement)

oboe:containsMeasurementsOfType oboe:containsMeasurementsOfType

rdf:type

_:MeasurementA _:MeasurementB }oboe:hasValue» 0.4

oboe:hasMeasurement

mfd:RasterCell

kwg-ont:00110... kwg-ont:00110...

rdf:type

kwg-ont:S2Cell

Figure 24: Example of RDF graph created by Algorithm 3.

At the center of Figure 24 we have a raster cell, mfd:100_200. .., which has two
measurements. These measures are the pH and clay, and have the values 7 and 0.4,
respectively. Below the raster cell, it is linked to different S2 cells.
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E Future Work

A key challenge that we mentioned in the conclusion of the main paper is the fact that we
need to work on improving the scalability of the knowledge graph, given the large number
of RDF triples related to the use of the S2 Geometry at the chosen level of granularity.
In this section, we discuss possible future work that can be done to better handle the
integration of large quantities of geospatial data into a knowledge graph framework.

E.1 Merge Identical Cells

An approach to reduce the number of triples required to model the geospatial data is to uti-
lize the inherent hierarchical structure of the S2 cell IDs, as described in Appendix C.1.3,
to merge S2 cells if all raster cells cover the entirety of their parent cell. For example,
consider Figure 25 where three raster cells, measuring different attributes, all cover the
same 15 S2 cells.

RasterCell 1
RasterCell 2

RasterCell 3 (0,0) (0,1) (1,0) (1,1) (2,0)
000.001 | 000.011 | 001.001 | 001.011 | 010.001

——geo:covers—> | (0,2) (0,3) (1,2) (1,3) (2,2)
000.101 | 000.111 | 001.101 | oot.111 | 010.101
(3,0) (3,1) (4,0) (4,1) (5,0)

011.001 011.011 100.001 100.011 101.001

Figure 25: Three raster cells (left) cover the same S2 cells (right).

To model this geospatial data, 15 triples per raster cell are necessary when following
the design from the main paper (see Figure 2 of the paper):

ex:rasterCelll
geo: covers S52:000.001 ;
geo: covers S2:000.011
geo: covers $52:000.101 ;
geo: covers $52:000.111
geo: covers S52:001.001
geo: covers S52:001.011
geo: covers S52:001.101
geo: covers S2:001.111 ;

Instead, since all raster cells cover the child cells of face cell 0 and 1, we can replace
those child cells with their parents, see Figure 26, without losing any information.
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RasterCell 1
RasterCell 2
2,0
RasterCell 3 0 1 0(10.031

—_geo:covers—> 0001 0011 et

(3,0)
011.001

(3,1) (4,0)
011.011 | 100.001

(4,1) (5,0)
100.011 101.001

Figure 26: Merging S2 cells into parent S2 cells when possible.

Thus, the number of triples for each raster cell is reduced from 15 to 9, reducing the
required storage needed to model the geospatial data.

ex:rasterCelll
geo: covers S2:0001 ;
geo: covers S2:0011 ;

Experimental results show that, at an S2 resolution of 24, we are able to reduce the
approximate average number of links from 10 x 10 meter raster cells to S2 cells from 630
to 120 S2 cells, all without losing any information. Thereby, the number of S2 cells can
be reduced by approximately 81%. We are able to aggregate some of the originally linked
S2 cells to S2 cells at a resolution of 20. This approach, in combination with not linking
raster cells covering the sea, will drastically reduce the number of triples.

E.2 Rasters in a Separate Graph

Another direction to optimize the storage and query speed of the knowledge graph would
be to change the design to store the rasters as a separate graph and use that only as
provenance to document the relation between raster cells and S2 cells. Figure 27 shows
a possible design of this separate “provenance RDF graph”. We define raster files as
a subclass of a sosa:0bservationCollection and raster cells also as a subclass of a
sosa:(ObservationCollection under the Semantic Sensor Network Ontology'' (SOSA).
Then, we link one blank node of type sosa:0bservation to each raster cell for each dif-
ferent observed property. This blank node carries the information on the type of property
through the link sosa:observedProperty, and the actual measurement through the link
sosa:hasResult.

Hhttps:/ /www.w3.org/TR/vocab-ssn/
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rdfs:subClassOf,

/ Literal

(xsd:dateTime)

sosa:ObservationCoIIectm

mfd:RasterFile

sosa:ObservableProperty

sosa:resultTime

sosa:hasMember
sosa:observedProperty

sosa:Observation mfd:RasterCell sosa:ObservationCollection

qudt:unit

sosa:hasResult

qudt:QuantityValue

geo:coveredBy

qudt:numericalValue Literal —Provenance RDF 9@!&

\\ e (xsd:double) kwg-ont:S2Cell

Figure 27: Design of the “provenance RDF graph” that documents the relation between
raster cells and S2 cells.

