
Summary
This paper addresses a key vulnerability in Ethereum’s Proof-
of-Stake (PoS) protocol, namely the vulnerability of block
proposers against Denial-of-Service (DoS) attacks. The attack
is made possible through deanonymization, where adver-
saries get validator IP addresses, after which they check for
matches and attack upcoming proposers. To counter this,
Ethereum has proposed the Whisk protocol, a Single Secret
Leader Election (SSLE) protocol that uses zero-knowledge
proofs to hide proposer identities. Whisk is shuffle-based,
meaning it resists adversarial tracking by iteratively shuffling
a subset of a list of trackers, where each validator has a
single tracker. Each shuffle in Whisk relies on a shuffle-based
zero-knowledge proof called Curdleproofs, which uses Inner
Product Arguments (IPAs) to validate the correctness of the
shuffle. However, Curdleproofs is constrained to shuffling
subsets of sizes that are only a power of two due to the
recursive nature of the IPA.
For that reason, we propose a modified protocol, CAAU-
rdleproofs, which lifts this restriction by integrating ideas
from Springproofs. CAAUrdleproofs introduces a new fold-
ing scheme that allows the use of arbitrary shuffle sizes,
enabling more flexibility when reducing or increasing the
size. The experiments show that CAAUrdleproofs maintains
a similar performance to Curdleproofs for power of two shuf-
fle sizes but outperforms it when shuffle sizes are not a power
of two, especially when the size is slightly above a power of
two. This paper also proposes reducing the shuffle size from
128 down to 80, which would result in a notable decrease
in the block overhead created by the protocol. The overhead
would decrease from 16.656 KB to 12.048 KB, resulting in
annual savings of approximately 12.11 GB.
This paper also provides a security analysis of the shuf-
fle mechanism with different shuffle sizes and under vari-
ous amounts of adversarial influence. The results validate
that smaller shuffle sizes can still maintain a secure shuffle
within the total amount of shuffles available in a round
of the Whisk protocol. The paper concludes by mentioning
that CAAUrdleproofs is an efficient improvement to Cur-
dleproofs. It suggests future development in the direction of
post-quantum security, protocol refinement, or exploring the
use of a Weighted Inner Product Argument (WIPA).
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Abstract—Ethereum is one of the leading Proof-of-Stake blockchains.
However, it is still vulnerable to attacks. One such attack is the de-
anonymization attack by Heimbach et al., where an adversary can obtain
validator IP addresses and then perform a Denial-of-Service attack on
them. To try and combat this attack, Ethereum has proposed the use of
the Whisk protocol. Whisk is a Single Secret Leader Election protocol
that uses a zero-knowledge proof called Curdleproofs that uses Inner
Product Arguments to prove the validity of a shuffle of validators. This
paper improves upon Curdleproofs’ Inner Product Arguments by intro-
ducing CAAUrdleproofs, a modified version of Curdleproofs incorporat-
ing ideas from Springproofs to address the limitations of Curdleproofs
regarding shuffle size. We show that CAAUrdleproofs has similar proving
and verifying times to Curdleproofs when the shuffle size is a power
of two. We also demonstrate that CAAUrdleproofs has a performance
advantage for any shuffle size that is not a power of two and that this
advantage increases as the shuffle size decreases below a power of
two. After performing experiments, we also suggest a new shuffle size,
which is smaller than the current one used in Curdleproofs, resulting in a
more negligible block overhead than the one created by the current Cur-
dleproofs protocol. All this is done while still preserving the anonymity of
validators.

Index Terms—Ethereum, Proof of Shuffle, Distributed Systems, Inner
Product Arguments, Zero-Knowledge Proof, Single Secret Leader Elec-
tion

1 INTRODUCTION

Ethereum is a decentralized blockchain platform that en-
ables developers to build and deploy smart contracts
and decentralized applications. It is the second-largest
blockchain platform by market capitalization, boasting a
large and active developer community. Currently working
as a Proof-of-Stake protocol, block proposal opportunities
are allocated to validators, which can be created by com-
munity members willing to stake their ether cryptocurrency.
However, previous work by Heimbach et al., also confirmed
by our previous study, shows that adversaries can gather
validator IP addresses [1, 2]. These can be used to perform
a Denial-of-Service (DoS) attack on the validators, thereby
threatening the liveness of the blockchain [2, 3].

In response to the potential threat, Ethereum has pro-
posed a protocol, Whisk, which hides the identities of block
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proposers, making the DoS attack harder to perform [4].
Whisk is a Single Secret Leader Election (SSLE) protocol [5],
where validators each publish a private tracker, which is
used for proposer selection instead. When proposing a
block, the validator will then prove the ownership of the
tracker. To ensure that adversaries are unable to trace the
tracker to specific validators, each block proposer shuffles
the list of validator trackers while adding randomness to
the trackers.

Making sure that this has been done correctly is essential
to the protocol. Hence, Whisk uses a proof protocol called
Curdleproofs, which is a Zero-Knowledge Proof of Shuf-
fle [6]. Therefore, the block proposer constructs such a proof
and adds it to the block, after which other validators can
verify the proof.

Whisk introduces a block size overhead to the
blockchain. Also, additional work is required for both
provers and verifiers.

In this paper, we delve into the structure of Curdleproofs
to identify areas where the protocol can be optimized.
Specifically, we work with the concept of Inner Product
Arguments (IPAs) and how they generally only work for
vector sizes that are powers of two.

Our protocol, CAAUrdleproofs, aims to improve on
the rigid nature of Curdleproofs. Following this, we also
provide arguments for the conditions under which CAAUr-
dleproofs remains secure.

Working with this led to the following contributions:

• We have successfully modified Curdleproofs, using
the Springproofs framework [7], to allow flexibility
when choosing the shuffle size.

• We have implemented CAAUrdleproofs and run ex-
periments on both protocols, showing that CAAUr-
dleproofs has the potential to be faster and smaller
compared to Curdleproofs.

• We have experimentally demonstrated that CAAU-
rdleproofs remains secure even when reducing the
size of shuffled elements.

2 BACKGROUND

In this section, we provide the necessary background infor-
mation on Ethereum and a specific attack it is vulnerable
to, the Whisk protocol [4], and the Curdleproofs protocol [6]
used in Whisk.
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The notation used throughout this paper can be seen
in Table 1.

Since this work is based on the existing Curdleproofs
protocol [6], it inherits the same security assumptions. Our
work, therefore, runs as a public coin protocol in any cryp-
tographic group where Decisional Diffie-Hellman (DDH) is
hard [8]. DDH is defined as follows.

Definition 1 (DDH). Given a finite, multiplicative cyclic group
G of prime order p, the decisional Diffie-Hellman problem is
defined as follows: Given (ga, gb, gc) ∈ G, where g is a generator
of G and a, b, c ∈ Zp, decide whether c = ab.

2.1 Zero-Knowledge Proofs

Before explaining the protocol, we must mention that Cur-
dleproofs, and hence also Whisk, is a Zero-Knowledge Proof
(ZKP) system. It is a system that allows a prover to convince
a verifier that they know a secret without revealing the
secret itself. Within the context of Ethereum, it could con-
vince someone that a transaction is valid without revealing
information about the transaction, such as its value. Whisk
uses Curdleproofs to prove the validity of a shuffle.

Definition 2 (Zero-Knowledge Argument of Knowledge).
An argument (Setup, P, V ) is a zero-knowledge argument of
knowledge of a relation R if it satisfies completeness, knowledge-
soundness and is honest-verifier zero-knowledge.

Definitions for knowledge-soundness, completeness,
and Honest-Verifier Zero-Knowledge (HVZK) can be found
in Appendix A.

Additionally, two of the three proofs that comprise Cur-
dleproofs are proven using Inner Product Arguments (IPAs).
These are also ZKPs and will be the focus of this paper.
Hence, we define IPAs.

Definition 3 (Inner Product Argument). The argument takes
as input two binding vector commitments C = c × g ∈ G and
D = d × g′ ∈ G to the vectors c,d ∈ Zn

p and z ∈ Zp. The
goal is to prove that z = c × d. The argument has logarithmic
communication by halving the dimensions of c and d in each
iteration.

2.2 Whisk

Ethereum utilizes a Proof of Stake (PoS) consensus mecha-
nism, enabling users to validate transactions and create new
blocks by staking their ether (ETH) tokens. The PoS protocol
operates in epochs of 32 slots, where each slot is 12 seconds
long. In each slot, a proposer is chosen to propose a block,
thereby allowing the network to reach a consensus on the
state of the blockchain.

The proposer Denial-of-Service (DoS) attack is a type of
attack that targets the block proposers, making them unable
to propose blocks. An adversary can use the proposer DoS
attack to prevent a proposer from receiving rewards from
proposing a block, increasing the adversarial reward [9].
The proposer DoS is made possible by an attack on the
Ethereum network, discovered by Heimbach et al. [1], which
deanonymizes validators and obtains their IP addresses.
In our preliminary work [2], we show that the attack is
still possible to perform on the Ethereum network. As a

response to the proposer DoS attack, Ethereum proposed
a new protocol called Whisk [4] to mitigate the attack.

