w205
o

BiSSL

*' | o™
»
[o o W .b.
o> é '
el NP R

MASTER’S THESIS
MATHEMATICAL ENGINEERING

Revisiting Bilevel Optimization for
Aligning Self-Supervised Pretraining with
Downstream Fine-Tuning

Advancing BiSSL Through Systematic Variations, Novel Design
Modifications, and Adaptation to New Data Domains

Author: Supervisors:
Gustav Wagner Zakarias Zheng-Hua Tan

Lars Kai Hansen

27th July 2025

AALBORG UNIVERSITY
STUDENT REPORT

Title:

Revisiting Bilevel Optimization for Align-
ing Self-Supervised Pretraining with Down-
stream Fine-Tuning

Subtitle:

Advancing BiSSL Through Systematic Vari-
ations, Novel Design Modifications, and Ad-
aptation to New Data Domains

Project Period:
Fall 2023 - Summer 2025

Author:
Gustav Wagner Zakarias

Supervisors:
Zheng-Hua Tan

Lars Kai Hansen
Copies: 1
Numbered Pages:

Date of Completion:
27th July 2025

Department of Mathematical Sciences
Thomas Manns Vej 23, DK-9220 Aalborg @
http://math.aau.dk

Department of Electronic Systems
Frederik Bajers Vej 7B, DK-9220 Aalborg @
http://es.aau.dk

Abstract:

The BiSSL framework models the pipeline
of self-supervised pretraining followed by
downstream fine-tuning as the lower- and
upper-levels of a bilevel optimization prob-
lem. The lower-level parameters are addi-
tionally regularized to resemble the ones of
the upper-level, which collectively yields
a pretrained model initialization more
aligned with the downstream task. This
project extends the study of BiSSL by first
evaluating its sensitivity to hyperparameter
variations. Then, design modifications, in-
cluding adaptive lower-level regularization
scaling and generalized upper-level gradi-
ent expressions, are furthermore proposed
and tested. Lastly, BiSSL is adapted to nat-
ural language processing tasks using the
generative pretrained transformer pretext
task, and then evaluated on a range of
Results show
that BiSSL is robust towards variations
in most of its hyperparameters, provided
that the training duration is sufficiently
long. The proposed design modifications
yield no consistent improvements and may
even degrade performance. For natural
language processing tasks, BiSSL achieves
occasional gains and otherwise matches the
baseline. The findings overall suggest that
the original BiSSL design is robust, effect-
ive, and able to improve downstream ac-
curacy across input domains.

diverse downstream tasks.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the authors.

http://math.aau.dk
http://es.aau.dk

Preface

This extended (60 ECTS) master’s thesis was written in the period 01/09/23 to 20/06/25
by Gustav Wagner Zakarias, attending the final semesters of the masters’ programme in
Mathematical Engineering at Aalborg University, while concurrently enrolled in a 4+4
Ph.D. programme at the Department of Electronic Systems at Aalborg University and the
Pioneer Centre for AIl For the attached code implementation utilized for the experiments
of this project, Python 3.10.12 is used in conjunction with numpy 1.24.0, pytorch 2.1.2,
torchvision 0.16.2, timm 1.0.15 and the Hugging Face libraries transformers 4.51.3,
datasets 3.5.1 and evaluate 0.4.3. Besides this, matplotlib 3.10.1 is used in conjuction
with Draw.io and Apple Freeform to create the figures and plots throughout the project.
Overleaf v2 set with pdfI4TEX is used to write and compile the project.

The project author would like to thank supervisor Zheng-Hua Tan (AAU) and co-
supervisor Lars Kai Hansen (DTU) for guidance throughout the project, and CLAAUDIA
for providing the HPC resources that realized the experiments conducted for the project.

Gustav Wagner Zakarias

iii

https://www.aicentre.dk
Gustav Zakarias

Contents

Bilevel Optimization|

3.1 Optimization Problem Formulation|.
[3.2 Obtaining the Derivatives|

4 The BiSSL Framework

4.1 Introducing BiSSL|o oo

4.2 Expressing the Bilevel Derivatives|

4.3 'Training Algorithm and Pipeline|

[Revisiting BiSSI]

5.1 Hyperparameter Impact|

5.2 Adapting A During Training| o oL,
[5.3 Non-Fixed Pretext Head Doing IJ Approximation|.
b.4 Applying BiSSL on GPI|. oo oo

Experiments and Results: Ablations and Design Modifications|

iv

10
10
12
15

20
20
20

25
25
26
29

31
31
32
36
40

CONTENTS

6.4 Adaptive Scaling of A|l.
6.5 Non-Fixed Pretext Head During IJ Approximation|

7 Experiments and Results: NLP|

7.1 Implementation Details|

B DI onl
8.1 Hyperparameter Sensitivity| oL
8.2 Impact of Adaptable A| oo
18.3 Inclusion of Pretext Head in IJ Approximation|
8.4 Adaptation to NLP Tasks| 000000

IC Theorems and Proofs|

ID Bilevel Training Algorithms - Application Examples|
ID.1 Meta-Learning|
ID.2 Model Pruning|

|[E Importance of the Second Term of the Upper-Level in BiSSL)

|G Future Work: Regularizing the Pretext Head via the Upper-Levell

56
56
60

61
61
62
63
64

65
65

75

77

79

81

84
84
85

87

89
89
91

93

1 | Introduction

Supervised learning using deep neural networks |1] has emerged as a powerful technique for
solving a wide array of machine learning tasks, delivering unparalleled performance within
computer vision [2-7], natural language processing [8}/9], and audio signal processing [10}/11]
among others. A common prerequisite for these successes is the availability of a substantially
large pool of labeled data. However, in many real-world settings, acquiring sufficient labeled
data is not feasible. This limitation often stems from high costs associated with collecting
and manually annotating large datasets or from a fundamental scarcity of available data
points to collect |12].

This sole reliance on explicit supervision stands in contrast to the way humans appear
to learn. People can acquire new knowledge by drawing on unlabeled sensory inputs and
leveraging prior knowledge to guide learning. In a sense, humans supervise themselves
by constructing their own learning signals, which are acquired through interaction with
the world [13}|14]. In the meantime, while deep neural networks necessitate training via
external supervision, they can still learn internal representations that similarly capture
more general structure of the input, which can be repurposed to support learning on new
tasks [15}16].

This raises the question of whether such transferable features can be learned without
requiring labels at all, hence aligning more with how humans learn. Achieving this could
enable a new training paradigm where unlabeled data serves as the primary resource, and
labeled data is used only for final adaptation to downstream tasks. Self-supervised learning
has emerged as a promising realization of this.

1.1 Self-Supervised Learning

Self-supervised learning (SSL) offers an alternative to end-to-end traditional supervised
learning by leveraging unlabeled data to learn general-purpose representations. Rather
than relying on task-specific labels, SSL first trains a backbone model using pretext tasks,
which derive supervisory signals directly from the structure of the unlabeled data, guiding
the model to extract general and informative features. This is followed by supervised fine-
tuning on a downstream task, allowing the model to adapt its pretrained representations
to improve task performance [12,/15]. The general two-staged training pipeline in SSL
is illustrated in Figure As shown in the figure, auxiliary output heads are typically
attached during both pretext and downstream training. They serve to align the backbone’s
output with the specific requirements of each task, especially when the format of the
backbone output is incompatible with the task. In practice, such heads can also improve
empirical performance, as some tasks benefit from solving the pretext task in a latent space
separate from the backbone output space, which is further outlined in Chapter

1

CHAPTER 1. INTRODUCTION

\4

; B X
Unlabe(i(e)d Data ———— Backbone —» PretextHead ———| Pretext Task
: ; : : i
Labeled Data X > > Downstream Downstream
@ (x,y) : SashLEns Head : Task
y

Figure 1.1: The conventional training pipeline in self-supervised learning of (1) pretext
task training, followed by transmitting the backbone for subsequent (2) supervised training
on the downstream task.

Designing effective pretext tasks is a central challenge in SSL. The most widely adopted
approaches can be roughly grouped into four general categories: contrastive, generative,
predictive, and self-distillative [17]. Figures and illustrate the high-level structure of
these task types. However, this grouping is not strict, as many methods blur the boundaries
between categories, and understanding them thus often requires a more holistic perspective.
Nonetheless, the following overview presents representative examples from each category
to convey their respective core design principles.

Contrastive pretext tasks learns representations by making a model distinguish
between similar and dissimilar data points. The core idea is to map perceptually similar
inputs to nearby points in a latent space, while also pushing apart representations of
dissimilar inputs. Similar data points are typically achieved through augmentations:
two augmented views of the same input are treated as a positive pair, while all other
views in the batch (assumed to come from different inputs) form negative pairs [12,18].
SimCLR [19] is a canonical example of contrastive learning in SSL. A single encoder model
processes all augmented views, and a contrastive loss is used to pull together positive pairs
while repelling all other instances in a batch. SimCLR is further explored in Chapter [2]
Momentum Contrast (MoCo) [20] instead employs a dynamic memory bank of negative
samples, achieved from a momentum encoder model whose weights are updated as an
exponential moving average of a base encoder model. This design allows for a consistent
set of negative samples across training steps, decoupling the number of available negative
examples from the batch size. Bootstrap Your Own Latent (BYOL) [21] and SimSiam [22]
avoid using negative pairs entirely. They use two separate networks to encode separate
views of the same input, followed by having one network predict the output of the other.
VICReg [23] shares many structural similarities with SimCLR, although it is not always
classified as a contrastive method. The primary difference lies in the fact that its loss
objective instead regularizes the latent space through an ensemble of three objectives:
variance preservation across dimensions, decorrelation between dimensions, and invariance
between paired augmented views. This enforces diversity between latent vectors within a

2

1.1. SELF-SUPERVISED LEARNING

Z>' 22"
— Z’

r
Z1' z1ll
Z1, o,Zn-1 zn
Model Model I
'y 'y
Model Model
X1’ Augmentations X1Il ‘ ‘
r 3 a
X1 X1l'--,Xn-1 X,,
Contrastive Predictive

Figure 1.2: Diagrams illustrating the general setup of the contrastive (left) and predictive
(right) pretext tasks. Contrastive pretext tasks aim to distinguish between similar and
dissimilar data points, and predictive pretext tasks aim to predict future outcomes of
sequential data.

batch and ensures that all dimensions of the latent space are non-redundant.

Predictive pretext tasks forecast future values based on past observed inputs. Hence,
these tasks are naturally suited to sequential data, where temporal or structural depend-
encies can be leveraged for training without labels. Autoregressive predictive coding
(APC) generates predictions in the latent space and leverages the capabilities of deep
neural networks with memory components, such as Long Short-Term Memory Networks
(LSTMs) and the widely popular Transformer models [26], to capture long-range
dependencies. Bearing resemblance to contrastive methods, Contrastive Predictive Coding
(CPC) employs a contrastive loss in the latent space to distinguish between the target
future value and a set of negative examples from past time steps or different sequences.
In the realm of Natural Language Processing (NLP), BERT (Bidirectional Encoder Rep-
resentations from Transformers) uses Masked Language Modeling (MLM) and Next
Sentence Prediction (NSP). MLM randomly masks input tokens and tasks the model with
predicting them based on their bidirectional context and NSP trains the model to predict
whether one sentence logically follows another to learn sentence-level coherence.

Generative pretext tasks involve reconstructing either the full input or strategic-
ally corrupted portions of it, encouraging modeling of the underlying data distribution.
Variational Autoencoders (VAESs) utilize an encoder-decoder architecture with an inter-
mediate bottleneck layer. Their objective is to reconstruct the input while simultaneously
learning a lower-dimensional latent distribution in the bottleneck space. The generative
capability arises from their ability to transform samples drawn from the latent distribution
into samples resembling the input. Masked Autoencoders (MAEs) [29], originally designed

3

CHAPTER 1. INTRODUCTION

Xl
Z Z'
Drstiation
Model Teacher Model «.-eeerevsecenn: Student Model
X |_ X J
Generative Self-Distillative

Figure 1.3: Diagrams illustrating the general setup of the generative (left) and self-
distillative (right) pretext tasks. Generative pretext tasks aim to reconstruct the input,
and self-distillative pretext tasks utilize a student-teacher model setup, where the student
distills knowledge to the teacher, while the student is tasked with predicting the outputs
of the teacher model.

for vision tasks, use a transformer-based encoder-decoder architecture. They are trained
to reconstruct inputs from which large patches have been masked out before encoding.
This forces the model to build semantic representations that support inferring the missing
content from the unmasked patches. In the realm of NLP, the Generative Pretrained
Transformer (GPT) [30-33] uses an autoregressive training objective, predicting the next
token in a sequence given the preceding context. While similar in form to predictive tasks,
this next-token generation objective enables coherent text synthesis, framing GPT as a
generative model. GPT is further explored in Chapter [2} Lastly, BART [34] combines
denoising autoencoder training with a transformer-based architecture, and is pretrained by
corrupting text with various noising strategies (e.g., masking or sentence permutation),
and then making the model reconstruct the original text.

Self-distillative pretext tasks commonly adopt a student-teacher setup, where the
student model is trained to mimic the representations produced by the teacher. The
teacher model is usually a distilled version of the student model, often derived from an
exponential moving average of the student’s weights during training. DINO [35] aims to
learn high-quality visual representations by having the teacher model generate outputs
which the student is tasked with mimicking. Unlike contrastive methods, DINO uses
a consistency loss that focuses exclusively on positive pairs to encourage the model to
produce consistent features for different views of the same input. The aforementioned
pretext tasks of MoCo, BYOL, and SimSiam share similarities with this category as they
use the output of two separate models for contrastive training. Lastly, in Data2Vec [36],
the teacher processes the complete input, while the student receives a masked or partial
version. The objective of the student model is then to predict the representations output

4

1.2. BILEVEL OPTIMIZATION IN SELF-SUPERVISED LEARNING

by the teacher model.

After pretext training is conducted, the task-specific head is typically discarded, and
the pretrained backbone is repurposed for supervised training on a labeled downstream
dataset.

1.1.1 Training on the Downstream Task

Adapting a self-supervised pretrained backbone to a downstream task typically also requires
attaching a task-specific auxiliary model head to the pretrained backbone. The subsequent
supervised training procedure then generally proceeds in one of two ways. During linear
probing, the parameters of the backbone are frozen, and only the parameters of the
newly attached head are updated. This approach is computationally inexpensive, as the
head model is usually lightweight compared to the backbone model. It also helps prevent
overfitting, particularly when the downstream dataset is small. However, its main drawback
is that it may not yield optimal performance when the backbone requires adjustment to
the specific downstream task. In contrast, the approach of fine-tuning involves additionally
updating all or parts of the backbone during supervised training on the downstream
task [3,37]. This approach is typically preferred in practice over linear probing, as this
approach generally leads to greater downstream performance [19}20,23].

A challenge with fine-tuning arises when the downstream dataset differs significantly
from the pretraining data distribution. In such cases, the learned representations may
be misaligned with the new task, and the fine-tuning process can degrade or overwrite
useful semantic features acquired during self-supervised pretraining. This risk is further
compounded when labeled data is scarce, as the fine-tuning process lacks sufficient guidance
to identify which aspects of the pretrained features are task-relevant [38-41]. The conven-
tional SSL pipeline treats pretext and downstream tasks as disjoint stages, connected only
through the transferred backbone, as illustrated in Figure [I.I], which serves mainly as an
initialization. One promising direction to address the aforementioned issue would be to
enhance the alignment between the self-supervised pretraining and downstream fine-tuning
stages. Bilevel optimization offers a framework for achieving this.

1.2 Bilevel Optimization in Self-Supervised Learning

Bilevel optimization (BLO) has emerged as a valuable tool for tackling hierarchical optim-
ization problems in deep learning. It comprises two interdependent optimization problems,
referred to as the upper and lower-level problems, respectively. The solution to the upper-
level problem is constrained by the lower-level problem, whose solution, in turn, depends on
the parameters of the upper-level problem. This is formally expressed by the optimization
problem

min f(x,y"(x)) s.t. y*(x) € argming(x,y),
x y

where f and g denote the upper and lower-level objectives respectively. This hierarchical
dependency enables optimization strategies that more effectively capture complex depend-
encies between interrelated objectives [42]. BLO has been applied in settings such as model
pruning [43], invariant risk minimization [44}45], meta-learning [46/47] and adversarial
robustness [48]. In each case, the bilevel formulation facilitates task-aware adaptation by
allowing one objective to guide the optimization of another.

5

CHAPTER 1. INTRODUCTION

Despite the appeal, solving BLO problems is challenging. The nested nature of the
problem formulation leads to high computational cost and often necessitates approximations,
such as unrolling gradients or using surrogate losses. These approximations, in turn,
introduce potential sources of error that must be managed carefully. Consequently, most
practical applications of BLO adopt problem-specific strategies, tailored to the structure and
constraints of the specific problem [42]. Nevertheless, the project authors did in prior work
propose a computationally feasible framework that integrated the self-supervised pretraining
and downstream fine-tuning stages into a single BLO problem, named BiSSL [49].

1.2.1 The BiSSL Framework

The BiSSL framework [49] addresses the challenge of aligning pretext and downstream
objectives by formulating a bilevel optimization problem in which these two stages are
explicitly coupled. Specifically, the downstream task is presented in the upper-level
objective, while the pretext task is represented in the lower-level problem. Chapter [4] will
delve into the details, but for the sake of introduction, the mathematical formulation of
BiSSL is also presented here:

min L (0% (6p) .¢p) + L (0p,¢p)

BDad)D

A
st. 0% (0p) € argminmin LT (0p,pp) + 16D - 0r|5, (1.1)

0p PP

with A € (0,00). The objectives £LP and £ denote the downstream fine-tuning and
self-supervised pretext task training objectives respectively, with associated backbone
and auxiliary head parameters Op, ¢p and Op, ¢p, respectively. This structure models
the inheritance of pretext-trained parameters into downstream training by substituting
the pretext backbone parameter solution 85(6p) directly into the downstream objective.
This mutual dependency fosters a two-way interaction between pretext and downstream
tasks, facilitating more nuanced information exchange that is not achievable within the
conventional decoupled SSL pipeline. Operationally, BiSSL acts as an intermediate stage
within the SSL training pipeline, as outlined in Figure

Conceptually, BiSSL can be viewed as refining the backbone initialization acquired
through pretext training to better align with the downstream task, thereby reducing
the representational mismatch usually present prior to the fine-tuning phase. Figure|1.5
illustrates this effect, showing that BiSSL yields embeddings that are more aligned with
the downstream task than those produced by conventional pretext training.

1.2.2 Knowledge Gaps in the BiSSL Framework

Despite the promising previous results, the current understanding of the BiSSL framework
remains incomplete. Several aspects of its formulation, design choices, and generality
warrant further investigation to better assess its robustness and applicability.

Hyperparameter Influence BiSSL introduces a number of hyperparameters, whose
respective influence on downstream performance has not been systematically explored.
Assessing its robustness to these settings and identifying configurations that balance
accuracy and computational efficiency would yield valuable insights into the framework’s
general applicability.

1.2. BILEVEL OPTIMIZATION IN SELF-SUPERVISED LEARNING

Training Pipeline

Pre-Training on Unlabeled

Data Upper-Level
(Fine-Tuning on Labeled Data)
Parameters: 6p
Transferred
Parameters
0 Transferred
Parameters
*
0P(0D) Transferred
Parameters
BiSSL Transferred 0o
Derivative
d67(6p)
dép
Transferred
Parameters
05(6p) Lower-Level
(Pre-Training on Unlabeled Data)
Y

Downstream Fine-Tuning on

Parameters: 6}(0p)
Labeled Data 1

Figure 1.4: Overview of the training pipeline involving BiSSL. As seen, BiSSL introduces
an intermediate training stage that solves a bilevel optimization problem, incorporating
both the pretext pretraining and downstream fine-tuning training stages in order to yield
a backbone 0%(60p) which is more suitable for subsequent fine-tuning. Figure presents
a more detailed illustration of the training pipeline involving BiSSL.

Design Modifications Several aspects of the overall training framework design offer
opportunities for refinement that could lead to further improvements. Notably, the
current version assumes the pretext head parameters ¢p to be fixed during the upper-level
optimization, primarily for simplicity in mathematical formulation and computational
efficiency. However, it remains to be investigated how relaxing this assumption affects the
mathematical expressions of the upper-level gradients, and consequently, whether it benefits
downstream task performance in practice. Another potential generalization of the current
framework is to relax the assumption that the lower-level regularization weight A (see (L.1)))
is fixed, and instead allow it to vary during training. As it will be discussed in Chapter [4]
this weight plays a critical role in balancing the influence of the two levels, and allowing it
to adapt dynamically during training may lead to further downstream improvements. This
could be achieved through a simple scheduling scheme or by integrating it into the bilevel
optimization problem itself, allowing the upper level to update it during training.

Adaptation to Natural Language Processing Tasks Although BiSSL is presented as
a model and domain-agnostic framework, its empirical evaluation has so far been limited to
natural image tasks. This raises the question of whether BiSSL can generalize as effectively
to other modalities, and whether modifications are needed to enable such generalization.
A compelling test case is NLP, where data structures, optimization regimes, and model
architectures often differ from those in vision. Evaluating BiSSL on NLP benchmarks
would therefore be a critical step in assessing its claimed generality.

7

CHAPTER 1. INTRODUCTION

o
'] >
et . R
s AL L»r X o ST dVed o008 °
g BN IR AR A5 2 23570 158 50
o 0 . o * o) o Sqesoel § & ave VI g T
v.‘ g . & .-*‘ s R eE » ut ""'a'\g

.f "3"‘-*.-9, s ") k‘l' "(":.w ;’5‘.‘:". wY e & YRS ® 50
Ry A D gt o o ES. . i W e Bk X 14 Wt 1 T e

0 Soge R WOV T Ty g . oo %y Bo S c'.'-i}ﬁ'.."i" P S S "
By 73t SPRC RN ~ SO SRR A AL R AV N B
. ° d i (,, . ..v “ L 4 > .’('." v :‘ef..; ge % .':..o. e Yt ‘:":': .
. N 0 A o s e ¢

e, vl Y o B T SN L e AR e

” - .":v: A Y R Rt LR ¥ AR L

o. ;‘ N 9 3 "é""‘:..\ ('"5 .c." 2¥ e e
e) v ORI T ‘s
.. ‘n y , YR _:e RS DRRE RN
° o .
*.] o - (] L
X ‘ %‘ . e +8 b

Figure 1.5: Dimensionality-reduced downstream feature representations from model back-
bones obtained after respectively applying BiSSL (left) and conventional self-supervised
pretraining (right). Each color represents a different class. The BiSSL backbone features
clearly align better with the downstream data .

1.3

Problem Statement

Based on the introduction made in this chapter, the overall aim of this project is to close
the knowledge gaps in Section through extended evaluation and design modifications
of BiSSL. This is achieved by addressing the following sub-problems:

1.4

How do wvarying hyperparameter configurations and scheduling of the lower-level
backbone reqularization weighting in BiSSL affect downstream performance?

How can adaptive lower-level backbone regularization weighting and tighter coupling
of the pretext head into the upper-level objective be mathematically formulated and in-
tegrated into the BiSSL framework, and how do these modifications affect downstream
performance?

How can BiSSL be adapted to text-specific pretext and downstream tasks, and to what
extent can it improve downstream performance?

Project Delimitations

This project will not provide an overview of common approaches to solve bilevel
optimization in machine learning; instead, it will primarily focus on the implicit
function method along with the conjugate gradient method, which will be utilized in
the experiments. For an overview of the broader utility of solving bilevel optimization
in machine learning, we refer to [42].

Detailed exploration of the mechanics of pretext task design is beyond the scope
of this project, with the exception of SimCLR and GPT , which will be
employed in experiments. For further background on commonly used pretext tasks

in self-supervised learning, see .

Natural language processing tasks are limited to pretraining with GP'T on a subset
of the GLUE benchmark [50].

1.4. PROJECT DELIMITATIONS

e Neural architecture design is not covered in detail. Standard, off-the-shelf architec-
tures [4,[26] will be used.

The remainder of the project is structured as follows: Chapter [2] provides further
insight into self-supervised learning, with a focus on the SImCLR and GPT pretext tasks.
Chapter [3] introduces bilevel optimization and presents key results that form the basis for
the BiSSL framework, which is introduced in Chapter 4l Chapter [b| then revisits BiSSL to
establish the foundation for addressing the knowledge gaps identified back in Section
These considerations are then empirically evaluated in Chapters[6land [/} Finally, Chapter
presents a discussion of the results, followed by conclusions and directions for future work
in Chapter [0

2 | Self-Supervised Learning

This chapter builds on the introduction to self-supervised learning (SSL) in Section by
exploring its underlying foundations. First, a clarification of how SSL differs from related
learning paradigms is presented, followed by a detailed examination of the SimCLR and
GPT pretext tasks.

2.1 Distinction from Related Learning Paradigms

To get a clearer interpretation of what classifies self-supervised learning, this section
contextualizes SSL within the broader machine learning landscape by relating it to adjacent
learning paradigms.

2.1.1 Supervised and Unsupervised Learning

Machine learning algorithms have traditionally been categorized as either supervised or
unsupervised. The distinction, in its simplest form, lies in the presence or absence of labeled
data. Supervised learning algorithms are trained on labeled datasets, where each input
is paired with a corresponding target label that the model aims to predict. In contrast,
unsupervised learning operates without such labels, instead seeking to uncover inherent
structure in the input data, often through techniques such as clustering or dimensionality
reduction [51].

This raises the question: Should SSL be regarded as supervised or unsupervised? A
deliberately ambiguous answer may be: yes. The takeaway is that it depends largely on
one’s perspective.

