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Abstract:

This study aims to address the task of recognizing

pedestrian-to-driver navigation gestures in a zero-shot set-

ting, enabling safe decision-making even in conflicting

scenarios. Navigation gestures are a daily routine in driv-

ing to make it safe for all. Gesture in conflict is more of an

edge case, but these situations can also be critical, making

gesture recognition and decision-making essential. Rec-

ognizing pedestrians’ gestures is a significant aspect of

the study. This led to the development of enhancement

methods Supplementary Body Description with VLM and

Pose Projection and evaluation methods Classification,

Natural-language, and Reconstruction of VLMs in this

domain. Alongside, three datasets were created with an-

notations: Acted Traffic Gesture (ATG), Instructive Traffic

Gesture In-The-Wild (ITGI), and Acted Conflicting Au-

thorities Navigation Gestures (Act-CANG). Across three

VLMs, initial results were poor across all three evalua-

tion domains. VideoLLaMA3, with and without enhance-

ments, achieved F1-scores between 0.02 and 0.06 in clas-

sification. These results highlight the current limitations

of VLMs in accurately recognizing pedestrian navigation

gestures. This underscores the need for further research,

either through fine-tuning or alternative approaches.
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CHAPTER 1. INTRODUCTION

1 Introduction

Figure 1.1: Example from the Acted
Conflicting Authorities & Navigation Ges-
tures (Act-CANG) dataset. Elaborated in
Chap. 7.1. Crop of video 31, showing a
supposed police officer (left) and a civilian
(right) gesturing the ego driver towards op-
posite directions. Can a model learn to make
the right call? In terms of law, safety, or cul-
ture? These are the questions I discuss and
research in terms of conflict.

Traffic consists of more than just driving. It includes hu-

man interaction through gestures between drivers, pedes-

trians, and others. This reduces misunderstandings of other

people’s anticipated actions, making traffic safer and more

efficient for everyone involved [38]. With the rise of au-

tonomous vehicles (AVs), implementing this is becoming

increasingly critical for safety and efficient flow. As they

can predict others’ behavior [31], it is thought they cannot

yet perceive their intended action from gestures, making

the AVs uncertain, resulting in a complete stop and wait-

ing for the pedestrian. This solution is unreliable, as it can

lead to a situation where everyone is waiting for each other

to act. (Pedestrians are referred to as walking people in

traffic, but I mainly refer to all humans in a traffic environ-

ment, including pedestrians, bikers, vehicle drivers, etc.)

In this project, I research human navigation gestures,

focusing on traffic environments to advance AVs’ percep-

tion. The gestures in this project are viewed from a second-

person perspective, where the driver or vehicle interacts with pedestrians or other subjects outside of

the vehicle. First-person gestures inside the vehicles are excluded. I then explore navigation gestures

further to examine their capabilities to convey information (e.g., Fig. 1.2) and facilitate decision-

making in conflicting scenarios (e.g., Fig. 7.2).

1.1 Motivation

We seek to recognize the gesture in a zero-shot setting for two main reasons. The problems are the

classic ‘lack of data’, ‘outlier’, and ‘cultural meaning’.

The primary reason is the lack of current data available on navigation gestures from a second

perspective. This makes it challenging to train a model well enough. A significant amount of data is

required, as most gestures are temporal and can vary in subtlety. Since these gestures are simple for

most humans to act out, a pretty large dataset could be made with enough time.

However, the main reason for zero-shot recognition is due to outliers and cultural meaning. This

is illustrated in Fig. 1.3. The main point is that an LLM expands the knowledge about the gestures.

The sense of gestures such as ‘Stop’, ‘Turn left’, etc., is all ‘common knowledge’. However, the data

revealed that some gestures can be challenging for human drivers. These outliers make it challenging

to train a model, and can easily be misinterpreted or be important. Some gestures can also turn out to

1



CHAPTER 1. INTRODUCTION

(a) First frame (b) Second frame

Figure 1.2: First frame (a, left): Bike driver (POV) is unaware of occluded pedestrian (light gray ghost), but
is alerted by the bus driver’s hand (green outline). Second frame (b, right): The bike driver reacts to the alert
and stops. He observes the pedestrian. The pedestrian gestures to the biker to drive with his hand, but the biker
nods to signal the pedestrian to proceed.1 This short clip illustrates the advantages of AVs perceiving gestures,
with the two types of liners and outliers.

be quite complex and difficult to categorize. This also concerns the varying meanings of gestures,

which do not always have the same meaning in different countries, regions, or areas. This also

concerns authority, as specific areas have a higher authority simply due to logos according to the

property. A classification model is not capable of understanding these ‘third-party’ features. An LLM

with expanded knowledge has a higher abstraction, which enables this knowledge.

An example of this ‘human intuition’ is seen in Fig. 1.2, where the bus driver alerts the biker. The

bus driver’s gesture does not resemble a classic ‘Stop’ gesture. This is most likely an outlier even in a

huge navigation gesture dataset, making it difficult to use for training. By using zero-shot recognition

with a high-level abstraction model, it should theoretically be able to interpret the gesture to stop.

Perhaps, with or without considering the environment. This is the core goal of this project, which I

aim to address and resolve. Hopefully, this can create safer and more natural traffic environments for

everyone to enjoy.

2
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Pose 

Gestures

Classification
Inliers

Body descriptive 
caption
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Expanding 
knowledge

Figure 1.3: Illustrating the argument for using a zero-shot approach instead of a supervised pose classification
model. While standard classifiers perform well on in-distribution gestures, they fail to generalize to novel poses.
The idea is that the VLM can describe the human body in detail enough for an LLM to classify it due to its
expanded knowledge.

1.2 Project Summary

The first chapters include initial research to grasp the complexity of the problem as a whole. This in-

cluded a range of research areas, data structures, and model architectures. I examined the abstraction

levels of multiple types of models for decision-making in conflicting scenarios, which were theoreti-

cally explored. As understanding evolved of the complexity that lies in making the optimal decision.

First, it was thought to be a linear hierarchy of only a pedestrian authority level. For this, I examined

a multi-layer perceptron (MLP). It was then believed that the gesture and the number of pedestrians

could also influence the decision. To this end, I explored Transformer architectures with self-attention,

enabling the model to learn the priority of each element based on its interactions with other compo-

nents in the scene. Lastly, I utilize large-language models (LLMs) to increase the abstraction plane to

an even higher dimension. This enables the model to perform zero-shot decision-making, as it should

be able to conclude knowledge of social culture regarding authority and gestures, as well as traffic

guidelines regarding safety and driving rules.

Initially, the primary focus of this project was the decision-making process for conflicting naviga-

tion gestures in a zero-shot setting within a traffic scenario. However, a lack of utilization of VLMs

for this purpose was found. This led to a shift towards more trainable, fine-tuning, or transferable

models. This only lasted for a period, as the attendance at the WACV conference (Winter Conference

on Applications of Computer Vision) demonstrated the potential of VLMs, leading to a re-exploration

of their capabilities. Especially the paper about CoVLA [2] using VideoLLaMA2 [25, 10] raised the

hope of success in zero-shot learning using VLMs. They are using VLMs to decide the trajectory

of the ego driver. Explained further in the ‘VLM Evaluation’ paper [4]. A full pipeline was devel-

oped inspired by the CoVLA pipeline, explained in Section 6. However, the VLMs did not achieve

3



CHAPTER 1. INTRODUCTION

notable accuracy in recognizing gestures. Instead of returning to the trainable models, this study of

incapability was explored further. This led to focusing on proving this hypothesis, developing en-

hancement methods, and evaluating them. Time limitations led to the conflicting part of the project

staying in the initial and dataset development phase. It still allows for further research with plenty of

data and thoughts to extend upon. The discussed possible research areas in this domain are listed in

Appendix D. This shifting in focus is the reason for the broad aspect of both zero-shot and few-shot

technology discussed throughout the project. The report is only written in chronological order to

some extent. This may cause some confusion regarding naming and technology understanding, but

this order makes the most sense.

In total, three different datasets were created for this project, in addition to the research on per-

ceiving gestures and decision-making in conflicting scenarios. The datasets all fall under the category

of second-person navigation gestures, with two of them also including conflicting scenarios. Each

dataset contains the thought behind its creation and annotation.

1. Acted Traffic Gesture (ATG) dataset

VLM evaluation paper [4] & Sec. 7.2, p. 38

2. Instructive Traffic Gesture In-The-Wild (ITGI) dataset

VLM evaluation paper [4] & annotation in Sec. 7.1, p. 29

3. Acted Conflicting Authorities & Navigation Gestures (Act-CANG)

Sec. 7.1, p. 29

The evaluation method was developed before the enhancement. This was due to the developing

stop block of the models not working as intended. This led to writing a paper on the matter. Due to

the limitations on paper size and time period, the paper only includes the evaluation. It is summarized

and extended in Cap. 8 and cited as [4].

The software for the project is divided into multiple repositories on GitHub, since only some parts

have been published.

• Conflict Experimentation tbosse20/mercedthesis, Github.com

• Conflict Annotation & Guidelines tbosse20/navigation-gesture, Github.com

• VLM Evaluation tbosse20/gest VLM eval, Github.com

• VLM Enhancing tbosse20/gest VLM eval/tree/enhance, Github.com
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CHAPTER 2. INITIAL PROBLEM FORMULATION & ANALYSIS

2 Initial Problem Formulation & Analysis

This section serves as a project proposal, providing an overview of the project’s scope, its potential

division over time, and a plan for its progression. I initially examined this problem comprehensively,

considering the availability of content and research on the topic, as well as the opportunities for further

study. At the beginning of the project, the lack of data was not known, raising the question of whether

it would be feasible to continue with the project.

