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Abstract 
Across all domains of life, the genetic code is overlaid with epigenetic modifications that extend 
beyond the primary nucleotide sequence. The most common and nearly universal mechanism 
of epigenetic signaling is DNA methylation. In bacteria, it modulates a range of biological pro-
cesses, including host defense mechanisms, cell cycle regulation, gene expression, and viru-
lence. This modification is facilitated by DNA methyltransferases, which dictate the methylation 
patterns of bacterial genomes in a motif-specific manner, often differing among species and 
strains. Recent technological advances in Nanopore sequencing now enable the direct detec-
tion of DNA methylation from a standard sequencing run. Despite this, only a few efforts have 
been made to utilize ONT methylation calls for methylation motif discovery in bacteria, but 
none which scales or extends motif discovery to metagenome sequencing of microbial com-
munities. To address this, we developed Nanomotif, a fast, scalable, bioinformatic tool for 
identification and utilization of methylation motifs in metagenomic samples. The MTase-linker 
submodule of Nanomotif replaces existing manual and non-scalable methods with a modern, 
user-friendly bioinformatics tool that pairs methylation motifs to their cognate DNA methyl-
transferases. In the era of metagenomics, tools like this are essential for faster epigenetic 
profiling across entire microbial communities. Motif-methyltransferase pairs not only help cir-
cumvent restriction-modification barriers but also open new avenues to explore the functional 
roles of methylation and its implications for microbial physiology and ecology. 
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Preface 
This thesis is based on the following study: 

 
Nanomotif: Leveraging DNA Methylation Motifs for Genome Recovery and Host Asso-
ciation of Plasmids in Metagenomes from Complex Microbial Communities 

Søren Heidelbach, Sebastian Mølvang Dall, Jeppe Støtt Bøjer, Jacob Nissen, Lucas N.L. van 
der Maas, Mantas Sereika, Rasmus H. Kirkegaard, Sheila I. Jensen, Sabrina Just Kousgaard, 
Ole Thorlacius-Ussing, Katja Hose, Thomas Dyhre Nielsen, Mads Albertsen. bioRxiv 
2024.04.29.591623; doi: https://doi.org/10.1101/2024.04.29.591623 

The latest version of the manuscript is included in the last chapter of this thesis. Most of the 
work was carried out between September 2023 and June 2024. My main contribution was the 
development and implementation of the MTase-Linker module, which is the focus of the third 
chapter. I further participated in data analysis and interpretation, and was actively involved in 
manuscript preparation, critical revision, and final submission. 

To provide context for the study, the first chapter introduces the broader field of prokaryotic 
epigenomics. 

References are notated according to Cite Them Right 12th edition – Harvard. 

 

I am extremely grateful to have worked under the guidance and encouragement of my super-
visor, Professor Mads Albertsen. I would also like to thank Søren Heidelbach and Sebastian 
Mølvang Dall for their invaluable support in the conceptual design of the MTase-Linker module, 
assistance with analyzing Nanopore sequencing data, and their advice on scientific writing 
and coding practices. Finally, I sincerely thank the entire Albertsen Lab for their support, en-
thusiasm, and thoughtful scientific discussions throughout this project. 
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Abbreviations 
 

Abbreviation Full description Abbreviation Full description 
    
A Adenine 

 
Mod MTase gene Type III 

Agn43 Antigen 43 gene Modtype DNA modification type 
 

bp Base pairs 
 

MQ Medium quality 

C Cytosine 
 

ONT Oxford Nanopore Technology 

Dam DNA adenine methyltransferase 
 

OxyR Oxidative stress regulator/ 

DNA Deoxyribonucleic acid 
 

PacBio Pacific Biosciences 

G Guanine 
 

PPM Positional probability matrix 

gtr Glycosyltransferase operon 
 

R/REase Restriction enzyme 

HMM Hidden Markov model 
 

Res Restriction gene Type III 

hsdM MTase gene Type I  
 

RM system Restriction-modification system 

hsdR Restriction gene Type I 
 

T Thymine 

hsdS Sequence recognition gene 
Type I 
 

S Sequence recognition subunit 

HQ High quality 
 

SAM S-adenosyl-L-methionine 

IPD Inter-pulse duration 
 

4mC N4-methylcytosine 

KL-divergence Kullback–Leibler divergence 
 

5mC C5-methylcytosine 

MAG metagenome-assembled  
genome 
 

6mA N6-methyladenine 

M/MTase DNA methyltransferase   
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Introduction 
Invisible to the naked eye, microbes make up the vast majority of Earth’s life forms (Hug et al., 
2016; Timmis et al., 2017). They inhabit every environment where macroscopic organisms 
exist, and they are the sole life forms in extreme environments like the deep trenches and 
acidic hot springs (Brock, 1985; Cavicchioli et al., 2019). Dating back at least 3.8 billion years 
to the origin of life on Earth, microbes have become essential to many vital processes (Cavic-
chioli et al., 2019). They are central to carbon and nutrient cycling, play essential role in soil 
structure and fertility, act as key producers and sinks of greenhouse gases, and influence 
various physiological activities in humans, animals and plants (Timmis et al., 2017; Cavicchioli 
et al., 2019). Without microbes, life as we know it would rapidly cease to exist on Earth (Gilbert 
and Neufeld, 2014). 

Today, both academic and industrial sectors are investing significant effort into remediating 
the environmental damage caused by human activity. Yet, despite their fundamental role in 
sustaining ecosystems across the biosphere, microbes remain largely overlooked in these 
efforts (Cavicchioli et al., 2019; Crowther et al., 2024). As the earliest forms of life on Earth, 
microbes have evolved remarkable evolutionary, functional, and metabolic diversity - offering 
a vast and largely untapped toolkit for tackling both current and future environmental chal-
lenges (Timmis et al., 2017). This immense microbial potential is not entirely unfamiliar to 
humanity. In fact, microbes have been harnessed since the dawn of civilization for everyday 
processes such as brewing beer, fermenting cheese and wine and baking bread (Buchholz 
and Collins, 2013; Timmis et al., 2017). With the discovery of DNA as the blueprint of life in 
the 1960s (Watson and Crick, 1953), microbial technology and product development have 
surged, paving the way for industrial and pharmaceutical advancement including drug and 
enzyme production (Buchholz and Collins, 2013). Despite the discovery of microbes more 
than 300 years ago, the vast majority of microbial diversity and functionality still remains un-
explored (Gest, 2004; Albertsen, 2023; Singleton et al., 2024). 

Historically, the study of microbes has relied heavily on isolating and studying them in pure 
culture within laboratory settings. However, access to microbes by cultivation methods is still 
quite limited, and the vast majority of microbial diversity continues to elude cultivation (Rinke 
et al., 2013). As a result, modern microbial research increasingly depends on genomic data, 
particularly whole genomes and marker genes, which are readily obtained through DNA ex-
traction and sequencing. These genomic elements serve as the fundamental units for explor-
ing microbial diversity, evolution, and function (Pérez-Cobas, Gomez-Valero and Buchrieser, 
2020; Albertsen, 2023).  

To date, most genomic investigations have focused on the primary sequence of DNA - the 
arrangement of the four nucleotide bases: guanine (G), cytosine (C), adenine (A), and thymine 
(T). Technologies for sequencing the primary DNA code have advanced rapidly over the past 
two decades, enabling the decoding of genetic information for a vast diversity of macro- and 
microorganisms (Hug et al., 2016; Satam et al., 2023). Though, still far from the estimates of 
millions (Louca et al., 2019) to billions (Larsen et al., 2017) of microbial species expected to 
constitute the Earths biosphere, ~144,000 prokaryotic species now have a genomic represen-
tation in the public databases (Parks et al., 2022). This growing genomic catalog continues to 
expand our understanding of microbial life and holds tremendous promises for unlocking novel 
biotechnological innovations and applications. 
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While the primary DNA sequence play a well-established role in biology, other genomic fea-
tures that are equally vital to microbial physiology have received comparatively less attention 
and remain poorly understood (Hofer, Liu and Balasubramanian, 2019; Sánchez-Romero and 
Casadesús, 2020). Although DNA modifications were discovered in bacteria more than half a 
century ago, limited methodological advancements long hindered comprehensive exploration 
in this area (Beaulaurier, Schadt and Fang, 2019). Recent breakthroughs in third-generation 
sequencing technologies, however, have overcome many of these limitations - enabling ge-
nome-wide detection of multiple types of DNA modifications at single-nucleotide resolution 
(Nielsen et al., 2023).  Researchers are now better equipped than ever before to uncover the 
previously hidden epigenetic mechanisms, which govern the physiology and functional capa-
bilities of microbes. 

 

The Prokaryotic Epigenome 
The most common and nearly universal mechanism of epigenetic signaling is DNA methylation 
(Sánchez-Romero and Casadesús, 2020). In prokaryotes, DNA methylation occurs in three 
forms: C5 and N4 cytosine methylation (5mC and 4mC) and N6 adenine methylation (6mA), 
where 6mA is the most common form (Figure 1) (Sánchez-Romero and Casadesús, 2020).  

 

 
Figure 1. Primary types of DNA methylation in prokaryotes. Chemical structures of the three primary types of 
DNA methylation found in prokaryotes: C5-methylcytosine (5mC), N4-methylcytosine (4mC), and N6-methylade-
nine (6mA). These modifications are catalyzed by DNA methyltransferases (MTases), which transfer a methyl group 
from S-adenosyl-L-methionine (SAM) to the appropriate position on the unmodified target base. Adapted from 
(Beaulaurier, Schadt and Fang, 2019). 

DNA is methylated by DNA methyltransferases (MTases), which transfer a methyl group from 
S-adenosyl-L-methionine to the appropriate position on the target base. Based on the position 
to which the methyl group is transferred, MTases can be divided into two classes, exocyclic 
amino MTases (4mC and 6mA) and endocyclic MTases (5mC) (Gao et al., 2023). These en-
zymes methylate specific DNA sequence contexts, called motifs, and create unique methyla-
tion patterns on prokaryotic genomes. For example, the Escherichia coli K-12 strain encodes 
three active MTases, recognizing 5’-GATC-3’,  5’-CCWGG-3’, 5’-AACNNNNNNGTGC-3’ 
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motifs (Adhikari and Curtis, 2016). Nearly every occurrence of these target motifs is methyl-
ated, and typically, if a DNA motif is recognized by an MTase, more than 95% of its occurrences 
are modified (Beaulaurier, Schadt and Fang, 2019). DNA methylation is both abundant and 
widespread across prokaryotic taxa. The specificity domain of MTases, which determines the 
recognized motif, varies greatly among species, contributing to a remarkable diversity of meth-
ylation patterns throughout the prokaryotic kingdom (Blow et al., 2016; Beaulaurier, Schadt 
and Fang, 2019). A landmark study investigating a diverse set of 230 prokaryotic genomes 
observed motifs in 93% of genomes with an average of 3 methylated motifs per genome (Blow 
et al., 2016). 

