
Mobile Robot Localization Under intermitted GNSS Service
Using Visual Support

Master Thesis

Johanes Patrick S

Aalborg University
Robotics

Robotics
Aalborg University

http://www.aau.dk

Title:
Mobile Robot Localization Under intermit-
ted GNSS Service Using Visual Support

Theme:
Master Thesis

Project Period:
Spring Semester 2025

Project Group:
XXX

Participant(s):
Johanes Patrick S

Supervisor(s):
Henrik Schiøler

Page Numbers: 78

Date of Completion:
August 14, 2025

Abstract:

Mobile robots, particularly mobile sports
field-marking robots, are mostly operated
in outdoor environments relying primarily
on sensors such as GNSS and cameras for
navigation and line detection tasks, the sys-
tem ensures accurate positioning and envi-
ronmental awareness. However, its system
performance can sometimes be not up to
Satisfactory results due to uncertainty vari-
ables, especially intermittent signal loss in
GNSS and obstruction in cameras caused
by weather or lightning conditions. These
disturbances cause inaccuracies in estimat-
ing robot’s pose and environmental percep-
tion, that negatively affect its system. As
described above, thus this study focuses on
mitigating the adverse impact caused by
GNSS signal degradation and quality lim-
itations in cameras and proposes a miti-
gation approach through sensor fusion in-
cluding IMU and odometry, processed us-
ing the EKF algorithm. The results demon-
strate that sensor fusion can improve the ro-
bustness of the system.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with

the author.

http://www.aau.dk

Contents

Nomenclature iv

1 Introduction 1
1.1 Perception System . 2
1.2 Localization System . 3

1.2.1 Pose Tracking . 3
1.2.2 Global Localization . 3
1.2.3 Map Acquisition . 3

1.3 Problem Statement . 4
1.4 Objectives . 5
1.5 The Robot Model Specifications . 6
1.6 Significance of this study . 6
1.7 Thesis structure . 7

2 Background 9
2.1 Sensor Systems . 9

2.1.1 Camera Sensors . 9
2.1.2 Wheel Encoder Sensors . 11
2.1.3 IMU Sensors . 11
2.1.4 GNSS Sensors . 12

3 Robot Localization 15
3.1 Environment Representations . 15

3.1.1 Pose Estimation . 16
3.2 The Kalman Filter . 17
3.3 The Extended Kalman Filter . 19

4 Perception System 20
4.1 Stereo Vision System . 20

ii

Contents iii

5 Methods 23
5.1 The Perception Processes . 23

5.1.1 Hough Transform for line . 25
5.2 The Hough Transform process . 28
5.3 Odometry . 29
5.4 Visual Odometry . 30

6 Simulation Tools 33
6.1 The Robot Operating System (ROS) . 33

6.1.1 Fundamental Concepts of ROS2 . 34
6.2 Gazebo Simulator . 35
6.3 RViz2 . 37

7 Implementation 38
7.1 The Implementation of Simulation . 38
7.2 Alternative Implementation Method . 42

7.2.1 The Implementation of Localization Process 44
7.2.2 The Hough Transform . 46
7.2.3 Line-Following Controller . 50
7.2.4 Kalman Filter for 3D Pose . 51
7.2.5 Kalman Filter for 2D pose . 53
7.2.6 Determining R and t from Hough transforms (R = I Case) 55
7.2.7 Camera Perspectives . 55

8 Results 59
8.1 The simulation without source errors . 59
8.2 The simulation with source errors . 64
8.3 The simulation with source errors with added GNSS sensors 66

8.3.1 The simulation with added GNSS sensors (without camera sensors)
for measurements . 68

8.3.2 The simulation with added GNSS sensors and camera sensors for
measurements . 69

8.4 The comparison of results . 70

9 Conclusion 73
9.1 Future Works . 74

Bibliography 75

Nomenclature

Abbreviations

AAVs Autonomous Aerial Vehicles

GPS Global Positioning System

GNSS Global Navigation Satellite System

CNN Convolutional Neural Network

SLAM Simultaneous Localization and Mapping

IMU Inertial Measurement Unit

CMOS Complementary Metal-Oxide Semiconductor

CCD Charge-Coupled Device

RANSAC Random Sample Consensus

3D Three-Dimensional

2D Two-Dimensional

ARHS Attitude and Heading Reference System

GLONASS Global Navigation Satellite System (Russia)

BDS BeiDou Navigation Satellite System (China)

RTK Real-Time Kinematic Positioning

PPP Precise Point Positioning

DGPS Differential GPS

WAGPS Wide-Area GPS

iv

Contents v

LOS Line of Sight

EKF Extended Kalman Filter

ICC Instantaneous Center of Curvature

VO Visual Odometry

ROS Robot Operating System

Chapter 1

Introduction

The usage of robotics has expanded twofolds into a variety of areas, thus, in recent years,
many experts have predicted that robotics will displace human workers in various indus-
tries. Even in extreme cases, some experts have not ruled out the possibility of robots
replacing human workers entirely. This scenario has already happened to occur incre-
mentally, as many human workers have been gradually laid off in favor of robots. For
example, an electric car marker, BYD Auto, has employed the army of humanoid robots
for assembling, sorting, inspecting, among other tasks. Similarly, EHang, an autonomous
aerial vehicle (AAVs) marker, prides itself on being the company that pioneered the elec-
tric passenger-grade autonomous aerial vehicle, which allows it to carry people without
a driver. These cases are exemplary of how fast robotics has evolved. Previously, robots
were limited to industrial automation, which has the following characteristics: a lack of
mobility due to the need to be bolted in a specific place; however, they are now capable of
performing multiple tasks with high mobility, among other advancements. This is known
as mobile robots.

Mobile robots are machines that can navigate on their own without human assistance;
they are regarded as a subfield of robotics. Among other benefits related to sensors, they
need the use of sensors to gather data about surrounding environments and choose the
best course of action to complete a task. For example, the electric car manufacturer, Tesla,
has implemented a variety of sensors for lane detection and road safety. It detects lane
markings and objects like other cars and pedestrians using data from cameras. In addition
to visual sensors, it also utilizes Global Positioning System (GPS) sensors to determine
its pose, which enables it to navigate from its current location to the specific location
generated by GPS, thereby reaching the desired destination. This illustrates how important
sensors are for machines with autonomous function.

As described in the paragraph above, the example of Tesla highlights the use of sensors
for perception and localization systems. Thus, the purpose of this study is to implement
these systems in the simulation. However, the main purpose is to examine how Global
Navigation Satellite System (GNSS) sensors under intermittent signal affects the overall of

1

1.1. Perception System 2

systems.

1.1 Perception System

The perception system plays a significant role in autonomous navigation through line
detection. Before discussing line detection, this study will first examine line marking, as it
is relevant to the process. Line marking is a method used for applying lines in the form of
visible markings to various surfaces, such as sports fields, roads, warehouses, and more,
by spraying or painting.

The purpose of line markings is to ensure road safety, to communicate information
that ensures the structure, fairness, and clarity of sports, to ensure efficient use of spaces
while enhancing safety in warehouses, among other purposes. Today, there are two kind
types of line markings: traditional and modern line markings. Traditionally, line mark-
ing relied on human labor, making it a time-consuming task prone to errors. However,
with advancements in robotics, have transformed traditional line markings into modern
line marking approaches. This enables painting lines with high accuracy, precision, and
consistency.

Both methods have distinct advantages and disadvantages. Traditional line markings
are cost-effective (especially in developing countries), highly customizable, easy to imple-
ment, and more. Developing countries may not have the financial resources to invest in
modern line markings technology. Additionally, the potential profits may not be sufficient
to justify such an investment, as labor costs in developing countries are relatively low.
However, for developed countries, the situation is different mainly because labor costs are
relatively high, making the investment in modern line markings technology more justifi-
able. As evidence, the majority of robots are predominantly used in developed countries,
while developing countries, with the exception of China, are not in a hurry to adopt the
usage of robots.

Modern line markings often utilize line detection. Line detection is a classic algorithm
in computer vision that acts as an intermediate step in identifying lines; it can also be
used to identify vanishing points [1] or lane lines [2]. In general, line detection commonly
employs the Hough transform and its variation [3, 4] in traditional approaches and the
convolutional neural network (CNN)-based methods and their variations [5] in modern
approaches. Both of these approaches have distinct advantages and disadvantages. How-
ever, this study will not examine them in detail, as its primary focus relates to intermittent
GNSS. Therefore, for the perception system for line detection, this study will employ tra-
ditional approaches, as they are relatively simple to implement.

Line detection can serve as an information-related feature, such as previously painted
line markings behind the mobile robot; thus, it can serve as a reference for localization
tasks. The perception system identifies and extracts meaningful line segments from the
scene behind the mobile robot and then matches these extracted lines with a known map
(e.g., a map generated using Simultaneous Localization and Mapping (SLAM) methods)

1.2. Localization System 3

to estimate the robot’s pose relative to the line markings.

1.2 Localization System

Localization is an important aspect of robotics, as it addresses the question: Where is
the robot? Thus, localization refers to a robot’s ability to estimate its pose relative to the
coordinate frame in which the map is defined. Once the robot’s pose is known, it can
act accordingly by performing tasks such as navigating to a designated location, planning
paths, among other related activities. [6] Localization problems can be roughly divided
into the following type: pose tracking, global localization, and map acquisition.

1.2.1 Pose Tracking

This kind of situation assumes that position tracking localizes the robot’s position correctly,
with its initial position known. However, it must take into account the noise that affects
the robot’s motion. In this context, the noise is assumed to be small and confined to a
small area, thus the position-tracking problem is known as local localization.

1.2.2 Global Localization

In this scenario, the prior knowledge of the whereabouts of the robot is unknown with the
assumption that probability distribution cannot be made. Generally, global localization
has more problems than position tracking.

1.2.3 Map Acquisition

A map of the surrounding environment is required for both pose tracking and global
localization. There are two ways to obtain a map: using a map blueprint or using the robot
to generate the map representation through its sensors. In the case of a map generated by
the robot, the robot’s position as a reference must be known when generating the map.

1.3. Problem Statement 4

1.3 Problem Statement

Accurate mapping and localization are essential for mobile robots, as they enable them
to navigate autonomously. As for mapping, there are two types of localization-related
mapping problems: static and dynamic environments. Static environments occur when all
objects and features remain in a fixed position permanently. This is known as immutable
environments. Dynamic environments arise when objects undergo persistent changes over
time. On the other hand, only the robot’s configuration changes over time in static environ-
ments, while in dynamic environments, both the objects (e.g., people, movable furniture,
doors, and others) and the robot’s configuration change over time. This study will assume
static environments for mapping, as its primary focus is more closely related to global and
local localization problems. The reason for using static environments is that both global
and local localization require a map for the mobile robot to localize itself with respect to
local and global reference frames in order to estimate the robot’s pose accurately.

Once, a mobile robot has information about the map, which represents the surrounding
environment. The primary challenge it faces in navigating autonomously is accurately
estimating its pose relative to that map. For such tasks, the mobile robot requires the
integration of sensors into its system. A common problem within sensor systems is that
if one sensor fails, it can lead to serious consequences for the mobile robot. However, this
problem can be mitigated by integrating multiple sensors, where each sensor complements
the other sensors. In this way, if one sensor fails, then its function can be compensated
for by the remaining sensors. For instance, line detection can be achieved solely using
cameras. However, what happens if the cameras suffer a failure within their system?
Therefore, the best approach is to use multiple sensors; for example, lidar sensors can also
perform such tasks. Another benefit of using multiple sensors is that their combined use
is often more accurate than relying on a single sensor.

This study focuses on the localization problem in both global and local contexts during
autonomous navigation using visual sensors. As for global localization, a mobile robot
uses GNSS sensors to estimate its pose relative to a map. In contrast, for local localization,
a mobile robot is equipped with sensors (e.g., wheel encoders and IMU sensors) to track
its own motion and estimate its location relative to its starting position. This is known as
odometry.

Unfortunately, all sensors are vulnerable to uncertainty, noise, and other sources of er-
ror. For example, in global localization, GNSS sensors often suffer from signal degradation
caused by the surrounding environments where the line of sight to satellites is obstructed.
Environmental factors that cause signal degradation include trees, stadium structures, tall
buildings, natural interference like fog and rain, and materials like metals, among other
obstructions that actively block signals. These challenges prevent the system from pin-
pointing the location accurately and precisely. Another possible solution to minimize this
issue is to use high-accuracy GNSS sensors, such as those used by Turf Tank, can be used
to address this issue, but unfortunately, they are very expensive and are not always reliable

1.4. Objectives 5

due to several challenges including signal shadowing or obstruction, thus, making them
economically impractical.

Similarly, in local localization, odometry suffers from cumulative errors in estimating
and measuring the motion model, thus making it unreliable for a mobile robot navigating
in surrounding environments. These limitations in both global and local localization sug-
gest that a practical solution to tackle this kind of situation can involve the integration of
multiple sensors to improve reliability and accuracy.

As outlined above, these challenges underline a key aspect of the research problem:
How can mobile robots maintain accurate localization under uncertainty environments
in real-world conditions where both GNSS and visual sensors may suffer from inter-
mittent errors or errors related to visual perception. Therefore, this study aims to address
the problem by simulation of the mobile robot under intermittent GNSS signal conditions
and evaluate how traditional visual line detection methods can complement the localiza-
tion system. Additionally, explore the effectiveness of the integration of sensor fusion
other than GNSS and camera sensors in improving system robustness and accuracy in
uncertainty environments.

1.4 Objectives

As explained, the main goal of this study is to develop a framework for both global and
local localization as a solution to the challenges associated with each, while improving the
reliability and accuracy of localization during periods of intermittent GNSS signal loss. In
addition to complementing the localization system, the study also aims to enable a mobile
robot to detect lines accurately by using visual perception systems as a complementary
source of pose information, thereby facilitating autonomous navigation. To achieve this,
this study defines the following specific objectives that must be met:

1. Design a mobile robot model that emulates the functional behavior of the Turf Tank
mobile robot. For detailed specifications of the model robot will be discussed in the
following section 1.5.

2. Simulate a mobile robot model in a structured environment, where both global and
local localizations are performed using both GNSS and camera sensors.

3. Implement traditional line detection methods, particularly Hough Transform, that
enable the robot to detect and extract line features as a source of pose information.

4. Apply sensor fusion through the EKF method for integrating GNSS, IMU, odometry,
and camera sensors to estimate the robot’s pose.

5. Evaluate the robot’s localization performance under varying sensor configuration as
follows:

1.5. The Robot Model Specifications 6

• Pure Odometry

• Pure GNSS

• Odometry + Camera

• Odometry + Camera + GPS

6. Assess whether the performance of sensors, which is based on a single sensor or
multiple sensors as described above, is sufficient to improve the robustness, accuracy,
and reliability of localization systems.

Note: The simulation environment is built using ROS2 for communication protocols,
Gazebo for physics-based simulation, and RViz2 for visualization.

1.5 The Robot Model Specifications

The mobile robot model in this study is intended to emulate the core functionalities and
behaviors of Turf Tank mobile robots, which are specifically developed for sports field
line markings. This robot model does not replicate the exact physical design, but instead
includes key aspects of sensor systems that are essential for autonomous navigation and
localization tasks. The robot model for this study is equipped with the following sensors:

1. GNSS Sensor: provides global position data in the simulated environment. It is
modeled to realistically mirror real-world scenarios, including intermittent signal
loss caused by uncertainty environments such as signal obstructions.

2. Camera Sensor: enables the detection of line markings on surfaces and serves as the
primary sensor for the perception system. The detected lines provide an additional
source of pose information alongside the GNSS sensors. In the simulation, the cam-
era is positioned to face backward, replicating the configuration used in Turf Tank
mobile robot.

3. IMU sensor: Provides acceleration and angular velocity data, which serve as the
foundation for estimating local position data through mathematical integration.

4. Wheel Encoders: enables to estimate local position data by converting encoder
counts into a distance traveled, using the geometry of the wheel and the resolution
of the encoder.

1.6 Significance of this study

This study is expected to contribute in the field of robotics, especially in addressing lo-
calization challenges commonly faced by mobile robots in outdoor environments. Such
environments often involve uncertainties such as tall buildings, weather conditions, and

1.7. Thesis structure 7

other obstructions, which can lead to the intermittent availability of the GNSS signal. The
significance of this study is as follows:

1. For Researchers and Academics: It can serve as a reference and provide a deeper
understanding of sensor fusion techniques.