2.1 Initial Problem Statement

In autonomous vehicles (AVs), a car might find itself in a situation where different authorities give

multiple instructions simultaneously, making it difficult for the model to decide which instruction to

follow. This type of situation is an edge case, which also makes it more critical for the AV to make

the correct decision quickly.

Current technology allows the AV to perceive instructions from all pedestrians in a scene, but it can-

not decide which to follow. This project investigates the area of learning-to-rank in the context of

autonomous driving. Related work presents authorized traffic controller (ATC) detection [32] but

does not utilize intelligent prioritization of the different pedestrians in the given scene.

This project studies pedestrian-to-vehicle communication from the perspective of civilian drivers, in-

cluding casual drivers, taxi drivers, and bus operators. In contrast, emergency service drivers, such

as police officers, firefighters, and paramedics, operate under a distinct hierarchy of authority. They

follow a separate system of regulations, which allows for more advanced driving behavior, hence an-

other adherence to incoming instructions.

From this, I state the initial problem statement as follows:

How can autonomous vehicles learn to prioritize incoming instructions from multi-hierarchical pedes-

trian crowds to decide on the safest instruction to execute?

2.2 Initial Data & Problem Analysis

To determine the type of data suitable for this project, an initial data analysis is conducted, followed

by a further study of the collected data to optimize both the data-gathering process and the data itself.

A first thought on how the model would prioritize different personnel and objects could be the

following list, keeping in mind that it is surely incomplete and biased.

1. FBI and police officer

2. Firefighter and medic

3. Reflective safety vest and authorized traffic controller (ATC)

4. Injured and personal in proximity to said person

5



CHAPTER 2. INITIAL PROBLEM FORMULATION & ANALYSIS

5. Traffic control devices (traffic signs, cones, etc.)

6. Car owner and direct approach (eye contact, pointing)

7. any other personal: ignored

This also includes different levels of data abstraction to make the data easier to comprehend and

collect, but at the expense of realism.

2.2.1 Initial Data Analysis

The dataset primarily aims to train the prioritization of pedestrians and distinguish their guidance.

A short brainstorming session to understand the aspects of the data needed for the project led to the

following:

• Occurrence
How often does the actor occur in a scene, representing importance in rarity?

• Situational
The chosen actor depends on the scenes in which they appear. If police officers often find them-

selves in chaotic scenes. It is, however, challenging to know what kind of scene is present.

• Gesture priority
Certain gestures rank the personal, not the actor. Said ‘Stop’ from a civilian could overrule a ‘Go’

from a police officer.

• Following instructions
The driver follows the instructions of the highest-prioritized actor in the scene.

The most promising type of data to utilize appears to be the ”Following instructions,” which

has a clear input (instructions from multiple pedestrians) and output (response action to the highest-

prioritized instruction) for each scene. The other types of priorities are after rarity in the data.

Directional instructions could be given through signs, verbal messages, or gestures. Incoming block-

ages, like humans and roadblocks, are also considered when prioritizing instructions. For example,

is it possible for a police officer to instruct an AV to drive into a tree? Verbal or visual emotions

may increase the priority of an actor, and could this be the primary use when dealing with unknown

classes? When training on data, what does it mean if the driver does not follow the given instructions?

This may down-prioritize the authority but go against the law. This could occur in a scene showing

the ”gesture priority” rule.

2.2.2 Three-stage realism

Three different degrees of realism make it easier to synthesize the data; however, it is unfeasible

to conduct such research. This provides an idea of what the dataset requires as a minimum and an

optimal.

6



CHAPTER 2. INITIAL PROBLEM FORMULATION & ANALYSIS

1. Naturalistic
Video with directions from multiple accurate pedestrians and patterned action responses in a natu-

ral environment. Ex. A police officer in uniform points left, and an ATC points right on the road.

The car turns left when both are visible and right when only the ATC is visible.

2. Simplified
Video with directions from multiple easily recognizable pedestrians and actions in any environ-

ment. Ex.One person wearing red points left, and another wearing a green hat points right on any

street. The camera moves left when both are visible and right when only the person wearing the

green hat is visible. This allows the model to match the priority recognition with the gesture.

3. Minimalistic
Image with directions from multiple canonical gestures and actions. Ex. ”A” and a red circle

appear together, and ”B” if only a green circle appears. This allows for matching the property,

but not matching any gesture.

It is trained and evaluated on zero-shot paired subjects to stop the model from recognizing paired

subjects instead of constructing an abstract priority listing. This means that the evaluation scenes

include unseen pairs of subjects, such as A and C, whereas the training scenes include A and B and B

and C.

2.2.3 Data Gathering Proposal

An initial major issue of this project could be collecting the dataset. The project’s approach would be

to research methods for gathering a pilot dataset to conduct initial research and gain an understanding

of the problem and the domain. Further insights and clarification of the data and the project period

will help inform estimates of additional data gathering and prioritization.

The following lists methods to acquire the dataset, but they increase in difficulty, leading to a smaller

dataset. Given the project’s scope, obtaining the dataset beyond the 6th method is highly unlikely.

1. Obtain the dataset with the correct elements

2. Scrape other datasets with data overlap

3. Virtual recording from pre-made media, such as video games

4. Virtual synthetic made in a video game environment

5. Realistic synthetic with minimal requirements

6. Realistic scenario with acting pedestrians

7. True scenario with real-life pedestrians

The dataset must contain multiple instructions, such as signs or gestures, and include the desired

action. It is preferably in a video, but an image can be used if all the information is perceivable.

7



CHAPTER 2. INITIAL PROBLEM FORMULATION & ANALYSIS

2.2.4 Time-period

To get started with the project and to better understand the dataset, minimalistic data will be collected

from taken or synthesized pictures. This allows for a straightforward approach to testing the zero-shot

paired subject aspect. Along with this, I will be looking into possibilities of scraping data, as this can

give some good quality data, but it’s uncertain how much.

Without any scraped data, more realistic data will be needed. With more insight, more realistic or vir-

tual videos and images will be created using simplified data types to match the selected urban actor’s

gesture.

Creating more realistic or virtual naturalistic data may be possible depending on the period and re-

sources. Hopefully, at this time, there will be a better understanding of what is essential for the data,

and perhaps only some of the data will be needed. Otherwise, this is a point where more resources

are required, highlighting the potential of this project.

2.2.5 Further Data Analysis & Research

Reaching beyond the problem itself could potentially include researching XAI in terms of how having

the model explain its decision-making process. This would enhance the model’s reliability.

8



CHAPTER 3. PROBLEM CONTEXT AND STUDY SCOPE

3 Problem Context and Study Scope

Many questions regarding the system’s behavior and decision-making in varying scenarios were raised

during the initial research period. This widened the understanding of the problem’s complexity and

helped narrow the scope of this specific problem to a particular research area. It opened up oppor-

tunities for future research. Here, I describe the abstract problem, considerations, and scope I seek

to study during the project. I wish to understand the issue as a whole, but instead of researching the

entire project, I will focus on a specific part.

3.1 Comprehensive Problem Discussion

Analyzing this problem, the number of parameters to be considered in the driver’s decision-making

process continues to increase. This problem can quickly be oversimplified or overcomplicated. Look-

ing at it in small pieces can help understand where to start, where to head, and when the problem is

too complex for now. Before attempting to solve the entire issue, let’s define the problem and identify

the area to begin with.

To develop a system that can handle all scenarios, it must have a more complex understanding than

only how the different authorities outrank each other. The system needs to understand the scene as a

whole. Parameters that could influence the driver’s decision include the number of pedestrians, their

attention, emotions, authority, gestures, the recipient of the gesture (which may also affect the ego

driver’s decision), verbal communication, obstacles, other vehicles, idle pedestrians, and many more.

This raises many questions about how such a system should react in various cases. Some aspects are

listed separately to facilitate easy reference as a checklist and for future research purposes, in case

they are excluded from the scope of this study.

A1. Instruction Ambiguity
‘Stop’ gesture can mean ‘immediately’, ‘a specific location’, or ‘at any speed’. How is the driver

supposed to act accordingly?

A2. Ground Truth Discrepancy (Label Bias)
Will the AV be able to decide on safer actions than the ground-truth driver’s actions, and how can

I make sure the evaluation is not penalized for that? Maybe it is due to more knowledge, quicker

decision-making, and irrationality.

A3. Gesture Target Ambiguity
Gesturing towards other vehicles. This can be approached only by examining the gestures towards

the ego driver, including additional abstract gestures, or by considering the receiver’s gestures in

the decision-making process.

A4. Driver Action Variability

9



CHAPTER 3. PROBLEM CONTEXT AND STUDY SCOPE

How will the system learn the correct action in given scenes, if the same or different drivers react

differently?

A5. Driver Authority
The priority depends on the driver’s authority. An ambulance may have the highest authority, or a

police officer’s gesture can authorize a vehicle to crash.

A6. Indirect Occlusion Insight
Pedestrians can provide the driver with information about the environment. The driver could rely

more on pedestrian gestures in very compact environments, such as a parking area. Compared to

empty spaces, where the driver can view all possible objects.

A7. Pedestrian Reliability
Considering all other variables, the ambiguity of human trust and error, and the ability to question

and reason about the given gesture’s reliability.

A8. Ego Clarification Feedback
Feedback from the ego vehicles is suggested to clarify the understanding of the pedestrians’ ges-

tures.

A9. Human-Robot Interaction Bias
Pedestrians may interact differently with the vehicle, knowing it is a non-human driver and thinking

it is incapable of reacting to gestures.