On the one hand, SSL clearly fits within the unsupervised paradigm in that it relies
solely on unlabeled data. On the other hand, SSL involves training models in a supervised
fashion, as it relies on defined labels and solving (pretext) task-specific objectives. The
critical nuance is that these labels are not externally provided but are instead derived from
the data itself. For instance, in predictive pretext tasks, such as next-step prediction in
sequential data, the "label" is simply the subsequent element in the sequence. Another
example is the image-specific pretext task of RotationNet [52], where images are randomly
rotated and the model is trained to predict the degree of rotation. In this case, the rotation
angle serves as the label, automatically generated as part of the data transformation.

Thus, self-supervised learning can be understood as a form of unsupervised learning
that leverages supervised training principles. It proceeds as if it were supervised, but
without requiring any human-labeled data.

10

2.1. DISTINCTION FROM RELATED LEARNING PARADIGMS

° ° °® °
o o [] [] o
[] ° [J [J
¢ [) ¢ [) * {] ° ° o
° ° o °
[] []
(]
i [] [] []
[] [] °
[]
[] []
[] [] [J [J
° ° ® o
b °
. ° .o '. ° . .’ °
°)
° o. ° e © .
Semi-Supervised Self-Supervised

Figure 2.1: Illustrative examples of data conventionally suitable for semi-supervised (left)
and self-supervised (right) learning. The black dots represent unlabeled data points, while
colored dots represent labeled data, with each color corresponding to a distinct class. In
the semi-supervised setting, all the unlabeled points are assumed to underlyingly belong to
one of the same classes represented in the labeled data. This is typically not a requirement
for the self-supervised case, as illustrated by some points not meaningfully belonging to
any of the downstream classes.

2.1.2 Semi-Supervised Learning

To further complicate the taxonomy of learning paradigms, semi-supervised learning
introduces yet another variant that shares notable similarities with SSL. Semi-supervised
learning assumes access to an incompletely labeled dataset. That is, a dataset in which
only a (typically tiny) subset of the instances have associated labels, while the rest remain
unlabeled. This implies that both the labeled and unlabeled portions of the data are
assumed to be available simultaneously, and, crucially, that the unlabeled data is expected
to be sampled from the same marginal input distribution as the labeled data. By leveraging
the known labels, semi-supervised learning trains models to generalize across the unlabeled
examples, often through techniques such as consistency regularization or pseudo-labeling.
The intuition is that, as long as the unlabeled data is semantically aligned with the labeled
portion (i.e., not consisting of unrelated categories such as, e.g., pictures of cars when the
labeled dataset only consists of pictures of cats and dogs), its structure can help refine
decision boundaries, thereby improving performance beyond what could be achieved using
the labeled subset alone [53]. The left side of Figure illustrates an example of a simple
dataset adhering to the semi-supervised learning assumptions.

In contrast, the SSL training pipeline is separated into two distinct stages as previously

11

CHAPTER 2. SELF-SUPERVISED LEARNING

illustrated in Figure a pretraining phase on a large unlabeled dataset solving the
pretext task, followed by a separate fine-tuning phase on a (usually much smaller) labeled
downstream dataset. Another distinction is that SSL does not require the unlabeled
pretraining data to come from the same distribution as the labeled downstream data.
In fact, it often does not [15]. This distinction is made on the right side of Figure
which shows that some parts of the pretraining data may align well with the downstream
data (e.g., the red colored classes), while other parts may not at all align or only align
partially with the downstream classes. A representative practical example, which will be
revisited in the experiments of Chapter [6] is pretraining a model on the general-purpose
ImageNet dataset (decapitated of labels) [2], which contains over 1.2 million images across
a diverse range of natural images, and subsequently fine-tuning it on a narrower dataset
such as Oxford-IIIT Pets [54], which focuses on fine-grained image classification of cat
and dog breeds. In this case, the pretraining data distribution extends beyond that of
the downstream task, while some species present in the downstream dataset may also not
appear in the pretraining data.

SSL pretext tasks thus enable learning general-purpose feature representations from
a large-scale, heterogeneous, unlabeled dataset that are transferable across a multitude
of various downstream tasks. With these distinctions in place, we now turn to a concrete
type of pretext task to more closely examine how such general features can be achieved.

2.2 SimCLR: Contrastive Learning of Visual Representa-
tions

This section is based on [19] unless otherwise stated. The core focus will primarily lie on
image-based examples to maintain clarity of exposition. However, the core principles of
SimCLR are domain-agnostic and can be extended to any setting where meaningful data
augmentations can be defined.

SimCLR trains a model to pull together different augmented views of the same image and
push apart views from different images. To succeed, the model must learn representations
that are invariant to superficial variations and capture the underlying semantic structure
of the input, which ideally are beneficial for downstream tasks. To create these distinct
views, stochastic data augmentations are applied to the input.

2.2.1 Data Augmentations

A central component in contrastive learning frameworks like SimCLR is the use of data
augmentations to generate multiple distinct views of the same input image. These aug-
mentations introduce variability while preserving the underlying semantic content, enabling
models to learn representations that are invariant to such transformations. Commonly
used image augmentations in contrastive learning include the following [23]:

e Random Resized Crop: Randomly crops a portion of the image and resizes it to
a fixed size.

e Horizontal Flip: Flips the image horizontally.

e Color Jittering: Randomly alters brightness, contrast, saturation, and hue.

12

2.2. SIMCLR: CONTRASTIVE LEARNING OF VISUAL REPRESENTATIONS

Original Random Resized Crop Horizontal Flip Color Jittering

~{

; a
Gaussian Blur Solarization Random Combination

Figure 2.2: Example of augmentations. From the top left to the bottom right: Original
image, random resized crop, horizontal flip, color jittering, grayscale conversion, gaussian
blur, solarization, and lastly a random combination of the former augmentations.

e Grayscale Conversion: Converts the image to grayscale.
o Gaussian Blur: Applies a blur effect on the image.

e Solarization: Inverts all pixel values above a certain threshold.

These transformations are typically applied stochastically, meaning that each augmentation
is applied sequentially to each view with a predefined probability. This stochasticity ensures
that the model is exposed to a diverse set of input variations over the course of training.
Figure shows example augmentations applied to a single image. While the resulting
views may differ substantially at the pixel level, they remain semantically equivalent.

2.2.2 Network Architecture and Projection Mechanism

SimCLR processes each augmented view of an input through a shared backbone encoder to
extract intermediate feature representations. While SimCLR does not impose architectural
constraints on the backbone, convolutional networks such as ResNets [4] have shown strong
empirical performance. The resulting backbone output vectors are then passed through a
separate pretext head network, commonly referred to as the projection head in this context,
and is typically implemented as a multilayer perceptron (MLP) [55]. This projection head
maps features into a latent space wherein the contrastive loss is applied. The projection head
serves to decouple the task-specific contrastive objective from the backbone, encouraging
the backbone to learn general-purpose features. After pretraining, the projection head is
discarded, and only the backbone is retained for transfer to downstream tasks.

Figure illustrates the overall framework with example pictures. The augmented
views are processed through the encoder and projection head to generate embeddings used
in the contrastive objective, which is discussed in the following subsection.

13

CHAPTER 2. SELF-SUPERVISED LEARNING

Maximize Distance

Minimize Distance

— /_\ a—
Zi' Z" Z' Z2"
A A 'z A
' N A A 'y
Backbone Backbone Backbone Backbone

A A A A

> T~

Figure 2.3: Overview of the SimCLR architecture. Two inputs X; and X5 are each
augmented twice to produce views X, X7, and X%, X}. All views are then passed through
a shared backbone encoder followed by a shared projection head to produce projected views

", ZY, Z,, and Z}. In the projection space, the contrastive loss encourages similarity
between projected positive pairs (e.g., Z}, Z{) while pushing apart representations of
projected negative pairs (e.g., Z, Z%). After training, only the backbone is retained and
used for downstream tasks.

2.2.3 The NT-Xent Loss Function

SimCLR’s training objective is built on a contrastive loss that pulls together representations
of augmented views from the same image (positive pairs) and pushes apart those from
different images (negative pairs). This is formalized by the normalized temperature-scaled
cross entropy loss (NT-Xent).

Given a batch of N inputs, let x1,...,xson denote the resulting augmented views such
that x9;_1 and x9; are positive pairs for ¢ = 1,...,N. Let fg : R? — R< denote the model
backbone with trainable parameters 6 and pg : R? — RP the projection head with trainable
parameters ¢. Then, the projected representations are achieved by

2= (foops)(@s), j=1,....2N.
For a positive pair with indexes ¢ and j, the NT-Xent loss is then defined as:

exp(sim(z;,z;)/7)

iy Vexp(sim(zi,zx) /)

Zi’j = —log (2.1)

14

2.3. GPT: GENERATIVE PRETRAINED TRANSFORMER

where 7 > 0 is refereed to as the temperature parameter, 1(;.; is an indicator function
that excludes the anchor view ¢ from the denominator and

im(xy) =)
sim(x,y) = —————
’ (B 1Py (NP

is the cosine similarity. The expression decreases when the considered positive pair
z; and z; attracts in the latent space (the nominator), while increasing their distances to
the remaining considered negative pairs (the denominator) as well. The cosine similarity
ensures that representations are compared by their direction rather than magnitude, which
avoids scale sensitivity and has been shown to improve the stability and generalizability of
learned representations in contrastive learning settings [56].

The temperature parameter 7 in modulates the sensitivity of the exponential func-
tion applied to cosine similarities. Smaller values amplify differences in cosine similarities,
making the loss focus more on hard negatives. This can improve feature discrimination
but increases the risk of instability or representational collapse. Larger values smooth the
distribution, which stabilizes training but may weaken the separation between positive
and negative pairs, leading to underfitting. Choosing an appropriate 7 is thus critical for
balancing stability and discriminative power. Following the original work [19], 7 = 0.5 is
used in the experiments of Chapter [6

SimCLR evaluates each of the N positive pairs in both directions, yielding the pretext
training objective to be

N
- 1
LOmOLR — 2(5%—1,21@ + log 2k—1)-
2N
k=1
This formulation generally benefits from large batch sizes, as that provides a greater number
of negative samples and thus a stronger contrastive signal.

Under some circumstances, training with large batches poses practical challenges in
terms of memory and computational requirements, which has prompted subsequent research
into alternative approaches. While it is outside the scope of this project to examine further
contrastive pretext tasks, Appendix [A] outlines a selection of related pretext tasks that,
while sharing core principles with SimCLR, differ in architecture, training objectives, and
sampling strategies to enhance representation learning and to some extent alleviate the
need for large batch sizes.

While contrastive methods like SImCLR have been extended to text (e.g., SimCSE [57)),
pretraining in NLP more commonly follows alternative paradigms. We now turn to a
specific approach in the context of large-scale generative pretraining.

2.3 GPT: Generative Pretrained Transformer

In recent years, large language models (LLMs) have seen widespread adoption and have
driven a remarkable surge in research across natural language processing (NLP) [58]. Much
of this progress can be attributed to the development of highly effective self-supervised
pretraining techniques. Among the earliest and most influential of these frameworks is the
GPT (Generative Pretrained Transformer) [30]. Although later versions such as GPT-2,
GPT-3, and GPT-4 [31-33| have significantly increased in both scale and capability, the
underlying principles remain largely unchanged. These newer models primarily differ in the

15

CHAPTER 2. SELF-SUPERVISED LEARNING

size of the architecture and the volume of training data, rather than in their fundamental
design. For educational clarity and computational feasibility in the experiments of Chapter 7]
the focus in this project will be on the original GPT.

First, GPT’s input processing pipeline is described, including tokenization and embed-
ding strategies. Then, it is detailed how these inputs are transformed by the model to
produce an output distribution. Finally, the pretraining objective is presented, and it is
discussed how GPT is adapted to downstream tasks via fine-tuning. This section is based
on [30], unless otherwise stated.

2.3.1 Tokenization

Unlike image data, which can often be fed directly into neural networks with minimal
preprocessing, textual data must first be converted into a compatible format. This begins
with tokenization, the process of dividing raw text into discrete units called tokens, each
of which can be mapped to a unique integer ID. Naive approaches such as character-level
tokenization (where each character is assigned its own token) or word-level tokenization
(where each word corresponds to a token) tend to be either too granular or too brittle.
Character-level tokenization leads to long sequences and may struggle to capture meaning
across characters, while word-level tokenization may suffer from vocabulary explosion and
poor generalization to rare or unseen words.

To address this, GPT instead employs a variant of byte pair encoding (BPE) [59], which
is a subword-level tokenization method. BPE begins with a base vocabulary consisting of
all individual characters observed in a corpus. It then iteratively merges the most frequent
adjacent symbol pairs into new symbols, which typically consist of character or subword
pairs. This merging process continues until a predefined vocabulary size V' € N is reached.
This approach has several advantages: frequent words or morphemes are represented
as single tokens, improving efficiency, while rare or unseen words are decomposed into
meaningful subunits, supporting enhanced generalization. As a result, BPE achieves a
favorable trade-off between vocabulary size and expressive power.

Example: Consider the sentence:
"Corgis are objectively the best dog breed."

A word-level tokenizer might struggle with rare or out-of-vocabulary words like corgis
and extended words like objectively, potentially treating them as unknown and breaking
them into individual characters. In contrast, the Byte Pair Encoding (BPE) tokenizer used
by GPT splits the sentence into subword units as follows:

["cor" s "giS</W>" s “are</w>“ s "objec" s “tively</w>" s "the</w>“ s
"beSt</w>" R IIdog</w>ll s llbreed</w>ll n . </w>||:|

The special suffix "</w>" marks the end of a word, allowing word-level structure to be
preserved during subword tokenization. This subword-based representation allows the
model to reuse frequent fragments such as "gis" or "tively" across many contexts.
Finally, the tokens are collected into a vector of the corresponding assigned IDs for each
token, which in this case would yield the vector

(1055, 31509, 640, 7981, 4508, 481, 1432, 2585, 10699, 239]".

16

2.3. GPT: GENERATIVE PRETRAINED TRANSFORMER

2.3.2 Token and Position Embeddings

Notation: For a matrix A, the entity (A); denotes the i'th column vector of A. For a
vector v, (v); denotes its i’th entry.

During self-supervised pretraining, GPT processes text using a fixed-length context
window of size k € N, i.e., sequences of exactly k tokens. Given a tokenized input
sequence 1, xg, ..., Tk, where each z; € {1,...,V} corresponds to an index in the tokenizer
vocabulary of size V', the model first maps each token to a continuous vector representation
using a learned token embedding matriz W, € RV*% where d € N is the embedding
dimension.

Let the input sequence be collected into the vector x = [x1,... 2] ". Before applying
the embedding, we construct a one-hot representation of x using the definition below.

Definition 2.1 (One-Hot Token Mapping X)

Let a vocabulary size V € N and context window size k € N be given, and let e; € {0,1}V
denote the unit vector assuming the value 1 at its j’th entry and zeros elsewhere. Then
the one-hot token mapping X : {1,...,V}* = {0,1}**V is defined such that the rows of

its output are given by
(Xx)")i=eqs, i=1,....k

for any x € {1,...,V}~.

For example, if x3 = 86, then (X (x)')3 = egs. We then achieve the token embeddings
of the entire sequence x through the matrix matrix product X (x)We.

To capture the ordering of the input, the token embeddings are further augmented with
positional embeddings. These are learned vectors stored in a separate matrix W, € RExd,

where each row (VVI;r)i encodes the position ¢ in the input sequence. Summing the token

and positional embeddings yields the output of the first layer of GPT:
Hy(x) = X(x)W, + W),

2.3.3 Transformer Blocks and Output Layer

Given the matrix Hy(x), it is passed through a stack of L architecturally identical trans-
former decoder blocks using masked multi-head attention [26,60], denoted

Hi(x) = TransformerBlockfl’h(Hl_l(x)) eRF> forl=1,...,L,

where d is the embedding dimension and h the number of attention heads inside the
transformer block. While delving into the details of the internal transformer architecture
is beyond the scope of this project, Appendix [B] provides an overview of the architectural
components specifically used in GPT, and Table lists the specific hyperparameter
values used in the original GPT implementation, which we adopt in Chapter

After the final transformer block produces Hp (x), GPT computes its output via
Houi(x) = softmax(Hp (x)W."), (2.2)

where the embedding matrix W, is reused for the output projection, which practically
reduces the total number of learnable parameters. The softmax is applied row-wise, which

17

CHAPTER 2. SELF-SUPERVISED LEARNING

is further detailed in Equation (B.2) of Appendix [B} mapping each row of Hy(x)W," to a
probability distribution over the tokenizer vocabulary. Hence, each row (Hgyi(x)'); can
be interpreted as a categorical distribution over possible tokens for the token x; in x.

Regarding the Pretext Head Unlike SimCLR in Section which uses a dedicated
pretext head (e.g., a projection MLP used only during pretraining), GPT does not separate
its backbone and head architectures in this way. While the output layer may be
replaced for subsequent supervised fine-tuning (see Section , all parameters used
during pretraining are part of the core backbone model and are typically retained. In this
sense, GPT’s output layer Hqy serves as a pretext head with a fixed architecture but no
additional trainable parameters.

2.3.4 Pretext Task Objective: Autoregressive Language Modeling

The self-supervised pretraining procedure of GPT is to solve the pretext task of autoregress-
we language modeling, where the model is trained to predict the next token in a sequence,
given all previous ones. Specifically, the model is tasked with predicting x; conditioned on
the preceding sequence x1,...,r;—1 without access to any future tokens. Formally, given
a training corpus represented as a sequence of tokens x1,...,xp, the ultimate goal is to
maximize the log-likelihood:

T
ZlogP(mt | ks Te1),
=1

where k € N is the context window size and P(z; | ©_,...,x¢—1) is the probability
assigned to the correct token by the model.

As outlined in the previous section, the respective rows of the model output Hoys(x) as
defined in yield probability distributions over the tokenizer vocabulary for each token
in the input sequence x. Hence, while Ho,t(x) can always be interpreted as a collection of
arbitrary categorical distributions, the pretext task explicitly shapes this output to model
the conditional probability of the next token at each position during pretraining. Let
% = [29,...,7411] denote the right shifted sequence of a target sequence x = [z, ...,z .
The pretext task of GPT is to model the conditional distribution P(X | x) by minimizing
the loss between predicted and true next-token distributions:

1

EGPT(B) =Tz Z LCE(X(i)aHout(X))’
1B| S5
where B is a batch of length-k subsequence pairs from the training corpus x1,...,z7 as

described above, and £CF denotes the cross-entropy loss calculated for each position in the
respective matrix inputs.

2.3.5 Fine-Tuning

Following self-supervised pretraining, GPT can be fine-tuned towards a variety of down-
stream NLP tasks. For ease of explanation, this section will mainly focus on classific-
ation tasks. Let the downstream labeled dataset be given by the following sequence
(@115 T1,g0oY1)s -« 5(Tn1s - oo &gy Yn), Where y; € {1,...,C} is the class label, ¢; € N is
the input sequence length for ¢ € {1,...,n} and n is the number of available sequences.

18

2.3. GPT: GENERATIVE PRETRAINED TRANSFORMER

The corresponding output of the final transformer block for the i’th sequence Hp (x;),
X = [Ti1,... ,l‘i,qi]—l— will accordingly have dimension ¢; x d.

The common strategy is to apply a task-specific learnable linear layer Wy € R4*C to
the hidden representation of Hy (x) corresponding to the final token of the input sequence,
in order to achieve a probability distribution over the downstream classes:

Hgs(x;) = softmax((HL(Xi)T);Wd), i=1,...,n,

where (Hz(x)"),. then is the row of Hp(x;) corresponding to the last token in the input
sequence x;. To then model the distribution P(y|z1,...,z,), we minimize the cross-entropy
loss |
Etask — Z[’CE(eyw Hcls(xi))a
iz
where ey, is a unit vector representing the one-hot encoded target class.

The supervised loss £ is additionally appended with the original language modeling
loss on the downstream corpus, as this has been shown to improve generalization as well
as to accelerate convergence during fine-tuning. The full fine-tuning loss is then

LCPT-FT _ ptask |, pGPT (2.3)

where v € (0,00) is a weighting hyperparameter that controls the influence of the language
modeling loss.

Sequence Control Tokens Since token sequences for downstream tasks vary in structure
and length, special control tokens are introduced to delineate different parts of the input
and mark boundaries such as start, end, or segment separation. Specifically, the following
tokens are introduced during fine-tuning;:

e <bos>: beginning-of-sequence token
e <eos>: end-of-sequence token

e <sep>: delimiter for separating marked segments of an input sequence, e.g., questions
and answers

These tokens are embedded analogously to regular tokens. For each input sequence,
the <bos> and <eos> tokens are prepended and appended, respectively. If the original
vocabulary has size V', and Vp new special tokens are added during downstream adaptation,
then the pretrained embedding matrix is correspondingly extended with Vp new rows,
yielding the updated embedding matrix W2 € R(V+Vp)xd quring fine-tuning. The new
rows are typically randomly initialized and learned jointly during fine-tuning.

19

3 | Bilevel Optimization

This chapter introduces the theoretical foundations of bilevel optimization along with
practical considerations regarding the implementation of bilevel optimization in machine
learning learning algorithms. This chapter is based on [42] unless otherwise stated.

3.1 Optimization Problem Formulation

Bilevel optimization (BLO) is a certain type of constrained optimization problem, where
the constraint itself involves the solution to another optimization problem. Let f,g :
RN x RM i R be differentiable functions. The BLO problem is then formulated as

min f(x,y*(x)) s.t. y*(x) € argming(x,y), (3.1)
xeRN yERM

where f and g are referred to as the upper-level and lower-level objectives respectively.
Similarly, x and y are referred to as the upper-level and lower-level parameters or variables.
While the lower-level objective g has knowledge of the parameters from the upper-level
objective x, the upper-level objective f possesses information of the lower-level objective
g itself through its dependence on a solution of the lower-level problem y*(x). Having
this coupled setup of training objectives can be attractive in instances that involve solving
multiple co-dependent optimization problems at once, as BLO problems incorporate this
dependency.

3.2 Obtaining the Derivatives

While the optimization problem formulation promises solutions that involve a complex
interaction between the objectives, it remains ambiguous how to practically solve this
optimization problem. Although often dependent on the specific application, designing
training algorithms for solving the BLO problem through machine learning typically
involves using gradient optimizers. This necessitates obtaining expressions for the gradients
of both the lower and upper-level objectives that accurately reflect their interdependence
as depicted in the BLO problem (3.1)).

The gradient of the lower-level objective is straightforward to calculate, as it only
depends on the upper-level objective through its parameters. However, obtaining a
practical expression for the derivative of the upper-level objective is more intricate. This is
due to the fact that the upper-level depends on an implicitly defined function y*(x). To

20

3.2. OBTAINING THE DERIVATIVES

clarify, consider the total derivative of the upper-level objective:

daf _
dx

dy*(x
ot T 0yl (32)
——

1J

Vif (X y*(x))

The above expression involves the Jacobian matrix dy;((x) , referred to as the implicit
Jacobian (1J)ﬂ The current setup and assumptions in do not guarantee the existence of
an explicit expression for the IJ, which is essential for calculating the upper-level derivative
in practice. Moving forward, this issue can be approached from various perspectives. One
common approach is gradient unrolling, which substitutes y*(x) with the operational
lower-level optimization path. While this method enables an explicit expression of the LJ,
its computational complexity escalates as the number of lower-level optimization steps
increases. This renders gradient unrolling unsuitable for BiSSL, described in Chapter [,
as the lower-level objective is already computationally expensive and requires a relatively
large number of iterations. This approach is therefore not further explored. Instead, the
implicit function method is adopted as a more practical and efficient alternative.

3.2.1 The Implicit Function Method

The implicit function method offers an alternative to gradient unrolling by instead deriving
an explicit expression for the LJ, through use of the implicit function theorem [61,62]. To
achieve this, certain assumptions about the structure and properties of the lower-level
objective are required. As part of this project, we introduce the following definition of the
lower-level stationary set, which will serve as a useful tool in the derivation that follows.

Definition 3.1 (Lower-level Stationary Set)
Under the conditions of (3.1]), the lower-level stationary set Gy is defined as

Go = {x e RV3gx € RM : Vyg(x,y)ly—y,. = 0} :

In other words, the lower-level stationary set Gy consists of those x € RY where there
exists at least one corresponding stationary point ¥x € RM that causes the gradient of the
lower-level to be zero when evaluated in (x,¥x). This construct will be used to formally
state and prove the theorem below, which identifies conditions under which the 1J can be
expressed in closed form.

'Some bilevel optimization literature refers to this quantity as the implicit gradient. However, this
terminology can be misleading, as the IJ in this context is only an actual gradient when M = 1. Therefore,
we instead adopt the term "implicit Jacobian" throughout this project for enhanced clarity and rigor.

21

CHAPTER 3. BILEVEL OPTIMIZATION

Theorem 3.2 (Implicit Jacobian in Bilevel Optimization)

Under the conditions of assume that V,g(x,y) is twice differentiable. Let x € Gy
and yx € RM be given such that Vy9(x,¥)|y=y, = 0 and assume that the hessian matrix
V29(%,¥)ly=g, is invertible. Then there exists a unique implicit and differentiable
function y* : M(x) — RM with A/(x) being a neighborhood of x, such that y*(x) = ¥«
and Vyg(X,y)|y—y+x) = 0 for all x € N'(x). Additionally the derivative of y* is explicitly
given by

dy*(x) . -1
o = VaIE sy 0 [V9 =y 0] x€G0. (33)

To summarize, the theorem states that for all values of x where there exists a value ¥
such that the stationary condition Vyg(x,y)|y—y = 0 is satisfied (i.e. for all x € Gy), the L]
in (3.2)) can be written explicitly by (3.3)). We introduced Definition [3.1| for mathematical
completeness, but it is worth noting that the lower-level objective g is often assumed to be
strongly convex in its second argument in order ensure that Go = RY and that ¥ is a unique
minimizer of g, simplifying the lower-level constraint in (3.1)) to y*(x) = argmin g(x,y).

yERM
The convexity assumption will come in handy when introducing BiSSL in Chapter

For the sake of conciseness, the notation Ve¢h(§)|¢=y := Veh(1p) is employed for the rest

of this chapter when it is clear from context which variables are differentiated with respect to.

