Summary

Sharing data plays a important role in building new predictive models for instance, using real healthcare data to develop
tools for early disease detection. Particularly in the medical domain, real-world data is high in demand because it has detailed
patient histories, treatment outcomes, and health trends, making it a rich resource for research and development of better
diagnostic and predictive tools.

In contrast, sharing data raises general privacy concerns. Individuals are often unwilling to share their personal details, par-
ticularly when the data includes sensitive domains such as healthcare history or behavioral patterns. Furthermore, regulations
like General Data Protection Regulation(GDPR) and the Health Insurance Portabil- ity and Accountability Act (HIPAA) for
protecting sensitive personal information, limit insightful datasets availability for research and development purposes.

These concerns increases when the data is longitudinal, which captures individuals records over time and are unlike
static datasets, as they are expose able to subtle and unique behavior patterns. Even with de-identification or anonymisation
techniques, the sequence of events in individuals record may still be distinctive enough to risk re-identification. For example, a
patient’s hospital visits, treatment cycles, and test results over several months might reveal their identity if matched with
other available information. This challenge makes it difficult to openly share such data for research or analysis without
compromising individual privacy.

To overcome this risk, Synthetic Data Generators (SDG) have emerged as a promising alternative. Synthetic datasets aim to
preserve the statistical and structural properties of the original data while ensuring that no real individual’s data is exposed.
Different techniques have been proposed to generate synthetic data, with Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs) among the most widely known. Their "black box" nature makes it hard to understand how
decisions are made within these models, posing challenges for sensitive domains that demand transparency and interpretability.

To address these limitations, we investigated synthetic data generation for time series data and propose a non-stationary
SDG for longitudinal data (NSSDG-LD). Our algorithm is based on a Dynamic Bayesian Network (DBN) with the capability to
capture change points, where the conditional probability within a segment remains sames but varies from segment to segment.
Our goal is to balance privacy and utility and to ensure that the generation process remains understandable and controllable.
Our method builds on the foundational idea of change point detection from the cpBGe model, which identifies points in time
where the behavior of a system changes. Rather than assuming the same statistical relationships hold throughout the entire
dataset, we divide the data into segments based on these change points. Within each segment, we learn a DBN that models
both the structure and conditional probabilities of the variables. This allows us to capture realistic temporal patterns while
keeping the underlying model interpretable and stable.

We evaluate NSSDG-LD on both simulated and real-world datasets. Simulated benchmarks include 2-node, 4-node, and
8-node networks with known change points and structure, allowing for precise validation of inference accuracy. Real-world
validation is performed on a longitudinal dataset derived from MIMIC-IV, in which each patient’s hospital visits are encoded
as categorical event sequences. This enables us to evaluate performance in a real-world clinical context with privacy-sensitive
variables and changing care trends.

To measure model performance, we consider six categories of evaluation: (1) structure learning (via AUC against ground
truth graphs), (2) change point detection (via F1 score), (3) marginal and (4) pairwise distribution similarity (using TVD and KL
divergence), (5) cross-time dependency preservation (via mutual information gap between real and synthetic sequences), and
(6) downstream predictive utility (via AUROC for classification tasks). Additionally, we assess privacy using a Membership
Inference Attack (MIA), where an attacker attempts to infer whether real records were part of the training data based on the
model outputs.

We conducted a comparative evaluation between our proposed NSSDG-LD model and the PARSynthesizer, a state of the art
data generation framework specifically designed for longitudinal datasets. While PAR performed slightly higher in utility
scores, indicating a closer statistical resemblance to the original data across marginal and pairwise distributions, our model
achieved better privacy preservation when tested on MIMIC IV data. Specifically, NSSDG-LD achieved lower recall rates in
MIA scenarios, demonstrating a reduced likelihood of real training records being exposed through synthetic data.

In the downstream classification task, we observed that the PAR model showed limited predictive capability and predictions
were close to random, implying that it failed to capture meaningful patterns from the original data. In contrast, our proposed
NSSDG-LD model achieved better classification performance, as measured by AUROC. This suggests that the synthetic data
generated by NSSDG-LD retains more relevant temporal and structural information, enabling machine learning models trained
on it to generalize better when evaluated on real-world data.

The privacy offered by our model could be further enhanced by integrating differential privacy techniques. This would add
an extra layer of protection. To improve the utility aspect, a fine tuning of the MCMC based structure learning process can be
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performed by i.e. initializing with informed graph structures and incorporating domain knowledge, such as fixing known
clinical dependencies. Similarly, replacing random change point initialization with statistically or clinically guided estimates.



A Non-Stationary Synthetic Data Generator for
Longitudinal Data

Prasun Jhajharia

Aalborg University

Aalborg, Denmark
pjhajh23@student.aau.dk

Abstract

Longitudinal datasets, which capture repeated observations
of individuals over time, are important in areas such as
healthcare, finance, and education. However, the right to
privacy as stated in the General Data Protection Regulation
(GDPR) limits the direct sharing of such sensitive data. Syn-
thetic data generation offers a key solution by producing
synthetic datasets that captures key statistical characteris-
tics of real data while reducing the risk of exposing sensitive
information. While models like Bayesian networks are use-
ful for generating synthetic data and are easy to interpret,
they’re mainly built for static datasets. This means they often
fall short when it comes to handling time based patterns.

In this work, we propose a framework for generating
synthetic longitudinal categorical data using segment-wise
Dynamic Bayesian Networks (DBNs). Our method detects
change points in the temporal data to identify non-stationary
segments and learns separate DBNs for each segment. These
models are then aggregated by extracting common struc-
tural patterns, and segment wise behaviors are grouped via
clustering. Synthetic sequences are generated by sampling
from these clusters, preserving both temporal coherence and
structural realism. We tested our approach on both simulated
and real-world datasets, including Electronic Health Records
(EHRs). While our model shows lower utility compared to
our baselines, it offers better privacy protection demonstrat-
ing that a modest trade-off in accuracy can lead to significant
gains in protecting sensitive information.

1 Introduction

The growing digitization of data in domains like healthcare,
finance, and education has created new opportunities for
data driven research and innovation. In particular longi-
tudinal datasets, which track individuals or systems over
a period, are valuable for uncovering progression, behav-
ior, and causality [42]. However, in certain fields it is often
difficult for analysts and researchers to get access to high
quality data for research purposes, as Data protection regula-
tions, such as the GDPR [10] in the European Union and the
Health Insurance Portability and Accountability Act (HIPAA)
[1, 43] in the United States, increasingly constrain access.
These regulations limit how data from individuals can be
shared, especially when it involves sensitive health, behav-
ioral, or financial information. Even de-identified data can
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pose re-identification risks, where repeated records may re-
veal unique patterns [8].

To address this problem, synthetic data generators (SDG)
have emerged as a promising approach, as studies shows that
synthetic data have an lower identity disclosure risk com-
pared to de-identified data [39]. Instead of sharing records
of real individuals, organizations can release synthetic gen-
erated datasets that mimic the statistical structure of the
original data while offering stronger privacy protection[33].
Synthetic data allows researchers and developers to test
models, perform exploratory analysis, and develop decision
support systems without accessing sensitive data[5]. How-
ever, generating synthetic data that are both realistic and
privacy-preserving is technically challenging, particularly
in longitudinal settings where time dependent relationships
exist.

Different SDGs have been developed and vary in their
method to create synthetic data. Deep generative models
such as Generative Adversarial Networks [14] create syn-
thetic data by training a generator to produce realistic sam-
ples that can fool a discriminator, which learns to distin-
guish between real and fake data. Variational Autoencoders
[13] offer high realism by learning complex joint distribu-
tions. However, these models often operate as black boxes,
making their internal decision-making processes difficult to
interpret[34, 48]. This lack of transparency poses challenges
when validating them in regulated domains such as health-
care and finance, where accountability and explainability
are essential[38]. In contrast, marginal based probabilistic
models, such as Bayesian Networks, aim to preserve variable
level distributions and conditional dependencies explicitly
[9, 49]. These methods offer greater transparency and con-
trol, making them well suited for domains, where regulatory
compliance and explainability are essential.