These questions surround the idea that the AV needs a complex understanding of the scene, not

only the pedestrians’ hierarchy as initially thought. The AV must understand direct instructions in-

tended for the driver and interpret them precisely enough to fully execute the intent, solely based on

hand gestures and body language. Even if auditory input were included, that could add another level

of complexity to the system.

3.1.1 Possible Problem Scopes

Where should this project head now? In Chapter 2 Preliminary Research, obtaining proper data for

this problem seems complicated. It is not an edge case, as pedestrian-driver communication is quite

common. However, obtaining real-life scenarios is not as easy as regular driving. Real-life data is

needed, as deciding on the action looks more complex than initially presumed. Therefore, it needs to

be real scenarios to train accurately. I list three aspects of this problem that each can be a focus for

this project, keeping in mind the lack of this type of dataset.

S1. Training Conflict Classification Pipeline
Develop a pipeline to train on real-life data once it has been collected and processed. It is rea-

sonable to collect ‘fake’ data to develop this pipeline, but it is insufficient for training, as some

situations may not accurately represent real-life scenarios.

10



CHAPTER 3. PROBLEM CONTEXT AND STUDY SCOPE

S2. Zero-shot Conflict Classification
Develop a pipeline that evaluates zero-shot conflict classification with medium-realistic data men-

tioned in Chapter 2. This includes pedestrian authority and gesture recognition, but without train-

ing a model to learn the hierarchy of authorities and gestures.

S3. Navigation Gesture Execution
Research the execution aspect of the individual gesture. This involves training a model to execute

the presented gesture. This doesn’t need ‘real’ data and can be developed with ‘fake’ data.

3.2 Final Project Scope and Formulation

The focus of this project will be S2. Zero-shot Conflict Classification - autonomous vehicle decision-

making in conflicting scenarios given pedestrian gestures, authorities, and obstacles. As stated ear-

lier, this problem is more complex than just these parameters, so the remaining parameters will also

be taken into consideration. Still, they will not be the primary focus of this project. Researching this

aspect can help to understand what is needed to continue this work and advance the system to higher

complexities.

Hence, I propose the theoretical equation that will be included in this study. I assume the current

standard formula for optimal trajectories with the notation xi ξ . This consists of the parameters of

the ego vehicle, including the speed and distance to the ego vehicle by other moving objects, such as

pedestrians, bikers, and vehicles, as well as static objects like cones and buildings, and the general

environment and road as an abstract concept.

In this project, I propose additional considerations for the formula to compute the safest and

optimal trajectory, with further information. The symbols are explained in Table 3.1. I assume the

gesture and authority are recognized correctly and only consider the gestures directed towards the ego

driver:

a∗ = argmin
a∈A

(
ξ + ∑

i ∈ P
Gi ·Ai | O

)
(3.1)

Symbol Meaning ννν Domain
a∗ Optimal action ŷ a∗ ∈ A

A Action labels y C
P Pedestrians x X

A Authorities x C
G Gestures x C
O Obstacles x X

Table 3.1: Definitions of key symbols. (Where C is class, X is set.) This is explained more in depth in Sec. 6.

We formulate the scope of the included questions listed earlier.

11



CHAPTER 3. PROBLEM CONTEXT AND STUDY SCOPE

A1. Instruction Ambiguity
The corresponding action can be executed in different degrees. I aim to classify the gesture and

action as nominal data.

A2. Ground Truth Discrepancy
This issue will be researched as part of the evaluation method for this problem.

A3. Gesture Target Ambiguity
I only consider the gestures directed towards the ego driver.

A4.. Driver Action Variability
This will be taken into consideration when creating the dataset.

A5. Driver Authority
This project is based on civilian vehicles, as the correct action will change depending on the driver’s

authority.

A6. Indirect Occlusion Insight
This aspect is excluded from the project. It is briefly considered the possibility P of obscured

objects Õ of objects O, taking into account the given pedestrians’ P gestures G and authority

status A, as well as the occluded areas in the environment Eo. Õ = P
(
O | P ·A ·Eo

)
.

A7. Pedestrian Reliability
I consider all gestures accurate and to be with genuine intentions.

A8. Ego Clarification Feedback
It is excluded, since it focuses more on responding and not perceiving,

A9. Human-Robot Interaction Bias
It is excluded, since it focuses more on the cognitive aspects of the user.

3.2.1 Problem Statement and Objectives

This concludes the final problem statement for the project, along with three sub-problem statements.

“How can autonomous vehicles effectively perform safe and reasonable actions in scenarios with

conflicting pedestrian-to-driver gestures in a hierarchical crowd?”

RQ1. Recognition
How can we recognize pedestrians’ navigation gestures and authority in zero-shot settings?

RQ2. Decision-making
How can we infer a model to decide the safest action given the current environment?

RQ3. Evaluation
How can we evaluate whether the final system’s action is correct?

12



CHAPTER 4. CONFLICT DATA ANALYSIS & DEFINITION

4 Conflict Data Analysis & Definition

This section delves further into the details of the data for this project. It is essential to understand what

already exists and what is needed to find or generate it. I strive to understand the various possible

scenarios, ranging from common to edge cases. This follows an extended analysis and formulation of

the data. I also look into the categories of different scenarios and propose a model pipeline and data

format.

The type of conflict data is analyzed and defined to ensure that the gathering encompasses the

various kinds of scenarios in this domain. I aim to explore possible scenarios in theory, to gain a

deeper understanding of the relationship between the parameters, what is physically feasible, and

how a human driver would react, or whether the driver is presented with a dilemma.

An optimal data analysis would be processed based on real-life data in the correct context. How-

ever, it must be done in theory since finding enough data for all possible scenarios is difficult. Gath-

ering data by driving around the city could be feasible, but it would be time-consuming, as some

scenarios are edge cases.

To grasp all scenarios by widening the view, I list all thoughts on possible properties of the differ-

ent parameters’ authority and gesture. ‘Pedestrian state’ is added as implicit communication input.

• Authority Categories

– Law Enforcement - FBI, military, police.

– Emergency - Firefighter, medic, paramedic.

– Traffic Management - Traffic warden, reflective safety vest (may be unauthorized), authorized

traffic controller (ATC), contextual parking attendant (theme parks, store).

– Signage - ‘Stop’-sign, yield lines, traffic light, barricades.

– Civilian - Stranger, owner, passenger.

– Miscellaneous - GPS.

• Gestures
Go/proceed/forward, stop, turn right, turn left, turn left waiting, lane change, straight ahead, wait,

pull over, slow down, reverse/”go back”, point (orientation, directional, location), idle, social

(thanks, sorry), ‘*with a stick’.

• Additional Input

– Solid blockage - Tree, big animal.

– Soft blockage - Cone, small animal.

– Pedestrian State - Injured, angry, scared, eye contact, direct.

We perceive the authorities as ordinal data, as they have a social concept of hierarchy, but it isn’t

13
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easy to measure. Later research can perceive the data more as a ratio with a complex understanding

of the hierarchy.

Scenario Description Scene Action Obey

Unique Pedestrians’ authority and gesture differ, priori-
tizing one pedestrian.

AiGi α i

Shared Distinct authorities share gestures, prioritizing
one or multiple authorities. Misleading or
‘crowd effect’ increases reliability.

Ai, jGα α i∨ j

Conflict Similar authorities’ gestures differ, obeying one
pedestrian over the others.

AiGα,β α ∨β i

Ignore Acknowledges gestures are disobeyed, obeying
an unknown source.

AiGi /∈ G unknown

Disagree Pedestrians’ authority aligns, but their ges-
tures contradict, simultaneously obeying and
disobeying the same authority type.

AiGα ∧
A jGα

α ∨α i⊕ j

Table 4.1: Abstract scenarios involving distinct authority types A and gestures G, highlighting how authority
obedience is determined. i and j denote the corresponding gesture and action to determine the correctly obeyed
authority of α and β . Symbols are explained in Tab. 3.1 in Section 3.2. Concrete examples are visualized in
Fig. 4.1.

14
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Figure 4.1: A visualization of the possible conflicting scenarios considered. The priority is fixed as shown
in the legend Priority order, with the gesture indicated as a symbol on each pedestrian. The categories are
explained in Tab. 4.1.

Possible ‘flaws’ or ‘errors’ to look out for in the dataset to ensure it is clean and accurate when

evaluating are listed as follows. They help to maintain a clean dataset considering the pedestrians’

gestures, authority, and the driver.

• A single pedestrian provides multiple gestures.

• The pedestrian provides an incorrect gesture, while the driver executes the correct action.

• Delayed gestures.

• Misinterpret gestures from another driver.

• Approaching/asking pedestrians for directions. The pedestrian could ‘Point’ while the driver lis-

tens instead of executing the gesture shown.

I distinguish the various settings in which an agent’s intentional gestures may be observed. Infor-

mal traffic settings involve intent, querying, and instructional gestures. These settings require com-

prehensive scene understanding to ensure a safe response, as other subjects are more unpredictable.

In contrast, formal settings are typically more predictable as they do not involve intent-based gestures,

and follow a more concrete set of rules and traffic flow. They have a specific focus point, such as law

enforcement or parking enforcement, which reduces the complexity of the scene.

15
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4.1 Initial Pipeline Proposal

I propose a pipeline for training and evaluating the decision-making model using videos as input.

I list the pipeline’s required elements to be located or developed. This list will serve as a checklist

and will be updated as further research and development progress.

1. Pedestrian Detection

2. Authority Classification

3. Gesture Classification

4. Action Classification

5. Prioritization Model

Evaluation Inference

Last Frame Pedestrians

Action

3 x Frames

Actions
Constant
Accelerate
Decelerate
Turn Left
Turn Right
(Halted)

GestureAuthority

Figure 4.2: Initial pipeline infers each frame with the authority and gesture of each pedestrian. The
predicted safest action is classified and compared with the label action, which is classified from the
previous three frames.