Whisk is a Zero-Knowledge (ZK) Single Secret Leader
Election (SSLE) system that uses a ZK argument called
Curdleproofs [6] to verify the correctness of a shuffle with
size ℓ without revealing the input or output [5]. Whisk
works by selecting a list of 16,384 validator trackers of
the form (rG, krG), where k is a secret known by the
validator, r some randomness, and G is a cryptographic
generator. Then, the following 8,192 block proposers shuffle
the trackers over 8,192 slots (∼1 day). Then, 8,192 proposers
are selected from the shuffled list to propose blocks for the
next 8,192 slots while a new list is being shuffled. This way,
a new list of proposers is created every day. After each
shuffle, Whisk uses a ZKP to prove that the shuffle is correct.
As the specific shuffle is hidden to prevent adversarial
tracking, this is done to ensure that the trackers are shuffled
according to protocol specifications. Whenever a proposer is
chosen, they can prove that they are the correct proposer for
the slot without revealing their identity. Therefore, Whisk
mitigates the proposer DoS attack because the identities of
the upcoming proposers are now hidden.

Curdleproofs is a ZKP system used by Whisk that allows
a prover to prove knowledge of a shuffle without revealing
the specific order in which the elements were shuffled. It
takes as input the pre-shuffled sets R and S, the shuffled
sets T and U, and a commitment M to the permutation σ.
The protocol then constructs the proof using three differ-
ent ZKPs, with one of them relying on two more ZKPs. The
overview can be seen in Figure 1.

R, S, T, U, MInput

T = σ(kR), U = σ(kS)Statement

a←Fiat-Shamir

A=σ(a)× g

T = a× kR, U = a× kS

SamePerm
A=σ(a)× g

M = σ(1, 2, . . . , ℓ)× g

SameMSM
A = v × g

T = v ×T

U = v ×U

SameScalar
T = k(a×R)

U = k(a× S)

GrandProd
p = Πℓ

i=1bi

DL IPA
z = c× d

Fig. 1: Overall structure of the Curdleproofs protocol. Mod-
ified figure from [6].

The first proof is the Same Permutation (SamePerm)
proof. The prover first constructs a commitment to the
permutation, σ(), by saying M = σ(1, 2, . . . , ℓ)×g, where ℓ
is the number of shuffled trackers, and g is a vector of
cryptographic generators. Then, using the Fiat-Shamir trans-
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Symbol Description
G Cyclic, additive, group of prime order p
Zp Ring of integers modulo p
Gn, Zn

p Vector spaces of dimension n over G and Zp

Z∗
p Multiplicative group Zp \ {0}

H ∈ G Generator of G
ℓ ∈ Z Number of shuffled ciphertexts in the Whisk protocol
γ ∈ Z⌈logn⌉

p Uniformly distributed challenges
a ∈ Fn Vector a = (a1, . . . , an) ∈ Fn

A ∈ Fn×m Matrix with n rows and m columns
b = c · a ∈ Zn

p The vector where bi = c ai, with scalar c ∈ Zp and a ∈ Zn
p

a× b =
∑n

i=1 ai · bi Inner product of a,b ∈ Fn

g = (g1, . . . , gn) ∈ Gn,g′ = (g′1, . . . , g
′
n) ∈ Gn Vectors of generators (for Pedersen commitments)

A = a×G =
∑n

i=1 ai ·Gi Binding (but not hiding) commitment to a ∈ Zn
p ∈

rA ∈ Zn Blinding factors, e.g. A = a× g + rA × g is a Pedersen commitment to a

a ∥ b ∈ Zn+m
p Concatenation: if a ∈ Zn

p , b ∈ Zm
p , then a ∥ b ∈ Zn+m

p

a[:k] = (a1, . . . , ak) ∈ Fk, a[k:] = (ak+1, . . . , an) ∈ Fn−k Slices of vectors (Python notation)
{ϕ;w| properties satisfying ϕ,w} Relation using the specified public input ϕ and private witness w

TABLE 1: Notation used throughout the paper.

formation, a challenge, a, from public inputs is constructed,
and a new commitment is made from that, A = σ(a) × g.
The SamePerm proof consists of convincing the verifier
that the same permutation was used for constructing the
commitments A and M . To do this, the two commitments
are used to construct a polynomial equation. Then Neff’s
trick [10] is used, which observes that two polynomials are
equal iff. their roots are the same up to permutation.

In order to show this, the protocol makes use of a Grand
Product (GrandProd) argument. To prove that argument,
Curdleproofs compiles it down to a Discrete-Logarithm
Inner Product Argument (DL IPA) by expressing the multi-
plications of the grand product as individual equations. The
proof of the DL IPA then stems from the protocol originally
proposed by Bootle et al. [6, 11]

Hence, the SamePerm proof is done if the prover can
prove the DL IPA.

The second proof is a Same Multiscalar Multiplication
(SameMSM) argument. The prover has proven the exis-
tence of the permutation. Now, the goal of the SameMSM
argument is to prove that the output ciphertext set was
constructed with the same permutation, σ, here called mul-
tiscalar v1, committed to in commitment A. Note, therefore,
that commitment A in SamePerm and SameMSM is the
same commitment, where v = σ(a). As the multiscalar
is a vector, this argument is an IPA by nature, contrary to
the SamePerm argument.

The third proof is a Same Scalar argument. To mask the
ciphertexts, each prover, besides permuting the set, multi-
plies all ciphertexts by a scalar, k. This is for randomization
purposes, making it harder for adversaries to track the
ciphertexts [4]. Also, all validators are still able to open their
commitments if they are chosen as block proposers, even
after several randomizations. Therefore, the goal of the Same
Scalar argument is to prove the existence of the scalar, k,
such that the commitment of the permuted set is equal to
the commitment of the pre-permuted set multiplied by k.

In Chapter 6 of Curdleproofs [6] they explain that the
proof has size (18 + 10 log(ℓ + 4))G + 7F, where G is a
cryptographic group point, and F is a field element.

1. Denoted as c in the Curdleproofs paper but changed for readability

2.3 Problem Definition

The current proposal of Curdleproofs only works when
the shuffle size of Whisk is set to a power of two. The
reason is that the underlying proofs, DL IPA in SamePerm
and SameMSM, need to fold recursively down to 1 by halv-
ing the size in every round. With the current shuffling size
of 128, being able to choose the size more flexibly could lead
to both performance and size gains. The problem we study
in this article is, therefore, how to extend Curdleproofs to ℓ
values that are not a power of two.

3 RELATED WORK

3.1 Single Secret Leader Election

An SSLE is a protocol where a group of participants ran-
domly elects only one leader from the group. The identity of
the leader is kept secret from all other participants so only
the leader themselves knows that they have been chosen.
The elected leader can then later publicly prove that they
have been elected [5].

Leading research on SSLE includes proposals for post-
quantum secure protocols based on Learning With Errors
and Ring Learning With Errors [12]. This work also con-
structs a new concept called re-randomizable commitment
(RRC) for easier work with such protocols. RRC is based on
the commit-and-shuffle approach also used in Whisk.

One of the use cases of SSLE is to enhance the security
of PoS blockchains by providing the proposer with added
privacy.

One PoS blockchain that utilizes an SSLE is Polkadot,
which uses Safrole as its SSLE protocol [13]. Safrole is the
production version of the research protocol Sassafras [14].
In this, validators each produce several tickets, some of
which are winning, depending on some threshold. A Zero-
Knowledge Succinct Non-Interactive Argument of Knowl-
edge (ZK-SNARK) is then used to prove that a ticket is win-
ning, after which the winning tickets are published to the
chain. A randomization algorithm will then pick proposers
from all the winning tickets for all the slots two epochs later.



4

3.2 Shuffling Algorithms

The Håstad square shuffle [15] is one of the proposed
methods for shuffling, which can be integrated into a shuf-
fling SSLE, such as Whisk. The Håstad square shuffle is a
shuffling algorithm that shuffles a vector with n items with
a shuffle size of

√
n. The algorithm works by rearranging

the vector into a
√
n ×
√
n square matrix. It then works in

time steps, starting at 1. For each odd step, each column and
its elements are shuffled independently. For each even step,
each row and its elements are shuffled independently as
well. Håstad shows that at least three time steps are needed
for the shuffle to be secure. The Håstad shuffle is more
rigid than the shuffling algorithm used in Curdleproofs [16]
because of the fixed size of the shuffle being

√
n.

The Feistel shuffle [17] is a previously used shuffle
method in the Whisk protocol [4]. It takes n number of
validator trackers and arranges them in a k × k matrix.
In each round, the i-th proposer selects the i-th row of
the created matrix and shuffles it in the form F (x, y) =
(y, x + y3 mod k). The Feistel shuffle was later replaced
by the shuffle proposed by Larsen et al. [16]. Ethereum
mentioned that the reason for this is that the shuffle by
Larsen et al. provides a simpler protocol [4].