Unfortunately, most of the existing marginal based meth-
ods [27, 50] are limited to static, cross-sectional datasets,
where all records are assumed to be independent. This as-
sumption fails in longitudinal settings, where a variable’s
value often depends on its previous states. For example, a
cancer patient undergoing chemotherapy may follow a multi
cycle treatment plan, receiving drugs on a repeating schedule,
e.g. every two weeks, then followed by lab tests to monitor
response and toxicity. Lab results, such as white blood cell



counts, directly affect whether the next cycle should be pro-
ceeds as planned or should be delayed. This creates a chain
of temporally dependent events involving diagnoses, med-
ications, lab values, and clinical decisions. Ignoring such
dependencies during data synthesis can lead to implausible
timelines such as a patient receiving continuous chemother-
apy without lab monitoring or delays which undermines
both data realism and downstream model performance.

A natural way to model temporal dependencies is through
DBNss [12, 28], a temporal extension of Bayesian networks.
DBNs capture both intra-slice (within-time) and inter-slice
(across-time) dependencies in a structured probabilistic frame-
work [28]. They have been widely used in domains such as
speech processing, system monitoring, and disease progres-
sion modeling [2, 4, 52]. In modeling diabetes progression,
an intra-slice dependency might represent the relationship
between a patient’s glucose level and insulin dose at a given
time point, while an inter-slice dependency could capture
how today’s glucose level depends on the patient’s glucose
history and insulin usage from previous visits.

A major limitation of most DBN methods is the assump-
tion of stationarity: that the network structure and transition
probabilities remain constant over time. But in reality, sys-
tem undergo non-stationary changes due to interventions,
behavioral shifts, or external events. These shifts, known as
change points, mark moments when the underlying process
changes, like a patient entering a new disease stage or a
user adapting to a platform update. Modeling such structural
shifts is essential for generating realistic synthetic sequences.

While existing methods like Bayesian online change point
detection [22] and non-stationary DBNs can model evolving
network structures [16, 37], they are designed for tasks such
as forecasting or latent inference, and are not tailored for
generating synthetic data.

Bridging this gap requires adapting change point aware
temporal modeling to the synthetic generation setting, to
ensuring both realism and segment wise dependency model-
ing. In this study, we adapt the The non-stationary dynamic
change point BGe model (cpBGe) by Grzegorczyk and Hus-
meier [16] to handle categorical data, transforming it into
a non-stationary DBN scored with the Bayesian Dirichlet
equivalent (BDe) metric. While the original cpBGe assumes
linear-Gaussian processes, our variant models discrete time
series data using multinomial distributions with Dirichlet
priors, making it suitable for domains like healthcare. Our
proposed model, the Non-Stationary Synthetic Data Gen-
erator for Longitudinal Data (NSSDG-LD), captures non-
stationarity through node-specific change points, allowing
CPDs to vary over time. Furthermore, our NSSDG-LD gener-
ate synthetic categorical time series by simulating sequences
of segments, each defined by learned probabilistic patterns
and temporal structures. To evaluate the performance of our
SDG, we assess both change point detection accuracy and the
utility—privacy trade-off across two settings, a collection of

synthetic benchmark datasets with known ground truth for
network structure and change point locations, allowing pre-
cise quantitative validation, and a real-world domain-specific
dataset, the MIMIC-IV clinical database [20, 21], which pro-
vides a complex environment for assessing how well the
generated data preserve utility while protecting patient pri-
vacy.

The remainder of this paper is organized as follows: Sec-
tion 2 provides related work, followed by background infor-
mation in Section 3. Section 4 details the proposed method-
ology, while Section 5 outlines the experimental setup. Sec-
tion 6 presents the findings, which are further discussed in
Section 7. Finally, Section 8 offers concluding remarks, and
Section 9 explores directions for future work.

2 Related Work

Synthetic data generation has emerged as a key strategy for
privacy preserving data analysis in domains where sharing
real data is restricted. Research spans across statistical tech-
niques, probabilistic modeling, and advances in deep genera-
tive models. Several reviews [30, 32] works have outlined the
evolution of SDGs in the healthcare domain in both tabular
and sequential settings. Murtaza et al. [30] highlights how
the SDG approach is becoming a popular way to share health
data while protecting patient privacy. The review shows that
methods based on expert knowledge offer strong privacy but
often require a manual setup. On the other hand, data driven
methods can struggle to handle complex medical records
and rely heavily on having access to real data in the first
place. A limitation can be found especially for generating
detailed patient timelines with multiple health conditions. It
is suggested that these methods require additional research.
Longitudinal SDGs are further investigated by Perkonoja et
al. [32]. They state that only few of the reviewed SDGs man-
aged to handle all their outlined challenges, e.g. preserving
temporal structure, handling unbalanced and irregular data
and combining static and time varying variables. In addition,
they noted that none of them included built in privacy protec-
tion, and most relied on deep learning models. Given these
gaps, there is a growing need for more research and models
that can explicitly represent temporal dependencies. The
allowance of modular control over structural assumptions
and interpretable synthetic generation method are further
suggested.

DBNs offer a compelling alternative in this regard. Unlike
black-box models, DBNs can encode both causal and tem-
poral relationships in a transparent manner, making them
suitable for simulating patient trajectories with interpretable
temporal logic. Murphy [28] presented foundational work
demonstrating DBNs’ effectiveness in modeling temporally
stable processes. In their classical formulation, DBNs assume
stationary structures and consistent of conditional depen-
dencies across time slices. Building on this, Wang et al. [46]



proposed a method for publishing high-dimensional tempo-
ral data under differential privacy using DBNs as the core
modeling framework. Their method constructs a DBN by
selecting highly correlated attributes via mutual informa-
tion, then builds a temporal dependency graph and applies
differential privacy during the synthethic data generation.
However, the approach is centered on privacy-preserving
data release and assumes that stationary temporal dependen-
cies between variables remain consistent over time.

To address the limitations of stationary DBNs, several non-
stationary extensions have been proposed that allow the net-
work structure or parameters to evolve over time. Robinson
and Hartemink [36] introduced a model that permits the
entire network structure to shift across different segments
of the time series. Similarly, Lebre [26] developed a frame-
work for global structural changes between segments. In
contrast, Grzegorczyk and Husmeier [16] proposed a model
for continuous data where the overall structure is fixed, but
parameters can vary over time through node-specific change
points capturing.

While these approaches effectively extend DBNs to ac-
commodate non-stationarity, they differ in their underlying
assumptions and range from the type of data supported to
the specifications of change points (global vs. local). Notably,
they primarily focus on inference rather than data synthesis.
This leaves a clear gap at the intersection of change point
modeling and longitudinal synthetic data generation, a space
this work aims to address.

3 Background
3.1 Dynamic Bayesian Network

DBNs are probabilistic graphical models, which is the ex-
tension of static Bayesian networks [6] by modeling time-
dependent processes. Formally, DBN is defined as a pair
(Bo, B—;), where B is a Bayesian Network that specifies the
prior probability distribution over the variables at the ini-
tial time step t = 0, and B_, is a Two-Time Slice Bayesian
Network (2-TBN) that specifies the conditional probability
distribution governing transitions from one time step to the
next. The 2-TBN is represented through a directed acyclic
graph (DAG) structured across two consecutive time slices.
this makes it useful for analyzing sequential processes such
as time series data such as stock price over time, monitoring
patients in ICUs [28].

The conditional probability distribution (CPD) for a DBN
across time steps t can be expressed as follows [28]:

N
P(X; | Xo1) = [ [ PO | Pa(X])) (1)

n=1
where X' represents the n-th node at time ¢, which may
correspond to a variable in the observed, hidden, or input set
at time ¢. The term Pa(X]') refers to the set of parent nodes
of variable X} in the graphical model, which may be drawn

Table 1. Table of Notation

Symbol | Meaning

X The complete set of variables (nodes) in
the DBN, representing observed, hidden,
or input variables across time steps.

X, Set of all random variables (nodes) at time
step 1.

Xi-1 Set of all variables at the previous time step.

X7 n-th variable (node) at time ¢. For example,
if you’re modeling vitals, X} could repre-
sent "medication" at time ¢.

D Orginal dataset

N Total number of variables (nodes) in the
network.

m Number of time points in the time series.

G Graph structure of the Bayesian network,
defining parent-child dependencies among
variables.

Xy The n-th node (or variable).

X () Value of node n at time ¢.