4.1.1 Annotation Format

Annotations are made using the CVAT online software. The annotations must be for each frame,

as they can change over time. This annotation includes the pedestrian’s video frame and bounding

box, along with their authority and gesture. For future work, ego is added too, which indicates if the

gesture is pointed towards the ego driver.

video name frame bbox authority gesture ego
video1.mp4 1234 (50, 60, 200, 300) civilian stop 1

video2.mp4 5678 (100, 120, 250, 320) police go 1

video3.mp4 9101 (80, 100, 220, 280) warden left 0

Table 4.2: Example of annotation file with authority, gesture, and ego
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5 Background Research

This chapter examines related work and state-of-the-art technology, seeking available models and

datasets. This will offer a quicker and easier implementation, as well as a faster launch in the re-

search, rather than starting from scratch. The ideal models would be out-of-the-box models, but

transferable models combined with datasets would also be efficient. Models for both zero-shot and

few-shot settings are explored to facilitate research in varying accuracy and data requirements. The

required components and research are listed in Sec. 4.1 Initial Pipeline Proposal. This list serves as

a checklist and will be updated with the most available and suitable method. Additional models that

were found out later in the project are also listed. Along with each component, the technical aspect of

its functionality is explained. The technologies, which are newer to me, are explained in more depth,

as the others have been described before.

The ideal scene features pedestrians who communicate with the driver through gestures, and

preferably, multiple subjects are present in a single scene. Datasets that include some elements of

the ideal scene can help with refining the datatype or sub-elements of the pipeline. General websites

which was looked into were PapersWithCode, Kaggle, GitHub, HuggingFace, universe.roboflow, and

DatasetNinja.

5.1 Autonomous Driving

Autonomous Driving, also known as self-driving or driverless, is the ability of a vehicle to drive itself

without human controls [34]. It is also referred to as an autonomous vehicle, or AV. The term is

used broadly to encompass various levels of autonomy, including those that are not fully autonomous

driving. 6 different levels of AV from L0 to L5. L0 is a fully human-controlled vehicle with zero

autonomy. L1 introduces driver assistance features such as speed and road alerts, but the controls are

still in human hands. L2 has partial autonomy, such as acceleration and steering, but humans should

always monitor the environment to ensure safety. L3 is a huge improvement in AVs. It allows humans

to be unaware of the environment. However, they should always be ready to take over the controls. In

L4, the vehicle controls all situations, and human driving is only an option. L5 is fully autonomous,

with human driving not even being an option. [44]

5.2 Pedestrian Detection

The most essential element of this project is the detection of pedestrians. For this, the state-of-the-art

and out-of-the-box model ‘You Only Look Once’ (YOLO) [22, 39] is available. YOLO is a general

object detection model, with ‘Human’ as one of the classes. It is easy to implement in Python 3 using

the ‘Ultralytics’ library. YOLO is a single-stage detector. It sees the task as a regression problem.

It divides the image into an S× S grid, which is used to predict the class and bounding box of each
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cell. This enables detection of multiple objects in a single image, with less computation. [39] YOLO

versions have been trained on both PASCAL VOC (PASCAL Visual Object Classes Challenge) [15]

and COCO [27]. COCO has 80 classes, including vehicles and traffic sign detection [27], which

makes YOLO suitable for detecting these objects as well.

Additionally, datasets were obtained with pedestrians, if further training is needed. All from

Dataset Ninja1: kitti-object-detection, mots-challenge, bdd100k, argoverse-hd, and citypersons,

5.2.1 Authority Classification

Only the pedestrians can be detected, but not the authority. A few datasets were found with police

officers, yellow safety vests, and civilians, which can be used for transfer learning.

• universe.roboflow.com work-safe-project/safety-vest—v4

• github.com Ansarimajid Construction-PPE-Detection

This could be improved too, by utilizing the paper ‘Face, Body, Voice: Video-Clustering with

Multiple Modalities’ [5] for identity clustering, and equipment attachment of the user from ‘Pose

guided anchoring for detecting proper use of personal protective equipment’ [49].

5.2.2 Pedestrian Attention

The priority of each ego driver’s pedestrian also lies in the attention of each pedestrian in the scene. I

also include ‘Eye direction detection’ [41]2, to distinguish this aspect.

5.2.3 Navigation Gesture Recognition

5.2.3.1 Consumer/Amateur Experiments

Chris, with the YouTube channel Dirty Tesla, uploaded a video where his autonomous driving Tesla

stopped as a pedestrian walked up to the road. When the pedestrian pointed to a parked car, to show

she intended to enter the vehicle, and not cross, the AV started driving again: Tesla Self Driving

Responds to Hand Signal. He introduced this evidence on this X profile. He asked, Does FSD

understand the gesture of the pedestrian, or is it just registering them not crossing, and interpreting

that as to proceed 3. Tesla reposts saying “Slowing down for pedestrian & taking their gestures into

account before proceeding”4.

Experiments to evaluate FSD’s capability of recognizing pedestrian gestures were made from

Dirty Tesla Does Tesla FSD Recognize Hand Signals? We Tested It! and another YouTube channel

TechkGeek Tesla, Does FSD 12.4.1 Recognize Hand Gestures? — Real-World Test. They had different

cases where the pedestrian would walk up to the road or cross the road with and without gesturing

1datasetninja.com
2fkryan/gazelle, GitHub
3@DirtyTesLa, X
4@Tesla, X

18

https://datasetninja.com/kitti-object-detection
https://datasetninja.com/mots-challenge
https://datasetninja.com/bdd100k
https://datasetninja.com/argoverse-hd
https://paperswithcode.com/dataset/citypersons
https://universe.roboflow.com/work-safe-project/safety-vest---v4
https://github.com/Ansarimajid/Construction-PPE-Detection
https://www.youtube.com/watch?v=kHf-0jX7SYY
https://www.youtube.com/watch?v=kHf-0jX7SYY
https://www.youtube.com/watch?v=ndX5o_zuFQs
https://www.youtube.com/watch?v=ttAYdM6xZA0
https://datasetninja.com
https://github.com/fkryan/gazelle
https://x.com/DirtyTesLa/status/1775165359747633260
https://x.com/Tesla/status/1776021631346835491


CHAPTER 5. BACKGROUND RESEARCH

‘Stop’. Or stand on the road and gesture for the vehicle to proceed, but did not respond. They found

out that the vehicle sometimes reacted to the pedestrian, but there was no difference in the AV’s

reaction whether the pedestrian gestured or not.

These amateur experiments provide a fundamental understanding of the capabilities of AVs cur-

rently on the market. This reveals a gap in this domain and suggests a positive outlook for continued

studies. They can help shape this project’s data collection and evaluation process, and also include

more divergent pedestrian gesture data.

5.2.3.2 Real-life Samples

Additional recordings of real-life cases were found, which can also be used as a foundation for the

dataset. Either by combining it or using it as an example, referring to the creation of a new dataset.

All videos are on YouTube.

• Dash Cam - Angry Lancaster City Crossing Guard, Gregory Hripto

• Toms River NJ: 2 Accident Scenes on Hooper Ave, Delivery Dashcam

• Stuff Like This Happens Everyday and I Don’t Care to Upload Anymore:, Delivery Dashcam

• Work Day of a Traffic Cop (Toms River NJ), Delivery Dashcam

• Tesla FSD 12 Recognizing Hand Signals?!, Tesla FSD (Full Self Driving)

• Tesla FSD Conquers Rainy Downtown Drive! V12.3.4 [9:27], Dirty Tesla

5.2.3.3 Datasets

1. QualComm Jester Dataset

qualcomm/jester-dataset 22.8 GB HCI gestures

2. HAGrid dataset

hagrid-cls-150k, Kaggle

Has varying dataset sizes on Kaggle from approximately 1 to 15 GB. They only have the ‘Stop’

gesture, and some also include ‘no gesture’ HCI gestures

3. Uni ULM Traffic Gesture Dataset

uni-ulm.de/en/in/mwt/traffic-gesture-dataset

Pedestrian gestures, but the data type is not understood

Traffic Control Gesture Recognition for Autonomous Vehicles [47]5

Only HCI gestures like ‘Zoom’, ‘Slide’, ‘Stop’, and ‘Idle’ with hands were found. No hands or

full-body gestures such as ‘Proceed’ and ‘Reverse’ were found.

5“Dear Tonko, the video data is not part of the dataset. It has just been used for demonstration for the IROS publica-
tion. Best regards, Julian”
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5.2.3.4 Pose Estimation

1. OpenPose [8]

CMU-Perceptual-Computing-Lab/openpose, GitHub

2. DEKR - HRNet [54, 42, 45]

HRNet/DEKR, GitHub

3. Yolov8n-pose - Ultralytics [13, 22]

docs.ultralytics.com/tasks/pose

4. RTM Pose / mmdeploy - OpenMMLab [20, 11, 21]

open-mmlab/mmpose/tree/main/projects/rtmpose, GitHub

5. MediapPipe Holistic [17, 29]

research.google/blog

The selected pose model varied between Mediapipe Holistic and YOLO, as they are the most

out-of-the-box, lightweight, yet still accurate, options, which increased development iterations. Me-

diaPipe Holistic is excellent for hands and faces.

5.3 Ego Driver Action Classification

To avoid annotating each driving sample with the driver’s action, it is hoped to utilize an ‘Action

Classification’ model on video data.