2. For Related Industries: It provides as a foundation for developing more reliable lo-
calization system for products such as mobile robots or related products, particularly
those operating in environments with high uncertainty such as urban canyons.

3. For Future Research: It serves as a fundamental and comparative reference for future
studies aiming to advance localization system using more complex methods such as
deep learning.

1.7 Thesis structure

This thesis is methodically divided into several main chapters as follows:

1. Introduction
Presents the background of the study, including perception and localization systems.
This chapter also outlines the problem statement, research objectives, detailed spec-
ifications of the mobile robot model, the significance and contributions of the study,
and the overall structure of the thesis.

2. Background
Discusses the theoretical foundation and related work concerning various sensors
used in mobile robotics, including camera, wheel encoders, IMU, and GNSS sensors.

3. Robot Localization
Explains the concepts robot localization including environment representations and
pose estimation. This section also covers the Kalman filter and the EKF.

4. Perception System
Describes the camera-based perception system, including how the stereo vision sys-
tem works. Mathematical models are provided to explain it.

5. Methods
Describes the methodology for implementing the perception processes. Additionally,
this section also cover Hough Transform for line and the Hough Transform process,
odometry, and visual odometry.

6. Simulation Tools
Provides a detailed description of the tools used for simulation such as Gazebo,
ROS2, RViz2 and other relevant platforms or libraries.

1.7. Thesis structure 8

7. Implementation
Presents the implementation of the mobile robot model resembling the Turf Tank
system. Includes system architecture, sensor configuration, and software integration.

8. Results
Analyzes and compares the localization accuracy for each configuration: GNSS only,
camera only, GNSS + camera, and GNSS + camera + IMU + odometry. Discusses how
each sensor combination performs under normal and degraded GNSS conditions.

9. Conclusion
Summarizes the research findings, discusses limitations, and provides recommenda-
tions for future work to improve robustness in mobile robot localization systems.

Chapter 2

Background

2.1 Sensor Systems

This section explores various sensors in this study. These sensors facilitate interaction
between the robot and its surrounding environment by allowing it to acquire meaning-
ful information, which is essential for localization and perception systems. Sensors can
generally be classified into two types of categories: proprioceptive vs. exteroceptive and
passive vs. active sensors. [7]

1. Proprioceptive sensors are used to measure the internal variables related to the
robot’s own state, such as motor speed, robot arm joint angles, wheel load, and
other internal dynamics.

2. Exteroceptive sensors can be used to acquire information from the robot’s external
environment, including measurements like distance measurement, light intensity,
surface textures, and others.

Another classification concerns to how sensors interact with the environments:

1. Active sensors emit energy into the environment and then measure environmen-
tal reactions. For example, the GPS inside the robot emits signals to measure the
absolute position of the robot relative to the environment.

2. Passive sensors measure the energy that enters the sensors. For example, a tactile
sensor is a passive sensor that measures based on force without emitting energy.

2.1.1 Camera Sensors

Camera sensors enable the extraction of visual information from the surrounding envi-
ronment. They provide a rich source of detailed data for estimation and sensing tasks.

9

2.1. Sensor Systems 10

Various configurations exist in camera sensors. Presently, the vast majority of camera sen-
sors in the consumer market use Complementary Metal-Oxide Semiconductor (CMOS)
image sensors, while others utilize Charge-Coupled Device (CCD) image sensors. Despite
offering lower image quality primarily due to higher noise levels compared to CCD im-
age sensors, CMOS image sensors offer advantages in cost, power efficiency, and faster
readouts, making them a popular choice in mainstream applications. However, when
high-quality images are paramount, such as in medical imaging, video production, or
professional photography, then CCD image sensors remain a preferred option. [8]

Another example that utilizes either CMOS or CCD image sensors is the stereo camera.
Stereo vision is a well-established technology that has been extensively studied. It operates
by using two cameras—typically designated as left and right—positioned at a fixed dis-
tance apart, enabling them to capture a scene from slightly different perspectives. The core
principle of this method involves matching pixels from one image to their corresponding
counterparts in the other image in order to calculate depth information. [9]

M. Bertozzi et al. [10] demonstrated that a stereo vision system could be used for
real-time obstacle detection and lane tracking. Additionally, they presented algorithms
specifically designed for efficient stereo vision processing, despite the limited computa-
tional resources available at the time. Their work significantly contributed to the develop-
ment of autonomous vehicle technology and, subsequently, to broader applications such
as mobile robotics. However, the success of numerous studies on line detection would
not have been possible without the algorithm method introduced by [11], which serves
as a foundation for robot navigation and computer vision. Subsequently, numerous ad-
vanced algorithms based on line detection such as Hough transform [12], Random Sample
Consensus (RANSAC) [13], Deep Learning-Based Line Detection [14], and more were in-
troduced, further expanding the possibility for advancement in the field.

Perception systems that rely on camera sensors typically face various challenges, in-
cluding the need for complex data processing and feature extraction. The primary limita-
tions of camera sensors include the following:

1. A camera in the traditional sense is used to capture visual data by projecting a three-
dimensional (3D) scene onto a two-dimensional (2D) image plane. This projection
inherently result in the loss of depth information, specifically, the camera does not
know how far away objects in the z-coordinate are. [15] This limitation can be ad-
dressed by incorporating additional sources of information through sensor fusion.

2. Illumination limitations cause inconsistencies in visual information, primarily due to
lightning conditions such as low light, bright light, shadows, and reflections. These
challenges become noticeable in the outdoor environment, where lightning condi-
tions vary, and numerous, often unknown objects may be present-posing significant
challenges in perception systems.

2.1. Sensor Systems 11

2.1.2 Wheel Encoder Sensors

Wheel encoder sensors in a mobile robot are used to measure the robot’s internal state and
its dynamic behavior. Various types of wheel encoder sensors are available on the market;
however, among them, the optical incremental encoder is the most preferred choice for
measuring the angular speed and position in motor drives or at the shaft of a wheel. The
working principle of wheel encoder sensors is based on the pulses generated as the wheel
rotates, with the number of pulses corresponding to the distance traveled. These sensors
can be divided into two main types: incremental and absolute encoders. [16]

Despite their widespread application in mobile robots, wheel encoder sensors are cost-
effective, offer excellent resolution, and are relatively straightforward to implement. How-
ever, unfortunately, they are prone to the accumulation of errors over time. These errors
are primarily caused by factors such as wheel slippage, uneven terrain, and other envi-
ronmental disturbances. Therefore, to mitigate these issues, mobile robots often integrate
wheel encoder sensors with other sensors. [16]

2.1.3 IMU Sensors

An IMU sensor generally consists of a combination of gyroscopes and accelerometers,
which are used to measure a robot’s relative position, velocity, and acceleration during mo-
tion. A single device called an attitude and heading reference unit (ARHS), which main-
tains a 6-DOF estimate of The robot’s pose: position (x, y, z), and orientation (ϕ, θ, ψ) is
generally created by integrating the sensing technology of an IMU sensor with an onboard
computational unit. [17]

Figure 2.1: IMU’s diagram [17]

The working principle of the IMU sensor is illustrated in Figure 2.1. The IMU sensor
typically employs three orthogonal gyroscopes and three orthogonal accelerometers. The
continuous estimation of the robot’s orientation is maintained through the integration of
gyroscope data, denoted as ω. These data are subsequently combined with accelerometer
measurements, which measure the robot’s acceleration, denoted as a, using the current
estimate of the robot’s orientation with respect to gravity. Through this process, the re-

2.1. Sensor Systems 12

sulting acceleration is first integrated to obtain the robot’s velocity, denoted as v, and the
velocity is then integrated again to obtain the robot’s position, denoted as r. [17]

However, IMUs are highly sensitive to measurement errors, primarily due to the in-
stability of the integration process within gyroscopes and accelerometers, which leads to
accumulated drift over time. This drift results in the miscalculation of orientation with
respect to gravity in gyroscopes, causing incorrect cancellation of the gravity vector. In
accelerometers, this incorrect cancellation of the gravity vector leads to a quadratic error
in position estimation, since the resultant acceleration must be integrated twice to obtain
the position. Given the drift inherent in IMU data, GNSS data can be integrated with IMU
data to improve the accuracy and reliability of the robot localization system. [17]

2.1.4 GNSS Sensors

The GNSS (Global Navigation Satellite Systems) sensors are commonplace and are often
encountered in applications that utilize GNSSs for autonomous navigation, GNSS iono-
sphere monitoring, GNSS reflectometry, among others purposes. The GNSS sensors cur-
renly in operation include the United States with Global Positioning System (GPS), Rus-
sia with Global Navigation Satellite System (GLONASS), China with BeiDou Navigation
Satellite System (BDS), and the European Union (EU) with Galileo. Each GNSS system
has its own strengths and weaknesses, and since there is no one-size-fits-all solution, it
has been suggested that combining all available GNSS systems can enhance navigation.
Several studies have demonstrated that this approach leads to more precise positioning
and supports remote sensing applications. However, the main challenges associated with
the use of GNSS are the following: [18]

1. High-accuracy: Several applications require high-accuracy positioning. For example,
military operations demand high-accuracy positioning, as even small errors can ruin
entire systems. Imagine a scenario during wartime, if there were a slight positioning
error, it could lead to mission failure or unintended collateral damage. That is why
countries with GNSS capabilities continue to invest in improving positioning accu-
racy, even the improvements are marginal and require a huge sum of investment,
which is especially critical for military applications.

2. Reliability: In the consumer market, users generally prefer to use low-cost receivers
(e.g., u-blox receivers, smartphone-level GNSS chips) mainly due to economic con-
siderations. Therefore, the usage of low-cost GNSS receivers must be accompanied
by acceptable positioning accuracy. Thus, this such situation pose a major challenges
for GNSS consumer-market manufacturers and scientists, especially those working
to improve accuracy to make these systems suitable for adoption in consumer appli-
cations.

3. Natural threats: Complex environments (e.g., line of sights (LOS), atmospheric con-
ditions, among others) that could degrade the quality of GNSS signals, which is

2.1. Sensor Systems 13

crucial for precise positioning. Thus, it becomes necessary to ensure stable and con-
tinuous precise GNSS positioning despite natural threats.

4. Intentional threats: The common intentional threats in GNSS are jamming and spoof-
ing. Jamming is an intentional interference method with the aim of overloading
receivers, thus rendering it unable to operate, and spoofing transmits fake signals,
which leads GNSS to calculate a false position. [19]

Thus, to tackle these challenges, various augmentation systems have been developed by
both governmental and private entities to enhance the GNSS signals. The example of
augmentation systems: Real-Time Kinematic (RTK), Precise Point Positioning (PPP) or
Differential/Wide-Area GPS (DGPS/WAGPS). [20]

Figure 2.2: An Overview of GNSS augmentation [20]

Figure 2.2 presents an overview of GNSS augmentation. According to this figure, GNSS
augmentation can be divided into three categories based on coverage areas, as follows:

1. Regional: works in limited areas and relies on nearby ground-based stations.

2. Global: works in anywhere in the world and typically through satellite-only.

3. Coastal/continental: works across large land areas or regions near coastlines, but not
truly global.

2.1. Sensor Systems 14

As seen in above picture, apart from the coverage differences, it can be inferred that re-
gional coverage services offer the most precise positioning, typically at cm-level accuracy,
which is suitable for applications such as land survey and machine guidance that use RTK.
On the other hand, PPP, which provides global coverage, offers slightly lower accuracy but
is well-suited for applications, for example, natural resources management and monitor-
ing natural resources. DGPS/WAAS delivers m-level accuracy, which is the lowest among
three, but it is still appropriate for marine and air navigation since it operates effectively
within coastal/continental coverages.

Despite presenting detailed absolute positioning information relative to the Earth, un-
fortunately, GNSS and GNSS augmentation systems do not solve all the challenges as-
sociated with localization systems. If GNSS and GNSS augmentation systems could offer
uninterrupted localization in the absence of signal-obstructing sources, then it would serve
as an ideal solution for many applications that rely on accurate pose estimation. There-
fore, to address these limitations, GNSS sensors are often integrated with other sensors
(commonly with IMU sensors) to provide a more robust solution for localization systems.

Chapter 3

Robot Localization

As described in 1.2, localization is basically the process of determining a robot’s pose
within either known or unknown environments. Common challenges in localization in-
clude how to determine the robot’s pose correctly and mitigate uncertainty in the envi-
ronment. These issues have become the main topics, with many researchers proposing
various solutions. However, unfortunately, to date, no perfect solution exists, as each lo-
calization approach has its own strengths and weaknesses; thus, the choice of methods
largely depends on the specific requirements of the task, the acceptable trade-offs, and the
intended objectives. Although numerous localization approaches exist, but this study does
not aim to provide an in-depth comparison of these methods. Instead, it focuses solely on
the specific localization method.

3.1 Environment Representations

There are various ways to represent environments, as outlined in 1.2. An environment
representation consists of information about the space in which a robot operates. The
environment representation is essential for a robot, particularly when it lacks prior knowl-
edge of its surroundings, as its functionality become limited in such situations. Under-
standing the environment enables the robot to effectively plan its motion, avoid obstacles,
perform navigation, and carry out other related tasks. Generally, the robot acquires this
information through the use of sensors. However, unfortunately, sensor data is inherently
noisy, thus, the robot must recursively maintain its belief with respect to the state of envi-
ronment. Such noise can be mitigated through sensor fusion using estimation algorithms,
such as the Extended Kalman Filter (EKF).

Various types of map representations are available. For example, the grid-based metric
paradigm, which represents environments using evenly spaced grids and the topological
paradigm, which represents environments as graphs, were both used by [21] for mapping
indoor environment. [22] distinguished the three types of world models: geometric, topo-
logical, and semantic models. According to [22], the geometric model is directly derived

15

3.1. Environment Representations 16

from perception data; the topological model provides an understanding of structure based
on connectivity; and the semantic model is a symbolic model representation that contains
information about objects, space properties and their relationship. Feature-based envi-
ronment representations, such as line-based models, were utilized by [23] for navigation
tasks in indoor environments. These are just a few examples of the many representations
available.

3.1.1 Pose Estimation

Before delving into pose estimation using the Kalman Filter, this study will first examine
Bayesian filters, as it is an essential tool for statistical estimation and for optimally inte-
grating disparate sources of information. This process determines an optimal belief about
the current system state by combining the prior belief (based on the previous state) with
the current observations.

Mathematically, Bayes filters are described using conditional probability. However,
before presenting the formal derivation, this study will first define all parameters involved
in the Bayes filter as applied to localization. Following the Markov assumptions, the state is
defined as a complete state, denoted by xt, which contains all necessary information about
past events and states required to predict future states. Additionally, through interaction
with the environment, the robot has access to two types of data, which can be categorized
as follows: [24]

1. Environment measurement data presents details about a brief state of environment
acquired over time. The notation for environment measurement data within a time
interval is denoted as follows:

zt1 :t2 = zt1 , zt1+1, zt1+2, . . . , zt2 (3.1)

representing the set of all measurement data collected for t1 ≤ t2.

2. Control data presents information about change in the system state. The control
input at time t is denoted by ut. The variable ut represents the influence of the
robot’s action on its state within a time interval for t1 ≤ t2, thus the sequence of
control inputs is denoted as follows:

ut1:t2 = ut1 , ut1+1, ut1+2, . . . , ut2 (3.2)

The state xt is sufficient to predict (potentially noisy) measurement zt; thus, the resulting
conditional probability distributions can be divided as follows:

1. State transition probability, denoted as p(xt | xt−1, ut), represent the probability of
the system transitioning to state xt given the previous state xt−1 and control input
ut. When the time index (t) is omitted, the transition can be rewritten asp(x′ | x, u),
where x′ is the successor state and x is the predecessor state.

3.2. The Kalman Filter 17

2. Measurement probability, which is described as p(zt | xt), represents the likehood
of receiving observation zt given that the system is in state xt. When the time index
(t) is omitted, this can be written as p(z | x).

3. A belief, denoted as bel(xt), is a fundamental concept in robotics, as it defines the
robot’s internal knowledge about the state of the environment. It is represented by
a conditional probability distribution that assigns a probability (or density value) to
each possible hypothesis with respect to the true state. The belief can be divided into
two types: prediction and correction steps.