Proof (Theorem : Let x € Gy be given. The existence of y* then follows directly
from the implicit function theorem, stated in Theorem [C.I] of Appendix [C] Due to the
differentiability of y*, as well as the fact that g is assumed twice differentiable, the derivative
of Vyg(x,y*(x)) = 0 can be taken with respect to x, i.e., the expression

d *

< [Vygey*(x))] = 0

is valid. By use of the chain rule, the expression becomes

dy*(x)
dx

Viayd(xy*(x)) + V2g(x,y*(x)) = 0.

By leveraging the assumption that Vi,g(x, y*(x)) is invertible, then %}Ex) can be isolated,
resulting in the desired expression of the implicit jacobian

dy(;((X) = _v?cyg(X?y* (x)) {V?,g(x, y* (x))} _1,

While provides a clearer insight into how to explicitly calculate the upper-level
gradient, there are still some caveats in terms of a practical setup. First of all the hessian
matrices Vi, g(x,y*(x)) and Vig(x,y*(x)) are infeasible to store in applications involving
models containing a large number of trainable parameters. On top of this, inverting the
matrix V?,g(x, y*(x)) is a computationally demanding task that also proves practically
infeasible for very large matrices. This makes direct calculation of infeasible in
the realm of training larger deep neural networks. Therefore, the compromise is to

22

3.2. OBTAINING THE DERIVATIVES

instead approximate the upper-level derivative using methods that are computationally
and memory-wise feasible. Now, considering that the upper-level gradient (3.2]) under the
assumptions of Theorem can be expressed by

df

-1
O = Va/ (¥ (%)) = Vigg(xy™ () [Vog(x,y7(x)] Yy (x, 57 (%),

it is evident that the Hessian matrices only appear in the form of a matrix-vector product.
In such a setup, the conjugate gradient method can be used to approximate the inverse

-1
matrix vector product {V?,g(x, y* (x))} Vy f(x,y*(x)).

Algorithm 1 The Conjugate Gradient Method

1: Input: Input vector v, Matrix vector product calculator fys(z) = Mz, Number of
iterations N..

2: Initialize M~1v « 0
3: Initialize r <+ vand d < v

4: fort=0,... ,N. do
5: Toorm < [r3

6: Md +~ fM(d)
7
8
9

Q<= I'norm/d—l—m
M~v « M~1v 4+ ad
r<r—aMd

10: I'new norm < ||I'||§

11: B < Tpew norm/rnorm

12: d<«r+3d

13: end for

—_—~—

14: Return: Inverse matrix vector product estimate M~1v

The Conjugate Gradient Method

The conjugate gradient method [63}64] is an iterative algorithm that approximates inverse
matrix vector products by solving the minimization problem

1
min §ZTMZ —v'z, (3.4)
z

which is minimized when z = M ~!v. From the viewpoint of approximating the second
term of (3.2]), the minimization problem ({3.4)) is

mzin %ZT {Vz,g(x, y* (x))} z— Vyf(x,y" (x))Tz.

The general conjugate gradient algorithm is described in Algorithm Detailing this
method further is beyond the scope of this project, and we refer to [64] for details. Notice
that only the matrix vector products Mz are necessary to run the algorithm. In the context
of approximating an IJ vector product, the input vector v = Vy f(x,y*(x)) and matrix

vector product calculator fy/(z) = [Vi,g(x, y*(x))}z are used. By considering that

V2g(x,y"(x))z = Vy [(Vyg(x,y* (%)) 2], (3.5)

23

CHAPTER 3. BILEVEL OPTIMIZATION

one can first calculate the inner product, followed by calculating the outer gradient to
achieve the above hessian vector product, avoiding the need to store the entire hessian at
any time.

When the inverse hessian vector product z ~ {Vz,g(x, v (x)) 1Vy f(x,y*(x)) have been
approximated using Algorithm |1, the same strategy used in (3.5 can then be utilised for
calculating the hessian vector product —Viyg(x,y*(x))i. This completely eliminates the
need for storing any Hessian matrices at any time using the conjugate gradient method.

Formulating a training framework within a bilevel optimization problem demands careful
attention to how gradients are defined and computed to support effective, task-specific
optimization. For readers seeking further context on this topic before the introduction
of BiSSL in the following chapter, Appendix [D] presents two examples from prior work
illustrating how these gradients are derived.

24

4 | The BiSSL Framework

This chapter is based on our previous work on BiSSL [49], unless otherwise stated. First,
the general bilevel optimization framework of BiSSL is introduced and justified, which is
followed by derivations of the gradient expressions required for optimization. Finally, the
training algorithm and pipeline for applying BiSSL in operational settings are presented.

4.1 Introducing BiSSL

Before delving into the details of the optimization problem underlying BiSSL, we first
introduce some necessary notation.

4.1.1 Notation

We work within the self-supervised learning setup as introduced in Section[I.I]and Chapter
Accordingly, let the unlabeled and labeled datasets for pretext and downstream training
be denoted as DF = {zk}kKjl and DP = {xl,yl}l@i respectively with z;,x; € RY. Let
fo : RNV — RM denote a backbone model with trainable parameters by 6 and P RM
R a pretext head parameterized by ¢. Given two models 9op © fop - RN — RFP
and hg, o fo, : RY — RPp for solving pretext and downstream tasks respectively,
where 8p,0p € R, ¢pp € RYP and ¢, € R9P, the pretext and downstream training
objectives are denoted £ (0p,¢p; D) and LP(0p,¢p; DP) respectively. For notational
brevity, the dataset specifications are omitted, i.e., £LP(0p,¢p; DP):=LP(0p,¢) and
EP(0P7¢P;DP)::[’P(0P7¢P)'

4.1.2 Optimization Problem Formulation

Recall that the conventional setup of self-supervised pretraining followed by supervised
fine-tuning relies on a single backbone model with parameters 8. The pretext objective
LY (0,¢p) is minimized first, yielding a solution 8* that serves as an initialization when
subsequently minimizing the downstream task objective £P(0,¢). At first glance, one
might expect the BLO problem in Equation to straightforwardly accommodate this
structure by assigning the pretext and downstream objectives to the lower- and upper-level
problems, respectively. However, directly substituting the objectives into the BLO problem
introduces a key complication, as both objectives would then optimize with respect to the
same set of backbone parameters . In a BLO framework, the lower-level problem must be
fully solved before the upper-level parameters are updated. If both levels directly optimize
the same parameters, this nesting becomes ill-posed, since it would imply that the solution
to one level depends on a quantity that itself changes during the optimization of the other.

25

CHAPTER 4. THE BISSL FRAMEWORK

To resolve this, BiSSL introduces two distinct but strongly correlated sets of backbone
parameters @ p and 0 p for the lower-level (pretext) and upper-level (downstream) objectives,
respectively. This leads to the following formulation of BiSSL.

Definition 4.1 (BiSSL)
Under the notation of Section |4.1.1} the bilevel optimization problem of BiSSL is given
by

min L7 (67 (0p) ,¢p) + L (0p,9p) (4.1)
0p,9p
st. 0% (0p) € argminmin LY (0p,¢p) + Ar(0p,0p), (4.2)

0p op

where A € (0,00) and 7 : R x R = [0,00) is a regularization objective that that enforces
similarity between @p and @p, such that r(x,y) =0 iff x =y.

In this formulation, the upper-level problem optimizes the downstream objective,
but with a dependency on the backbone parameter solution 8%(0p) produced by the
lower-level problem , that in turn is tasked with optimizing the pretext objective.
This dependency explicitly models the backbone inheritance in the self-supervised training
pipeline. The regularization objective r(0p,0p) = ||0p — 0pH§ is adopted for the imple-
mentation considered in this project, and some results derived throughout this project will
employ this objective. The inclusion of the second term in improves convergence
during training and plays an important role in ensuring the lower-level optimization problem
is non-trivial. For a detailed explanation on why that is, see Appendix [E]

The dependency of the upper-level objective on the lower-level solution 8%(0p)
allows the pretext task objective to influence the optimization of the upper-level. Simul-
taneously, the regularization term r in ensures that the learned pretext parameters
remain close to those used in the upper-level, thereby encouraging the lower-level solution
to occupy regions of the parameter space that are more conducive to subsequent fine-tuning.
This structured coupling aims to improve the initialization quality of the backbone 68%(6p),
beyond what is achieved through conventional pretraining followed by standard fine-tuning.

As discussed in Chapter [3] solving bilevel problems in practice requires careful handling
of the upper-level gradient due to its implicit dependence on the lower-level optimization.
As will be evident in the following section, this is no exception for BiSSL.

4.2 Expressing the Bilevel Derivatives

This section explores how to express the derivatives of the upper and lower-level objectives
of BiSSL, as well as how to achieve them in practice.

4.2.1 Lower-level Gradients

As the lower-level only depends on the upper-level through its parameters, the lower-level
gradients are straightforward to calculate. Defining the lower-level objective in (4.2)) as

G(0p,0p,0p) = LT (0p.¢p) + Ar(0p,0p), (4.3)

26

4.2. EXPRESSING THE BILEVEL DERIVATIVES

its gradients are

VeG(0p,0,6p)l0=0, = VoL (0,0p) lo=6, + A\Vor(0p.0)|o—a,,
VoG (0D,0p,9)¢=¢, = VoL (0r,9) |p=¢,-

As it will be shown in the next subsection, the upper-level gradient proves more complicated
to express, requiring more careful considerations both regarding the analytical expression
and calculation in practice.
4.2.2 Upper-level Derivatives
Defining the upper-level objective from (4.1)) as

F(aDu ¢D) = £D(9*P(9D)7 d)D) + ‘CD(GDaq,)D)v (44)
then the gradients of (4.4]) are

dF d6H(6p)

D D
0, = dop VoL (0:-¢p)lo=0;05) T VoL (0, Pp)lo=0n, (4.5)
—
1J
dF D/ p* D
aos = VoL (05(0D), D) p=¢, + VoL (0D, D)|p=p, -

Due to the dependence of the lower-level solution 8%(0p) in the upper-level objective,
the first term of (4.5) includes the implicit jacobian (IJ) of the (implicit) lower-level
solution 65 (0p). Recalling Theorem the IJ can, under certain conditions, be expressed
explicitly.

Notation: For the remaining derivations in this Chapter, the notation V¢h(€)|e=y =
Veh(v) is employed when it is clear from context which variables are differentiated with
respect to.

Proposition 4.2 (Implicit Jacobian in BiSSL)
Given the bilevel optimization problem of BiSSL in Definition [4.1 assume that the

pretext head parameters ¢p are fixed, and that the lower-level objective (4.2)) fulfills the
conditions of Theorem 3.2l Then the 1J defined in (4.5) is given by

d67%(0p)

o :_szepmeD,e’;a(eD))[V%P(icpwzwp),cbp)+r(0D,0}‘><0D>>ﬂ_> (4.6)

for all 8p € Gy, where Gy is the lower-level stationary condition set as defined in
Definition 3.1

While offering an explicit expression for the 1J, the above result also underscores the
importance of including a regularization term r in the lower-level that depends on both
backbone parameters @p and @p. As evidenced by the leftmost Hessian in the right-hand
side of , the IJ would collapse to the zero matrix in the absence of such a term in
the lower-level, thereby blocking any information flow from the lower-level solution to the
upper-level gradient in (4.5)).

27

CHAPTER 4. THE BISSL FRAMEWORK

Proof (Proposition : Given a fixed pretext head parameter configuration ¢p € RF?,
we express the lower-level objective as only a function of the backbone parameters, i.e.,

G(0p,0p) = LY (8p,¢p) + \r(0p,0p), (4.7)

The imposed conditions from Theorem imply that that the objective G is twice differ-
entiable and that the hessian V(%PG (0p,0p) is invertible for all @p € Gy and corresponding

Op that fulfills Vgpé (6 D,0 p) = 0. Theorem then states that the 1J is explicitly given
by

40%(0 3 i »
(1130(;) = —V3,0,.G(00.05(00))[V3,G(00.0:(60)] . 6p € o

Substituting (4.7) into the above expression then yields

d67%(0p)

0, ~V3 0, (L7 (01(00),0p) + M (00, 07(00))) [V, (L7 (07(00), ¢p) + Ar(00,05(0)))]

—1
= ~Vh,0,7(00.65(00) | V3, (5£7(03(00). 67 + 160.05(60)))| . 00 G

The form of £ will in practice vary depending on the type of pretext task that is
utilized, making it nearly impossible to make general claims regarding the exact structure
of Gy. To circumvent this, a regularization objective r that is strongly convex in its second
argument, along with an appropriate size of A\ can be chosen such that the lower-level
objective will be approximately convex, irrespective of the choice of @p. This makes it
reasonable to assume Gy = R¥. Hence by using the strongly convex regularization function

r(0p,0p) = 1||0p — Op||5, the 1T in (@.6) simplifies to

do7 (6 1 -1
PO0) [1V3,£70p(60),60) + 11 6 €, (48)

where Iy, is the L X L-dimensional identity matrix.

Recalling the considerations made in section the conjugate gradient method
outlined in Algorithm [I] can be employed to feasibly approximate the second therm of the
upper-level gradient (4.5) which now takes the form

dF [1

-1
05 = Avgpcp(a*P(eD),qsp) +IL} VoL"(8,6p)lo=0r(0,) + VoL (0, ¢p)0=0p,- (4.9)

4.2.3 Interpretation of \

The expression in enables an interpretation of the role of the regularization objective
r and its scaling A in shaping the interaction between the upper- and lower-level problems
in and . When A is very large, the regularization dominates the lower-level
objective, effectively forcing @p ~ O p and disabling the influence from the pretext objective
LP in the lower-level. Meanwhile, the 1J in ~ I, diminishing the influence of
the lower-level objective on the upper-level gradient . This effectively makes the
upper-level objective equivalent to conventional fine-tuning. Conversely, if A is very small,

28

4.3. TRAINING ALGORITHM AND PIPELINE

Algorithm 2 BiSSL Training Algorithm [49]

1: Input: Backbone and head initializations 0, ¢p, ¢p, Training objectives cr, P,
Regularization weight A € (0,00), Optimizers optp, optp, Number of training stage
alternations T' € N with upper and lower-level iterations Ny,Np € N.

2: Initialize Op + 0 and Op + 0.

3: fort=1,...,T do

4: forn=1,...,N; do > Lower-level
5: Compute 8pp = V¢L’P(0p,¢)\¢:¢P .

6: Compute gop = VQ,CP(G, ¢)P)|0:0P +)\(91) — HD).

T Update ¢P A OptP(¢P7 g(,‘bp) and Op < OptP(0P7 g@p)'

8: end for

9: forn=1,...,Ny do > Upper-level
10: Compute 8¢, = V¢£D(9p,¢)|¢:¢D + V¢£D(0D,¢)|¢:¢D.

11: Compute v = VQ£D<0, ¢D)‘0:0P'

12: Approximate vy ~ {IM + %vgﬁp(e, ¢P)‘0:0P:| 1v. > Use Algorithm
13: Compute g0, = VI + VQ[,D(O, ¢D)’9:9D'

14: Update ¢p < optp(Pp,8e,) and Op < optp(6p, s,).

15: end for

16: end for

17: Return: Backbone Parameters 0p.

the lower-level optimization is governed primarily by the pretext loss, recovering a setup
close to standard pretraining. The resulting 1J will then contain solely near-zero
entries, causing the first term in to correspond to linear probing on the lower-level
solution. Given a suitable value of A, this reveals that BiSSL enables a more nuanced
interplay between pretext and downstream objectives, facilitating a joint training regime
that interpolates between standard pretraining and fine-tuning in a manner not possible
within the conventional self-supervised learning pipeline.

Knowing how to explicitly express and approximate the gradients of the BiSSL problem
in (4.1) and (4.2)), a training algorithm and pipeline based on BiSSL can now be proposed.

4.3 Training Algorithm and Pipeline

The bilevel optimization formulation of BiSSL in Equations and requires solving
two nested optimization problems concurrently. This is reflected in the training pipeline
outlined in Algorithm [2| which alternates between updating the lower- and upper-level
objectives. The lower-level (pretext) objective is optimized using standard gradient-based
methods. In contrast, the upper-level (downstream) objective requires computing gradients
that depend implicitly on the solution to the lower-level problem. The conjugate gradient
method is employed to approximate the necessary gradient components, as discussed in

Section [4.2.2]

29

CHAPTER 4. THE BISSL FRAMEWORK

SSL Pipeline With BiSSL

Conventional SSL Pipeline Pretext Pretraining Init 0p, 05(0p) < 0
— yaniSnEP(O,d)p;DP)
PP

Upper-Level (Downstream)

9 P . DP
B G om0 Juin L2(65(60), 603 DP) + L (6, #0: D7)
DsPD

Pretext Pretraining 0,¢p 10

Downstream Head Warm-up
rgin LP(0,¢p; DP)
D

[35)
v 65(6p) op

o BissL |

0}(6p)

Downstream Fine-Tuning
in D .pD
E};g L (67 ¢p; D) \ 2 ‘

Lower-Level (Pretext)
gmf;‘ LE(6p, ¢p; D) + Ar(0p,0p)
P:PP

Downstream Fine-Tuning
min £(0, ¢ p; DP)
6,6p

Figure 4.1: Left: Pipeline of conventional self-supervised learning (SSL). Right: Suggested
training pipeline involving BiSSL [49]. The transferred parameters are used as initializations
in the respective training stages they are transmitted to.

4.3.1 Training Pipeline Involving BiSSL

To apply the explicit expression of the IJ in Equation (4.8]), the solution 8%(0p) must
satisfy the stationary condition

VBG(0D707¢P) ’6291‘9(9D) = 07

Starting Algorithm [2| from randomly initialized parameters @ and ¢p is therefore unlikely
to yield a configuration even remotely satisfying this condition. A similar issue arises for
¢p, as a random initialization can cause large initial updates to the upper-level backbone
parameters @ p, which in turn leads to a violation of the stationary condition through the
dependence between @p and @p through r.

These considerations motivate placing BiSSL after an initial stage of standard self-
supervised pretraining. Likewise, the downstream head ¢ p should be initialized prior to
BiSSL, to reduce early training instability. The full training pipeline is summarized in the
middle and right side of Figure in contrast to the conventional SSL pipeline on the
left. The proposed procedure involves four stages:

1. Pretext training: Standard self-supervised training is applied on the unlabeled
dataset DF to obtain initial values for the backbone parameters 6 and pretext head

¢p.

2. Linear probing: A linear classifier ¢, is trained on top of the frozen backbone
0 using the labeled downstream dataset DP, providing an initialization for the
downstream head.

3. BiSSL training: With suitable initializations for the parameters 8, ¢p and ¢p,
Algorithm [2]is executed, yielding an updated set of backbone parameters 0%5(0p).

4. Fine-tuning: The updated backbone 87 (0p) is used to initialize standard supervised
fine-tuning on DP.

30

5 | Revisiting BiSSL

Chapter {4 introduced our previous work of BiSSL, a bilevel training framework designed
to improve the alignment between self-supervised pretraining and downstream fine-tuning.
While the original formulation offers a compelling structure, several conceptual and empirical
dimensions remain insufficiently explored. This chapter revisits these open questions, as
outlined in and proposes theoretical extensions and practical considerations aimed at
addressing them, which will be evaluated in the experiments of Chapters [6] and

5.1 Hyperparameter Impact

The empirical sensitivity of BiSSL to key hyperparameters remains underexplored. In
particular:

e A: Section provides an interpretation of how different values of A interpolate the
impact of the pretext and downstream objectives on the composite bilevel optimization
problem. As the original work kept A\ = 0.001 during all experiments, it remains
an open question how different values of A impact downstream performance, and if
the aforementioned interpretation can be reflected in the downstream performance
numbers.

o T (Number of BiSSL iterations): As described in Algorithm 2| the BiSSL training
procedure alternates between solving the lower- and upper-level problems for T
iterations. The original work used T' = 500 consistently. It remains unclear how
longer or shorter BiSSL training affects downstream performance.

e Ny, N (Number of upper and lower level iterations): As described in Algorithm
these determine how many gradient steps are taken in solving the upper- and lower-
level problems, respectively. The original experiments used Ny = 8 and Ny, = 20,
but also reported a minor study that implied setting Ny = 1 degraded performance.
Besides this, no broader study was conducted.

e Fine-Tuning Epochs: The original experiments used 400 epochs for subsequent down-
stream fine-tuning. Given that BiSSL aims to produce better-initialized backbones,
it is plausible that fewer fine-tuning epochs may suffice. Additionally, comparing
fine-tuning curves between BiSSL and standard baselines may reveal differences in
susceptibility to overfitting.

To assess the effect of each hyperparameter, we propose to conduct a series of controlled
grid search experiments, varying one parameter at a time while keeping the others fixed.

The implementation details and results are reported in Section of Chapter [0

31

CHAPTER 5. REVISITING BISSL

Cosine Decrease Cosine Increase
1.0 1.0
0.84 0.8
0.6 0.6 1
=< =<
0.44 0.4
0.2 0.2
0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500

Figure 5.1: Cosine decaying (left) and cosine increasing (right) schedules for A(t) over
T = 500 steps with Apin = 1078 and Apax = 1.

5.2 Adapting A During Training

The regularization weight A plays a central role in BiSSL, modulating the trade-off between
solving the pretext task and aligning the representations for the downstream objective as
outlined in Section [4.2.3] While X previously has been treated as a fixed hyperparameter, it
is natural to consider adapting its value during training. This section will propose multiple
strategies for doing so.

We first turn towards examining basic scheduling strategies on A. This first raises the
question of how such a scheduler should evolve during training. Large A forces stronger
alignment between the tasks, while small A prioritizes solving the pretext objective on
its own terms. Consequently, one might prefer a larger A early in training to guide the
representation towards downstream-relevant features. Later in training, relaxing this
constraint (decreasing A) can allow the lower-level to refine its representations more
flexibly. An alternative view is to treat the lower-level task as a form of initialization or
preconditioning. In this case, starting with a small A may help the model first acquire
broadly useful representations, with A gradually increased to tie them more tightly to
downstream relevance.

These competing intuitions motivate opposing schedules, and we accordingly suggest
scheduling strategies that support both views.

5.2.1 Scheduling Strategies

We propose employing schedulers on A that update for every training state alternation T’
(see Algorithm . In general, we will consider schedules in the form

)‘(t) = ()‘max - Amin)f(t) 4+ Amin, t=0,...,7—1,

where f:{0,...,7 — 1} — [0,1] is a monotonic function. We propose three variants, each
involving a different choice of f.

Cosine Decay Motivated by the intuition that stronger downstream guidance should be
imposed early during BiSSL, we define a cosine decaying scheduler:

fOP@) = 1(1 +cosm

t=0,....7-1
2)7 I) ’

T-1

32

5.2. ADAPTING A DURING TRAINING

Exp Increase (a=1) Exp Increase (a =10) Exp Increase (a =100)

0.8 0.8 0.8

0.6 0.6 4 0.6 1

Alt)
)
Alt)

0.4 0.4 0.4

0.2 0.2 0.2

0.0 0.0 0.0
0 100 200 300 400 500 [100 200 300 400 500 0 100 200 300 400 500
t t t

Figure 5.2: Exponential increasing schedules for A(t) with o = 1 (left), o = 10 (middle)
and a = 100 (right) over T' = 500 steps using Amin = 1078 and Apax = 1.

with f¢P(0) =1 and fCP(T — 1) = 0. This hence encourages tight coupling between the
levels initially, gradually relaxing this constraint as training progresses.

Cosine Increase Appealing to the latter interpretation that an increasing scheduler
would be more beneficial for the training procedure, we suggest a reversed cosine schedule
that increases during training:

o)y =1- 1(1 + cosm

t=0,....7-1
2)7)) ’

T-1

so that f€1(0) = 0 and fCY(T — 1) = 1. This yields a smooth transition from pure pretext
optimization toward progressively stronger downstream influence.

Figure [5.1] shows examples of plots of the two cosine suggested schedulers.

Exponential Increase The cosine increasing scheduler may rise too slowly, leading to
insufficient downstream influence during much of training. To address this, we also consider
an exponentially increasing schedule:

1—e 9T-1

EI
t)=——, t=0,...T7T -1
) = t=0, T,

such that fF1(0) = 0 and f*(T — 1) = 1, where a € (0,00) controls the sharpness of the
increase. When a — 0, this schedule approximates a linear increase. Oppositely, as «
gets larger, the rise towards 1 happens more quickly, effectively approaching a step-like

transition. Figure plots this schedule for various values of «, illustrating how the
parameter governs the sharpness of the transition.

These scheduling approaches offer a simple and principled way to modulate A without
modifying the optimization structure of BiSSL. They are compatible with existing training
pipelines and easy to implement. As such, they provide a strong baseline for evaluating the
impact of adaptive regularization. Experiments evaluating the downstream performance
using the aforementioned schedulers are presented in Section of Chapter [6]

While these schedules provide coarse control, a more flexible alternative would be
to instead exploit the bilevel structure of BiSSL and treat A as an upper-level learnable
parameter.

33

CHAPTER 5. REVISITING BISSL

5.2.2 Learnable)\

The bilevel optimization (BLO) framework underlying BiSSL provides a natural way to
adapt A during training, avoiding the reliance on handcrafted schedules. We propose to make
A a trainable variable in the upper-level optimization problem, letting the optimization itself
determine how tightly to couple the objectives. We extend the original BiSSL formulation
in Definition by including A as a trainable upper-level parameter:

Definition 5.1 (BiSSL with Trainable)
Under the conditions of Definition 4.1] the bilevel optimization problem of BiSSL with A

as is trainable upper-level parameter is given by

min L7 (05 (0p.A) bp) + LY (0.¢p) (5.1)
0D»¢D7)‘
s.t. 0% (0p,\) € argminmin L (8p,¢pp) + c(A\)r(0p,0p), (5.2)

ep P

where o : R — (0,00) is a differentiable and monotonously increasing function.