1. Optical Flow, self-implemented

2. github.com/commaai/openpilot [7]

3. github.com/CIFASIS/ORB SLAM3 (github.com/UZ-SLAMLab/ORB SLAM3)

4. github.com/MaybeShewill-CV/lanenet-lane-detection

5. github.com/ooooverflow/BiSeNet [48]

5.4 Video-Language Model (VLM)

”Video-to-text” or video caption models were researched to gain an understanding of the scene. Using

pre-trained caption models enables a general understanding of an image in zero-shot data, which is

highly resourceful when a low amount of data is available. As there was limited data available for this

project, various caption models were researched for their potential application in training the system
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and for the final implementation. VLMs6 researched are LLaVA [25, 52], BLIP [24], ViLA [28, 9,

26], VideoLLaMA2 [25, 10], VideoLLaMA3 [25, 51], and Qwen [46].

Here, I explain the theory and details of a VLM, how it works, and why it excels in zero-shot

settings. The purpose of a VLM is to generate natural-language captions for the given images or

videos. The input may also include prompts to guide the captions in a more specific direction. [3] It

is a multi-modal foundation model, meaning the model’s input consists of varying media.

VLMs have been the primary focus throughout this project due to their potential abilities in a

zero-shot setting, compared to traditional classifiers. Traditional classifiers are limited only to the data

they have been trained upon, making them suitable for multi-shot or few-shot classification when fine-

tuned. VLMs are well-suited for zero-shot classification due to their immense training dataset size.

In theory, the model has been trained on millions of data samples, making it a subset of a foundation

model. A foundation model is an end-to-end, general-purpose model that encompasses all aspects of a

system. They are trained to generalize the perception of data from a single training stage. This enables

the classification of unseen data excluded from the training data. An example could be ‘A penguin in

a shoe store.’. Most likely, no images of a penguin in a shoe store exist.7 However, the foundation

model learns the visual meaning and context of ‘a penguin’, ‘in’, and ‘a shoe store’ from previous

images (e.g., ‘penguin on ice’, man in a shoe store’). The model embeds the image-text pair in the

same or similar embedding space. So with an unseen image, the embedding resembles the ‘correct’

text most accurately. This is the term Contrastive LanguageImage Pre-training (CLIP) [36]. CLIP

utilizes contrastive learning, a self-supervised learning method, to contrast the embedding features

of images. The contrastive loss InfoNCE uses an anchor, positive, and negative sample to learn the

construction. A current selected data sample is used as the anchor or a reference point. Similar-

looking samples or augmentations of the anchor are used as positive samples with a similar ‘label’

as the anchor. Negative samples are other samples that differ from the anchor’s features and label.

The samples do not actually have labels, but this helps to understand the loss. Before the text-image

pair can be constructed, both the text and the image need to be embedded using a text encoder and

an image encoder. In the CLIP paper, as the text-encoder, they use a GPT (Generative Pretrained

Transformer) [37]-like transformer architecture. For the image-encoder they both tried a ResNet-

50[19] and a Vision Transformer (ViT) [14]. [36] ViT works by splitting up the image into patches,

which, along with a position encoder, are parsed through a multi-head self-attention transformer. [14]

5.4.1 BLIP

BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Lan-

guage Models [24] This model was initially experimented with, leading to the decision to place VLMs

on a shelf in this domain. It was not very precise. Multiple trials were tried with varying prompts, but

they did not show any consistent success.

6huggingface.co/docs/transformers/en/tasks/video text to text
7There are.. Apparently, Beach Donkey got a pair, boston.com
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5.4.2 VideoLLaMA & Qwen

The main VLM I use in this project is the VideoLLaMA2 [10], VideoLLaMA3 [51], and Qwen [46].

They are elaborated further in the VLM Evaluation paper [4]. The VideoLLaMA models were selected

due to their proven potential in the CaVLA model [2]. Qwen was selected after the VideoLLaMA

models failed to show any success, as suggested by the lab.

5.5 Conflict Scenario Data

To obtain the data type explained in Cap. 4 Conflict Data Analysis & Definition, multiple ways are

explored, since it looks like there is a lack of this. One idea could be mining enormous datasets to

detect pedestrians and, either manually or with a script, identify movement patterns other than walk-

ing. With multiple pedestrians detected in this manner, it could potentially reveal conflicting gestures.

The datasets which could be used for this could be: nuScenes [6], OpenDriveLab/DriveAGI [50], or

Challenge Of Out-Of-Label (COOOL) in Autonomous Driving [1]

Another approach could be simulating this data. Software for this could be Searchable Database

of Potential Crash Scenario Models for CARLA and the Corresponding Sensor Data Feeds 8 9 or less

complicated using individual online models in both 3D or 2D animation 10

5.6 Signs detection dataset

Located signs in the traffic environment also have a significant impact on the correct and safe decision-

making for the ego driver. A short list of datasets has also been compiled to fine-tune object detection

models, if necessary. They also assist with understanding potential scenarios. They are all at Dataset-

Ninja.com lisa-traffic-light, vietnamese-traffic-signs, and gtsdb.

5.7 Large Language Model (LLM)

The selected LLM was LLaMA2-7B-Instruct-hf [43, 40]11. The LLaMA3.3-70B model was also

experimented with, but it required too much RAM. This model was selected due to its smaller size;

however, it is still a relatively new implementation. The prompts could be quite long, aiming for

a larger model, but a smaller model would be used initially to increase the number of development

iterations.

The number at ‘B’ explains the size of the models. It indicates the number of parameters in

billions, resulting in a model with 7 billion parameters. The ‘Instruct’ tells that the model is fine-

8deepdrive.berkeley.edu/node/811
9carla.readthedocs.io/en/0.8.4/

10Google Images: ‘3d stop gesture animation’, freepik.com/vectors/2d-animation-character, vecteezy.com/free-
vector/2d-character

11Meta LLaMA, GitHub, CodeLlama-7b-Instruct-hf
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tuned for following instructions. Compared with Chat’ or ‘QA’ models, which are fine-tuned for

those purposes. The ‘hf’ tells the model is from Hugging Face.

5.8 Trajectory Planning

Common in robotics is the term planning, which involves planning a route rather than predicting what

other entities are most likely to do. Instead of categorizing the driver’s action as right or wrong using

binary classes, a more reliable measurement is to evaluate it using a trajectory. The evaluation can be

done in two ways, supervised and self-supervised. The supervised version computes the difference

between the trajectory and the ground truth. This difference can be calculated in various ways using

Mean Square Error (MSE), Dynamic Time Warping (DTW), Frchet Distance, and other methods. The

self-supervised method utilizes cost heuristics to determine the optimal trajectory (Eq. ??). Typically,

in AV, the system penalizes collisions, speeding, and other infractions. [30]

5.9 Findings Summary

The findings are summarized to get an overview of what is needed to research, develop, or gather.

This also helps list the chosen models and datasets.

Process Status
5.2 Pedestrian Detection Yolov8 (pre-trained)

5.2.1 Authority Classification Safety vest detection (For pilot study)

5.2.3 Navigation Gesture Recognition Yolov8n-pose (pre-trained) + class annotation + limited col-
lected data + generated data

5.3 Ego Driver Action Classification Currently unsuccessful to implement accurately → Annota-
tion / GPS

5.5 Conflict Scenario Data Annotation + generated data

Prioritization Model Further Research

This implies explaining the pedestrians through text, so that another large language model could

interpret the gesture and have the VLM interpret itself.

This pilot research study uses a small first-hand acted dataset captured with dash-cam footage in

contrast to real-life scenarios from a 360◦ perspective. It is a zero-shot model, using visual-language

models (VLMs), Complex scene information is required for the AV to interpret the data from the

pedestrian accurately in some cases. Action detection and speed are not processed in the pipeline,

as this information is supposed to be obtained from ULM (hardware). It is predicted only in the

annotation. In future work, temporal pose classification will aid the model, as it can be easily trained,

and pedestrian detection will also be beneficial.
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CHAPTER 6. CONFLICT DECISION-MAKING: DESIGN & EXPERIMENTATION

6 Conflict Decision-Making:
Design & Experimentation

Initially, the primary focus of the project was centered on the component of having a model draw

a decision given a conflicting series of gestures across multiple pedestrians. They would, as an ego

driver, either have the same or different authorities, which would indicate the correct commanded

gesture to follow. Throughout the project, as knowledge of this problem increased, the data structure

and type changed, which also altered the model’s architecture. This is the reason for experimentation

with varying architectures both in theory and in practice. This makes this chapter contain more

experimental content, as most of the experiments were found to be too simple to solve this problem.

They were all using a network with the pedestrians as input.

The experimatations of the conflict decision-making models are found at tbosse20/mercedthesis,

Github.com

6.1 Synthetic ‘Gesture’ Priority Training with FRIENDS

The idea of this experiment is to convert the information about the ego driver’s action in a scene

involving the person they obey into a priority model on a synthetic target priority list. A dataset

of images featuring specific individuals and a fixed target priority list is used for experimentation.

The corresponding action and gesture label will be used to train the model, allowing it to distinguish

between individuals prioritized in the given crowd. Fig. 6.1 visualizes the concept using the people

from the TV series FRIENDS. This series is selected because a dataset of images was needed that

features the same people.

The synthetic dataset is made by assigning a random synthetic pseudo-gesture label to each de-

tected person in each given image. Note that the gesture label can reappear for multiple people in the

image, which can confuse the model. The pseudo-gesture is simply a number and an ARUCO marker,

but it functions as a specific gesture class. The ARUCO is a type of QR code with a value. Each im-

age is also assigned a pseudo-action label. The action label corresponds with the gesture label of the

person in the image with the highest priority, making them the target label. The remaining people are

noise labels. In the example under Synthetic ”gesture” label, Monica and Rachel are detected. They

are both assigned a random pseudo-gesture. The pseudo-action label is set to match Monica’s gesture

label, since she is the highest-ranked on the Target priority list among her and Rachel.

