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Chapter 1

Introduction

From the hood of a car to the frame of a plane, or the inside of a microwave, sheet
metal parts are used as core components. But how can manufacturers verify that sheet
metal parts meet the required quality standards for their downstream application?
In mass production settings, a sample is typically taken for every n manufactured
parts, and trained operators use Coordinate Measuring Machines (CMMs) to inspect
various features, such as cutouts and bends. While this can be a viable solution in
these high-volume scenarios, what about a smaller but perhaps more flexible manu-
facturing system that can produce a variety of different sheet metal parts?

As it turns out, such a system has recently been developed in the Materials and Pro-
duction department in Aalborg University. This system is built around a high-power
laser, capable of performing tasks such laser cutting, forming, welding and engraving.
While it has been demonstrated in Nikolov et al. [1] how the manufacturing of a sheet
metal part can be fully automated using this system, the quality of these fabricated
parts can not be automatically assessed by the system. However, a measurement
scanner, capable of generating 3D point cloud representations of the manufactured
parts, is already integrated into the manufacturing system. Can the quality of the
manufactured sheet metal parts be automatically assessed using this scanner? This
is effectively the research question that will be investigated in this project.

More specifically, since a pipeline has already been developed for detecting cutouts/
holes in the 3D point clouds [2], this project will tackle the problem of detecting and
measuring bends in the material, which are created through the process of laser form-
ing. For a given sheet metal part, a bend that connects two surfaces can be described
by two quantities; 1. the total inclination angle of the two connected surfaces, and 2.
its arc length, meaning the distance along the bend’s curve that is required for the
material to obtain the previously mentioned total angle. Based on this information,
the following initial problem statement can be formulated:

How can the total inclination angle, as well as the arc length of all bends be measured,
when provided with a 3D point cloud that represents a sheet metal part?

1
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In order to get an understanding of the problem, as well as inspiration about its
possible solution, the following section provides an overview of related literature.

1.1 Related Works

The two most relevant research fields to the problem at hand are curvature analysis
and sharp feature detection. Even though bends are not necessarily sharp features,
in order to fabricate them, cutouts around the bent surface are made. Detecting and
tracking these cutouts through sharp feature detection can allow for the measurement
of the arc length of a bend.

The field of curvature analysis focuses on identifying how a surface bends locally
by estimating properties like normals (the direction a surface is facing) and curva-
tures (how much it bends). A well-known method in this domain was proposed by
Kalogerakis et al. in 2008 [3], where the goal is to extract what are called lines of
curvature. These lines are smooth paths that are formed along directions where the
surface bends the most or the least, describing identifiable structures in the point
clouds. Their method begins by estimating surface normals and then calculating
a mathematical object called the curvature tensor, contains information about the
change of the local surface normals across different directions. To trace these curva-
ture lines, their method takes small steps along the directions where the surface bends
most sharply, as defined by the curvature tensor. A similar method is developed in
this work to follow the direction of a bend in the point clouds and measure their arc
length.

A more recent development in curvature analysis is presented in the work of Guerrero
et al., who introduced PCPNet [4]. Inspired by PointNet [5], PCPNet is trained to
predict per-point geometric descriptors, such as surface normals, principal curvatures,
and a set of probabilities, for example that a point lies on an edge or a corner. PCP-
Net is trained on a large set of synthetic surfaces, and it can generalize fairly well to
real-world point clouds that contain noise or irregular sampling. Perhaps PCPNet
can be used to identify the regions in the scans that contain bends, as points in those
regions will share distinct geometric properties, such as principal curvatures, which
are the directions in which local surface normals change.

In the domain of sharp feature detection, one of the commonly cited work is Weber et
al. (2010)[6]. The method in the paper begins by constructing a neighborhood graph
for a given point cloud, where each point is connected to its k nearest neighbors.
These local connections are then used to form triangles between the point and its
neighbors. The surface normals of these are then plotted on a Gauss map, which is
essentially a sphere that holds all the normal directions. The distribution of these
normals in the Gauss map reveals the underlying surface structure. If the normals
form several distinct clusters, this suggests that the point lies near a sharp feature,
such as an edge or corner, as opposed to a smooth surface, where the normals would
be spread more evenly.
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In more recent work, the availability of large synthetic datasets like the ABC dataset
[7] has made it possible to train data-driven models for sharp feature detection. One
such method, proposed in DEF [8], first converts the point cloud into a mesh and then
renders it from multiple virtual viewpoints to generate depth images. A ResNet-152
model [9] is then trained to predict, for each pixel in the image, the points distance
to a sharp feature. The predictions of ResNet are then fused across multiple views
and mapped back onto the original 3D point cloud. In the resulting point cloud, each
point is assigned a distance-to-feature value, which can be used to reconstruct the
sharp curve structures like parametric curves.

1.2 Outline

The rest of this thesis is organized as follows:

• Chapter 2 presents the scanning set-up and the scans used for development and
testing;

• Chapter 3 gives a high-level overview of the proposed approach and explains
the theoretical building blocks;

• Chapter 4 walks through each step in the proposed solution;

• Chapter 5 evaluates the approach on both synthetically generated and real
scans;

• Chapter 6 reflects on the approach and results, and then concludes.



Chapter 2

Manufacturing System & Scan
Data

In this chapter, a further intuition about the problem will be given by first introduc-
ing the laser manufacturing system that creates the sheet metal parts. Afterwards,
the technique by which the parts are scanned will be explained, and the expected scan
noise will be analyzed. The available dataset, consisting of three distinct sheet metal
parts, each containing multiple bends will then be presented. Finally, a small discus-
sion on the different origins of errors from pre-manufacturing to post-manufacturing
will be made.

2.1 Laser Manufacturing System

In this section, the manufacturing system responsible for fabricating the sheet metal
parts inspected in this work will be briefly analyzed. The setup can be seen in Figure
2.1 below, where most components are visible. The main component of the system is
the YLS-3000 laser source [10], which is used for all manufacturing processes, namely
laser cutting, laser forming, welding, as well as engraving. This laser is guided through
an optical fiber, and its orientation as an end-effector is controlled by the ARGES
Fibre Elephant 50 galvanometric laser scanner (GLS) [11], which uses mirrors to redi-
rect the laser beam.

The GLS system is mounted on a KUKA KR 120 R2700 industrial manipulator [12],
which allows for larger workspace than the GLS system can provide. A Wenglor
MLWL 153 2D laser line scanner [13] is also mounted on the manipulator. This scan-
ner is responsible for the acquisition of the 3D point clouds that will be analyzed in
this project. All components are coordinated though a Beckhoff C6920-0060 indus-
trial PC [14]. A list of these components, with a few additional details on each one
can be found in Table 2.1 below.

4
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Figure 2.1: The Laser Manufacturing Setup. Three of its key components are high-
lighted.

Component Description

Laser Source 3 kW IPG YLS-3000 single-mode ytterbium fiber
laser. Ytterbium is a rare-earth element inside
the optical fiber that amplifies the intensity of
the laser through stimulated emission [15].

Galvanometric Laser
Scanner (GLS)

ARGES Fibre Elephant 50 Galvanometric Laser
Scanner. The laser beam passes through this
component. Here, the the laser can be redirected,
as well as focused and de-focused. This works
mainly through a set a galvanometric mirrors and
a system called DFM (Dynamic Focus Module).

Measurement Scanner Wenglor MLWL 153 2D laser line scanner used for
calibration [16], as well as to generate the point
clouds of the manufactured parts.

Manipulator KUKA KR 120 R2700 industrial robot arm. The
manipulator increases the degrees of freedom of
the GLS system, but it also allows for the 2D
Wenglor line scanner to acquire 3D data, by set-
ting it in motion about the Y axis.

Controller Beckhoff C6920-0060 industrial PC responsible
for synchronizing and controlling all hardware.

Table 2.1: Components of the laser manufacturing system.
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In Nikolov et al. [1], it is demonstrated how the different processes, such as laser
cutting and laser forming, can be coordinated to automatically manufacture a sheet
metal part, when provided with its CAD model.

2.2 Scanning and Expected Noise

The 3D point clouds that will be inspected in this work are generated by the Wenglor
2D line scanner. The scanner emits a laser along the X axis and records the amount
of reflected light in each position. The distance to the scanned object is measured
through time-of-flight. The sheet metal part is placed on a stationary fixture, so in
order to capture the Y axis, the KUKA manipulator sets the line scanner in motion
along that direction. Parts are only scanned from one side at a time. The following
figure shows a close up look of a flat region in an acquired 3D point cloud.

Figure 2.2: A close up of a flat region in the 3D scan of one of the manufactured
parts.

Since the parts are only scanned from one side, the point clouds have a thickness of
exactly one point. As it can also be seen in the above figure, noise will inevitably exist
in the point clouds. This noise can be attributed to a variety of sources, including:

1. The material itself. Scratches or foreign entities in the surface of the material
will create local inconsistencies in the scan. The material used for manufactur-
ing is AISI 304 stainless steel, which is highly reflective. Reflective surfaces are
notoriously difficult to scan, as even slightly incorrect specular reflections lead
to almost no light returning to the sensor.
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2. The manipulator. The manipulator moves the line scanner along the Y axis.
Each joint of the manipulator has its own positional uncertainty. Additionally,
depending on its joint configuration, the manipulator can slightly tremble along
the Z axis, which will cause noise along the Z coordinates in the scan.

3. The Wenglor scanner comes with its own uncertainties. Based on the datasheet
[13], the estimated positional uncertainty on the X axis is around ±120µm =
0.12 mm, which is the scanner’s upper-bound X sampling resolution. From the
specified linearity deviation, the Z axis uncertainty is approximately ±65µm =
0.065 mm. However, these uncertainties are upper-bounds and systematic de-
viations, and do not necessarily describe random point-wise noise, which still
exists, but is considerably smaller.

This provides some insight to the type of noise that can be found in the 3D point
clouds. Any measurements on point clouds made in this work will inevitably be
affected by this noise.

2.3 Data Showcase

In this section, the three sheet metal parts that this work will focus on are shown.
Additionally, the total inclination angle and the arc length of a bend will be visual-
ized, in order to provide an intuition of what this work aims to detect and quantify.