3.3 Bulletproofs

A big inspiration for the Curdleproofs protocol is Bul-
letproofs [18]. Bulletproofs is a type of range proof that
uses IPAs to prove that a committed value is within a spe-
cific range without revealing the value itself. Bulletproofs
is not a ZKP system in itself, but with the help of Fiat
Shamir [18], it can be used to create a ZKP. Bulletproofs
has also undergone a few iterations and improvements to
increase speed and reduce the size of the proof since its
introduction in Curdleproofs.

One of these is Bulletproofs+ [19], which uses a Weighted
Innner Product Argument (WIPA) instead of the stan-
dard IPA to achieve a better performance. Bulletproofs+ is
also a ZKP by itself, unlike the original Bulletproofs. At-
tempting to modify Curdleproofs with the WIPA introduces
complications that necessitate larger modifications and is
therefore not suitable. This can be seen in Appendix C

A third version of the Bulletproofs protocol is Bullet-
proofs++ [20], which uses a new type of argument called
the norm argument to achieve a better performance. The
increase in performance comes from the prover only need-
ing to commit to a single vector rather than two. Therefore,
with the two vectors, x and y of a standard IPA, they need
to assume x = y for their protocol to work. Then, along
with the norm being weighted, which raises the same com-
plications as with Bulletproofs+, this makes it unsuitable for
Curdleproofs.

4 APPROACH

As explained in section 2, Curdleproofs makes use of three
different proofs. This work focuses on improving the un-
derlying IPAs, with a particular interest in the protocol’s
running time and proof size. The following outlines our
approach to modifying the IPAs, with a focus on the DL
IPA.

4.1 Springproofs

The Springproofs protocol [7] can be used very effectively
in solving the problem stated in section 2.3. The theory of
Springproofs provides support for IPAs to use vectors of
arbitrary length. Using the findings of Springproofs means
Curdleproofs could be used with shuffle sizes other than
powers of two. As such, they could lower the shuffle size
from the current 128 to a significantly smaller size, provided
it remains secure.

One of the most notable findings in Springproofs is the
usage of their so-called scheme function. This function is
used to ensure that the IPA eventually will fold down to a
vector of size 1. In a general IPA, Curdleproofs included,
if the size of the vectors were not a power of two, the
argument would not recurse down to size 1, as they work
by halving the vectors every recursive round.

The core concept of the Springproofs scheme function is
to split the vectors into sets, T and S , before each recursive
round of the protocol. Then, the fold for that round is only
done on one of the two sets, T , before the other set, S , is
appended again at the end of the recursive round.

Springproofs present different scheme functions and
prove some of them to be optimal. One of these optimal
functions is an optimized version of their pre-compression
method, which splits the vectors as seen in Listing 1. The
computation is for finding the set, T .

1input : n , where n > 0
2
3n← {1..n}
4N ← 2⌈logn⌉−1

5ih ← ⌊(2N − n)/2⌋+ 1
6it = ⌊n/2⌋
7i f n ̸= N : #Not power of two
8T ← {ih : it} ∪ {N + 1 : n}
9e lse i f n = N : #Power of two
10T ← {1 : n} #Meaning S i s empty
11S ← n− T

Listing 1: Scheme function f used in CAAUrdleproofs

This can also visually be seen in Figure 2(b), which is Fig-
ure 1 of the Springproofs paper [7]. Figure 2(a) is a scheme
function that pads the vector to the next power of two before
running an IPA. If one wanted to run current IPAs on vectors
that are not a power of two, this is the easiest way to achieve
that. However, this defeats the attempt to lower the proof
size, as it would now correspond to running an IPA on the
size of the next power of two.

It is worth mentioning that using the folding method, as
shown in Figure 2(b), results in the second recursive round
being a size corresponding to a power of two. Therefore,
the rest of the protocol runs as a general IPA without the
actual need for splitting the vectors, which can also be seen
in Listing 1.

4.2 CAAUrdleproofs

With the idea from Springproofs in mind, we have modified
the IPA of Curdleproofs We refer to this modified protocol
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(a) Padding Method (b) Optimal Pre-Compression Method

Fig. 2: Folding visualization as seen in the Springproofs paper. Source: [7]

as CAAUrdleproof. For generality and readability, we show
the split of vectors happening every round.

Prover Computation
First of all, we have the prover computation, where the
proof is constructed. The construction can be seen in List-
ing 2.

First, we have step 1, which is the setup phase. It is
implemented the same way as in Curdleproofs. From the
prover input, line 2, we obtain the vectors c and d, whose
inner product we aim to prove is equal to z, as well as
the commitments C and D. In line 3, the prover gets the
cryptographic generators, G, G′ and H , which are going
to be used for commitment constructions. To ensure zero-
knowledge, two blinding vectors for each commitment are
constructed on lines 4–5. These are also given the properties,
(rC × d + rD × c) = 0 and rC × rD = 0, ensuring the
completeness of the protocol.

After this, commitments to the blinding vectors are con-
structed as BC and BD on lines 6–7. These will eventually
be used for verification by the verifier.

From the public input, hash values α, β are then com-
puted on line 8. These are used to ensure the soundness of
the protocol.

On lines 9–11, the two vectors are then blinded and
multiplied by the α hash to ensure the zero-knowledge and
soundness, as well as H = βH .

Now, the recursive proof construction, and step 2, be-
gins. As explained, at the start of the recursive round, line
14, we find the split of the vectors on line 15, with f(n)
being the scheme function from Listing 1. Then, on line 16,
we find half the length of the T set, as it is the set we are
doing the recursive folding round on. Equally, on lines 17–
20, we split our witness vectors and the group vectors using
T and S .

After this, the prover constructs cross-commitment el-
ements on lines 21–24 that are computed on the T set.
These are added to the proof on line 25, which eventually
is available to the verifier. They are also used to construct a
hash value, γj , in the next step on line 26.

This value is used on lines 27–30 for completing the
folding of c,d,G,G′. We do the fold as in the original
Curdleproofs protocol while also appending the elements of

1Step 1: # Setup phase
2(c,d, z, C,D)←parse(input)
3(G,G′, H)←parse(crsdlinner

)

4rC , rD
$← Fn # Vector b l i n d e r s

5where (rC × d + rD × c) = 0 and rC × rD = 0
6BC ← rC ×G # Bl inder commitments
7BD ← rD ×G′

8α, β ←Hash(C,D, z,BC , BC) #FS cha l l enges
9c← rC + αc # Blinded v e c t o r s
10d← rD + αd
11H ← βH
12Step 2: # Recursive protoco l
13m← ⌈log n⌉
14while 1 ≤ j ≤ m :
15T ,S ← f(n) #Scheme funct ion
16n← |T |

2
17c← cT , cS← cS # Vector s p l i t t i n g
18d← dT , dS← dS
19G← GT , GS← GS
20G′ ← G′

T , GS′ ← G′
S

21LC,j ← c[:n] ×G[n:] + (c[:n] × d[n:])H #Cross −comm
22LD,j ← d[n:] ×G′

[:n]

23RC,j ← c[n:] ×G[:n] + (c[n:] × d[:n])H
24RD,j ← d[:n] ×G′

[n:]

25πj ← (LC,j , LD,j , RC,j , RD,j) # Proof elements
26γj ← Hash(πj) # Folding cha l l enges
27c← cS∥c[:n] + γ−1

j c[n:] #Next round v e c t o r s
28d← dS∥d[:n] + γjd[n:]

29G← GS∥G[:n] + γjG[n:]

30G′ ← GS′∥G′
[:n] + γ−1

j G′
[n:]

31n← |c|
32Step 3: # F i n a l proof element
33c← c1
34d← d1
35
36return (BC , BD, π, c, d) # Elements f o r v e r i f i e r

Listing 2: Prover computation for CAAU-IPA in CAAUr-
dleproofs
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S back onto the vectors. The figure shows a concatenation,
but it is important to know that the vectors are appended
together as shown in Figure 2(b).

At the end of the recursive round, on line 31, n is
updated to the length of the concatenated vectors before
starting a new round.

The result of this is a proof, π, constructed in ⌈log n⌉
rounds, but with the proof size being smaller than if the
shuffle size was a power of two.

In step 3, lines 32–36, the folded vectors of size 1 are
added to the proof as values as well as the commitments to
the blinding values, BC and BD . The proof, folded vectors,
and updated commitment are saved for the verifier to use
for verification.

The now constructed proof is then supposed to be added
to the block in the chain at the given time slot [4].

Verifier Computation
Having the proof on the blockchain allows for each validator
to verify whether it is a valid proof asynchronously. Again,
the initially proposed verification protocol has been modi-
fied according to Springproofs, as shown in Listing 3.