This reformulation leaves the structure of BiSSL nearly unchanged, requiring no
changes to the optimization procedure aside from including X in the upper-level gradient
computations. The mapping o is introduced to enforce the constraint A > 0 implicitly,
as direct optimization over (0,00) is usually not feasible using gradient-based optimizers.
The softplus function [65] will be employed as o for the experiments in Chapter |§|, ie.,
o(x) =log(1+ e").

Deriving the Upper-Level Derivative Define the upper-level objective in (5.1)) as

F(0p.¢p.\) = L7 (05 (0p.)) ¢p) + LY (0.0p) .- (5.3)
To optimize A through the upper-level objective, we must compute the gradient

dFF dOp(6p,)\)

a = TVG»CD(97 ¢D)|0:0*P(0D,/\)‘ (5-4)
While the above expression seems to necessitate the approximation of yet another 1J,
namely W, we show next that this can be avoided entirely. For the rest of this
chapter, we use the notation V¢h(§)|e=y := Veh(1p) when it is clear from context which

variables are differentiated with respect to.

Proposition 5.2 (Upper-Level Derivative With Respect To \)

Let the bilevel optimization problem in Definition with 7(6p,0p) = 5|6p — orl3
be given. Assuming that the lower-level fulfills the conditions of Theorem the
derivative of the upper-level objective as defined in with respect to A is given by

drr 1 Oo

ar do d6p(6p,))
dx ~ o(\) oA

<0D —05(0p,N), a9,

VoL (0500 ¢p)). (55)

where (-,-) denotes the euclidean inner product.

34

5.2. ADAPTING A DURING TRAINING

We observe that the rightmost term inside the inner product of corresponds to
the gradient of the upper-level loss with respect to 8p as in Equation . Since this
gradient is already computed as part of the standard BiSSL training loop, evaluating the
above derivative hence requires only the additional calculation of a single dot product and
a few elementary operations. Consequently, introducing a learnable A as in Definition
adds virtually no computational overhead.

Proof (Proposition (5.2))): Theorem implies that the IJ present in ([5.4)) is given by

d0p(6p,))

S0 VR, o (V00,0500 N) [V3, (£7(05(00), &) + o (N)r(05.05(00)))]

Using the lower-level regularization objective r(6p,60p) = 3|6p — 8p|3, the equation
above simplifies to

PO — 0500000 — 0(00,1)[V3,L" (65(60), &) + oV
= gi(aD —05(6p,\)" [vazp(e»};(oD), bp) + U(A)IL} -t

Substituting the above into the expression of the upper-level gradient with respect to A
in (5.4)) then provides the expression

dF 0 _
§ = afi(ep —03:(0p.0) " [V3,L7(00(8p), ¢p) +o(NIL] VoLl (85(8p.N), bp)
1 0o 1 -1
= sy - 03:(0p.))" mvzpcp(e;;(eDmp) +1n| VeLP(03(0p,)),9p) -

Derivative of L2 (0%5(0p,)\), ¢p) wrt. 6p

The under-braced part above is exactly equal to the gradient of the first term of the
upper-level objective with respect to Op from (4.9)). This finally leads to

aFr 1 o o Td0(0pN) o D g

D~ o0 ax 0P~ O0rOpN) VLT (OR(60:0), ép)
_ L 99/ g 4050\ o, D g >
~o(\) 0N <0D Op(0p.2), dep VoL"(0p(0p,A), ép)) -

In light of the derivations in the proof above, it is noteworthy to mention that the
simple expression achieved in Proposition is only achievable with the specific choice of
regularization objective for which the mixed Hessian V%DGPT(O D,0p) equals the identity
matrix (as discussed prior to Equation (4.8))). In the general case where no specific
structure is imposed on r, computing the derivative with respect to A would require
additional Hessians not already available from the BiSSL gradient flow, thereby incurring a
substantial increase in computational cost. As further exploration of these generalizations
lies outside the scope of this work, we leave this here as a potential avenue for future work.

Dampening The factor ﬁ in implicitly acts as a dampening mechanism: when
o()\) is large, its gradient contributions are downscaled, potentially stabilizing training.
However, this also poses a risk, namely if o()\) grows too large early in training, its gradient
becomes vanishingly small, effectively freezing at a large value. Conversely, small values of
o(\) will produce large and potentially unstable updates.

35

CHAPTER 5. REVISITING BISSL

To avoid such brittle behavior, we suggest a minor modification to the gradient in
Proposition by introducing a dampening term Agamp € (0,00) into the denominator:

dF 1 do d6%(0p.\)

- ey —050p)
d\ U(A)+Admnpm< p = 0p(0p.), dép

This prevents division by values very close to zero and adds a stable floor to the learning rate
of the optimization of A. Experiments with A being learnable are presented in Section [6.4.2
of Chapter [6]

vecD<0*p<0D,A>,¢D>>, (5.6)

5.3 Non-Fixed Pretext Head Doing IJ Approximation

In earlier derivations of the IJ back in Proposition the pretext head parameters ¢p were
assumed to be fixed. While this simplification made the derivations more tractable, it was
not without loss of generality. Specifically, it neglects how the backbone and pretext head
parameters @p, ¢p interact through the pretext objective £F, which in turn potentially
can reduce the fidelity of the 1J approximation. This section examines how lifting the fixed
¢ p-assumption affects the IJ and the upper-level gradient, and concludes by proposing a
practical strategy for approximating the resulting modified 1J.

At first glance, one might attempt to directly adapt the original BiSSL structure in
Definition 4.1 However, this introduces a technical obstacle. The fundamental result in
Theorem [3.2] is tailored towards BLO problems where the lower-level objectives depend
solely on two distinct sets of adjustable parameters. Since ¢p appears as a third variable
in the lower-level objective , which in turn is not present in the upper-level, it hence
falls outside the structure assumed by this result.

Rather than trying to shoehorn the current formulation of BiSSL into the structure
required by Theorem [3.2] we instead propose a reformulation of BiSSL. Specifically, we
suggest concatenating the lower-level backbone and pretext head parameters into a single
composite vector, treating them as a unified set of lower-level variables. This enables the
problem to be cast in a more standard bilevel form, where the lower-level optimization
operates over a single parameter vector. We now proceed with this reformulation, which first
involves a few structural adjustments to ensure compatibility within the BiSSL framework.

5.3.1 Reformulated BiSSL

We employ the same notation from Section [£.1.1] and now collect the lower-level parameters

0p and ¢p into a single concatenated vector w = [0, ¢p] € REFPP such that its
individual components are given by
0; ifi <L
w; = ’ T (57)
¢,_; otherwise

fori=1,...,L 4+ Pp. To selectively operate on the subcomponents of w, we define the
sub-parameter mappings.

Definition 5.3 (Sub-Parameter Mappings)

Given w € REFTPP with entries as in , the sub-parameter mappings ve, : RL+PP 5 RE
and v, : REFPP s RPP are defined such that they respectively extract the backbone
and pretext head parameters 8p, ¢p from w, i.e., 79, (w) = O0p and 74, (W) = ¢p.

36

5.3. NON-FIXED PRETEXT HEAD DOING IJ APPROXIMATION

The sub-parameter mappings can be written explicitly as the matrix-vector products

Yop(w) = [I. OLxpplw =0p, (5.8)

and
Vop(W) = [Oppxr Ipplw = ¢p. (5.9)

where Oxxy denote the X x Y-dimensional zero matrix. The notation [Axxy Bxxz| €
RX>*Y+Z i5 used to denote the horizontal concatenation of matrices Axyxy € R¥*Y and
Bxxz € RX¥*Z guch that its first Y columns are composed of A and its last Z columns
are composed by B. Similar composed block structures of matrices and vectors will recur
throughout the remainder of this section. We will omit further explicit definitions of this
notation as the meaning should be clear from context.

This simple structure for expressing the sub-parameter mappings will prove beneficial
when deriving the IJ in the subsequent section. We are now equipped to state the
reformulated BiSSL problem.

Under the conditions of Definition 4.1} the bilevel optimization problem of BiSSL with
concatenated lower-level parameters is defined as

Definition 5.4 (BiSSL with Cotenated Lower-Level Parameters)

guin LP (19, (w*(8D)).bp) + L7 (6p,¢p) (5.10)
st. w*(@p) € arginin LY (Yop (W) 7, (@) + Ar(0p, 7o, (w)), (5.11)

where g, V¢, are the sub-parameter mappings defined in Definition (5.3)).

This reformulation is effectively equivalent to the original bilevel problem in Defini-
tion As noted, this alternative phrasing will prove convenient when relaxing the fixed
pretext head assumption in the derivation of the 1J.

5.3.2 Implicit Jacobian of Concatenated Lower-Level Solution

The lower-level objective (5.11)) can now more compactly be expressed in terms of the
aggregated parameter vector w as

G(0p.w) == L7 (70, (w) 7, (w)) + A (0D, 76, (w)).

Additionally, the gradient of the first term of the upper-level objective in (5.10)) with respect
to @p is now

AL (70, (" (0D)).bp) _ dye,.(w*(0p))
d@D d0D

VoL (0, (w*(0p)), p)-

Rather than attempting to express the above 1J directly, we will first derive the expression
for d“’T(gD), which will serve as a key intermediate step. For notational simplicity, we again
use the notation V¢h(§)|e=y := Veh(ep) when it is clear from context which variables are

differentiated with respect to.

37

CHAPTER 5. REVISITING BISSL

Proposition 5.5 (IJ of Concatenated Lower-Level Solution)
Let the bilevel optimization problem in Definition [5.4| be given. Assuming the lower-
level (5.11]) satisfies the conditions of Theorem then the following 1J is given by

dw*(OD)

= Mpp,w(0p)M.(0p), 0 € Go (5.12)
dép

where Gy is the lower-level stationary set as given in Definition [3.1], and

My w(0D) = [V3,6,7(00:70, (@ (00)) OLxrs),

-1
1 d2

Mal00) =1 X P (6

£7 (0, (" () gy (& (0))) + lV”P“”D”P(‘” 60))) O, H

OppxL Opp xpPp

As the proof transpires in a manner similar to that of Proposition .2 and involves
extensive mathematical notation, it is defered to Appendix [C] The structure of the 1J
in remains largely consistent with that in Proposition The primary difference
lies in the Hessian block

£ (0 (" (00)) 70, (7 (0)))

= Vgpﬁp(’ygp(w*(OD)),’y(bP (w*(oD))) Vgplﬁp‘cp(’yep (w*(eD))ﬁ(bP (w*(eD))) (5.13)

Vapop L' (V05w (00)) 70, (W (00)) V5L (v6,(w"(00)) 76, (w0 (60)))

which follows by application of Lemma This matrix introduces second-order derivatives
with respect to the pretext head parameters ¢p. Since this block appears inside the inverted
matrix M, (0p) of Proposition it couples ¢p into the computation of the IJ. That is,
although ¢p does not appear in the lower-level regularization objective r, it influences the
1J through its role in the pretext objective £F.

Now, returning to the case of using the specific regularization objective r(6p,0p) =
316D — 0p|5, we follow the same reasoning as in Section to assume that Gy = RL,
leading to the 1J in Proposition [5.5| simplifying to

—1

dw*(6 1 a2 . . I (0]
“00) 1 Operp] | 2P (0, (w0 (O0))ep (W @) + | E O
dép A d°w*(0p) Opoxr Oppxpp
A-1(6p)
= [It Orxpp]A " (D), (5.14)

for 8p € RY, where we introduce the shorthand A=(8p) € REFPPXLHPP for ater reference.

As a sanity check, if the pretext head parameters ¢p are assumed fixed, then the
dependence of A(6p)~! on these parameters disappears in the above equation, yielding only
the upper-leftmost sub-matrix in to assume non-zero values. In that case, apart from
the increased dimensionality, we recover the original 1J expression from Proposition .

38

5.3. NON-FIXED PRETEXT HEAD DOING IJ APPROXIMATION

5.3.3 Updated Upper-Level Derivative

Now that the sub-parameter mapping is applied to the solution variable in the upper-
level objective, i.e., vg,(w*(0p)), a potential complication arises: taking the derivative of
L (v9,(w*(0p)),¢p) with respect to Op could introduce third-order derivatives, due to
the nested composition through vy, (w*(6p)). However, the following corollary shows that
this can be circumvented.

Corollary 5.6 (Derivative of First Term in Equation (5.10)))
Under the conditions of Proposition [5.5) and assuming r(0p,0p) = %HOD - 9P||§, the
derivative of the first term of the upper-level objective ([5.10)) is given by

dLP (o, (w*(0D)).¢p)
dép

= (4760)), VoL (0, (w*(60)), 1),

where (A7(0p)),.; denotes the L x L-dimensional upper-left submatrix of

1
d? I, Orxpp

1
A Y 0p) = |-
(Op) X d2w*(0)p)

L (Yo, (w* (0)) Ve, (w* (D)) +
Oppxr Oppxpp

Proof (Corollary [5.6): Recall that vg,(w) can be expressed by the simple linear
projection in (5.8]), and how ([5.14) expresses the IJ with the specified regularization
objective. We then compute

D w* w*
dL (’ygp(dalieD))aqu) _ d’yep((wD(aD))VGED(’YHP(‘*’*(OD))’¢D)

_ d[Ig, OLXPP]w*(aD)VeﬁD(”yeP (w*(0p)), dp)
dép

_dw*(6p) | 1L

a0, VoL (79, (w"(61)), ¢p)

Oppx1

. O A 00) | P | VLD (op (@ (00)). dp)

Oppx1

= (A740p)) VoL (10, (w" (00)), bp).

This expression at first appears to resemble the one obtained in the setting without a
sub-parameter map in (4.9). However, there is a critical difference: the matrix A=1(8p)
encodes second-order derivatives involving both the backbone and pretext head parameters
(as seen in (5.14))). So, although only the first L rows of A~*(6p) are used in the above
expression, these rows depend implicitly on all its entries through the inversion, including
those involving ¢p.

39

CHAPTER 5. REVISITING BISSL

5.3.4 Approximating the Updated 1J

To approximate the upper-level gradient in Corollary we suggest approximating the
full matrix-vector product

A—I(BD) VOLD(’YHP(O"::(OD))a ¢D)

9

using the conjugate gradient method as outlined in Algorithm [I, where Op, denotes
the Pp-dimensional zero vector. This approach ensures that the CG method captures
interactions for all entries in A(6p), including those involving the pretext head ¢p. After
the CG method has converged towards an approximate solution, the final step is to discard
the last Pp entries of the output vector, yielding the desired derivative with respect to the
backbone parameters solely.

A core advantage of this approach is that it integrates almost seamlessly with the
existing BiSSL setup. Aside from modifying the CG approximation to include additional
components as described above, no additional structural changes are required. Experiments
using this updated setup are documented in Section of Chapter [6]

5.4 Applying BiSSL on GPT

Although the BiSSL framework is presented as domain-agnostic, its evaluation has so
far been limited to computer vision tasks. Given the demonstrated success of large-scale
self-supervised pretraining and downstream fine-tuning in NLP [27,30}34], it is of clear
interest to investigate whether BiSSL can offer similar benefits in this domain. In this
project, we apply BiSSL on the original GPT [30], as detailed in Chapter

The absence of an explicit pretext head with dedicated parameters (see the last
paragraph of Section may make it appear as if BiSSL is incompatible with GPT.
However, BiSSL actually imposes no requirement that the pretext head contain separate
trainable parameters. It only assumes that a separation between the backbone and head
parameters can be made based on how training objectives are defined over parameterized
models. Hence, as long as the loss function £ captures the complete pretext task, the
vector ¢p representing the pretext head parameters may simply be empty. In this case,
the lower-level optimization problem in reduces to

05(0p) € argmin L (8p) + M (6p,0p),
Op

which does not affect the validity of Proposition concerning how to express the LJ.

5.4.1 Embedding Matrix and Token-Specific Parameter Partitioning

A further consideration in adapting BiSSL to NLP involves how the token embedding
matrix W2 is treated by the upper-level. In GPT, this matrix acts both as the input
embedding and as the output projection layer. However, downstream tasks may introduce
new tokens that are not present during pretraining, as outlined back in Section To
accommodate this, we partition the embedding matrix WeD e RV+V as follows:

e The first V rows, corresponding to tokens seen during pretraining, are assigned to
the backbone parameters 6.

40

5.4. APPLYING BISSL ON GPT

e The remaining V rows, associated with new downstream-specific tokens, are assigned
to the downstream head ¢p.

This setup at first appears to violate the original assumptions stated in Section [£.1.1] that
the downstream head hg , is applied to the output of the backbone model, i.e., hy , © fo,
since the token-embeddings are applied prior to the backbone model. Fortunately, this
structural assumption is actually not required for the theoretical results underpinning
BiSSL. Specifically, the downstream head plays no role in the derivation of the 1J, which is
evident in the proof of Proposition .2l Hence, redefining the downstream head to include
components that are placed in advance of the backbone, as done with token embeddings,
does not violate any theoretical foundations of the framework. Consequently, BiSSL can
be applied directly to this setting without the need of any modification of theoretical
formulations and assumptions.

41

6 | Experiments and Results: Abla-
tions and Design Modifications

This chapter presents the experimental setup and results corresponding to the hypotheses
and framework modifications discussed in Sections [5.1] to [5.3] of Chapter 5} We begin by
outlining the implementation details, which are followed by a series of extensions and
ablation studies that test the sensitivity of BiSSL to its key hyperparameters, as discussed in
Section We then present experiments evaluating strategies for adapting the lower-level
weight regularization scaling A dynamically during training as discussed in Section [5.2]
Finally, we examine the effect of modifying the implicit Jacobian (IJ) approximation to
include pretext head parameters, as proposed in Section

Throughout, we briefly comment on the empirical results and their immediate implica-
tions. However, a more comprehensive discussion is deferred to Chapter

6.1 Default Implementation Details

This section outlines the default experimental setup, which largely mirrors that of our
previous work [49] to ensure comparability with its reported baselines. Subsequent sections
introduce targeted deviations, each detailed in context. We begin by describing the vision
datasets used in the experiments, then the training procedure for the conventional self-
supervised pipeline baseline, followed by the BiSSL implementation. Finally, we present
a reduced-scale variant of the default setup, used in cases where computational or time
constraints prevent full-scale experiments.

6.1.1 Datasets Overview

We adopt the same general data pipeline as the original BiSSL work [49], with a few
simplifications due to computational constraints. This includes choices of datasets for both
pretraining and downstream evaluation.

Pretext Task Data

For self-supervised pretraining, we use the ImageNet-1K dataset [2], consistent with the
original setup. When the full-scale setup is unnecessary or computationally prohibitive,
we substitute a reduced variant of STL-10 [66], detailed in Section The ImageNet

dataset is used for pretraining unless otherwise stated.

42

6.1. DEFAULT IMPLEMENTATION DETAILS

We use a data augmentation pipeline closely aligned with that of BYOL [21] and
VICReg [23]. The augmentation sequence is as follows:

1. Random cropping of a uniformly sampled area with a size ratio between 0.5 and 1,
followed by resizing the image to size 96 x 96 for both inputs.

2. Horizontal flip with probability 0.5 for both inputs.

3. Color jittering of brightness 0.4, contrast 0.4, saturation 0.2 and hue 0.1 done in a
random order, with probability 0.8 for both inputs.

4. Grayscale with probability 0.2 for both inputs.

5. Gaussian blur with kernel size 23 and probability 1.0 for one input and 0.1 for the
other.

6. Solarization with probability 0.0 for the first augmentation and 0.2 for the other.

7. Color normalization with the ImageNet mean (0.485,0.456,0.406) and standard
deviation (0.229,0.224,0.224) for both inputs.

Downstream Task Data

For downstream evaluation, we employ a subset of four classification tasks from the twelve
originally used in [49]. This reduction is motivated both by resource and time constraints
and by the project’s focus on analyzing variations within BiSSL rather than benchmarking
against other baselines.

This selection includes datasets previously used in ablation studies of the original paper,
enabling easier comparison. The selected datasets are:

« PASCAL VOC 2007 (VOCO07) |67

o Describable Textures Dataset (DTD) [68]
o Oxford-IIIT Pets (Pets) [54]

o Oxford 102 Flowers (Flowers) [69]

This subset offers a representative mix of both coarse and fine-grained natural image
classification tasks.

A simpler augmentation scheme is applied for downstream training. Images are center
cropped to size 96 x 96 with a minimal crop ratio of 0.5, followed by the image being
randomly flipped horizontally. Lastly, the image is normalized with the same mean and
standard deviations used for the pretext data augmentations.

For DTD and Flowers, we use the official validation partitions. For VOCO07 and Pets,
we reuse the splits from [49], which reserves approximately 20% of the original training
data as a validation set.

6.1.2 Baseline Setup: Conventional Self-Supervised Training Pipeline

This section describes the baseline setup that will be compared with BiSSL. The setup
mirrors the training pipeline previously outlined in the left-side diagram of Figure 4.1

43

CHAPTER 6. EXPERIMENTS AND RESULTS: ABLATIONS AND DESIGN
MODIFICATIONS

Pretext Training

We adopt SimCLR [19] as the pretext task, introduced in Section of Chapter . A
ResNet-50 [4] backbone is pretrained using the NT-Xent loss with a temperature
parameter 7 = 0.5. The projection head comprises three linear layers, each with 256 units
and batch normalization layers in between.

Optimization is performed using the LARS optimizer [70] with a trust coefficient of
0.001, momentum 0.9, and weight decay 107%. The learning rate linearly warms up from
0 to 4.8 over the first 10 epochs, followed by a cosine decay to 0 with no restarts [71].
Training is done for 500 epochs with a batch size of 1024.

To reduce computational cost and environmental impact, we reuse the pretrained
weights from the original BiSSL implementation for all experiments.

Downstream Fine-Tuning

For downstream tasks, a linear classification head is appended to the pretrained backbone,
consisting of a single fully connected layer with output dimensionality equal to the number
of classes in the task. Training uses the cross-entropy loss, stochastic gradient descent
(SGD) [72] with momentum 0.9, and a cosine decaying learning rate schedule without
restarts [71]. The batch size is set to 256, and models are fine-tuned for 400 epochs.

Hyperparameter optimization is conducted via random sampling of H values over a
predefined space. Namely, each trial samples the learning rate and weight decay from
log-uniform distributions ranging from 10~ to 1 and from 1075 to 1072, respectively.
Though we used H = 100 in [49], we will either use H = 50 or H = 25 for the experiments
in this project. Validation performance is assessed after every epoch using the top-1 and
top-5 accuracy (or the 11-point mean average precision (mAP) for VOC07 [67]). The
configuration yielding the best overall trade-off between validation loss and accuracy is
selected.

For test-time evaluation, we retrain 10 models using the selected hyperparameter
configuration. Model checkpoints are stored only when top-1 validation accuracy (or mAP
for VOCO07) increases its all-time previous maximal accuracy. Final test results are reported
as means and standard deviations of top-1 and top-5 accuracy (or solely mAP for VOCO07)
across these 10 runs.

6.1.3 Training Setup Using BiSSL

The BiSSL-based training follows the pipeline depicted on the right side of Figure This
section outlines the training procedure for each stage in that pipeline.

Pretext Task

The pretext training phase is identical to the baseline setup described in Section As
such, we again reuse the same pretrained weights.

44

6.1. DEFAULT IMPLEMENTATION DETAILS

Downstream Head Warm-up

This stage mirrors the downstream fine-tuning setup described in Section with one
key difference: only the classification head is trained while the backbone remains frozen.
Rather than performing a separate hyperparameter search, we use the learning rate and
weight decay values identified as optimal in the baseline fine-tuning setup as a starting point,
where minor adjustments are occasionally made based on preliminary experimentation.
The warm-up is run for 20 epochs with no scheduling on the learning rate.

BiSSL

The implementation of the BiSSL algorithm, generally outlined in Algorithm [2] is specified
by first summarizing configurations specific to the lower and upper training stages, followed
by a description of the composite configuration for the BiSSL implementation.

Lower-Level The configuration of the lower-level broadly aligns with the pretext training
procedure described in Section[6.1.2] with a few key modifications. As per formulation in the
lower-level problem , its objective is composed of the original pretext task loss £ (the
NT-Xent loss from in this case) and a regularization term that penalizes the distance
between the upper- and lower-level backbone parameters. We use r(6p,60p) = 3|(0p—0p||3,
with the weighting fixed at A = 0.001. Differing from the original pretext training, the
linear learning rate warm-up now extends across Ny, - 10 steps, where N; denotes the
number of gradient iterations in the lower-level training stage.

Upper-Level The upper-level shares most of its configuration with the downstream fine-
tuning setup in Section except where noted here. The learning rate and weight decay
are inherited from the downstream head warm-up stage. To approximate the first term of
the upper-level gradient in Equation , we use the conjugate gradient method outlined
in Algorithm [T, with the Hessian-vector product calculator presented in Algorithm [3] It
utilizes a randomly sampled lower-level batch z. The input vector v in Algorithm [1] is
this case the gradient of the downstream loss with respect to the lower-level backbone,
evaluated at @ = 0p, i.e., v = VoLP(0,0p)|6=0,- The conjugate gradient procedure uses
N, =5 iterations and includes a damping term Agamp = 10 to improve convergence and
numerical stability.

Algorithm 3 Hessian Vector Product Calculation fz (To use in Algorithm

1: Input: Input vector x, Model parameters 8 p, ¢p, Training Objective £F, lower-level
data batch z, Regularization Weight A\ and dampening Agamp-

P T
2 (0p) < (VoL” (0.6p:7) lo=0,) x
3 g VGW(O)‘HZGP > Memory efficient calculation of V5L (8,¢p;2)|e—0,%.