Each sheet metal part is manufactured according to a specific design, which is de-
scribed by its CAD model. After manufacturing, each part is scanned using the
Wenglor 2D line scanner. In Figure 2.3 below, all three CAD models, as well as
the scans of the manufactured parts are displayed. The visualizations of the CAD
(Computer-Aided Design) models are taken in SolidWorks [17], whereas ones for the
scan point clouds are taken in CloudCompare [18].
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Figure 2.3: The three sheet metal parts in the dataset. In each row, the CAD model
of a given part is shown on the left, and the corresponding scan is shown on the right.
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A bend in SolidWorks is created by first sketching the bend axis as a line across a
flat surface, and afterwards using the Sketched Bend feature of SolidWorks, with the
input parameters being a bend angle and a bend radius. The following figure provides
a visual insight to the process, with the sketched line shown in black.

Figure 2.4: This figure shows how a bend is created and defined in SolidWorks.

The arc length of the bend is not explicitly defined in the design of the part, but can
easily be calculated using the following formula:

α = r · θ (2.1)

where α is the arc length, r is the bend radius, and θ is the bend angle. The arc
lengths of bends that are present in relevant to this work sheet metal parts range
from 0.1 mm all the way up to 5 mm.

In SolidWorks, the radius that is defined when creating a bend is the inner radius,
meaning the radius of the curvature along the inner surface of the sheet metal part.
Due to the thickness of the material, the bend radius is larger on the outer surface.
This affects the arc length α as well, which is different depending on which side the
part is inspected from. In the current manufacturing setup, parts are only scanned
from one side at a time. Thus, as long as the correct arc length (inner or outer)
is considered as the CAD model ground truth in every scan, this does not pose a
problem. The inner arc of a bend, whose length is to be measured, is highlighted in
green in Figure 2.5 below.
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Figure 2.5: A visualization of the arc created by a bend in the surface of a sheet
metal part.

2.4 Origin of Errors

In Section 2.2, some of the scan noise that can be found in the 3D point clouds was
analyzed. However, there are at least two other sources of error can cause discrepan-
cies between the point clouds and the corresponding CAD model.

One origin of error comes from the possibly incorrect manufacturing of the parts by
the laser manufacturing system. The system is still in its development phase, and it
will inevitably fabricate the sheet metal parts imperfectly.

Another potential source of error comes from the data processing/inspection pipeline
that will be implemented in this work. The following figure is a diagram that shows
most of the sources of error, and how the total error is an accumulation.



CHAPTER 2. MANUFACTURING SYSTEM & SCAN DATA 11

Material Imperfections Laser Manufacturing Scanning Data Processing

Pre-Manufacturing Manufacturing Post-Manufacturing

Total Error

Figure 2.6: A diagram showing how errors accumulate from pre-manufacturing to
post-manufacturing, leading to discrepancies between the CAD model and the 3D
point cloud.

It is not trivial to determine why a manufacturing feature that is detected in the point
cloud is different than the corresponding feature in the CAD model. For example,
if the the arc length of a given bend is measured to be 1.58 mm in the point cloud,
but the same arc length is 1.83 mm in the CAD model, is this discrepancy due to
incorrect manufacturing, scanning noise or due to the measurement method?

The data processing/inspection pipeline must be able provide measurements for real
scans, so its development will be focused around those. However, in order to isolate
the data processing error from all other sources, and evaluate the inspection method,
one idea is to sample the CAD models to create noise-free point clouds of the ideal
parts. Noise (e.g. gaussian noise) can then be slowly introduced to the sampled CAD
data.

One more important point to make is that a point cloud is a sparse representation of
reality. The sparser the point cloud, the more inaccurate the measurements will be.



Chapter 3

Design and Methods

In this chapter, an initial design for the proposed solution will be given. Afterwards,
some of the tools necessary to implement this pipeline will be examined.

3.1 Initial Design

Figure 3.1 below shows a simple version of the pipeline that will be used in this work.

Scan

CAD Model

Pre-processing Plane Detection Intersection
Detection

Neighborhood
Analysis

Figure 3.1: An initial design of the proposed solution.

First, the scan must be pre-processed, as it contains noise, as well as foreign regions,
such as the metal fixture that the part is held by. To achieve this, the CAD model
can be used as a guide. By aligning the CAD model inside the scan point cloud,
it is possible to automatically identify the region of the scan in which the part is
located in, and subsequently crop the rest of the scan out. One of the most com-
mon alignment techniques is to first use a global alignment method, like Fast Point
Feature Histograms for feature extraction coupled with RAndom SAmple Consensus
(RANSAC) for feature matching. Afterwards, Iterative Closest Point (ICP) is used
for local registration refinement.

Once the part has been isolated from the rest of the scan, simple geometries such as
planes can be fitted to the point cloud. The normals of these planes can provide the
total inclination angle measurements. Additionally, the intersections of these planes
can help narrow down the regions of interest, where bends are located.

12
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From the intersections, local neighborhood analysis can be used to measure the arc
lengths of all bends in the point cloud. The most common method of neighborhood
analysis in 3D point clouds is Principal Component Analysis. Lastly, Density Based
Clustering for Applications with Noise (DBSCAN) will be a useful tool throughout
the whole pipeline for separating different geometries in the point clouds, as well as
remove noise.

The tools named in the explanation of the initial design will be described in the
rest of this chapter. For each method, its mathematical foundation will be provided.
Additionally, the geometric interpretations, as well as visualizations will be supplied
when appropriate. The mathematical notations defined in this chapter will be the
ones used for the rest of this report.

3.2 FPFH Features as Geometric Descriptors

Fast Point Feature Histograms (FPFH), proposed by Rusu et al. [19] in 2009, are
an optimization of Point Feature Histograms (PFH), which were introduced by the
same authors one year earlier [20]. In this project, FPFH will be used in combination
with RANSAC feature matching to align/register two point clouds together.

Point Feature Histograms are per-point local descriptors for 3D point clouds that
encode the geometric relationships between a point p⃗ and its neighbors. At each
point p⃗i in the 3D point cloud, a Darboux frame is defined for each unique pair of
neighbors p⃗j1 and p⃗j2 . The point of the pair that has a smaller angle between its own
normal and the line connecting the two points is set as the source point p⃗s, and the
other point is denoted as the target, p⃗t. This is the mathematical formulation of this
condition:

if n⃗j1 · (p⃗j2 − p⃗j1) ≤ n⃗j2 · (p⃗j1 − p⃗j2)

then p⃗s = p⃗j1 and p⃗t = p⃗j2 (3.1)
else p⃗s = p⃗j2 and p⃗t = p⃗j1

Once the source and target points p⃗s and p⃗t are set, then a Darboux frame is created
with its origin at p⃗s and its principal axes defined as:

u⃗ = n⃗s

v⃗ =
(p⃗t − p⃗s)× u⃗

|p⃗t − p⃗s|
(3.2)

w⃗ = u⃗× v⃗
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where n⃗s is the normal vector associated with the source point p⃗s. Once this frame
is defined, then a set of 4 features is calculated:

f0 = v⃗ · n⃗t

f1 = |p⃗t − p⃗s| (3.3)

f2 =
u⃗ · (p⃗t − p⃗s)

f1

f3 = atan2(w⃗ · n⃗t, u⃗ · n⃗t)

with n⃗t being the normal associated with the target point p⃗t. Each of these four
features provides unique geometric information about the pair of p⃗s and p⃗t. Specif-
ically, f0 describes the alignment between the target normal n⃗t and the second axis
of the Darboux frame v⃗, which is perpendicular to both the connection vector p⃗t− p⃗s
and the source point normal n⃗s. The second feature, f1, is the Euclidean distance
between the two points in the pair, whereas f2 is essentially the cosine of the angle
between the connection vector and the source normal. Lastly, f3 is a descriptor of
how much the target normal n⃗t is rotated around v⃗.

These four features are then binned into a single histogram using a base-d number
system. The index of the bin for a pair of four features {f0, f1, f2, f3} is calculated
as:

index =
3∑

i=0

⌊
fi − fimin

fimax − fimin

· d
⌋
· di (3.4)

where ⌊⌋ denotes the integer floor operation.

In this way, a histogram is created for point p⃗i (the original point), and it is populated
by m values, where m is the amount of unique pairs of points in p⃗i’s neighborhood.
This histogram acts as a geometric descriptor for point p⃗i.

These were Point Feature Histograms (PFH). Fast Point Feature Histograms (FPFH)
are an optimization for the calculation of PFH, where instead of all unique pairs in
every neighborhood, only the pairs between the original point p⃗i and each of its
neighbors are considered. This will result in what is referred to as a Simplified
Point Feature Histogram (SPFH) for each point. A second pass through all points
aggregates the SPFHs of the neighbors of each point p⃗i (weighted by their distance
to the point) to get the final histogram for p⃗i:

FPFH(p⃗i) = SPFH(p⃗i) +
1

k
·

k∑
j=1

1

|p⃗i − p⃗j |
· SPFH(p⃗j) (3.5)

FPFH reduces the computational complexity of PFH from O(k2) to O(k) and is the
variant of the method that is most commonly used.
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3.3 RANSAC for Feature Matching and Plane Detection

RANdom SAmple Consenus (RANSAC) is an iterative algorithm originally proposed
by Fischler and Bolles in 1981 [21]. It is used to estimate the parameters of a mathe-
matical model when provided with a set of data that contains outliers. The algorithm
is composed of the following 4 steps:

1. Randomly select the minimum number n of data points required to define the
mathematical model chosen.

2. Instantiate the model f(x) using the selected points and evaluate all data points
to determine which are inliers (points that fit the model within a predefined
threshold t).

3. Repeat this process for a fixed number of iterations i, or until a sufficient number
of inliers k is found.

4. Return the model which contributed to the most amount of inliers across all
iterations.

In this project, RANSAC is used for two purposes; 1. FPFH feature matching and
alignment estimation, and 2. Planar surface detection.

RANSAC for Feature Matching and Alignment Estimation

After calculating FPFH features for two point clouds, RANSAC samples a small set of
points from one of the point clouds (called the source point cloud). Nearest-neighbor
search in the FPFH descriptor space is performed in order to match those points with
the best candidates from the other point cloud (the target point cloud). In this way,
for a given point p⃗i in the source point cloud p⃗i ∈ Ps, the matching point point in
the target point cloud q⃗i ∈ Pt is found by:

q⃗i = argmin
q⃗∈Pt

||FPFH(p⃗i)− FPFH(q⃗)|| (3.6)

By minimizing the distance between the transformed set of source point cloud points
R·p⃗i+ t⃗ to the matched target point cloud points q⃗i cloud under the constraint of rigid
transformation, the optimal transformation matrix T is found. This minimization
problem, expressed in equation 3.7 below, is typically solved using a least squares
approach.

min
R,⃗t

n∑
i=1

∣∣∣∣R · p⃗i + t⃗− q⃗i
∣∣∣∣2 (3.7)

The optimal transformation is applied to the source point cloud and each of its points
is counted as an inlier if there exists a point in the target point cloud within a pre-
defined distance threshold t. The process of sampling points from the source point
cloud, matching them to ones in the target point cloud, estimating the optimal rigid
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transformation, and counting number of inliers is performed i times. The transfor-
mation T that contributed to the most amount of inliers is returned.