1 Step 1: # Setup phase
2 (G,G′, H)←parse(crsdlinner

)
3 (C,D, z)←parse(ϕdlinner

) # Publ ic input
4 (BC , BD, π, c, d)←parse(πdlinner

) #From prover
5 α, β ←Hash(C,D, z,BC , BD) #FS cha l l enges
6 H ← βH
7 C ← BC + αC + (α2z)H # Blinded commitments
8 D ← BD + αD
9

10 Step 2: # Recursive round
11 m← ⌈log n⌉
12 for 1 ≤ j ≤ m
13 T ,S ← f(n) #Scheme funct ion
14 n← |T |

2
15 G = GT , GS = GS # Vector s p l i t t i n g
16 G′ = G′

T , GS′ = G′
S

17 (LC,j , LD,j , RC,j , RD,j)←parse(πj) # Proof elem
18 γj ←Hash(πj) # Folding cha l l enges
19 C ← γjLC,j + C + γ−1

j RC,j #Update comms
20 D ← γjLD,j +D + γ−1

j RD,j

21 G← GS∥G[:n] + γjG[n:] #Next round v e c t o r s
22 G′ ← GS′∥G′

[:n] + γ−1
j G′

[n:]

23 n← |G|
24
25 Step 3: # F i n a l check
26 Check C = c×G1 + cdH # I n i t i a l ?= Folded
27 Check D = d×G′

1

28 return 1 if both checks pass, otherwise return 0

Listing 3: Verifier computation for CAAU-IPA in CAAUr-
dleproofs

Many of the changes to the verifier protocol are equiva-
lent to the ones made to the prover protocol.

In step 1, the verifier sets up to run the protocol.
The verifier, on line 2, gets the same cryptographic gen-

erators used by the prover, G, G′ and H , from the common

reference string. Then, from the public input ϕ, line 3, the
verifier gets hold of the original commitments, C and D,
as well as the result of the inner product between c and
d. From the prover’s proof, on line 4, the verifier gets the
blinding commitments BC and BD , the proof elements π,
and the folded vector values c and d. With this, the verifier
can compute the same α and β challenges as the prover in
line 5, as well as computing the same H generator on line 6.

Now, the verifier updates the commitments C and D
on lines 7–8. The reason is that on lines 7–8 in Listing 2,
the witness vectors are updated to be both blinded and
multiplied by the challenge, α. Those modifications mean
that the commitments C and D need to be commitments to
the modified witnesses instead.

The setup phase is now complete, and the verifier then
executes the recursive protocol, as shown in step 2. First,
the vectors are divided into two sets, T and S , on line 13, as
in Listing 2. After this, the group vectors are in lines 14–16
split according to those sets, along with updating n to be
half the size of T .

The verifier then, on line 17, retrieves from the proof
the cross-product commitment update values for the given
round, LC,j , LD,j , RC,j , RD,j . These are used for construct-
ing a new commitment, lines 19–20, according to the fold
made at round i.

By fetching the cross-commitments of the round, the
verifier can compute a challenge γj , line 18, made from the
same public inputs as the prover.

The corresponding left and right side cross-products
are then, in lines 19–20, also multiplied by said chal-
lenge, γj , γ−1

j , respectively. By this time, the C and D com-
mitments are a commitment to the original commitments,
along with the folded commitment.

G,G′ are on lines 21–22 updated as in Listing 2 before
the protocol on line 23 updates n to be the length of the
newly constructed vectors.

As in the prover protocol, this is then repeated for ⌈log n⌉
rounds, after which the vectors have length 1.

At the end of the protocol, in step 3, the verifier now does
its final check. From the prover, line 4, it has received the
folded down c and d vectors. It, therefore, constructs com-
mitments with those elements. So, it constructs c×G1+cdH
on line 26, which is the structure of the C commitment, as
well as d × G′

1 on line 27, which is the structure of the D
commitment. The verifier now checks if these commitments
match the commitments that were constructed in the recur-
sive part of the protocol. If so, the verifier accepts the proof.

Theorem 1. CAAUrdleproofs is a zero-knowledge argument of
knowledge when |ℓ| ≥ 8.

4.3 Shuffle Security
The shuffle method proposed by Larsen et al. [16] that is
used in Curdleproofs is based on the idea of shuffling a list
of proposers over a set of slots. A formal definition of the
shuffle is given in Figure 3.

Here the set (c1, . . . , cn) is a set of ciphertexts that are
shuffled over Q slots. In each slot q, a subset of the cipher-
texts i1, . . . , iℓ is chosen randomly, shuffled and added back
to the list of ciphertexts. The shuffler then re-encrypts the
ciphertexts and publishes them. This process is repeated for
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Π(c1, . . . , cn)

For q ∈ [Q] :

Sq picks random {i1, . . . , iℓ} ⊂ [n]
Sq computes (c̃i1 , . . . , c̃iℓ)← Shuffle(ci1 , . . . , ciℓ)
Sq publishes (c̃i1 , . . . , c̃iℓ)

Fig. 3: Distributed shuffling protocol. Source: [16]

Q slots, and the shuffle is complete. During the Q shuffles,
some shuffles may be adversarial. An adversary can choose
to do anything with its shuffle, including not shuffling.
Hence, an adversarial shuffle can be seen as no shuffling
being done. Therefore, the number of honest shuffles that
happen during the shuffle process is QH = Q− β, where β
is the number of adversarial shuffles.

The adversary can also track ciphertexts. For instance, if
the adversary owns some of the ciphertexts. Those tracked
ciphertexts are denoted by α, which is ≤ n.

The shuffle is secure if none of the following two events
occur. The first event is a short backtracking, where an
adversary can find the original ciphertexts from the shuf-
fled ciphertexts. Since the subsets of ciphertexts are chosen
randomly in each shuffle, if there are enough adversarial
shufflers in a row at the end of the process, then a short
backtracking is possible.

The second event that can occur is related to the fact that
every shuffle distributes the probability of a specific cipher-
text being in a particular slot. So, if a shuffle contains many
ciphertexts with a larger-than-average chance of containing
a specific ciphertext, then that would imply that there is a
higher chance of that ciphertext being in that slot.

It is theoretically possible to find a number of shuf-
fles, given a shuffle size and a number of adversarial
shufflers, which guarantees that the shuffle is secure. For
any 0 < δ < 1/3, if Q ≥ 20n/ℓ ln(n/δ) + β and
ℓ ≥ 256 ln2(n/δ)(1 − α/n)−2. If Q and ℓ are chosen such
that the above two conditions are met, then the protocol is
an (ϵ, δ)-secure (Q,n, ℓ)-shuffle in the presence of a (α, β)-
adversary where ϵ = 2/(n− α).

This formula is the lowest theoretically proven bound for
Q and ℓ. Plotting numbers relevant to Whisk will show that
this theoretical bound is too large to use for argumentation
of security. It is, however, possible to find lower secure
values for Q and ℓ, but this has to be done experimentally.

4.4 Implementation
Implementing the above-explained CAAUrdleproofs proto-
col required some optimizations made by Curdleproofs to
have the code run as fast as possible. These are explained
in the following with a focus on how CAAUrdleproofs
differentiates itself from Curdleproofs. Both our implemen-
tation of CAAUrdleproofs and the experiment involving the
security of the shuffle are publicly available on GitHub 2.

2. https://github.com/AAU-Dat/curdleproofsplus/tree/SIPA

The implementation of CAAUrdleproofs is a fork of and
builds directly on the already existing Curdleproofs code.

4.4.1 CAAUrdleproofs
The protocol in Curdleproofs [6] introduces a lot of multi-
scalar multiplications. As such, CAAUrdleproofs also intro-
duces these multiplications, allowing for checking calcula-
tions of the form:

C
?
= x× (g∥h∥GT ∥GU∥H∥R∥S∥T∥U) (1)

As explained by Curdleproofs, the verifier computation
can be significantly optimized by checking the multiscalar
multiplications as a single check at the end of the protocol
instead.

CAAUrdleproofs differs on this topic regarding
the IPAs SamePerm and SameMSM. In each recursive
round, both the folded vectors and the commitments are
multiplied by verification scalars, γj . To keep track of which
elements of the vectors are multiplied by each γj , a func-
tion called get_verification_scalars_bitstring is
used. The output of this function is a list of length ℓ, each
element with a list corresponding to the rounds in which
γj was multiplied to the element. Curdleproofs’ implemen-
tation is simpler than CAAUrdleproofs’ in this case. As
Curdleproofs only works on powers of two, it is always the
right half of the vectors in each round that are multiplied by
the challenge.

The multiplication of challenges on each element is not
as easily trackable in the CAAUrdleproofs protocol. Here,
it is necessary to simulate a run through the recursive
protocol. However, this should not have a significant impact
on performance, as it is run over vectors of small integers
and never actually requires any multiplications. It is used as
a measuring tool.

The protocol used in the implementation is illustrated
in Listing 4. A list, ActivePos, on line 32, keeps track
of the original index placement and its position after each
fold. By doing this, we can run the recursion and find the
correct challenges for each index while still knowing what
the original index was. A bit matrix, bi,j , is constructed as
in Curdleproofs, such that the vector, s, is made in the same
way for both protocols.

The vector, u, seen on line 3, is used for optimization
in the grand product argument rather than G′, and the
AccumulateCheck function, on lines 21 and 23, is used for
the multiscalar multiplication optimization. For a thorough
explanation of these, we refer to Curdleproofs [6].

In Curdleproofs, both the SamePerm and SameMSM
proof are recursive IPAs. So, the modifications and opti-
mization used on the SamePerm argument are also used
on the SameMSM argument. The modifications include the
split into set T and S before recursion and the construction
of the bit matrix, bi,j , to keep track of multiplications on
individual elements.