RM systems: Guardians of the Genome 
Historically, prokaryotic DNA methylation and MTases have been associated with restriction-
modification systems (RM systems), consisting of MTases and cognate restriction enzymes 
(REases) (Roberts, 2003; Seong, Han and Sul, 2021). The RM systems are the most abun-
dant and widespread antiphage system, present in more than 80% of prokaryotic genomes, 
with an average of more than two RM systems per genome (Oliveira, Touchon and Rocha, 
2014; Tesson et al., 2022). It protects the host against foreign DNA elements by distinguishing 
non-methylated foreign DNA from its own methylated DNA. The former being recognized and 
cleaved by the cognate REase (Figure 2) (Ershova et al., 2015). 

RM systems have been classified into four main types, I, II, III, and IV based on their subunit 
composition, cleavage site, sequence recognition motif and cofactor requirements (Ershova 
et al., 2015). In Figure 3, genes and subunit compositions involved in the first three RM system 
types are illustrated.  

Type I RM systems are encoded by three genes: hsdM (MTase gene), hsdS (sequence recog-
nition gene), and hsdR (restriction gene). The Type I MTase is a complex composed of two 
MTase subunits and one S subunit (M2S1, Figure 3), whereas the type I REase is composed 
of two MTase subunits and two restriction subunits with one S subunit to form a complex 
(R2M2S1, Figure 3). The methylation of Type I RM systems occurs on both strands of a bipartite 
motif, for example 5’-AACNNNNNNGTGC-3’. Cleavage by the REase complex occurs up to 
several kilobases away from the bipartite recognition motif (Ershova et al., 2015). 

Type II RM systems are usually produced by two genes (M and R, Figure 3) that encode an 
REase and MTase, respectively. MTases are active as monomers, but REases are composed 
of various complexes ranging from monomers to tetramers. They mostly bind to short (4-8 
base pair (bp)) palindromic sequences, like 5’-GATC-3’. Methylation occurs inside the motif 
on both strands, and cleavage occurs either inside or nearby the recognition motif (Ershova 
et al., 2015). A specific subtype of Type II system, Type IIG, is produced by a single gene that 
encodes a protein with both restriction and methyltransferase activity. These typically recog-
nize non-palindromic motifs either as a short, continuous sequence or a bipartite, discontinu-
ous sequence (Roberts et al., 2023). 
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Figure 2. Roles of Prokaryotic DNA Methylation. In prokaryotes, restriction-modification (RM) systems serve as 
widespread defense mechanisms against foreign DNA. These systems distinguish self from non-self DNA through 
methylation patterns. The Type II RM system, illustrated here, includes a DNA methyltransferase (MTase, orange) 
and a restriction enzyme (REase, purple). Both enzymes recognize short, palindromic sequence motifs in the ge-
nome (thick orange lines). Unmethylated recognition sites, such as those found in an infecting phage genome, are 
cleaved by the REase. Motif specific methylation by the MTase protects the host genome from cleavage by the 
REase. In addition to their role in genome defense, several MTases regulate important cellular process such as 
transcription and cell cycle. Figure inspired by (Seong, Han and Sul, 2021; Wilbanks et al., 2022). 

Type III RM systems consist of two mod and res genes encoding proteins that recognize, 
modify, and cleave specific DNA sequence motifs. Type III MTases are composed of two Mod-
subunits (M2, Figure 3), and because only Mod-subunits contain the DNA-binding specific 
domain, a type III REase consists of a complex with a Res and two Mod-subunits (R1M2, Fig-
ure 3). Type III RM systems bind to short (4-6 bp) non-palindromic motifs, e.g. 5’-CGAAT-3’, 
and methylate only one DNA strand after binding (Ershova et al., 2015).  

Finally, unlike other types of RM systems, the Type IV RM systems comprise only the REase, 
which hydrolyze methylated DNA. The Type IV RM system has evolved to have low sequence 
specificity (unlike other RM systems) to protect host cells from a wide range of foreign DNA 
with various methylation patterns (Ershova et al., 2015). 

In addition to the RM systems, many bacterial and archaeal genomes harbor at least one Type 
II MTase, not associated with any REase (Oliveira, Touchon and Rocha, 2014; Blow et al., 
2016). These MTases are designated orphan MTases. Unlike RM MTases, which are poorly 
conserved, many orphan DNA methyltransferases are conserved at the genus level (Oliveira 
and Fang, 2021; Gao et al., 2023). An example of an conserved, orphan MTase, is the E.coli 
Dam enzyme, methylating 5’-GATC-3’, which have homologs widespread in γ-Proteobacteria 
(Oliveira and Fang, 2021).  
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Figure 3. Structural and Functional Organization of Type I-III RM systems. Genes: Gene interlocation scheme. 
hsdM, M, mod - DNA methyltransferase genes; hsdR, R, res – restriction enzyme genes; hsdS - gene of Type I 
sequence recognition protein. Methylation: Subunit composition of DNA methylation complex. Restriction: Sub-
unit composition of DNA restriction complex. Motifs: Examples of characteristic target motifs. Figure adapted from 
(Beaulaurier, Schadt and Fang, 2019).  

 

Gene Regulation by DNA Methylation 
The precise target motifs and biological functions of most MTases remain largely unknown 
(Beaulaurier, Schadt and Fang, 2019; Won and Yim, 2024). In addition to their role in genome 
defense, several MTases have been shown to induce significant changes in gene expression, 
contributing to processes such as biofilm formation and pathogenicity (Figure 2) (Kwiatek et 
al., 2015; Kumar et al., 2018). Traditionally, MTases within RM systems were believed to func-
tion solely in genome protection, while epigenetic regulation was attributed exclusively to or-
phan MTases. However, this distinction has blurred, as both RM system and orphan MTases 
now have been implicated in transcriptional regulation (Vasu and Nagaraja, 2013; Sánchez-
Romero and Casadesús, 2020).  

One well-characterized mechanism of epigenetic regulation involves DNA methylation in pro-
moter or regulatory regions, where it can directly influence transcription by modulating the 
binding of regulatory proteins. In many cases, DNA-binding proteins and MTases compete for 
access to the same sequences: methylation can block repressor binding, promoting gene ex-
pression, while protein binding can prevent methylation and maintain a repressed state 
(Sánchez-Romero and Casadesús, 2020). This regulatory interplay is exemplified by the or-
phan Dam MTase in Escherichia coli and Salmonella enterica (Figure 4). In E. coli, three 
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GATC motifs located upstream of the agn43 gene, which encodes the outer membrane protein 
Antigen 43 involved in biofilm formation, are subject to dynamic regulation by Dam and the 
repressor protein OxyR. When the GATC sites are methylated by Dam, OxyR cannot bind, 
allowing gene expression. Conversely, when OxyR binds, it blocks Dam methylation and re-
presses transcription (Adhikari and Curtis, 2016).  

A similar methylation-dependent switch regulates the gtr operon in S. enterica, which encodes 
enzymes involved in O-antigen modification. Here, four GATC sites upstream of the operon 
influence transcription in a position-dependent manner: methylation of the sites closest to the 
transcription start site promotes gene expression, while methylation of the more distal sites 
represses it (Broadbent, Davies and Van Der Woude, 2010). 

These examples highlight phase variation, a form of epigenetic regulation that enables the 
generation of phenotypically distinct yet genetically identical subpopulations. This variability 
enhances bacterial adaptability to fluctuating environmental conditions. Beyond phase varia-
tion, DNA methylation also contributes to other cellular processes such as cell cycle control 
and DNA repair (Zweiger, Marczynski and Shapiro, 1994; Sánchez-Romero and Casadesús, 
2020). As such, DNA methylation functions as a versatile and dynamic regulator of prokaryotic 
physiology. 

 
Figure 4. Models of agn43 and gtr Dam-dependent Phase Variation. For the agn43 gene, three GATC motifs 
are located within the promotor region. In the OFF phase, the transcriptional repressor OxyR binds to the unmethyl-
ated GATC sites, preventing RNA polymerase access and repressing transcription. In the ON phase, Dam methyl-
ates the GATC sites, which blocks OxyR binding and permits transcription. In case of the gtr operon, four GATC 
motifs are situated immediately upstream of the transcription start site. In the OFF phase, the two distal GATC sites 
are methylated, while OxyR binds to the two unmethylated GATC sites closest to the transcription start site, blocking 
RNA polymerase access and inhibiting transcription. In the ON phase, the methylation pattern is reversed: the 
proximal sites are methylated allowing the RNA polymerase to access the transcription start site. Cartoon not to 
scale. Figure adapted from (Broadbent, Davies and Van Der Woude, 2010). 

 

Deciphering the Epigenetic Code 
Historically, methodological development for DNA methylation detection has been devoted to-
wards characterizing 5mC modifications, as this modification is the most widespread methyl-
ation type in eukaryotes. Bisulphite-based short-read sequencing has been the gold standard 
method for detection of 5mC modifications for many years (Beaulaurier, Schadt and Fang, 
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2019). In bisulfite sequencing, genomic DNA is treated with bisulfite, which deaminates un-
methylated cytosine residues to uracil, while 5mC residues remain unchanged. During down-
stream sequencing analysis, methylated cytosines are detected as cytosines, whereas un-
methylated cytosines, converted to uracil, are detected as thymine (Frommer et al., 1992). 
Bisulfite sequencing provides high sensitivity and accuracy for 5mC detection. Yet, this 
method’s application in prokaryotes is limited because it fails to detect the more prevalent 6mA 
modification and is less effective at resolving 4mC modifications (Beaulaurier, Schadt and 
Fang, 2019).  

In addition to bisulfite sequencing, other methods for mapping specific modified bases exist, 
utilizing chemical or enzymatic treatments before second-generation sequencing (Hofer, Liu 
and Balasubramanian, 2019). As previously mentioned, prokaryotic MTases typically target 
defined sequence motifs. To assess the methylation status of these motifs across the genome, 
genomic DNA can be digested using one or more methylation-sensitive restriction enzymes 
with known recognition sites. The resulting pattern of cut and uncut restriction sites reflects 
the underlying methylation landscape (Zweiger, Marczynski and Shapiro, 1994). This ap-
proach is robust, reliable, and accurate, but it is limited to studying methylation motifs that 
match the specificities of the available restriction enzymes. Therefore, while it is effective for 
assessing methylation within known sequence motifs, it is generally not suitable for discover-
ing new motifs (Beaulaurier, Schadt and Fang, 2019). 

Today, all approaches based on second-generation sequencing require specialized treatment 
prior to sequencing, which is often laborious and may lead to general nucleotide deterioration 
(Nielsen et al., 2023). Advancements in long-read, third-generation sequencing technologies, 
specifically, Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), have en-
abled direct detection of DNA methylations and other modifications without the need for pre-
treatment (Nielsen et al., 2023). Both methods rely on disturbances in the inherent sequencing 
signals caused by modified bases. PacBio detects changes in polymerase kinetics when in-
corporating modified bases compared to canonical bases (Clark et al., 2012), while Nanopore 
detects changes in the current signal as modified bases pass through the pore compared to 
their canonical counterparts (Nielsen et al., 2023). The current state of the PacBio technology 
(August 2024) requires a minimum coverage of 25x for 4mC and 6mA modifications, and 250x 
coverage for 5mC (Nielsen et al., 2023). In metagenomes, with low-abundant species and 
bacterial populations exhibiting heterogeneous methylation, a 250x coverage for 5mC is 
simply unfeasible. The last 5-10 years, multiple research efforts have developed software tools 
for detection of modified bases in nanopore sequencing data (Stoiber et al., 2016; Liu et al., 
2019; Ni et al., 2019; Tourancheau et al., 2021; Bonet et al., 2022). However, many of these 
tools fail from being confined to limited sequence contexts, limited training data, or requiring 
whole genome amplified DNA, and since the release of the software tool Dorado 1 these tools 
have become legacy tools. Oxford Nanopore technology released their new basecaller, 
namely, Dorado, which beyond the traditional A, T, C, and G basecalling can detect multiple 
modified base types in all sequence contexts including 4mC, 5mC, and 6mA. 