This process is visualized in Figure 3.2. In 3.2a, the scan point cloud of the Multi-
Bend part and its associated CAD model (sampled) are shown prior to alignment.
The scan point cloud is shown in red, whereas the CAD point cloud is shown in green.
Both point clouds have been downsampled for visualization clarity. In 3.2b, the two
point clouds have been aligned by first extracting both of their FPFH features and
subsequently estimating the optimal transformation T using RANSAC.

(a) Before Alignment

(b) After FPFH+RANSAC Alignment

Figure 3.2: This figure is a visualization of the FPFH + RANSAC alignment method
between two point clouds. The point cloud shown in red is the scan of the MultiBend
part, whereas the point cloud shown in green is the associated CAD model, which
was sampled using raycasting.
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Pros and cons of RANSAC This method of using RANSAC to align two point
clouds through matching their FPFH features is called a global alignment method.
This is because the matches are not established in Euclidean space, but in descriptor
space, which is irrespective to the XYZ positions of the two point clouds. One
drawback of this method however is that as with all RANSAC implementations,
it is a stochastic method, meaning that a different registration will be estimated
each time it is executed. Additionally, it does not iteratively refine the optimal
registration, resulting in a slightly inaccurate alignment. To visualize this, Figure 3.3
below provides a close up view of FPFH + RANSAC alignment.

Figure 3.3: A close up visualization of the FPFH + RANSAC alignment. The sampled
MultiBend CAD point cloud is shown in green, and the scan point cloud of the same
part is shown in red.

This is why it is common to couple FPFH + RANSAC registration with a local
alignment method, like Iterative Closest Point (ICP), which will be explained in
Section 3.4.

RANSAC for Planar Surface Detection

RANSAC can also be used to detect distinct geometries in 3D point clouds, such as
planar surfaces. In order to detect a planar surface, first, three random points p⃗α,
p⃗β and p⃗γ are sampled from the point cloud. Given that the three points are not
collinear, the normal vector of the plane π formed by these points is calculated:

n⃗π = (p⃗β − p⃗α)× (p⃗γ − p⃗α) (3.8)

The normal is then substituted into the plane equation:

nπx · x+ nπy · y + nπz · z + δ = 0 (3.9)
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By substituting the coordinates of each of the points into x, y, z, the offset δ can
be found, thus a plane is formed. The rest of the points in the point cloud are
then counted as inliers if their orthogonal distance to plane π is within a predefined
threshold t. For a point p⃗, given that the normal vector n⃗π is normalized, this
condition is evaluated as:

|(p⃗− p⃗α) · n⃗π| ≤ t (3.10)

Point p⃗α can be any point on the plane. The process of sampling three points from the
point cloud, forming the plane π and counting how many points are inliers is repeated
i times, and the plane that contributed to the most amount of inliers is returned in
the form shown in equation 3.9, with the vector n⃗π = [nπx , nπy , nπz ] being the normal
vector of the plane. The set of points P = {p⃗1, p⃗2, ..., p⃗i} that were counted as inliers
is also returned.

Figure 3.4 below visualizes the plane that resulted in the most amount of inliers after
i = 1000 iterations with a threshold of t = 0.4 mm for the MultiBend scan point
cloud (after pre-processing). Inliers are visualized in blue color, where the rest of the
point cloud is in gray.

Figure 3.4: Result of RANSAC plane detection on the MultiBend scan. The inliers
of the fitted plane are shown in blue, whereas the rest of the point cloud is shown in
gray. The hyperparameters used where i = 1000 and t = 0.4 mm.

3.4 ICP for Point Cloud Alignment

Iterative Closest Point (ICP) is a method used to geometrically align two point clouds.
It works by iteratively establishing a set of correspondences between the two and then
estimating the optimal rigid transformation that minimizes the distance between the
correspondences. It was proposed separately by Besl et al. [22] and Chen et al. [23],
both in 1992.



CHAPTER 3. DESIGN AND METHODS 19

As with the previous alignment method discussed, one of the point clouds is set as the
source point cloud Ps and the other as the target point cloud Pt. Because ICP is a
method prone to local minima, an initial transformation Tinit is provided for Ps. The
default initial transformation is the identity matrix Tinit = I4, but common choices
include center-to-center translation:

Tinit =

[
I3 t⃗c−c

O⃗T 1

]
, with t⃗c−c =

1

|Ps|
·
∑
p⃗i∈Ps

p⃗i −
1

|Pt|
·
∑
p⃗j∈Pt

p⃗j (3.11)

as well as FPFH + RANSAC global alignment, which is what is used in this project.
The initial transformation is applied to the source point cloud:

P ′
s = Tinit · Ps (3.12)

Then, a set of n point correspondences K = {(p⃗i, q⃗i) for i in n} is established between
points in the transformed source point cloud p⃗ ∈ P ′

s and the target point cloud q⃗ ∈ Pt,
with n equal to the number of points of the point cloud of smallest cardinality. This
set of correspondences can be determined in various ways, with the most common
being cross-cloud nearest neighbor search. From this set, a rigid transformation is
calculated that minimizes the error between the correspondences, which takes the
form of a least squares problem:

min
R,⃗t

n∑
i=1

∣∣∣∣q⃗i − (R · p⃗i + t⃗)
∣∣∣∣2 (3.13)

In practice, this least squares problem (and the one described in equation 3.7) is solved
using Singular Value Decomposition (SVD), commonly referred to as the Kabsch-
Umeyama algorithm. [24, 25]. After the optimal rigid transformation is computed, it
is applied to the already transformed source point cloud P ′

s and a new set of correspon-
dences K ′ is established. This process repeats until the point clouds have converged
significantly, or a maximum number of iterations i is reached. Convergence is usually
evaluated through the RMSE of the point correspondences after the transformation
is applied.

RMSE =

√√√√ 1

n

n∑
i=1

∥∥q⃗i − (R · p⃗i + t⃗)
∥∥2 (3.14)

In the following Figure, a close up view of the resulting transformation estimated by
ICP is visualized, with the starting alignment being provided by FPFH + RANSAC.
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Figure 3.5: Result of ICP local refinement on the FPFH + RANSAC initial regis-
tration. The sampled cad point cloud is shown in green and the scan point cloud is
shown in red. In some places, where only one of the two colors is visible, it is because
one of the point clouds is right on top of or behind the other.

In this example, the RMSE metric is measured to be 0.8364 mm after FPFH +
RANSAC alignment and 0.4792 mm after ICP refinement.

3.5 DBSCAN for Clustering and Noise Removal

DBSCAN, short for Density-Based Spatial Clustering of Applications with Noise is a
data clustering method introduced by Ester et al. in 1996 [26]. For any given point
p⃗ in the point cloud P , the ϵ-neighborhood of the point is defined as:

Nϵ(p⃗) = {q⃗ ∈ P | ∥ q⃗ − p⃗ ∥ ≤ ϵ} (3.15)

All points in the point cloud are classified into one of three categories: 1. core points,
2. border points, and 3. noise points. Below are the definitions of each category:

1. Core point: a point p⃗ whose ϵ-neighborhood contains at least MinPts number
of points.

|Nϵ(p⃗)| ≥ MinPts (3.16)

Core points will be denoted as p⃗c.

2. Border point: a point p⃗ whose ϵ-neighborhood contains less than MinPts num-
ber of points, but there exists a core point p⃗c whose ϵ-neighborhood contains
it.

|Nϵ(p⃗)| < MinPts and ∃ p⃗c ∈ P : p⃗ ∈ Nϵ(p⃗c) (3.17)
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3. Noise point: a point p⃗ that has less than MinPts in its ϵ-neighborhood and
there does not exists a core point p⃗c whose ϵ-neighborhood contains it.

|Nϵ(p⃗)| < MinPts and ∀ p⃗c ∈ P : p⃗ /∈ Nϵ(p⃗c) (3.18)

Once all points have been classified as core, border, or noise points, clusters are
formed through the following iterative process:

1. Select an unvisited core point p⃗c and assign it a new cluster ID. All points in
its ϵ-neighborhood are assigned the same cluster ID.

2. For each neighbor that is also a core point, recursively assign that point’s neigh-
bors to the same cluster.

3. Once there are no reachable core points left, select a new unvisited core point
and repeat the process with a new cluster ID.

In the following figure, the result of the DBSCAN method is visualized for the Multi-
Bend part, after the main surface was detected by RANSAC and removed. Each
cluster detected by DBSCAN is shown in a separate color.

(a) Before Clustering

(b) After Clustering

Figure 3.6: A visualization of the DBSCAN algorithm applied to the MultiBend
scan, after the main surface was detected by RANSAC and removed. Each cluster
is visualized with a unique color. The hyperparameters used were ϵ = 0.8 mm and
MinPts = 50
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3.6 PCA for Normal Estimation and Neighborhood
Analysis

Principal Component Analysis (PCA) is a statistical analysis method traditionally
used for dimensionality reduction, first introduced by Karl Pearson in 1901 [27]. PCA
transforms the original data into a new coordinate system whose axes correspond to
the directions of maximum variance. In the context of point cloud processing, PCA is
most commonly used to estimate surface normals and for local neighborhood analysis.

More specifically, for a given point cloud P , let Nϵ(p⃗) ⊂ P be a local neighborhood
around p⃗, where Nϵ(p⃗) = {p⃗1, p⃗2, ..., p⃗k}. The local mean of the neighborhood is
defined as:

µ⃗ =
1

k

k∑
i=1

p⃗i (3.19)

The covariance matrix of the neighborhood CN ∈ R3 is then given by:

CN =
1

k

k∑
i=1

(p⃗i − µ⃗)(p⃗i − µ⃗)T (3.20)

Eigen decomposition is then applied to the covariance matrix:

CN = U · Λ · UT (3.21)

Here, U ∈ R3 is an orthogonal matrix whose columns v⃗1, v⃗2, and v⃗3 are the eigenvec-
tors of CN and Λ = diag(λ1, λ2, λ3) is a diagonal matrix whose diagonal entries are
the corresponding eigenvalues.