It is also worth noting that the concatenation of T
and S in the recursive phase, lines 26–29 in Listing 2, is
handled effectively in the code. Instead of concatenating,
the computation uses pointers to the original vector, so it
never practically concatenates.

The code also uses the fact that the used scheme function
will always end up with vectors being a power of two after

https://github.com/AAU-Dat/curdleproofsplus/tree/SIPA
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1 Step 1: # Setup phase
2 (G, H)←parse(crsdlinner

)
3 (C,D, z,u)←parse(ϕdlinner

)
4 (BC , BD, π, c, d)←parse(πdlinner

)
5 α, β ←Hash(C,D, z,BC , BD) #FS cha l l enges
6
7 Step 2: # Recursive phase
8 m← ⌈log n⌉
9 for 1 ≤ j ≤ m

10 T ,S ← f(n) #Scheme funct ion
11 n← |T |

2
12 (LC,j , LD,j , RC,j , RD,j)←parse(πj) # Proof elem
13 γj ←Hash(πj) # Folding cha l l enges
14 n← n+ |S|
15
16 Step 3: # Accumulated checking phase
17 CP: δ ← (γm, ..., γ1) # Construct ion d i f f e r e n c e
18 CAAUP: δ ← (γ1, ..., γm)
19 Compute s: see below for difference
20
21 AccumulateCheck(γ × LC + (BC + αC + (α2z)H)

22 +γ−1 ×RC
?
= (cs∥cdβ)× (G∥H))

23 AccumulateCheck(γ × LD + (BD + αD)

24 +γ−1 ×RD
?
= d(s′ ◦ u)×G)

25 return 1 if checks pass, otherwise return 0
26
27 s-step Curdleproofs:
28 for 1 ≤ j ≤ n : # Simulate halving each round
29 si =

∑m
j=1 δ

bi,j
j , bi,j ∈ {0, 1} s.t. i =

∑m
j=1 bi,j2

j

30 s′i =
∑m

j=1 δ
−bi,j
j

31 s-step CAAUrdleproofs:
32 ActivePos← [(i, i), i = 1, . . . , n] #Pos a f t e r round
33 for 1 ≤ j ≤ m :

34 h← 2⌈log n⌉

2
35 f ← n− h
36 nf ← h− f

37 fs← nf
2

38 for (i, k) in ActivePos :
39 i f k ≥ h : #Elem has chal lenge j
40 bi,j ← 1
41 newPos = k − h− fs
42 e lse : #Elem has no chal lenge j
43 bi,j ← 0
44 newPos = k
45 nextActivePos.push((i, newPos))
46 ActivePos← nextActivePos #New p o s i t i o n s
47 n← h
48 for 1 ≤ j ≤ n : #Same as Curdleproofs
49 si =

∑m
j=1 δ

bi,j
j

50 s′i =
∑m

j=1 δ
−bi,j
j

Listing 4: Optimized verifier computation for CAAU-IPA in
CAAUrdleproofs

the first round. So, after the first round of recursion, we use
the original algorithm code from Curdleproofs to run the
rest of the protocol.

4.4.2 Shuffle Security
As mentioned in section 4.3, the theoretically proven bound
on the necessary number of shuffles to ensure security is
too high. Hence, as also done in [16], we implement an
experiment to find the bounds where the shuffle is secure.
The goal of the experimental code is to find the number of
honest shuffles required for security.

We inherit the terminology introduced by Larsen et
al. [16] and interpret each ciphertext as a cup that can con-
tain water. Each cup contains an amount of water between
0 and 1.

An experiment run starts with the first cup being full
and the rest being empty. As mentioned, α cups are tracked
by an adversary; the first n− α cups are called active cups,
while the last α cups are tracked. So, at each shuffle, the
shuffler randomly picks ℓ ciphertexts and shuffles them.
Meanwhile, an average of the water between the active
cups of the ℓ-shuffle is found. All active cups are given this
amount of water.

Now, after each shuffle, if any cup has more than
2/(n − α) water, its position can be predicted by the ad-
versary. Hence, the shuffle is insecure [16]. If a position can
be predicted, another round of shuffling is performed. This
method is used until no cup exceeds the threshold, after
which the shuffle is deemed secure.

The experiment indicates the number of rounds before
the shuffle was secure.

By repeating this experiment for several runs, one can
experimentally say when a shuffle with given parameters is
secure.

4.4.3 Size Reduction
If we reduce the shuffle size used in Whisk and still prove
it secure, then we expect to see a reduction in the size
overhead on the blockchain.

We first set our focus on Curdleproofs, as this is the pro-
tocol we have modified directly. As mentioned in section 2.2,
the size of Curdleproofs is (18 + 10 log(ℓ + 4))G + 7F. The
dependence on the log stems from the number of recursive
rounds that take place in the SamePerm and SameMSM
proofs. The addition of four elements in the log stems
from the protocol needing those as blinders. Hence, at a
proof of size 128, ℓ is 124. In the proof of theorem 1, see
Appendix B, we show that CAAUrdleproofs is O(log n),
which is the same as Curdleproofs. However, as discussed
in section 4.2, CAAUrdleproofs’ IPA proofs use ⌈log n⌉ re-
cursive rounds. This means that the size of CAAUrdleproofs
must be (18 + 10⌈log(ℓ+ 4)⌉)G + 7F.

CAAUrdleproofs, therefore, has the same proof size as
Curdleproofs.

The CAAUrdleproofs modification can still reduce the
overall block size overhead. By using the overhead calcula-
tion described by Whisk on CAAUrdleproofs, it measures a
block overhead of 16.656 KB when the shuffle size is 128 [4].
Note that this is the same size as Curdleproofs, as the shuffle
size is a power of two. The provided calculation of the block
overhead is provided as the following, where G = 48 bytes
and F = 32 bytes3:

3. As noted in the code on the Curdleproofs GitHub repository:
https://github.com/asn-d6/curdleproofs/blob/main/src/whisk.rs.
Accessed: 26/05/2025

https://github.com/asn-d6/curdleproofs/blob/main/src/whisk.rs
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• List of shuffled trackers (ℓ·96⇒ eg. 124·96 = 11, 904
bytes).

• Shuffle proof ((18+10⌈log(ℓ+4)⌉)G+7F⇒ eg. (18+
10⌈log(124 + 4)⌉) · 48 + 7 · 32 = 4, 448 bytes).

• A fresh tracker (two BLS G1 points ⇒ 48 · 2 = 96
bytes).

• A new commitment com(k) to the proposer’s tracker
(one BLS G1 point⇒ 48 bytes).

• A Discrete Logarithm Equivalence Proof on the own-
ership of the elected proposer’s commitment (two G1
points, two Fr scalars⇒ 2 · 48 + 2 · 32 = 160 bytes).

The majority of the block overhead comes from the list of
shuffled trackers. Hence, as the list size is heavily dependent
on ℓ, using CAAUrdleproofs could majorly decrease the
block overhead by allowing ℓ to be more flexibly chosen
as a smaller size than 128.

5 EXPERIMENTAL PROTOCOL

In this section, we will describe how our experiments are
run and what we want to measure. We also discuss which
parameters we can adjust in the various experiments we
have.

The experiments are run on a virtual machine hosted
on Strato CLAAUDIA at Aalborg University. It features 16
virtual CPUs (VCPUs) and 64 GB of RAM. Those VCPUs
are based on an Intel Xeon Gold 6254 CPU with a 3.10
GHz clock speed. One VCPU does not correspond to one
physical CPU but rather to a hardware thread within the
used CPU. Additionally, the VCPUs are over-provisioned,
which means that the computation time may be shared
with other virtual machines on the same server4. The virtual
machine is running Ubuntu Server 24.

5.1 CAAUrdleproofs
In this experiment, we measure the time to run the CAAU-
rdleproofs protocol. The results will be compared to those
of Curdleproofs, which we re-run on our hardware. As
Curdleproofs already has a Rust benchmark implemented,
we will be using that same benchmark for both protocols.
The parameter that we want to change between benchmark
runs is the shuffle size, ℓ.

In CAAUrdleproofs, we will test the protocol with ℓ =
{8, 9, . . . , 256}.

Since Curdleproofs is unable to run benchmarks, unless
the shuffle size is a power of two, those benchmarks will be
run on values ℓ = 2N , where N = {3, 4, 5, 6, 7, 8}.

5.2 Shuffle Security
In this experiment, we run the shuffle protocol with varying
shuffle sizes and varying numbers of adversarial tracked ci-
phertexts. The purpose of this experiment is to find the low-
est possible shuffle size that is still secure against adversarial
tracking. We, therefore, run the experiment with shuffle
sizes, ℓ, between 32 and 512. For the number of adversarial
tracked ciphertexts, we use the values α = {1/2, 1/3, 1/4}

4. As explained in an earlier documentation of Strato:
https://github.com/aau-claaudia/Documentation/blob/
0d40577ed757c5e9640109f5aac5a7f0a36b7f85/docs/guides/
performance/performance.md. Accessed: 10/06/2025

Because Curdleproofs is meant to be used in an
Ethereum setting, a maximum of 8,192 shuffles is available.
However, we will keep running the shuffling experiments
until they are deemed secure. Additionally, the experiments
are conducted with a set of 16,384 ciphertexts. Both of
these numbers come from the Ethereum Whisk proposal [4].
Every experiment is run 1,000 times to avoid statistical
uncertainty.