1
4: y%X‘me

5. Return: fy(x):=y

Composite Configuration Details Both backbones 8p and @p are initialized using the
pretrained backbone from the original self-supervised training. The lower-level conducts

45

CHAPTER 6. EXPERIMENTS AND RESULTS: ABLATIONS AND DESIGN
MODIFICATIONS

Ny, = 20 gradient steps before alternating to the upper-level, which then conducts Ny = 8
gradient steps. This cycle is repeated for a total of T" = 500 alternations. Given that the
ImageNet training set consists of 1251 batches (with the current batch size of 1024), these
T = 500 alternations correspond to roughly ,{2]\% = 5?35210 ~ 8 conventional pretext epochs.
This is considered a negligible overhead relative to the 500 pretraining epochs used in the

baseline.

To prevent data from being reshuffled between successive training stage alternations, we
maintain separate stacks for the batched lower- and upper-level datasets. These stacks are
regenerated only when remaining batches are insufficient to complete the scheduled number
of gradient steps (i.e., Nz, = 20 for the lower-level). For smaller downstream datasets where
fewer than Ny = 8 distinct batches can be formed, the data is reshuffled and the stacks
are remade once the remaining number of examples falls below the upper-level batch size
(in this case 256). Gradients with norms exceeding 10 are clipped to ensure numerical
stability.

Downstream Fine-Tuning

To ensure comparability, the final downstream fine-tuning stage mirrors the fine-tuning
procedure described in Section [6.1.2] except for the fact that the backbone is initialized
instead with the lower-level backbone obtained from the previous BiSSL stage.

6.1.4 Small-scale Configuration

For certain experiments where the default setup is excessive or computationally infeasible,
we adopt a reduced configuration referred to as the small-scale setup. The small-scale setup
mirrors the structure of the default setup as closely as possible, with a few modifications
aimed at reducing computational demands, namely:

« Backbone model: A smaller ResNet-18 [4] architecture is used as the backbone
instead of a ResNet-50.

e Pretraining dataset: The unlabeled portion of the smaller-scale STL10 data-
set [66] is used in place of ImageNet for self-supervised pretraining and lower-level
optimization of BiSSL. This dataset consists of 100,000 natural images of resolution
96 x 96.

e Training duration adjustment: With the current batch size of 1024, the STL10
dataset yields a total of 98 training batches. Thus, conducting T' = 500 BiSSL
training stage alternations is approximately equivalent to Té\srL = 508é20 ~ 100 epochs
of conventional pretraining in this setting. To ensure comparability, the baseline
models used for evaluation are pretrained for a total of 600 epochs by adding 100
extra epochs to their original schedule, ensuring that the number of effective pretext

training steps roughly matches.

Apart from these adjustments, all other configurations remain consistent with the default
setup described in Section [6.1.1] [6.1.2] and [6.1.3] For clarity, we emphasize that the
small-scale setup is only employed when explicitly stated.

46

6.2. BASELINES

Table 6.1: Baseline results for the default setup. Top-1 accuracy is reported, except for
VOCO07, where the 11-point mAP is used. Significant improvements are shown in bold.

VOCO07 DTD Pets Flowers

Only FT [49] 71.0+0.1 60.3+£09 73.2+0.3 82.6+0.3
BiSSL + FT' 71.4+0.1 638+03 77.7+£05 84.2+0.3

Table 6.2: Original and sweep values for each hyperparameter. Bolded entries indicate the
default /original values. See Algorithm [2| for details on how the parameters A\, T', Ny and
Ny, are used in BiSSL. *: For Ny = 1, we'll reuse the result from [49].

Parameter | Original Sweep

A 0.001 {1,0.1,0.01,0.001,0.0001}

T 500 {100, 200, 300, 400, 500, 600, 800, 1000}
Ny 8 {1%,2,4,8,10,12}

Np, 20 {1,2,5,10,20,30,40,50}

FT Epochs 400 {5,10, 25, 50, 100, 200, 300, 400}

6.2 Baselines

We reuse the standard fine-tuning baseline from [49], as our default experimental setup is
identical in all relevant aspects. The standard BiSSL configuration results are reproduced
to ensure full control and comparability across experiments, accounting for any potential
changes in the implementation that may have occurred in the meantime. We conduct the
hyperparameter grid search for H = 50 combinations.

Table summarizes the baseline results for the default setup. BiSSL consistently
outperforms standard fine-tuning across all four datasets.

6.3 Hyperparameter Influence

This section presents the experimental setup and results of the hyperparameter studies
proposed in Section [5.I} The goal is to better understand how key hyperparameters
involved in BiSSL affect downstream performance when varied. For each experiment in
this section, we perform a grid search over learning rates and weight decay values using
H = 25 combinations and document top-1 classification accuracies.

For each hyperparameter studied, we vary it while keeping all other hyperparameters
fixed and identical to those outlined in the default setup. Table lists the sweep values
to be evaluated for each hyperparameter. As each variation of a hyperparameter involves
conducting BiSSL and subsequent fine-tuning from scratch, we only document results
regarding BiSSL-specific hyperparameters (A, T, Ny, and N1) on the Pets dataset to spare
computational resources. For the experiments involving the number of fine-tuning epochs,
we report results across all four downstream datasets (Pets, VOC07, DTD, and Flowers).
Results in this section are presented in figures, but full tabulated values can be found in

Section of Appendix

47

CHAPTER 6. EXPERIMENTS AND RESULTS: ABLATIONS AND DESIGN
MODIFICATIONS

Top-1 Accuracy vs. A on Pets Dataset

81
—&— BIiSSL + FT
80 1 Only FT
791 Original
9 78 A
> e / “\Q
® 771
3
(9]
(o)
< 76
—~
o
i 75
74 A
73 1
72 T T T T T
Q N > > >
/'\'. /0 Q.Q 00 QQ
7 ~ % Q S
R ~ L

Figure 6.1: Impact of varying the lower-level regularization strength A on downstream

top-1 classification accuracy (Pets dataset). See Table in Appendix |F| for tabulated
results.

Top-1 Accuracy vs. T on Pets Dataset

—8— BIiSSL + FT
80 - Only FT

Original

78 A l

~
~
1

~
[e)]
1

Top-1 Accuracy (%)

Q
Q
«’/\9

Figure 6.2: Impact of varying the number of training stage alternations 7' on downstream

top-1 classification accuracy (Pets dataset). See Table in Appendix |F| for tabulated
results.

48

6.3. HYPERPARAMETER INFLUENCE

Top-1 Accuracy vs. Ny on Pets Dataset

—8— BIiSSL + FT
80 1 Only FT

Original

|

~
~
1

~
[o)]
1

Top-1 Accuracy (%)

72 T T T T T T
~ q v % Q o
o~ e

N N N N 7
N N N A\ W QO

Figure 6.3: Impact of varying the number of upper-level iterations Ny on downstream
top-1 classification accuracy (Pets dataset). See Table in Appendix |F| for tabulated
results.

BiSSL Specific Hyperparameters Figures [6.2] and display the Top-
1 accuracies on the Pets dataset when varying the hyperparameters A\, T', Ny, and Np,

respectively, compared with the conventional SSL pipeline baselines documented in Table[6.1]
Adjusting A\ shows no significant effect on downstream performance, suggesting the method
is robust to the choice of regularization strength within the tested range.

For the temperature parameter 7' in Figure [6.2] we observe that using 7' = 200 yields
comparable performance to the default value of T' = 500, which indicates that BiSSL can
achieve similar results with substantially less computational effort. Overall, these results
imply that as long as T is chosen sufficiently large, BiSSL attains improved performance.

Regarding the number of upper-level optimization steps Ny in Figure[6.3] improvements
plateau once Ny reaches 4. Since the upper-level optimization is the most computationally
intensive part of the process, reducing Ny from 8 to 4 offers a prominent efficiency gain
without sacrificing accuracy in this example.

Varying the number of lower-level optimization steps Ny, as seen in Figure shows only
a small performance increase from Ny = 1 to N;, = 5, with no improvements afterwards.
This suggests that Ny, = 5 or even Ny, = 2 is a reasonable choice, and calls into question
whether the original setting of Ny = 20 is excessive.

Number of Downstream Fine-Tuning Epochs Figure presents the final ablation
study, showing downstream performance over a varying number of fine-tuning epochs.
Since these experiments are relatively inexpensive to run, we include results for all four
datasets. For each configuration, both BiSSL and the conventional baseline were trained
under the default settings, varying only the number of fine-tuning epochs, using H = 25.

49

CHAPTER 6. EXPERIMENTS AND RESULTS: ABLATIONS AND DESIGN

MODIFICATIONS
g Top-1 Accuracy vs. N; on Pets Dataset
1
—e— BiSSL + FT
80 - Only FT
797 Original
= 78 1 l
O\; ./.-/\ @
® 77
5
(9]
(o)
< 76
—
oy
Q 75
74 1
734
72 T
v) O N Q Q Q
P . 7 2 sV 7’ P Ve
$V %V $V $\/ $\/ $\/ $\/ $\/

Figure 6.4: Impact of varying the number of lower-level iterations Ny, on downstream top-1
classification accuracy (Pets dataset). See Table in Appendix |F| for tabulated results.

Pets VOCO07

781 ‘\'/o—o—’a\o—o 7151

71.04

(]

Accuracy (%
~
S
Accuracy (%)

o 70.0
724
69.5
704
™ ™ ™ ™ ™ ™ 69.0 ™ ™ ™ ™ ™
> A < &> S < & ~» 4 3 Y & < &
FT Epochs FT Epochs
DTD Flowers
85
64 1
63 ."\./,/4—0—0 N
. 621 ~
S X 83
> >
g ?
5 o 5
o o
£ 60 g 82
591
81+
581
57 T T T T T T T 80 T T T T T
K © & @Q ’L@ ”PQ & K o <& '@0 q,“Q 4}00 S
FT Epochs FT Epochs
—8— BiSSL + FT Only FT

Figure 6.5: Impact of varying the number of fine-tuning epochs on downstream top-1
classification accuracy across the Pets, VOC07, DTD, and Flowers datasets. For VOC07
and Flowers, the accuracy-axes are cropped to better highlight differences among the
highest achieved accuracies. See Table @ in Appendix E| for tabulated results.

50

6.4. ADAPTIVE SCALING OF A\

While each dataset exhibits its own characteristic behavior, BiSSL consistently yields
robust downstream accuracy once a sufficient number of fine-tuning epochs is reached, and
the accuracy remains stable thereafter. In contrast, the Only FT baseline is more sensitive
to this parameter, in some cases showing less consistent improvements.

The baseline on the Pets dataset in the upper-leftmost part achieves its best performance
with very few fine-tuning epochs and degrades as training continues, implying possible
overfitting. On the other hand, BiSSL attains its performance consistently and outperforms
the baseline regardless of the epoch count.

For the DTD dataset in the lower-leftmost part, a similar pattern emerges, though the
baseline does not deteriorate with more fine-tuning. Both methods improve with longer
training up to about 100 epochs, after which performance saturates. Again, BiSSL remains
consistently superior.

BiSSL converges earlier for the VOC07 dataset in the upper-rightmost part, reaching
peak performance around 50 epochs. The baseline also improves with more epochs until
plateauing at 200 epochs.

Finally, for the Flowers dataset in the lower-rightmost part of the figure, BiSSL
reaches strong performance quickly and sees negligible gains after 25 epochs. The baseline
shows substantial variance across configurations, however. While it’s less clear whether
performance has stalled, the fluctuations suggest that more extensive hyperparameter
tuning might yield improvements for the baseline in this case.

6.4 Adaptive Scaling of A

This section investigates a modified BiSSL configuration where the lower-level regularization
weight A is allowed to vary during training. We evaluate the strategies for adaptively
setting A described in Section [5.2] of Chapter [f] including both scheduling and making it
learnable.

6.4.1 Scheduling A

We examine the effect of scheduling A using the suggested schedulers from Section [5.2.1
with a fixed minimum value Ay, = 1078 and varying the maximum value Apax. Since this
involves sweeping over several combinations of schedulers and varying Apax, we conduct
these experiments using the small-scale setup to reduce computational cost. H = 25 is
used for the hyperparameter search.

Cosine Schedulers As visualized in Figure [5.1] we consider both increasing and de-
creasing cosine schedules for A\, with values developing between a fixed Apin = 1078 and
varying Amax. Figure presents the downstream accuracy under these schedulers.

The results suggest that the performance is highly sensitive to the choice of Apax-
Poorly chosen values can lead to substantial drops in accuracy, in many cases even under-
performing the conventional fine-tuning baseline. The best results are achieved with
Amax = 0.002, which slightly (though not significantly) outperforms the standard BiSSL
configuration. This value is particularly notable because the average value of A(¢) under
the cosine schedule equals 0.001, which corresponds to the default value when A is fixed in
BiSSL.

o1

CHAPTER 6. EXPERIMENTS AND RESULTS: ABLATIONS AND DESIGN
MODIFICATIONS

Top-1 Accuracy vs. Apmax 0N Pets Dataset

~
N

~
o

(o)}
o]

(o))
(o)}

o
IS
L

Top-1 Accuracy (%)

[}
N

—&— Cosine Decrease
—— Cosine Increase

o
o

1 --- BiSSL+ FT
Only FT
58 T

N N N > Qv & >

b Q Q Q Q
/\9 > 2 N N o N
< e & e 7 7 N

A e A }@7’ o & +’
A AN NS
/\max

Figure 6.6: Impact of applying cosine scheduling strategies to the lower-level regularization
strength A\ on downstream Top-1 classification accuracy (Pets dataset and small-scale
setup). Results are shown for both increasing and decreasing cosine schedules across
different values of Apax, With Amin fixed at 1078, The conventional Only FT, as well as the

BiSSL baseline (fixed A = 0.001), is included for comparison. See Table in Appendix
for tabulated results.

Top-1 Accuracy vs. Amax On Pets Dataset (Exponential Increase)

~
N

~
o
|

o
fer)

)

Top-1 Accuracy (%)
o (2]
N Iy

- a=1
—& a=10
a =100
—-==- BiSSL + FT
only FT

(=)}
o

ul
[ee]

u
(=)}

> 2 >
A Q Q Q
O o S S
5 7 N
< @7’+ 1,+/
AN

Amax

Figure 6.7: Impact of applying exponentially increasing scheduling to the lower-level
regularization strength A on downstream Top-1 classification accuracy (Pets dataset and
small-scale setup). Results are shown for o € {1,10,100} across different values of Amax,
with Amin fixed at 1078, The conventional Only FT, as well as the BiSSL baseline (fixed
A = 0.001), is included for comparison. See Table in Appendix [F| for tabulated results.

52

6.4. ADAPTIVE SCALING OF A\

Table 6.3: Downstream top-1 classification accuracy for BiSSL using a cosine-increasing
schedule with M. = 0.002 and an exponential-increasing schedule with @ = 100 and
Amax = 0.001, evaluated on the full-scale default setup across the VOC07, DTD, Pets, and
Flowers datasets.

VOCo7 DTD Pets Flowers
Ounly FT [49] 71.0+01 603+09 73.24+03 82.6+0.3
BiSSL+FT (Original, Fixed A = 0.001) 71.44+01 63.84+03 77.7+£05 84.24+0.3
BiSSL+FT (Exp.Inc., & = 100, Appax = 0.001) 71.2+£0.1 62.9+0.2 77.3+0.2 84.3+0.1
BiSSL+FT (COS.IHC., Amax = 0.002) 70.2+0.1 61.0+0.3 76.5+0.4 80.94+0.2

We furthermore observe that setting Apax = 1 or Apax = 10 results in performance
matching that of the Only FT baseline. This aligns well with the interpretation back in
Section [4.2.3] implying that large values of X essentially force BiSSL to conduct conventional
fine-tuning. Note that this appears contradictory to the previous results for setting a fixed
A =1 in Figure We provide further insights into this in the discussion of Chapter

All in all, no clear advantage of increasing over decreasing cosine schedules is observed
from the results. Hence, these findings overall suggest that cosine scheduling provides no
clear benefit over keeping A fixed.

Exponential Schedulers As visualized in Figure [5.2] we consider exponential schedul-
ing strategies for A(t) with Ay = 1078, sharpness a € {1,10,100} and varying Apax €
{0.1,0.01,0.001,0.0001}. Figure presents downstream performance using these expo-
nential schedules on the Pets dataset.

Similar to the cosine schedules, the exponential schedulers appear highly sensitive to
the choice of A\ax. When setting Apax = 0.001, which roughly aligns the average \ for the
exponential increasing scheduler with the default constant value of 0.001, performance
remains comparable to the BiSSL baseline. However, in all other tested configurations,
scheduling adversely impacts performance to the extent that it underperforms even the
conventional fine-tuning baseline.

Scheduling on Default Setup The earlier scheduling experiments were run on the
small-scale setup, leaving it unclear whether their conclusions carry over to the default
configuration. Based on validation accuracy, the exponential increase schedule with o = 100
and Apax = 0.001 arose as the best-performing choice, which motivated us to re-evaluate
this configuration on the full default setup. Since this schedule quickly approaches an almost
fixed value, mirroring the original setup, we also wanted to include a slower-rising alternative
for contrast. For this, we selected the cosine-increasing schedule with A\p. = 0.002.

Table shows the results. In general, the scheduled variants perform either worse
or on par with the standard BiSSL configuration. For the cosine-increasing schedule in
particular, the performance drop is substantial enough that in two out of four datasets,
it even falls below the Only FT baseline. These findings reinforce the conclusion that
scheduling A increases downstream volatility without offering consistent benefits. In some
cases, scheduling may even negate the advantages of BiSSL when compared to both fixed-A
and conventional fine-tuning.

93

CHAPTER 6. EXPERIMENTS AND RESULTS: ABLATIONS AND DESIGN

Accuracy vs. Learnable A on Pets Dataset
78 4
TT4 e T e Y
g 76 1 —— /\damp =0 SO
5 —--- BiSSL + FT
g7 Only FT
74 4
734
N [N ~ & > & &
> > R Q Q Q Q
//”v //'\, //0 //04 Qg 096 QQQ
N & Ng V
NS NS NS & < i Q
& & & & o & <«
S & 0@@

Initial Value of Learnable A

Figure 6.8: Downstream top-1 accuracy on the Pets dataset using learnable A with
Adamp = 0 and Agamp = 10 for different initializations. See Table in Appendix |E| for
tabulated results.

6.4.2 Learnable)\ via Upper-Level Optimization

The earlier attempts to adapt A did not yield clear improvements. As a final approach,
we instead allow BiSSL to learn X\ directly by treating it as an upper-level parameter,
following the formulation introduced in Definition [5.1] of Section We use the softplus
function o(z) = log(1 + €*), and update A using the upper-level gradient in (5.6). The
same optimizer is used as for other upper-level parameters. We test two configurations,
using Agamp = 0 and Agamp = 10, to also evaluate the effect of dampening. Experiments
are conducted on the default setup, varying the initial value of o(\).

Figure[6.8|shows the downstream accuracy on the Pets dataset for different initializations.
The results indicate that learning A does not lead to any clear improvement in downstream
performance. Initial values around o(\)ipit = 0.01 or o(\)iniy = 0.001 appear to provide
the best results, but the variation is minor. Unlike the scheduler-based strategies, however,
the performance never drops below that of the Only FT baseline. All configurations yield
consistently stronger results, suggesting that while learning A may not improve performance,
it also does not introduce the same instability. Figures [F.Iand [F-2]in Appendix [F]illustrate
how A evolves during training for the two dampening settings.

6.5 Non-Fixed Pretext Head During IJ Approximation

This section presents experiments using the alternative setup introduced i Section [5.3| where
the pretext head parameters are not assumed fixed during the approximation of the 1J. The
overall setup remains consistent with the default configuration, using H = 50. The main
difference lies in the estimation of the upper-level gradient, where we instead approximate
the gradient from Corollary We follow the procedure suggested in Section and
update the implemented conjugate gradient (CG) solver accordingly. All other experimental
settings remain identical to the default.

54

6.5. NON-FIXED PRETEXT HEAD DURING 1J APPROXIMATION

Table 6.4: Downstream accuracies comparing the default BiSSL setup with the variant
discussed in Section where the pretext head parameters are not assumed fixed during
the 1J approximation. Results are documented across the VOC07, DTD, Pets, and Flowers
datasets. No significant average differences are present.

BiSSL + FT VOCO07 DTD Pets Flowers
Original 71.4+£0.1 63.8+03 77.7+£0.5 84.24+0.3
Non-fixed ¢ p During IJ Approx. 71.3+0.1 63.6+0.3 784+0.3 84.1+0.1
Avg Diff -0.1 —-0.2 +0.7 -0.1

Table compares the original BiSSL implementation with this modified approach, and
the results show no significant difference in downstream accuracy between them. Further
discussion of these findings is deferred to Chapter

95

7 | Experiments and Results: NLP

This chapter presents experiments evaluating the impact of applying BiSSL to NLP tasks.
We apply BiSSL on the GPT pretext task introduced in Section of Chapter [2|, where
considerations regarding such implementation were addressed in Section of Chapter
We begin by outlining relevant implementation details, followed by documenting downstream
performance on a partition of the GLUE benchmark [50].

7.1 Implementation Details

We follow the original GPT implementation [30] as closely as possible. Any modifications
needed to make it work within the BiSSL framework are highlighted explicitly. Broader
general implementation details regarding BiSSL that are not specific to the NLP/GPT
setup have already been covered in Chapter [6] and are not repeated here. Where relevant,
we point the reader to the appropriate sections of that chapter for background.

7.1.1 Datasets Overview

All datasets used in this chapter are publicly available and are accessed via the Hugging
Face datasets library [73].

Tokenization

We reuse the same tokenizer as the original GPT model. Specifically, we adopt the
preconditioned OpenAIGPTTokenizer class provided by the Hugging Face transformers
library [74], which employs both the tokenizer logic and the pretrained vocabulary of
V = 40,478 tokens used by the original GPT model.

Pretext Task Data

The BooksCorpus dataset [75] will be used for self-supervised pretraining. It consists of
unlabeled text from over 7,000 unique unpublished books, spanning various literature
genres. As it contains long stretches of text, it is well-suited in this context as this allows
the pretraining procedure to learn long-range dependencies. A context window of k = 512
is used, hence sentences from the pretraining corpus are divided into chunks of exactly 512
tokens.

o6

7.1. IMPLEMENTATION DETAILS

Downstream Task Data

We train and evaluate models on a subset of the General Language Understanding Evalu-
ation (GLUE) benchmark [50], which includes the following 7 datasets spanning three task

types:

o Classification: The Corpus of Linguistic Acceptability (CoLA) [76] and Stanford
Sentiment Treebank-2 (SST2) [77]. Both are binary classification tasks. CoLA
involves classifying grammatical correctness, while the task of SST2 is to classify
(positive or negative) sentiment of sentences.

o Natural Language Inference: Recognizing Textual Entailment (RTE) [78] and Ques-
tion NLI (QNLI) [79]. Both datasets consist of sentence pairs containing a premise
and a hypothesis. RTE involves binary classification of whether the premise entails
the hypothesis, contradicts the hypothesis, or neither. QNLI consists of pairs of
questions and context sentences, whereas the task is to assess whether the context
sentence contains the answer to the question.

o Sentence Similarity: Microsoft Research Paraphrase Corpus (MRPC) [80], Quora
Question Pairs (QQP) [81], and Semantic Textual Similarity Benchmark (STSB) [82].
These tasks assess semantic equivalence between sentence pairs. MRPC and QQP
are binary classification tasks, while STSB is a regression task with similarity scores
ranging from 1 to 5.

Each dataset is evaluated using its associated task-specific metrics, which implementations
are provided by the Hugging Face evaluate library [83]. CoLA is evaluated using the
Matthews correlation, STSB the Pearson correlation, MRPC and QQP the F1l-score, and
the rest the top-1 classification accuracy. For details on these metrics, we refer to the
original GLUE source outlined above.

Although GLUE provides dedicated training, validation, and test splits, the test labels
are not publicly accessible. We therefore reconfigure the original validation sets as test
sets. For training and validation, we partition the first 80% for training, and the remaining
20% for validation in the ordering provided by Hugging Face. As the ordered datasets all
appear to be pre-shuffled, we assume this split is effectively IID.

The GLUE benchmark also includes the MultiNLI Matched (MNLI-m), MultiNLI
Mismatched (MNLI-mm) [84] and Winograd NLI (WNLI) [85] datasets, but these are
excluded from experimentation in this project. MNLI-m and MNLI-mm share the same
training partition but differ in their validation and test splits, making evaluation on MNLI-
mm unreliable given the project’s validation setup. Due to their relatively large size, they
were also omitted to conserve computational resources, where we argue that the large-scale
QQP dataset already serves to illustrate performance on a higher resource-demanding
task. WNLI was excluded after preliminary testing showed that fine-tuning performance
consistently degraded below random chance, indicating that the task is too difficult for this
model class. In line with the original GPT paper, we do not report results on this dataset.

Downstream Input Formatting Tokenized inputs are constructed differently de-
pending on task type. Let s, d, and e denote special start, delimiter, and end tokens,
respectively. These special tokens expand the vocabulary beyond the V' = 40,478 tokens to
V + Vp = 40,480 for classification, and to V + Vp = 40,481 for entailment /similarity.

o7

CHAPTER 7. EXPERIMENTS AND RESULTS: NLP

For classification tasks, a single sentence is wrapped with start and end tokens. Given

a tokenized input x1,...,xy, the model input is then x = [s,x1, ... ,xN,e]T

Entailment tasks require the input to capture the sentence ordering (a premise followed
by a hypothesis). Given a tokenized premise 2}, ... ,xzj\,p and hypothesis x?, .. ,x}]{,h, the
input is x = [s,2], ... ,CL’?VP,d,iL'If, . ,x}](,h,e]T.