The eigenvectors describe the directions of variance in a given neighborhood, and the
eigenvector that corresponds to the smallest eigenvalue is the surface normal of that
neighborhood. A visualization of PCA in a local neighborhood Nϵ(p⃗) can be seen in
Figure 3.7 below, where the points {p⃗1, p⃗2, ..., p⃗k} in the neighborhood are shown in
blue, and the three eigenvectors v⃗1, v⃗2, and v⃗3 are also visualized. The eigenvectors
are scaled by the square root of their corresponding eigenvalue.
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Figure 3.7: A visualization of PCA, where the eigenvectors of the local neighborhood
in blue are shown each in a different color; green, red and black.



Chapter 4

Implementation

In this chapter, the entire pipeline for measuring the angles, as well as the arc lengths
of all bends in a given point cloud will be established. In each section, there will be
an overview paragraph, where the corresponding part of the pipeline will be briefly
described, after which, a technical explanation will be provided. The flowchart of the
whole pipeline can be seen in Figure 4.1 below.

ScanCAD Model

Pre-processing

Plane Detection

Intersection
Trimming

Normal 
Re-Orientation

Normal Estimation
and Variance Maps

Arc Length Detection

Total Inclination
Angle Measurement

Arc Length
Measurement

Figure 4.1: The implementation pipeline

24
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4.1 Pre-Processing

Overview The goal of the pre-processing stage is to isolate the sheet metal part
from the rest of the scan, as well as to remove noise. First, the average density of the
scan point cloud is calculated. Then, a ray-casting process allows the CAD model to
be sampled in a way that matches the structure created by the laser scanner. The
sampled CAD model is aligned to the scan point cloud using FPFH+RANSAC for
initial alignment, and ICP for refinement. The scan point cloud is then cropped, and
noise is removed by using a combination of statistical outlier removal and DBSCAN.
The result of the pre-processing pipeline can be seen in Figure 4.7, with the final
point cloud shown in gray.

Technical Explanation

As it was shown in Figure 3.2, other than the part itself, the scanner picks up the
surrounding fixtures, and noise is also present. In order to automatically isolate the
part from the rest of the scan and remove noise, the following pipeline is implemented:

CAD ModelScan
Point Cloud

Alignment

Density
Calculation

Rotation & 
Ray Casting

DBSCAN &
Outlier Removal

Figure 4.2: This figure shows the flowchart for automatically preprocessing the scan
data.
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Density Calculation

The average point density of the scan ρ̄, represents the mean number of points present
in a sphere of radius r = 1 mm. It is calculated using the following formula:

ρ̄ =
1

|P |
∑
p⃗∈P

|Nϵ(p⃗)| [points/mm3] (4.1)

where P is the set of all points in the point cloud, |P | is cardinality of the set, and
|Nϵ(p⃗)| is the number of points in the ϵ-neighborhood of p⃗, meaning points that have
a distance equal to or less than ϵ = 1mm to point p⃗. Points with 10 or less neighbors
(|Nϵ(p⃗)| < 10) are excluded from the calculation, in order to prevent noise from
affecting the average.

Rotation and Ray Casting

The CAD model of the part can be used to isolate it from the rest of the scan. As
previously mentioned, the parts are currently only scanned from one side1. Simply
sampling the mesh representation of the CAD model will result in a point cloud that
looks different than the scan, due to occlusions that can occur during scanning from
only one side, as well as the inherent thickness of the metal. In order to give the point
cloud representation of the CAD model the same structure as the scanned part, it
can be loaded as a mesh, rotated in the same way as the real part was scanned and
rays can be cast top down to provide the final point cloud.

First, the CAD file is loaded and converted into a mesh. The mesh is then rotated
in order to match the orientation of the part when it was scanned. A rotation of the
mesh for ϕ degrees around the Z axis is needed to match the orientation of the part
as it was placed in the scanning fixture, and a rotation of θ degrees around the X axis
will match the rotation of the fixture. The rotations are applied using the standard
rotation formula:

MR = Rz(ϕ) ·Rx(θ) ·M (4.2)

with

Rz(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

 , Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


where M is the matrix that contains the positions of the mesh vertices.

In order to cast the correct rays and ’scan’ the rotated mesh, a linear space in the
XY plane with point spacing s is created above the mesh. Spacing s is calculated

1The moving scanner always samples the XY plane top down, but the part can be rotated inside
the scanning fixture
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using the following equation:

s =

√
π · r2
ρ̄

(4.3)

The equation can be expressed as: what must the size of the squares be, if ρ̄ amount
of squares need to fit inside a circle of radius r? This is an approximation, as the
assumption that most points in the scan lie on a flat surface is made.

From each point p⃗i in this linear space, a ray is projected downwards with direction
d⃗ = [0, 0,−1]. The parametrized equation of the ray is:

r⃗(t) = p⃗i + t · d⃗ (4.4)

By solving the system of equations between r⃗t and the plane formed by a triangle in
the mesh πj , their point of intersection q⃗i can be found. The set Q of all intersection
points q⃗i is a point cloud which approximates a top down scan of the CAD model.
Figure 4.3 below shows the result of this process for the Circular Ventilation Grate
CAD model.

Figure 4.3: This figure shows a visualization of the ray casting process on the Circular
Ventilation Grate CAD model. The spacing of the rays is increased for clarity.

Alignment

The acquired CAD point cloud (shown in Figure 4.3 above) can now be aligned with
the scan point cloud. FPFH descriptors are extracted for both point clouds and a
global transformation matrix is estimated using RANSAC, as described in 3.3. The
two point clouds are then further aligned using ICP, with the final result shown in
Figure 4.4 below.
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(a) Zoomed out (b) Zoomed in

Figure 4.4: This figure visualizes the alignment of the CAD point cloud (in green)
with the scan point cloud (in red) when combining FPFH+RANSAC and ICP.

Hyperparameter sweeps are performed on ICP-only alignment, as well as FPFH +
RANSAC-only alignment. These tests can be found in Appendix A, alongside visu-
alizations and discussion on their results.

The same transformation applied to the CAD point cloud is also applied to the orig-
inal CAD mesh. For each point p⃗ in the scan point cloud Ps, its signed distance
d(p⃗,M ′) to the transformed mesh M ′ is calculated. Points that are inside the mesh
will have a negative signed distance, whereas points outside the mesh will have a
positive one. The filtered set of points Ps,f consists of all points that have a negative
signed distance to the mesh, as well as points that have a positive signed distance
less that t mm:

Ps,f =
{
p⃗ ∈ Ps | d(p⃗,M ′) < 0 or 0 ≤ d(p⃗,M ′) < t

}
(4.5)

Threshold t is empirically set to 2.5 mm for all scans. Figure 4.5 below provides a
visualization of the cropped MultiBend scan point cloud. The shown cropped point
cloud is slightly downsampled for visualization clarity.
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Figure 4.5: A visualization of the cropped MultiBend scan point cloud by filtering
based on signed distances to the aligned mesh M ′.

Noise removal

The cropped scan still contains under-sampled regions and noise. To alleviate that
issue, statistical outlier removal, as well as DBSCAN can be employed.

Statistical outlier removal works by first calculating the global mean µd̄ and standard
deviation σd̄ of the average distance d̄i between each point p⃗i in the point cloud and
its k nearest neighbors:

d̄i =
1

k

k∑
j=1

∥∥p⃗i − p⃗ij
∥∥ (4.6)

µd̄ =
1

|P |

|P |∑
i=1

d̄i (4.7)

σd̄ =

√√√√ 1

|P |

|P |∑
i=1

(d̄i − µd̄)
2 (4.8)

The set of filtered points (kept) is then defined as:

PF =
{
p⃗i ∈ P

∣∣ d̄i < µd̄ + t · σd̄
}

(4.9)

which means that points p⃗i whose average distance d̄i from their k closest neighbors
is more than the global mean of the average distances plus t times the standard
deviation σd̄, are regarded as noise and get filtered out. Figure 4.6 visualizes the
outlier removal process, with outliers shown in red.
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Figure 4.6: A visualization of the outlier removal process. Points outside the filtered
set PF are visualized in red, whereas the rest of the point cloud is visualized in gray.
The hyperparameters used are k = 20 and t = 2

Hyperparameters k = 20 and t = 2 are standard for statistical outlier removal and
those are the ones used across all four scans. Increasing the number of neighbors
k or decreasing the standard deviation threshold t will result in more points being
considered as outliers, and increases the risk of critical edge points being filtered out.
The type of noise that persists after statistical outlier removal is usually small or
occasionally large clusters of points that lie away from the main surface of the scan.
In order to identify and remove those, DBSCAN can be employed.

DBSCAN is applied with hyperparameters ϵ = 0.6 and MinPts = 15. The cluster with
the most points is kept, whereas all other clusters are filtered out. A visualization of
the clusters formed is shown in Figure 4.7 below, where the largest cluster is gray,
and all filtered-out clusters are shown in red.
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Figure 4.7: A visualization of all the clusters filtered out through DBSCAN. The
main cluster, which is the one kept, is shown in gray, whereas the rest of the clusters
are shown in red.

4.2 Plane Detection

Overview In this stage of the implementation, all planar surfaces in the point
clouds are detected. First, the main surface is identified using RANSAC and tem-
porarily removed. The remaining points are then clustered using DBSCAN, and a
plane is fitted individually to each of the clusters. A visualization of all detected
planar surfaces, as well as their associated normals can be seen in Figure 4.11.

Technical Explanation

Given a point cloud P = {p⃗1, p⃗2, ..., p⃗N}, a bend is defined as a contiguous2 set of n
non-coplanar points:

B = {p⃗i, p⃗i+1, ..., p⃗i+n} (4.10)

that connects two disjoint sets that each contain coplanar points:

P1 = {p⃗j , p⃗j+1, ..., p⃗j+m} and P2 = {k⃗i, p⃗k+1, ..., p⃗k+l} (4.11)

such that all points in P1 lie approximately on plane π1, all points in P2 lie approx-
imately on plane π2, and the points in B do not lie on either plane π1 and π2, but
instead they form a transition region between the two.