3.2 The Kalman Filter

The Kalman filter is a special case of the Bayes filter, providing an exact solution to the
Bayes filtering problem in the context of linear Gaussian systems subjected to Gaussian
noise. In essence, the Kalman Filter is a specific implementation of the linear-quadratic
estimator (LQE), as both are designed with the purpose of producing optimal estimates
with respect to any quadratic function of the estimation error, even in the presence of
noise. This technique was introduced by Rudolf E. Kalman in 1960. Nowadays, Kalman
filtering is one of the most widely adopted across many fields, more importantly, estimation
and performance analysis. [25]

For the sake of convenience, this equation (3.3) will be introduced in a simplified form,
as it will be used extensively in the equations presented in the following paragraphs.

p(x) = det(2πΣ)−
1
2 exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
(3.3)

As seen in equation (3.3), the probability density over the variable x is characterized by
two parameters: the mean, denoted as µ and the covariance, denoted as Σ. These pa-
rameters must satisfy the following requirements: the mean µ must be a vector with the
same dimensionality as the state x and the covariance matirx Σ must be symetric and
positive-semidefinite. Additionally, the Kalman filter is parameterized by the belief, which
is represented by the mean µ and the covariance Σ. As described in 3.1.1, there are three
kinds of types that must be expressed as a linear function and be perturbed by Gaussian
noise as follows:

1. State transition probability, denoted as p(xt | xt−1, ut), is described by the following
equation:

xt = Atxt−1 + Btut + ϵt (3.4)

xt and xt−1 are state vectors and ut is the control vector. At and Bt are matrices,
where At is a square matrix of size n × n, where n is the dimension of the state
vector xt and Bt is size n × m, where m is the dimension of the control vector ut. ϵt

is the uncertainty in the state transition. It has the same dimensionality as the state
vector, and its mean is zero; therefore, its covariance Σ is denoted as Rt.

3.2. The Kalman Filter 18

The State transition probability p(xt | xt−1, ut) is defined by equation (3.4), thus, the
mean of the posterior state is given by Atxt−1 + Btut and its covariance is given by Rt

using the equation (3.3)

p(xt | xt−1, ut) = det(2πRt)
− 1

2 exp
{
−1

2
(xt − Atxt−1 − Btut)

⊤R−1
t (xt − Atxt−1 − Btut)

}
(3.5)

2. Measurement probability, denoted as p(zt | xt), is described the following equation:

zt = Ctxt + δt (3.6)

Ct is a matrix of size k × n, where n is the dimension of the measurement vector zt.
The measurement noise δt has the same dimensionality as the measurement vector,
and its mean is zero; therefore, its covariance Σ is denoted as Qt.

The measurement probability p(zt | xt) is defined by equation (3.4), thus, the mea-
surement probability is defined using the equation (3.3) as follows:

p(zt | xt) = det(2πQt)
− 1

2 exp
{
−1

2
(zt − Ctxt)

TQ−1
t (zt − Ctxt)

}
(3.7)

3. A belief consists of two stages: the prediction step and correction step. However, for
the sake of simplicity, thus, this case will use the initial belief bel(xo), its mean µo

and its covariance Σ0 using the equation (3.3) as follows:

bel(x0) = p(x0) = det(2πΣ0)
− 1

2 exp
{
−1

2
(x0 − µ0)

TΣ−1
0 (x0 − µ0)

}
(3.8)

As explained above in the three points, these provide the basic understanding necessary for
the subsequent steps. Rather than explaining each step in detail, this section presents the
complete equations of the Kalman filter as illustrated in Table 1. For a detailed explanation
of how to derive the Kalman Filter leads to the specific forms presented in lines 1, 2, 3, 4,
and 5, refer to [26].

Table 1: The Kalman filter algorithm for linear Gaussian state transitions and measure-
ments

procedure Kalman Filter(µt−1, Σt−1, ut, zt)

1: µ̄t = Atµt−1 + Btut

2: Σ̄t = AtΣt−1AT
t + Rt

3: Kt = Σ̄tCT
t (CtΣ̄tCT

t + Qt)−1

4: µt = µ̄t + Kt(zt − Ctµ̄t)

5: Σt = (I − KtCt)Σ̄t

6: return µt, Σt

end procedure

3.3. The Extended Kalman Filter 19

The Kalman filter algorithm, in which the belief bel(xt) at time t is represented by the
mean µt and the covariance Σt. The filter operates on two sets of parameters: the input
at t − 1, represented by µt−1 and Σt−1 and the output at t, represented by µt and Σt. To
perform this update, these parameters are required: the control ut and the measurement
zt.

3.3 The Extended Kalman Filter

Unfortunately, in practice, many robotic systems involve non-linear systems. For example,
a robot navigating along a circular path exhibits motion that cannot be expressed in a linear
state model. Therefore, the Extended Kalman Filter (EKF) is introduced to extend the
traditional Kalman filter to handle such non-linearities by linearizing the state transition
probability and the measurement probabilities. These probabilities are expressed in non-
linear functions as follows:

xt = g(ut, xt−1) + εt (3.9)

zt = h(xt) + δt (3.10)

The detailed algorithm of the EKF is presented in the below table. But as for a detailed
explanation of how the use of non-linear functions leads to the specific forms presented in
Lines 1, 2, 3, 4, and 5, refer to [26].

procedure Extended Kalman Filter(µt−1, Σt−1, ut, zt)

1: µ̄t = g(ut, µt−1)

2: Σ̄t = GtΣt−1GT
t + Rt

3: Kt = Σ̄tHT
t (HtΣ̄tHT

t + Qt)−1

4: µt = µ̄t + Kt(zt − h(µ̄t))

5: Σt = (I − KtHt)Σ̄t

6: return µt, Σt

end procedure

In many respects, the algorithm for the Kalman Filter is similar to that of the EKF. The key
differences between the two are summarized in the table below as follows:

Kalman filter EKF
state prediction (Line 1) Atµt−1 + Btut g(ut, µt−1)

measurement prediction (Line 4) Ctµ̄t h(µ̄t)

As shown in the table, the Kalman filter operates on linear system matrices At, Bt and
Ct, whereas the EKF relies on the Jacobian matrices Gt and Ht.

Chapter 4

Perception System

The perception system is an essential component in mobile robots, enabling the robot to
interpret and understand its surroundings. In this study, a camera sensor, particularly
a stereo vision camera, is utilized as the primary sensor to detect line markings on the
surfaces. These line markings serve as visual references for the robot to estimate its pose
relative to the known environment, enabling it to navigate through the area. This becomes
especially critical for local localization in environments where GNSS signals are either
unavailable or significantly degraded.

4.1 Stereo Vision System

Since this study uses a simulated camera that replicates the physical camera used in the
Turf Tank product, specifically a stereo vision system, so, it will include a detailed discus-
sion of the stereo vision approach.

Figure 4.1: Two different positions of two cameras and their projection of image planes [27]

20

4.1. Stereo Vision System 21

Fig. 4.1 depicts the basic geometry of a stereoscopic image captured by two identical
cameras placed in different positions. This setup reflects the fundamental concept of stereo
vision, which typically involves two cameras positioned on the left and right. This figure
also shows that both cameras are aligned on the same plane in parallax sight. Additionally,
it illustrates that the cameras are offset along the x-axis. For convenience in modeling the
projection, the image planes are displayed in front of the cameras. [27]

Figure 4.2: The epipolar geometry of stereoscopic vision [27]

Fig. 4.2 illustrates two different perspective views of an object point P from centers of the
left and right cameras, denoted as Fl and Fr, respectively. It also shows the perspective
projection of P onto the image planes of the left and right cameras, denoted as pl and pr,
which are referred as a conjugate pair. From here, the plane that passes through both cam-
era centers and the object point in the scene is known epipolar plane, and it corresponds
to the point pl and pr in the image planes. [27]

Figure 4.3: The epipolar geometry with parallel optical axes [27]

4.1. Stereo Vision System 22

Fig. 4.3 shows the stereo camera coordinate system, which is thought to lie halfway be-
tween the left and right camera coordinate system. By applying the concept of similar
triangles, as illustrated in Fig. 4.3, thus, the depth estimation equation can be derived
under the assumption of ideal (pinhole) cameras as follows: [27]

Z =
b ∗ f

xL − xR
=

b ∗ f
d

where the quantity (d = xL − xR), denoted as the disparity, b is the baseline, f is the focal
length of the cameras.

Note: the perception process will be discussed in the following chapter 5.1.

Chapter 5

Methods

5.1 The Perception Processes

This the perception system is based on Turf Tank (see video in [28]), where Turf Tank has
implemented the perception system that processes inputs based on the information from
camera sensors facing backward. According to the video in [28], this configuration setup
enables the robot to continuously detect lines on the ground surface behind it, allowing
it to paint the lines in the forward direction aligned with the previously drawn lines, as
detected by the backward facing camera. The overall the vision-based perception system
is illustrated in Fig. 5.1, where the mobile robot is tasked with detecting linear features on
surfaces within the simulation environment. The process of detecting straight lines using

Figure 5.1: Overview of the perception system, modified from the image in [29]

23

5.1. The Perception Processes 24

the Hough Transform proceeds as follows: [29]

1. Input Image: This initial data is acquired from the surrounding environment using
perception sensors, such as camera sensors. It contains meaningful visual informa-
tion for further processing. However, raw image data is often insufficient due to
various factors that may degrade its quality, such as noises and sensor-related errors.
Thus, to address these issues, image enhancement referred as image pre-processing
is required to improve the quality and reliability of the visual information.

2. Grayscale Image: As a perquisite for further processing, the raw data is first con-
verted into a grayscale format. A grayscale image is a single-channel image that
represent intensity values, eliminating the red, green, and blue (RGB) color channels
found in the original image, making it suitable for subsequent steps such as edge
detection.

3. Noise Reduction: After the original image is converted into grayscale format, but
unfortunately, it may still suffer from unwanted information such as noise, which
can adversely affect further processing steps. Therefore, a noise reduction technique
is applied to enhance image quality by removing noise. A common approach for
this task is the Gaussian filter. Although the Gaussian filter is helpful in preserving
important features while smoothing the image, unfortunately, it suffers from unin-
tended side effects, such as distorting parts of the image in regions with sudden
changes in pixel intensity.

4. Sobel Edge Detection Operator: The Sobel operator is one of several commonly used
edge detection algorithms. It approximates the gradient of image intensity in both
horizantal and vertical directions. These gradients can be combined to compute the
edge magnitude and orientation, thereby highlighting regions in the image where
pixel intensities change rapidly.

5. Non-Local Maximum Suppression: The primary reason for using this technique is
to determine an optimal threshold value that separates image intensities into two
classes: white (foreground) and black (background).

6. Otsu Thresholding: The primary reason of using this technique to determine an
optimal value (threshold value) that separates two intensities into two classes: white
(foreground) and black (background)

7. Region of Interest (ROI) Masking: A region of interest is defined and applied to
exclude irrelevant areas outside the region where lines are expected to appear. This
step enhances detection accuracy and reduces computational load.

8. Canny Edge Detection: The Canny edge detection algorithm is applied to identify
regions with significant intensity changes, which likely correspond to edges. In ad-

5.1. The Perception Processes 25

dition to detecting edges, the algorithm suppresses noise, improving the robustness
of the results.

9. Line Detection with the Hough Transform: The masked edge image is then pro-
cessed using the Hough Transform to detect straight lines. The resulting line seg-
ments are used by the mobile robot for localization tasks within the simulated envi-
ronment.

5.1.1 Hough Transform for line

Before delving into the Hough Transform process, which will be discussed in the following
subsection, this study will first present the Hough Transform in a mathematical form to
provide a basic understanding.

The Hough Transform method was introduced by Paul Hough in 1962 [30] as a tech-
nique for detecting geometric shapes, most commonly straight lines, in binary or grayscale
images. The fundamental idea behind the Hough Transform is to represent lines using a
parametric form. In the standard Cartesian coordinate system, a line is typically expressed
using the slope intercept form as follows:

y = mx + c (5.1)

where collinear points in an image with coordinates (x, y) are described using slope m and
intercept c. This equation can also be rewritten in a homogeneous form as follows:

Ay + Bx + 1 = 0 (5.2)

where A = −1/c and B = m/c. Thus, a line can be described by specifying a pair
of parameters (A, B), which serve the coefficients in the homogeneous form of the line
equation. Because Equation 5.2 is symmetric with respect to given parameters (x, y), thus
it can represent the equation of a line given a point (x, y). Therefore, the same equation can
be used to define both points (x, y) and lines (A, B) at the same time. When considering
collinear points, Equation 5.2 can be rewritten as follows:

Ayi + Bxi + 1 = 0 (5.3)

Additionally, the slope intercept c form of Equation (5.1), thus it can also be expressed as:

c = −mxi + yi (5.4)

Unfortunately, this system is generally overdetermined with increments of mxi, which
requires more computations. To address this problem, Duda and Hart [31] proposed a so-
lution to this problem by basing the mapping function on an alternative parameterization,
known as the foot-of-normal form. This leads to the more robust polar Hough Transform,
as follows:

5.1. The Perception Processes 26

ρ = x cos θ + y sin θ (5.5)

where θ is the angle of the line normal to the line in an image and ρ is the distance between
the origin and the point where the line intersects (see Fig. 5.2).

Figure 5.2: Overview of Polar consideration of a line [32]

Taking into account that two lines are perpendicular if the product of their slopes is -1 and
the geometry described in Fig. 5.2. Thus, the equation could be described in Equation
(5.6).

c =
ρ

sin θ
, m = − 1

sin θ
(5.6)

By referring equation (5.5), a different mapping function is introduced: points in the image
space are cast into a 2D accumulator (see Fig. 5.3) array based on the values of ρ and θ

parameters, forming sinusoidal curves. One advantage of this approach is that the values
of ρ and θ parameters are bounded within a specific range, where θ ∈ [0◦, 180◦), and
ρ ∈ [−

√
2N,

√
2N], with N representing the size of the image.

5.1. The Perception Processes 27

Figure 5.3: Accumulator space of the polar Hough transform [32]

Fig. 5.3 illustrates the polar Hough Transform accumulator spaces. The left, middle, and
right images correspond to one, two, and three points in the image space, respectively.
Each point casts a vote in the accumulator space, forming sinusoidal curve. As more points
are added, more sinusoidal curves are generated. The intersection points of these curves
indicate potential lines that pass through multiple points in the image.

Figure 5.4: An example of applying the polar transform with the Hough Transform for lines [32]

The purpose of the Hough Transform for lines is to identify potential lines by looking at
the tallest and most noticeable peaks in the plot. The higher peaks indicate that the more
likely the line is in an image. To illustrate this concept, Figure 5.4 is used in this study.
As shown in the figure, there are five noticeable peaks, indicating the presence of five
localized lines in the image.

Note: In essence, the Hough transform method can be extended to arbitrary curves such as
circles, ellipses, and others, as long as the parameterization is convenient. In other words,
the Hough transform could be utilized for different shapes if parameterized effectively.

5.2. The Hough Transform process 28

5.2 The Hough Transform process

The primary motivation for employing the Hough Transform lies in its effectiveness at
detecting features that exhibit linear structures. Since the objects of interest in the environ-
ment appear as straight lines, this method is theoretically well-suited for such scenarios.
The process of detecting a straight line using the Hough Transform (see Fig. 5.5) as follows:
[33]

1. Identifying the edge contours of set of images (videos) from captured by camera
sensors in space.

2. Involving binarizing the set of images and locating for non-zero coordinates in the
binarized images.

3. The key data point (the location of non-zero coordinates within the binarized images)
is transformed using the Hough Transform.

4. Define a threshold value and locate the point within the parameter space whose
value exceeds the threshold value. In the corresponding Cartesian Space, these point
pairs are collinear.

5. Finally, the output of transformed image contains the detected lines.

Figure 5.5: Overview of the perception system based on a modified image from [33]

5.3. Odometry 29

The figure above illustrates the algorithm flowchart of the Hough transform method.