The Scene priority shows how all gestures are detected, and the target person is found by match-

ing the action label. This gives the data shown in Tab. 6.1. Here, it is visualized who was obeyed in

each crowd or scene. E.g., ‘Ross’ is prioritized highest in a screen with everyone. Or both ‘Chan-

dler’ and ‘Ross’ are obeyed in example 3. This is because ‘Chandler’ has the same gesture label as
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‘Ross’. This makes the data more realistic and introduces the ‘Shared’ conflict concept, as explained

in Tab. 4.1 in Cap. 4.

This is a simple algorithm, but it also marks the beginning of a research effort. It demonstrates a

method of matching action-pedestrian pairs based on their gestures. Instead of using specific names,

everything could have been pseudo, but using images and people helps prove the concept.

Figure 6.1: Example of synthetic gesture data on FRIENDS. Synthetic ”gesture” label shows how the gestures
are assigned to the target and noise people in the scene, using the Target priority list. Scene priority matches
the action label with the gesture to find the obeyed person in the crowd.

Target priority: Ross, Monica, Chandler, Joey, Rachel, Phoebe
Obey Crowd
[‘Ross’] [‘Ross’, ‘Rachel’, ‘Joey’, ‘Monica’, ‘unknown’, ‘Chandler’]

[‘Joey’] [‘Joey’, ‘Phoebe’]

[‘Chandler’, ‘Ross’] [‘Ross’, ‘Rachel’, ‘Chandler’, ‘Phoebe’]

... ...

Table 6.1: Synthetic gesture labels using the FRIENDS characters

6.2 Model Architectures

As mentioned, the architects of the models change over time. This lies in the input to the model.
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6.2.1 Authority multi-class multi-layer perceptron (MLP)

Since multiple classes can be present in a single scene, a one-hot encoding was suggested to merge

the classes. This also includes padding for the data to fit, as some scenes could have more authorities

than others. So in a scene with A1 and A3, with four different authorities, the input of the model would

be:

x =
[
0 1 0 1

]
(6.1)

The model’s output is the gesture matching the driver’s action. This makes the label of the model

with G1 with one-hot encoding and five different gestures be:

ŷ =
[
0 1 0 0 0

]
(6.2)

The notation for the output and label is:

y ∈ Rdo , where do = |G|= |A | (6.3)

This suggests that the model should be a fully connected neural network to understand the rela-

tionship between the authorities.

6.2.2 Authority-gesture Multi-class Transformer

After gaining a better understanding of the data, it was acknowledged that the scenes can contain

multiple subjects of the same type. This makes the multi-class model unsuitable, as it cannot contain

more than one of the same authority. Instead, each authority’s input will be a vector, making the

data suitable for a running model, such as LSTM or Transformer. As the input can contain multiple

authorities of the same type, each gesture is added to the input to distinguish the properties of the

gesture type and the authority hierarchy. This also allows the system to explore if gesture types

and/or several authorities combined can have a higher priority than an entity from a single authority.

For two categorical features that are one-hot encoded, let:

A =
[
Police Civilian Firefighter Vest

]
and G =

[
Stop Left Right Go Idle

]
(6.4)

For the pair (AC,GP), the one-hot encodings are:

AC =
[
0 1 0 0

]
, GI =

[
0 0 0 0 1

]
→ AC ⊗GI =

[
0 1 0 0 0 0 0 0 1

]
(6.5)

The label of this model is the same as that of the MLP model, as shown in equation 6.2. This

makes the input of a scene with the subjects A1 and A3 with four types of authorities with the gestures
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G1 and G4 with five types of gestures be:

x =

[
0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 1

]
(6.6)

The notation for the input x is then:

x ∈ RT×d, where T = |P|, d = |A| · |G| (6.7)

6.3 Formula Definition

After iterations of data structure understanding and experimentation, a formula is constructed to in-

crease understanding and formulation of what the problem applies to and what is sought to be solved.

This formula helps explain the abstract idea of the problem, data, and solution. It includes the inputs

of the traffic environment and the corresponding optimal decision made. This is also an extension of

the formula proposed in Sec. 3.2 Final Project Scope and Formulation. The inputs are defined as

follows.

all objects O in the given frame I are detected:

Detection
(
I
)
⇒ O = {(ci,bi,si) | i = 1,2, . . . ,n} (6.8)

where:

• I = Rh×w×c is the image of the dimensions height, width, and channels.

• ci ∈C is the class label from a set of categories C, here referred to as authorities R.

• bi ∈ R4 is the bounding box coordinates (e.g., (x,y,w,h)).

• si ∈ [0,1] is the confidence score.

A subset of all the pedestrians P detected in the scene is made:

P = {i ∈ O | ic is cpedestrian} (6.9)

For each pedestrian, authority A and gesture G is classified:

PA, PG =
{

i ∈ P | (A(i), G(i))
}

(6.10)
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The optimal action, which is the action the driver should take, is then chosen from the set of

possible actions A by maximizing a scoring function f with the given Pedestrians P. It is maximized

to achieve the highest priority:

a∗ = argmax
a∈A

f
(
a | P

)
(6.11)

In summary, given the pedestrians P composed of authority-gesture pairs (from A and G), the

model selects the best action a∗ to execute from the list of possible actions A by finding the action

that maximizes f (a | P).

The action can be represented by both a finite, predefined set of classes, an open vocabulary in

zero-shot learning, and a trajectory τττ as GPS location, or something similar.

6.4 Findings Summary

These data structures and architectures have predefined authorities and gestures, making them inca-

pable of open vocabulary and zero-shot settings. They rely on training to reveal the nature behind

an idea of a certain fixed priority list. However, it appears that the decision-making in this domain

is more complex than initially thought. Ultimately, it is believed that the problem is too complex

for architects like these to handle. This appears to be more aligned with LLMs, as they possess a

deeper understanding of legal culture and can be utilized in a zero-shot setting. These models rely

on training. However, it remains essential for the process and is worthy of inclusion. As mentioned

in the Introduction, the focus shifted, which laid the conflict decision-making to rest, and due to time

limitations, left for future exploration.

28



CHAPTER 7. DATASETS: PREPARATION & CREATION

7 Datasets: Preparation & Creation

Here, I outline the thought behind the datasets’ samples, annotations, and structure. In total, there are

three different datasets, two of which are also explained in the VLM Evaluation Paper [4]. Only the

ATG dataset is utilized in this project, with the ITGI and Act-CANG serving as extensions for further

research. The data structure and content are also defined by the experiments from Cap. 6 Conflict

Decision-Making: Design & Experimentation.

7.1 Acted Conflicting Authorities & Navigation Gestures

(Act-CANG)

Additional data needed to be gathered as part of the project, as it was impossible to obtain enough

data to include enough scenarios to enable a detailed evaluation. Sufficient data was collected to gain

a better understanding of how elements affect the scene and identify the essential elements to include

in the dataset. This section describes the reasoning for creating the dataset.

The dataset will initially consist of 20-25 scenes distributed across the different types of scenarios

described in Table 4.1, as these are the scenarios most likely to occur. The dataset can be expanded

after researching a system that uses only these. To make it easy, fast, and realistic, the aspect in the

”data gathering” section of bullet point 6 in the ”problem description” has been selected. This is the

second category in the ”Three-stage realism” problem description. This allows the system to be tested

on real people, but does not require the inclusion of fundamental authorities. This data can be col-

lected from real-life scenarios, such as attending concerts, experiencing traffic jams, visiting airports,

attending sports events, and visiting theme parks. However, this will drastically decrease scene con-

trol and only slightly increase realism. The authority and gesture in each scene are selected to match

real life. Notice that the data cannot be individual images, as the gesture and action classification

require temporal information. The realism level aims to be the highest while staying in a safe and

controlled environment and setting.

The annotation software, dataset links, and further guidelines for the annotators are found on

tbosse20/navigation-gesture, Github.com
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#. Qty. Scene Config.

Unique (10 samples)
1. 3 A|3|G
2. 2 AiG /0 +Ai<G
3. 5 AiGα +Ai<Gβ

Shared (6 samples)
4. 2 A|2|Gα

5. 1 A|3|Gα

6. 1 A|2|Gα +Aβ Gβ

7. 2 2AiGα +Ai<Gβ

Ignore (2 samples)
8. 1 AGα ̸= Aα

9. 1 A|2|Gα ̸= Aα

Disagree (2 samples)
10. 2 AG(α,β )

Table 7.1: Authority-gesture Categories. M × kX|n| : M scene variants with k number of X being |n| different
types. Non-specification equivalents any or a single value. Symbols explained in Table 4.1. Example explaining
nr. 3: Defines 5 scene variants, each consisting of two pedestrians. First pedestrian with an arbitrary authority-
gesture pair Ai iGα . The second pedestrian possesses a higher authority and different gesture than the first
pedestrian Ai>Gβ .

7.1.1 Requirements

It is examined what is required to create a well-structured dataset that contains all necessary fea-

tures and excludes unnecessary data. The section argues and lists the required and needed features

regarding authority-gesture pairs, driver action decision-making, and resources for the data creation.

7.1.1.1 Authorities and Gesture

The dataset requires a set of possible authorities and gestures to include. Since the model needs to

learn the correct rank of the authorities, a certain number of different authorities must be included to

avoid relying on luck. Since only one of these arrangements is in the correct order, the probability of

randomly selecting the proper gestures is given by:

Pcorrect =
1
n!
, where n is number of authorities

To make sure the priority list is not sorted by chance, the n is found where the formula drops below

α = 5%, being the standard p-value:

|A|= argmin
n ∈ N+

{
1
n!