 

 

 

 
1 https://github.com/nanoporetech/dorado 



Jeppe Støtt Bøjer  Aalborg University 

8 
 

Aim and Objectives 
It is evident that DNA methylation plays a crucial role in prokaryotes, modulating various bio-
logical processes, including host defense mechanisms, cell cycle regulation, gene expression, 
and virulence (Sánchez-Romero and Casadesús, 2020). Despite this fact, research on micro-
bial methylation systems has so far been focused on a limited selection of culturable bacteria. 
This small sample size confines our knowledge of microbial methylation systems particularly 
in terms of diversity, distribution and functionality (Blow et al., 2016; Hiraoka et al., 2022). To 
fully understand the biological significance of this modification, it is essential to expand current 
research efforts and map the prokaryotic methylome across a broader portion of the tree of 
life. Recently, third-generation sequencing technologies have paved the way for this expan-
sion by enabling direct, high-resolution detection of DNA methylations, making methylation 
data readily accessible for, in principle, any genome in the tree of life. Nevertheless, compre-
hensive mapping of the prokaryotic methylome goes beyond just detecting methylated nucle-
otides. It requires identification of the related methylation motifs and association of the MTase 
enzymes responsible for these modifications (Beaulaurier, Schadt and Fang, 2019).  

While fast and scalable methylation motif discovery tools have been developed for meta-
genomes (Heidelbach et al., 2024), methods used to assign methylation motifs to cognate 
MTase genes in metagenomes remain underdeveloped. Current methods involves either que-
rying a database of MTases with known target motif followed by manual expert assignment 
(Blow et al., 2016; Hiraoka et al., 2022; Seong et al., 2022) or employing experimental means 
(Jensen et al., 2019; Hiraoka et al., 2022; Zhang et al., 2023). Both approaches are labor-
intensive and difficult to scale for high-throughput applications. In the era of meta(epi)ge-
nomics, a state-of-the-art, high-throughput tool, which can make these modification-enzyme 
pairs readily available in novel, unculturable species and on the metagenomic scale, is 
needed. 

The overall aim of this project is to develop a scalable, bioinformatic approach for linking DNA 
methylation motifs to their cognate MTase genes in prokaryotic genomes, including those 
found in metagenomic datasets. To achieve this, the project will pursue the following specific 
objectives: 

1. Examine existing methods for MTase gene annotation and motif-MTase assignment in 
prokaryotic genomes and metagenomes, and evaluate their strengths, limitations, and 
suitability for metagenomic applications. 

2. Design a computational pipeline capable of: 
• Identifying putative MTase genes and associated defense system genes in 

complete genomes or metagenome-assembled genomes (MAGs). 
• Shortlisting putative MTase genes responsible for a specific, observed DNA 

methylation motif. 
3. Integrate the pipeline as a submodule into the Nanomotif framework, ensuring com-

patibility with high-throughput sequencing datasets as well as user-friendliness. 
4. Evaluate the performance of the pipeline by applying it to both complete genomes and 

complex metagenomic datasets. 
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MTase-Linker 
To address the aim outlined in the previous chapter, we developed MTase-Linker, a submodule 
of Nanomotif (see (Heidelbach et al., 2024) or the Manuscript in the final chapter of this the-
sis). MTase-Linker is designed to provide scalable and high-throughput insights into bacterial 
methylation systems - not only in culturable prokaryotic genomes, but also in complex meta-
genomes. 

MTase-Linker is a user-friendly, command-line pipeline that: 

• Identifies putative MTase genes and associated defense system genes in complete 
genomes and MAGs; 

• Shortlists putative MTase genes responsible for specific, observed DNA methylation 
motifs. 

An overview of the MTase-Linker workflow is illustrated in Figure 5 and a complete description 
of the pipeline can be found in the methods section of the Manuscript. 

 
Figure 5. Workflow of MTase-Linker. Given a genome or MAG as input, the pipeline initially annotates MTase 
and related defense system genes. Subsequently, the methylation characteristics are predicted for each MTase 
gene product. This includes predicting the expected modification type (4mC, 5mC, 6mA) and RM system type 
(Type I, Type II, Type III), and inferring the predicted target recognition motif based on sequence similarity to a 
database of MTases with known target motif. For each genome, this information is compared with the methylation 
motifs identified by the motif discovery module of Nanomotif. Methylation motifs are associated with MTase genes 
by leveraging the predicted gene products’ methylation characteristics to narrow down responsible MTases for each 
detected motif. See methods in Manuscript. 



Jeppe Støtt Bøjer  Aalborg University 

10 
 

Annotating MTase Genes 
To establish active RM MTases or orphan MTases within a prokaryotic organism, it is essential 
first to identify the genes encoding these enzymes within their genome. Annotating MTase 
genes within a prokaryotic genome can, however, pose significant challenges for at least two 
reasons: 

(1) The sequence space of MTase domains is vast and diverse (Samokhina and Alexeev-
ski, 2023; Tisza et al., 2023). Consequently, local alignment annotation approaches, 
such as BLASTP, are insufficient for annotating MTases in microbial environments like 
soil, where high novelty is expected. 

(2) Many MTase incorporate additional domains such as DNA helicase domains, and 
some MTase domains have close homology to other genes, particularly RNA methyl-
transferases. Standard annotation tools like Bakta may mislabel these genes as “Hel-
icase” or provide ambiguous labels like “methyltransferase” (Samokhina and 
Alexeevski, 2023; Tisza et al., 2023).  

To overcome these challenges, manually curated profile hidden Markov models (HMMs) tar-
geting MTases and RM-system genes have been generated by multiple research groups. 
HMMs are probabilistic models used to annotate protein or gene sequence families within a 
genome. They encompass the variability and conserved patterns within a family, making them 
particularly effective at capturing a broader range of sequences while simultaneously distin-
guishing closely related gene or protein families. Multiple state-of-the-art, computational tools 
apply HMMs to annotate MTases. For example, DNA Methylase Finder (Tisza et al., 2023) and 
MicrobeMod (Crits-Christoph et al., 2023) specifically annotates all potential DNA methyltrans-
ferases and neighboring RM-systems genes in a genome. rmsFinder (Shaw, Rocha and Mac-
Lean, 2023) only targets Type II RM-systems while DefenseFinder (Tesson et al., 2022) and 
PADLOC (Payne et al., 2021) systematically annotates all known antiphage systems including 
RM-systems. Some of these tools use the same profile HMMs originally generated by 
(Oliveira, Touchon and Rocha, 2014), and later updated by the tools’ developers. In the MTase-
Linker pipeline, DefenseFinder is used for this purpose. The authors of this tool have manually 
curated all their models and report a sensitivity above 91% for all MTase profiles when search-
ing against REbase, a comprehensive and extensively curated database of RM system genes 
(Roberts et al., 2023). The false positive rate of these profiles is difficult to determine without 
experimental validation. However, no systematic false positive pattern was noticeable, when 
11 prokaryotic strains were manually compared to literature and previous annotations in RE-
base (see supplementary note 2 in Manuscript), and when MTase sequences identified by 
MTase-Linker were annotated using Bakta (Schwengers et al., 2021); the state-of-the-art tool 
for microbial genome annotation (Figure 6). Furthermore, annotating MTase genes as part of 
complete RM systems strengthens the predictions, as co-localization of related genes sup-
ports each other's identification. 
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Figure 6. Bakta Annotation of MTase Sequences. MTase amino acid sequences identified by MTase-Linker in 
ten monocultures and four metagenomes were annotated using Bakta. These annotations were manually grouped 
into four categories: Likely MTase, sequences with high-confidence annotations as DNA methyltransferases; Pos-
sible MTase, sequences exhibiting some characteristic annotation of MTases but lacking definitive evidence; Not 
MTase, sequences likely misannotated as MTases, showing evidence of other functions; and hypothetical pro-
teins. 

Linking MTase Genes with Motifs 
Linking specific DNA methylation motifs to their cognate MTases through genomic analysis 
alone is not an easy feat. The regulatory roles of many MTases within the cell often render 
them functionally silent under most conditions. As a result, prokaryotic genomes often encode 
more MTases genes than the number of distinct motifs detected on the genome, complicating 
efforts to accurately assign target motifs (Blow et al., 2016; Tisza et al., 2023). A commonly 
employed strategy involves sequence homology-based prediction, which relies on querying a 
database of MTases with known recognitions motifs to infer target motifs of unknown MTases. 
Nonetheless, multiple studies have demonstrated that this approach frequently lacks accuracy 
and fails to predict the recognition motifs for a substantial proportion of MTases (Hiraoka et 
al., 2019, 2022; Jensen et al., 2019; Seong et al., 2022). Additionally, the presence of most 
RM systems and orphan MTases in prokaryotic genomes is connected to horizontal gene 
transfer. Most MTases are located within the shell or cloud compartments of the pangenome, 
and many are associated with mobile genetic elements, such as plasmids (Oliveira, Touchon 
and Rocha, 2014). This leads to significant variation in the set of MTases even among closely 
related species or strains, which ultimately limits the effectiveness of taxonomic approaches 
for establishing linkages between MTases and their recognition motifs. To overcome these 
challenges, MTase-Linker uses three different approaches to shortlist MTase genes responsi-
ble for observed DNA methylation motifs. 
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Homology-based Recognition Motif Prediction 
In MTase-Linker, identified MTase sequences are first queried against REbase using BLASTP 
to estimate recognition motifs based on sequence similarity to MTase genes with known recog-
nition motif. Predicted target motifs are used to directly establish a link to observed methylation 
motifs in the genome. The default threshold for motif inference is set at 80% identity and 80% 
query coverage, aligning with thresholds used in a previous study for motif estimation via se-
quence similarity (Tisza et al., 2023). An analysis of the gold standard proteins in REbase was 
conducted to evaluate the robustness of these thresholds (Figure 7). This analysis revealed 
that only nearly identical homologs of Type I MTases and Type IS subunits recognized the 
same motif, while homologs of Type II and III MTases exhibited identical target motifs at iden-
tity levels above 50% and 70%, respectively, provided the query coverage was above 80%. 
These findings are consistent with previous studies (Oliveira, Touchon and Rocha, 2016).  

 
Figure 7. Relationship between target recognition motif and protein sequence similarity in MTases. Gold 
standard MTase proteins from REbase were subjected to an all-vs-all BLASTP analysis. The heatmap displays the 
frequency at which MTases of a given type recognize the same motif across different identity and query coverage 
intervals. The analysis includes 729 Type I, 745 Type II, and 99 Type III MTases and 712 Type IS subunits. 
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RM System Type Predicts Motif Type 
In MTase-Linker, each MTase gene product is classified according to its RM system type using 
profile HMMs specific to each type. This classification helps predict the recognition motif type 
of the MTases, which in turn is used to narrow down the number of observed methylation 
motifs that the specific MTases could be responsible for (Figure 3). 