0, Parameters for node X,,.

7y (t — 1) | Values of parent nodes of X, at time t — 1.

D+ The value recorded for the n-th variable at
time ¢.

from variables in the current time slice X;, the previous time
slice X;_1, or both, depending on the model’s structure.
Importantly, nodes within the first slice of the 2-TBN do
not possess associated parameters. In contrast, every node
in the second slice of the 2-TBN carries a CPD, defining [28]

P(X]" | Pa(X]")) forallt>1 (2)

These CPDs govern the probabilistic transitions for all
time steps ¢t > 1.

3.2 Non-stationary continuous dynamic Bayesian
networks

Grzegorczyk and Husmeier [16] proposed a non-stationary
continuous dynamic Bayesian network model, known as
change point Bayesian Gaussian equivalent (cpBGe), which
allows parameters to evolve over time while maintaining a
fixed network structure.

The cpBGe model introduces non-stationarity through
a node specific change point process that partitions time
series into segments. Importantly, the parent set of each
node (i.e., the graph structure) remains fixed across time, en-
abling information sharing between segments and reducing
overfitting risks associated with short time series [16].

The cpBGe model builds upon the foundation of classical
DBNs, which define the likelihood of the data given a fixed
graph structure G and parameters 8 as follows:
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This equation [16] reflects the Markovian assumption that
each variable X, at time t depends only on its parent vari-
ables m, at the previous time step ¢ — 1. For every node and
each time point from ¢ = 2 onward, it computes the probabil-
ity of the node’s observed value, conditioned on the values
of its parents one step before. The likelihood is obtained by
multiplying these conditional probabilities across all nodes
and all time points. This formulation enables the model to
capture temporal dependencies.

However, estimating the parameters 6 for every possible
graph can be computationally intensive and unreliable, espe-
cially when the data is split into short segments. To address
this, the cpBGe model avoids direct parameter estimation by
using a conjugate normal-Wishart prior [11], which allows
the parameters to be integrated out analytically.

N
P(D|G) = / P(D | G,0)P(0|G)do = ]_[ ¥(D™,G)
n=1
(4)

Here, T(Dg,,’ G) denotes the Bayesian Gaussian equiv-
alent (BGe) score, which evaluates how well the data for
node X,,, conditioned on its parent set =, aligns with the
assumptions of a linear Gaussian model defined by the graph
structure G.

The term D refers to the specific subset of the dataset
used to compute this score: it includes all observed values
of X, (t) for time steps t = 2 to m, together with the cor-
responding values of its parent nodes 7, (¢t — 1) from the
immediately preceding time step.

This child-parent pairing across time enables the model
to assess the quality of the local conditional dependency
implied by the graph. By computing the BGe score for each
node individually using this data, the model can determine
how well the overall structure G fits the observed time series,
without relying on explicit parameter estimates. This scoring
mechanism plays a central role in enabling efficient and
reliable graph evaluation within the cpBGe framework.

To introduce non-stationarity, the cpBGe model partitions
each node’s time series into multiple segments, where each
segment assumes constant parameters. The number of seg-
ments for each node X, denoted K,,, and the location of their
boundaries are not fixed in advance but are inferred from
the data. This results in a segmented model, where the time
series of node X, is divided into K, contiguous intervals,
each governed by its own parameter vector 07, for segment
indexk=1,...,K,.

The segmentation is encoded by a vector V;,, called the seg-
mentation vector, which assigns a segment label to each time

point in the time series of node Xj,. The entry V,,(t) indicates
the specific segment to which time step ¢ belongs. Given this
segmentation, the segment count K, and the parameters 0,
the full likelihood of the observed data is expressed as:

P(DlG,V,K,H):ﬁﬁ

n=1 t=2 k=1

Kn ARAGKE:

P (Xa(0) | 7ot = 11,65
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Here, 6y, (1) k is the Kronecker delta function, which equals
1 if time point ¢ is assigned to segment k (i.e., V,,(¢) = k), and
0 otherwise. This ensures that the likelihood contribution
at each time step is computed using only the parameters
specific to the assigned segment. Each segment k for node
Xy, is associated with its own parameter vector 9,’§ , which
contains the regression coefficients and noise variance used
to model the linear Gaussian relationship between X, (t) and
its parent nodes 7, (t — 1). These parameters are assumed
to be constant within a segment but allowed to vary across
segments to capture non-stationary behavior.

cpBGe constrains segment assignments to occur over con-
tiguous intervals means that all time points belonging to a
given segment must appear in consecutive order on the time
axis. This preserves the temporal structure of the data and
avoids fragmented or disjointed segmentations. The num-
ber of segments K, for each node is not fixed; instead, it is
treated as a random variable governed by a truncated Pois-
son prior, which biases the model toward simpler segmenta-
tions unless the data provides strong evidence for additional
changepoints.

As in the stationary case, the model integrates out the
segment-specific parameters using the BGe score, yielding
the marginal likelihood:

N Kn
POIGV.E) =[] [¥OFkvle)  ©
n=1 k=1
Here, ¥(D;;" [k, V,,], G) represents the marginal likelihood
contribution of the k-th segment of node n, conditioned
on its parent set 7, in the graph G. This term is computed
using only the subset of the data assigned to the k-th seg-
ment of node n, as indicated by the segmentation vector V;,.
Formally, D;" [k, V;,] denotes the collection of data points
(Xn(t), 7y (t — 1)) such that V;,(t) = k, meaning time point ¢
is assigned to segment k for node n. This formulation allows
exact evaluation of model evidence for a given graph and
segmentation under the change-point model, since each seg-
ment corresponds to an independent linear-Gaussian model
integrated out analytically via the BGe score.
The full posterior distribution over the graph structure G,
the segmentation variables V, and the number of segments
K is expressed as:

P(G,V,K | D) « P(D | G,V,K)-P(G)-P(V | K)-P(K) (7)



The likelihood term P(D | G,V,K) evaluates how well
the data fits a model with fixed structure and node-specific
changepoints, using the BGe score to integrate out param-
eters. The prior P(G) assumes a uniform distribution over
acyclic graphs with a parent limit to encourage sparsity.
P(K) assigns a truncated Poisson prior on the number of
segments, favoring simpler models. The term P(V | K) is
derived from a change-point process that imposes temporal
smoothness by probabilistically placing changepoints using
ordered uniform samples.

Inference in the cpBGe model is conducted using a Re-
versible Jump Markov Chain Monte Carlo (RIMCMC)[15]
algorithm, which allows the model to explore a space of vari-
able dimension (due to the changing number of segments).
At each iteration, the algorithm randomly chooses whether
to update the graph structure or the segmentation for a
randomly selected node. In the structure update step, a new
graph G’ is proposed by adding or deleting a single edge. The
proposed graph is accepted with the Metropolis-Hastings
probability:

P(D|G.V.K) P(G)) IN(G)
"P(D|G,V,K) P(G) |N(G)]

A(G' | G) = min (1

where N (G) denotes the neighborhood of G under single-
edge changes, which refers to all graphs reachable from G by
addition or deletion single edge. P(G) represents the prior
probability of the current graph structure and P(G’) repre-
sents the prior probability of the proposed graph structure.

In the segmentation update step, the algorithm proposes
one of three moves: a birth move (adding a change point), a
death move (removing one), or a reallocation move (shifting
a boundary between two segments). These moves alter the
segmentation vector V;, and the number of segments K, for
node n. The proposed move is accepted with probability:

K,
[ [¥@kv;1.6)

k=1 .

Kn

[ [¥@i k. Va1 6) ©)
k=1

P(V, | K},) - P(K;) q(reverse)

P(Vy | Ky) - P(K,)  q(forward)

where ¢(-) denotes the proposal distributions for the re-
spective moves. These updates allow the model to adaptively
find the most probable network and segmentation structure
consistent with the observed data.

The cpBGe model thus provides a principled framework
for modeling non-stationary time series where temporal vari-
ability is captured through parameter changes rather than
structural changes. By combining the analytical tractability
of the BGe score with the flexibility of Bayesian change point

A =min (1,

modeling and RIMCMC inference, the cpBGe framework ef-
fectively balances model complexity and generalizability.
This makes it particularly well suited for applications involv-
ing biological time series, where dynamic changes occur, but
the underlying causal relationships are expected to remain
structurally consistent over time.