6 RESULTS

6.1 Proving and Verifying Times

After running the experiment comparing Curdleproofs and
CAAUrdleproofs across different shuffle sizes, we obtained
the results shown in Figure 4.

As mentioned in section 5.1, CAAUrdleproofs was run
with a shuffle size ℓ = {8, 9, . . . , 256}. Curdleproofs was
only run with a shuffle size ℓ = 2N , where N =
{3, 4, 5, 6, 7, 8}, as it is only able to run in powers of two.
Hence, the results for Curdleproofs show that the shuffle
size, ℓ, instantly increases to the next power of two because it
theoretically would have to pad the input set until it reaches
the next power of two.

From the results, we can see that CAAUrdleproofs and
Curdleproofs have similar proving and verifying times
when ℓ is a power of two. However, when ℓ is not a power of
two, CAAUrdleproofs is faster. When ℓ is below a power of
two, we observe that the performance advantage of CAAU-
rdleproofs over Curdleproofs increases as ℓ decreases.

The results for the verifying time also show that the
verifying time jumps up quite significantly the first four
times it reaches above a power of two. However, this is not
the case, at least not as aggressively, when increasing ℓ from
128. We find, however, that the bump is smaller the higher
ℓ is.

In addition to the proving and verifying times, the time
used on shuffling is also lower for any ℓ that is not a power
of two; see Appendix D. However, that was to be expected
since CAAUrdleproofs uses the same shuffling algorithm as
Curdleproofs but does not have to add additional padding
to the non-power of two input sizes.

6.2 Shuffle Security

The results of the shuffle security experiment are shown in
Figure 5.

Figure 5 shows the mean of the 1,000 runs of each shuffle
size ℓ and the standard deviation.

We can see that the bigger the shuffle size ℓ is, the less
honest shuffles are necessary to make the shuffle secure. In
Ethereum, each shuffling phase is limited to 8,192 shuffles,
meaning that the maximum number of honest shuffles that
can be used is 8,192. Therefore, the results of the experiment
find QH = Q − β. QH is how many of the Q shuffles
available during the shuffling phase are needed to be honest.
The rest is, therefore, the maximum number of dishonest
shuffles allowed, β. We also see that the bigger the shuffle
size, the narrower the standard deviation gets.

From the results of the experiment, with α = 8, 192, we
can see that the number of honest shuffles necessary to make
the shuffle secure sharply decreases until the size of ℓ = 64,

https://github.com/aau-claaudia/Documentation/blob/0d40577ed757c5e9640109f5aac5a7f0a36b7f85/docs/guides/performance/performance.md
https://github.com/aau-claaudia/Documentation/blob/0d40577ed757c5e9640109f5aac5a7f0a36b7f85/docs/guides/performance/performance.md
https://github.com/aau-claaudia/Documentation/blob/0d40577ed757c5e9640109f5aac5a7f0a36b7f85/docs/guides/performance/performance.md
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(a) Proving Time (b) Verifying Time

Fig. 4: The timed results compared between CAAUrdleProofs and Curdleproofs

(a)

(b)

(c)

Fig. 5: Results of shuffle security experiment showing mean
amount of honest shuffles necessary with one standard
deviation

and then it starts to level out. We can see that with a size of
ℓ = 75, we need about 1/3 of the shuffles to be honest to

(a)

(b)

(c)

Fig. 6: Results of shuffle security experiment showing
spread of nessecary shuffles needed for shuffle to be secure

make the shuffle secure. Likewise, we see that, at ℓ = 108,
we need about 1/4 of the shuffles to be honest to make the
shuffle secure.
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In general, all three of the experiments, despite the
difference in α, show the same trend. They all level out,
but the higher α is, the lower the leveling occurs, and the
later it happens as well. There are two things, however, that
are different between the experiments. At α = 4, 096, we
see that with ℓ = 32, the mean number of honest shuffles
necessary to make the shuffle secure is ∼ 500 lower than
the two other α values. As ℓ increases, the mean number
of honest shuffles necessary to make the shuffle secure
becomes similar to the other α values. Another thing that
differs between the experiments is that they all have a
sudden dip in higher ℓ values in the experiment. Here, we
observe a trend that the lower the α is, the earlier the dip
occurs.

The results in Figure 6 show that for all three α values,
the spread of the necessary honest shuffles tightens the
larger the shuffle size ℓ gets. Like the results in Figure 5,
Figure 6 also shows that the bigger a shuffle size ℓ, the
less honest shuffles, on average, are necessary to make the
shuffle secure.

We can also see that the widest point of the violin plot
is below the mean, meaning the outliers are a lot more
significant above the mean than below it.

It is worth noting that there is a spike in the distribution
of the necessary honest shuffles at ℓ = 32 for α = 4, 096.
This spike is not present for the other two α values and
is likely due to the probabilistic nature of the shuffling
method.

Another notable aspect is that in the Ethereum setting,
the maximum number of shuffles available is 8,192. There-
fore, in the cases where more than the 8,192 shuffles were
necessary to make the shuffle secure, the shuffle would not
have been secure within the Ethereum setting. Hence, it is
also possible to see the experiment as running 1,000 days
worth of each shuffle size ℓ and then seeing how many of
those days would have been secure. We found that the first
size of ℓ that could have been secure for the entire duration
of the experiment would be ℓ = 42 for α = 8, 192 and ℓ = 40
for α = 5, 462 and α = 4, 096.

7 DISCUSSION

In this section, we will discuss the results of the experiments
in section 6 and how they relate to the CAAUrdleproofs
protocol. We will also discuss some of the limitations of
the CAAUrdleproofs protocol and how it compares to Cur-
dleproofs.

7.1 CAAUrdleproofs in Comparison to Curdleproofs

As mentioned in section 6.1, the proving and verifying times
between the two protocols are close to identical when ℓ is
a power of two. This is because the added computation is
negligible compared to the other computations present in
the original Curdleproofs protocol.

On the prover, there is the addition of the scheme func-
tion from Springproofs. However, as seen in Listing 1, the
scheme function only performs integer calculations based
on n and hence should have a negligible impact compared
to the cryptographic group computations. Additionally, as
mentioned in section 4.4, the vector is never practically split

in two; instead, it uses pointers. Therefore, we avoid having
to add new variables to memory in every round.

Also, we mentioned in section 4.4 that every round after
the first runs the same code as Curdleproofs. Thus, only the
first round should be able to introduce some computational
overhead. However, as mentioned before, the overhead
should be negligible.

The same kind of explanation can be used to describe
the same scenario at powers of two on the verifier side.
Looking at Listing 4, we see that the only difference in
computation between CAAUrdleproofs and Curdleproofs
stems from the calculation of s. Comparing line 29 and lines
33–47, it becomes clear that both ways work in O(n log n),
as they do m computations for each of the n elements.
CAAUrdleproofs does, however, require additional integer
variables for splitting, as well as an array to keep track of
the active positions of the vector elements during recursion.
Nevertheless, Figure 4(b) shows that this does not have a
big, if any, impact on the running time.

However, as mentioned in section 6.1, when ℓ is just
above a power of two, we observe some more aggressively
increasing verification times. We expect this to be a result
of m being set to ⌈log n⌉ in line 8 of Listing 4. For, when ℓ
is 65, computations for an additional round are added,
compared to when ℓ is 64. This explains why the running
time flattens when ℓ is increased. The pattern shows that
the bump has a decreasing impact on the running time
as ℓ increases. In theory, the extra recursive round should
introduce a constant amount of work for the verifier. There-
fore, we believe the bump to be an artifact of memory
optimizations. For instance, pre-fetching, where the memory
system can optimize access if it suspects some values in
memory are going to be reused5. As ℓ increases, the memory
system will have more data to predict and optimize memory
access.

7.2 Shuffle Security
When looking at the results of the shuffle security experi-
ment in Figure 5 and Figure 6, we can see that when taking
into account the standard deviation, the shuffle can still
be secure with an ℓ as low as 32 within the 8,192 shuffles
available. Even when taking into account the worst-case
scenario from our experiment, the shuffle will still be secure
with an ℓ as low as 42 within the 8,192 shuffles available
with an α of 8,192.