Modification Type Prediction 
Similar to the classification of RM system types, profile HMMs specific to 5mC and 6mA/4mC 
modifications are used to predict the modification type of MTase gene products. This infor-
mation further narrows down the list of observed methylation motifs that the specific MTases 
could be responsible for. The profile HMMs used to predict the modification types has been 
retrieved from the Interpro database (See methods section of the Manuscript) and a prelimi-
nary analysis of the gold standard proteins in REbase was conducted to evaluate the perfor-
mance of these models in modification type prediction (Figure 8). The analysis shows a robust 
prediction with an accuracy above 97% for both 5mC and 6mA/4mC prediction models.  

 
Figure 8. Modification Type Prediction Performance. Confusion matrix showcasing the performance of the pro-
file hidden Markov models used to predict the modification types (modtype) on the gold standard proteins of Re-
base. The set of hidden Markov models used is PF01555.22, PF02384.20, PF12161.12, PF05869.15, PF02086.19, 
PF07669.15, PF13651.10, PF00145.21 from the Interpro database. 
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Conclusion 
With Nanomotif comprehensive mapping of the bacterial methylome is now broadly accessible 
using standard Nanopore sequencing - even in complex metagenomic datasets and without 
the need for additional methods. The MTase-linker submodule modernizes the motif-MTase 
pairing process by replacing existing manual approaches with a scalable, user-friendly bioin-
formatics tool that links methylation motifs to their cognate MTase and defense system genes. 
This streamlines analysis and lowers the barrier for researchers to explore DNA methylation 
in uncultured or poorly characterized microbes. These motif-MTase pairs can not only help 
circumvent genetic transformation barriers but can also open avenues to explore the functional 
roles of methylations and their implications for microbial physiology across a broad spectrum 
of prokaryotic taxa. 

As the REBASE database - on which the MTase-linker relies - continues to expand, the tool’s 
capacity to generate high-confidence motif-MTase pairs will only strengthen, facilitating dis-
covery in increasingly complex metagenomic samples. One possible direction for future de-
velopment is the integration of advanced protein structure prediction and alignment tools, 
which might improve MTase gene annotation and motif assignment (Jumper et al., 2021; 
Heinzinger et al., 2024; Van Kempen et al., 2024). 

The open-source codebase, freely available on GitHub, empowers the community to adapt 
and extend Nanomotif for diverse applications. For example, it can serve as a foundation for 
developing methods to predict genetic flux between bacteria (Oliveira, Touchon and Rocha, 
2016), monitor epigenetic changes in microbial communities under stress (D’Aquila et al., 
2023), or design synthetic biology systems with epigenetic control mechanisms (Komera et 
al., 2024). 
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Manuscript 
MTase-linker is developed as a submodule of Nanomotif. Nanomotif is a Python package de-
signed to explore and utilize methylation in prokaryotic genomes using Nanopore sequencing. 
In the following manuscript, we demonstrate how Nanomotif can offer valuable insights into 
the bacterial epigenome. These insights can be applied to associate plasmids with the genome 
and to evade restriction-modification (RM) systems during genetic transformation.  

This article is formatted as a brief communication, with all components - including the main 
text, methods, figures, references, and supplementary information - annotated with line num-
ber to clearly distinguish the elements that constitute the paper and the broader project. Fig-
ures and literature will be referenced independently of the broader project.  
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Abstract 20 

DNA methylation is found across all domains of life but is a rarely used feature in recovery of 21 
metagenome-assembled genomes (MAGs). Recently, Oxford Nanopore introduced all context 22 
methylation detection models. We leveraged this to develop Nanomotif, which identifies and 23 
exploits methylation motifs for enhanced MAG recovery. We demonstrate how Nanomotif en-24 
ables database-independent contamination removal from high-quality MAGs and host associ-25 
ation of plasmids directly from Nanopore sequencing data in complex metagenomes. 26 

  27 

Main 28 

In all domains of life, genomes are subjected to epigenetic modifications, which directly influ-29 
ences gene expression, replication, and repair processes1. In bacteria, the most common ep-30 
igenetic modification is DNA methylation, which primarily acts as a host-defense mechanism 31 
against phages1. DNA methylation is facilitated by DNA methyltransferases (MTases), which 32 
recognizes specific DNA sequences, called motifs, and adds a methyl group to the DNA1,2. 33 
MTases often appear in restriction-modification systems, where a restriction enzyme recog-34 
nizes a specific motif and cleaves the DNA if it lacks methylation. All DNA in the host must 35 
therefore have the correct methylation pattern for it to persist, including mobile genetic 36 

https://paperpile.com/c/IlJZCo/iea4
https://paperpile.com/c/IlJZCo/iea4
https://paperpile.com/c/IlJZCo/iea4+CmU6
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elements2,3. This evolutionary arms race has given rise to a great diversity of MTase recogni-37 
tion sequences4. Historically, DNA methylations have been identified using bisulfite conver-38 
sions followed by short-read sequencing1. In recent years, Pacific Biosciences (PacBio) and 39 
Oxford Nanopore Technologies (ONT) have enabled direct detection of DNA methylations 40 
without the need for pre-treatment5. The most common methylations in bacteria are 5-methyl-41 
cytosine (5mC), N6-methyladenine (6mA), and N4-methylcytosine (4mC). PacBio was first to 42 
demonstrate de novo detection of DNA methylation5, but currently has a low sensitivity for 43 
5mC which requires a high sequencing coverage (250x)6,7. During 2023-24, ONT introduced 44 
all context methylation detection models making 4mC, 5mC and 6mA methylation calls readily 45 
available with high sensitivity (https://github.com/nanoporetech/dorado). Despite this, only few 46 
efforts have been made to utilize ONT methylation calls for methylation motif discovery in 47 
bacteria8–10, but none which scales or extends motif discovery to metagenome sequencing of 48 
microbial communities. 49 

In metagenomics, DNA methylation motifs are directly applicable in binning by clustering con-50 
tigs, assess contamination in bins, and associate mobile genetic elements to specific microbial 51 
hosts. Previous studies have utilized methylation motif information for metagenomic binning 52 
and association of plasmids2,11. However, these methodologies suffer from the low PacBio 53 
sensitivity for 5mC2,11 or require whole genome amplification for detection of motifs using 54 
ONT12. Building on the recent methylation calling capabilities of ONT sequencing, we devel-55 
oped Nanomotif, a fast, scalable, and sensitive tool for identification and utilization of methyl-56 
ation motifs in metagenomic samples. Nanomotif offers de novo methylated motif identifica-57 
tion, metagenomic bin contamination detection, association of unbinned contigs to existing 58 
bins, and linking of restriction-modification systems to methylation motifs (Fig. 1A) 59 

Nanomotif finds methylated motifs in individual contigs by first extracting windows of 20 bases 60 
upstream and downstream of highly methylated positions (>80% methylated). Motif candi-61 
dates are then built iteratively using a beta-Bernoulli model, which evaluates whether the new 62 
candidate is more methylated relative to its originating candidate motif. The motif candidate 63 
search is directed using the KL-divergence from a non-methylated background, which rapidly 64 
guides Nanomotif through the motif search space, greatly decreasing search time compared 65 
to other algorithms (Supplementary note 1, Tab. S1). 66 

We investigated a total of 28 monocultures, including 11 REBASE gold standard strains with 67 
known methylation motifs. The 11 monocultures with 75 expected methylation motifs were 68 
further split into 6 strains (29 motifs) for training and 5 strains (46 motifs) for testing. We bench-69 
marked Nanomotif against Modkit10, MicrobeMod8 and MotifMaker13 on both training and test 70 
monocultures. Only Nanomotif and Modkit performed satisfactory, and were therefore included 71 
in further benchmarks (Fig. S1 & S2). Nanomotif achieved a high recall rate and precision 72 
across all monocultures, identifying 68 out of the 75 expected motifs and 15 other motifs (Fig. 73 
1B). Nine of the other motifs were closely related to a non-identified expected motif (Fig. 1B-74 
#1-4). In M. ruber, RGAT4mCY was missed, as it is a sub-motif of G6mATC (Fig. 1B-#5). In 75 
A. variabilis, 4mCYCGRG and ATGC6mAT were missed due to only 36 and 74 occurrences, 76 
respectively (Fig. 1B-#6). Lastly, four rare motifs were identified in M. ruber (57-474 counts) 77 
that likely represent noise due to increased 5mC false positive rate in high GC% organisms 78 
(Fig. 1B-#7 and Fig. S3).  79 

To simulate metagenomic conditions, we further benchmarked motif identification by segment-80 
ing the test monoculture genomes to a varying number of fragment sizes and coverages (Fig. 81 

https://paperpile.com/c/IlJZCo/CmU6+PXRF
https://paperpile.com/c/IlJZCo/Z9J1
https://paperpile.com/c/IlJZCo/iea4
https://paperpile.com/c/IlJZCo/4QSt
https://paperpile.com/c/IlJZCo/4QSt
https://paperpile.com/c/IlJZCo/vxED+S3uw
https://paperpile.com/c/IlJZCo/85XG+bDJQ+3uJc
https://paperpile.com/c/IlJZCo/CmU6+t8FL
https://paperpile.com/c/IlJZCo/CmU6+t8FL
https://paperpile.com/c/IlJZCo/s7N4
https://paperpile.com/c/IlJZCo/3uJc
https://paperpile.com/c/IlJZCo/85XG
https://paperpile.com/c/IlJZCo/xJ1T
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1.C). Nanomotif and Modkit perform similarly on palindromic motifs, which can be confidently 82 
identified in 25 kbp fragments even at 25x coverage. Palindromic motifs are generally shorter 83 
and therefore easier to detect because of their higher frequency and simplicity. For non-palin-84 
dromic and bipartite motifs Nanomotif and Modkit have similar performance on 10-100 kbp, 85 
however on 1000 kbp fragments Modkit finds more false-positives leading to a drop in preci-86 
sion and hence F1-score (Fig. S4 & S5). Lastly, we benchmarked scalability, where Modkit 87 
used 23-40 times more total time compared to Nanomotif (Tab. S1).  88 

A unique feature of Nanomotif is the scalability to complex metagenomic samples. We there-89 
fore used Nanomotif on five increasingly complex metagenomic samples (Fig. 2A). Across all 90 
metagenomic samples, at least one motif was identified within 87% of metagenome-assem-91 
bled genomes (MAGs) above 10x coverage, and within these the median number of identified 92 
motifs was 3. This is more than previously reported in small-scale meta-epigenomic studies, 93 
which only identified methylation motifs in approximately 50% of MAGs using PacBio14,15.  94 

Building on the motif discovery algorithm, we developed three modules for Nanomotif, which 95 
uses the motif methylation pattern; MAG contamination detection, inclusion of unbinned con-96 
tigs, and linking of motifs to cognate methyltransferases. 97 