4 Methodology

This section outlines our approach for modeling non-stationary
time-series data using a change point aware DBN, drawing
foundational inspiration from the cpBGe model proposed by
Grzegorczyk and Husmeier [16], as described in Section 3.
EHRs often contain a mix of numerical and categorical in-
formation, i.e. the MIMIC IV dataset [20, 21]. Only a limited
number of numerical columns were suitable for meaning-
ful longitudinal analysis, whereas categorical features were
more consistently available. This made categorical data a
more practical choice for evaluating the model on real pa-
tient. These observations motivated us to use the cpBGe
model as the foundation of our method. By using its change
point aware learning framework as inspiration, we modified
the model to handle categorical time series data, enabling
us to better capture temporal dependencies and structural
changes in real world clinical records.

The following subsections describes the architecture and
inner workings of the our proposed NSSDG-LD model. It
is split into change point/structure inference and synthetic
data generation.

4.1 Change point and structure inference

The first step is to separate an EHR into multiple dataset,
where each dataset contains one Patient. As illustrated in
Figure 1, the NSSDG-LD algorithm begins by taking a mul-
tivariate time series dataset, D € RN*™M ag input, where
N is the number of variables and m is the number of time
points. Each time series is first discretized into a fixed num-
ber of categories using a binning strategy such as quan-
tile based binning, resulting in a categorical dataset D €
{0,1,...,C—1}N*™ where C is the number of discrete states
per variable. Temporal dependencies are captured by model-
ing the conditional distribution P(X,(t + 1) | m,(t)), where
7, denotes the parent set of node X,. After prepossessing, the
algorithm randomly initializes a Bayesian network structure
G and a set of node-specific change points that partition each
node’s timeline into K, stationary segments. This change
point framework, including the use of node-specific segmen-
tations and posterior scoring, follows the cpBGe model, but
is adapted here for categorical data. In each iteration of the
MCMC sampling loop, the algorithm proposes one of two
moves: a graph structure update (adding, removing, or re-
versing an edge in G) or a changepoint update (birth, death,
or reallocation of a changepoint for a given node). For each
proposed configuration, the model fit is evaluated using the
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Figure 1. NSSDG-LD Change point and structure inference

Bayesian Dirichlet equivalent (BDe)[29] score [19], which
computes the marginal likelihood over categorical data un-
der a Dirichlet-multinomial model. In [35] they used BDe
score for categorical data. Let X, be a child node with cate-
gorical outcomes {0, ...,C — 1}, and let the data be grouped
by unique parent configurations j = 1,.. ., q. For each config-
uration j, the log marginal likelihood is computed as [29, 47]

rv+Zha) €
T ( §=1 ac) =1 F(Njc +ac)

P(D; | @) = (10)

where:

e Nj is the count of observations where the child takes
value ¢ given parent configuration j,

e N;= Zle Njc is the total count for configuration j,

e « is a Dirichlet prior over child categories.

The full local score for a child node X, with parent set
(X.) is obtained by summing the log marginal likelihoods
across all g parent configurations:

9
log P(D | n(X.)) = Z log P(D; | @). 11)

=

In the presence of changepoints, each node’s timeline is
partitioned into segments within which the conditional dis-
tribution is assumed stationary. The BDe score is computed
separately for each segment using the segment-specific data
and corresponding parent configurations. These scores are
then aggregated across all segments and nodes to obtain the
total marginal likelihood The total likelihood score, together
with the prior and proposal probabilities, is used to compute
the Metropolis-Hastings acceptance ratio. If the proposed
move is accepted, the updated structure and segmentation
are added to the posterior sample. This MCMC sampling is

then repeated for N iterations. After convergence, a poste-
rior summary is generated by examining the sampled graphs
and segmentation.he algorithm then selects the maximum a
posteriori (MAP) sample from the patient’s MCMC run as
the final representation, which includes the graph structure
GMAP ‘segmentation vectors VMAP and segment counts KMAP,
for each node X,,. This entire process is then repeated for
each individuals patient’s longitudinal record. To construct a
population-level consensus graph, directed edges that appear
in at least 60% ! of patient-level graphs are retained. This
threshold balances sensitivity (capturing common structural
patterns across patients) and specificity (excluding patient-
specific or noise-driven edges). Such an approach is partic-
ularly useful in settings with limited sample sizes, missing
data, or sparsely connected networks, where relying on a
single global model may fail to capture inter-individual vari-
ation [45]. A different method, selecting the highest-scoring
structure from all individual, can introduce variability, po-
tentially reflecting noise or unstable trends in the data rather
than true underlying dependencies.

4.2 Synthetic Data Generation Expansion

Following the consensus graph construction, the NSSDG-
LD framework proceeds with the synthetic data generation,
as can be seen in figure 2, by extracting all segmentation
vectors VMAP and segment counts KMAP, for each node X,
from each patient’s MAP sample.

For each segment k, the algorithm estimates a Conditional
Probability Distribution (CPD), if a node X, has no parents,
the CPD is the empirical marginal distribution:
count(X, = c¢)

P(X,=¢) = —————
( ) segment length

1"The 60% threshold reflects a majority agreement across patients, allowing
the consensus graph to emphasize consistent dependencies while tolerating
minor individual differences”
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Figure 2. NSSDG-LD Synthetic data generation

If X, has parents x,, the CPD is modeled as a Dirichlet-
multinomial, computed via normalized joint frequency ta-
bles:

Njc
Zc' N Jj.c’
where N . counts how often X, = ¢ occurs under parent con-
figuration j. To preserve segment duration, the correspond-
ing segment length # is appended, forming an augmented
vector:

P(anﬂn)z

zi = [vec(Py), ]

To reduce the redundancy of highly similar CPDs, we per-
form clustering over the CPD vectors zi. If we didn’t cluster
the CPDs, each segment would end up with its own unique
distribution. This would make the synthetic data almost
a one-to-one copy of the original, which defeats the pur-
pose of generating new, generalizable data. Clustering helps
us group similar segment behaviors together, so instead of
memorizing and repeating exact patterns, the model learns
broader types of behavior. This makes the synthetic data both
more efficient to generate and better at preserving privacy.
The clustering process is conducted using cosine similarity,
implemented via L2-normalized K-Means clustering using
the scikit-learn library [31, 40]. Segment length & is treated
as an additional feature with a configurable weight. The
number of clusters K is chosen using the elbow method, by
identifying the inflection point in the within-cluster sum of
squares (inertia). Furthermore, the algorithm records the em-
pirical start distribution over clusters and a transition matrix
T € REXK estimating the distribution of cluster-to-cluster
transitions.

Finally synthetic categorical time-series data were gener-
ated using the learned generative model. Simulation began
by sampling an initial cluster from the empirical start distri-
bution and the segment length was drawn from the empirical
distribution of segment durations within the selected clus-
ter. For each time step within a segment, the value of each
variable was simulated sequentially using the corresponding
CPD and the values of its parent variables from the previous
time step, thereby preserving the conditional dependencies
encoded in the DBN structure. At the end of each segment,
the next cluster was selected according to the learned transi-
tion probability matrix, and the simulation continued. This
process was repeated until the synthetic sequence reached
the desired length.

5 Experimental Setup

This section explains the evaluation of the NSSDG-LD al-
gorithm. It covers the datasets we used, how we measured
performance, and the overall steps in our experimental pro-
cess. Our goal was to evaluate how well the model captures
both structural and temporal patterns, as well the utility and
privacy of the generated data.

5.1 Datasets

5.1.1 Two-Node. The two-node dataset represents the
simplest synthetic network considered and is reproduced
from the cpGBe paper [16]. As illustrated in Figure 3, the
structure consists of a self-loop on X (X — X), which in-
duces autocorrelation in the time series of X, and a directed
edge from X to Y, introducing a dependency of Y on X. The
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influence from X to Y is governed by a piecewise linear pro-
cess with a time-dependent coefficient 5(t). The generative
model is defined as:

X(t+1)=V1—-£2-X(t)+e-Ppx(t+1), (12)
Y(t+1) =) - X(t)+c-py(t+1), (13)

where:

e ¢ € [0,1] controls the autocorrelation in X,

o ¢x (1), py(t) ~ N(0,1) are independent Gaussian noise
terms,

o f(t) is a piecewise constant coefficient.

e ¢ is chosen to satisfy a desired signal-to-noise ratio
(SNR):

_6(p)X(1))

~ SNR

where &(S(t)X (¢)) is the empirical standard deviation

estimated from noise-free simulations.