5.3 Odometry

The term “odometry” originates from the Greek words hodos, meaning “travel” or “jour-
ney,” and metron, meaning “measure.” In the context of robotics, odometry can be defined
as the process of estimating a robot’s pose and motion using onboard sensors (e.g., wheel
encoders, IMU, GPS, Laser sensors, among others). Specifically, odometry provides an
estimate of the robot’s position and orientation over time, however, When this estimation
is carried out incrementally over time without external references, the process is known as
dead reckoning. One of the most widely used approaches to odometry in mobile robotics
is based on the differential drive model, due to its simplicity and prevalence in practical
platforms.

Figure 5.6: Differential Drive kinematics

[17]

As illustrated in Fig. 5.6, a differential drive robot consists of two independently controlled
wheels mounted on a common axis. These wheels are assumed to be fixed to the robot’s
chassis and maintain continuous contact with the ground. When both wheels rotate at the
same speed, the robot moves in a straight line. When the wheels rotate at different speeds,
the robot follows a circular arc, rotating around a point called the Instantaneous Center of
Curvature (ICC), which lies along the axis connecting the two wheels. The ground contact
speeds on the left wheel and right wheel are denoted as vl and vr, respectively, and the
wheels are separated by a distance 2d. These parameters can be expressed in the following

5.4. Visual Odometry 30

mathematical equations:

ω(R +
l
2
) = Vr

ω(R − l
2
) = Vl

(5.7)

where l denote the distance between the centers and wheels, and let vr and vl represent
the linear velocities of the right and left wheels, respectively, relative to the ground. R
denote the signed distance from ICC to the midpoints between the wheels. The following
equations 7.8 can be re-arranged to solve the rate of rotation ω about the ICC and the
distance from the center of the robot to ICC R as follows:

ω =
vr − vl

2d

R = d
vr + vl

vr − vl

(5.8)

Based on the values of vr and vl , the three motion cases can be distinguished as follows:

1. If Vl = Vr, then R → ∞ and ω = 0. Thus, the robot moves in a straight line without
rotation.

2. If Vl = −Vr, then R = 0, and the robot rotates in place around the midpoint of the
wheel axis.

3. If Vl = 0, then the robot rotates about the left wheel, with R = l
2 . Similarly, with the

case of if Vr = 0.

Let vl and vr, denote as the time-dependent linear velocities of the left and right wheels,
respectively. By defining the point midway between the two wheels as the origin of the
robot’s body frame, and letting θt represent the orientation of the robot with respect to the
x-axis of a global Cartesian coordinate system, thus the robot’s pose can be determined as
follows:

x(t) =
∫

V(t) cos[θ(t)]dt

y(t) =
∫

V(t) sin[θ(t)]dt

θ(t) =
∫

ω(t)dt

(5.9)

5.4 Visual Odometry

Visual Odometry (VO) is the process of estimating the pose of an agent (e.g., a mobile
robot, a vehicle, among others) using a stream of images obtained from one or more cam-
eras attached to the agent. The basic working principle of VO is based on the incremental
estimation of an agent’s pose by analyzing image sequences captured by camera sensors.

5.4. Visual Odometry 31

The advantages of using this method is that VO provides more accurate trajectory esti-
mates, with the relative position error ranging approximately 0.1% to 2%. Thus, VO could
become an excellent alternative to conventional odometry or serve as a complementary
approach-particularly in GPS-denied scenarios, where GPS can not provide accurate pose
estimation; in such cases, VO comes to the rescue. [34]

Despite the advantages provided by VO, it still has weaknesses that could be detrimen-
tal to pose estimation. Since VO is based on visual perception, it is heavily dependent on
the ability of cameras to operate effectively in dynamic environments, which may hinder
the perception process. For example, in outdoor environments, unpredictable conditions
such as sunlight or shadows can complicate the localization process.

5.4. Visual Odometry 32

Note: The table below provides a comparison of commonly used sensors in the localization
process. [35]

Sensor/technology Advantages Disadvantages

Wheel odometry Relatively simple in estimating
agent’s pose
Enables high sampling rates with
short-term accuracy
Inexpensive

Wheel slippage causes position
drift
Accumulation of errors over time
Accurate numerical differentiation
is required to estimate
acceleration, velocity, and position
even in the presence of noise

IMU Not subject to interference outages Position drift
Have long-term drift errors

GPS/GNSS Provides absolute position with
known value of error
No error accumulation over time

Can not operate efficiently in
indoor, underwater, and closed
areas

Cameras Store a significant amount of
meaningful information within an
image
High level of localization accuracy
Low-cost solution

Necessitates image-processing and
data-extraction techniques
Since processing images requires
expertise, this could be expensive

Chapter 6

Simulation Tools

6.1 The Robot Operating System (ROS)

The Robot Operating System (ROS) was originally developed at Stanford University as
part of the STAIR project and was later expanded by the robotics startup, Willow Garage.
Its design philosophy emphasizes several key principles of ROS as follows: [36]

1. Peer-to-peer: Its purpose is to promote decentralized architecture that enables flex-
ible communication and collaboration between nodes and one another. In addition,
the decentralized architecture allows the system to operate independently; if one
node fails, other nodes can continue to function normally. This contrasts with the
centralized architecture, where the failure of a single node can cause the entire sys-
tem to fail.

2. Tools-based: The purpose of this is to provide various tools libraries to achieve spe-
cific goals. For example, ROS provides tools to perform navigation tasks, perception
tasks, localization tasks, and more.

3. Multi-lingual: Since there are various programming languages in the programming
realm, it is important to accommodate the user’s preference language. This allows
the integration of various components into a single component, thus enhancing ac-
cessibility and usability. For example, the ROS libraries for motion planning are
written in C++, but users can write their code in Python and seamlessly integrate it
with the C++ libraries.

4. Thin: ROS encourages design code that is as thin as possible, so that code can be
re-used with different robot frameworks.

5. Free and Open Source: ROS is publicly available and distributed under the BSD
license, allowing users to use it in both commercial and non-commercial projects.

33

6.1. The Robot Operating System (ROS) 34

ROS1 became one of the most widely adopted frameworks in the robotics community,
mainly due to its extensive library of tools and packages. However, as time flies by, the
adoption of ROS1 has further advanced, and ROS1 has begun to show its limitations.
Consequently, ROS2 was introduced to address these limitations. Table [37] compares the
major architectural differences between ROS1 and ROS2.

Category ROS1 ROS2
Network Transport TCP/UDP DDS
Network Architecture roscore Peer-to-peer discovery
Platform Support Linux, Windows, macOS Linux, Windows, macOS
Client Support rospy and roscpp Underlying C libraries (rcl)
Node vs. Process Single node per process Multiple nodes per process
Threading Model Callback handlers Callback queues, Swappable executor
Node State Management None Lifecycle nodes
Embedded Systems rosserial micro-ROS
Parameter Access XML-RPC Service calls
Parameter Types Types inferred when assigned Types declared and enforced

6.1.1 Fundamental Concepts of ROS2

A node is the basic computational unit in ROS2, which responsible for communication
with other nodes (see Fig. 6.1).

Figure 6.1: ROS2 node graph

[38]

6.2. Gazebo Simulator 35

The process communication mechanism in ROS2 interfaces is as follows: [38]

1. Topics: Topics are implemented in ROS2 to act as a bus for nodes to transport mes-
sages from one node to other nodes. As illustrated in Fig. 6.1, it specifically shows
that the topic interacts between subscriber and publisher nodes. The subscribers
only need to know what, and which topics are relevant without the need to know
who the publishers are. In ROS2, topics are usually implemented for streaming data
purposes such as information about robot states or image processing from sensors.

2. Services: Services are implemented in ROS2 based on request-and-response com-
munication. This framework is a type of one-way transport system. Services are
essentially where one node (client) makes a request to another node (server) and the
server receives the request and responds to the client. Services in ROS are formatted
in asynchronous communication.

3. Actions: Actions are goal-oriented tasks that can be monitored or canceled (pre-
empted). The actions framework is essentially the same as the services framework,
but it includes preemption and feedback interfaces.

6.2 Gazebo Simulator

Gazebo is a 3D Robotics Simulator that, when coupled with ROS2, has become increasingly
popular in research, design, and development related to robotic systems as it offers high-
performance and realistic simulation environments. Additionally, Gazebo also provides
realistic sensor feedback, closely resembling that of the real world, and is designed to
replicate dynamic environmental attributes such as mass, velocity, friction, gravity, and
more attributes. Although Gazebo is designed as accurately as possible to reflect behaviors
in real-world situations, it does not mean that it is intended to become the replacement for
real-world testing as there are limitations in Gazebo and the unpredictable environment
in the real world. [39]

The development of Gazebo’s architecture has gone through repeated trial and error,
enabling the extension of its features and improvements in terms of performance as out-
lined in Fig. 6.2.

6.2. Gazebo Simulator 36

Figure 6.2: Gazebo’s Architecture

[39]

The above pictures illustrate Gazebo’s components, and their interactions as follows: [39]

1. World: A complete environment consisting of multiple models.

2. Model: Basically, any object that represents physical representations, which encom-
passes as follows:

(a) Bodies represent the physical structure of a model in the form of geometric
shapes such as boxes, spheres, cylinders, planes, and more.

(b) Joints are basically the mechanisms that connect bodies to form kinematic and
dynamic relationships. There are various types of joints such as hinge, ball and
socket, slider, universal, hinge 2-axis, and more.

(c) Sensors are used for data collection purposes. Examples of sensors are cameras,
lasers, odometers, LIDAR, and more.

3. Interface: Basically, communication, in which the client can access and send com-
mands to instruct the model, for instance, move joints, request sensor data, and so
on.

4. Client: Interacts with the interface in Gazebo through shared memory to send com-
mands or receive data to/from the interface.

6.3. RViz2 37

Additionally, Open Dynamic Engine, a physic engine, is utilized in Gazebo to offer dy-
namic and kinematic simulations that are associated with various attributes such as mass,
joints, collision, rotational function, and more. Gazebo also offers visualization tools such
as OpenGL and GLUT. [39]

Another benefit of using Gazebo is that Gazebo is an open-source and cross-platform,
supporting mainstream operating systems such as Linux, Windows, and macOS. In addi-
tion, Gazebo also can be seamlessly integrated with cloud services through app.gazebosim.org,
enabling users to access it anywhere and anytime as long as they have internet access.
However, Gazebo has several weaknesses such as a particular demand for power when
simulating large resources such as large environments or multiple robots, which necessi-
tate powerful machines, steep learning curves, and more. [40]

6.3 RViz2

RViz2 stands for Robot Visualization, which is a general-purpose 3D visualization envi-
ronment using ROS2, which is developed and maintained by the Open-Source Robotics
Foundation (OSRF). RViz2 is used to analyze and visualize a variety of data types stream-
ing including sensor data, robot models, and others through ROS2, while emphasizing the
three-dimensional nature of the data. The core components of Rviz2 as follows: [41]

1. Displays: An element enables users to visualize something (e.g., the robot model) in
the 3D visualization space.

2. Configurations: This element allows users to adjust properties within Rviz2 and
enable them to load and save configuration files.

3. View Panel: This enables users to adjust the scene based on the camera perspective
(e.g., orbital camera, first-person camera, and more) in the visualization window.

4. Coordinate Frames: display the relationship between different frames within the
robot system.

Chapter 7

Implementation

7.1 The Implementation of Simulation

In this study, the implementation of simulation through libraries within ROS2, Gazebo,
and RViz2. This study first introduces the robot model that will become central to the
implementation in the simulation. The robot model is equipped with various sensors that
are important for this study, such as GPS, IMU, wheel encoders, and cameras sensors. The
robot model in this study is based on the Yahboom ROSMASTER X3, which was forked
from Github [42] and then adapted into ROS2 in this study, as their original model was
based on ROS1. The robot model for this study is described in Fig. 7.1.

Figure 7.1: The robot model

38

7.1. The Implementation of Simulation 39

According to the specifications [42], the Yahboom ROSMATER X3 is a mobile robot equipped
with four Mecanum wheels, which enable it to move in any direction be backward, for-
ward, sideways, or rotationally. Additionally, it is equipped with LiDAR (e.g., YPLIDAR4
ROS), depth cameras (e.g., Astra Pro depth camera), IMU, motor encoders, and optionally
a GPS module (which can be added to the robot chassis). As the robot chassis is wide, it
allows for the installation of multiple sensors, making it ideal for robotic localization tasks.
This is why the Yahboom ROSMASTER X3 is used as the robot model in this study’s sim-
ulation. A comprehensive overview of the sensors utilized in the simulation is presented
in Fig. 7.2.

Figure 7.2: The robot model’s frames

The robot model’s frames describe a structure that mirrors the real-world mobile robot,
for detailed frames of the robot model in simulation are as follows:

1. base_footprint: represents the root frame, which describes contact with the ground
and connects to the base_link node. It is typically a fixed frame used for localization
and navigation purposes.

2. base_link: Represents the chassis of the robot model in the simulation. This is the
central link to which all other components (sensors, actuators) are connected.

3. wheel_link: Represents the wheels in the robot model, enabling the robot’s mobility.
In this simulation, the robot model is represented by mecanum wheels, which consist
of four wheels in front and back on the left and right sides that allow it to move
forward, backward, or rotate.

4. cam1_link: Represents the frame of camera sensors. Its frame consists of depth,
infrared, color, and optical frames.

5. gps_link: Represents the frame of GPS sensors, which measures robot’s pose relative
to the global map.

6. imu_link: Represents the frame of IMU sensors, which measures the robot’s orienta-
tion, acceleration, and angular velocity.

7.1. The Implementation of Simulation 40

7. laser_frame: Represents the frames of LiDAR sensors, which measures the distances
to objects. Its frame is used for SLAM tasks.

As outlined in REP 105, which defines the rules for coordinate frame conventions for
mobile robots, the following standards are illustrated in Fig. 7.3

Figure 7.3: Coordinate frame conventions

The frame flow defines the structure of coordinate frame conventions as follows:

1. map serves as a global reference frame and it is typically fixed.

2. odom serves as the local reference frame. The transformation from map to odom is
generally provided by ROS packages such as AMCL or other related localization
packages.

3. base_link is the reference frame attached to the robot’s chassis. It typically moves
relative to odom through sensor fusion using ROS packages as the robot navigates.

4. sensor_link is a reference frame attached to the sensor, such as the camera, lidar, IMU,
or other related sensors.

In this study, the simulation uses the robot_localization package, which describes the
implementation of the Extended Kalman Filter (EKF) through the ekf_localization_node
and the navsat_transform_node. These nodes for the ekf_localization_node are defined
in the simulation as follows (see Fig. 7.4 and Fig. 7.5):

• ekf_localization_node_odom performs sensor fusion by integrating data from vari-
ous sensors, including wheel encoders via the /wheel/odometry topic, the IMU via the
/imu/data topic, the camera via the /cam1/depth topic, and the GPS via /gps/data. The
fused output is published on the /odom topic in the nav_msgs/msg/Odometry message
format and represents the robot’s estimated cumulative pose over time.

• ekf_localization_node_map focus on estimating the robot’s pose in the global map
frame. This node serves as the ground truth of the robot’s pose in the simulation.

The other node for the navsat_transform_node is described as follows (see Fig. 7.6):

• navsat_transform_node performs the estimation of the robot’s pose with respect to
the global reference frames with the Adaptive Monte Carlo (AMCL) method.

7.1. The Implementation of Simulation 41

Topic Configuration Transformation

Figure 7.4: ekf_localization_node_odom node

Topic Configuration Transformation

Figure 7.5: ekf_localization_node_map node

In order for the GPS node to function correctly in the simulation, accurate mapping and
localization are required. This process is commonly known as SLAM (Simultaneous Local-
ization and Mapping) techniques. However, in this study, SLAM is not discussed in detail,
as it falls outside the scope of this work.

For sake of simplicity, SLAM techniques, especially the AMCL method, are only briefly
presented to provide the context in this work. Since this study utilizes the Nav2 packages,
thus, the AMCL method, which is a component of Nav2, is used to localize the robot
within its known surrounding environment.

7.2. Alternative Implementation Method 42

Topic Configuration Transformation

Figure 7.6: navsat_transform_node node

The diagram illustrates the flowchart of navsat_transform_node. In this simulation, the
map coordinates with respect to the surface of the Earth are described using UTM coordi-
nate system. Measuring absolute orientation is required when simulating the robot model
using robot_localization package with the GPS sensor. To measure absolute orientation,
one can use IMUs with magnetometers, as described in the odom/global topic, and matching
techniques over a known map through the /gps/fix topic using the AMCL method.