< 5%
}
= 4 ⇒ 1

4!
= 4.16%
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Using four types of authorities, the chance of finding the correct order by chance is 4.16%.

7.1.1.2 Scenario Construction Rules

The final selection of scenes is based on a predefined set of rules designed to assess how effectively

the model learns a specific system of rules. They decide on the action of the driver. This approach

increases the realism and reliability of the scenarios and remains. This only makes sense to do from

a trained priority model, since a zero-shot model follows a more abstract cultural rule and laws. The

following rules are listed in order, with notes provided below.

1. The car stops for any hard obstacle, no matter the incoming authority and gesture.

2. The car prioritizes the ‘Stop’ gesture above any authority.

3. The car follows the predetermined hierarchy:

1. Police officer, 2. Firefighter, 3. Safety vest, and 4. Civilian.

4. In dilemma and paradox cases, the individual driver participant decides the most appropriate ac-

tion, based on feelings, intuition, and prior/external knowledge.

• Pedestrians without a gesture are not considered.

• Crowded gestures do not exceed gestures from higher ranks.

• Same authorities with different gesture reasons, the decision from other sources, for example,

‘Obstacles’.

• Gestures other than ‘Stop’ do not affect the priority.

• Selected authority and gesture tries to match realistic, possible scenarios.

It was challenging to figure out the number of different gestures and authorities after setting up

the possible scenes. This was because it could be random, as every scenario is technically feasible.

However, to better explain the specific number of authorities and gestures chosen for the scene, an

attempt was made to replicate realistic scenes. The best option would be real-life data. I am, however,

creating this dataset because of this lack, so the next best thing was to draw on previous experiences

or the most likely and common scenarios that have been considered.

An attempt was made to prepare a table for the collection day. This would show the accurate

authority and gesture for each scene. This would also quantify the different types of scenes, making

it easier to gain an overview of the content and ensure that all relevant authorities were included.

This was, however, removed, since it was not very accurate or reliable, and caused a lot of confusion

instead.
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7.1.1.3 Resources

The ideal location would be a fixed road environment, giving us complete control over the scenarios.

It would be efficient with other parked cars, as they could function as obstructions. It needs to include

an intersection to allow for cases of turning. This also makes it easier to include conflicting gestures,

such as ‘Left’ and ‘Right’. The equipment I need for creating this dataset is 2 of 2-3 different types

of authority uniforms, 4 cones, 1 x 2m - 3m measuring tape, 1 dash and rear camera (HD≤), 2 cars,

and 3-4 participants.

7.1.2 Annotation

We provide instructions on how the data is annotated, including explanations of possible misunder-

stood annotations. Section 10.1 in Discussion argues a more in-depth reasoning for this framework.

In short, the data is annotated by category and caption for each newly started movement.

The dataset was annotated in collaboration with undergrad members of the Mi3 Lab at the Uni-

versity of California, Merced. This helped speed up the annotation process, but it took a considerable

amount of time to ramp up. Besides video post-processing, it included assigning videos, creating

an annotation guide, creating an annotation framework, and creating annotation software. All these

elements had to be accurate from the start, since it would be difficult to correct the launch of the

annotation process. The annotators were handed this section 7.1.2 Annotation and the README file

as their guidelines. Of course, they could ask questions throughout the process.

7.1.2.1 Argumentation

Annotation can be applied in two dimensions: temporal and body, where body includes internal de-

grees of detail. In terms of frame, the annotation can be applied to every single frame, fixed sequential

frames, a dynamic frame or timestamp, or the entire video. The body can be divided into groupings

that can be combined as a graph. The body-grouping can be every joint, sub-parts (individual finger),

grouped parts (all fingers), appendages (hand), limb (arm), or the full body. Body sections can also

be excluded at each degree. Explaining the body is complex, considering the details a driver wants to

obtain useful information. Body detail descriptions can only be qualitative as they are not measured.

These details are the following, including methods or aspects to describe: Reference point (pedes-

trian, ego, car, road) in terms of distance, position, speed, orientation (egocentric, compass, clock,

angles, facing, and physical state descriptors (tucked, flat). [4]

A more in-depth study is needed to understand the practical details. Still, it is thought that, to in-

terpret traffic gestures accurately enough to interpret the gesture enough, without too much additional

information, the description needs the following information in formulated details:

The description needs temporal information, as some gestures are dynamic. This annotation is

separated for each newly interpreted gesture. For example, a pedestrian is transitioning from being

idle, lifting their hand to gesture a ‘Stop’ gesture. They lower their arm back to an idle state. This
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sequence would have five different annotations: ‘Idle’, ‘Transition’, ‘Stop’, ‘Transition’, and ‘Idle’.

This allows for anticipating captions and merging the transitions to pre- and post-gestures for addi-

tional use.

The gesture can differ down to the individual finger, but mainly in the upper body. Degrees

of position, orientation, and physical state don’t significantly impact the meaning of the gesture.

Movement speed emphasizes the intent and seriousness, but doesn’t change the gesture.

What’s more important are the reference points, distance, and direction. Using compass directions

from the ego driver’s perspective could provide detailed spatial references, but may lead to ambiguity

or misinterpretation.

The body and interpretation descriptions are separated to allow for additional usage of the dataset.

They can be used individually if the application focuses on human movement rather than gestures, or

merged if needed. As with the transition of gestures, this threshold can potentially be used in future

work to teach the model to anticipate specific gestures or respond more quickly. Or it can be merged

simply by expanding the class label to adjacent transitions.

The focus is currently on the ego driver. To reduce the annotation process time, we only annotate

those gestures. The annotation can be expanded by easily finding excluded annotations. I originally

considered using a ego mask to find them again. However, this would mean all current annotations

would be True at the ego mask flag, making no distinction anyway. And if there were any False ges-

tures, those would need to be processed anyway. To find the excluded gestures for future annotation

or evaluation, we filter out the bounding boxes for each frame that do not have annotations. This will

require processing all the bounding boxes, not just the included gestures. Note: Maybe a script can

annotate this quickly anyway.

7.1.2.2 Guide & framework

The description of the selected method depends on the specific situation, and it is up to the annotator

to interpret it accordingly. Considering the degrees of each feature, they must explain the scene with

an accurate amount of detail to convey the necessary information, so that an AI system or a human can

understand the intended meaning. An interpretation is added to ensure that the gesture is captured.

However, the gesture should be possible to interpret solely from the description of body movements.

For now, we only annotate gestures directed towards the ego driver. The remaining subjects can be

filtered utilizing the bounding box and the information of the non-existent gesture annotation. The

applied annotation method is referenced as:

Annotate sequences of upper-body movement with varying detailed descriptors. Mark

each new movement with a start and end frame, and an individual caption that can be

understood standalone. The caption can refer to previously acknowledged information

from the scene. Annotations are limited to gestures explicitly directed toward the ego

driver.
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7.1.2.3 Caption Instruction

The instruction considered when captioning the ground truth descriptions of the body movement and

interpretation is formulated as follows, inspired by [4] (examples can be found in Sub-section 7.1.2.4):

Transcribe the pedestrians’ upper-body posture and expressive gestures, specifying the

intended recipient (e.g., gesturing the ego driver to stop, requesting another driver to pull

over). Segment the annotation using start- and end-frames at initiating and terminating a

new meaning movement. For each relevant sub-part (e.g., arm, finger, head), describe its

position, distance, speed, and direction relative to themselves (e.g., at their side, facing

9 o’clock of themselves, at the dog) and the ego driver (e.g., towards the ego driver, far

10 o’clock of the ego driver). Follow up with an interpretation of the given gesture to

understand what is being communicated. In cases where a single subject makes multiple

gestures, use the term ‘<skip>’ to indicate gestures not directed towards the ego driver,

for further annotation.

7.1.2.4 Caption Examples

The following examples provide an understanding of expressing the human body, its movements, and

relationships to other objects, as well as the usage of <skip>. The examples are inspired by [4].

1. “The pedestrian is standing close at 11 o’clock of the ego driver with both their torso and head

facing the ego driver. Their hands are held flat at their chest, facing the ego driver, while they

move back and forth towards the ego driver, gesturing for the ego driver to reverse.”

2. “... They are facing you, shaking their head, indicating denial of driving permission.”

3. “They’re gesturing a flat hand towards the ego driver. <skip>” (Remaining information towards

other subjects is currently excluded from the annotation.)

7.1.2.5 Gesture & Authority Classification Labels

The classification is limited to the ego driver and overlooks gestures not directed towards the ego

driver. In cases of multiple gestures from a single subject, we classify the gesture directed towards the

ego driver. Be aware of the potential for insufficient utilization of Drive, as it has multiple meanings.

Instead, we use ‘Pass’ to mean drive across an intersection, ‘Left’ and ‘Right’ to mean turn, and ‘Ad-

vance’ to mean drive wherever. ‘Idle’ is not being used, as I only focus on direct gestures; however,

it is still included for clarity. The gesture classification classes are inspired by [4]:
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#. Gesture Color Description
0. Idle Amber No gestures
1. Transition Purple Initial or ascending gesture
2. Stop Red Stopping in any manner
3. Advance Green Drive forward in any manner
4. Return Green Backup by reverse or turn the vehicle
5. Accelerate Green Increase current speed
6. Decelerate Red Decrease current speed
7. Left Green Turn to the left lane
8. Right Green Turn to the right lane
9. Hail Blue Hail for a ride
10. Attention Blue Seeking awareness
11. Pointing Blue Pointing in any manner
12. Other Gray Nonnavigation gesture
13. Unlisted Gray Unlisted navigation gesture
14. Unclear Gray Unknown or unclear

Table 7.2: Gesture classes used to annotate directions towards the ego driver. It is not sufficient to utilize
‘Drive’ as a word, as it is too broad. ‘Pass’ means drive across, ‘Left’ and ‘Right’ mean turn, and ‘Advance’
means drive wherever. The aspect of Pointing is optimal in 3D space for understanding specific locations. For
now, it is only seen as a class classification, not a particular location. ‘U-turn’ could have its own class, but the
AV should understand that it should go back, in any manner it figures out to be the safest and fastest. The term
‘Unlisted’ is not supposed to be used, but it can be used in cases of forgotten navigation gestures. Instead of
leaving the annotation blank, which could confuse the process, this term can be used to reanalyze. Similarly,
‘Unclear’ is used to avoid incorrect annotation by guessing. These samples can either be re-annotated, excluded,
or handled in other ways.