5.1.2 Four-Node. The four-node dataset extends the pre-
vious design to assess the model’s performance under more
complex multivariate interactions. Figure 3 shows that the
network comprises nodes X, Y, W, and Z with three edges
and one selfloop. The data is generated according to:

X(t+1)=V1i—e2-X(t) +e- ¢px(t+1), (14)
Y(t+1) = fy(t) - X (1) +cy - gy (t+1), (15)
W(t+1) = Pw(t) - X(t) +cw - dw(t+1),  (16)
Z(t+1) = Bz(t) - X(t) +cz - pz(t +1), (17)

5.1.3 Eight-Node. Furthermore, another extension of pre-
vious datasets is represented in this eight node dataset, in-
spired by real-world healthcare indicators. The variables
include: HeartRate, BloodPressure, RespiratoryRate, Oxy-
genSaturation, Temperature, WhiteBloodCell, CRP, and Glu-
coseLevel. HeartRate acting as a root node following an
autoregressive process:

XHeartRate(t + 1) =V1-¢2- XHeartRate(t) te- ¢(t),

The remaining nodes are generated through linear depen-
dencies on their parent nodes, see Figure 3, perturbed by
independent Gaussian noise scaled by a fixed factor.

5.1.4 MIMIC IV. For our experiments, we derived a cat-
egorical time-series dataset from the Medical Information
Mart for Intensive Care (MIMIC-IV) database 2. The dataset
was structured such that each patient instance consists of
at least 15 hospital visits, and each visit is described using
10 categorical attributes 3. These attributes were extracted
from tables such as microbiologyevents, admissions, trans-
fers, and other clinical event logs available in MIMIC-IV.
Categorical variables encode clinical activities and outcomes,
such as tests performed, specimen types, lab results, care
units, admission type, and test interpretations. A snippet
of the dataset is shown in the Appendix (see table 3) To
illustrate the data encoding process, consider an example
involving a blood culture test. When such a test is requested,
a blood sample is collected from the patient and sent to the
microbiology lab. The spec_type_desc indicates the speci-
men type (e.g., "blood"). If no bacterial growth is observed
in the sample, the remaining result columns are recorded
as NULL. However, if bacteria are cultured, the org_name
column records each detected organism—resulting in multi-
ple rows for the same specimen. If antibiotic susceptibility
is tested for the identified organisms, each tested antibiotic
is listed in the ab_name column, with associated sensitivity
metrics such as dilution_text, dilution_value, and interpre-
tation. This structure inherently creates a categorical multi-
row representation per test-visit episode, which we encoded
using a visit-wise transformation strategy into fixed-length
categorical features. Additionally, we computed the length of
hospital stay per visit using admission and discharge times,
measured in hours. For classification purposes, each visit
was assigned a binary label:

o Assign label 1 ("Serious") if the visit duration exceeds
72 hours and not discharged to the "Home" or died.

Zhttps://physionet.org/content/mimiciv/3.1/hosp/#files-panel
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e Assign label 0 ("Not Serious") .

5.2 Metrics

5.2.1 Structure Learning Evaluation. To evaluate the
learned dynamic structure, we compute the Area Under the
ROC Curve (AUC) between the predicted edge probabilities
and the ground truth adjacency matrix. For each directed
edge, the model estimates the posterior edge probability
across MCMC samples. These probabilities are flattened and
compared with the binary ground truth. Providing a thresh-
old independent measure of structure recovery [41].

5.2.2 Change point Detection Evaluation. We assess
the accuracy of change point detection using the F1 Score.
True and predicted change points are matched within a tol-
erance window of the series length. A match is considered
a true positive if a predicted change point falls within the
window of a true change point. Based on these matches, we
compute precision, recall, and F1 score:

TP

F1 = 2-Precision-Recall
TP+FN> -

Precision+Recall

Precision = Recall =

_TP_
TP+FP’
5.2.3 Marginal Distribution Similarity . To assess how
well synthetic data preserves the distribution of categorical
variables, we use the TVComplement metric 3. This metric
compares the marginal (1D) distributions of each column in
the real and synthetic datasets by computing the Total Vari-
ation Distance (TVD). Given the set of all possible category
values Q, the TVD is defined as:

TVD(D,S) =1~ (= 1D - Se)
2 ceQ
, where c describes all the possible categories in a domain of a
column, Q. D and S refer to the real and synthetic frequencies
for those categories.

Another method to evaluate the statistical similarity be-
tween real and synthetic datasets is the Kullback—Leibler
(KL) divergence. KL divergence quantifies the dissimilarity
between two probability distributions. For each categorical
variable, we compute the KL divergence between the em-
pirical marginal distributions of the real and synthetic data,

defined as:

D

KL(D || S) = ZDclog (S—C) with D, > 0 = S. > 0.
ceQ ¢

Here, D, and S, denote the relative frequencies of category

c in the real and synthetic datasets, respectively. We report

the average inverse KL divergence across all columns [3, 24].

5.2.4 Pairwise Distribution Similarity for Categorical
Variables. To assess the degree to which synthetic data repli-
cates the joint distribution of categorical variables observed

3Total Last Mai 2025
https://docs.sdv.dev/sdmetrics/metrics/metrics-glossary/tvcomplement

Variation Distance. access:
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in real data, we utilize a pairwise contingency similarity met-
ric 4. For any pair of categorical attributes in columns A and B,
we compute normalized contingency tables for both the real
and synthetic datasets. Each table entry (cg, cg) corresponds
to the proportion of records in which the combination of
categories c4 € A and cg € Boccurs. Let D, ., represent the
normalized frequency of the category pair (c4, ¢g) in the real
dataset, and let S, ., denote the corresponding frequency in
the synthetic dataset. The similarity score is then computed
using the Total Variation Distance between these two joint
distributions:

1
score =1 — 5 Z Z |SCA,CB - DCA,CB

ca€A cgeB

5.2.5 Cross-Time Mutual Information Gap. To eval-
uate whether temporal dependencies are preserved in the
synthetic data, we compute mutual information (MI) be-
tween each variable and its true parent(s) from the previous
time step, as defined by the DBN structure. Let Pa(X}) C
{X{71, ..., X} 7} be the set of parents of X}. Then, the Cross-
Time Mutual Information Gap (CTMIG) is defined as:

1 n
CTMIG = — Z [MIear (X}, Pa(X})) — MIgynm (X{, Pa(X}))|.
i=1

This metric provides a more faithful evaluation of depen-
dency preservation in synthetic data, especially when vari-
ables are driven by their parents. It aligns closely with the
structural assumptions of Dynamic Bayesian Networks and
helps assess temporal realism in generated sequences [23].

5.2.6 Classification Performance (AUROC):. We use
the synthetic dataset to train an XGBoost classifier and eval-
uate its performance by making predictions on the original
data. The performance is reported using the Area Under the
Receiver Operating Characteristic Curve (AUROC). This met-
ric provides us the classifier’s ability to distinguish between
classes.

5.2.7 Membership Inference Attack (MIA). To evaluate
potential privacy leakage from synthetic data, we employ a
membership inference assessment [25]. This approach esti-
mates whether individual records from the original training
dataset can be distinguished from non-training records. A
random forest classifier is trained to differentiate between
synthetic samples and unseen real data drawn from the same
distribution. Importantly, the simulated adversary operates
under the assumption of no access to the generation process,
but full access to both the synthetic dataset and a represen-
tative real-world sample.®

Mai

4Contingency Similarity. Last 2025.

https://docs.sdv.dev/sdmetrics/metrics/metrics-
glossary/contingencysimilarity
52025. MIA. https://github.com/schneiderkamplab/syntheval/tree/main

access:
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5.3 PARSynthesizer

It is implemented as the PAR[51] model in the SDV frame-
work, uses a neural network to generate synthetic sequential
data. It applies a GRU-based architecture to model dependen-
cies across time steps. Like many deep learning models, the
neural network itself is treated as a black box. However, what
makes PAR interpretable is that the output of the network is
structured, instead of directly generating the next value, it
predicts parameters of probability distributions, such as the
mean and variance of a Gaussian for continuous variables, or
category probabilities for categorical ones. These parameters
are then used to sample the next value in the sequence.