In practice, due to the imperfect nature of the data, it is almost impossible to isolate
2sharing a common border; touching.
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these regions completely, but defining all planes πi in the point cloud will provide a
good basis for further analysis. As explained in Section 3.3, RANSAC can be used
to identify planes in a given point cloud.

Once a plane πi is fitted with P1 being the set of points that lie approximately on
πi, the set P1 can be then removed from the point cloud and RANSAC can be ap-
plied again. This approach is called multi-order RANSAC or multiRANSAC [28].
There are two issues with using multi-order RANSAC to detect all planes in the pre-
processed scan point clouds. First, the number of times n that RANSAC is executed
(a.k.a the number of planes that are fitted) is a difficult hyperparameter to determine
automatically, without any intrinsic knowledge about how many planes should be
fitted to the point cloud. A different drawback to multi-order RANSAC is that it is
possible for points across different surfaces to be fitted into the same plane, and thus
removed from the next RANSAC iteration. This is visualized in Figure 4.8 below,
where the plain whose inliers are visualized in beige is spread across disjoint surfaces.

Figure 4.8: A visualization of one of the drawbacks of multi-order RANSAC, where
points from disjoint surfaces get fitted into the same plane.

For these reasons, a more modular approach is used in this implementation. First, the
main planar surface πm of the point cloud is identified and segmented by executing
RANSAC only once. The inliers of the main plane Pm are temporarily removed from
the point cloud. This results in the following point cloud.
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(a) Main planar surface as identified by
RANSAC

(b) Main planar surface removed

Figure 4.9: The left figure shows the main/largest planar surface in the MultiBend
point cloud as identified by RANSAC with the inlier points colored blue. In the right
figure, the points of that surface are removed.

DBSCAN is then used to cluster the remaining point cloud and remove specs of
noise created by RANSAC in the previous step. Other than the noise points that
were identified by DBSCAN, an additional filter condition is applied, which requires
a cluster to contain at least c number of points, with the hyperparameter c being
set to 500 across all scans. Figure 4.10 below is a visualization of the identified and
subsequently filtered clusters.

Figure 4.10: A visualization of the identified and filtered clusters for the MultiBend
point cloud, once the main surface Pm has been removed.

Once these clusters have been identified, a plane can be fitted to each cluster individ-
ually by executing RANSAC only once for each cluster. As mentioned in Section 3.3
When a plane π is fitted, the equation of the plane nπx ·x+nπy ·y+nπz ·z+δ = 0, as
well as the inlier set of points P are both returned. In the following figure, the inliers
of all planes π1, π2, ..., πn fitted to the clusters, as well as the inliers of the main plane
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πm are visualized, with each set given a unique color. The associated normal vectors
of each plane n⃗m, n⃗1, n⃗2, ..., n⃗n are also drawn.

Figure 4.11: A visualization of all identified planes and their associated normals in
the MultiBend scan.

When fitting planes through RANSAC, or when estimating surface normals of local
neighborhoods using PCA, the associated normal vector or surface normal n⃗ will have
one of two equally probable orientations; n⃗ or −n⃗. This issue is called sign ambiguity,
and it can be seen in Figure 4.11 above, where some normals are oriented upwards,
while others are oriented downwards (including the normal of the main surface n⃗m).
If the normals of these planes were oriented correctly, then the angle between the
normal of the main plane n⃗m and each of the other planes (e.g. n⃗1) would provide
the total inclination angle measurement for the associated bend. However, in their
their current orientation, this angle will be measured as the complimentary of the
true angle with equal probability. In the next section, the method for re-orienting
the normals is analyzed.

4.3 Normal Re-orientation

Overview In this stage of the implementation, the sign ambiguity of all plane
normals is resolved by introducing manufacturing knowledge about how bends are
formed. By investigating the presence or absence of points underneath a planar
surface, the correct orientation of its associated normal can be inferred. The resulting
re-oriented normals can be seen in Figure 4.14.
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Technical Explanation

If the only information given is the normals of all planes n⃗m, n⃗1, ..., n⃗n, then the
problem of normal re-orientation is not solvable. However, introducing information
about the manufacturing of the parts, imposes a unique constraint. In order to
understand this constraint, a bend will first be classified into one of two types; a lift
and a warp. A lift is a deformation where the connecting surface rises from the main
plane without exceeding a total inclination of 90°(measured as the angle between the
surface normals), whereas a warp bend effectively wraps over the main surface and
has a total inclination of more than 90°. The following figure is a simple illustration
of the two types.

Figure 4.12: An illustration of the two types of bends, lifts and warps.

By projecting the mean µ⃗Pi of the inliers Pi of a detected plane πi onto the main
plane and counting the number of points inside the ϵ-neighborhood Nϵ of the projected
point p⃗µ, it is fairly simple to determine whether the plane is connected to the main
surface through a lift or a warp. More specifically, for a detected plane πi and its
associated set of points Pi, the mean/central point is calculated:

µ⃗Pi =
1

|Pi|
∑
p⃗j∈Pi

p⃗j (4.12)

That mean is then projected onto the main plane πm = nmx ·x+nmy ·y+nmz ·z+δm =
0:

p⃗µ = µ⃗Pi − (µ⃗Pi · n⃗m + δm) · n⃗m (4.13)

If there are no points k in the ϵ-neighborhood Nϵ of p⃗µ, then the bend which connects
the two planes πi and πm is a lift.

The first step is to re-orient the normal of the main surface n⃗m , depending on which
way the part was scanned (upwards for top down scans and downwards for scans
where the part is flipped). Then, all detected planes π1, π2, ..., πn are classified as
coming from a lift or a warp, as described above. The angle θi between the normal
vector n⃗i of plane πi and the normal vector of the main plane n⃗m is then calculated:

θi = arccos

(
n⃗i · n⃗m

|n⃗i| · |n⃗m|

)
(4.14)
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The normal re-orientation logic is defined as:

Algorithm 1 Normal Re-orientation
if πi is a lift and θi > 90◦ then

flip normal direction n⃗i ← −n⃗i

else if πi is a warp and θi < 90◦ then
flip normal direction n⃗i ← −n⃗i

else
Leave n⃗i unchanged

end if

This method for re-orienting plane normals might not work for planes for which
θi ≈ 90°, as the projections p⃗µ of planes that are almost perpendicular to the main
plane will lie close to the intersection of the two planes, and consequently their ϵ-
neighborhood will contain at least a few points k.

To resolve this issue, the intersections between all planes π1, π2, ..., πn to the main
plane πm are found first. To find the intersection between two planes πi and πm,
a common point p⃗c which lies in both planes must be found first. This is done by
setting z = 0 in both plane equations and solving the resulting system for x and y:

nix · x+ niy · y + δi = 0 (4.15)
nmx · x+ nmy · y + δm = 0

The external product v⃗int of the two plane normals is then calculated:

v⃗int = n⃗i × n⃗m (4.16)

The intersection line between πi and πm is then written parametrically as:

p⃗int(t) = p⃗c + t · v⃗int (4.17)

With the intersection lines between the main plane πm and all other planes estab-
lished, an additional step can be introduced in the classification of warps and bends.
To be specific, if 90−t ≤ θi ≤ 90+t, with t currently set to 15°, meaning if the initially
detected angle between the normal of the main plane nm and the normal of another
detected plane ni is within 15° of 90°, then the projected point p⃗µ is moved away
from the intersection line p⃗int(t) a certain distance daway. This distance is currently
set to 1 mm. This works by a re-projecting p⃗µ onto p⃗int(t), to determine the right
direction for translation, with the equations being the same as the once established
earlier in this section. Figure 4.13 below is a visualization of the new point p⃗away

determined in this way, whose ϵ-neighborhood Nϵ will reveal whether the associated
plane π comes from a lift or a warp. This new point p⃗away is colored red, whereas
the initial projection p⃗µ is colored blue.
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Figure 4.13: In this visualization, the mean µ⃗Pi of one of the detected planes with
inliers Pi is shown as a green sphere. The blue sphere is the projection p⃗µ of µ⃗Pi

onto the main plane πm. The red dot is the new point p⃗away, found by applying a
translation p⃗µ such that it moves away from the intersection p⃗int(t) by 1 mm.

With this pipeline established, all plane normals n⃗m, n⃗1, ..., n⃗n can be correctly re-
oriented, and the angles between the normal of the main plane n⃗m and all other
normals can be re-calculated, using the formula in Equation 4.14. The intersections
between the plane plane and each of the other planes are also found in the process,
which is crucial for the downstream pipeline. The following visualization shows the
re-oriented normals.
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Figure 4.14: A visualization of all identified planes and their associated re-oriented
normals in the MultiBend scan.

4.4 Intersection Trimming

Overview In this part of the pipeline, points are sampled along each intersection
line, and the local neighborhood structure of the point cloud is analyzed at every step
via PCA. Changes in the lengths of the eigenvalues or the orientation of the smallest
eigenvector (surface normal) are tracked through two aggregate variables. If the local
neighborhood structure changes significantly, the process stops, effectively determin-
ing where the bends start and where they end along the intersection direction. This
trims down the otherwise infinite intersection lines. A visualization of the output can
be seen in Figure 4.15.

Technical explanation

The intersection line p⃗int(t) between the main plane πm and another detected plane
πi exhibits a useful geometric property; there exists a line segment p⃗ap⃗b along the line
such that, for any point p⃗ ∈ p⃗ap⃗b, the closest point in the point cloud P will belong
to the set of bend points B that connect πm and πi.

This subset of B that is directly accessible from p⃗ap⃗b will provide a good basis for
local neighborhood analysis (and consequently arc length detection) across the full
length of the bend. In this section, the method of estimating the line segment p⃗ap⃗b
for each intersection is described.

For a given intersection between the main plane πm and another detected plane πi, the
approximate center point of the line segment p⃗ap⃗b can be determined by projecting
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the mean µ⃗Pi of the set Pi
3 onto the intersection line p⃗int(t) of the two planes. The

resulting point a⃗i is the anchor point for that intersection. Inspired by the work in
Matveev et al. [8], the algorithm for estimating p⃗ap⃗b proceeds as follows:

1. Pick a positive or negative direction u⃗ along the intersection line. Starting from
the anchor point a⃗i, take a small step with step size s in direction u⃗. Current
position is p⃗c.