Current MAG contamination evaluation tools rely on lineage-specific markers derived from 98 
genome databases16–18, however, it is a difficult task as the databases are far from complete, 99 
and exceptions exist even within closely related organisms. To enable de novo contamination 100 
detection in MAGs, we leveraged Nanomotif to identify methylation motifs and then used en-101 
semble clustering on the methylation pattern of bins (see methods). The 28 monocultures 102 
were used to benchmark the contamination module by fragmenting the monocultures into one 103 
1600 kbp fragment and several 20 kbp fragments and then randomly assigning 20 kbp frag-104 
ments to other bins (Fig. 2B, see methods). Nanomotif was able to achieve high sensitivity 105 
and precision with a mean of 89% and 91%, respectively. Most monocultures had near perfect 106 
contamination removal across all benchmarks (Fig. S6). We then applied the contamination 107 
detection module to the five real metagenomes of increasing complexity. The median number 108 
of contaminants in MAGs where at least one contaminant was detected was 1-2 for HQ MAGs. 109 
For example, bin 1.169 (HQ MAG) from the anaerobic digester (Fig. 2C) included contig_6001 110 
(80 kbp) that completely lacked CAAAA6mA and G6mATC methylation, despite the remaining 111 
bin being methylated at >75% in these motifs. In total, 196 contaminants were removed across 112 
90 MAGs from the complex communities (Fig. S7). Each putative contaminant was manually 113 
reviewed, and in 84 out of 90 MAGs, the removal appeared accurate based on the methylation 114 
pattern, which matches the precision observed in the benchmark. This indicates a high poten-115 
tial for methylation to serve as a powerful post-binning cleanup, especially as this information 116 
is directly available for all new Nanopore sequencing projects. 117 

The Nanomotif contig inclusion module assigns unbinned contigs to existing bins by training 118 
a linear discriminant analysis model, random forest, and k-neighbors classifier on the decon-119 
taminated bins (see methods). In case all three classifiers agree with a joint mean probability 120 
>0.8, the contig is assigned to the bin. Nanomotif achieved a high precision of 96% and mod-121 
erate recall of 66% across the 28 fragmented monocultures described above (Fig. S8). In the 122 
five real complex metagenomic samples, the include module added a median of 1–4 contigs 123 
per bin for HQ MAGs. Associating mobile genetic elements with MAGs is of major importance 124 
as these can carry vital functionality19. This can be very difficult for traditional binners due to 125 
large variation in coverage or GC-content from the host, but should be possible if a unique 126 

https://paperpile.com/c/IlJZCo/uEgs+mM2U
https://paperpile.com/c/IlJZCo/UgVf+kEHW+4UbD
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methylation motif signal is present. For example, using methylation motifs three contigs from 127 
the Simple Fecal sample were assigned to bin 1.7 and classified as two plasmids and a virus 128 
(Fig. 2d-e). It should be noted that the inclusion module is not a binner and assignments should 129 
be considered putative as methylation motif patterns can be shared across MAGs, which is 130 
also reflected in our efforts to prioritize precision over recall. 131 

Restriction-modification (RM) systems are often substantial obstacles to genetic transfor-132 
mation, which pose a significant barrier for the implementation of novel bacteria as cell facto-133 
ries20. Circumventing these systems through RM system evasion or through heterologous ex-134 
pression of the methyltransferases in the cloning host (RM system mimicking) has shown to 135 
increase transformation efficiency significantly20,21. Therefore, we developed the Nanomotif 136 
MTase-linker module, which links methylation motifs to their corresponding MTase and, when 137 
present, their entire RM system (Fig. S9, supplementary note 2 & 3, and supplementary data 138 
2). Across 11 monocultures, 52 putative orphan MTases and 29 RM-systems (exclusive type 139 
IV) were identified. 19 RM systems were associated with an active methylation motif, and a 140 
total of 42 out of 71 detected motifs could be linked to a single MTase gene or RM system with 141 
high confidence. Across 549 recovered HQ MAGs from five metagenomic samples, Nanomotif 142 
identified 3,123 putative MTase genes, of which 1,297 were associated with RM systems. For 143 
76% of the detected motifs, at least one candidate MTase with matching methylation charac-144 
teristics was identified within the same genome. Additionally, Nanomotif, successfully gener-145 
ated a high-confidence set of target motif annotations for 232 MTases. Hence, Nanomotif has 146 
the potential to drastically increase the number of putative links between motifs and MTase 147 
genes, thereby vastly improving the molecular toolbox and the RM system databases. 148 

With Nanomotif, de novo motif discovery is now seamlessly possible with standard Nanopore 149 
sequencing, even for short and low coverage contigs from complex metagenomes. We provide 150 
simple implementations that utilize these motifs for robust identification of putative contamina-151 
tion in MAGs, association of mobile genetic elements to hosts, and linking of motifs to re-152 
striction-modification systems. This greatly enhances the resolution of metagenomic investi-153 
gations, opening the possibility of linking extrachromosomal DNA elements to the host. This 154 
capability, which previously required additional, laborious methods, is now readily available 155 
with Nanomotif using standard Nanopore Sequencing.  156 

Data availability 157 

Sequencing data generated during the current study is available in the European Nucleotide 158 
Archive (ENA) repository, under the accession number PRJEB74343. Assemblies, bins, and 159 
output from Nanomotif are available at https://doi.org/10.5281/zenodo.10964193. 160 

Code availability 161 

Nanomotif is available at https://github.com/MicrobialDarkMatter/nanomotif. Code for repro-162 
ducing figures and supplementary resources can be found at https://github.com/SorenHeidel-163 
bach/nanomotif-article.  164 
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 180 

Fig. 1: Nanomotif overview and benchmark. a, Overview of Nanomotif functionality. White 181 
boxes on the top row are required inputs for Nanomotif, colored boxes are Nanomotif modules. 182 
b, Motif identification using Nanomotif in 11 monocultures with 75 known motifs, the 5 test 183 
monocltures are marked with *. For each motif three values are shown; the number of occur-184 
rences in the genome, the percent of motif positions with methylation >70% and the median 185 
methylation of motif positions. Motifs are grouped by whether or not they were expected to be 186 
found or not (See supplementary data 1.a). Seven cases of faulty motif identification have 187 
been annotated 1-7. c, Benchmarking of palindrome, bipartite, and non-palindromic motif iden-188 
tification with Nanomotif and Modkit7 across different coverages and reference lengths. The 189 
number of expected motifs for each motif type is given in the header.  190 

https://www.zotero.org/google-docs/?uJa7Ma
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 191 

Fig. 2: Nanomotif MAG contamination detection and association of mobile genetic ele-192 
ments. a, Sample stats from binning and the Nanomotif modules. Only values for bins above 193 
10x coverage are reported.  *The median is reported for bins with at least one motif identified. 194 
**The median is reported for bins where contaminants were removed or contigs included. b, 195 
Nanomotif detect_contamination benchmark metrics from 50 benchmark datasets. 28 mono-196 
cultures at 40x coverage were fragmented into one 1600 kbp fragment and several 20 kbp 197 
fragments. One randomly selected fragment was randomly assigned to another bin in each 198 
benchmark dataset. c, Example of contamination removal (red) from a HQ MAG from an an-199 
aerobic digester. d, GC% and coverage of bin.1.7 in the simple fecal sample (blue). Three 200 
contigs, predicted as two plasmids and one virus, are assigned to the bin with the Nanomotif 201 
include_contigs module. e, Methylation profile of the HQ bins in the simple fecal sample and 202 
highlighted plasmid & viral contigs assigned to bin.1.7.  203 

  204 
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Materials And Methods 205 

Sampling 206 
Escherichia coli K-12 MG1655 (labcollection), Meiothermus ruber 21 (DSM 1279), and Par-207 
ageobacillus thermoglucosidasius DSMc 2542 were grown overnight in LB, DSMZ 256 Ther-208 
mus ruber medium, and SPY medium, respectively. Genomic DNA for Desulfobacca acetoxi-209 
dans ASRB2 (DSM 11109), Sphaerobacter thermophilus S 6022 (DSM 20745), Thermanaer-210 
ovibrio acidaminovorans Su883 (DSM 6589), Kangiella aquimarina SW-154 (DSM 16071), 211 
Anabaena variabilis PCC 7120 (DSM 107007), Pelobacter carbinolicus Bd1 (DSM 2380) and 212 
Salmonella bongori 1224.72 (DSM 13772) was ordered from Leibniz-Institute DSMZ. Raw 213 
pod5 files for Shewanella oneidensis MR-1, Cellulophaga lytica Cy l20, LIM -21 (DSM 7489), 214 
Kangiella aquimarina SW-154 (DSM 16071), Zymomonas mobilis subsp. pomaceae Barker I 215 
and the remaining 15 monocultures used for contamination and inclusion benchmarks were 216 
acquired from s3://cultivarium-sequencing/MICROBEMOD-DATA-NOV2023/pod5/8.  217 

ZymoHMW, ZymoOral (D6332), ZymoGut (D6331) and ZymoFecal (D6323) were ordered 218 
from ZymoBIOMICS.  219 

The simple fecal sample was collected at Aalborg University Hospital at the Department of 220 
Gastrointestinal Surgery as part of a clinical trial (ClinicalTrials.gov NCT04100291)22. The 221 
complex fecal sample was collected at Aalborg University with consent from the provider.  222 

Sampling of the anaerobic digester sludge has been described elsewhere23. Sampling of soil 223 
has been described elsewhere24.  224 

DNA Extraction 225 
DNA from cell pellets of overnight grown cultures of E. coli K-12 MG1655 and M. ruber 21 was 226 
extracted with the PureLink Genomic DNA mini kit (Invitrogen, Thermo Fisher Scientific, USA) 227 
following manufacturer’s instructions with final elution in DNAse/RNAse free water. DNA from 228 
cell pellets of P. thermoglucosidasius (DSM 2542) was extracted with the MasterPure Gram 229 
positive DNA purification kit (Biosearch Technologies (Lucigen)), according to manufacturer’s 230 
instructions with a 60 min incubation step and final elution in DNAse/RNAse free water. DNA 231 
from ZymoOral (D6332), ZymoGut (D6331) and ZymoFecal (D6323) was extracted with the 232 
DNeasy PowerSoil Pro kit according to manufacturer’s instructions and suppliers suggestions. 233 
DNA from the simple fecal sample was extracted with the DNeasy PowerSoil Pro kit as de-234 
scribed previously25. DNA from Complex fecal sample was extracted using DNeasy PowerSoil 235 
Pro kit according to manufacturer’s instructions. DNA was extracted from the anaerobic di-236 
gester as described previously23. 237 

Sequencing 238 
All samples were sequenced on the Promethion24 using the R10.4.1 nanopore. Anaerobic 239 
digester, complex fecal and ZymoFecal (D6323) were prepared with SQK-LSK114. Monocul-240 
tures, ZymoOral (D6332), ZymoGut (D6331) were prepared with SQK-RBK114.24. Zy-241 
moHMW was prepared with the SQK-NBD114-24 ligation kit. Sequencing of simple fecal is 242 
described elsewhere22. Sequencing of soil is described elsewhere24. All samples were base-243 
called with Dorado v0.8.1 using the dna_r10.4.1_e8.2_400bps_sup@v5.0.0 model and DNA 244 
methylation was called with the respective v2 methylation models for 4mC_5mC and 6mA.  245 

https://paperpile.com/c/IlJZCo/85XG
https://paperpile.com/c/IlJZCo/iAKO
https://paperpile.com/c/IlJZCo/gXyE
https://paperpile.com/c/IlJZCo/r9qv
https://paperpile.com/c/IlJZCo/QBcV
https://paperpile.com/c/IlJZCo/gXyE
https://paperpile.com/c/IlJZCo/iAKO
https://paperpile.com/c/IlJZCo/r9qv