As a result, the measurements in the “data RDF graph” need to be linked to the S2
cells instead of the raster cells, and also be aggregated. An updated design to allow for

this is shown in Figure 28.
sosa:ObseNabIeProD

obi:DataTransformation

‘

B B
geo:coveredBy stad:hasTransformationKind ~ sosa:observedProperty

sosa:hasFeatureOfinterest

kwg-ont:S2Cell |« Literal

sosa:Observation (xsd:dateTime)

sosa:resultTime—>|

@

Data RDF graph sosa:hasResult stad:hasBaseQuantity

Literal
(xsd:double)

qudt:numericalValue,

qudt:QuantityValue }—qudt:unit

stad:QuantityKiny

Figure 28: Design of the “data RDF graph” to capture information on aggregation.

The design is highly similar to the design in Figure 27, but includes the DataTransformation,
from the Ontology for Biomedical Investigations (OBI)'?, in order to convey information
on how the Observation was aggregated. The Observation is linked to the DataTransformation
using the link hasTransformationKind from the Spatial and Temporal Aggregate Data
ontology (STAD) described in [32]. Furthermore, the Observation is linked to a QuantityKind
through the link hasBaseQuantity in order to show whether the QuantityValue is also
an aggregate.

12https:/ /obi-ontology.org
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To exemplify how this design allows us to model aggregations of observations, assume
that the sosa:0bservableProperty is pH, and that we have aggregated the observations
into their mean. Then, the stad:QuantityKind could be stad:Single QuantityKind, and
the obi:DataTransformation could be obi:ArithmeticMeanCalculation.

E.3 Virtual Knowledge Graph

Another avenue for future work is in utilizing a Virtual Knowledge Graph (VKG) frame-
work, illustrated in Figure 29, to reduce the number of realized triples in the knowledge
graph. In the VKG framework, instead of storing all data in a triple store, a mapping
between the KG ontology and the data sources is created such that the data is queried
directly from the original sources. In practice, a VKG is a tuple P = (O, M, S), where O
is an ontology; S is a set of data source schemas; and M : § — O is a mapping between
them [33, 34, 35].

SPARQL
Query

—>

Ontology
/
M

/ Data | \

Sources |

- /

Figure 29: The Virtual Knowledge Graph framework.

Given that only the subset of the source data that is actually queried is ever ma-
terialized, using VKG methods can largely reduce the storage required, as opposed to
materializing all source data in a knowledge graph. This possibly also allows for the
queried data to be more fine-grained, i.e., having a finer-grained S2 level, which allows
for more accurate results due to the aggregations explained in Appendix E.2.

The disadvantage of using VKG methods is that it requires a data integration system
that supports it. For typical VKG frameworks, such as Ontop [35], the data source
schemas & must be defined in a relational database management system, and the data
sources themselves must be relational tables; furthermore, a framework for defining the
mapping M is needed, such as R2RML [36]. Since this means that, specifically, source
data defined as raster data is not supported, the design of a flexible VKG framework that
supports source data in more varied formats is another avenue for future work.
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E.4 Graph Representation Learning

The intention of the integrated KG is many-fold. For one, it facilitates easy access to,
and integration of, information that may have been stored in different places and formats.
Furthermore, the Additionally, it also allows the application of graph machine learning
methods. While the current work has focused on building and validating the structure of
the KG, several promising directions remain for future exploration using graph represen-
tation learning techniques.

One such direction is node classification, where the goal is to predict the class or
category of entities within the KG, based on their attributes and relationships. This can
be particularly useful for automatically labeling entities with missing or ambiguous type
information. An example, for our KG, could be to classify species into functional groups.

Another avenue is link prediction, which involves inferring missing edges between enti-
ties. This can uncover hidden associations or potential missing connections not explicitly
represented in the data. For example, a species might not be observed at a location, but
in reality, it is present, which a link prediction method might discover.

Clustering and community detection also present interesting opportunities. By identi-
fying densely connected subgraphs or communities of nodes, we can gain insights into the
underlying structure of the KG, revealing groups of entities that share semantic or func-
tional similarity. Different from node classification, community detection does not infer
missing information. Instead, an example could be to cluster species that often appear
together and thereby show some mutuality.
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