2. From the current position p⃗c, find the closest point in the point cloud p⃗b (b
subscript for bend). Apply PCA to the ϵ-neighborhood Nϵ(p⃗b) of p⃗b. Store the
three eigenvalues λj

1, λ
j
2, λ

j
3, as well as the eigenvector v⃗j that corresponds to

the smallest eigenvalue, where j indicates the current step/iteration. Repeat
this process n times.

3. After n steps, calculate the following two aggregates:

Λj =
1

n

n∑
l=1

3∑
k=1

(
λj
k − λj−l

k

s

)2

(4.18)

Θj =
1

n

n∑
l=1

arccos(v⃗j · v⃗j−l) (4.19)

If either aggregate surpasses its own predefined threshold, tΛ or tΘ respectively,
store the current position p⃗c, reverse direction u⃗, and repeat the previous steps,
starting once again from the anchor point a⃗i. If not, then take another step in
the current direction, calculate the new aggregates and evaluate them against
their respective thresholds.

Each execution of the above algorithm returns the two points, p⃗a and p⃗b that form
an approximation of the desired line segment p⃗ap⃗b. Hyperparameters are empirically
set to s = 0.1, n = 5, ϵ = 1.2, tΛ = 0.07 and tΘ = 0.12 for all processed point clouds.

The two aggregate variables Λ and Θ measure changes in the local neighborhood
structure. In Matveev [8], only the Λ aggregate is presented, which measures changes
in the magnitude of eigenvalues. Geometrically, this can be interpreted as a change
in the shape of the ellipsoid formed by the three eigenvectors, when they are scaled
by their corresponding eigenvalue. In this work, it was discovered that it is possible
for this ellipsoid to maintain its shape when ’exiting’ a bend, while its orientation
changes. The complementary aggregate Θ was designed was designed for this pur-
pose.

The algorithm is executed once for each intersection, and all the resulting line seg-
ments (a.k.a. the trimmed down intersections) for the MultiBend scan are visualized
in red in Figure 4.15 below.

3Pi is the set of inlier points for plane πi
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Figure 4.15: A visualization of all the trimmed down intersection lines in the Multi-
Bend scan, with each line segment visualized in red.

A visualizer was also developed for this algorithm, in which the the current ϵ-
neighborhood Nϵ and its associated eigenvectors v⃗1, v⃗2, and v⃗3 are shown, with each
eigenvector being scaled by the square root of its corresponding eigenvalue. The cur-
rent values of the two aggregates Λj and Θj are also displayed at each iteration j. In
the following figure, the visualizer is shown.

Figure 4.16: A snapshot taken from the BendLength Visualizer, which was developed
to visualize the algorithm that trims down the intersections.

Before moving onto the next part of the implementation, it will be briefly mentioned
how the angle deviation between a plane πi and the main plane πm can now be
measured.
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Angle Deviation By dividing an intersection line segment p⃗ap⃗b in three, three
separate sections are created for its corresponding plane. RANSAC is used to fit a
new plane to each of the sections, and the average angle difference between each of
the three normals of the planes and the main surface normal is that bend’s angle
deviation. This will be shown as ±θ° after each angle measurement in the testing
chapter.

4.5 Normal Estimation and Variance Maps

Overview In this part of the pipeline, surface normals are manually calculated for
all points in the point cloud. Then, a second pass through all points can provide a
per-point normal variance estimate. This can be visualized as a normal variance map
on the point clouds. Finally the normal gradients for all points in the point cloud
are also determined. These will provide the direction of travel required in the arc
length detection part of the pipeline. Figure 4.17 shows the normal variance map of
the MultiBend scan point cloud.

Technical Explantion

The goal of the pipeline remains to accurately measure the arc length of all bends in
a given scan point cloud. An arc length is typically defined as the distance d between
two points p⃗1 and p⃗2 along a section of a curve γ. Currently, points along the bend
line can be accessed through the trimmed down intersections, but which direction u⃗
must be taken from there in order to establish the curve γ in the above definition,
as well as identify the correct two points p⃗1 and p⃗2? In this section, the question of
which direction must be taken will be investigated.

One geometric property of the bend region defined by the set of bend points B is
that the orientation of the local surface remains constant under lateral movement
(along the bend line), whereas it changes drastically in the perpendicular direction
(maximal surface normal change). The latter direction can be described by the surface
normal gradient, mathematically noted as ∇n⃗. In order to determine this gradient,
the surface normal of every point in the point cloud must first be calculated. In this
implementation, this is done manually by applying PCA (see Section 3.6) to every
point p⃗ of the point cloud P .

Now that each point p⃗ has an associated surface normal n⃗, a second pass through
all points allows for normal variance V ar(n⃗) to also be measured at each point.
More specifically, for a given point p⃗i, its associated ϵ-neighborhood Nϵ(p⃗i) and its
associated normal n⃗i, the normal variance V ar(n⃗i) is calculated as:

V ar(n⃗i) =
1

|Nϵ(p⃗i)|
∑

p⃗j∈Nϵ(p⃗i)

∥n⃗j − ¯⃗ni∥2 (4.20)

where n⃗j is the associated surface normal of point p⃗j , and ¯⃗ni is the mean normal of
the ϵ-neighborhood. The variances are normalized to the range [0, 1]. The following
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figure is a visualization of the normal variance map of the MultiBend scan point cloud,
with each point p⃗i being colored based on its associated normal variance V ar(n⃗i).
High variance is shown in lime-yellow, where low variance is shown in navy blue.

Figure 4.17: The normal variance map of the MultiBend part.

In an attempt to isolate all bends, a custom region growing algorithm is implemented,
where a set R ⊂ P starts from the anchor point a1 of a given intersection and grows
by recursively including neighboring points k if they meet a normal variance threshold
criteria V ar(n⃗i) > tV . Ideally, the resulting set R will include all points that belong
to the associated bend, such that R = B, with the definition of B being given in
Section 4.2. In practice, it is not obvious how to grow set R in order for it to
perfectly match set B. The region growing algorithm works well for parts whose
bends share total inclination angle and arc length, like the CircularVentilationCover
part. It works less well for parts whose bends cover a range of total inclination angles
and arc lengths. Those require an adaptive variance thresholding technique, which
is currently being tested. Figure 4.18 below shows a visualization of the resulting
regions in the CircularVentilationCover part, as well as the MultiBend part.
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(a) Variance based region growing in the
scan of the CircularVentilationCover part.

(b) Variance based region growing in the
scan of the MultiBend part.

Figure 4.18: This figure shows the result of the variance region growing algorithm on
two different scans.

The last step of this part of the pipeline is to calculate the surface normal gradient
∇n⃗ of each point in the point cloud. For a point p⃗i in the point cloud, its normal
ϵ-neighborhood Nϵ(n⃗i) is defined as:

Nϵ(n⃗i) = {n⃗j | p⃗j ∈ Nϵ(p⃗i)} (4.21)

This translates to the set of the associated normals of the points in the neighborhood
of p⃗. PCA is then applied to Nϵ(n⃗i). The eigenvector v⃗ that corresponds to the
largest eigenvalue is considered equivalent to the normal gradient ∇n⃗i at point p⃗i:

∇n⃗i ≡ v⃗, v⃗ = argmax
v⃗k

λk (4.22)

4.6 Arc Length Detection

Overview In the final part of the pipeline, the arc length of all bends in the point
cloud will be measured. By sampling points along the trimmed down intersections
and finding the closest neighbor at each position, the measurement can begin. From
the closest point cloud neighbor, a small step is taken along the average normal
gradient. From there, an evaluation is made, to check whether the bend has ended,
by determining the surface normal of the points that lie ahead and comparing it to
the surface normals of the two connected planes.

Technical Explanation

The intersection lines between the main plane πm and all other planes πi have been
trimmed down to the appropriate line segments p⃗ap⃗b, and the normal gradient ∇n⃗
has been determined for every point p⃗ in the point cloud. The idea for detecting the
arc length of a given bend that connects plane πm and plane πi is now to sample
points along the line segment p⃗ap⃗b and at each sampled point, move along the normal
gradient ∇n⃗, until the surface normal n⃗ of the local forward-facing ϵ-neighborhood
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Nf
ϵ matches the surface normal of either of the two planes, that is n⃗i or n⃗m.

More specifically, for a given intersection line segment p⃗ap⃗b that connects the main
plane πm and another plane πi, points p⃗int are sampled along the segment p⃗ap⃗b,
starting from its beginning p⃗a, all the way until reaching the end p⃗b, with a step size
of sint. At each sampled point p⃗int, the algorithm for detecting the arc length of the
associated bend proceeds as follows:

1. Create an empty set Pproj = ∅

2. Find the closest point p⃗start in the point cloud. This point is the current position
p⃗c. Pick a positive or negative sign σ ∈ {−1, 1}.

3. Calculate the average normal gradient ∇n⃗c in the ϵ-neighborhood of the current
position p⃗c:

∇n⃗c =
1

|Nϵ(p⃗c)|
∑

p⃗j∈Nϵ(p⃗c)

∇n⃗j (4.23)

Take a small step with step size sgr along the direction σ · ∇n⃗c. New position
is: p⃗s = p⃗c + sgr · σ · ∇n⃗c

4. Determine the forward-facing ϵ-neighborhood Nf
ϵ (p⃗s, σ · ∇n⃗s) of point p⃗s with

average gradient direction σ ·∇n⃗c (average gradient is not re-calculated for p⃗s)4.
This neighborhood is defined as:

Nf
ϵ (p⃗s, σ · ∇n⃗c) =

{
p⃗j | p⃗j ∈ Nϵ(p⃗s) and (p⃗j − p⃗s) · (σ · ∇n⃗c) > 0

}
(4.24)

Calculate the surface normal n⃗f of this neighborhood through PCA. Addition-
ally, project p⃗s onto the local surface to get p⃗proj and add it to the set Pproj .

5. Evaluate n⃗f against n⃗i and n⃗m, which are the normal vectors of planes πi and
πm respectively. If the angle θ1 between n⃗f and n⃗i, or the angle θ2 between n⃗f

and n⃗m is smaller than a predefined threshold tθ, reverse the order of points
in set Pproj , return to the original point p⃗start, pick the opposite sign σ, and
repeat steps 3-5. If both signs have been chosen, move on to step 6 instead. If
θ1 > tθ and θ2 > tθ, set current position to the projected point p⃗c = p⃗proj and
repeat steps 3-5.