For similarity tasks, sentence order is not of importance. To ensure this is captured by
the model, each input sequence does, in this case, yield two model inputs with reversed

sentence orders. Given the tokenized sequences z¢,...,x% and z%,...,2% , the inputs are
1 '“ Ng 1 'Y Ny
a a b b T b b a a T
then x; = [s,29,... 2%, ,d,27,... 25, e]” and xo = [s,27,... 2%, ,d.2f,... .25 e]". The

model processes these inputs slightly differently, which is outlined in the "Downstream
Fine-Tuning" subsection below.

To ensure compatibility with the pretrained GPT model, input sequences longer than
the context window of k = 512 are discarded (which for each dataset is a negligible small
fraction), and shorter sequences are padded.

7.1.2 Baseline Setup

Self-Supervised Pretraining

We reuse the publicly available GPT model implementation and pretrained weights provided
by the OpenAIGPTLMHeadModel class of the Hugging Face transformers library [74], whose
weights are achieved in a way that mirrors the original GPT pretraining setup. This
section outlines key aspects of the pretraining process to support subsequent experimental
configurations for BiSSL.

The model has approximately 117 million trainable parameters, with architecture-
specific hyperparameters listed in Table of Appendix [B] Training is performed using
the Adam optimizer |[86] with a batch size of 64 over a total of 100 epochs. The learning
rate increases linearly from 0 over the first 2000 update steps, peaking at 2.5 - 10~%, and
then decays following a cosine schedule without restarts [71]. A weight decay of 0.01 is
applied to all parameters except for biases and scale parameters in the layer normalizations.
The pretext task training objective is as described back in Section [2.3.4]

Downstream Fine-Tuning

We fine-tune the pretrained model ourselves on all GLUE datasets to ensure that the
resulting baselines are directly comparable with those obtained using BiSSL. Most aspects
of the original fine-tuning procedure are mirrored in the implementation of this project,
and we document all relevant details here.

Unless otherwise noted, we reuse the same hyperparameters as for self-supervised
pretraining, which also includes using the Adam optimizer. We apply dropout [87] with
probability 0.1 to the transformer outputs before the output layer(s). We use the mean
square error training objective on the STSB dataset, and the cross-entropy on the rest.
The original paper specifies a learning rate of 6.25 - 1075, batch size of 32, and three
training epochs for “most tasks”. However, it does not clarify which tasks deviate from
this setup or how. To ensure that the configuration can be extended consistently to BiSSL,
we instead perform a grid search over learning rates and weight decays. This involves
a total of 32 different combinations of logarithmically uniformly spaced learning rates

o8

7.1. IMPLEMENTATION DETAILS

[1076,1.93-107¢,3.72.1076,7.2-1076,1.39 - 1075,2.68 - 107, 5.18 - 10~°,10~*] and weight
decays [1075, 1074,1073, 10_2}. The learning rate follows a cosine decaying schedule with
a warm-up period from 0 covering the first 0.2% of total training steps.

We use the downstream objective described by Equation and Section and
set the auxiliary language modeling objective scaling to v = 0.5. As outlined previously,
sentence similarity tasks involve processing of two input sequences x; and x3. These are
processed independently through the transformer blocks, resulting in outputs Hp (x;) and
Hp(x2). These are then summed element-wise and passed through the task-specific output
layer, while the language modeling heads produce separate outputs for each sequence,
which are averaged before computing the auxiliary loss. We provide a modified version
in the BiSSL implementation of the OpenAIGPTLMHeadModel-class from the transformers
library to account for this altered processing.

We evaluate validation performance ten times per epoch at evenly spaced intervals.
The final evaluation always coincides with the last update step. As for the experiments
in Chapter [0, we save the model whenever validation performance exceeds all previous
evaluations. For each downstream task, we train ten models using the considered best
configuration from the grid search, using different random seeds. We report the mean and
standard deviation across these runs.

7.1.3 BiSSL Setup

We adopt the original BiSSL framework described in Chapter [, following the training
pipeline shown in Figure 4.1

Downstream Head Parameters In light of the considerations from Section of
Chapter [5], we define the downstream head to include both the task-specific output layer as
well as the downstream-specific rows in the embedding matrix, without the need to make
any modifications to the theoretical setup. These rows correspond to the special start,
end, and delimiter tokens. However, since BiSSL requires the option to insert an external
backbone model in place of the downstream backbone (the first term in), we have
modified the implementation to allow such substitution of specific rows of the embedding
matrix, enabling the replacement of solely the rows corresponding to those considered part
of the backbone model.

Self-Supervised Pretraining We reuse the pretrained model described in Section [7.1.2]

Downstream Head Warm-up We conduct the downstream head warm-up for varying
durations, conditioned on the downstream dataset size. For the SST2, QNLI, and QQP
datasets, it is conducted for 10% of an epoch, and otherwise 50% of an epoch for the
remaining datasets. The learning rate and weight decay identified as optimal in the baseline
fine-tuning setup are reused as a starting point, with minor occasional adjustments. Except
for the backbone being frozen and that the learning rate stays constant, the same setup
used for downstream fine-tuning is otherwise applied here.

BiSSL The BiSSL optimization procedure largely follows the setup in Section [6.1.3
where mainly specific hyperparameters are adjusted for these experiments. For general

99

CHAPTER 7. EXPERIMENTS AND RESULTS: NLP

Table 7.1: Comparison of classification accuracies between the conventional SSL pipeline
and the BiSSL pipeline. Accuracies significantly higher than their counterparts are marked
in bold.

CoLA SST?2 RTE QNLI MRPC QQP STSB
Only FT 470+£18 922403 60.3+41 857403 852+1.0 87.0+£0.2 86.3+0.6
BiSSL + FT 47.0+£16 93.0+0.3 644+11 859+04 852+03 87.14+0.1 87.5+0.3
Avg Diff 0.0 +0.8 4.1 +0.2 0.0 +0.1 1.2

details regarding gradient approximation and batch handling, we refer to that section.
We reuse the exact optimizer configurations specified for baseline SSL pretraining and
downstream fine-tuning in Section except that the lower-level peak learning rate is
reduced to 5- 1075,

Based on preliminary testing from the validation accuracies on the RTE dataset, we
use T' = 200 training stage alternations with Ny = 20 and Ny = 4 lower- and upper-level
iterations respectively (see Algorithm . This setup appeared to benefit significantly from
stronger lower-level regularization, so we increased A = 0.1 throughout, in contrast to the
choice of 0.001 used in our original implementation [49]. With a lower-level batch size of
64, the total number of available batches is 32227 (while we cannot confirm that this is the
exact number of available batches used to train the original model, we reasonably assume
it is within the proximity). This means that the lower-level in this configuration trains for
what corresponds to roughly ??;]2\[;7 = 2302%'229 ~ 0.12 pretraining epoch, which is a negligible

overhead.

Downstream Fine-Tuning The downstream fine-tuning procedure follows the exact
same procedure as the baseline downstream fine-tuning, except that the backbone is instead
initialized with the lower-level backbone achieved from the previous BiSSL stage.

7.2 Downstream Task Performance

Table reports the means and standard deviations of the downstream task accuracies,
comparing the standard self-supervised learning pipeline (Only FT) with the BiSSL-
augmented pipeline (BiSSL+FT). The results indicate that BiSSL occasionally yields
significant performance improvements, while otherwise matching the baseline accuracy. No
clear trend emerges regarding task type, as the gains appear across tasks, including SST2
(classification), RTE (entailment), and STSB (sentence similarity). While the average
improvements of +4.4% on RTE do not exceed the baseline’s standard deviation range,
the drastic average increase along the reduction in variance (from 4.1 to 1.1) still suggests
an improvement from BiSSL. CoLA and MRPC show no significant gains, though reduced
accuracy variance is still observed, similar to the results from Chapter @ and [49]. QNLI
and QQP exhibit slight improvements, though likely not significant. Crucially, BiSSL never
underperforms relative to the baseline, supporting the conclusion that its benefits extend
to NLP tasks without risk of performance degradation.

60

8 | Discussion

This chapter reflects on key aspects of the revisited areas of BiSSL along with the outcome
of the corresponding experiments in Chapter [6] and

Randomness of Experiments Most of the experiments in Chapter [6] used H = 25
randomly sampled learning rates and weight decays for the fine-tuning hyperparameter
grid search. While this in most cases provided adequate hyperparameters, it does far from
guarantee that any of the 25 sampled configurations are close to optimal.

The BiSSL pipeline adds further stochasticity through its sequence of interdependent
training stages. A poorly initialized seed during BiSSL can propagate and degrade final
performance, and due to computational constraints, we run only a single BiSSL training
per dataset and hyperparameter setup. As we currently have no established strategy that
reliably predicts downstream performance during BiSSL, the only alternative would be
to conduct the costly process of repeating the full BiSSL process with multiple seeds and
perform fine-tuning for each. This is impractical and likely infeasible in most scenarios.

The main takeaway is that results should be understood in terms of general trends.
Outliers and unexpected drops are likely artifacts of randomness and should not be
overemphasized. Examples where this may be the case are seen in Figure for T'= 800
and the lower-right plot of the baseline in Figure [6.5] at 300 fine-tuning epochs.

8.1 Hyperparameter Sensitivity

BiSSL generally appeared robust to most hyperparameter changes. The most notable
exceptions were for the number of upper-level iterations Ny and the number of training stage
alternations 7', as shown in Figures and When either was set too low, BiSSL was
executed for an insufficient duration, which unsurprisingly led to less enhanced downstream
performance. However, performance gains plateaued beyond a certain threshold, suggesting
that BiSSL can find optimal model initializations in a feasible time span.

Surprisingly, varying other hyperparameters such as the number of lower-level iterations
Ny, and the regularization weight A had limited effect on downstream accuracy. One
possible reason for the insensitivity to A is the fixed dampening factor Aqamp = 10 used in
the upper-level gradient approximation (see Algorithm . This dampening factor reduces
the influence of the specific value of A on the final update, at least for the dataset used
here. Still, results from Section suggest that poor choices of A\ can lead to significant
performance drops, implying that regularization still does play an important role in the
composite problem. Benchmarking BiSSL, where both A and Agamp are varied concurrently,
would provide a more complete picture of how the lower-level regularization impacts the

61

CHAPTER 8. DISCUSSION

composite problem.

The variation in fine-tuning duration illustrated in Figure underpins the robustness
of models trained via BiSSL. As seen, the BiSSL-pretrained models performed consistently
across different numbers of fine-tuning epochs, whereas standard baselines exhibited
accuracy fluctuations and in some cases showed signs of overfitting. This pattern suggests
that BiSSL provides a more reliable initialization, making downstream performance less
sensitive to the specific fine-tuning setup.

That said, any general conclusion from these experiments remains potentially tentative,
as most experiments were conducted on a single dataset. Broader experimentation is
needed to fully assess if the insensitivity of BiSSL is retained across tasks. Nonetheless,
the findings presented here provide a strong initial indication that BiSSL may be more
robust than previously assumed.

8.2 Impact of Adaptable A

As discussed earlier, varying A had a limited impact on downstream performance. The
results in Section where A was allowed to vary during training, were therefore somewhat
surprising, as most strategies adversarially affected downstream performance.

8.2.1 Scheduling

One possible explanation is that scheduling allowed A to get too small, potentially violating
the convexity assumption of the lower-level objective. This is important because the
derivation of the upper-level gradient (via the comments following Proposition assumes
that the regularization objective r convexifies the lower-level problem. When A\ drops near
the Amin = 1078 used in the experiments, this assumption may break, leading to unstable
gradients and poor updates during BiSSL. While the scheduling results were weak, it may
still be worth rerunning experiments with a larger A, to keep the optimization stable.

It’s also relevant to mention that the scheduling experiments used a small-scale setup
with reduced model capacity. Such models may be less able to balance the competing
pretext and downstream losses in BiSSL, making them more sensitive to the value of .
This may explain why BiSSL outperformed or matched the “only FT” baseline in the
small-scale setup, but underperformed in the full-scale configuration (Table . Similarly,
A = 0.1 was used for the NLP experiments in Chapter [7| as preliminary testing found
smaller values less effective. Together, these results suggest that the optimal choice of A is
tightly linked to architectural characteristics.

8.2.2 Learnable Variant

Section explored BiSSL with a learnable A, and found no gains in downstream
performance. The upper-level gradient with respect to A (from Proposition may help
to explain why.

The gradient involves the dot product between the lower-level backbone shift induced
by the regularization term @p — 05(0p,\) and the first term of the upper-level gradient
%?A)VQED (0p(0p,N\), ¢p). Hence, when the shift aligns with the upper-level gradient,

the upper-level optimization encourages a larger value of A\. Conversely, when they are

62

8.3. INCLUSION OF PRETEXT HEAD IN IJ APPROXIMATION

anti-aligned or near orthogonal, \ either decreases or stays near constant. In other words,
the optimizer increases A when regularization helps the upper-level downstream task during
BiSSL, and conversely decreases A when regularization disrupts downstream performance.

This may explain why the learned A\ values tend to converge toward the relatively
large value of 1 in practice (Figure and . As seen in the scheduling experiments
results of Figure [5.1] such high values of A lead to models with downstream performance
close to those obtained from conventional fine-tuning. The influence of the pretext task is
diminished, and the benefits of BiSSL vanish.

Adding a more forward-looking objective to the upper-level that depends on A and
reflects more directly how it impacts subsequent fine-tuning performance could help, in
theory. But designing such a term is nontrivial and would potentially further increase
computational complexity. More fundamentally, the results across experiments suggest
that downstream performance is not sensitive to A nor beneficial by making it adaptive.
Hence, while A influences the balance between pretext and downstream loss, it does not
appear to be a key driver of the overall benefits imposed by BiSSL. Future work may be
better directed at other components.

8.3 Inclusion of Pretext Head in IJ Approximation

Including the pretext head in the IJ approximation did not consistently improve downstream
performance, as evidenced by the results in Section One possibility for why that is
would be that including additional parameters from the pretext head increases the size and
complexity of the approximated IJ matrix, making it harder to estimate accurately. Since
we rely on the conjugate gradient (CG) method for approximation, larger matrices may
amplify numerical instability or noise. Performance may benefit from this more general
formulation if a more robust or efficient solver were available, but in its current form, the
added complexity may do more harm than good.

Even if the pretext head could be effectively incorporated, doing so still introduces
non-trivial computational overhead. While the projection head in our setup (based on
SimCLR) is relatively small, many modern contrastive-based pretext tasks use large
projection heads, sometimes even larger than the backbone itself [23}|88]. In such settings,
including the pretext head would add substantial cost to each backward pass through the
1J approximation.

An alternative explanation is that the pretext head simply does not contribute mean-
ingful information to the BiSSL optimization in its current form. If its parameters have
little influence on the downstream loss via the shared backbone, then including them in the
upper-level gradient brings little benefit. In that case, the fixed pretext head assumption
used in the original BiSSL framework may already strike a very good balance between
both theoretical rigor and practical efficiency.

Overall, while it may be theoretically appealing to incorporate the pretext head for a
more complete gradient, the practical benefits appear limited given the added computational
burden. Unless future methods find a way to exploit the pretext head more efficiently, the
fixed-head approximation of the original BiSSL setup remains a now further justified and
sensible design choice.

63

CHAPTER 8. DISCUSSION

8.4 Adaptation to NLP Tasks

As shown in Table BiSSL never underperforms relative to the baseline and occasionally
yields significant performance gains. However, these improvements are generally less
pronounced than those reported in image-based settings (see [49] and Table [6.1). While
this may partly be attributed to general domain-specific factors, we will here address
potential aspects of the BiSSL framework that may impact its effectiveness in the NLP
setting.

In the image domain, pixel-level variation can lead to substantial divergence between
pretext and downstream inputs. In contrast, text inputs are discrete and drawn from a
fixed-size vocabulary. Although token embeddings introduce some continuity, each token
still maps to a fixed embedding vector. As a result, the inputs seen during pretraining and
fine-tuning are nearly identical, with variation primarily being in the sequence ordering.
This may imply that the distribution shift BiSSL is designed to address is less prominent
in NLP, weakening its utility.

The embedding matrix defines the continuous input structure to the attention mechan-
ism and is further reused in the output layer of the language modeling head. Applying the
lower-level regularization r to this matrix may therefore impose overly rigid constraints,
potentially restricting the lower-level’s ability to effectively optimize the full model. Relax-
ing this constraint on the embedding matrix specifically could allow the lower-level more
flexibility. Since the attention layers remain regularized by the upper-level parameters, the
lower-level would still need to find embeddings that are implicitly compatible with both
levels concurrently.

Another important consideration is the inclusion of the language modeling loss in the
downstream objective. As it aligns the two tasks more closely, it may actually interfere
with BiSSL, reducing its ability to prioritize the actual downstream objective. This could
potentially lead to poor task adaptation. The observation that a larger value of \ was
optimal in the NLP setting (A = 0.1 for NLP tasks versus A = 0.001 for vision tasks) may
support this interpretation, as it suggests the upper-level needed stronger influence on
the bilevel problem. Future experiments that exclude the LM loss from the downstream
objective may provide a cleaner testbed for BiSSL.

Finally, a trade-off to consider is computational cost. GPT fine-tunes relatively quickly,
so the overhead introduced by BiSSL becomes proportionally larger compared to standard
fine-tuning. In some applications, this may diminish the relative appeal of using BiSSL in
NLP unless it can deliver substantial gains.

64

9 | Conclusion and Future Work

This project advanced the study of the BiSSL framework through extended empirical
evaluation across hyperparameter variations, design modifications, and adaptation to new
data domains.

Across variations in most core hyperparameters of BiSSL, downstream performance
remained stable over a wide range of values, provided that a sufficient number of total
upper-level gradient steps were conducted. Attempts to improve BiSSL by scheduling the
regularization parameter \ were largely unsuccessful. Performance degraded in many cases,
suggesting that such scheduling introduces instability without providing any clear benefits.

An extension of BiSSL was proposed in which X is treated as a learnable parameter,
and an efficient gradient expression was derived for this case. This variant also failed to
improve downstream performance, reinforcing the implication that A is best kept fixed
during training. Another modification of BiSSL relaxed the assumption that the pretext
head parameters were fixed during approximation of the upper-level gradient, which led to
the derivation of a more general expression for the implicit Jacobian. Despite this more
complete formulation, downstream performance remained unaltered. This may indicate
that the pretext head adds little useful information to the upper-level optimization, or that
its contribution is not effectively captured by the current approximation method.

Lastly, BiSSL was applied to a range of downstream natural language processing
tasks using the pretext task introduced by the generative pretrained transformer (GPT)
framework. In this setting, BiSSL occasionally achieved significant accuracy gains, while
it otherwise matched the baseline performance. Although aspects of the current BiSSL
design may limit its effectiveness in NLP, the results nonetheless demonstrate that it can
be applied without degrading downstream performance.

Overall, the findings suggest that the original design of BiSSL is robust and effective.
Its benefits are retained across a wide range of hyperparameter choices, and it appears
adaptable across architectures and input domains.

9.1 Future Work

While this project extended the empirical and theoretical understanding of BiSSL, several
open directions remain for future exploration:

o Along the original BiSSL paper [49], this project supports the claims of improved
downstream alignment primarily through classification accuracies and selected feature
visualizations. Utility of other analytical tools could yield deeper insights into this
claim, such as estimation of the effective dimension [89] or using information plane

65

CHAPTER 9. CONCLUSION AND FUTURE WORK

analysis [90] on the backbone latent space.

BiSSL uses the conjugate gradient method to approximate the upper-level gradient.
Future work could evaluate alternatives such as Neumann series [91] or M-FAC [92]
approximations, which may provide better estimates and/or reduce computational
cost.

Given that including the pretext head parameters in the implicit Jacobian calculation
did not improve performance, future work could venture in the opposite direction by
instead imposing further simplifying assumptions. For example, prior work [93}94]
shows that fine-tuning only the batch normalization (BN) layers in CNNs can nearly
match training all model parameters. Similarly, for ResNet-based backbones, assum-
ing all parameters except BN layers are fixed during Jacobian approximation could
significantly reduce computational cost while possibly sustaining the downstream
performance gains.

Continuing in the focus on the pretext head, explicitly incorporating the pretext head
parameters into the upper-level may enable the upper-level to actually advantageously
leverage the pretext head parameters. This could be approached in numerous ways,
where one such approach is proposed in Appendix [G] for inspiration.

A simple fine-tuning extension worth exploring is to train for a fixed number of epochs
and then apply early stopping as soon as the validation accuracy or loss begins to
degrade. As BiSSL-preconditioned models tend to converge quickly, this strategy
may reduce computation while preserving downstream performance gains.

A challenge lies in the fact that BiSSL currently lacks a way to monitor how well the
lower-level backbone will transfer to the downstream task during BiSSL. Developing
unsupervised metrics tailored to this setting could help speed up the preliminary
testing phases by being able to rule out configurations that cause degenerate backbone
initializations early on. For instance, [95] proposed a mutual information-based
criterion to evaluate the quality of latent representation during self-supervised training,
which may be adaptable for this purpose.

66

Bibliography

1]

2]

[10]

[11]

Y. LECUN, Y. BENcIO, and G. HINTON, “Deep learning,” Nature, vol. 521, pp.
436-44, 05 2015.

J. DENG, W. DONG, R. SOCHER, L.-J. L1, K. LI et al., “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 248-255.

X. Zuai, A. OLIVER, A. KoOLESNIKOV, and L. BEYER, “S4l: Self-
supervised semi-supervised learning,” 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 1476-1485, 2019. [Online|. Available: https:
/ /api.semanticscholar.org/CorpusID:167209887

K. HE, X. ZHANG, S. REN, and J. SUN, “Deep residual learning for image recognition,”

in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770-778.

Z. HE, “Deep learning in image classification: A survey report,” in 2020 2nd Inter-
national Conference on Information Technology and Computer Application (ITCA),
2020, pp. 174-177.

R. GIRSHICK, J. DONAHUE, T. DARRELL, and J. MALIK, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 580-587.

S. MINAEE, Y. Boykov, F. POrIKLI, A. PLAazA, N. KEHTARNAVAZ et al., “Image
segmentation using deep learning: A survey,” IEEFE transactions on pattern analysis
and machine intelligence, vol. 44, no. 7, pp. 3523-3542, 2021.

J. BHARADIYA, “A comprehensive survey of deep learning techniques natural language
processing,” European Journal of Technology, vol. 7, pp. 5866, 05 2023.

D. W. OTTER, J. R. MEDINA, and J. K. KALITA, “A survey of the usages of deep
learning for natural language processing,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 32, no. 2, pp. 604-624, 2021.

H. Purwins, B. L1, T. VIRTANEN, J. SCHLUTER, S.-Y. CHANG et al., “Deep learning
for audio signal processing,” IEEE Journal of Selected Topics in Signal Processing,
vol. 13, no. 2, pp. 206-219, 2019.

D. WANG and J. CHEN, “Supervised speech separation based on deep learning: An
overview,” IEEE/ACM transactions on audio, speech, and language processing, vol. 26,
no. 10, pp. 1702-1726, 2018.

67

https://api.semanticscholar.org/CorpusID:167209887
https://api.semanticscholar.org/CorpusID:167209887

BIBLIOGRAPHY

[12]

[13]

[14]

[21]

[22]

[23]

[24]

X. Liu, F. ZHANG, Z. Hou, L. MIAN, Z. WANG et al., “Self-supervised learning:

Generative or contrastive,” IEEE transactions on knowledge and data engineering,
vol. 35, no. 1, pp. 857-876, 2021.

K. WIGGERS, “Yann lecun and yoshua bengio: Self-supervised learn-
ing is the key to human-level intelligence,” VentureBeat. [Online]. Avail-
able: https://venturebeat.com/ai/yann-lecun-and-yoshua-bengio-self-supervised-
learning-is-the-key-to-human-level-intelligence /

E. OrRHAN, V. GUPTA, and B. M. LAKE, “Self-supervised learning through the eyes
of a child,” in Advances in Neural Information Processing Systems, H. LAROCHELLE,
M. RaANzATO, R. HADSELL, M. BALCAN, and H. LIN, Eds., vol. 33. Curran
Associates, Inc., 2020, pp. 9960-9971. [Online]. Available: https://proceedings.neurips|
cc/paper__files/paper/2020/file/7183145a2a3e0ce2b68cd3735186b1d5- Paper.pdf

J. Gur, T. CHEN, J. ZHANG, Q. CAO, Z. SUN et al., “A survey on self-supervised
learning: Algorithms, applications, and future trends,” IEEE transactions on pattern
analysis and machine intelligence, vol. PP, 06 2024.

J. ANTON, L. CASTELLI, M. F. CHAN, M. OUTTERS, W. H. TANG et al., “How well

do self-supervised models transfer to medical imaging?” Journal of Imaging, vol. 8,
no. 12, 2022. [Online]. Available: https://www.mdpi.com/2313-433X/8/12/320

Z.-H. TAN, “Self-supervised learning for multimodel data: From models to loss
functions,” University Lecture, 2023.

A. v.D. OORD, Y. L1, and O. VINYALS, “Representation learning with contrastive
predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

T. CHEN, S. KORNBLITH, M. NOROUZI, and G. HINTON, “A simple framework for

contrastive learning of visual representations,” in International conference on machine
learning. PMLR, 2020, pp. 1597-1607.

K. Hg, H. Fan, Y. Wu, S. XIE, and R. GIRSHICK, “Momentum contrast for unsu-
pervised visual representation learning,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2020, pp. 9729-9738.

J.-B. GRrILL, F. STRUB, F. ALTCHE, C. TALLEC, P. RICHEMOND et al., “Bootstrap
your own latent-a new approach to self-supervised learning,” Advances in neural
information processing systems, vol. 33, pp. 21 271-21 284, 2020.