5.4 Evaluation Framework

Our framework is evaluated in three distinct phases, each
targeting a specific aspect of performance and applicability:

5.4.1 Phase 1: Implementation and Validation. We
first implement and validate our models using three synthetic
datasets with known ground-truth structures and change
points (Section 5.1). In this phase, we compare our implemen-
tation of the cpBGe model against our proposed NSSDG-LD
framework. Structural recovery is evaluated using the AUC
metric, while change point detection performance is assessed
using the F1 score (Section 5.2).

To ensure comparability, continuous variables in the NSSDG-
LD model are discretized using quantile-based binning. We
optimized the binning size with the information bottleneck
algorithm [17]. This transformation aligns the data format
with the requirements of our categorical modeling frame-
work and ensures a fair comparison by using the same un-
derlying generative process for both models. While binning
introduces some loss of information, it reflects practical con-
straints in real-world categorical settings.

Synthetic patients are divided into five groups based on
change point configurations, simulating various temporal
segmentation patterns, as detailed in Table 2.

Table 2. Groups with Varying Temporal Segmentation

Group | Time Points (m) | Patients | Change points

1 50-500 50-500 | [2]

2 50-500 50-500 | %]

3 50-500 50-500 | |2, 2m)

4 50-500 50-500 | |2, 2, 3m]

5 50-500 50-500 | [m, Zum 3m i

For each experimental run, we vary both the number of
patients and the number of time points between 50 and 500
to evaluate scalability and sensitivity to sequence length.
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5.4.2 Phase 2: Synthetic Data Utility Evaluation. In
the second phase, we reuse the node-based datasets to eval-
uate the quality of synthetic data generated by NSSDG-LD.
A comprehensive set of utility metrics (Section 5.2) is used
to assess distributional similarity and dependency preserva-
tion. Based on the results from Phase 1, we select optimal
dataset configurations (patient count and time points) for ef-
ficient benchmarking. We additionally compare performance
against the PARSynthesizer as a baseline model.

5.4.3 Phase 3: Real-World Generalization. To evaluate
the practical utility of our method, we apply NSSDG-LD to
the MIMIC-IV dataset. This step tests the framework under
real-world conditions, characterized by noise, irregular sam-
pling, and high-dimensional categorical time series, which
are common in healthcare data. In addition to the utility
metrics, we incorporate MIA and a classification task to as-
sess downstream usefulness and privacy preservation. The
classification task involves predicting whether a patient is
categorized as "serious" or "not serious" based on prede-
fined labels, using features such as the length of hospital
stay and discharge location. The model is trained entirely
on synthetic MIMIC data generated using the NSSDG-LD
framework and evaluated on the original MIMIC data. This
setup enables us to test whether the synthetic data captures
clinically meaningful patterns. Importantly, the classifica-
tion does not rely solely on the current patient state but
also incorporates historical information from previous visits
or time steps, reflecting the temporal dependencies often
present in real clinical decision making.

6 Experimentation
6.1 Phase 1

-==1cpBGe
— 1 NSSDG-LD
-2 cpBGe
— 2 NSSDG-LD
3 cpBGe
3NSSDG LD
--=4 cpBGe
— 4 NSSDG-LD
-5 cpBGe
. ——5NSSDG-LD

300
Datapoints

400 500

Figure 4. Change point evaluation on the 2-Node dataset

Across all groups, we observe in Figure 4 a consistent upward
trend in the F1 scores with increasing dataset size up to
500 data points for both modeling approaches, indicating
a improved detection performance with more data points
per patients. However, after certain increase of data points



a saturation takes place. An exception for this can be seen
for Group 4 and 5, where the score continuous increases.
Overall, the continuous model slightly outperformed the
categorical model, particularly in more complex scenarios,
where multiple nodes and dependencies are in place. This
shows clearly that performances of algorithms start at a
lower score for Group 4 and 5.

---+2 cpBGe
=2 NSSDG-LD
3 cpBGe

3 NSSDG-LD
--= 4 cpBGe
——4 NSSDG-LD
-==5 cpBGe

206 —5NSSDG-LD
3

~ 100 200 300 400 500
Datapoints

Figure 5. Change point evaluation on the 4-Node dataset

Group 1 in Figure 5, the simplest scenario with a sin-
gle change point, yielded the highest F1 scores for both
models ranging from 0.77 to 0.81 (cpBGe) and 0.76 to 0.79
(NSSDG-LD). This suggests that both models effectively
capture simple temporal dynamics, especially with larger
datasets. Group 5, which featured the most complex con-
figuration with four change points, recorded the lowest F1
scores overall. Starting at 0.38 (cpBGe) and 0.32 (NSSDG-LD)
for datasets with 100 data points,the performance increased
modestly to 0.5 (cpBGe) and 0.45 (NSSDG-LD) at 500 data
points. This highlights the challenges posed by increased seg-
mentation complexity, potentially due to noisier boundaries
or less distinguishable transitions. Overall the performance
of the algorithm depends on the complexity of the change
points and the structure of the dataset. The 2-Node dataset,
seen in Figure 4 achieved the highest scores and the 8-Node
dataset in Figure 13 the lowest.
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Figure 6. Combined Change point evaluation of all three
datasets with different amounts of patient

In contrast to increasing the data points per patient, we
run as well an experiment where data points stay at constant
amount and the number of patients increases. Figure 6 shows
that the opposite appears. With increasing patients the F1
score drops rapidly. This shows a clear correlation between
these two factors.
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Figure 7. Structure evaluation on all three datasets

Furthermore, we evaluate the structural recovery perfor-
mance of our proposed algorithms under both continuous
and categorical settings across synthetic datasets of varying
complexity. Performance is measured using the Area Under
the ROC Curve (AUC), which reflects the model’s ability to
accurately distinguish true structural edges from false ones.
Across all configurations, a clear trend emerges in Figure
7 : increasing the number of data points consistently im-
proves structure recovery, regardless of the algorithm type
or network size. For the 2-node datasets, both cpBGe and
NSSDG-LD achieve clearly high AUC scores (Score = 0.9)
with as few as 200-300 data points, and reach above 0.9
at 300 data points for the continuous case and 400 for the
categorical one. In the 4-node setting, we observe a mild
performance gap at smaller sample sizes. CpBGe yields an
AUC of 0.75 at 100 points, improving to above 0.9 by 300 data



points. NSSDG-LD starts slightly lower (0.68 at 100 points),
but quickly closes the gap, achieving above 0.9 at 400 data
points. The 8-node datasets highlight the growing challenge
of structural recovery in higher-dimensional settings. While
both models exhibit upward AUC trends with increasing
data, they no longer reach perfect recovery within the 500-
point limit. The continuous algorithm improves from 0.63
(100 points) to 0.94 (500 points), whereas the categorical
counterpart ranges from 0.53 to 0.97 over the same span.
This gap underscores the higher data demands and increased
complexity of categorical inference in large graphs. Never-
theless, both models achieve AUC > 0.9 with 400 or more
points, indicating strong structure learning capacity in data
rich regimes.

6.2 Synthetic Data Evaluation

This section presents the performance comparison between
the NSSDG-LD and PAR algorithms across all three datasets
with known ground. Performance was evaluated using four
utility metrics on the created synthetic data.

2 Node 4 Node

Dataset

8 Node

Figure 8. 1-Way TVD Evaluation on all three datasets.

On the 2-node dataset, both NSSDG-LD and PAR perform
comparably well across all metrics, though PAR consistently
achieves slightly higher values. For instance, PAR vyields a
1-TVD of 0.99,seen in figure 8, slightly higher than NSSDG-
LD’s 0.93, suggesting it more accurately captures marginal
distributions. Similarly in figure 10, 9 and 11, PAR maintains
slightly superior performance in 2-TVD for 2 Node dataset
(0.83 vs 0.81), KL (0.98 vs 0.97), and MI (0.92 vs 0.97). In
contrast, NSSDG-LD’s performs slightly better in 2-TVD for
the 4 and 8 Node dataset.
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Figure 9. KL evaluation on all three datasets.