6. Once this process has been completed for both σ = −1 and σ = 1, sum the
distances of all sequential points p⃗proj in set Pproj :

α =

|Pproj |−1∑
j=1

∥∥∥p⃗ j+1
proj − p⃗ j

proj

∥∥∥ (4.25)

4Geometrically, this neighborhood can be interpreted as the set of points present in the for-
ward/front hemisphere of radius ϵ around point p⃗s.
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The total sum α is the measured arc length from point p⃗int in the intersection line
segment p⃗ap⃗b. Another step across the intersection line is taken, and the arc length
from that position is measured again, until the end p⃗b of the line segment has been
reached. The mean arc length µα and the arc length standard deviation σα are
calculated for the given bend. This process is repeated for each intersection line
segment p⃗ap⃗b.

A simple interactive visualizer is created, where this process can be controlled. In
the following figure, stored projected points p⃗proj are shown in pink (magenta) and
the forward facing neighborhood Nf

ϵ (p⃗s, σ · ∇n⃗c) is shown in green.

Figure 4.19: A snapshot taken from the ArcLength Visualizer, where the pink points
are previous projected points and green points are the forward facing neighborhood
in the current position.



Chapter 5

Testing

In order to assess the accuracy of the proposed inspection method, its error must
be isolated from the manufacturing error of the fabricated sheet metal parts, as well
as the error that originates from the scanning process. To achieve this, in the first
section of testing, the CAD models of all three sheet metal parts in the dataset will
be densely sampled using the ray-casting technique described in Section 4.1.

In the second section of testing, the CAD models of the three sheet metal parts will
be sampled with point densities equivalent to the scans, and gaussian noise will be
introduced in different magnitudes. This test will reveal how robust the method is
to noise in the point cloud.

Finally, in the third section, the method is tested on the real scans, to show that
reasonable measurements can be made on real data as well.

5.1 Testing on Densely Sampled CAD Models

In this test, a region containing one bend is defined in each CAD model, and it is
densely sampled using ray-casting. This process will create ideal data for the method
to be tested against. If the measured total inclination angles and arc lengths are
accurate for this data, it means that conceptually, the inspection method developed
in this work is sound. In the following three tables, the results of this experiment can
be seen, with each table corresponding to one of the three sheet metal parts in the
dataset.

46
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CircularVentilationCover
Metric Ground Truth Measured
Total Inclination Angle (°) 35.00 35.00 ± 0.00
Arc Length (mm) 1.83 1.8267 ± 0.0077

Table 5.1: Table showing the measured total inclination angle, as well as the measured
arc length for one of the bends in CircularVentilationCover. Sampling density used
s = 0.03, average point density ρ̄ = 3100, ϵ = 0.11

VentilationGrate
Metric Ground Truth Measured
Total Inclination Angle (°) 45.00 45.00 ± 0.00
Arc Length (mm) 3.93 3.9287 ± 0.0018

Table 5.2: Table showing the measured total inclination angle, as well as the measured
arc length for one of the bends in VentilationGrate. Sampling density used s = 0.03,
average point density ρ̄ = 2960, ϵ = 0.12

MultiBend
Metric Ground Truth Measured
Total Inclination Angle (°) 35.00 35.00 ± 0.00
Arc Length (mm) 1.22 1.2209 ± 0.0096

Table 5.3: Table showing the measured total inclination angle, as well as the measured
arc length for one of the bends in MultiBend. Sampling density used s = 0.03, average
point Density ρ̄ = 2584, ϵ = 0.15

Discussion The total inclination angles measured for the ideal data were exactly
accurate. The angle uniformity was also found to be ideal in all the densely sampled
CAD models. The arc length detection was shown to be within ±0.04 mm of the true
value. Based on these experiments, the method is shown to be conceptually sound.

After testing the method with a variety of different point densities ρ̄, it is clear that
there exists a relationship between the optimal ϵ hyperparameter of the arc length
detector and the point density ρ̄ of the point cloud. For the above tests, ϵ was slightly
tuned in the range of [0.10 and 0.15 mm], with the chosen ϵ for each part shown in
the caption of the respective table. For a given sampled CAD model, the arc length
measurements deviated around ±0.07 mm, based on the chosen ϵ, which is minimal,
but still notable. The mathematical relationship between point density ρ̄ and the ϵ
hyperparameter is currently being investigated.

The method developed is now shown to work on ideal data, but this is almost never
be needed in reality. In the following section, the method will be tested against more
realistic data.
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5.2 Testing on Realistically Sampled Noisy CAD Models

In this test, the CAD model of the MultiBend part is sampled such that it matches
the point density of its scan counterpart ≈ 290 points/mm3. For comparison, the
bend sampled for the MultiBend part in the previoust test had an average point
density of 2584 points/mm3, which is nearly ten times larger.

The inspection method is applied to the realistically sampled CAD model and the
measurements (total inclination angle and arc length) for all 13 visible bends are
acquired. Afterwards, gaussian noise of standard deviation σ = 0.01 mm is applied
to the same sampled CAD model. This means that each point in the point cloud will
now have a positional uncertainty of 0.01 mm. This value is chosen as the induced
random per-point positional uncertainty mimics the one generated by the Wenglor
scanner. The method applied to the noise-induced sampled CAD model, and the
measurements are acquired. The same process is repeated once again for noise of
standard deviation σ = 0.02 mm. The following tables 5.4 and 5.5 contain the the
measured angles, as well as the measured arc lengths for all three levels of noise
(noise-free, σ = 0.01mm, σ = 0.02 mm).

Total Inclination Angle

Bend ID GT (°) Noise-free Noise σ = 0.01 mm Noise σ = 0.02 mm

1 90.00 86.47 ± 0.29 86.60 ± 0.10 87.12 ± 0.61

2 35.00 34.79 ± 0.00 34.86 ± 0.06 34.83 ± 0.18

3 35.00 34.79 ± 0.00 34.86 ± 0.03 34.80 ± 0.10

4 35.00 34.79 ± 0.00 34.86 ± 0.09 34.76 ± 0.16

5 35.00 34.79 ± 0.00 34.85 ± 0.06 34.77 ± 0.10

6 35.00 34.79 ± 0.00 34.87 ± 0.06 34.76 ± 0.09

7 35.00 34.79 ± 0.00 34.86 ± 0.09 34.76 ± 0.10

8 15.00 15.00 ± 0.00 14.99 ± 0.05 14.98 ± 0.10

9 30.00 29.99 ± 0.00 29.99 ± 0.05 29.97 ± 0.12

10 45.00 44.94 ± 0.00 44.95 ± 0.02 44.95 ± 0.12

11 60.00 59.68 ± 0.00 59.69 ± 0.05 59.59 ± 0.16

12 75.00 74.67 ± 0.04 74.41 ± 0.15 74.46 ± 0.16

13 90.00 89.55 ± 0.00 89.52 ± 0.06 89.40 ± 0.09

Table 5.4: This table shows the angle measurements made on the realistically sampled
MultiBend CAD model, with three different noise levels applied.
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Arc Length

Bend ID GT (mm) Noise-free Noise σ = 0.01 mm Noise σ = 0.02 mm

1 3.14 3.8760 ± 0.5597 2.8469 ± 0.6196 2.8611 ± 0.5816

2 1.22 1.0909 ± 0.0000 1.0710 ± 0.2570 1.2274 ± 0.3635

3 1.22 1.0909 ± 0.0000 1.1352 ± 0.2398 1.0696 ± 0.3909

4 1.22 1.1212 ± 0.0260 1.0302 ± 0.1983 1.0988 ± 0.3073

5 1.22 1.1236 ± 0.0274 1.0274 ± 0.1581 1.2141 ± 0.3539

6 1.22 1.1236 ± 0.0274 1.1111 ± 0.3077 1.1873 ± 0.3297

7 1.22 1.1236 ± 0.0274 1.0195 ± 0.1622 1.1818 ± 0.4150

8 0.26 0.1214 ± 0.0000 0.4034 ± 0.2881 0.7462 ± 0.7752

9 0.52 0.3947 ± 0.0000 0.3696 ± 0.1872 0.5268 ± 0.4428

10 0.79 0.7262 ± 0.0178 0.6519 ± 0.2480 0.6145 ± 0.3000

11 1.05 1.0413 ± 0.0100 0.9165 ± 0.2311 1.1277 ± 0.5975

12 1.31 1.2924 ± 0.0004 1.0406 ± 0.2411 1.1409 ± 0.3249

13 1.57 1.5668 ± 0.0005 1.4104 ± 0.3101 1.3399 ± 0.3615

Table 5.5: This table shows the arc length measurements made on the realistically
sampled MultiBend CAD model, with three different noise levels applied.

Discussion In Table 5.4, the first thing to notice is that the angle deviation (shown
as ±θ° grows with more noise introduced to the data. However, most of the measured
angles are within 0.5° of the ground truth. The next thing that can be easily noticed,
is how all measured angles are, without exception, equal to or slightly smaller than
the ground truth. After visually inspecting the fitted planes, the reason is rather
obvious. In Figure 5.1 below, it is shown how due to the thickness of the CAD
model, points are picked up from the side surface of the material when ray-casting
from top down. The same pattern is also visible in the scanned point clouds.
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Figure 5.1: In this visualization it is shown the side surface of the CAD model is also
caught by the top-down ray-casting process. This causes RANSAC to fit planes that
are slightly incorrect.

In an attempt to include as many points in the fitted plane as possible, RANSAC tilts
the fitted plane slightly to include these points, causing the angles between the main
plane and all other planes to always be slightly smaller. In future work, this effect
can be investigated. This effect was not present in the previous test (Section 5.1,
because due to the ideal nature of the data, the RANSAC threshold hyperparameter
was set to be minimal (0.001 mm), and thus these points were not included in the
fitted planes. In this test, the hyperparameters used for real data were chosen for all
methods, which is why this effect occurs.

Moving on to the arc length measurements, the same pattern of the standard deviation
growing as more noise is introduced can be seen. In the noise-free sampled CAD
model of real density, the method developed for measuring the arc length was quite
accurate, with most measured arc lengths being within ±0.15 mm of the ground
truth. An interesting underestimating effect occurs for bends with Bend ID from 2
to 7, which are designed to have the same angle and arc length, where the method
measured their corresponding arc lengths to be around 0.1 mm less in all cases, with
minimal standard deviation. This could mean either that the point density that
the CAD models were sampled in happens to be small enough such that there are
not enough points to fully describe these bends, or that a slight modification in the
method could improve the measurement across all of these bends at once.