Jeppe Støtt Bøjer  Aalborg University 

29 
 

Assembly and binning 246 
All samples were assembled and binned using the mmlong2-lite v1.1.0 pipeline available at 247 
26. Briefly, metaFlye (v2.9.4)27 is used for assembly  and eukaryotic contigs are removed with 248 
Tiara (v1.0.3)28 before assembly coverage is calculated with read mapping via minimap2 249 
(v2.28)29. Binning is performed iteratively as an ensemble using SemiBin2 (v2.1.0)30, 250 
MetaBat2 (v2.15)31, VAMB (v3.0.3)32,  and COMEbin (v1.0.4)33 whereafter the best bin is cho-251 
sen with DAS tool (v1.1.3)34. MAG quality was classified according to the MIMAG definition 252 
(Bowers et al., 2017). Completeness and contamination were evaluated with CheckM2 while 253 
rRNA and tRNA genes were found with barrnap (v0.9, https://github.com/tseemann/barrnap) 254 
and tRNAscan-SE (v2.0.16)35, respectively.  255 

Methylation pileup 256 
Reads with methylation calls were mapped to the assembly using minimap2 v2.2429 using 257 
default settings. Nanopore’s modkit v0.4.0 (https://github.com/nanoporetech/modkit) was 258 
used to generate the methylation pileup from mapped reads using default settings. 259 

Motif identification 260 
MicrobeMod v1.0.3 with default settings was used for all motif identification experiments. mo-261 
tifMaker (smartlink v13.1.0) with default settings was used for all motif identification experi-262 
ments. Modkit pileup is not directly compatible with motifMaker and had to be converted to the 263 
same format as the output of ipdSummary. As the goal was a comparison of the motif identifi-264 
cation algorithm, we extracted generally methylated positions (>70% methylated) and gener-265 
ated a GFF formatted file similar to the output of ipdSummary, marking all extracted positions 266 
with high Q-score and IPD Ratio. Modkit v0.4.0 was used for all motif identification experi-267 
ments. Default parameters were used for full genomes and scalability experiment. The setting 268 
--min-sites 20 was used for benchmark with lowered coverage and fragmentation of reference. 269 
This was done for fair comparison to Nanomotif minimum motif count of 20. 270 

Nanomotif v0.4.16 was used for all experiments. Nanomotif motif discovery algorithm has two 271 
main submodules, “find-motifs” and “bin-consensus”. All subcommands are gathered in a par-272 
ent command “motif_discovery”, which was executed with the following arguments for all sam-273 
ples: threshold_methylation_confident=0.8, threshold_methylation_general=0.7, search_-274 
frame_size=41, threshold_valid_coverage=5, minimum_kl_divergence=0.05, min_mo-275 
tif_score=0.2. “find-motifs” identifies motifs in contigs, referred to as directly identified motifs. 276 
This is done using a greedy search and candidates are selected based on a Beta-Bernoulli 277 
model, where each motif occurrence is Bernoulli trial, being a success if the fraction of meth-278 
ylation of reads at the position is above a predefined threshold (default 0.70). 279 

The Beta-Bernoulli was chosen in order to include uncertainty in the motif scoring process, 280 
instead of a point estimate. The exact steps performed for motif identification is outlined in the 281 
pseudo code below. For full details see supplementary note 1. 282 

  283 
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INPUT: 284 
    assembly - List of contigs sequences 285 
    modkitPileup - Methylation pileup data 286 
OUTPUT: 287 
    Identified methylated motifs 288 
BEGIN 289 
|   Initialize identifiedMotifs as an empty list 290 
|   FOR sequence IN assembly DO 291 
|   |   FOR sequencePosition IN sequence DO 292 
|   |   |   IF coverage(sequencePosition) < coverageThreshold (default: 5) THEN 293 
|   |   |   |   Mark position as NA 294 
|   |   |   ELSE IF fractionModified(sequencePosition) < methylatedThreshold (default: 0.7) THEN 295 
|   |   |   |   Mark position as not methylated 296 
|   |   |   ELSE 297 
|   |   |   |   Mark position as methylated 298 
|   |   |   |   IF fractionModified(position) >= confidentlyMethylatedThreshold (default: 0.8) THEN 299 
|   |   |   |   |   Mark position as confidently methylated 300 
|   |   Initialize seedMotif based on methylation type (C for 5mC, C for 4mC, A for 6mA) 301 
|   |   currentMotif = seedMotif 302 
|   |   sampledSeqs = Extract n sequences randomly from sequence (default n: 10,000) 303 
|   |   sampledPPM = Positional nucleotide probability matrix of sampledSeqs 304 
|   |   WHILE stopping criteria NOT met DO 305 
|   |   |   methylatedSeqs = Extract sequences at confidently methylated positions (default window: 41) 306 
|   |   |   Remove from methylatedSeqs any sequences that match any motif in identified motifs 307 
|   |   |   WHILE stopping criteria NOT met DO 308 
|   |   |   |   Initialize motifCandidates as an empty list  309 
|   |   |   |   methylatedPPM = Calculate positional nucleotide probability matrix of methylatedSeqs 310 
|   |   |   |   FOR position IN methylatedPPM DO 311 
|   |   |   |   |   Compute KL-divergence from methylatedPPM[, position]  to sampledPPM[, position] 312 
|   |   |   |   |   IF KL-divergence > threshold (default: 0.05) THEN 313 
|   |   |   |   |   |   Identify valid bases WHERE 314 
|   |   |   |   |   |   |   - methylatedPPM[, position] > 25% 315 
|   |   |   |   |   |   |   - methylatedPPM[, position] > sampledPPM[, position] 316 
|   |   |   |   |   |   FOR baseCombination IN validBases DO 317 
|   |   |   |   |   |   |   newMotif = expand currentMotif with baseCombination at position 318 
|   |   |   |   |   |   |   add newMotif to motifCandidates 319 
|   |   |   |   FOR motifCandidate IN motifCandidates DO 320 
|   |   |   |   |   Compute Beta-Bernoulli posterior parameters 321 
|   |   |   |   |   Compute score and priority 322 
|   |   |   |   Update currentMotif to lowest-priority motifCandidate 323 
|   |   |   |   IF highestScoringMotif.score < currentMotif.score THEN 324 
|   |   |   |   |   highestScoringMotif = currentMotif 325 
|   |   |   |   Subset methylatedSeqs to sequences matching new currentMotif 326 
|   |   |   |   Stopping criteria: 327 
|   |   |   |   |   highestScoringMotif.score not improved for n round (default: 10) 328 
|   |   |   IF highestScoringMotif.score > 0.2 THEN 329 
|   |   |   |   Add highestScoringMotif to identifiedMotifs 330 
|   |   |   |   Exclude sequences containing identified motifs 331 
|   |   Stopping criteria: 332 
|   |   |   - 25 low-scoring motifs dropped 333 
|   |   |   - <1% methylation sequences remain 334 
|   |   Remove motifs contained within more generic motifs 335 
|   |   Remove motifs with isolated bases 336 
|   |   mergeableMotifs  = motifs with similar sequences (Hamming distance ≤ 2): 337 
|   |   FOR motifPair IN mergeableMotifs DO 338 
|   |   |   IF methylation of merged motif ≥ methylation pre-merge motifs THEN 339 
|   |   |   |   Accept merged motif 340 
|   |   |   ELSE 341 
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|   |   |   |   Retain pre-merge motifs 342 
|   |   Identify complementary motifs 343 
|   |   Add processed motifs for contig to identifiedMotifs 344 
|   RETURN identifiedMotifs 345 
END 346 

After identification of motifs in each contig “bin-consensus” evaluates the full set of identified 347 
motifs in the contigs belonging to the bin. It performs motif merging like the post processing 348 
steps in the motif identification algorithm, but for the bin motif set. Then motifs which are not 349 
methylated more than 25% methylated in 75% of the bin are removed.  350 

Motif Identification Benchmark 351 
Motif identification was benchmarked using motifs identified in 11 monocultures with known 352 
methylated motifs. Full set of expected motif and motif evidence is available in supplementary 353 
data 1.a. Six monocultures were used for parameter justification of the “find-motifs” algorithm; 354 
Shewanella oneidensis MR-1, Kangiella aquimarina DSM 16071, Anabaena variabilis ATCC 355 
27893, Escherichia coli K-12 substr. MG1655,  Meiothermus ruber DSM 1279, Zymomonas 356 
mobilis subsp. pomaceae. A grid search was performed over the three most important param-357 
eters, to justify the final parameter settings (Fig. S10). The algorithm performance is stable 358 
across the selected parameters, and the final set parameters were chosen to increase sensi-359 
tivity in metagenomic settings. Five monocultures were used for testing; Desulfobacca ace-360 
toxidans DSM 11109, Salmonella bongori NCTC 12419, Sphaerobacter thermophilus DSM 361 
20745, Pelobacter carbinolicus, Thermanaerovibrio acidaminovorans DSM 6589. Testing 362 
monocultures were not seen during tuning. 363 

Benchmark metrics were calculated by comparing identified motif with expected motif in mon-364 
ocultures. If an identified motif matches an expected motif exactly, it counts as a true positive. 365 
False positives are counted as motifs not in the expected motif set. False negatives are 366 
counted as motifs in the expected set which are not identified. Both forward and reverse com-367 
plement are counted as a motif for motifs which are not palindromic. For benchmarks, preci-368 
sion, recall and F1-score are reported. 369 

Reduced information benchmarking was performed across two parameters; read coverage 370 
(10, 25, 50, 100x) and contig size (10, 25, 50, 100, 1000 kbp). Read coverage affects false 371 
positive and false negative in calling of generally methylated positions, as lower coverage is 372 
more sensitive to non-systematic false positive and false negative calls at the reads level. 373 
Lower coverage was achieved using Rasusa28 by subsetting the total length of reads to a 374 
multiple of the assembly length of the respective benchmarking organisms. As contig size is 375 
proportional with motif occurrences, smaller contigs will have fewer motif observations, 376 
thereby less information for motif identification. Differing contig sizes were created by chunking 377 
the reference genome of the monoculture to fix sized windows using SeqKit2 (v2.5.1)36 (win-378 
dows were not allowed to overlap). Up to 20 chunks from the procedure for each monoculture 379 
were included in the benchmark.  To fairly compare across fragmentation lengths, we reduced 380 
the minimum required motif observations to 20, the same requirements Nanomotif utilises for 381 
motif identification in contigs. 382 