7.2 Alternative Implementation Method

This part of the dispensation is due to the challenges in simulating ROS2, particularly with
visual odometry, which is difficult to run effectively in simulation. This is because these
systems rely heavily on capturing features from unique surface textures and patterns. To
achieve reasonable performance, a photorealistic simulator such as Unreal Engine or Isaac
Sim is required. Unfortunately, the laptop used for the simulation does not have a GPU
graphics card, particularly one with Nvidia drivers. Therefore, the final simulation will be
conducted in MATLAB, using the generated lines are straight and that the implementation
closely resembles what is offered in the perception system, without performing perception
system simulation. The overall implementation of Autonomous Navigation System Archi-
tecture is described in Fig. 7.7.

7.2. Alternative Implementation Method 43

Figure 7.7: The overview of Autonomous Navigation System Architecture

The diagram represents the system architecture of the mobile robot, which consists of four
systems, including perception, localization, control, and actuation systems. The mobile
robot first undergoes the system initialization, which serves as the beginning of a con-
tinuous perception-action loop that continues until the robot reaches its goal. During the
perception stage, the mobile robot collects input data from perception sensors (e.g., camera
sensors), including line detection data.

In the following stage, the collected sensor data are then fed into the localization sys-
tems, which is responsible for estimating the robot’s pose relative to the environment.
This estimation enables the mobile robot to navigate based on the collected information.
In addition, the localization system performs the prediction and correction steps with the
EKF method that allow the mobile robot to navigate more accurately. This is crucial in
real-world scenarios, where unpredictable dynamic situations are commonplace, making
it impossible for the mobile robot to follow the actual path perfectly. Therefore, this system
aims to minimize errors caused by factors such as noise.

Based on the data from the localization system, the control system translates this infor-
mation into motor commands that enable the mobile robot to perform tasks. The control
system acts as the processing unit, interpreting the information and sending appropriate
signals to the actuation system to carry out the desired movements.

Lastly, the actuation system is responsible for executing the commands received from
the control system, resulting in the mobile robot moving accordingly. This process loops
continuously until a specific condition is met, for example, the mobile robot reaches its
goal.

7.2. Alternative Implementation Method 44

7.2.1 The Implementation of Localization Process

Since there are differences between simulation using ROS2, Gazebo, and RViz2 compared
to MATLAB, thus, it is essential to describe the requirements that need to be met to achieve
the desired goals in this study. Unlike ROS2, Gazebo, and RViz2, which often allow a
plug-and-play approach using existing packages, MATLAB typically requires more cus-
tomization and development from scratch.

Section 7.2 has outlined how mobile robots are generally expected to operate in terms
of the overall architecture of the autonomous system. However, this study focuses more
specifically on the localization system. Therefore, it is essential to provide a more detailed
explanation of how the localization system is intended to function, particularly within the
MATLAB environment.

Figure 7.8: The overview of Localization System Architecture

Fig. 7.8 illustrates a basic overview of the approach adopted in this study. The localization
process is divided into three main phases as follows:

• The initial phase, where this phase consists of various sensors, including wheel
encoders, IMU, and GNSS sensors. The goal is to gather environmental data through
camera sensor data and produce a preliminary estimate of the robot’s pose through
wheel encoders, IMU, and GNSS sensors.

• The second phase, where this phase focuses on refining the robot’s pose when per-
ception data is available, but non-perception system are not processed in this com-
ponent, but will be handled in the final phase, along with refined data from the
perception system.

• The final phase, where this phase performs sensor fusion using the EKF method to
integrate and update the robot’s pose. The process runs iteratively in a loop until the
goal is reached. In accordance with the criteria defined in this study, the localization

7.2. Alternative Implementation Method 45

process is classified as complete if it involves the perception system (e.g., successful
line detection via camera sensor). In contrast, if the system operates without using
camera-based perception, the process is classified as incomplete. However, this does
not indicate a system failure; the robot remains functional and capable of reaching
its goal, albeit through a reduced sensor configuration.

The 2D kinematic model for differential drive robot, where the robot’s position is described
by x and its heading direction by the unit vector h. The forward velocity v and angular
velocity w define how the robot moves and turns, while R is 90 degrees rotation matrix,
that produces a vector perpendicular to h. The motion is described by:

ẋ = vh (7.1)

This eq. 7.1 means that the velocity of the robot is in the direction of the heading vector h,
scaled by the forward speed v. The heading changes is described as follows:

ḣ = wRh (7.2)

where Rh is the rotational direction vector of the heading 90 degrees, giving the perpen-
dicular direction to h. This eq. 7.2 shows that the heading changes at a rate proportional
to w. This formulation ensures that the heading remains a unit vector while describing the
robot’s translation and rotation in a simple, compact form. The next step is to describe the
discrete-time kinematic model for the differential drive robot derived from eq. 7.1 and 7.2.
In discrete form, using a timestep ∆T (written as dt), then approximate the next state by
adding the derivative times the step size to the current state, which is described as follows:

xn+1 = xn + ∆Tvnhn (7.3)

and
hn+1 = hn + ∆TwnRhn (7.4)

This formulation uses simple Euler integration, making it computationally efficient for
real-time control, though very large time steps or high angular velocities may require
more accurate methods to preserve the unit length of the heading vector.

The next step is to describe the discrete-time kinematic model for the differential drive
robot in state-space form. As shown that the position update is described by eq. 7.3 and
the heading update is described by eq. 7.4. Thus, these equations are described in the
state-space form as follows:

z(n) =
[

x(n)
h(n)

]
(7.5)

which combines both the robot’s position and heading into one variable. The state update
equation then becomes:

z(n + 1) =
[

x(n) + ∆Tv(n)h(n)
h(n) + ∆Tw(n)Rh(n)

]
(7.6)

7.2. Alternative Implementation Method 46

This eq. 7.6 can be written compactly as follows:

z(n + 1) = f (x(n), h(n)) = f (z(n)) (7.7)

where z(n) is the robot’s state at time step n, which includes position x(n) and heading
h(n). To obtain the velocities needed for this update, the forward velocity v from wheel
odometry is described as follows:

v = r · wR + wL

2
(7.8)

where r is the radius of each wheel and wR and WL are angular velocities (rotational
speeds) of the right and left wheels. The angular velocity w from wheel odometry is
described as follows:

v = r · wR − wL

D
(7.9)

where D is the distance between the centers of the right and left wheels. With v(n) and
w(n) are known, the state update become as follows:

z(n + 1) = f (x(n), h(n)) = f (z(n), v(n), w(n)) (7.10)

This eq. 7.10 defines a model suitable for use in a Kalman Filter, where noisy odometry
measurements are fused with other sensor data to improve the accuracy of state estimation.

7.2.2 The Hough Transform

Figure 7.9: The Hough Transform

This Fig. 7.9 illustrates the concept behind the Hough Transform in this study to detect
straight lines in an image. The key idea is to represent a line using the polar form:

r = x · cosθ + y · sinθ (7.11)

7.2. Alternative Implementation Method 47

where r represents the perpendicular distance from the origin to the line and θ represents
the angle between the x-axis and the perpendicular vector.

n = [cos(θ), sin(θ)] (7.12)

Equation 7.12 represents the unit normal vector to the line, which defines the direction
perpendicular to the line. As shown in the image above, particularly, Xp is the closet point
on the line to the origin. This point is described by the following equation:

Xp = r · n (7.13)

Consider X as an arbitrary point that lies on the line. The direction vector Xp − X lies
along the line, and therefore must be orthogonal to the normal vector n. This implies that
the dot product between Xp − X and n is zero, which can be expressed as:

< Xp − X, n >= 0 (7.14)

By substituting Xp = r · n, then the equation can be expressed as follows:

< r · n − X, n >= 0 (7.15)

Using linearity of the dot product, then the equation can be expressed as follows:

r < n, n > − < X, n >= 0 (7.16)

Since n is a unit vector, <n, n> = 1, thus the equation can be simplified as follows:

r =< X, n > (7.17)

The explanation above introduces the concept of the Hough Transform for this study. In
the next step, this study delves into a more detailed formulation of the Hough Transform,
specifically focusing on how it applies to points lying on a line. First, the equation starts
with the implicit line equation as follows:

< x − p, n >= 0 (7.18)

where x represents an arbitrary point on the line, p is a reference point on line, and n
is the unit normal vector perpendicular to the line. As shown in this eq. 7.18 that the
condition < x − p, n >= 0 ensures that the vector from p to x is orthogonal to n, which
mathematically defines the line.

In the following step, this study introduces an alternate equation that parameterize a
point x on the line, described as follows:

x = a · R90 · n + p = a · v + p (7.19)

where R90 is the matrix that rotates a vector by 90 degrees, and a isn an arbitrary scalar.
Since a adjusts the length along this direction, every point on the line can be expressed

7.2. Alternative Implementation Method 48

as a displacement along v (the line direction) from a reference point p. It moves toward
the Hough formulation using the eq. 7.12, thus this equation can expressed as n′ =

[cos(θ), sin(θ)], and the closet point to the origin on the line is xp = r · n′, where r is the
perpendicular distance to the origin. As explained in the eq. 7.19, thus any point x on the
line can be expressed as x = a · v + p. Additionally, the condition that x lies on the line
means the vector from xp to x must be orthogonal to n′, thus the equation can be written
as follows:

< xp − x, n′ >= 0 (7.20)

Equation 7.20 satisfies the condition outlined in Equation 7.18, and can therefore be ex-
panded as follows:

< r · n′ − a · R90 · n + p, n′ >= 0 (7.21)

By expanding and simplifying using properties of the unit vector, we find that n′ = n, and
thus we can get r =< p, n′ >. This confirms that for any point x on the line, the same r
value is recovered. This is fundamental to the Hough Transform, where all points on the
same line yield the same (r, θ) pair in the Hough space.

The next step is to introduce how the Hough Transform representation of a line behaves
under 2D rotation and translation. As explained above, in the Hough transform, a line is
represented by the parameters r and θ, where θ represents the orientation of the line’s
normal vector n′ = [cos(θ), sin(θ)], and r is the perpendicular distance from the origin
to the line. The closet point on the line to the origin, xp, which can be expressed as
xp = r · n′. The equation of a point x on the line, after rotation and translation, becomes
x = R(a · v + p) + t, where v = R90 · n is the direction vector of the line, R is a 2D rotation
matrix, t is a translation vector, and a is a scalar.

As explained in eq. 7.20 and 7.21, where the condition < xp − x, n′ >= 0, which
expands with rotation and translation as follows:〈

xp − a · R90 · R · n + R · p + t, n′〉 = 〈
r · n′ − a · R90 · R · n + R · p + t, n′〉 = 0 (7.22)

Assuming n′ = R · n, the resulting expression simplifies to r =< R · p + t, n′ >. This
equation describes how the new Hough distance r, after applying the transformation,
depends on the rotated and translated defining point and the normal vector. Furthermore,
this study also compares the parameters before and after transformation:

• Before the transformation, the normal vector is n′
1 = n and the distance is r1 =<

p, n′
1 >

• After the transformation, the normal vector becomes n′
2 = R · n and the distance is

r2 =< R · p + t, n′
2 >.

If there is no rotation (R = I) and the translation t is along the line (e.g., t = c · R90 · n),
then the value of r remains unchanged.

7.2. Alternative Implementation Method 49

As explained above, particularly how to determine the rotation matrix R and transla-
tion vector t from two Hough Transforms (before and after rotation and translation) of the
same line in 2D space as follows:

• Before Rotation and Translation, a line is represented in Hough space by param-
eters θ1 and r1. Prior to any transformation, the line’s orientation is defined by its
normal vector n′ = [cos(θ1), sin(θ1)] = n, and the angle θ1 can be computed via
θ1 = atan2(cos(θ1), sin(θ1)) = atan2(n2, n1). The perpendicular distance from the
origin to the line, denoted r1, can be expressed as r1 =< p, n′ >, where p is any
point on the line. For convenience, this point may be chosen as r1 · n′.

• After Rotation and Translation, the normal vector becomes n′
2 = [cos(θ2), sin(θ2)] =

R · n and its new Hough distance is r2 =< R · p + t, n′
2 >. To reconstruct this trans-

formed states, this can be rewritten as R · p + t = r2 · n′
2 + r′ · R90 · n, where R90 · n

is a vector along the line direction and r′ is an arbitrary scalar parameter. Solving
for t, we get t = r2 · n′

2 + r′ · R · R90 · n − R · p. Since r′ is arbitrary, the translation
vector t can not be uniquely determined from Hough parameters alone. The rotation
matrix R, on the other hand, is uniquely determined and has the standard 2D form
as follows:

R =

[
cos(dθ) − sin(dθ)

sin(dθ) cos(dθ)

]
(7.23)

Applying this rotation matrix to the original vector n yields the new normal n′
2, as

shown below:

R · n =

[
n1 cos(dθ) −n2 sin(dθ)

n1 sin(dθ) n2 cos(dθ)

]
= n′

2 (7.24)

The line orientation and distance can be used within a Kalman filter to estimate motion
involving both rotation and translation. In this study, the transformed Hough distance r2,
which is defined as the inner product as follows:

r2 =< R · p + t, n′
2 > (7.25)

Since n′
2 = R · n, we can substitute to get:

r2 = ⟨R · p + t, R · n⟩
= ⟨R · p + t + a · R · R90 · n, R · n⟩
= ⟨R · p, R · n⟩+ ⟨t, R · n⟩
= ⟨p, n⟩+ ⟨t, R · n⟩
= r1 + ⟨t, R · n⟩

(7.26)

For Kalman Filtering purposes, this leads to two key steps:

• Angle update: The change in line orientation corresponds to the negative of the
turning angle (e.g., the vehicle or sensor turning direction).

7.2. Alternative Implementation Method 50

• Distance update: Given the original distance r1, the new distance r2 can be described
as follows:

r2 = r1+ < t, R · n > (7.27)

Plugging this into distance update: To express translation in a form for filtering, it can be
parameterized as:

r2 = r1 + t1 (7.28)

because < t1 · R · n, R · n >= t1 and < t2 · R90 · R · n, R · n >= 0. This equation allows for
estimation of translation and orientation from sequences of line observations.

7.2.3 Line-Following Controller

Figure 7.10: The line Following Controller

Fig. 7.10 describes a line-following controller for the robot, where the goal is to keep the
robot aligned and moving along a line in a 2D plane. The line is characterized by a normal
vector n, and the robot’s position relative to the line is represented by a translation vector
t, which is decomposed into two orthogonal components:

• t1Rn: represents the component along the normal direction to the line.

• t2R90Rn: represents the component tangential to the line, e.g., perpendicular to the
normal.

In this context, the robot’s knowledge of its state is limited: it only know t1, which is the
perpendicular distance to the line, and θ, which is the angle between the robot’s head-
ing and the line direction, inferred from the rotation matrix, R. The controller then uses
a proportional control law to correct both angular deviation and lateral displacement.
Specifically, the angular velocity dθ = −k1θ − k2t1, where k1 and k2 are feedback gains.
This control law causes the robot to reduce both its heading error θ and its distance from
the line t1, ensuring it converges to and follows the desired path.

The angular rate ω is modeled as

dθ = −k1θ − k2t1,

and the displacement-like variable t1 evolves according to

dt1 = v sin(θ) ≈ vθ,

7.2. Alternative Implementation Method 51

where the small-angle approximation sin(θ) ≈ θ is used. Differentiating t1 twice gives

d2t1 = v dθ,

which, after substituting the expression for dθ and replacing θ with t1
v , yields:

d2t1 = −k1dt1 − vk2t1 (7.29)

This is a second-order homogeneous linear differential whose characteristic polynomial is
s2 + k1s + vk2 = 0. According to the Routh-Hurwitz stability criterion, the system will
stable if k1 > 0 and vk2 > 0.