X. CHEN and K. HE, “Exploring simple siamese representation learning,” in Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, 2021,
pp- 15750-15 758.

A. BARDES, J. PONCE, and Y. LECUN, “VICReg: Variance-invariance-covariance
regularization for self-supervised learning,” in International Conference on Learning
Representations, 2022. [Online]. Available: https://openreview.net/forum?id=
xm6YD62D1Ub

Y.-A. CHUNG, W.-N. Hsu, H. TANG, and J. GLASS, “An Unsupervised Autoregress-
ive Model for Speech Representation Learning,” in Proc. Interspeech 2019, 2019, pp.
146-150.

68

https://venturebeat.com/ai/yann-lecun-and-yoshua-bengio-self-supervised-learning-is-the-key-to-human-level-intelligence/
https://venturebeat.com/ai/yann-lecun-and-yoshua-bengio-self-supervised-learning-is-the-key-to-human-level-intelligence/
https://proceedings.neurips.cc/paper_files/paper/2020/file/7183145a2a3e0ce2b68cd3735186b1d5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/7183145a2a3e0ce2b68cd3735186b1d5-Paper.pdf
https://www.mdpi.com/2313-433X/8/12/320
https://openreview.net/forum?id=xm6YD62D1Ub
https://openreview.net/forum?id=xm6YD62D1Ub

BIBLIOGRAPHY

[25]

[33]

[34]

[35]

[36]

[37]

[38]

R. C. STAUDEMEYER and E. R. MORRIs, “Understanding lstm—a tutorial into long
short-term memory recurrent neural networks,” arXiv preprint arXiv:1909.09586,
2019.

A. VAswANI, N. SHAZEER, N. PARMAR, J. USZKOREIT, L. JONES et al., “Attention
is all you need,” Advances in neural information processing systems, vol. 30, 2017.

J. DEVLIN, M.-W. CHANG, K. LEE, and K. TOUTANOVA, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in North American
Chapter of the Association for Computational Linguistics, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:52967399

C. DOERSCH, “Tutorial on variational autoencoders,” arXiv preprint arXiv:1606.05908,
2016.

K. HE, X. CHEN, S. XIE, Y. L1, P. DOLLAR et al., “Masked autoencoders are scalable
vision learners,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022, pp. 16 000—16 009.

A. RADFORD, K. NARASIMHAN, T. SALIMANS, and I. SUTSKEVER, “Improving
language understanding by generative pre-training,” 2018.

A. RADFORD, J. Wu, R. CHILD, D. LuaAN, D. AMODEI et al., “Language
models are unsupervised multitask learners,” 2019. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:160025533

T. BROWN, B. MANN, N. RYDER, M. SUBBIAH, J. D. KAPLAN et al., “Language
models are few-shot learners,” in Advances in Neural Information Processing Systems,
H. LAROCHELLE, M. RANZATO, R. HADSELL, M. BALCAN, and H. LiN, Eds., vol. 33.
Curran Associates, Inc., 2020, pp. 1877-1901.

OPENAI J. AcHIAM, S. ADLER, S. AGARWAL, L. AHMAD et al., “Gpt-4 technical
report,” 2024. [Online]. Available: https://arxiv.org/abs/2303.08774

M. Lewis, Y. Liu, N. GoYyAL, M. GHAZVININEJAD, A. RAHMAN MOHAMED
et al., “Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension,” in Annual Meeting of the
Association for Computational Linguistics, 2019. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:204960716

M. CaroN, H. TouvRroN, I. MisrA, H. JEGOU, J. MAIRAL et al., “Emerging
properties in self-supervised vision transformers,” in 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), 2021, pp. 9630-9640.

A. BAEvski, W.-N. Hsu, Q. Xu, A. BABU, J. GU et al., “Data2vec: A general
framework for self-supervised learning in speech, vision and language,” in International
Conference on Machine Learning. PMLR, 2022, pp. 1298-1312.

Y. DuBois, T. HAsHIMOTO, S. ERMON, and P. L1ANG, “Improving self-supervised
learning by characterizing idealized representations,” ArXiv, vol. abs/2209.06235,
2022. [Online|. Available: https://api.semanticscholar.org/CorpusID:252222375

S. ZA1EM, T. PARCOLLET, and S. EssID, “Less forgetting for better generaliza-
tion: Exploring continual-learning fine-tuning methods for speech self-supervised
representations,” arXiv preprint arXiv:2407.00756, 2024.

69

https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/2303.08774
https://api.semanticscholar.org/CorpusID:204960716
https://api.semanticscholar.org/CorpusID:204960716
https://api.semanticscholar.org/CorpusID:252222375

BIBLIOGRAPHY

[39]

[40]

L. WaNG, X. ZHANG, H. Su, and J. ZHU, “A comprehensive survey of continual
learning: Theory, method and application,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

M. BoscHINI, L. BONICELLI, A. PORRELLO, G. BELLITTO, M. PENNISI et al.,

“Transfer without forgetting,” in Furopean Conference on Computer Vision. Springer,
2022, pp. 692-709.

G. E. HINTON and R. R. SALAKHUTDINOV, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504-507, 2006. [Online].
Available: https://www.science.org/doi/abs/10.1126/science.1127647

Y. ZHANG, P. KHANDURI, I. C. TSAKNAKIS, Y. YAO, M.-F. HONG et al.,
“An introduction to bi-level optimization: Foundations and applications in signal
processing and machine learning,” ArXiv, vol. abs/2308.00788, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:260378880

Y. ZHANG, Y. YAa0, P. RaM, P. ZHAo, T. CHEN et al., “Advancing model pruning
via bi-level optimization,” in Advances in Neural Information Processing Systems,
S. KoyEJO, S. MOHAMED, A. AGARWAL, D. BELGRAVE, K. CHO et al., Eds., vol. 35.
Curran Associates, Inc., 2022, pp. 18 309-18 326.

M. ArJovsky, L. Borrou, I. GULRAJANI, and D. LOPEZ-PAz, “Invariant
risk minimization,” ArXiv, vol. abs/1907.02893, 2019. [Online|. Available:
https://api.semanticscholar.org/CorpusID:195820364

Y. ZHANG, P. SHARMA, P. Ram, M. HoNG, K. R. VARSHNEY et al., “What is
missing in IRM training and evaluation? challenges and solutions,” in The Eleventh
International Conference on Learning Representations, 2023. [Online]. Available:
https://openreview.net /forum?id=MjsDeTcDEy

A. RaJEswARAN, C. FINN, S. M. KAKADE, and S. LEVINE, “Meta-learning

with implicit gradients,” in Neural Information Processing Systems, 2019. [Online].
Available: https://api.semanticscholar.org/CorpusID:202542766

C. FINN, P. ABBEEL, and S. LEVINE, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in International Conference on Machine Learning, 2017.
[Online|. Available: https://api.semanticscholar.org/CorpusID:6719686

Y. ZHANG, G. ZHANG, P. KHANDURI, M.-F. HONG, S. CHANG et al., “Revisiting
and advancing fast adversarial training through the lens of bi-level optimization,’
in International Conference on Machine Learning, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:245424850

9

G. W. ZAkARIAs, L. K. HANSEN, and Z.-H. TAN, “Bissl: Enhancing the align-
ment between self-supervised pretraining and downstream fine-tuning via bilevel
optimization,” arXiv preprint arXiv:2410.02387, 2025.

A. WANG, A. SINGH, J. MICHAEL, F. HILL, O. LEVY et al., “GLUE: A multi-task
benchmark and analysis platform for natural language understanding,” 2019, in the
Proceedings of ICLR.

C. M. BisHOP, Pattern Recognition and Machine Learning (Information Science and
Statistics), 1st ed. Springer, 2007.

70

https://www.science.org/doi/abs/10.1126/science.1127647
https://api.semanticscholar.org/CorpusID:260378880
https://api.semanticscholar.org/CorpusID:195820364
https://openreview.net/forum?id=MjsDeTcDEy
https://api.semanticscholar.org/CorpusID:202542766
https://api.semanticscholar.org/CorpusID:6719686
https://api.semanticscholar.org/CorpusID:245424850

BIBLIOGRAPHY

[52]

[57]

[58]

[59]

A. KANEZAKI, Y. MATSUSHITA, and Y. NISHIDA, “Rotationnet for joint object
categorization and unsupervised pose estimation from multi-view images,” IFEFE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 43, no. 1,
pp- 269-283, 2021.

Y. Ovuani, C. HubpeLor, and M. TaAwmi, “An overview of deep semi-
supervised learning,” ArXiv, vol. abs/2006.05278, 2020. [Online|. Available:
https:/ /api.semanticscholar.org/CorpusID:219558952

O. M. PARKHI, A. VEDALDI, A. ZISSERMAN, and C. V. JAWAHAR, “Cats and dogs,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2012.

S. HAYKIN, Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

T. WANG and P. IsoLA, “Understanding contrastive representation learning through
alignment and uniformity on the hypersphere,” in Proceedings of the 37th International
Conference on Machine Learning, ser. Proceedings of Machine Learning Research,
H. D. IIT and A. SiNGH, Eds., vol. 119. PMLR, 13-18 Jul 2020, pp. 9929-9939.

T. Gao, X. Yao, and D. CHEN, “SimCSE: Simple contrastive learning of
sentence embeddings,” in Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, M.-F. MOENS, X. HUANG, L. SPECIA, and
S. W.-T. YiH, Eds. Online and Punta Cana, Dominican Republic: Association
for Computational Linguistics, Nov. 2021, pp. 6894-6910. [Online]. Available:
https://aclanthology.org/2021.emnlp-main.552/

Y. CHANG, X. WANG, J. WANG, Y. WU, L. YANG et al., “A survey on evaluation of
large language models,” ACM Trans. Intell. Syst. Technol., vol. 15, no. 3, 2024.

M. HoNNIBAL and I. MONTANI, “spaCy 2: Natural language understanding with
Bloom embeddings, convolutional neural networks and incremental parsing,” 2017, to
appear.

P. J. Liu, M. SaLeH, E. Por, B. GOODRICH, R. SEPASSI et al., “Generating
wikipedia by summarizing long sequences,” in ICLR, 2018.

A. DoNnTCHEV and R. ROCKAFELLAR, Implicit Functions and Solution Mappings:
A View from Variational Analysis, ser. Springer Series in Operations Research
and Financial Engineering. Springer New York, 2014. [Online]. Available:
https://books.google.dk /books?id=LnAgBAAAQBAJ

N. ZUCCHET and J. SACRAMENTO, “Beyond backpropagation: bilevel optimization
through implicit differentiation and equilibrium propagation,” Neural Computation,
vol. 34, no. 12, pp. 2309-2346, 2022.

J. L. NAazArReTH, “Conjugate gradient method,” WIRFEs Computational
Statistics, vol. 1, mno. 3, pp. 348-353, 2009. [Online]. Available: https:
/ /wires.onlinelibrary.wiley.com /doi/abs/10.1002 /wics.13

J. R. SHEWCHUK, “An introduction to the conjugate gradient method without the
agonizing pain,” USA, Tech. Rep., 1994.

H. ZHENG, Z. YANG, W. Liu, J. LiaANG, and Y. L1, “Improving deep neural networks
using softplus units,” in 2015 International Joint Conference on Neural Networks

(IJCNN), 2015, pp. 1-4.

71

https://api.semanticscholar.org/CorpusID:219558952
https://aclanthology.org/2021.emnlp-main.552/
https://books.google.dk/books?id=LnAgBAAAQBAJ
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wics.13
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wics.13

BIBLIOGRAPHY

[66]

[71]

[72]

[73]

[74]

A. CoaTes, A. NG, and H. LEE, “An analysis of single-layer networks in
unsupervised feature learning,” in Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, G. GORDON, D. DUNSON, and M. DuDIK, Eds., vol. 15. Fort
Lauderdale, FL, USA: PMLR, 11-13 Apr 2011, pp. 215-223. [Online]. Available:
https://proceedings.mlr.press/v15/coateslla.html

M. EVERINGHAM, L. V. GooL, C. K. I. WiLLiamMms, J. M. WINN, and A. ZISSERMAN,
“The pascal visual object classes (voc) challenge.” Int. J. Comput. Vis., vol. 88, no. 2,
pp- 303-338, 2010.

M. Cimpol, S. MaJ1, I. KOKKINOS, S. MOHAMED, et al., “Describing textures in the

wild,” in Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2014.

M.-E. NILSBACK and A. ZISSERMAN, “Automated flower classification over a large

number of classes,” in Indian Conference on Computer Vision, Graphics and Image
Processing, Dec 2008.

Y. You, I. GiTMAN, and B. GINSBURG, “Large batch training of convolutional
networks,” arXiv: Computer Vision and Pattern Recognition, 2017. [Online|. Available:
https://api.semanticscholar.org/CorpusID:46294020

I. LosHCHILOV and F. HUTTER, “SGDR: Stochastic gradient descent with warm
restarts,” in International Conference on Learning Representations, 2017. [Online].
Available: https://openreview.net/forum?id=Skq89Scxx

S. RUDER, “An overview of gradient descent optimization algorithms,” ArXiv, vol.
abs/1609.04747, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:
17485266

Q. LHOEST, A. VILLANOVA DEL MORAL, Y. JERNITE, A. THAKUR, P. VON PLATEN
et al., “Datasets: A community library for natural language processing,” in Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, H. ADEL and S. SHI, Eds. Online and Punta Cana, Dominican
Republic: Association for Computational Linguistics, Nov. 2021, pp. 175-184.

T. WoLr, L. DEBUT, V. SANH, J. CHAUMOND, C. DELANGUE et al., “Transformers:
State-of-the-art natural language processing,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, Q. Liu
and D. SCHLANGEN, Eds. Online: Association for Computational Linguistics, Oct.
2020, pp. 38-45.

Y. Zuu, R. Kiros, R. ZEMEL, R. SALAKHUTDINOV, R. URTASUN et al., “Aligning
books and movies: Towards story-like visual explanations by watching movies and
reading books,” in 2015 IEEFE International Conference on Computer Vision (ICCV),
2015, pp. 19-27.

A. WARSTADT, A. SINGH, and S. R. BowMAN, “Neural network acceptability
judgments,” arXiv preprint 1805.12471, 2018.

R. SOCHER, A. PERELYGIN, J. Wu, J. CHUANG, C. D. MANNING et al., “Recursive

deep models for semantic compositionality over a sentiment treebank,” in Proceedings
of EMNLP, 2013, pp. 1631-1642.

72

https://proceedings.mlr.press/v15/coates11a.html
https://api.semanticscholar.org/CorpusID:46294020
https://openreview.net/forum?id=Skq89Scxx
https://api.semanticscholar.org/CorpusID:17485266
https://api.semanticscholar.org/CorpusID:17485266

BIBLIOGRAPHY

[78]

[79]

[84]

[85]

L. BEnTIvOGLI, I. DAGAN, H. T. DANG, D. GiAMPICCOLO, and B. MAGNINI, “The
fifth PASCAL recognizing textual entailment challenge,” 2009.

P. RAJPURKAR, J. ZHANG, K. LOPYREV, and P. LIANG, “SQuAD: 100,000+ questions
for machine comprehension of text,” in Proceedings of EMNLP. Association for
Computational Linguistics, 2016, pp. 2383-2392.

W. B. DoLAN and C. BROCKETT, “Automatically constructing a corpus of sentential
paraphrases,” in Proceedings of the International Workshop on Paraphrasing, 2005.

N. D. SHANKAR IYER and K. CSERNAI, “Quora question pairs,” 2018. [Online].
Available: https://quoradata.quora.com/First-Quora-Dataset- Release- Question-Pairs

D. CEr, M. DIAB, E. AGIRRE, I. LOPEZ-GAZPIO, and L. SPECIA, “SemEval-2017
task 1: Semantic textual similarity multilingual and crosslingual focused evaluation,”
in Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-
2017), S. BETHARD, M. CARPUAT, M. APIDIANAKI, S. M. MOHAMMAD, D. CER
et al., Eds. Vancouver, Canada: Association for Computational Linguistics, Aug.
2017, pp. 1-14.

L. VON WERRA, L. TUNSTALL, A. THAKUR, S. Luccioni, T. THRUSH et al., “Evalu-
ate & evaluation on the hub: Better best practices for data and model measurements,”
in Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, W. CHE and E. SHUTOVA, Eds. Abu Dhabi,
UAE: Association for Computational Linguistics, Dec. 2022, pp. 128-136.

A. WiLLiamSs, N. NANcIA, and S. R. BOWMAN, “A broad-coverage challenge corpus
for sentence understanding through inference,” in Proceedings of NAACL-HLT, 2018.

H. J. LEVESQUE, E. DAvis, and L. MORGENSTERN, “The Winograd schema challenge,”

in AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning,
vol. 46, 2011, p. 47.

D. P. KinéMA and J. BA, “Adam: A method for stochastic optimization,” CoRR, vol.
abs/1412.6980, 2014. [Online]. Available: https://api.semanticscholar.org/CorpuslID:
6628106

N. Srivastava, G. HiNnTON, A. KRIZHEVSKY, I. SUTSKEVER, and
R. SALAKHUTDINOV, “Dropout: A simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, vol. 15, no. 56, pp.
1929-1958, 2014. [Online|. Available: http://jmlr.org/papers/v15/srivastaval4a.html

T. CHEN, S. KORNBLITH, K. SWERSKY, M. NOrRouzl, and G. E. HINTON, “Big self-
supervised models are strong semi-supervised learners,” in Advances in Neural Inform-
ation Processing Systems, H. LAROCHELLE, M. RANzZATO, R. HADSELL, M. BALCAN,
and H. LIN, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 22 243-22 255.

J. GAWLIKOWSKI, C. R. N. Tassi, M. AL1, J. LEE, M. HUMT et al., “A survey of
uncertainty in deep neural networks,” vol. 56, no. Suppl 1, p. 1513-1589, Jul. 2023.
[Online|. Available: https://doi.org/10.1007/s10462-023-10562-9

B. C. GEIGER, “On information plane analyses of neural network classifiers—a review,”
IEEFE Transactions on Neural Networks and Learning Systems, vol. 33, no. 12, pp.
7039-7051, 2022.

73

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1007/s10462-023-10562-9

BIBLIOGRAPHY

[91]

J. LORRAINE, P. VicoL, and D. DUVENAUD, “Optimizing millions of hyperparameters

by implicit differentiation,” in International conference on artificial intelligence and
statistics. PMLR, 2020, pp. 1540-1552.

E. FRANTAR, E. KURTIC, and D. ALISTARH, “M-fac: Efficient matrix-free approxim-
ations of second-order information,” 2021.

F. KaANAVATI and M. TSUNEKI, “Partial transfusion: on the expressive influence
of trainable batch norm parameters for transfer learning,” in Proceedings of the
Fourth Conference on Medical Imaging with Deep Learning, ser. Proceedings of
Machine Learning Research, M. HEINRICH, Q. Dou, M. DE BRULINE, J. LELLMANN,
A. SCHLAFER et al., Eds., vol. 143. PMLR, 07-09 Jul 2021, pp. 338-353. [Online].
Available: https://proceedings.mlr.press/v143/kanavati2la.html

S. LANGE, K. HELFRICH, and Q. YE, “Batch normalization preconditioning for neural
network training,” J. Mach. Learn. Res., vol. 23, no. 1, Jan. 2022.

A. H. Liu, S.-L.. YEH, and J. R. GLASS, “Revisiting self-supervised learning of
speech representation from a mutual information perspective,” in ICASSP 2024-202/
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2024, pp. 12051-12 055.

X. CHEN, H. FaN, R. B. GIrsHICK, and K. HE, “Improved baselines with
momentum contrastive learning,” CoRR, vol. abs/2003.04297, 2020. [Online].
Available: https://arxiv.org/abs/2003.04297

J. BA, J. R. KIiros, and G. E. HINTON, “Layer normalization,” ArXiv, vol.
abs/1607.06450, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:
38236317

D. HENDRYCKS and K. GIMPEL, “Gaussian error linear units (gelus),” arXiv: Learning,
2016. [Online|. Available: https://api.semanticscholar.org/CorpusID:125617073

A. F. AGARAP, “Deep learning using rectified linear units (relu),” arXiv preprint
arXiv:1803.08375, 2018.

74

https://proceedings.mlr.press/v143/kanavati21a.html
https://arxiv.org/abs/2003.04297
https://api.semanticscholar.org/CorpusID:8236317
https://api.semanticscholar.org/CorpusID:8236317
https://api.semanticscholar.org/CorpusID:125617073

Appendices

75

A | SimCLR: Related Pretext Tasks

Several alternative contrastive learning methods related to SInCLR [19] (see Section
in Chapter [2)) have been proposed, each pursuing the general goal of learning meaningful
representations by aligning different views of data. While they share the core principles
with SimCLR, they differ in architecture, training objectives, and sampling strategies.
Below, we briefly outline a selection of influential approaches. Figure provides an
overview of the methods discussed.

Momentum Contrast Momentum Contrast (MoCo) [20] addresses the large batch size
requirement in SimCLR by maintaining a dynamic dictionary of negative samples. This
dictionary is populated by a momentum encoder, a copy of the main encoder updated via
exponential moving average. During training, query representations are produced by the
online encoder, while keys (used as negatives) are generated from the momentum encoder.
MoCo originally omitted a projection head, but later variants (e.g., MoCo v2 [96]) included
one for improved performance.

Bootstrap Your Own Latent Bootstrap Your Own Latent (BYOL) [21] departs from
contrastive learning by eliminating the use of negative samples altogether. It trains an
online network and a target network on different augmentations of the same input. The
online network learns to predict the target network’s output, while the target network
is updated as an exponential moving average of the online network parameters. This
asymmetric structure promotes alignment without explicit negative samples, enabling
representation learning through prediction alone.

Variance-Invariance-Covariance Regulation Variance-Invariance-Covariance Regu-
larization (VICReg) 23] further distances itself from contrastive approaches by using only
positive pairs and a non-contrastive loss. It introduces a three-term loss: an invariance term
aligning representations of augmented views, a variance term enforcing feature diversity
across samples, and a covariance term that decorrelates feature dimensions. Together, these
terms prevent collapse and encourage the learning of non-trivial, stable representations
without relying on negatives or momentum targets.

7

APPENDIX A. SIMCLR: RELATED PRETEXT TASKS

—> NT-XENT < — InfoNCE <
A A
- - - A A -
A A A A

FITTr EMA Projector

_______ = | o
T T
X

Xl

BYOL VICReg

Figure A.1: Tllustration of the overall information processing pipelines of the SimCLR,
MoCo, BYOL, and VICReg pretext tasks.

78

B | The Transformer Blocks of GPT

This appendix, based on [26], details the inner workings of the architecture underlying
the transformer blocks of the GPT model [30], described in Section The heart of the
GPT architecture is built from a stack of identical transformer decoder blocks |26], each of
which computes a context-aware representation of the input tokens while enforcing a strict
autoregressive constraint, i.e., each token may only attend to earlier or equal positions in
the sequence. This is achieved using masked multi-headed self-attention.

Let k € N be the context window size, d € N the embedding dimension, and h € N

the number of attention heads. At each layer [€ {1,...,L}, and for each attention
head i € {1,...,h}, the model first computes queries, keys, and values via learned linear
projections:

Qui = H W2,

Ky =H_ W,
Vii = HiaWy,
where H;_; € R¥*? is the output of the previous layer, and VVZC%, I/Vlff , VV% € R¥*dn are

learned projection matrices with dj = d/h being the dimensionality of each head. The
scaled dot-product attention is then computed for each head as:

head; = Attention(Ql’i, Klﬂ', Vi’i),
T

. QK
Attention(Q, K, V) = softmax
() (Vdy,

where i € {1,...,h} and the mask M € R¥*¥ contains —oco in positions where future
tokens should be masked, i.e., its 7,7’th entry equals —oo if j > 4, and 0 otherwise. In this
instance, the softmax operator is defined as:

+ M) v, (B.1)

eAi,j

= A e RN B.2
2,] 2%21 €Ai,7n ()

softmax(A)

i.e., it applies the softmax operation row-wise. The scaled dot-product attention in (B.1)
can be interpreted as follows: the query vector () encodes what the current token is looking
for; the key vector K represents what each other token offers; and the value V' contains
the actual content to aggregate. The softmax output determines how much each position
contributes to the current token’s updated representation.

The outputs from all h attention heads are then concatenated and linearly projected,
which is what defines the multi-head attention mechanism:

MHA (H;_;) = Concat(heady, ..., head;) WL,

79

APPENDIX B. THE TRANSFORMER BLOCKS OF GPT

Scaled Dot-Product Attention Multi-Head Attention
Linear
T (Lincar]
A

Concat

#
c
Scaled Dot-Product h
Attention
A A A
g do o

[Linear]J [Linear]-] [Lineari
MatMul
= L]

Q K A% \% K Q

Figure B.1: Information processing pipelines of scaled dot-product attention (left) and
multi-head attention (right).

Table B.1: Original hyperparameter values used in GPT [30].

Parameter Value
V' (Tokenizer Vocabulary Size) 40478
k (Context Window Size) 512

d (Token Embedding Dimension) 768

h (Number of Attention Heads) 12

dp (Head Embedding Dimension) | d/h = 64
L (Number of Transformer Layers) 12
d¢s (FFN Embedding Dimension) 3072

where WlO € R¥*4, Figure illustrates the flow of information through a single masked
multi-headed attention block. The output of the attention mechanism is then added to the
input via a residual connection, followed by layer normalization [97]

A; = LayerNorm(H;_; + MHA(H;_,)),

which is passed through a feedforward network, finally followed by another layer normaliz-
ation, yielding the transformer block output:

H; = LayerNorm(A4; + FFN(A4))),
FFN(Y) = GELU(YW; + By)Wa + Bo,

where GELU is the Gaussian Error Linear Unit [98], W, € R*¥*% W, € R¥>xd By =
bf,....,b{]T € R¥*4ss By =[bg,...,by]" € R¥*4 with b; € R4/, by € R%.