To benchmark execution time of Modkit on metagenomic samples, we split the pileup file into 383 
separate files, each containing the information related to the contigs of a single bin. Then the 384 
assembly was split into fasta files, each containing the contig sequences related to a single 385 
bin. Execution time for preprocessing of files was not included in the reported run time or CPU 386 

https://www.zotero.org/google-docs/?irBP3u
https://paperpile.com/c/IlJZCo/wW8d
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hours. To identify motifs in a bin, we executed Modkit on the files corresponding to a single 387 
bin. Modkit was executed with a single thread, and parallelly executed in 144 instances. 388 

Contamination detection 389 
Contamination is evaluated using “nanomotif detect_contamination” which uses ensemble 390 
clustering. In case all four clustering methods, HDBSCAN, Gaussian Mixture Model, Agglom-391 
erative Clustering, and spectral clustering marks a contig as an outlier, the contig is marked 392 
as contamination.  393 

Firstly, motif methylation is calculated as follows: The mean read methylation for each motif 394 
observation is calculated for motif observations with at least 3 read mappings. The median 395 
value of these is then reported as the motif methylation. This methylation value was more 396 
robust for smaller contigs compared to the mean of means. Before clustering, motif methyla-397 
tion is filtered for each contig if the product of number of motif observations and the mean read 398 
coverage is less than 24. This way the methylation value of a contig with a one motif observa-399 
tion is trusted if the read coverage is at least 24 or the contig has at least 8 motif observations. 400 
After filtering, contigs with missing motif values are imputed with the bin mean and PCA is 401 
performed to reduce dimensions while retaining 90% of variance. Contigs are then clustered 402 
with HDBSCAN (min_samples=3, min_cluster_size=2), Gaussian mixture model (n_compo-403 
nents = n_bins, covariance_type=”full”), Agglomerative clustering (n_clusters = n_bins, affinity 404 
= “nearest_neighbors”) and spectral clustering (n_clusters = n_bins). For each clustering 405 
method, the bin cluster is the cluster with the largest fraction of the bin length which must 406 
constitute at least 85% of the total bin length. In case all methods agree a contig does not 407 
belong to the bin, the contig is flagged as a contaminant. Contamination contigs are then 408 
assigned to the “unbinned” pool. 409 

Include contigs 410 
The “nanomotif include_contigs” module will attempt to assign unbinned contigs to the bin 411 
after decontamination. The include_contigs module uses an ensemble of supervised machine 412 
learning techniques; random forest (n_estimators=100), linear discriminant analysis (solver = 413 
”svd”), and k-nearest neighbors classifier (n_neighbors = 3) classifier to assign unbinned con-414 
tigs to bins. Firstly, the three classifiers are trained on the binned contigs after dimensionality 415 
reduction (see contamination detection). Missing motif observations in unbinned contigs are 416 
then imputed with a pseudo value randomly chosen between 0 and 0.15, whereafter features 417 
are z-score normalized and projected using the binned conversion matrices. A contig is as-418 
signed to a bin if all three classifiers agree and the mean probability of the three classifiers is 419 
above 0.80. 420 

Contamination and inclusion benchmark 421 
A synthetic benchmark dataset was constructed for developing and evaluating the contamina-422 
tion and inclusion module. 28 monocultures (see Fig S6) were sampled to 40x coverage and 423 
fragmented into 20 kbp fragments. For each fragmented monoculture, a single long 1600 kbp 424 
contig was reconstructed by stitching together 80 consecutive 20 kbp fragments, while the 425 
remaining fragments were retained unaltered. Nanomotif were then used to find motifs anew 426 
and contamination and inclusion were evaluated using the found motifs. 427 

To evaluate the contamination module 50 datasets were created where one randomly chosen 428 
contig from each monoculture was randomly added to another. For the inclusion benchmark 429 
50 datasets were created where a random contig was removed from each monoculture. The 430 
1600 kbp contig was not shuffled or removed. 431 
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MTase-Linker 432 
The Nanomotif MTase-linker module initially uses Prodigal v.2.6.337 for protein-coding gene 433 
prediction (default settings) followed by DefenseFinder v1.2.038 to predict MTases and related 434 
RM-system genes. The output file defense_finder_hmmer.tsv is filtered for all RM-related 435 
MTase hits. When a single gene has several model hits, the model that yields the highest w. 436 
The output file defense_finder_systems.tsv is used to determine whether the identified MTase 437 
hit is part of a complete defense system. MTase hits associated with non-methylation-medi-438 
ated defense systems are excluded. Additionally, RM type IIG MTase hits not identified by 439 
DefenseFinder as part of a complete RM system are also removed. 440 

Using hmmer (with parameter –cut_ga) the predicted MTase protein sequences are queried 441 
against a set of hidden markov models (PF01555.22, PF02384.20, PF12161.12, PF05869.15, 442 
PF02086.19, PF07669.15, PF13651.10, PF00145.21) from the PFAM database39, to predict 443 
the modification type (5mC or 6mA/4mC). Furthermore, to infer the probable target recognition 444 
motif, the MTase protein sequences are queried using BLASTP (Blast v.2.14.1) against a cus-445 
tom database of methyltransferases with known target recognition motif from REbase40. We 446 
employ a threshold of 80% sequence identity and 80% query coverage to confidently predict 447 
the target recognition motif. Lastly, the RM system, RM sub-type, mod-type, and predicted 448 
motif information for each methyltransferase gene are used to link methylation motifs to the 449 
genes. The pipeline identifies high confidence MTase-motif matches, labeled as “linked”, 450 
through either a precise match between the predicted motif and the detected motif or when a 451 
single gene and a single motif share a similar combination of methylation features, which are 452 
unique within a MAG. When a high confidence match cannot be elucidated, the MTase-Motif-453 
linker assigns feasible candidate genes, with the corresponding motif type and modification 454 
type, for each motif. 455 

MGE classification 456 
Contig were labeled as Mobile genetic elements (MGE) when classified as viral or plasmidal 457 
by GeNomad (v1.7.0) with a score >0.75, had a mean coverage above 10x and a minimum 458 
length of 10kbp. 459 

 460 
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 559 

Supplementary Figures 560 

Dataset Tool 
CPU Time 

 [h] 
Total Time 

 [h:m:s] 
Time compared 

to Nanomotif 

Fecal, simple modkit 6.7 6:32:03 120x 

nanomotif 0.8 0:03:14 1x 

Fecal, complex modkit 18.0 1 day, 2:11:43 35x 

nanomotif 17.0 0:44:15 1x 

ZymoFecal modkit 14.0 14:28:34 38x 

nanomotif 7.6 0:22:17 1x 

Anaerobic Di-
gester 

modkit 86.0 1 day, 23:51:30 23x 

nanomotif 65.0 2:02:50 1x 

 561 

Tab. S1: Benchmark of Nanomotif and Modkit motif identification performance. Running 562 
modkit was infeasible for the soil sample and is hence not included. Total time benchmark 563 
was performed using 144 AMD EPYC 7H12 CPUs.   564 
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 565 

Fig. S1: Full genome motif identification benchmark on 46 expected motifs from the five test 566 
monocultures.  567 

 568 

 569 

Fig. S2: Full genome motif identification benchmark on 29 expected motifs from the six training 570 
monocultures.   571 

 572 
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 573 

Fig. S3: High 5mC false positives in high GC% species. Left panel; On the x-axis is the fraction 574 
of methylated positions occurring explained by a motif and the GC% of the organism genome. 575 
As the GC% increases, the degree of explained methylated positions decreases. Additionally, 576 
large degrees of false positive 5mC motif are identified in the high GC% organisms.  Right 577 
panel shows two organisms: 1) S. albidoflavus, with a GC% of 74%, where 5mC has a con-578 
tinuous drop off in fraction of read modified at C positions, while none of these positions are 579 
explained by a 5mC motif. 2) P. thermoglucosidasius, with a GC% of 44%, where 5mC distri-580 
bution is split into two groups; a low fraction group with no motif associated and a high fraction 581 
group, all explained by a motif.  582 
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 583 

Fig. S4: Precision of benchmark presented in figure 1.C. 584 
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 585 

Fig. S5: Recall of benchmark presented in figure 1.C. 586 

 587 

Fig. S6: Methylation pattern of monocultures included in the benchmark dataset along with 588 
mean sensitivity, specificity, precision, accuracy, and F1 score across the 50 datasets where 589 
a contig from each bin has been assigned to another. 590 
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 591 

 592 

 593 

Fig. S7: Completeness and contamination of MQ and HQ bins before and after removal of 594 
putative contamination. Dashed boxes mark completeness >= 90%, contamination <5%. One 595 
contaminant was removed in Fecal Simple but is not shown.  596 
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 597 

Fig. S8: Number of correct, incorrect and unassigned classification from nanomotif include 598 
module using the monoculture benchmark.  599 
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 600 

Fig. S9: Summary of putative MTase annotations and motif assignments in 11 monocultures 601 
and recovered HQ MAGs from five metagenomes. a, Distribution of detected motifs and 602 
MTase genes per. genome. b, Percentage of motifs with a high confidence link to a MTase 603 
gene (orange), or motifs for which one or multiple candidate genes have been found (blue). c, 604 
Breakdown of MTases by modification type and RM-system type. NA indicates unidentified 605 
modification type. d, Proportion of MTases involved in RM-systems. 606 
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 607 

Fig. S10: Parameter sweep across three of Nanomotif motif identification most important pa-608 
rameters. The sweep was performed with expected motifs of the six training monocultures. 609 
Motif recall is mostly affected by the minimum KL-divergence parameters, whereas precision 610 
is reversely affected by the minimum KL-divergence. Precision is greatest at higher general 611 
methylation threshold and higher minimum motif score. Motif identification is generally stable 612 
across parameters. Parameters min_motif_score: 0.20, general_methylation_threshold: 0.7 613 
and min_kl_divergence:0.5 was used. This was selected for higher sensitivity in low infor-614 
mation references. 615 
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 616 

Supplementary Note 1 617 

Direct motif identification in contigs 618 

The assembly sequence and the methylation pileup from “modkit pileup” are used to identify 619 
methylated motifs. 620 

Motifs are identified in each contig sequence separately from other contigs in an assembly. 621 
We use the “fraction modified” value in the modkit pileup output to determine if a position on 622 
the contig is methylated. “Fraction modified” corresponds to the number of mapped reads 623 
modified at the position divided by the number of valid bases at the position, which is the 624 
number of reads with the same canonical base as the respective modification type (A for 6mA 625 
and C for 5mC/4mC).  626 

Each position with a valid base is classified as; NA, if the coverage below the threshold (default 627 
5), not methylated, if the fraction of read methylation is below threshold (default 0.7) or meth-628 
ylated. We further define two ways in which a position can be methylated; generally methylated 629 
positions, where fraction of read methylation is above the threshold (default 0.7) and   confi-630 
dently methylated position, where fraction of read methylation is above the threshold (default 631 
0.8). 632 

Motif search is initiated at a seed motif (the default is the respective base to the evaluated 633 
methylation type, C for 5mC & 4mC and A for 6mA). To determine which position to expand 634 
from the motif, we extract sequences in a window around all confidently methylated positions 635 
(default window size is 41, 20 bases upstream and 20 bases downstream of the methylated 636 
position). These sequences are aligned with respect to the methylation, generating a methyl-637 
ated sequence set, S. A positional probability matrix (PPM) is then calculated from the set S. 638 