7.2.4 Kalman Filter for 3D Pose

The following step describes a Kalman Filter setup for estimating the robot’s 3D pose,
where the state vector is defined as follows:

(t2, t1, θ) (7.30)

where t1 and t2 represent two positional components and θ represents the orientation. The
continuous-time prediction motion model is formulated as follows:

ẋ = f (x, v, ω) =

v cos(θ)
v sin(θ)

ω

 (7.31)

where v is forward speed, and w is angular velocity. The first two terms update position
based on heading, the third updates orientation. Using Euler integration with a timestep
h, the discrete-time update becomes:

xn+1 = xn + h

vn cos(θn)

vn sin(θn)

ωn

 (7.32)

This eq. 7.32 is the basic prediction step in the Kalman Filter. The next step is mea-
surements, which come from a Hough transform-based vision system, which provides the
measured orientation θ and a line measurement, which is described as follows:

r2 = r1+ < t, Rθ · n > (7.33)

where n = [0 1] is the unit vector and Rθ is the rotation matrix that rotates n by θ:

Rθn =

[
− sin(θ)
cos(θ)

]
(7.34)

7.2. Alternative Implementation Method 52

Assuming the reference line is the horizontal x-axis, the dot product < [t2, t1], Rθn >

evaluates to:
−t2 sin(θ) + t1 cos(θ) (7.35)

Thus, the measurement equation becomes:

h = r1 +

[
θ

−t2 sin(θ) + t1 cos(θ)

]
(7.36)

This eq. 7.36 express the measurement vector in terms of the robot’s state. The next step
is to analyze the observability of the 3D Kalman filter for the robot pose estimation by
linearizing the system at the operating point where

θ = 0, t1 = 0 (7.37)

At this point, the prediction model can be expressed from

ẋ =

v cos(θ)
v sin(θ)

w

 (7.38)

into the Jacobian ∂ f
∂x as follows:

∂ f
∂x

=

0 0 −v sin(θ)
0 0 v cos(θ)
0 0 0

 (7.39)

At the operating point θ = 0 as described in eq. 7.54, thus, sin (θ) = 0 and cos (θ) = 1, so:

∂ f
∂x

=

0 0 0
0 0 v
0 0 0

 (7.40)

The discrete-time state transition matrix F is obtained using the Euler approximation,

F = I + h
∂ f
∂x

(7.41)

and its complete form can be expressed as follows:

F = I + h
∂ f
∂x

= I + h

0 0 0
0 0 v
0 0 0

 (7.42)

where I is the identity matrix and h is the timestep. For the measurement model, the
Jacobian is computed from the measurement equations derived earlier in 7.36. Its form
can be expressed as follows:

H =
∂h
∂x

=

[
0 0 1

− sin(θ) cos(θ) −t2 cos(θ)− t1sin(θ)

]
(7.43)

7.2. Alternative Implementation Method 53

and evaluated at the chosen operating point in eq. 7.54, where θ = 0 and t1 = 0. Thus, the
form is as follows:

H|θ=0,t1=0 =

[
0 0 1
0 1 −t2

]
(7.44)

State-transition linearization around the continuous dynamic ẋ = f (x, u) = [v cos θ, v sin θ, w]T,
thus

A ≡ ∂ f
∂x

∣∣∣∣
θ=0

=

0 0 0
0 0 v
0 0 0

 (7.45)

Discrete-time F = I + hA as follows:

F =

1 0 0
0 0 hv
0 0 0

 (7.46)

From the linearized observability stack, as follows:

O =

 H
HF
HF2

 (7.47)

Notice that the first column of H in eq. 7.44 is [0; 0] or zero. Multiplying H by F and F2 or
higher powers will never introduce non-zero elements into the first column of any block
HFk. Therefore, the entire first state direction lies in the null space of O, implying that O
cannot have full rank. Equivalently, the vector as follows:

vnull =

1
0
0

 (7.48)

Hence rank O = 2 < 3.

Another way to check observability is to note that since the measurement equation is
expressed in eq. 7.28, note that t2 is shown in the second row of eq. 7.44, does not appear
in eq. 7.28, thus, this means that r is independent of t2, making t2 unobservable because
the measurements provide no direct information about t2. Consequently, the estimation
should be reduced to a 2D kalman filter.

7.2.5 Kalman Filter for 2D pose

The following step describes a Kalman filter setup for estimating a robot’s 2D pose, where
state vector is reduced to position along one axis and orientation. The state is defined as
follows:

x =

[
t1

θ

]
(7.49)

7.2. Alternative Implementation Method 54

where t1 is a position coordinate and θ is orientation. The continuous-time prediction
motion model is formulated as follows:

ẋ =

[
v sin(θ)

ω

]
(7.50)

where v sin(θ) describes the velocity component along the t1 direction and w is the angular
velocity. Using Euler integration with a timestep h, the discrete-time update becomes:

xn+1 = xn + h
[

vn sin(θn)

ωn

]
(7.51)

This eq. 7.32 predicts the next state from the previous one. The next step is measurements,
which come from a Hough transform-based vision system, which provides the measured
orientation θ and a line measurement, which is described as follows:

r2 = r1+ < t, Rθ · n > (7.52)

where n = [0 1] is the target line normal vector and Rθ is the rotation matrix that rotates n
by θ:

Rθn =

[
− sin(θ)
cos(θ)

]
(7.53)

In this reduced model, the dot product is mainly related to t1, simplifying the measure-
ment relationship. The next step is to analyze the observability of the 2D Kalman filter for
the robot pose estimation by linearizing the system at the operating point where

θ = 0, t1 = 0 (7.54)

yields the state transition Jacobian F = I + hA as follows:

F = I + h
∂ f
∂x

= I + h
[

0 v
0 0

]
(7.55)

where h is the timestep and v is the forward velocity.The measurement matrix H becomes
the I2x2 identity. The discrete observability matrix is as follows:

O =

[
H

HF

]
=

[
I

I + hA

]
. (7.56)

With A above and v ̸= 0, thus this stacked matrix and null space has rank 2, thus rank
O = 2 = 2, indicating that both state (t1 and θ) variables are directly observed.

7.2. Alternative Implementation Method 55

7.2.6 Determining R and t from Hough transforms (R = I Case)

The following step is the process of determining the rotation matrix R = I and translation
vector t from Hough transform measurements in a specific case where R = I (no rotation).
Before transformation, the line’s unit normal vector is described as follows:

n′
1 = [cos(θ1), sin(θ1)] (7.57)

and the perpendicular distance from the origin is described as follows:

r1 =< p, n′
1 > (7.58)

where p is a point on the line, which we can choose p = r1n′
1. After transformation,

the normal vector remains unchanged since R = I (no rotation), thus the equation can be
described as follows:

n′
2 = [cos(θ1), sin(θ1)] = Rn = In = n (7.59)

Thus, the new perpendicular distance from the origin is:

r2 =< R · p + t, n′
2 > (7.60)

where R · p + t is the transformed point. Additionally, we may choose R · p = p + t =

r2 · n′
2 + r′ · R90 · n, where R90 rotates n by 90 degrees. Thus, this leads to:

t = r2 · n + r′ · R90 · n − p (7.61)

However, when substituted back into the measurement equation, the term involving r′

vanishes because n is orthogonal to R90 · n. This means that r2 is independent of r′. As
a result, the translation perpendicular to the line cannot be determined from the these
measurements, making part of t unobservable in this case.

7.2.7 Camera Perspectives

Figure 7.11: The Camera’s Perspective

7.2. Alternative Implementation Method 56

Fig. 7.11 illustrates the steps involved in updating the robot’s pose as it detects and follows
line markings for painting. In this study, a camera is mounted on the robot and oriented
to face backward–opposite to the direction of the robot’s forward movement. As the robot
moves, the camera captures images of the environment behind it, allowing it to detect
lines on the surfaces. Since the robot is moving forward while the environment remains
stationary, the lines and features in the captured images appear to shift in the opposite
direction. This apparent motion is a projection of the robot’s actual movement through the
environment.

As shown in Fig. 7.11, The geometric relationship between the camera, its viewing an-
gle, and the observed object is obtained by combining camera projection principles with
trigonometric constraints. In the top-left of Fig. 7.11, the pinhole camera model is de-
picted: the vertical displacement in the image plane, denoted by Y′

c , is related to the actual
vertical displacement Yc in the camera frame and the depth Zc via the projection equation
as follows:

Yc′ = f · Yc

Zc
(7.62)

where f is the camera’s focal length. The angle b between the camera’s optical axis and
the object’s vertical projection as follows:

tan(b) =
Y′

c
f

(7.63)

On the right, the larger as shown in Fig. 7.11, this diagram illustrates the object located at
a horizontal distance dh from the camera’s base, with the camera mounted at height Hc.
The slant distance d from the camera to the object, denoted by d, which is obtained using
the Pythagorean theorem as follows:

d =
√

Y2
c + Z2

c or d =
√

d2
h + H2

c (7.64)

In the camera frame, as follows:

d =
√

d2
h + H2

c (7.65)

Angle a and b represent the tilt of the camera and the vertical deviation in the image
(viewing offset), respectively. Accordingly, the the equation can be described as follows:

d · sin(a + b) = Hc (7.66)

while in the camera frame, the vertical component is described as follows:

d · sin(b) = Yc (7.67)

From the eq. 7.63 and 7.66, these equations can be described as follows:

b = arctan(
Y′

c
f
), d =

Hc

sin (a + b)
, (7.68)

7.2. Alternative Implementation Method 57

and by substituting these equations with eq. 7.62, we obtain as follows:

Z2
c =

d2

1 + (Y′
c
f)

2 (7.69)

This eq. 7.69 enables to compute camera coordinates from the image coordinates using:

X′
c =

Xc

Zc
, Y′

c =
Yc

Zc
(7.70)

The transformation from world coordinates (Xg, Yg, Zg) to camera coordinates (Xc, Yc,
Zc) is a linear mapping, generally achieved through a rotation and translation matrix.
However, mapping from the world coordinates to normalized image-plane normalized
coordinates (X′

c, Y′
c) involves the nonlinear transformation because this process involves

division by Zc, which is shown in the eq. 7.70. The next step involves addressing the
linearization and observability issues to reduce to reduce the system to the 2D Kalman
Filter.

The projection mapping from 3D camera coordinates to normalized image coordinates,
as described in 7.70, is based on perspective projection. This projection introduces geomet-
ric distortion, meaning that straight lines in the 3D world may not necessarily appear as
straight lines in the image. Consequently, when the robot detects features, particularly
lines, in the image, we need to invert this mapping to recover (Xc, Yc, Zc) from (X′

c, Y′
c).

This process requires solving for depth Zc using the nonlinear relation derived as follows:

Zc =
d√

1 + (Y′
c
f)

2
, d =

Hc

sin(a + arctan (Y′
c
f))

(7.71)

because of the arctan(·), sin(·), and the
√

1
1+(·)2 term, the measurement function h(x),

which maps state x to measurements, is inherently nonlinear. Therefore, since the Kalman
Filter assumes linear measurements, the function must be linearized using the EKF Kalman
filter in this study. As explained in Subsection 7.2.4, the 3D Kalman filter exhibits unob-
servable state directions under the given linearization and measurement model. A practi-
cal solution is to reduce the state to the observable subspace using a 2D Kalman filter, as
demonstrated in Section 7.2.5, where the states are proven to be observable.

Since t2 is unobservable, the t2 component is removed, and the reduced state becomes
as follows:

xr =

[
t1

θ

]
(7.72)

In this context, the subscript r denotes quantities of the reduced-order system obtained
after removing the unobservable state. The continuous-time prediction motion model is
formulated as follows:

ṫ1 = v sin(θ), θ̇ = ω (7.73)

7.2. Alternative Implementation Method 58

Using Euler integration with a timestep h, the discrete-time update becomes:

xr,k+1 = fr(xr,k, uk) =

[
t1,k + hv sin(θk)

θk + hωk

]
(7.74)

and linearize to form the Jacobian Fr = ∂ fr
∂xr

as follows:

Fr =

[
1 hv cos(θ)
0 1

]
(7.75)

Process noise model: select Qr(2X2) according to assumed noise in v, w, or model uncer-
tainty. The next step is the measurement model where, we retain the same measurement
set but omit t2; thus the linearized measurement becomes as follows:

z =

[
z1

z2

]
=

[
θ

−t2 sin(θ) + t1 cos(θ)

]
(7.76)

Dropping t2 (treat it as unknown/unestimated), thus the form becomes as follows:

hr(xr) = r1 +

[
θ

t1 cos(θ) + c(t̂2, θ)

]
(7.77)

if measurement is just nominally t1, then we may linearize so that as follows:

Hr ≈ I2X2 =

[
1 0
0 1

]
(7.78)

for the case t1 and θ are directly observed after omitting t2. The complete EKF algorithm
is outlined as follows:

Prediction:
x̂r,k+1|k = fr

(
x̂r,k|k, uk

)
Pk+1|k = FrPk|kF⊤

r + Qr
(7.79)

Linearize measurement (evaluate Jacobian Hr at x̂r,k+1|k). For the identity H case, Hr = I.

Update Measurement:

Kk+1 = Pk+1|k H⊤
r

(
HrPk+1|k H⊤

r + R
)−1

x̂r,k+1|k+1 = x̂r,k+1|k + Kk+1
(
zk+1 − hr

(
x̂r,k+1|k

))
Pk+1|k+1 = (I − Kk+1Hr) Pk+1|k

(7.80)

Chapter 8

Results

This section presents an overview of the simulation process and the results generated
from its simulation. The simulation was primarily carried out in MATLAB, where custom-
defined lines were used to represent what the camera would detect in a real or simulation
scenario. Nonetheless, in this scenario, no actual camera or simulated camera was used;
rather, the predefined lines were designed to closely mimic expected camera outputs using
the Hough transform.

8.1 The simulation without source errors

This simulation was carried out with the assumption that the source errors would not affect
the system using the EKF method, and it was ensured that everything worked perfectly
under ideal conditions. When everything had worked as expected, then this simulation
became the baseline for further evaluating the accuracy of the localization system under
conditions where source errors would be present.

The setup involved the mobile robot starting at the point and heading along with x-axis
toward the target point. This simulation steers the mobile robot to follow the straight path
from its start point (0, 0) to the target point (10, 0) by continuously correcting its heading
and lateral position errors. The robot’s state in this simulation can be described as follows:

xk =

Xk
Yk
θk

 (8.1)

where Xk and Yk were positions in world frame and θ was the heading angle (yaw). This
simulation assumed that the control inputs at step k were linear speed, denoted by vk, and
angular speed, denoted by wk.

59

8.1. The simulation without source errors 60

Nonlinear motion model as follows:

Xk+1 = Xk + vk∆t cos θk

Yk+1 = Yk + vk∆t sin θk

θk+1 = θk + wk∆t

(8.2)

The next step was to make the robot follow the straight line from the start point xs at (0, 0)
to the target point xe at (10, 0). The unit vector for the path direction was described as
follows:

u =
xe − xs

∥xe − xs∥
(8.3)

where the unit vector along the the path u was obtained by normalizing the vector from
xe and xs. The normal vector to the path was described as follows:

n =

[
0 −1
1 0

]
u (8.4)

where the perpendicular unit vector n was obtained rotated u by 90 degrees. The pro-
jection of the current point x onto the desired path, denoted by xp was computed by as
follows:

xp = x − (nTx)n (8.5)

The next step was to ensure the projection remains within the path segment; thus it was
clamped to xs when it fell before the start xs, or to xe when it extended past the target.
Finally, the look-ahead point was obtained by shifting projection forward along the path
by the distance γ in the direction of u, using the following:

xT = xp − γu (8.6)

This 8.6 served as the reference for the guidance controller to steer the mobile robot
smoothly toward the path. However, in the guidance control, error vector to look-ahead
point was described as follows:

e = xT − x (8.7)

represented the displacement from the robot’s current position to the look-ahead point.
The desired linear speed v was set to be smaller than the magnitude of the error vector
||e||. In this simulation, v was capped to 2 m/s. The heading error θerr was obtained from
the following equation:

θerr = arcsin((u × h)z) (8.8)

The next step was to compute the lateral position error, which was described as follows:

t1err = nT(x − xp) (8.9)

The angular velocity command w was then computed using the control law described as
follows:

w = −kθθerr − ktt1err (8.10)

8.1. The simulation without source errors 61

In this simulation, both gains kθ and kt were set to 2. Finally, w was saturated as described
as follows:

|w| ≤ v
L

(8.11)

ensured that the steering rate remained within the physical limits given the current speed
v and the mobile robot length L.

In this simulation, the EKF estimated the robot state as described in eq. 8.1, where

• Prediction based on odometry inputs vk and wk

• Update from Hough Transform measurements of the line the robot follows.