We do not recommend using an ℓ lower than 80, as in this
case, the worst-case scenario requires a little under half of
the available shuffles to be honest, in order to be secure. As
seen in Figure 5, the protocol would also only need a third
of the 8,192 shuffles to be honest to get within the standard
deviation. Lowering the shuffle size to 80 would still lead
to a reduction of the proving time of 62.69 ms, which is
74.25% of the current Curdleproofs time, and a reduction
in the verifying time of 0.89 ms, which is 96.11% of the
current Curdleproofs time. It would also reduce the block
overhead size from 16.656 KB to 12.048 KB. The reduced
size is only 72.33% of the current size for Curdleproofs,
which would result in saving ∼ 12.11 GB of space on

5. https://doc.rust-lang.org/core/arch/aarc.h64/fn. prefetch.html
— Accessed: 29/05/2025

https://doc.rust-lang.org/core/arch/aarch64/fn._prefetch.html
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the blockchain each year. Some other factors to consider
when determining the number of honest shuffles required
to secure the shuffle are that there are additional elements
that can impact the blockchain’s security. One such element
is the known attacks that exploit the ability to control a
large number of validators. Attacks like the ≥ 50% stake
attack and the 33% finality attack [3] take advantage of
controlling a large number of validators in order to affect the
blockchain system negatively. Because of attacks like these,
which rely on controlling a large number of validators, we
recommend that when evaluating how many honest shuffles
are necessary to make the shuffle secure, one should also
consider how many honest validators are required to secure
the blockchain.

Another thing to keep in mind is that within the
Ethereum system, not every validator is owned by a dif-
ferent person. Some nodes contain multiple validators, and
this means that during the shuffling phase when selecting
the 16,384 possible proposers, there is a chance that a single
node controls multiple of the chosen validators. Likewise, it
is also possible during the selection of the shufflers.

From the results in Figure 5, we see that the mean starts
higher and ends lower for the experiments with a higher
α. One reason for this could be the relationship between
the number of adversarial tracked cups and the threshold
required before the shuffle is secure. Since the threshold
is 2/(n − α), the higher α is, the higher the threshold for
the amount of water allowed in any cup, see section 4.4.
Therefore, the higher α is, the harder it is to get the water
divided into the honest cups. The reason is that the distri-
bution only happens in honest cups. More adversarial cups
means less honest cups to distribute the water into. Hence,
there potentially is a higher amount of water in the chosen
cups after a shuffle when α is higher.

8 CONCLUSION

After examining the ZK SSLE protocol, Whisk, and the
Curdleproofs protocol, we found that there was still room
for improvement in the Curdleproofs protocol. We identified
the strict requirement of the shuffle size being a power of
two as a limitation, and we aimed to remove this limitation
to reduce the block overhead related to the protocol.

To achieve this, we drew inspiration from Springproofs,
which allows IPAs to be of any size. By combining the Cur-
dleproofs protocol with the flexibility of Springproofs, we
made the CAAUrdleproofs protocol. The implementation of
the CAAUrdleproofs protocol is a modified version of the
Curdleproofs protocol that allows for any shuffle size.

Through our experiments, we found that the CAAUr-
dleproofs protocol has similar proving and verifying times
to the Curdleproofs protocol when the shuffle size is a
power of two. However, for any shuffle size that is not a
power of two, the CAAUrdleproofs protocol has a perfor-
mance advantage. An advantage that increases the more
below a power of two the shuffle size is.

Since CAAUrdleproofs enables the use of any shuffle
size, it can be used to reduce the block overhead related
to the protocol without compromising the security of the
protocol.

We have shown the security through an experiment
inspired by [16]. Here, we found that the shuffle size can
be reduced to 80 and remain secure, also considering the
domain in which the protocol is intended to operate. Using
this, we see a block size overhead of 72.33% compared to
that of Curdleproofs.

Hence, we have shown CAAUrdleproofs to be an opti-
mized modification of Curdleproofs, as it allows for more
flexibility in the choice of shuffle size. The optimization
is based on reducing the size of the block overhead and
achieving faster proving and verifying times.

9 FUTURE WORK

In this section, we will focus on areas where the Whisk
protocol still has room for improvement.

The main modification from Curdleproofs to CAAUr-
dleproofs is the added flexibility in choosing the shuffle size
for Whisk. Hence, a topic for future improvements could be
proof structure modifications. The goal of this is to improve
the protocol in all cases, including those where the shuffle
size is a power of two, for which Curdleproofs and CAAU-
rdleproofs yield similar results. As shown in Appendix C,
we attempted to achieve this using WIPAs instead of IPAs.
However, there was not enough time to follow through, as it
seemed that significant structural changes were needed for
this change to be possible.

Besides trying to make the proof faster and reduce the
block overhead, there are also calls for making the protocol
more secure. Specifically, work has already begun trying
to make Curdleproofs post-quantum secure [21]. In this
work, they make use of the isogeny-based protocol Commu-
tative Supersingular Isogeny Diffie-Hellman (CSIDH) [22].
Isogeny-based cryptography is based on maps between el-
liptic curves. Using isogenies, a hard problem arises, namely
the Group Action Inverse Problem (GAIP).

Definition 4 (Group Action Inverse Problem (GAIP)). Given
a curve E, with End(E) = O, find an ideal a ⊂ O such that
E = [a]E0

This problem bears some resemblance to the discrete log-
arithm problem. Hence, using this problem, an almost one-
to-one conversion using post-quantum cryptography can be
done on Whisk, as shown by Sanso [21]. Currently, how-
ever, there does not exist a Non-Interactive Zero-Knowledge
(NIZK) proof of shuffle based on isogenies.

When using Whisk in the Ethereum blockchain, a list
of upcoming proposers is still chosen and published some
time before they are needed for duty. However, because
upcoming proposers are published as trackers that can be
opened and proven by the chosen validator, attacks such
as DoS attacks are significantly harder to perform accurately.
Though, the first part of the proposer DoS attack involves
de-anonymizing validators, as demonstrated by Heimbach
et al. and confirmed by our research [1, 2]. Even if the
blockchain is using Whisk, it is still possible for an adversary
to gather and de-anonymize validator IP addresses only by
running a node on the network. A sustainable solution for
this, therefore, needs to be found. However, Ethereum is a
system that encourages transparency, so a possible solution
should take this into account.
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APPENDIX A
DEFINITIONS OF ZERO-KNOWLEDGE ARGUMENT OF
KNOWLEDGE

The following definitions are the exact ones also used by
Springproofs [7].

Definition 5 (Honest-Verifier Zero-Knowledge). An interac-
tive argument (Setup, P, V ) for a relation R is honest-verifier
zero-knowledge, if there exists a probabilistic polynomial time
simulator, such that there exists a negligible function ϵ(λ), for
all adversaries A1 and A2

∣∣∣∣∣∣∣∣∣∣∣∣

Pr

 (x,w) ∈ R∧ σ ← Setup(1λ)
A1(tr) = 1 (x,w, ρ)← A2(σ)

tr ← SIM(x, ρ)

−
Pr

 (x,w) ∈ R∧ σ ← Setup(1λ)
A1(tr) = 1 (x,w, ρ)← A2(σ)

tr ← ⟨P(σ, x,w),Vρ(σ, x)⟩



∣∣∣∣∣∣∣∣∣∣∣∣
≤ ϵ(λ)

Definition 6 (Non-Interactive Knowledge-Soundness). A
non-interactive random oracle argument (Setup, P, V ) for re-
lation R is knowledge sound, if there exists an efficient knowledge
extractor E and a positive polynomial z, such that for any
statement x ∈ {0, 1}λ and prover P ∗ with at most Q queries
to the random oracle RO,

Pr

[
(x,w′) ∈ R

∣∣∣∣ σ ← Setup(1λ)
w′ ← EP∗(x)

]
≥ ϵ(P ∗, x)− κ(|x|, Q)

z(|x|)
,

where ϵ(P ∗, x) := Pr[⟨P ∗
RO(σ, x), VRO(σ, x)⟩ = 1],

κ(λ,Q) ∈ [0, 1] is the knowledge error and is negligible.
ε has a black-box oracle access to the prover P ∗ and can
manipulate the random oracle RO for A arbitrarily.

Definition 7 (Completeness). An argument (Setup, P, V ) is
complete, if for any statement x ∈ L and witness w such that
(x,w) ∈ R, there exists a negligible function µ(λ), such that

Pr
[
⟨P (σ, x,w), V (σ, x)⟩ = 1|σ ← Setup(1λ)

]
≥ 1− µ(λ)

https://arxiv.org/abs/2409.04366
https://arxiv.org/abs/2409.04366
https://doi.org/10.1145/3419614.3423258
https://doi.org/10.1145/501983.502000
https://doi.org/10.1007/978-3-030-03332-3_15
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APPENDIX B
PROOF OF THEOREM 1
Proof. The following proof is divided into two separate
proofs. First, we prove HVZK.

After this, both knowledge-soundness and completeness
are proven in the same proof.

Proof of HVZK: CAAUrdleproofs’ modification is
Curdleproofs’ IPAs on which the Springproofs protocol has
been applied. So, to help show that it is HVZK, we refer to
Theorem 5 of Springproofs [7].

Theorem 2 (Springproofs Theorem 5). Suppose IPAk is
a HVZK IPA which reduces a relation Rzk,k into a relation
Rzk,k/2, and the blinding factors in the two relations distribute
independently. Given a scheme function f , if the SIPAIPA(f) is
terminative for any lengths n of the witness vector, and there
exists a polynomial poly(λ) such that the number of rounds
m < poly(λ), then SIPAIPA(f) is HVZK when n ≥ 2.

Given this theorem, we interpret IPAk as Cur-
dleproofs’ DL IPA.