As the number of nodes increases, a separation in the
algorithm robustness emerges. NSSDG-LD’s performance
declines more noticeably, especially on KL and MI metrics.
The KL score drops from 0.97 to 0.74, and MI drops from 0.97
to 0.73, indicating a degradation in its ability to capture joint
distributions and preserve the overall statistical utility of the
data. Meanwhile, PAR sustains high performance, showing
minimal loss: KL remains nearly perfect at 0.99, and MI holds
at 0.92. This suggests that PAR is more resilient to increases
in network complexity. Even in 1-TVD and 2-TVD, PAR
continues to keep the higher scores (1-TVD: 0.94 vs 0.85,
2-TVD: 0.61 vs 0.63), though the margin is slightly smaller
in the latter, indicating that both models struggle more with
capturing higher-order dependencies.
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Figure 10. 2-Way TVD evaluation on all three datasets.
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Figure 11. MI evaluation on all three datasets.

In the 8-node scenario, performance degradation becomes
evident for both algorithms. NSSDG-LD registers the lowest
scores across the board: 1-TVD drops to 0.76, KL falls to
0.70, and MI dips to 0.64. PAR, on the other hand, maintains
relatively high 1-TVD (0.89) and MI (0.87), though it does
experience a decline in KL (0.60) and 2-TVD (0.55). This sug-
gests that while PAR is affected by increased complexity, it
continues to generalize better and generate higher-quality
synthetic data than NSSDG-LD. Interestingly, the gap be-
tween 2-TVD scores in figure 10 of NSSDG-LD and PAR
narrows progressively as complexity increases (difference of
0.02 at 4-node and only 0.02 again at 8-node), potentially indi-
cating a saturation effect where both models struggle equally
in modeling two-step temporal or structural relationships in
larger graphs.

6.3 Real-World Generalization

Algorithm ~ 1-TVD 2-TVD KL MU MIA AUROC
NSSDG-LD 071  0.61 049 056 0.36 0.59
PAR 0.84 064 047 079 047 0.43

Figure 12. Utility and Privacy evaluation on generated syn-
thetic data.

The table 12 presents a comparative evaluation of the two
synthetic data generation algorithms, PAR and NSSDG-LD,
on a real world based EHR across six key metrics that collec-
tively assess both privacy protection and data utility. From a
privacy perspective, NSSDG-LD demonstrates a clear advan-
tage. It achieves a lower MIA score of 0.36 compared to 0.47
for PAR, indicating a reduced risk of privacy leakage. This
suggests that data generated by NSSDG-LD is less susceptible
to attacks aiming to infer whether specific individuals were
included in the original dataset, an important consideration
when working with sensitive domains such as healthcare.
In terms of distributional similarity, PAR performs better.
It produces higher values for both 1-TVD and 2-TVD 0.84
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and 0.64 respectively compared to 0.71 and 0.61 for NSSDG-
LD. The results suggest that PAR more accurately replicates
the statistical structure of the original dataset, which is es-
sential for ensuring that synthetic data can be used reliably
in statistical analysis and exploratory modeling. Although
NSSDG-LD exhibits slightly better performance in terms
of KL divergence (0.47 vs. 0.49), the difference is minimal
and does not significantly offset the broader pattern of PAr
stronger distributional fidelity. A notable strength of Par
lies in its preservation of inter-variable relationships, as ev-
idenced by a substantially lower MI of 0.56, compared to
0.79 for PAR. This indicates that NSSDG-LD more effectively
retains the dependency structures present in the real data,
which is particularly important for applications that rely on
feature interactions. Most importantly, NSSDG-LD achieves
a significantly higher AUC score (0.59 vs. 0.43), reflecting su-
perior performance in a downstream classification task. This
demonstrates that models trained on NSSDG-LD synthetic
data are better able to generalize to real data, confirming its
practical utility for machine learning applications

7 Discussion
7.1 Change point Detection Performance

Across all dataset groups, the F1 score tends to increase
with more data, reflecting the general principle that larger
datasets enable more accurate estimation of temporal de-
pendencies and structural transitions [18]. However, perfor-
mance saturates beyond approximately 200 -300 data points,
particularly in simpler networks. This reflects the point at
which the model has already recovered the essential structure
with high confidence. Beyond this threshold, additional data
contributes little new information, leading to diminishing
returns in accuracy [7]. Groups with simple segmentation
patterns, such as Group 1 (single change point), achieved the
highest F1 scores. This confirms that both continuous and
categorical models are effective in low complexity scenarios.
In such cases, the posterior distribution over change point
configurations is less multimodal, and the algorithm can
quickly converge to the correct change point allocation. The
MCMC allocation operator faces fewer segment boundaries
to evaluate, reducing the probability of incorrect proposals
and making acceptance more stable. In contrast, the per-
formance drop in more complex groups, especially Group
5 with four change points reflects the increased difficulty
in detecting fine-grained transitions [44]. With more true
change points, the number of potential segmentation grows,
making MCMC stuck in local modes more often. Addition-
ally, shorter segments offer less information for estimating
model parameters, which makes it harder for the MCMC
sampler to distinguish between good and bad segmentation
proposals. This reduces the effectiveness of each move and
limits the algorithm’s ability to explore the space of change



point configurations. The categorical models generally un-
derperformed compared to their continuous counterparts,
which can be explained both statistically and algorithmically.
Discretizations introduces information loss, especially when
transitions in the underlying continuous signal are subtle.
Once quantized into categories, minor distributional shifts
may fall into the same bin, effectively hiding the change point.
Consequently, the BDe score used in the categorical model
becomes less sensitive to weak temporal shifts. From an algo-
rithmic perspective, the categorical model relies on comput-
ing Dirichlet-based marginal likelihoods for each segment,
conditioned on discrete parent configurations. When seg-
ments are small or parent configurations are numerous, the
counts become sparse, reducing the discriminatory power
of the scoring function and results in high variance in BDe
score get estimated in an inconsistent acceptance rates.

7.2 Structural Recovery Accuracy

Structure learning performance, as measured by AUC, shows
strong dependency on both data availability and network
dimensionality. In small-scale networks, such as the 2-node
case, both the continuous and categorical models achieved
near perfect AUCs with as few as 200-300 data points. In this
low-dimensional setting, the graph space is small (only four
possible directed edges), and MCMC sampling efficiently ex-
plores most of the graph configurations within the iteration
budget. Additionally, the BDe score can be estimated accu-
rately even with limited samples. However, as the number
of nodes increases to 4 or 8, we observe a clear drop in struc-
ture recovery accuracy, especially for the categorical model.
This can be attributed to two key factors. First, although the
structure learning phase does not explicitly estimate CPDs,
it relies on the BDe score, which evaluates graph structures
by marginalizing over all possible discrete conditional distri-
butions. This score depends critically on observed counts of
child-parent configurations. As the number of nodes and par-
ents increases, the number of possible parent configurations
grow. This leads to sparser observations per configuration,
reducing the reliability of the BDe score and diminishing
its ability to differentiate between competing graph struc-
tures. Second, the MCMC graph operator proposes edge ad-
ditions, deletions, or reversals stochastically while enforcing
a maximum fan-in constraint. As dimensionality increases,
the space of possible graphs expands rapidly and the score
differences between competing structures become less pro-
nounced. Lower contrast in BDe scores reduces selection
during sampling, making convergence slower. The result is,
that more data is required to reliably identify structure as
node count and category complexity grow. In contrast, the
continuous model benefits from smoother likelihood, when
evaluating structural changes, as real-valued data allows for
more fine-grained updates to covariance structures or lo-
cal likelihoods. Nevertheless, both algorithms demonstrated
strong behaviors. With enough data ( 400 points), even the
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categorical model achieved AUC 0.90 in 8-node networks,
showing that the algorithm can recover true structures with
high fidelity when the data to parameter ratio becomes fa-
vorable.