1. EKF Prediction Step (Odometry):

Given current state xk = [Xk, Yk, θk]
T described in 8.1, the predicted state after time ∆t,

as follows:

The discrete motion model:
xk+1 = f (xk, uk) + wk (8.12)

with

f (xk, uk) =

Xk + vk∆t cos θk
Yk + vk∆t sin(θ)

θk + wk∆t

 (8.13)

Linearized motion around the predicted state to get Fk as follows:

Fk =
∂ f
∂x

∣∣∣∣
xk ,uk

=

1 0 −vk∆t sin(θk)

0 1 vk∆t cos(θk)

0 0 1

 (8.14)

The covariance prediction Pk+1 as follows:

Pk+1 = FkPkFT
k + QK (8.15)

where the process noise covariance matrix, denoted by Qk, was described as follows:

Qk = GkQcGT
k (8.16)

where

Gk =
∂ f
∂u

∣∣∣∣
xk ,uk

=

∆t cos(θk) 0
∆t sin(θk) 0

0 ∆t

 (8.17)

and

Gc =

σ2
X 0 0
0 σ2

Y 0
0 0 σ2

θ

 (8.18)

8.1. The simulation without source errors 62

In this simulation, Qk was used as tuned constant, thus wk ∼ N (0, Q) where Q = Gc.
This parameter could be tuned up according to your choice. However, since this section
discussed the simulation without noise, therefore Q was set at very small but nonzero
(e.g., 10−6 to 10−8).

2. EKF Update Step (Hough Transform):

The measurement in this simulation came from detecting the line in camera space via
Hough Transform ρk = Xk cos(θk) + Yk sin(θk). The measurement equation as follows:

zk =

[
ρk
ψk

]
= h(xk) + vk (8.19)

where

h(xk) =

[
Xk cos(θk) + Yk sin(θk)

ψk

]
(8.20)

Linearized measurement to get Hk as follows:

Hk =
∂h
∂x

∣∣∣∣
x=xk

=

[
cos(θk) sin(θk) 0

0 0 1

]
(8.21)

ψk represented the measured orientation of a detected line, and vk ∼ N (0, R) represented
the measurement noise.

R =

[
σ2

ρ 0
0 σ2

ψ

]
(8.22)

This parameter R could be tuned up according to your choice. However, since this section
discussed the simulation without noise, therefore R was set at very small but nonzero
(e.g., 10−6 to 10−8). The next step was to use the measurement to update the system value,
described as follows:

yk+1 = zk − h(xk)

Sk+1 = HkPk HT
k + R

Kk+1 = Pk HT
k S−1

k

xk+1 = xk + Kkyk

Pk = (I − Kk Hk)Pk

(8.23)

8.1. The simulation without source errors 63

The results of the simulation without source errors were shown in the images below.

Figure 8.1: The Mobile Robot (True Trajectory, EKF prediction, EKF corrected) under perfect conditions

Fig. 8.1 described the robot’s navigation toward the target point (red star) using the steer-
ing controller and EKF (prediction and correction steps) for localization.

• The blue points represented the true trajectory of the robot, generated by the simu-
lated ground-truth motion.

• The orange dashed lines represented EKF’s predicted path based solely on odome-
try readings.

• The magenta solid line represented the EKF-corrected path based on fused odome-
try from the prediction step and Hough transform from the measurement step. This
reflected actual path the robot navigated.

The results in Fig. 8.1 confirmed satisfactory performance, as the simulation was intended
to produce a straight-line trajectory, and the outcome aligned precisely with that intention.

8.2. The simulation with source errors 64

Figure 8.2: Detected line in camera coordinates using Hough transform under perfect conditions

Fig. 8.2 described the points projected onto the camera’s image plane over time during the
simulation.

• The red line represented the best-fit line detected using the Hough transform.

• The light gray dots represented the true feature points to the trajectory points per-
ceived by the camera under free-noise conditions.

• The blue dots represented the noisy feature points (e.g., lightning condition) that
camera actually measured. In this case, the simulation was performed without noise
perturbation.

Since the simulation was conducted under ideal conditions without noise, the results
shown in Fig. 8.2 were perfectly satisfactory.

8.2 The simulation with source errors

Source errors, such as noise, were added to this simulation to more accurately reflect the
conditions commonly encountered in the real world, thus making it more realistic. This
scenario was assumed to be more representative of actual deployment conditions, despite
being conducted in a simulated environment. In this case, the implementation followed
the procedure described in section 8.1, with the difference that noise was added to this

8.2. The simulation with source errors 65

simulation. The results of the simulation with source errors were shown in the images
below.

Figure 8.3: The Mobile Robot (True Trajectory, EKF prediction, EKF corrected) under noisy conditions

Fig. 8.3 illustrated the simulated mobile robot navigating toward a fixed target (red star)
under uncertain conditions. The blue trajectory represented the robot’s true path, gener-
ated from the ground-truth model. The orange dashed lines showed the EKF’s prediction
in this setup, based solely on noisy odometry, which gradually drifted from the true path
due to cumulative errors. The magenta line depicted the EKF’s corrected trajectory, based
on fused odometry from the prediction step and the Hough transform from the mea-
surement step. Under noisy conditions, this process updated and realigned the robot’s
movement toward the ground truth. This reflected actual path the robot navigated.

As described in section 8.1, the process noise covariance matrix Q and measurement
noise covariance R could be tuned as required. In this simulation, Q and R were set to 0.1
under noisy conditions, whereas under noise-free conditions (section 8.1), they were set to
1 × 10−6. The results showed that the trajectory of the robot model (orange dashed line)
exhibited a slight deviation from the path in gradual step. The trajectory (magenta line)
closely followed the blue true trajectory, indicating that the correction process significantly
reduced the positional drift present in the orange dashed line. The result was considered
satisfactory, as it demonstrated that a trajectory under noise becomes curved, irregular,
and significantly deviates from a straight path.

8.3. The simulation with source errors with added GNSS sensors 66

Figure 8.4: Detected line in camera coordinates using Hough transform under noisy conditions

Fig. 8.4 described the robot model’s path under noise within the camera’s view. The
results showed that the red lines represented the best-fit line using the Hough Transform.
The light gray dots represented represented the true feature points to the trajectory points
perceived by the camera under free-noise conditions. The blue dots represented the noisy
measurements under external environments such as lightning conditions.

8.3 The simulation with source errors with added GNSS sensors

In this case, the setup involved GNSS sensors, odometry, and camera sensors, where
the EKF prediction used odometry data, and the EKF measurement update incorporated
GNSS and camera sensor data.

8.3. The simulation with source errors with added GNSS sensors 67

The general EKF measurement update as follows:

yk+1 = zk − h(xk)

Sk+1 = HkPk HT
k + R

Kk+1 = Pk HT
k S−1

k

xk+1 = xk + Kkyk

Pk = (I − Kk Hk)Pk

(8.24)

Since GNSS directly measured the the absolute position, thus, the measurement model
under GNSS:

zk,gnss =

[
x
y

]
+ wk,gnss (8.25)

Measurement Jacobian:

Hk,gnss =

[
1 0 0
0 1 0

]
(8.26)

wk,gnss ∼ N (0, R) represented the measurement noise.

Rgnss =

[
σ2

x 0
0 σ2

y

]
(8.27)

For the measurement under the Hough transform, as follows:

zk,hough =

[
ρk
ψk

]
= h(xk) + vk (8.28)

Nonlinear measurement function:

h(xk) =

[
Xk cos(θk) + Yk sin(θk)

ψk

]
(8.29)

Measurement Jacobian:

Hk,hough =

[
cos(θk) sin(θk) 0

0 0 1

]
(8.30)

wk,hough ∼ N (0, R) represented the measurement noise.

Rhough =

[
σ2

ρ 0
0 σ2

ψ

]
(8.31)

In this simulation, GNSS was used to correct position drift, and the Hough transform was
used to correct line distance and heading in the measurement system, while the prediction
system relied on odometry.

8.3. The simulation with source errors with added GNSS sensors 68

Figure 8.5: The Mobile Robot (True Trajectory, EKF prediction, EKF corrected) under noisy conditions

Fig. 8.5 illustrated the trajectory tracking performance of the mobile robot. The blue
dotted line represented the true trajectory of the robot, while the red asterisk marked the
target destination. The orange dashed line indicated the EKF prediction based solely on
odometry data, which exhibited a small but noticeable drift below the true path due to
accumulated odometry errors. In this simulation, Q and R were set to 0.04 under noisy
conditions, whereas under noise-free conditions, they were set to 1 × 10−6. The magenta
solid line showed the EKF corrected trajectory using GNSS and Hough transform data
as measurement step fused with odometry as prediction step, which closely aligned with
the true trajectory, demonstrating the effectiveness of sensor fusion in mitigating drift and
improving positional accuracy. Overall, the results confirmed that incorporating external
measurements into the EKF improved localization performance compared to the results
from section. 8.1 and 8.2.

8.3.1 The simulation with added GNSS sensors (without camera sensors) for
measurements

In this simulation, this study first investigated the prediction step using odometry sensors
and the measurement step using GNSS sensors under both noise-free and noisy condi-
tions.

8.3. The simulation with source errors with added GNSS sensors 69

(a) Free-noise conditions (b) Noisy conditions

Figure 8.6: The Mobile Robot (True Trajectory, EKF prediction, EKF corrected) with GNSS measurement under
different conditions

Fig. 8.6 illustrated the comparison of the mobile robot’s trajectory under different noise
conditions. In this simulation, Q and R were set to 0.04 under noisy conditions, whereas
under noise-free conditions, they were set to 1 × 10−6. The left image indicated ideal
conditions with no noise affecting the measurement and prediction steps, showing that
the mobile robot moved in the straight line along the X-axis with no deviation along
the Y-axis. On the other hand, the right image showed that the robot’s trajectory was
affected by GNSS measurement noise and odometry noise in the prediction step, resulting
in deviations. Nonetheless, the mobile robot still moved close to the true trajectory (blue
dots), as illustrated by the magenta solid line. This demonstrated that GNSS could improve
localization accuracy compared to camera sensors in the measurement step.

8.3.2 The simulation with added GNSS sensors and camera sensors for mea-
surements

The next step was to implement a scenario in which the GNSS worked intermittently. In
this case, the measurements used GNSS whenever possible; however, when GNSS signals
were lost, the mobile robot switched to using the Hough transform for the measurement
step. The implementation was carried out under both noise-free and noisy conditions. In
this simulation, the GNSS worked until at the point (5, 0), afterward, the GNSS no longer
functioned, so the system in measurements switched to the Hough transform. Addition-
ally, in this simulation, Q was set to 0.04, R for GNSS was set to 0.04 and R for the Hough
Transform was set to 0.001 under noisy conditions, whereas under noise-free conditions,
they were set to 1 × 10−6.

8.4. The comparison of results 70

(a) Free-noise conditions (b) Noisy conditions

Figure 8.7: The Mobile Robot (True Trajectory, EKF prediction, EKF corrected) under different conditions and
intermittent pattern

Fig. 8.7 described the comparison of the mobile robot’s trajectory under different noise
conditions with an intermittent pattern. In both cases, the robot’s actual trajectory was
represented by the magenta solid line. This magenta solid line showed the EKF-corrected
trajectory obtained through an adaptive measurement strategy for the intermittent pattern.

• When GNSS signals were available, they were used to update the measurement
model.

• when GNSS became unavailable, the mobile robot switched to the camera-based
measurement model.

As shown in Fig. 8.7, the blue star indicated the point where the mobile robot switched
to the Hough transform due to signal loss. The left image showed that the estimated tra-
jectory and the corrected trajectory almost perfectly overlapped with the true path under
noise-free conditions, indicating that the EKF was accurately implemented with prediction
using odometry and measurements following the adaptive strategy: using GNSS when it
functioned and the Hough transform when GNSS was unavailable. On the other hand,
the right image showed slight deviations from the true path, but the EKF still maintained
good tracking performance with only minor discrepancies, demonstrating its robustness
in handling sensor noise.

8.4 The comparison of results

This section discussed the comparison of results as described in the numerical values using
the Root Mean Square (RMS) to validate the visualization results.

8.4. The comparison of results 71

Figure 32: The RMS functions

Fig. 32 outlined the implementation of the RMS functions, where y_vals_real param-
eter described the actual line values (ground truth) over time and y_vals_ekf param-
eter represented the EKF-estimated line values over time. Then, the difference from
y_vals_real - y_vals_ekf represented the error at each points, which is computed by

the rms_error parameter as the square root of the average of the squared errors. Addi-
tionally, in this simulation, the variable num_trials specified the number of trials (20 in
this case).

Method Without Noisy
Conditions

(20 trials)

Under Noisy
Conditions

(20 trials)
Pure Odometry 11.9827 14.1542
Pure GNSS 7.3084 9.8025
Odometry + Camera 8.8924 11.3175
Odometry + Camera + GNSS 5.1051 6.6124

Table 1: Comparison of different localization methods under varying noise conditions (RMS values).

The table 1 presented the performance of localization systems using different sensors un-
der both ideal and noisy conditions, where lower RMS values indicated better accuracy
and higher values indicated worse accuracy. Under both ideal and noisy conditions, pure
odometry achieved errors of 11.9827 under ideal conditions and 14.1542 under noisy condi-
tions, while pure GNSS recorded errors of 7.3084 and 9.8025, respectively. The combination
of odometry and camera sensors resulted in errors of 8.8924 without noise, 11.3175 with
noise. However, by adding GPS to this combination, the error was significantly reduced at
5.1051 without noise, 6.6124 with noise.

The results showed that pure odometry exhibited the highest error, mainly due to cu-
mulative drift over time, while pure GNSS significantly reduced errors compared to pure
odometry. However, although odometry had the highest error, when combined with cam-
era sensors it reduced the errors, but this combination was still not better than GNSS
alone, as visual odometry was sensitive to environmental factors. The best performance

8.4. The comparison of results 72

was achieved by combining odometry, camera, and GNSS, which provided the most robust
and accurate localization, even under noisy conditions, compared to all other configura-
tions listed in the table.

Chapter 9

Conclusion

In this study, the perception system was simulated to approximate what a backward-facing
camera would detect when identifying lines using the Hough Transform. This approach
closely mirrored the behavior of an actual or simulated camera in real-world scenarios,
accurately detecting lines under both ideal conditions and in the presence of source errors,
without relying on a physical camera. Additionally, the perception system contributed
to the localization system, which in this study relied on odometry, GNSS, and camera
sensors. These inputs were integrated through sensor fusion using the EKF method.

In this simulation, different scenarios were designed to investigate whether the use of
sensor fusion could improve the robustness and accuracy of the mobile robot’s localization
system. The results showed that sensor fusion combining odometry, camera, and GNSS
data achieved the best performance overall. However, the pure GNSS showed that it had
better performance compared to sensor fusion that used odometry and camera sensors.
This result was expected because GNSS, such as the RTK-GPS used by Turf Tank in their
products, measures absolute position with centimeter-level accuracy. In contrast, odometry
suffers from cumulative errors due to drift, and the camera is sensitive to environmental
factors, which can negatively impact localization performance.

The results, particularly the visualizations, showed that under ideal conditions, the
robot model was able to follow the straight trajectory closely aligned with the true path.
However, when noise was introduced, the robot’s trajectory exhibited irregularities and de-
viations, highlighting the impact of noise on the mobile robot’s performance. Overall, the
results were considered satisfactory, as they demonstrated the effectiveness of sensor fu-
sion using odometry, camera, and GNSS sensors, reflecting real-world performance under
both noise-free and noisy conditions. These findings indicate the potential applicability of
the proposed approach to real-world robotic systems operating under uncertainty.

73

9.1. Future Works 74

9.1 Future Works

The potential to apply the results from simulation to real-world applications is still sub-
ject to unpredictable variables. Therefore, what works perfectly in the simulation setup
cannot be conclusively generalized to real-world scenarios. It is thus advisable to conduct
testing using actual hardware as part of future work. This would not only corroborate
the simulation outcomes but also assist in recognizing actual constraints and unexpected
obstacles in real-world contexts. In addition to applying the simulation results to practical
scenarios, alternative methods such as machine learning approaches or others could also
be explored.

In addition to test on actual hardware, simulation can be conducted using photorealis-
tic simulators, particularly the perception systems that depend on realistic environments.
These simulations require computers equipped with latest NVIDIA GPUs, which are es-
pecially important in robotics applications that rely on visual input.