In Theorem 5.3.1 of the Curdleproofs paper, they prove
their IPA to be ZK [6]. They do this with the help of
a simulator and show that the prover’s and simulator’s
responses are distributed identically. This approach aligns
with the definition of HVZK from Definition 2; therefore,
the Curdleproofs IPA is HVZK.

We also know that the IPA is a folding argument, which
reduces the size of the argument by half after each iteration.
In this reduction, Curdleproofs also proved in Theorem 5.3.1
that the values BC , BD, LC,j , LD,j , RC,j , RD,j are blinded
and identically distributed.

The scheme function used in CAAUrdleproofs, as seen
in Figure 2(b), is shown by Springproofs to be a variant of
their pre-compression method [7]. Springproofs shows this
function to be optimal in the number of folding steps; hence,
it must also terminate. Specifically, the pre-compression
is shown to run in ⌈log n⌉ folding rounds, satisfying the
existence of the polynomial mentioned in Theorem 5.

Curdleproofs show their argument to be ZK in the
random oracle model provided |G| ≥ 8 [6]. Therefore, fol-
lowing Theorem 1, CAAUrdleproofs must be HVZK when
n ≥ 8

Proof of knowledge-soundness and completeness:
For soundness and completeness, we refer to Theorem 3 of
Springproofs [7].

Theorem 3 (Springproofs Theorem 3). Given a terminative
SIPA(f), if the number of compression steps in SIPA(f) is
O(log n), then SIPA(f) is a complete and computational knowl-
edge sound argument of relation (1). Moreover, the Fiat-Shamir
transformation of SIPA(f) is a non-interactive random oracle
argument having completeness and computational knowledge
soundness as well.

Here, relation (1) is

{(g,h ∈ Gn, u, P ∈ G;a,b ∈ Fn
p ) : P = gahbu⟨a,b⟩} (2)

, or analogously for an additive cryptographic group:

{(g,h ∈ Gn, u, P ∈ G;a,b ∈ Fn
p ) : (3)

P = a× g + b× h+ ⟨a,b⟩u} (4)

Relating that to Curdleproofs, they mention that they dis-
cuss the IPA for the relation: (C,D, z; c,d)

∣∣∣∣∣∣∣
C = c×G,

D = d×G′,

z = c× d

 (5)

However, taking inspiration from Bulletproofs, which also
happens to be the IPA used in Springproofs, they include a
commitment to the inner product, z, in commitment C [18].
So, before the addition of blinding values and challenges,
the relation they want to prove is:

G,G′ ∈ Gn,

C,D ∈ G,

z ∈ Fp

∣∣∣∣∣∣∣ c,d ∈ Fn
p


∣∣∣∣∣∣∣
C = c×G+ zH,

D = d×G′,

z = c× d

 (6)

We can now take a look at Springproofs’ P commitment in
comparison to Curdleproofs’ C and D commitments. If we
add together Curdleproofs’ two commitments, we get:

C +D = c×G+ d×G′ + zH (7)

, which is the same commitment as in Equation 4.
Therefore, using Curdleproofs’ DL IPA and the pre-

compression scheme function, we can instantiate SIPA(f),
equivalent to CAAUrdleproofs, as a terminative SIPA(f),
with O(log n) compression steps. Hence, SIPA(f) is a com-
plete and computational knowledge sound argument of re-
lation (1). We have just shown that Curdleproofs’ IPA proves
the same relation, so the properties hold for our SIPA(f)
as well. Furthermore, Curdleproofs uses the Fiat-Shamir
transformation for its verifier challenges. So, the SIPA(f),
analogously CAAUrdleproofs, is a non-interactive random
oracle argument having completeness and computational
knowledge soundness as well.

Now, we switch our focus to another argument, namely
the SameMSM argument. As with the DL IPA, SameMSM
is also an IPA. Hence, to work in CAAUrdleproofs, it also
needs the optimizations used in the DL IPA.

Therefore, the SameMSM argument also uses the Spring-
proofs scheme function. Also, it uses the new computation
of s, see Listing 4, used for coupling the correct challenges
to each element in the vector. Furthermore, Curdleproofs
blinds the argument in the same way as the DL IPA. Hence,
our argumentation of HVZK, knowledge-soundness, and
completeness follows from the above explanation of DL IPA.

From this, we can conclude that CAAUrdleproofs is a
zero-knowledge argument of knowledge when shuffle size
|ℓ| ≥ 8.

APPENDIX C
CURDLEPROOFS WEIGHTED INNER PRODUCT AR-
GUMENT MODIFICATION ATTEMPT

In the following, we will show our unsuccessful attempt in
trying to convert the DL IPA into a WIPA.

Before this, it should be mentioned that we have made
code for the IPA in the Curdleproofs repository, which
works with Bulletproofs+’ Weighted Inner Product Argu-
ment. Both the prover and verifier work. The problem is
connecting it to the rest of the Curdleproofs protocol.



16

First, the DL IPA stems from the grand product argu-
ment that it has been converted from. Hence, it makes sense
to modify the structure of this.

The grand product argument compiles the grand prod-
uct p down to an equation that can be expressed as an inner
product [6]. The equation is:

pβℓ − 1 =
ℓ∑

i=1

ci(β
ibi − βi−1) (8)

This can be seen as the inner product z = c × d, where
z = pβℓ − 1 and di = (βibi − βi−1), i ∈ [1, ℓ].

We will now follow the exact conversion from grand
product to inner product as in Curdleproofs. This includes
four steps; separate, compress, rearrange, and compile. But
instead of converting from the grand product p = Πℓ

i=1bi,
we try the conversion with p = Πℓ

i=1b
yi

i . Here, y is a Van-
dermonde vector of challenges, e.g., y = {y0, y1, . . . , yℓ−1}

C.1 Separate
The grand product p = Πℓ

i=1b
yi

i has ℓ − 1 multiplication,
which we separate into ℓ+ 1 checks

c1 = 1y0 ∧ ci+1 = byi

i ci, i ∈ [1, ℓ) ∧ p = byℓ

ℓ cℓ (9)

As explained by Curdleproofs, the final check p = byℓ

ℓ cℓ
enforces the grand product p = Πℓ

i=1b
yi

i .

C.2 Compress
All equations are combined into a single polynomial to
ensure that they hold

0 = (1− c1) + (by1

1 c1 − c2)X + (by2

2 c2 − c3)X
2+ (10)

· · ·+ ((b
yℓ−1

ℓ−1 cℓ−1 − cℓ))X
ℓ−1 + (byℓ

ℓ cℓ − p)Xℓ (11)

C.3 Rearrange & Compile
Now, this next step is where the equations start to create
problems. In Curdleproofs, they rearrange the c terms. For
example, if the shuffle size was 3, the equation would
become:

c1(Xb1 − 1) + c2(X
2b2 −X) + c3(X

3b3 −X2) (12)

Or equivalently, by using the values of each equation in c:

1(Xb1 − 1) + b1(X
2b2 −X) + (b1b2)(X

3b3 −X2) (13)

This can also be stated as:
ℓ∑

i=1

ci(X
ibi −Xi−1) (14)

Simplifying this equation, it becomes:

b1b2b3X
3 − 1 = pXℓ − 1 (15)

By the Schwartz-Zippel Lemma, as explained by Cur-
dleproofs, the following inner product holds with over-
whelming probability if at a random point β:

pβℓ − 1 =
ℓ∑

i=1

ci(β
ibi − βi−1) (16)

Or just z = c× d.

Now, we will do the same thing with our equations,
which include the weights y. Keep in mind that for
the WIPA to work, we need the following structure:

ℓ∑
i=1

ci · di · yi (17)

Hence, in the following conversion, that structure is our
goal.

Following the compression from the previous section,
we will verify whether it retains the structure of Equation 17
after rearrangement and compilation. Again, we use size 3
for the example. As in the Curdleproofs case, we rearrange
the c terms to be:

c1(Xby1

1 − 1) + c2(X
2by2

2 −X) + c3(X
3by3

3 −X2) (18)

Again, we insert the values of c:

1(Xby1

1 − 1) + by1

1 (X2by2

2 −X) + (by1

1 by2

2 )(X3by3

3 −X2)
(19)

This simplifies down to:

by1

1 by2

2 by3

3 X3 − 1 = pXℓ − 1 (20)

Unfortunately, this does not align with the structure we
set as our goal in Equation 17.

Instead, we can work directly from the given structure
shown in Equation 17 and see what we get. We now use
p = Πℓ

i=1bi:

ℓ∑
i=1

ci(β
ibi − βi−1)yi (21)

Here, a problem arises. If we still look at the example with
shuffle size 3:

1(Xb1 − 1)y1 + b1(X
2b2 −X)y2 + (b1b2)(X

3b3 −X2)y3
(22)

We are not able to simplify this equation. As a result of this,
the verifier would need to know the values of c and d to
compute z, which breaks ZK. Hence, the conversion is not
useful.

Therefore, significant protocol changes are needed to
implement the WIPA in Curdleproofs.
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APPENDIX D
SHUFFLING RESULTS

Here, we present the results of the shuffling times given
different shuffling size values. The results can be seen in Fig-
ure 7.

Fig. 7: The shuffling times at each benchmark
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