7.3 Synthetic data generation

The evaluation results highlight a performance difference
between the proposed NSSDG-LD algorithm and the base-
line PARSynthesizer across synthetic benchmark datasets
and EHR data. In smaller scale datasets (e.g., 2-node and 4-
node cases), PAR consistently achieves slightly higher scores
in utility metrics. These results suggest that PAR is partic-
ularly effective at capturing and preserving the marginal
and pairwise joint distributions of the data, which is likely
due to its parametric nature and reliance on explicit proba-
bilistic assumptions optimized for global distributional. In
contrast, NSSDG-LD employs locally computed likelihoods
using BDe scoring combined with stochastic change point
sampling, which can lead to variability in how well marginal
distributions are preserved. That said, the performance gap
is acceptable without domain-specific parameter tuning. As
structural complexity increases, PAR yields more consistent
utility scores across runs, whereas NSSDG-LD’s performance
varies due to its dependence on MCMC convergence and
segmentation accuracy.

A key strength of NSSDG-LD lies in its ability to preserve
segment-level temporal dependencies and structural inter-
pretability, particularly in complex datasets. Unlike PARSyn-
thesizer, which excels at matching global marginal distribu-
tions, NSSDG-LD captures local dynamics through change
point inference and segmentwise CPD extraction. These
CPDs are then clustered and synthetic sequences are gener-
ated by sampling from the resulting clusters and a learned
transition matrix. This design enables the model to reflect
distinct temporal regimes and variable dependencies, as evi-
denced by its better classification AUROC, especially on the
MIMIC dataset.

From a privacy perspective, the stochasticity introduced at
multiple stages—inference, clustering, and CPD sampling—acts
as a natural defense against memorization, reducing the
likelihood of membership inference attacks without explicit
differential privacy mechanisms. However, the generative
process also presents limitations. Clustering flattened CPDs
may disregard structural nuances in multi-dimensional con-
ditional tables, and sampling from clusters can lead to under-
represented transitions. In general, while NSSDG-LD trades
off some utility loss, its modular design offers a solid base
between utility, interpretability and privacy.

8 Conclusion

This study shows that the proposed NSSDG-LD method,
which is a combination of MCMC-based change point de-
tection and structure learning within a DBN framework, is



effective ground framework for generating synthetic data
that captures both temporal and structural dependencies.
Across synthetic datasets, change point detection perfor-
mance improved as the data points increased but saturated
at a certain point, suggesting that less data is sufficient to
recover low-complexity segmentation. In contrast, complex
segmentation scenarios showed reduced accuracy due to
combinatorial growth in segmentation space and limited data
per segment. Structural recovery results further highlighted
the challenge of sparsity and exponential growth in par-
ent configurations, particularly in categorical models, which
caused performance degradation in higher-dimensional net-
works. However, both change point detection and structure
learning proved reliable given adequate data, with contin-
uous models offering better performance due to smoother
scoring landscapes.

The results for generated synthetic data, NSSDG-LD per-
formed competitively with the PARSynthesizer, particularly
in preserving segment wise dependencies and structural pat-
terns. While PAR yielded slightly better results in marginal
distribution alignment NSSDG-LD achieved higher AUROC,
especially on the real-world MIMIC dataset, emphasizing
its strength in maintaining interaction patterns. Moreover,
NSSDG-LD’s sampling based generation process offers po-
tential privacy advantages due to its stochastic nature and
dynamic structure modeling. While the method shows strong
potential for generating realistic and privacy-aware longitu-
dinal data, further refinements are needed to improve utility
and privacy.

9 Future Work
9.1 Differential Privacy

Privacy is a major concern when working with real clini-
cal data, especially when that data is shared or reused for
secondary analysis. While our framework includes some pri-
vacy trough randomness, additional steps can be taken to
strengthen privacy even further. One promising direction is
to integrate differential privacy (DP) directly into the data
generation process.

There are several stages in the pipeline where DP could be
introduced. For example, when creating individual Bayesian
network structures for each patient, we could apply differ-
ential privacy to ensure that no single patient’s data has too
much influence on the resulting model. Later, during the pro-
cess of aggregating these individual networks into a global
structure, we could again apply DP to protect against any
single patient’s contribution being identifiable.

Of course, using DP often comes with a trade-off. The more
strongly we enforce privacy, the more noise we need to add
which can reduce the accuracy or utility of the generated
data. That said, this balance between privacy and utility is
something that can be studied and optimized. In future work,
it can be explored for tuning this trade-off more effectively,
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so that the synthetic data remains both safe to share and
valuable for real-world analysis.

9.2 Rare Disease Aware Modeling and Synthetic Data
Generation

Another area for future work could be handling rare diseases
in both structure learning and synthetic data generation. In
healthcare data, it can be observed that a small subset of
patients may exhibit unusual patterns because of rare condi-
tions or unique treatment responses. These unusual cases are
often underrepresented or smoothed out when building gen-
eralized models, yet they carry important clinical relevance
especially in scenarios such as adverse event prediction, rare
disease modeling, or stress testing of decision systems.

Our current model focuses on learning population wide
patterns, which may lead to the ignore or dilution of these
rare behaviors. Future extensions could incorporate robust
modeling techniques that identify and preserve rare struc-
tures without letting them distort the overall model. For
example, separate structure learning could be performed
on isolated clusters of atypical patients, or mixture models
could be used to learn both dominant and rare patterns si-
multaneously. Additionally, synthetic data generation could
be enhanced by ensuring that the simulator includes low-
frequency but clinically critical trajectories, which are often
missed in average case models.

Incorporating rare patterns methods would improve the
diversity, realism, and clinical utility of the synthetic data.
It would also support more comprehensive evaluations of
downstream models by exposing them to a broader range of
patient profiles including those most vulnerable to algorith-
mic bias or misclassifications in real-world applications.

9.3 Incorporating Time-Varying Graph Structures

In the current framework, the dependency structure among
variables is held constant across the entire time series. Once
a consensus graph is learned based on edges that frequently
appear across patients it is fixed, and only the conditional
probabilities are allowed to vary between segments identi-
fied by change points. While this simplifies model design and
supports efficient estimation, it imposes a strong assump-
tion: that the same set of variable relationships holds true
throughout a patient’s clinical journey. However, in real-
world healthcare data, the relationships between variables
are often dynamic and context-dependent.

For example, consider a patient undergoing cancer treat-
ment. In the early stages, the clinical data includes variables
like tumor size, prescribed medication, blood pressure, and
stress levels, which are used to monitor progress over several
visits. However, at a later point, it is revealed that the patient
is a smoker, something that had not been recorded earlier.
This new information is clinically significant, as smoking
can influence both treatment response and long term out-
comes. The model’s existing structure does not include a



node for smoking status, so this discovery introduces a new
variable that may need to connect to several others, such as
tumor progression or drug effectiveness. Adding this node
and possibly new edges to reflect its influence would alter
the graph structure and improve the model’s ability to reflect
the patient’s actual condition.

To better capture such transitions, future work could ex-
plore models that allow the graph structure itself to evolve
over time. Instead of using a single global graph, the model
could learn separate structures for different segments, each
tailored to a specific phase of the clinical timeline. This would
make the model more expressive, allowing it to detect not
only when variable distributions change, but also when the
nature of their relationships shifts. For example, it could
learn that a treatment variable only becomes connected to
a lab result after a certain threshold is crossed or after a
diagnosis is made.
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10.1 Implementation phase
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10.2 Visuals of the test datasets
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10.3 Description of Selected Variables from the

MIMIC-IV Dataset

Table 3. MIMIC-IV dataset

Variable

Description

ab_name
admission_location
admission_type
admittime

anchor_age
discharge_location
dischtime

gender
hospital_expire_flag
label

length_of_stay
medication
org_name
spec_type_desc
test_name
interpretation

Name of the antibiotic tested against the detected organism.
Location from where the patient was admitted (e.g., ER, clinic).

Type of hospital admission (e.g., emergency, elective).

Timestamp when the patient was admitted to the hospital.
Patient’s age at time of admission.

Location to which the patient was discharged.

Timestamp when the patient was discharged from the hospital.
Biological sex of the patient (Male or Female).

Indicates if the patient died during the hospital stay (1 = Yes, 0 = No).
Indicates if the case is serious (1 if length of stay > 72 hours and not discharged home or
deceased).

Duration of hospital stay in days.

Name of the medication administered during the stay.

Name of bacterial organism found, if any.

Type of specimen collected (e.g., blood, urine).

Name of the microbiological test performed.

Result of antibiotic susceptibility test (e.g., Sensitive, Resistant).
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