Bibliography

[1] Tian Youjin et al. “A Robust Lane Detection Method Based on Vanishing Point Es-
timation”. In: Procedia Computer Science 131 (2018). Recent Advancement in Infor-
mation and Communication Technology: pp. 354–360. issn: 1877-0509. doi: https:
//doi.org/10.1016/j.procs.2018.04.174. url: https://www.sciencedirect.com/
science/article/pii/S1877050918305489.

[2] Weiyu Hao. “Review on lane detection and related methods”. In: Cognitive Robotics
3 (2023), pp. 135–141. issn: 2667-2413. doi: https://doi.org/10.1016/j.cogr.
2023.05.004. url: https://www.sciencedirect.com/science/article/pii/
S2667241323000186.

[3] Jungang Guan et al. “Real-Time Straight-Line Detection for XGA-Size Videos by
Hough Transform with Parallelized Voting Procedures”. In: Sensors 17.2 (2017), p. 270.
issn: 1424-8220. doi: 10.3390/s17020270. url: https://www.mdpi.com/1424-
8220/17/2/270.

[4] Leandro Fernandes and Manuel Oliveira. “Real-time line detection through an im-
proved Hough transform voting scheme”. In: Pattern Recognition 41 (Sept. 2008),
pp. 299–314. doi: 10.1016/j.patcog.2007.04.003.

[5] Wei Wang, Hui Lin, and Junshu Wang. “CNN based lane detection with instance
segmentation in edge-cloud computing”. In: J. Cloud Comput. 9.1 (May 2020). issn:
2192-113X. doi: 10.1186/s13677-020-00172-z. url: https://doi.org/10.1186/
s13677-020-00172-z.

[6] Shoudong Huang and Gamini Dissanayake. “Robot Localization: An Introduction”.
In: Wiley Encyclopedia of Electrical and Electronics Engineering. John Wiley & Sons, Ltd,
2016, pp. 1–10. isbn: 9780471346081. doi: https://doi.org/10.1002/047134608X.
W8318.

[7] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to
Autonomous Mobile Robots. 2nd. Cambridge, MA: The MIT Press, 2011, pp. 101–103.
isbn: 9780262015356.

75

https://doi.org/https://doi.org/10.1016/j.procs.2018.04.174
https://doi.org/https://doi.org/10.1016/j.procs.2018.04.174
https://www.sciencedirect.com/science/article/pii/S1877050918305489
https://www.sciencedirect.com/science/article/pii/S1877050918305489
https://doi.org/https://doi.org/10.1016/j.cogr.2023.05.004
https://doi.org/https://doi.org/10.1016/j.cogr.2023.05.004
https://www.sciencedirect.com/science/article/pii/S2667241323000186
https://www.sciencedirect.com/science/article/pii/S2667241323000186
https://doi.org/10.3390/s17020270
https://www.mdpi.com/1424-8220/17/2/270
https://www.mdpi.com/1424-8220/17/2/270
https://doi.org/10.1016/j.patcog.2007.04.003
https://doi.org/10.1186/s13677-020-00172-z
https://doi.org/10.1186/s13677-020-00172-z
https://doi.org/10.1186/s13677-020-00172-z
https://doi.org/https://doi.org/10.1002/047134608X.W8318
https://doi.org/https://doi.org/10.1002/047134608X.W8318

Bibliography 76

[8] M.V.V. RadhaKrishna, M. Venkata Govindh, and P. Krishna Veni. “A Review on
Image Processing Sensor”. In: Journal of Physics: Conference Series 1714.1 (Jan. 2021),
p. 012055. doi: 10.1088/1742-6596/1714/1/012055. url: https://dx.doi.org/10.
1088/1742-6596/1714/1/012055.

[9] Stefan May, Kai Pervoelz, and Hartmut Surmann. “3D Cameras: 3D Computer Vi-
sion of Wide Scope”. In: Vision Systems. Ed. by Goro Obinata and Ashish Dutta.
Rijeka: IntechOpen, 2007. Chap. 11. doi: 10.5772/4988. url: https://doi.org/10.
5772/4988.

[10] M. Bertozzi and A. Broggi. “GOLD: a parallel real-time stereo vision system for
generic obstacle and lane detection”. In: Trans. Img. Proc. 7.1 (Jan. 1998), pp. 62–81.
issn: 1057-7149. doi: 10.1109/83.650851. url: https://doi.org/10.1109/83.
650851.

[11] Jens Christian Andersen, Nils A. Andersen, and Ole Ravn. “Vision Assisted Laser
Scanner Navigation for Autonomous Robots”. In: Experimental Robotics: The 10th In-
ternational Symposium on Experimental Robotics. Ed. by Oussama Khatib, Vijay Ku-
mar, and Daniela Rus. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 111–
120. isbn: 978-3-540-77457-0. doi: 10.1007/978-3-540-77457-0_11. url: https:
//doi.org/10.1007/978-3-540-77457-0_11.

[12] Luca Iocchi and Daniele Nardi. “Hough Localization for mobile robots in polygonal
environments”. In: Robotics and Autonomous Systems 40 (July 2002), pp. 43–58. doi:
10.1016/S0921-8890(02)00207-5.

[13] N. Sukumar and P. Sumathi. “A Robust Vision-based Lane Detection using RANSAC
Algorithm”. In: 2022 IEEE Global Conference on Computing, Power and Communica-
tion Technologies (GlobConPT). 2022, pp. 1–5. doi: 10.1109/GlobConPT57482.2022.
9938320.

[14] Jing-Ming Guo and Herleeyandi Markoni. “Deep Learning Based Lane Line Detec-
tion and Segmentation Using Slice Image Feature”. In: 2021 International Symposium
on Intelligent Signal Processing and Communication Systems (ISPACS). 2021, pp. 1–2.
doi: 10.1109/ISPACS51563.2021.9651012.

[15] Yijun Zhou, Jianan Zhao, and Chen Luo. “A novel method for reconstructing general
3D curves from stereo images”. In: The Visual Computer 37 (July 2021). doi: 10.1007/
s00371-020-01959-6.

[16] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to
Autonomous Mobile Robots. 2nd. Cambridge, MA: The MIT Press, 2011, pp. 115–116.
isbn: 9780262015356.

[17] Gregory Dudek and Michael Jenkin. “Inertial Sensors, GPS, and Odometry”. In: Jan.
2008, pp. 477–490. isbn: 978-3-540-23957-4. doi: 10.1007/978-3-540-30301-5_21.

https://doi.org/10.1088/1742-6596/1714/1/012055
https://dx.doi.org/10.1088/1742-6596/1714/1/012055
https://dx.doi.org/10.1088/1742-6596/1714/1/012055
https://doi.org/10.5772/4988
https://doi.org/10.5772/4988
https://doi.org/10.5772/4988
https://doi.org/10.1109/83.650851
https://doi.org/10.1109/83.650851
https://doi.org/10.1109/83.650851
https://doi.org/10.1007/978-3-540-77457-0_11
https://doi.org/10.1007/978-3-540-77457-0_11
https://doi.org/10.1007/978-3-540-77457-0_11
https://doi.org/10.1016/S0921-8890(02)00207-5
https://doi.org/10.1109/GlobConPT57482.2022.9938320
https://doi.org/10.1109/GlobConPT57482.2022.9938320
https://doi.org/10.1109/ISPACS51563.2021.9651012
https://doi.org/10.1007/s00371-020-01959-6
https://doi.org/10.1007/s00371-020-01959-6
https://doi.org/10.1007/978-3-540-30301-5_21

Bibliography 77

[18] Yury V. Yasyukevich, Baocheng Zhang, and Venkata Ratnam Devanaboyina. “Ad-
vances in GNSS Positioning and GNSS Remote Sensing”. In: Sensors 24.4 (2024).
issn: 1424-8220. doi: 10.3390/s24041200. url: https://www.mdpi.com/1424-
8220/24/4/1200.

[19] Katarina Radoš, Marta Brkić, and Dinko Begušić. “Recent Advances on Jamming
and Spoofing Detection in GNSS”. In: Sensors 24.13 (2024). issn: 1424-8220. doi: 10.
3390/s24134210. url: https://www.mdpi.com/1424-8220/24/13/4210.

[20] Canadian Geodetic Reference System Committee (CGRSC). GNSS Augmentation. https:
//cgrsc.ca/resources/gnss-augmentation/. Accessed: 2025-07-30. 2025.

[21] Sebastian Thrun and Arno Bü. “Integrating grid-based and topological maps for mo-
bile robot navigation”. In: Proceedings of the Thirteenth National Conference on Artificial
Intelligence - Volume 2. AAAI’96. Portland, Oregon: AAAI Press, 1996, pp. 944–950.
isbn: 026251091X.

[22] Raja Chatila and Jean-Paul Laumond. “Position referencing and consistent world
modeling for mobile robots”. In: vol. Vol. 2. Apr. 1985, pp. 138–145. doi: 10.1109/
ROBOT.1985.1087373.

[23] A. Garulli et al. “Mobile robot SLAM for line-based environment representation”. In:
Proceedings of the 44th IEEE Conference on Decision and Control. 2005, pp. 2041–2046.
doi: 10.1109/CDC.2005.1582461.

[24] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. Cambridge,
Mass.: MIT Press, 2005, pp. 19–33. isbn: 0262201623, 9780262201629.

[25] M. S. Grewal and A. P. Andrews. Kalman Filtering: Theory and Practice Using MAT-
LAB®. 3rd. Hoboken, NJ: John Wiley & Sons, 2008.

[26] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. Cambridge,
Mass.: MIT Press, 2005, pp. 39–64. isbn: 0262201623, 9780262201629.

[27] Raad Thaher and Zaid Hussein. “Stereo Vision Distance Estimation Employing SAD
with Canny Edge Detector”. In: International Journal of Computer Applications 107 (Dec.
2014), pp. 38–43. doi: 10.5120/18735-9977.

[28] Turf Tank. Marking Soccer Rugby Fields with Turf Tank. 2025. url: https://www.
youtube.com/watch?v=cTrxOl3FSrA (visited on 06/02/2025).

[29] Muhammad Awais Javeed et al. “Lane Line Detection and Object Scene Segmenta-
tion Using Otsu Thresholding and the Fast Hough Transform for Intelligent Vehi-
cles in Complex Road Conditions”. In: Electronics 12.5 (2023). issn: 2079-9292. url:
https://www.mdpi.com/2079-9292/12/5/1079.

[30] Paul Hough. “Method and Means for Recognizing Complex Patterns”. US Patent
US3069654A. Dec. 1962.

https://doi.org/10.3390/s24041200
https://www.mdpi.com/1424-8220/24/4/1200
https://www.mdpi.com/1424-8220/24/4/1200
https://doi.org/10.3390/s24134210
https://doi.org/10.3390/s24134210
https://www.mdpi.com/1424-8220/24/13/4210
https://cgrsc.ca/resources/gnss-augmentation/
https://cgrsc.ca/resources/gnss-augmentation/
https://doi.org/10.1109/ROBOT.1985.1087373
https://doi.org/10.1109/ROBOT.1985.1087373
https://doi.org/10.1109/CDC.2005.1582461
https://doi.org/10.5120/18735-9977
https://www.youtube.com/watch?v=cTrxOl3FSrA
https://www.youtube.com/watch?v=cTrxOl3FSrA
https://www.mdpi.com/2079-9292/12/5/1079

Bibliography 78

[31] Richard O. Duda and Peter E. Hart. “Use of the Hough transformation to detect
lines and curves in pictures”. In: 15.1 (Jan. 1972), pp. 11–15. issn: 0001-0782. doi:
10.1145/361237.361242. url: https://doi.org/10.1145/361237.361242.

[32] Mark Nixon and Alberto Aguado. Feature Extraction and Image Processing for Computer
Vision. 4th. eBook ISBN: 9780128149775. Academic Press, 2019. isbn: 9780128149768.

[33] Biao Chen, Bangfeng Ding, and Jiangtao Wang. “Application of an Improved Hough
Transform and Image Correction Algorithm in ACC”. In: Journal of Physics: Conference
Series 1621 (Aug. 2020), p. 012044. doi: 10.1088/1742-6596/1621/1/012044.

[34] Davide Scaramuzza and Friedrich Fraundorfer. “Visual Odometry [Tutorial]”. In:
IEEE Robotics Automation Magazine 18.4 (2011), pp. 80–92. doi: 10.1109/MRA.2011.
943233.

[35] MO Aqel et al. “Review of visual odometry: types, approaches, challenges, and ap-
plications”. In: SpringerPlus 5.1 (2016), p. 1897. doi: 10.1186/s40064-016-3573-7.

[36] M. Quigley et al. “ROS: an open-source Robot Operating System”. In: IEEE Interna-
tional Conference on Robotics and Automation Workshop on Open Source Software. 2009.

[37] S. Macenski et al. “Robot Operating System 2: Design, Architecture, and Uses In The
Wild”. In: Science Robotics 7.66 (2022).

[38] Open Robotics. ROS 2 Documentation: Humble. https://docs.ros.org/en/humble/
Tutorials/Beginner- CLI- Tools/Understanding- ROS2- Nodes/Understanding-
ROS2-Nodes.html. Accessed: 2025-04-12. 2025.

[39] N. Koenig and A. Howard. “Design and use paradigms for Gazebo, an open-source
multi-robot simulator”. In: Proceedings of the 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE Cat. No.04CH37566. IEEE. Sendai, Japan,
2004.

[40] G. Sim. Gazebo Sim. https://gazebosim.org/home. Accessed: 2025-04-12. 2025.

[41] M. Quigley, B. Gerkey, and W. D. Smart. Programming Robots with ROS: A Practical
Introduction to the Robot Operating System. O’Reilly Media, Inc., 2015.

[42] Yahboom Technology. ROSMASTER X3 - ROS Robot Car. https://github.com/
YahboomTechnology/ROSMASTERX3. Accessed: 2025-05-02. 2023.

https://doi.org/10.1145/361237.361242
https://doi.org/10.1145/361237.361242
https://doi.org/10.1088/1742-6596/1621/1/012044
https://doi.org/10.1109/MRA.2011.943233
https://doi.org/10.1109/MRA.2011.943233
https://doi.org/10.1186/s40064-016-3573-7
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://gazebosim.org/home
https://github.com/YahboomTechnology/ROSMASTERX3
https://github.com/YahboomTechnology/ROSMASTERX3

	Front page
	English title page
	Contents
	Nomenclature
	1 Introduction
	1.1 Perception System
	1.2 Localization System
	1.2.1 Pose Tracking
	1.2.2 Global Localization
	1.2.3 Map Acquisition

	1.3 Problem Statement
	1.4 Objectives
	1.5 The Robot Model Specifications
	1.6 Significance of this study
	1.7 Thesis structure

	2 Background
	2.1 Sensor Systems
	2.1.1 Camera Sensors
	2.1.2 Wheel Encoder Sensors
	2.1.3 IMU Sensors
	2.1.4 GNSS Sensors

	3 Robot Localization
	3.1 Environment Representations
	3.1.1 Pose Estimation

	3.2 The Kalman Filter
	3.3 The Extended Kalman Filter

	4 Perception System
	4.1 Stereo Vision System

	5 Methods
	5.1 The Perception Processes
	5.1.1 Hough Transform for line

	5.2 The Hough Transform process
	5.3 Odometry
	5.4 Visual Odometry

	6 Simulation Tools
	6.1 The Robot Operating System (ROS)
	6.1.1 Fundamental Concepts of ROS2

	6.2 Gazebo Simulator
	6.3 RViz2

	7 Implementation
	7.1 The Implementation of Simulation
	7.2 Alternative Implementation Method
	7.2.1 The Implementation of Localization Process
	7.2.2 The Hough Transform
	7.2.3 Line-Following Controller
	7.2.4 Kalman Filter for 3D Pose
	7.2.5 Kalman Filter for 2D pose
	7.2.6 Determining R and t from Hough transforms (R=I Case)
	7.2.7 Camera Perspectives

	8 Results
	8.1 The simulation without source errors
	8.2 The simulation with source errors
	8.3 The simulation with source errors with added GNSS sensors
	8.3.1 The simulation with added GNSS sensors (without camera sensors) for measurements
	8.3.2 The simulation with added GNSS sensors and camera sensors for measurements

	8.4 The comparison of results

	9 Conclusion
	9.1 Future Works

	Bibliography