Other notable arc length measurements include the longer bend, with Bend ID 1,
which had large standard deviations across all three noise-levels, as well as the smallest
arc length bend, with Bend ID 8, which the method had trouble measuring in all
three noise-levels. Some possible explanations for these deviations include incorrect
RANSAC plane detection, as well as intersections being ’overly’ trimmed by the
method described in Section 4.4.
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Despite some small inconsistencies, it is overall assessed that the method performed
quite well on noise-free data for both angle and arc length detection. It also provided
reasonable results on noise-induced data, which demonstrates robustness to noise.

In the final section of testing, the method will be applied to all three sheet metal part
scans in the dataset.

5.3 Testing on the Scans in the Dataset

In this test, the inspection method is applied to the three scans in the dataset. Tables
5.6, 5.7 and 5.8 display the measured angles, as well as the measured arc lengths for
all detected bends in the scans.

CircularVentilationCover

Bend ID CAD Angle Measured Angle CAD Arc Length Measured Arc Length

1 35.00° 35.05 ± 0.45° 1.83 mm 1.2080 ± 0.2366 mm

2 35.00° 35.55 ± 0.62° 1.83 mm 0.7084 ± 0.4397 mm

3 35.00° 35.10 ± 0.60° 1.83 mm 1.0684 ± 0.1093 mm

4 35.00° 35.06 ± 0.37° 1.83 mm 1.0299 ± 0.2173 mm

5 35.00° 34.98 ± 0.69° 1.83 mm 1.4929 ± 0.4138 mm

6 35.00° 34.95 ± 0.28° 1.83 mm 1.0692 ± 0.1281 mm

Table 5.6: This table shows the measured angle and arc length for all bends in the
CircularVentilationCover scan.

VentilationGrate

Bend ID CAD Angle Measured Angle CAD Arc Length Measured Arc Length

1 45° 42.56 ± 0.71° 3.93 mm 1.2431 ± 0.4500 mm

2 45° 44.10 ± 0.95° 3.93 mm 1.3611 ± 0.3622 mm

3 45° 44.31 ± 2.14° 3.93 mm 1.4925 ± 0.3918 mm

4 45° 43.27 ± 0.49° 3.93 mm 1.2930 ± 0.3616 mm

5 45° 43.12 ± 0.99° 1.57 mm 1.5008 ± 0.7212 mm

6 45° 42.70 ± 1.04° 1.57 mm 1.0996 ± 0.1077 mm

7 45° 45.42 ± 0.93° 1.57 mm 1.3076 ± 0.2107 mm

Table 5.7: This table shows the measured angle and arc length for all bends in the
VentilationGrate scan.
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MultiBend

Bend ID CAD Angle Measured Angle CAD Arc Length Measured Arc Length

1 90° 83.31 ± 0.84° 3.14 mm 1.3374 ± 0.6825 mm

2 35° 32.93 ± 1.75° 1.22 mm 1.4542 ± 0.2677 mm

3 35° 32.73 ± 3.33° 1.22 mm 1.4667 ± 0.3288 mm

4 35° 32.33 ± 1.79° 1.22 mm 1.2116 ± 0.4772 mm

5 35° 32.21 ± 2.41° 1.22 mm 0.9865 ± 0.6368 mm

6 35° 32.21 ± 2.59° 1.22 mm 1.4505 ± 0.7416 mm

7 35° 32.25 ± 1.46° 1.22 mm 1.9078 ± 0.0306 mm

8 15° 15.51 ± 3.05° 0.26 mm 1.1023 ± 0.3656 mm

9 30° 27.46° ± 2.11° 0.52 mm 1.4731 ± 0.6444 mm

10 45° 39.63 ± 2.83° 0.79 mm 1.4505 ± 0.7416 mm

11 60° 51.93 ± 0.24° 1.05 mm 0.7299 ± 0.4862 mm

12 75° 63.48 ± 0.83° 1.31 mm 0.5556 ± 0.2773 mm

13 90° 78.48 ± 0.99° 1.57 mm 2.0953 ± 0.0608 mm

Table 5.8: This table shows the measured angle and arc length for all bends in the
MultiBend scan.

Discussion Here, the deviations between the measurements and the CAD model
can originate from multiple sources, as was described in Section 2.4. Almost all
measured angles are within ±5° of their corresponding CAD model specification,
whereas the measured arc lengths deviate percentage-wise on average more from
their respective CAD model specification. This does not mean that the inspection
method incorrectly assessed the arc lengths in these scans. In fact, visual inspection
of the aligned CAD models on the scans reveals that the measured arc lengths are
in some cases much closer to reality than the CAD model specifications. Figure 5.2a
below shows such an example, where in an otherwise low RMSE alignment from CAD
model to scan, the bent surface in the CAD model (in red), requires a much larger
arc to reach the same angle as the scan (in green). Figure 5.2b on the right shows
an example, where the whole part of the main surface that is connected to a bend is
lifted, which will cause the arc length measurement to be incorrect.
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(a) Visual difference between the CAD
model and the scan

(b) I am sideways, help!1

Figure 5.2: The figure on the left shows how the arc length of the manufactured
and scanned sheet metal part (shown in green) is different than its CAD model
counterpart (shown in red). The figure on the right shows an example of the main
surface connection to a bend being lifted off itself, which will result in an incorrect
arc length measurement.

1Easter egg, for careful readers.



Chapter 6

Discussion and Conclusion

In this chapter, a discussion containing some reflections of the project, as well as
some future work will be made. Then, a brief conclusion will be given.

6.1 Discussion

This work started with the initial problem formulation:

How can the total inclination angle, as well as the arc length of all bends be measured,
when provided with a 3D point cloud that represents a sheet metal part?

To the current knowledge of the author, there do not exist any publications or articles
that attempt to solve this problem explicitly. Thus, a somewhat creative solution had
to be designed. Almost every aspect of the implementation that was not described in
the Methods section was manually developed, and that was a lengthy process. Ideally,
more experiments and tests should be conducted. This can help determine accurate
relationships between the different hyperparameters in the pipeline, and make the
system entire automatic, as currently, some hyperparameter tuning is still performed
between scans of different point densities.

The laser manufacturing system that creates the sheet metal parts inspected in this
work is designed for high-flexibility small-batch production, and the types of sheet
metal parts it can manufacture are practically endless. It will be an interesting task
to integrate this pipeline into such a system and have it generalize across as many
sheet metal part designs as possible. There exist sheet metal parts that this system
can fabricate that contain bends across their entire surface. The definition of a bend
used in this work will not be sufficient to assess the quality of those parts.

6.2 Conclusion

In this project, it was determined that it is possible to measure the total inclination
angle, as well as the arc length of all bends in 3D point clouds that represent sheet
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metal parts. The primary focus of the work is now to integrate this quality inspection
pipeline in the manufacturing system, which other than the final inspection of the
sheet metal parts, will provide a control loop to the manufacturing process that
ensures the quality of all fabricated sheet metal parts.
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Appendix A

Initial tests showed that applying center-to-center translation:

t⃗ =
1

|Pscan|
·
∑

pi∈Pscan

p⃗i −
1

|Pcad|
·
∑

pj∈Pcad

p⃗j (1)

followed by ICP, does not provide accurate alignment.

Two hyperparameter sweeps were conducted in order to determine if there is an op-
timal maximum correspondence distance hyperparameter for ICP to align the cad
point cloud (acquired through ray casting) with the scan point cloud. The first sweep
is a short-range sweep, covering values between 0.1 and 4 mm. The second sweep
is a longer range sweep, designed to cover a wider range, for longer distance cor-
respondences. The tables below report; 1. the maximum correspondence distance
hyperparameter used (denoted as MCD), 2. the fitness, which is the percentage
of points with correspondences, and 3. the RMSE, which is the average distance
between correspondences after transformation. An effective transformation is char-
acterized by a large fitness score and a low RMSE. Table A.1 displays the results
of the short-range sweep. In the short-range sweep, there is a clear pattern, where
larger correspondence distances lead to an increased fitness score, but at the same
time a larger error. A simple way to explain this is; when two points are allowed to be
’matched’ further away, then more points in total will be matched, but those matches
are ’worse’ matches. This means that the rigid transformation matrix does not work
for well to reduce the distances between all the correspondences. Perhaps the correct
correspondences are further away than 4 mm apart. Table A.2 shows the fitness and
RMSE of the transformation for maximum correspondence distances between 1 and
150 mm. As it can be seen from the table above, the RMSE continues to grow as
more points are matched. From these two sweeps, it is concluded that ICP alignment
will not work on its own for aligning the CAD point cloud with the scan point cloud.
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MCD (mm) Fitness RMSE
0.100000 0.001456 0.063864
0.316667 0.088575 0.097986
0.533333 0.098519 0.166395
0.750000 0.106534 0.238000
0.966667 0.113915 0.314097
1.183333 0.120543 0.392408
1.400000 0.126943 0.476322
1.616667 0.134648 0.582272
1.833333 0.140401 0.664964
2.050000 0.145886 0.749026
2.266667 0.151053 0.831382
2.483333 0.155738 0.911052
2.700000 0.160108 0.989993
2.916667 0.164608 1.075381
3.133333 0.168994 1.160970
3.350000 0.173126 1.244760
3.566667 0.177102 1.328530
3.783333 0.181587 1.425598
4.000000 0.187016 1.533677

Table A.1: Short-range ICP hyperparameter sweep
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MCD (mm) Fitness RMSE
1.000000 0.115036 0.326711
7.208333 0.249622 2.921819
13.416667 0.382394 6.467658
19.625000 0.516290 10.170027
25.833333 0.635309 13.528224
32.041667 0.727789 16.300888
38.250000 0.837523 19.727735
44.458333 0.903388 22.006144
50.666667 0.945877 23.730942
56.875000 0.970386 24.936312
63.083333 0.984686 25.770180
69.291667 0.990047 26.156438
75.500000 0.996036 26.678554
81.708333 0.999789 27.057537
87.916667 0.999997 27.080734
94.125000 0.999997 27.080734
100.333333 0.999997 27.080734
106.541667 0.999997 27.080734
112.750000 0.999997 27.080734
118.958333 0.999997 27.080734
125.166667 0.999997 27.080734
131.375000 0.999997 27.080734
137.583333 0.999997 27.080734
143.791667 0.999997 27.080734
150.000000 0.999999 27.081524

Table A.2: Long-Range ICP Threshold Sweep Results
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