 639 

This generates a 4x41 table, where the 41 columns correspond to the relative position with 640 
respect to the methylation and the 4 rows correspond to the nucleotide. Next, 10,000 se-641 
quences of the same window size are sampled with replacement from the contig, Ssample, and 642 
a positional nucleotide frequency table of the same dimensions is calculated. The 10,000 sam-643 
pled windows serve only to generate a background positional frequency table. Resampling 644 
only reinforces the true nucleotide frequency of the background, hence resampling is non 645 
problematic.  646 

 647 

 648 

For each relative position, i, the KL-divergence is calculated from the four frequencies of the 649 
methylated sequence frequency table to the four frequencies of the sampled sequence  fre-650 
quency table.  651 
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 652 

This generates a vector of size 41, where each entry corresponds to a KL-divergence value. 653 
Positions are, per default, only considered for expansion if the KL-divergence is greater than 654 
0.05. After selecting which position to expand, we select which bases to incorporate at each 655 
of these positions by two criteria; 1. the frequency of a base in the methylation sequence 656 
frequency table must be above 25% and the frequency of a base must be above the frequency 657 
in the sampled sequence frequency table. If more than one base at a position meets this 658 
criteria, we keep both of them and combinations of them a, e.g. accepting A and G at relative 659 
position 2 with seed  NNANN would give rise to NNANA, NNANG and NNANR. 660 

Each new motif candidate after the expansion is evaluated using a beta-Bernoulli model, treat-661 
ing each motif occurrence as a Bernoulli trial, being a success if it is a generally methylated 662 
position and a failure if not a methylated position. We use a Beta(𝛼𝛼=0, β=1) as a prior, which 663 
means the posterior is also a Beta distribution with the parameters: 664 

𝛼𝛼 = 𝛼𝛼 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  ,𝛽𝛽 = 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦   665 

The posterior distribution is used to score each motif using the mean, standard deviation, and 666 
mean difference from the preceding motif. The mean represents the degree of motif methyla-667 
tion, a value expected to increase as the motif is refined. The standard deviation is used to 668 
penalize when few observations are present. Mean difference is expected to be high, when a 669 
desirable nucleotide addition is made, as it keeps the N highly methylated motif variants and 670 
disregards 4-N non-methylated motif variants, and is approximately zero for nucleotide inser-671 
tion which contributes nothing to the recognition sequence.  672 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  ·  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ·  −𝑙𝑙𝑙𝑙𝑔𝑔10(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) 673 

After scoring each of the new motifs, the highest scoring motif is stored. Next, one of the motifs 674 
is selected for propagation to the new set of motifs. The objective of the search is to converge 675 
on the motif candidate contributing the most positive methylation sites. The search heuristic is 676 
therefore formulated to minimize the proportion of generally methylated positions removed 677 
and maximize the proportion of non-methylated positions removed with respect to the seed 678 
motif. Concretely, the heuristic is calculated using the 𝛼𝛼 and β parameters of the beta-Bernoulli 679 
posterior of the current motif and the seed motif, as they represent the number of methylated 680 
and non-methylated motif sites. 681 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  �1 −  �
𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�� ·  (𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 682 

The motif with the lowest priority is then chosen for the next iteration. For the next iteration, 683 
the methylation sequences extracted initially are subsetted to those only containing the motif 684 
picked for expansion. After this the positional frequency table and KL-divergence is recalcu-685 
lated and the same procedure as before follows. The algorithm expands and scores following 686 
the steps described above, until the maximum score of a motif has not increased for 10 rounds 687 
or no more motif candidates are left to explore. The best scoring motif is then kept and saved 688 
to candidate motifs if its score is >0.2, otherwise dropped. The whole procedure is then re-689 
peated from the same seed, but removing sequences containing previously identified 690 
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candidate motifs from methylated sequences. This is continued until 25 candidate motifs with 691 
insufficient score have been dropped or only 1% of methylation sequences remain. 692 

After all candidate motifs have been identified in a contig, they are subjected to a series of 693 
post-processing steps to improve final motifs. First, motifs which are a sub motif of other motifs 694 
are removed, which is the case if the sequence of any other motif is contained within the 695 
sequence of the current motif, e.g. C5mCWGG would give rise to removal of 6mACCWGG, 696 
as CCWGG is contained within ACCWGG. This step was added to mitigate false positive mo-697 
tifs resulting from 5mC methylations in close proximity to adenine can result in 6mA methyla-698 
tion calls, which subsequently produce a sufficiently strong signal to “detect” 6mA motifs. In 699 
this case we accept the possibility of removing similar motifs with different methylation types. 700 
Next we remove motifs which have isolated bases, defined as a non N position with at least 2 701 
N’s on both sides.  Next we merge motifs whose sequences are similar, which can be the case 702 
for more generic motifs such as CCWGG, where CCAGG and CCTGG were found as separate 703 
motifs, but should constitute one motif. Motif merging is done by constructing a distance graph 704 
between all motifs, where motifs are only connected if the hamming distance is 2 or less. 705 
Motifs are then defined to be part of the same cluster in the graph if they are mutually reach-706 
able. All motifs within the same cluster are merged into a single motif, representing all motifs 707 
contained within the cluster. The merged motif is only accepted if the mean degree of methyl-708 
ation is not less than 0.2 of the mean methylation of the pre merge motifs, otherwise the 709 
premerge motifs are kept as is. Finally, motifs are queried for motif complements. If another 710 
motif is the complementary sequence of the motif, it gets removed and added as a comple-711 
mentary motif instead. Palindromic motifs are always considered as the complementary of 712 
itself. 713 

Indirect motif detection 714 

Direct motif identification is performed on one contig without any information from other contigs 715 
in an assembly. To detect potentially missed motifs in contigs, we perform what we term indi-716 
rect detection of motifs in contigs, so called as they are only detected because the motif was 717 
directly detected with high confidence in another contig. To get indirectly identified motifs, we 718 
take the complete set of all motifs identified in all contigs and calculate 𝛼𝛼 and β of the Beta 719 
posterior of the beta-Bernoulli model for all contigs. We report the 𝛼𝛼 and beta parameters as 720 
the number of motif methylations and non-methylations, respectively. 721 

Bin consensus 722 

Bin consensus is evaluated by taking the complete set of motifs for a bin and checking if a 723 
motif meets a set of criteria. Firstly, a motif has to have been directly detected in at least one 724 
of the contigs in the bin. Next, we remove motifs that are not methylated in at least 75% of the 725 
contigs in the bin. We estimate this by counting the number of motif occurrences in contigs 726 
with a mean methylation of a motif above 25% and dividing by the total number of motif oc-727 
currences in the bin; if the fraction of motif occurrences present in methylated contigs is above 728 
0.75, they are kept. Lastly, of the kept motifs, sub-motifs are removed as described in the post-729 
processing step in the direct motif identification section. The remaining motifs are considered 730 
bin consensus motifs. 731 

 732 
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Supplementary Note 2 733 

Annotation of gold standard proteins and their methylation motifs 734 

We initially analyzed 11 prokaryotic strains known to encode gold-standard (GS) RM system 735 
proteins using Nanomotif (Fig. S9a, supplementary data 1 & 2). GS proteins are those whose 736 
biochemical functions have been experimentally validated with their exact coding DNA se-737 
quences identified40. The MTase-linker module of Nanomotif successfully annotated 43 out of 738 
44 gold-standard MTase enzymes and linked the associated motifs, if active, across the 11 739 
monocultural genomes. The single missing annotation is likely a false negative, as De-740 
fenseFinder had multiple HMM-profile hits for this gene, but ultimately assigned the corre-741 
sponding gene as part of a non-methylation mediated defense system. Among the 44 GS 742 
MTases, 40 were found to be active. Notably, the motifs identified for all active GS MTases 743 
precisely match the specificities reported for the GS MTases in REBASE. 744 
For the non-GS epigenetic systems in these 11 prokaryotic strains, our gene annotations and 745 
motif assignments are generally aligned with existing REBASE entries.  However, in S. onei-746 
densis, K.aquimarina, and D. acetoxidans, the MTase-linker module annotated additional type 747 
II MTases beyond those previously reported in REBASE. While some may represent false 748 
positives, for example, contig_2_3607 in S. oneidensis, others are supported by active motifs 749 
without any alternative gene assignments, for example contig_1_1589 in K. aquimarina (sup-750 
plementary data 2). 751 

In total, 42 out of 71 detected motifs were confidently linked to annotated RM systems or 752 
orphan MTases. For 18 additional motifs, candidate genes with matching methylation features 753 
were identified. Notably, the remaining motifs include several from Anabaena variabilis that 754 
may represent variants of fewer distinct motifs, and M.ruber, representing noise motifs at-755 
tributed to the increased false positive rate of ONT’s methylation models in high GC contexts 756 
(Fig. S3). Apart from these unassigned motifs and two motifs in D. acetoxidans, all detected 757 
motifs were either supported by REBASE entries or corroborated by previous PacBio se-758 
quencing data41, further validating the accuracy and reliability of the detected motifs. 759 

Supplementary Note 3 760 

Discovery of epigenetics systems in diverse metagenomes 761 

We next analyzed a diverse set of prokaryotic communities using nanomotif (Fig. S9). Using 762 
the MTase-linker, 3123 MTase genes were detected across 549 HQ MAGs, resulting in a me-763 
dian of 6 MTases genes per genome and 3 RM systems encompassing an MTase per genome 764 
(Fig. S9a). Type II MTases were the most abundant (67%). This was followed by type I (16%), 765 
IIG (9%), and III (7%) (Fig. S9c). Type II MTases were also the most prevalent of all types not 766 
associated with an RM-system (Fig. S9d). Only 24% of type II MTases were co-located with a 767 
cognate restriction enzyme. Previous studies have also reported the frequent presence of or-768 
phan MTases in a wide range of bacterial genomes41. However, it is important to acknowledge 769 
that some associated REase genes may have gone undetected due to sequence divergence, 770 
especially in the complex samples with high novelty. In such cases, there may be an overes-771 
timation of orphan type II MTase genes. Despite this, many examples of orphan MTases are 772 
indeed genuine, and they represent a large group of MTases with non-RM functions. Similarly, 773 
24% and 39% of Type I and Type III MTases, respectively, were unexpectedly identified without 774 

https://paperpile.com/c/IlJZCo/o9s0
https://paperpile.com/c/IlJZCo/VnEq
https://paperpile.com/c/IlJZCo/VnEq
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corresponding restriction enzymes or Type IS subunits. In the soil sample, a significantly lower 775 
number of MTase genes per genome compared to the other metagenomes was observed as 776 
well. This discrepancy is likely due to the limited sensitivity of the HMM models in complex 777 
samples. 778 

For 76% of detected motifs, at least one candidate MTase with similar methylation character-779 
istics was found within the same genome (Fig. S9b). In 232 cases, a single motif could be 780 
confidently linked to a specific MTase gene or RM system, resulting in a high-confidence set 781 
of MTase target motif annotations. Notably, 65 of these motifs involved 5mC modifications, 782 
which are notoriously difficult to detect with SMRT sequencing. This highlights the potential of 783 
Nanomotif to accurately annotate MTase target recognition motifs in metagenomes, including 784 
those with 5mC modifications.785 
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