This process repeats across all L transformer blocks, yielding increasingly abstract
contextual representations. Table lists the originally used parameters, which will be
adopted in Chapter [7] The resulting model has approximately 117 million parameters.

80

C | Theorems and Proofs

Theorem C.1 (Implicit Function Theorem [61,62])
Let f be continuously differentiable and (x,y) be given such that f(x,y) = 0. Further
assume that the Jacobian matrix Ox f(X,y) is invertible. Then there exists a unique and
differentiable implicit function y — xj, defined in a neighborhood of y such that x5 = x,
which verifies f(xj,y) = 0 for all y in that neighborhood.

Proposition C.2 (Restated Proposition [5.5))
Let the bilevel optimization problem in Definition [5.4| be given. Assuming the lower-
level (5.11]) satisfies the conditions of Theorem then the following 1J is given by

dw*(6p)

= MHD,M(OD)Mw(eD)7 0 € Gy
dép

where Gy is the lower-level stationary set as given in Definition [3.1] and

Moy, w(00) = [V3,0,7(00:70, (" (80)) OLps),

—1

‘CP(’YBP (W*(OD))77¢>p (w*(eD))) +
D OppxrL OppxpPp

V2,700 7, (w* (0p))) ompH

Proof (Proposition [C.2): From Theorem we get the Implicit Jacobian (I1J) of
the lower-level solution in Definition [(.4] to be:
dw*(0p)
dép

for 8 € Gy. To make the derivation of tractable, we first establish a simple but crucial
result regarding the effect of sub-parameter mappings on differentiation, which shows that
working with the composite variable w does not require re-deriving the gradient expressions
from scratch. It is formalized in Lemma and states that differentiation of a function
Jf(v0,(w), 74, (w)) with respect to w can be expressed in terms of the concatednated vector

—1
= —V3,,G(0p.w"(00)) [VEG(Op.w* (0p))| € RF¥EHPr, (C.1)

T
[ng(@p, op)", Vo f(Op, ¢))T} . Hence, the sub-parameter mappings let us recover the
original gradients with respect to their original arguments.

81

APPENDIX C. THEOREMS AND PROOFS

We now individually compute the two Hessian matrices in the IJ of (C.1). First,
consider the cross-Hessian

VoG (0p.w* (0p)) = veD% (£7 (0, (@ (00)) 79, (@ (80))) + Ar(0p,70, (w(6D))))

g, [Vor(£" (00w 80)) 70, (@ (80)) + Ar(OD:%0, (@' (1))
’ VL7 (0, (0 (0)) 76, (" (81))

= —A[V3,0,7(007,.(w"(60))) Opups].

where the last and second last equalities are obtained through the use of Lemma Using
this lemma again, the second Hessian is derived as follows:

2 * d2
va(QD,w (HD)) =

- d2w (‘CP(’YeP (w*(aD))’,y(,ﬁp (w*(aD))) +)\T(OD,’ng (w*(eD))))
d2

V2 r(0p,ve, (w* (0
= L0, 0" (00)) g (" (8)) | P20 (00D

OLXPP

OppxL Oppxpp

Substituting the above expression into (C.1)) finally yields
dw*(0p)
dép

— V2 ,G(0pw" (60))[V2G(0p.w* (6p))]
= A[Vo,0,7(0p76, (wW*(00))) Orxp,]

- - —
d? . . Vs,7(0p70,(w*(0p))) OLxpy
—5————L (Y6, (W (00)) g, (W (00) + A | °)
d*w*(0p) Oppxr, Op,xrr
= [Vo,0,7(00,70,(@*(00))) OLxpy)
- - —
1 d? . . Vs,7(0p0,(w*(0p))) OLxp
Xﬁﬁp(”m(w (00)) 70, (W (@) + | ° " o
d*w*(6p) Op.x1L Op.xPs
= Me,, w(0p) M, (0p).

82

Lemma C.3 (Derivatives under Sub-Parameter Mappings)
Let f:RE x RPP — R be twice differentiable, and let w € REFPP with corresponding
sub-parameter mappings g and 4, be given as in Definition Then

d Vof(8, N
af(’yef’ (w)’7¢P <w>) = af(d)P)‘O ! P())
Vo (0P, @)lo=rsp (@)

and

A @) = | VOOl Vool (6 Blos, b=y (o)
2 P ylop =

d*w v?z)ef(ea ¢)‘¢)=’y¢P (w),@:’ygp (w) v?ﬁf(OPa q’))’d):’y(pp (w)

Proof (Lemma [C.3): Using the identity from (5.8), we derive

d’ygp(w) d[IL OLXPP]W B dw IL IL

dw dw dw 0Pp><L OPP><L ’

.. . . d .
where a similar result is achieved for vzi(w) using (5.9). Then, we express

d v, (w) dg, (w)

af(wp(w)ﬁqsp(w)) = Tvef(’yep(w)ﬁ%(w)) + TVM(’YGP(W),V%(W))
[I O XEp
= | | Vel (op@)gp @) + | Vo f (op (@) 6, (@)
_OprL Ip,

v@f (’YGP (w) 77¢P (w))
V(Z)f (7919 (w) Yop (w))

The result for % f(v9,(w),7¢, (w)) is derived by continuing in a similar manner on the
expression above, and is therefore omitted. |

83

D | Bilevel Training Algorithms -
Application Examples

Incorporating a training framework into a bilevel optimization problem necessitates careful
consideration of the problem formulation to derive feasible and effective gradients tailored
for application-specific training algorithms. This appendix introduces two examples where
bilevel optimization has been successfully integrated in meta-learning and model pruning,
respectively, providing further insights into how this challenge can be addressed.

D.1 Meta-Learning

This section is based on [46]. Meta-learning, or "learning to learn," is a machine learning
approach that enables algorithms to learn new tasks more efficiently by leveraging prior
knowledge from previous tasks. Unlike traditional methods, meta-learning focuses on
improving the learning process itself, allowing models to quickly adapt to new tasks with
minimal data and training.

Assume that a collection of tasks {7;}M, each associated with dataset D; separated into
partitions D" and D' are given. In this setup, a set of meta-parameters 6 serves as an
initialization for training algorithms that solve tasks associated with datasets D;, resulting
in updated parameters ¢; = Alg;(0,D¥). The meta-learning task is then structured as a
bilevel optimization problem through the formulation

M
e . 1 * tr test
minimize 57 3 Li(Algi (0,71, D)

A
st. Alg: (8, D) € argmin L;(¢;, DY) + Z||¢; — 0|3,
¢, ERN 2

fori=1,..., M. Thus, the upper-level objective is tasked with finding a good initialization
that suits all the various tasks specified by the lower-level objectives. The additional
regularization term ||¢; — 6||3 introduces convexity of the lower-level objective and enforces
similarity between the task specific parameters ¢, and meta-parameters @ while also being
an essential addition in the derivation of a feasible and nontrivial implicit Jacobian (1J)
(see Equation (3.2)). By use of Theorem it can be shown that the 1J in this case
becomes

dAlg; (0, D" 1 . -1
d(0> _ <1N 53, L D g, Alg(gvpgr» , (D.1)

84

D.2. MODEL PRUNING

where Iy is the N x N-dimensional identity matrix. This leads to the derivative of the
upper-level objective being

1 ¥ 1 -1
— > (In+ V5Li(Ps DY) g :) Li(¢, DI D.2
M §< N+ 3 VoLildi D)lg—aigo0p)) VoL <¢“ i)‘%:Algf(@)’ (D-2)

This setup outlines a practical training algorithm which recursively finds solutions to
all lower-level objectives ¢;, while storing all gradients VL;(¢;, D) that are subsequently
used to update the upper-level objective via and Algorithm (1| The regularization
objective is here crucial for leveraging the benefits of bilevel optimization, as it can be
shown that excluding it would cause to equal the zero matrix. A similarly structured
regularization objective is implemented in BiSSL [49], as detailed in Chapter

D.2 Model Pruning

This section is based on [43]. Model pruning is a technique used in deep learning that
eliminates less important weights of a deep neural network. The primary objective of
pruning is to create a smaller, more efficient model that maintains most of the original
model’s performance while requiring fewer resources. This task inherently involves solving
two tasks: finding a pruning mask m € {0,1}"V and model parameters 8 € R" such that
that ||m]|| is sufficiently small and the pruned model with parameters m ® @ still performs
effectively. Given the intrinsic interdependence between m and 6, it is appropriate to
formulate this problem as a bilevel optimization problem. The model pruning task, with
the loss function denoted as ¢, is formulated as a bilevel optimization problem:

minimize /(m ® 6*(m)) s.t. O(m) € argmin {(m © 6) + 1\\0”3
mG{O,l}N 0*cRN 2

In practice, the mask m is relaxed to lie in [0,1]Y during training, allowing meaningful
gradients to be obtained with respect to m. After training, hard thresholding is then
applied on m such that it only consists of binary entries. The term HHHS is included to
enforce approximate convexity of the lower-level objective and, importantly, to ensure an
advantageous expression for the upper-level derivative. To see why, using Theorem [3.2] the
IJ can in this context be expressed as:

d@*(m)

-1
o = Vil(m©6") (V30(m ©6") +4Ix| .

Now, using the Hessian-free assumption V3¢(m ® 6*) = O, the expression simplifies to

d@*(m)

_ 1 2 *
1o = 5 Velmoo). (D.3)

This assumption is relatively reasonable when using linear layers with piecewise linear
activation functions like the ReLU activation [99]. Although appears to involve
computation of a Hessian matrix, due to the specific relation between m and 6 being
m © 60, it can be shown that

d6*(m)

1.
0 ——;dlag(vzﬁ(z)),

85

APPENDIX D. BILEVEL TRAINING ALGORITHMS - APPLICATION EXAMPLES

which leads to the total derivative of the upper-level objective being

dl(m e 6%) 1
— = (0" — — Vit Vil(z),

= (0"~ _mOV.(=) © Val(a)
suggesting that the exact upper level gradient (under the Hessian-free assumption) can
feasibly be calculated using a first-order optimization method. From here, proposing a
training algorithm that alternates between updating the upper and lower-level objectives
is relatively straightforward.

To re-emphasize, adding the weight regularization term to the lower-level objective is
crucial in this case for obtaining the expression, as otherwise, relying on the Hessian-free
assumption would result in the IJ becoming zero. This example also illustrates how the
specific structure of the relationship between the upper and lower-level parameters can
lead to a more practically feasible expression of the upper-level derivative.

86

E | Importance of the Second Term
of the Upper-Level in BiSSL

Recall the bilevel optimization problem of BiSSL in Definition At first glance, the
second term in the upper-level objective of might appear redundant, since the upper
and lower levels are already coupled via 8%(0p). However, this term plays a crucial
role in ensuring that the lower-level problem (4.2) remains non-trivial and meaningfully
contributes to the overall bilevel objective. To illustrate this, first consider the standard
fine-tuning optimization problem

in £P(0,0p), E.1
sin (0,9p) (E.1)

and the simplified bilevel optimization problem

min L7 (0% (0p),¢p) s.t. 05 (8p) € argminmin LF (8p,¢p) + \|0p — 0p(5. (E.2)

6D7¢D Op P

The above problem corresponds to the BiSSL setup in Definition , but with the second
term in the upper-level objective removed and using r(6p,0p) = ||0p — GpHg, reflecting
the practical setup to be employed. We now formalize why omitting the second term makes
the bilevel structure degenerate in the following lemma.

Lemma E.1 (Solutions Under Removal of the Second Term in Upper-Level)
Let (0,¢p) be stationary points of the conventional fine-tuning optimization problem

in (E.1|) Define
* n * 0 * 0 1
b= bp. 0p =0, Op(dp) =0+ VoL (0.6p)los.

and let ¢p be a stationary point in the sense that V¢P£P(é7¢P)’¢p:¢*P = 0. Then
the parameters (05 (¢p),¢1,0p,¢p) satisfies the stationary conditions of the bilevel
optimization problem in (E.2|). Additionally, the stationary condition

VoG (0p(Pp),0,0p)l0=67, =0

holds Vo, € RPP.

The lemma shows that in the absence of the second term in the upper-level objective,
the bilevel problem in (E.2)) effectively reduces to standard fine-tuning. The regularization
term in the lower-level acts only to pull 8p towards O8p but since the upper-level is

87

APPENDIX E. IMPORTANCE OF THE SECOND TERM OF THE UPPER-LEVEL IN
BISSL

unconstrained in its choice of @p, it can simply set it to enforce @p = 6. As a result, the
bilevel structure becomes vacuous, where the lower-level recovers the exact same solution
as achieved by conventional fine-tuning. In contrast, when the second term is included as
in , the upper-level must then balance optimizing @p for downstream performance
while also shaping the lower-level solution to be useful for that purpose, providing a more
complex interaction between the objectives.

Note: In the original work, we provided a simplified version of the above result,
omitting the task-specific heads to enhance focus solely on the backbone dynamics, and
claimed that this omission did not alter the outcome. Lemma [E.I|makes this claim rigorous,
as it shows that the backbone solutions 8% and 67, retain the same structure regardless of
how the heads are obtained.

Proof (Lemma [E.1]): We verify that the provided parameters 6p, ¢, 0 (¢p) and ¢p
are stationary points. Since (0,¢) are stationary for (E.1|), we immediately have for the

upper-level of (E.2|) that
V¢D£D(0}’¢D)|¢D:¢E = V¢D£D(é,¢D)|¢D:$D =0,

and

VoL (0,¢%)lo-0:, = VoL (0.¢p)lg—p = 0.

Since 0 = 0, the lower-level head solution ¢} satisfies its stationarity condition by design:
V¢P£P(9,¢P)\¢,P:¢,}; = 0. The stationarity of the lower-level with respect to its backbone
parameters is verified as follows:

VoG(07(65).0, d5)lo—gr, = VoL (0, d%)|g—g:, + MOp — 05 (D))
* N 1 * N
= VoL (0,07p)]p_g + N6 — XV(;EP(G, &p)lo—p — 0)
=0.

Finally, we see that substituting any ¢p € RPP in place of ¢ in the derivations above
still satisfies the lower-level stationary condition with respect to the backbone parameters,
proving the latter statement of the lemma. |

88

F | Additional Results

F.1 Results Tables

This section holds tables with the numerical values depicted in the Figures of the experiments
of Chapter [6]

F.1.1 Hyperparameter Influence

Tables shows the table entries corresponding to the Figures that presents
the results from the experiments outlined in Section

Table F.1: Downstream Top-1 accuracies on the Pets dataset corresponding to the
"BiSSL+FT" curve in Figure reporting the impact of varying the regularization
strength A in BiSSL.

A 1.0 0.1 0.01 0.001 0.0001

BiSSL + FT 774+£0.2 773+0.2 778+03 77.7£0.5 77.34+0.1

Table F.2: Downstream Top-1 accuracies on the Pets dataset corresponding to the
"BiSSL+FT" curve in Figure [6.2] reporting the impact of varying the number of training
stage alternations 7" in BiSSL.

T 100 200 300 400 500 600 800 1000

BiSSL + FT 746+05 778+02 780+03 778402 77.7+05 77.5+0.3 76.6+04 785+0.4

Table F.3: Downstream Top-1 accuracies on the Pets dataset corresponding to the
"BiSSL+FT" curve in Figure reporting the impact of varying the number upper-
level iterations Ny in BiSSL.

Ny 1 2 4 8 10 12

BiSSL + FT 7524+04 762+06 782+0.3 77.7+05 783+£0.2 785+£0.3

F.1.2 Adaptive Scaling of \

Tables shows the table entries corresponding to Figures that presents the
results from the experiments outlined in Section

89

APPENDIX F. ADDITIONAL RESULTS

Table F.4: Downstream Top-1 accuracies on the Pets dataset corresponding to the
"BiSSL+FT" curve in Figure reporting the impact of varying the number lower-level
iterations Ny, in BiSSL.

N 1 2 5 10 20 30 40 50

BiSSL + FT 772+£02 777+05 7794+04 77.74+02 77.7+£05 776%+0.3 77.5+0.1 77.6+0.6

Table F.5: Downstream accuracies on the Pets, DTD, VOCO07, and Flowers datasets
corresponding to the "Only FT" and "BiSSL+FT" curves in Figure [6.5 reporting the
impact of varying the number of subsequent fine-tuning epochs.

FT Epochs 10 25 50 100 200 300 400
Pets:

BiSSL + FT 77.84+0.2 773+04 77.74+03 77.7+03 779402 77.7+£04 77.7+05
Only FT 70.6 0.6 75.7+0.5 755+£05 74.3+£08 76.0+04 740+0.5 73.24+0.3
DTD:

BiSSL + FT 629+05 63.0£0.7 628407 63.6+0.3 63.8+0.5 63.8+0.3 63.8+0.3
Only FT 5824+0.9 59.7+0.5 59.8+0.6 60.5+£0.7 60.3+08 60.3+0.7 60.3+0.9
VOCo7:

BiSSL + FT 70.0+0.2 702+02 714401 714+01 714401 71.3+£0.1 71.44+0.1
Only FT 67.5+04 69.6+02 694+01 69.6+0.1 7094+0.2 7094+0.2 71.0+0.1
Flowers:

BiSSL + FT 51.24+0.7 84.0+0.2 8394+0.2 84.2+0.2 84.14+02 84.3+0.2 84.24+0.3
Only FT 269+13 786+04 804+04 812405 824+04 81.1+0.5 82.6+0.3

Table F.6: Downstream top-1 accuracies on the Pets dataset corresponding to the ’Cosine
Increase’ and ’Cosine Decrease’ curves in Figure showing the impact of applying
cosine-based A schedules during BiSSL training, with varying values for the maximal
schedule parameter Apax.

Amax 10.0 1.0 0.1 0.01 0.002 0.001 0.0001

Cosine Increase 66.5+0.3 66.5+£0.3 59.4+£05 64.6+£0.2 70.3£0.3 69.5£0.3 653+£0.6
Cosine Decrease 66.2+0.2 66.0+0.3 63.1+0.3 60.3+£04 70.1+0.3 68.8+£08 67.1+0.3

Table F.7: Downstream top-1 accuracies on the Pets dataset corresponding to the curves
in Figure showing the impact of applying an exponential scheduler on A\ during BiSSL
training, with varying values for the maximal schedule parameter Ay ax.

Amax 0.1 0.01 0.001 0.0001

Exponential Increase (o = 1) 61.3+04 57.7£07 67.1£04 64.8+£0.7
Exponential Increase (« = 10) 65.4+0.4 574+06 70.1+£04 654406
Exponential Increase (o« = 100) 64.6+£0.3 57.3+£0.7 69.9+04 658+0.3

90

F.2. LEARNABLE A\

Table F.8: Downstream top-1 accuracies on the Pets dataset corresponding to the curves
in Figure showing the impact of making A learnable with Aqamp = 0 and Agamp = 10
along varying values for the initial value of o ().

o (N)init 2.0 1.0 0.1 0.01 0.001 0.0001 0.00001

Learnable A (Adamp =0) 77.0+£0.2 76.4+0.2 76.7+0.2 77.1+£0.3 77.2+0.3 764+£0.3 76.7+£0.3
Learnable A\ (Aqamp = 10) 76.6£0.2 77.1+£0.1 764+0.3 77.5+£03 77.0£04 77.1+£0.2 75.5+0.2

Evolution of Learnable A During Training (Agamp = 0)

3.0
2.51
2.01
=
B 1.51
1.0
0.5 1
0.0 1
0 100 200 300 400 500 0 100 200 300 400 500
Training Stage Alternation Training Stage Alternation
— 0Aint=2 —— 0A)init=0.1 0(A)init =0.001 —— 0(A)init =0.00001
— 0A)inic=1 —— 0(A)init=0.01 0(A)init = 0.0001

Figure F.1: Evolution of o(\) during BiSSL training with Agamp = 0 under various
initializations.

F.2 Learnable)\

Figures and show how) evolves during BiSSL training when treated as a learnable
parameter, under two configurations: without dampening (Agamp = 0) and with dampening
(Adamp = 10). These trajectories correspond to the experiments introduced in Section

Without dampening, we observe that A\ exhibits a steep initial increase across all runs.
However, around the midpoint of training, values begin to decline and eventually converge
toward a common value, visually estimated to lie near 1. Notably, all but the runs initialized
at 1 and 2 appear to catch the same trajectory early on.

When dampening is applied, the trajectories become more diverse, converge more
slowly, and generally appear less noisy. Initial values influence the evolution more strongly,
with the runs starting at 1 and 2 decreasing over time, while those with lower initial
values increase. Still, the trend suggests a gradual drift toward a common range, though
dampening tempers this.

91

APPENDIX F. ADDITIONAL RESULTS

Evolution of Learnable A During Training (Agamp = 10)

2.0
100 B
1 ///__
15 10
-2 J
_ = 10
=< S}
T 1.0 /—'—F—_\ B
10—3 p
0.5 1
/ 10_4 E
0.0 10—5 p
0 100 200 300 400 500 0 100 200 300 400 500
Training Stage Alternation Training Stage Alternation
— 0A)init=2 —— 0(A)init=0.1 (A)inic = 0.001 —— 0(A)init = 0.00001
— 0A)int=1 —— 0(A)init=0.01 0(A)init = 0.0001

Figure F.2: Evolution of o(\) during BiSSL training with Agamp = 10 under various
initializations.

92

G | Future Work: Regularizing the
Pretext Head via the Upper-
Level

The experiments in Section indicate that using the generalized 1J from Proposi-
tion does not improve downstream performance. One possible explanation, discussed in
Chapter [8] is that the pretext head remains insufficiently integrated into the BiSSL bilevel
formulation (Definition [4.1)). This appendix outlines a proposed extension of BiSSL that
embeds the pretext head more directly into the bilevel structure.

We adopt the notation from Section working with the alternative BiSSL formulation
using a concatenated lower-level parameter vector, given by Definition We propose
the following modified problem:

. * H * 2
min LP (o, (w*(0p)),bp) + L (0p,0p) + 5 es (@ ()]l

s.t. w*(fp) € min L (Yop (W) v, () + L7 (0074, (w)) + Ar(0p, 7o, (w)).

The upper-level now includes a regularization term on the pretext head. This encourages
the upper-level to achieve a backbone 8p that leads the lower-level to achieve regularized
pretext head parameters ¢p. Le., the upper-level needs now to find a backbone on which
the pretext task objective can find a general, likely non-overfitted solution. To ensure this
upper-level term is not treated as constant during optimization, we introduce an additional
term into the lower-level objective that conditions on 8 p. This creates meaningful gradient
paths between the levels through the pretext head. The resulting formulation thus further
intertwines the levels through the pretext head, while preserving the structure of the
lower-level backbone optimization, aside from the inclusion of additional head gradients.

For future reference, we briefly outline the gradient of the upper-level objective (omitting
the second term for simplicity):

1= (700, (" (60)@0) + 5 6, " 61))])

= D0ele 00D g 200, w00, 0) + e OV g, B 00

= 8O0 | 9P, (5 (00).) + SN O (0)
D 1O0ppxL P Lep

4w (8p) | VoLP (36, (w7 (601)). 61)

d6p e, (W (0p))

93

APPENDIX G. FUTURE WORK: REGULARIZING THE PRETEXT HEAD VIA THE
UPPER-LEVEL

Hence, the above upper-level gradient conveniently still only needs the involvement of a
single IJ. Under the same regularity assumptions as imposed in Proposition the explicit
expression for the 1J is then

dw*(GD)
— P/ _ AB
dfp ’
where
A=—|\V3,0,7(0070, (@ (0)) Vi ,5,L" (0075, (" (0D)))]
and

-1

2 /\V2 T GD, 0p w* GD OL><PP
B= %EP(%P(w*(GD)),wP(w*(@D)))+ 0070020 (7 (00)))
&w(0p) Oppr V3, L7 (0070, (0" (00)))

The derivations of this expression follow closely the structure of the proof of Proposition [5.5
(outlined in Appendix , and are hence omitted.

This formulation increases computational cost, as the above expression reveals that it
requires three Hessian-vector products per gradient step rather than one. Whether this
overhead is justified depends on the degree to which it enhances performance or stability
in practice.

94

	Title page
	Introduction
	Self-Supervised Learning
	Bilevel Optimization in Self-Supervised Learning
	Problem Statement
	Project Delimitations

	Self-Supervised Learning
	Distinction from Related Learning Paradigms
	SimCLR: Contrastive Learning of Visual Representations
	GPT: Generative Pretrained Transformer

	Bilevel Optimization
	Optimization Problem Formulation
	Obtaining the Derivatives

	The BiSSL Framework
	Introducing BiSSL
	Expressing the Bilevel Derivatives
	Training Algorithm and Pipeline

	Revisiting BiSSL
	Hyperparameter Impact
	Adapting λ During Training
	Non-Fixed Pretext Head Doing IJ Approximation
	Applying BiSSL on GPT

	Experiments and Results: Ablations and Design Modifications
	Default Implementation Details
	Baselines
	Hyperparameter Influence
	Adaptive Scaling of λ
	Non-Fixed Pretext Head During IJ Approximation

	Experiments and Results: NLP
	Implementation Details
	Downstream Task Performance

	Discussion
	Hyperparameter Sensitivity
	Impact of Adaptable λ
	Inclusion of Pretext Head in IJ Approximation
	Adaptation to NLP Tasks

	Conclusion and Future Work
	Future Work

	Appendices
	SimCLR: Related Pretext Tasks
	The Transformer Blocks of GPT
	Theorems and Proofs
	Bilevel Training Algorithms - Application Examples
	Meta-Learning
	Model Pruning

	Importance of the Second Term of the Upper-Level in BiSSL
	Additional Results
	Results Tables
	Learnable

	Future Work: Regularizing the Pretext Head via the Upper-Level