#. Authority Color
0. Officer Blue
1. Firefighter Red
2. Civilian White
3. Safety vest Yellow
4. Unlisted Gray
5. Unclear Gray

Table 7.3: The available authorities included in the dataset are listed with corresponding ID and color. The
authorities may also be annotated separately, with only the authority class for each pedestrian ID. For now, I
merge them.

7.1.2.6 Format

The annotation includes bounding boxes and IDs for each pedestrian, if multiple pedestrians are in the

scene. To simplify the concept for now, the gesture class only describes the gesture towards the ego

driver. A description is provided for each pedestrian separately, while maintaining the overall picture

in relation to other subjects. The caption annotations are supplemented with bounding-box data to

link each pedestrian ID to its corresponding bounding box in every frame. See example in Table 7.4.
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video camera ped id start frame end frame auth id gest id body desc interpret desc
str str int int int int int str str

video 04 front 24 41 56 1 2 “..flat hand..” “..stop..”

video 04 front 24 57 63 1 12 “..nods head..” “..approve..”

video 04 back 71 45 56 0 10 “..points..” “..go there..”

video 04 back 52 48 46 2 13 “..spins..” “..unknown..”

Table 7.4: Annotation format example including multiple pedestrians. The annotations contain the features:
Name of video (video) , Name of camera (camera) , Pedestrian ID (ped id) , Start frame at movement
(start frame) , End frame at movement (end frame) , Authority class ID (auth id) , Gesture class ID
(gest id) , Body movement description (body desc) , Interpretation description (interpret desc).

7.1.2.7 Driver Action

Instead of classifying the data with finite classes, it is continuous data in the form of GPS locations.

As a supplement to the videos and annotations, we recorded the location of the ego vehicle. We

used the app GPS Logger1, which records the longitude, latitude, speed, altitude, and direction of the

phone. This increases the properties and usability of the dataset. I aim to utilize this as a numerical

response and for the action labels in the conflicting samples. The post-processing included syncing

the GPS data with the recording. An undergrad was in charge of this task, with guidance.

7.1.3 Description

The complete dataset comprises 38 samples, ranging from 12 to 56 seconds. Each sample includes a

thumbnail, 360o view across four cameras, and a class and caption annotation for the specific move-

ment for the ‘Front’ camera, explained in Section 7.1.2. Fig. 7.2 shows an example of a conflicting

scenario. To assess the recording of the data, we had a group of four people with one ego vehicle and

one other vehicle. The footage is recorded from the ego vehicle using a 2022 Tesla Model Y, equipped

with four cameras to achieve 360o view. This is visualized and explained in Fig. 7.1. The actions of

the ego driver were decided by the individual driver, instead of following a fixed set of rules. This

was selected to increase the realism of the scene. This introduces the prediction ambiguity, where the

model can potentially make a safer and better decision than the ground truth.

1GPS Logger, BasicAirData, Google Play Store
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Figure 7.1: Both datasets were recorded using a 2022 Tesla Model Y, which includes four cameras as ‘Front’
(1, blue), ‘Back’ (4, red), ‘Left reapeater’ (7, yellow), and ‘Right repeater’ (8, yellow). The ‘Front’ and ‘Back’
cameras are angled directly, whereas the ‘Repeater’ cameras are angled to record mainly behind the car. The
illustration is a crop of Fig. 1 in [35].

Figure 7.2: Example of Act-CANG ‘video 31 Front’ (crop), showing a supposed ‘police officer’ (left) and
a civilian (right) gesturing the ego driver towards opposite directions.
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Figure 7.3: Distribution of occurring gestures in the Act-CANG dataset. All gestures listed in Tab. 7.2. Each
count is only of every occurrence, and not for every frame.
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7.2 Acted Traffic Gestures (ATG)

Due to the limited data available on pedestrian gesturing to the ego driver, additional samples were

collected firsthand. As the model learns the relative position of the joint points of the person, the

initial dataset will include data from a single person, which should be enough to get an estimate. With

the option of extending it to multiple people if the model can not be generalized enough.

The goal for the dataset is to include the selected types of gestures from multiple distances and angles

in front of the car and merge the movements with various actions, such as running, walking, startled,

etc. As the data is collected in video format, a sufficient number of frames should capture a high

diversity of movements.

7.2.1 Pedestrian-camera Distance

To determine how far away recordings of gestures should be collected, a safe distance for a braking

vehicle was calculated. This gives a good idea of the distance at which the pedestrian should be de-

tectable to react. The speed limit in urban areas is around 50 km/h, making it a good measurement to

utilize in this test. The computing time, referred to as reaction time, is set to 0.1 seconds.

The brake distance is computed at 50 km/h to be 14.5 m. Adding the distance driven for computa-

tion/reaction time, with 0.1 s being 1.389 m. A total of 15.889 m traveled. This indicates the model

needs to be able to detect and perceive the gesture of a pedestrian from at least this far away. For good

measurements, the number is rounded up to 20 m.

The brake distance is computed at 20 km/h to be 2.24 m. Adding the distance driven for compu-

tation/reaction time, with 0.1 s being 0.556 m. Traveling a total of 2.796 m.

The lowest driving speed in a parking lot, where this scenario is usually in effect, is around 5 km/h.

The brake distance is computed at 5 km/h to be 0.14 m. Adding the distance driven for computa-

tion/reaction time, with 0.1 s being 0.139 m. Traveling a total of 0.279 m.

An initial test was conducted to determine the distance at which the camera/car could detect and

estimate the pose of a pedestrian. A simple test was conducted with a participant waving at distances

of 1 m, 5 m, 10 m, 15 m, and 20 m from the camera. The video was recorded in a lab hall with

multiple light sources to illuminate the participant. The pose estimation model was run on this video.

The pose estimation distance test using ‘yolov8-pose’ showed that it can detect the participant with

a confidence of 0.8 to 10 meters. However, this decreases to 0.4 at 15 meters, and the waving arm is

not detected correctly. The detection fails above 15 meters. This proves that the data should only be

collected from 15 meters away from the car. However, a few recordings were still collected from 20

meters away to advance the dataset.
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A car’s hood is approximately 1.1 meters long, which also makes the shortest distance between the

camera and a pedestrian located in front of the vehicle.

The final selected distances between the participant and the camera from which data will be collected

are 1 - 5, 10, 15, and 20 meters.

7.2.2 Resources

The ideal location would be a common urban area or a similar setting, with sidewalks close to the

road on both sides. This will give a good indication of the pedestrian’s realistic position relative to the

ego car. Having this or multiple scenes like this, both in and outside of shadow, can make for more

diverse data. The road must be long enough to obtain data from a distance of at least 20 meters and 5

meters wide, thereby increasing the number of available positions. The necessary equipment includes

cones to mark distances, a high-definition (HD) camera, a tripod, and a minimum of one participant.

7.2.3 Gesture List

The final datasets include the following gestures, which were performed across two iterations. All are

directed at the ego driver and include gestures relevant to other hypothetical vehicles.

Category Gestures
Basic Stop; Reverse; Advance; Hail; Attention;

U-turn
Contextual
Depends on the environment or car features Left; Right; Proceed; Accelerate;

Decelerate; Pull over
Head movement
Using the head to communicate Left; Advance; Right; Affirmative;

Negative
Simultaneously
Multiple gestures and directions Stop, advance; Stop, stop, advance (head)

Sequential
Gestures in sequence Stop, and drive; Me, there, not; You, stop

Pointing
Precise locations Go there; Look there

Irrelevant / Social
Non-navigation gestures Complain; Thanks; Idle; Shrug; Apology

Table 7.5: Categorization of hand gestures. The ground truth labels are found in Section 7.1.2, as these
categories are not the labels.

Other samples were excluded from the recordings due to their increased complexity in interpre-

tation and meaning. The category ‘Question or instruct’ distinguishes the gesture as a question or

an instruction given to the ego driver. An example could be ‘Location’, where a pedestrian points

at a location, either to ask if the ego driver is going to that location or to instruct them to go to that
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location. Or ‘Crossing’, where the pedestrian requests or informs the ego driver that they are crossing

the road.

It is challenging to consider all possible ways to communicate with a driver. This requires con-

sidering multiple scenarios in both locations and cultures, further proving the importance of this ap-

plication. To assist this list, real-life scenarios should also be collected to replicate or use as optimal

data.

7.2.4 Post-processing

The post-processing of the video includes cutting, annotation, and data processing. They are cut

to fit only the gesture with a time margin before and after. A script was created to handle CSV files

containing the cuts, eliminating the need for manual handling. This was done because the original data

needed to be recut. This required reprocessing all videos to find the specific frame, as the annotations

were already completed. Using a fixed CSV file would avoid this issue if needed again, and also make

it easier to adjust cuts after reviewing the clips. The annotation was initially done for every 8th frame

combined. As explained in the paper [4], this was done to increase the rate of specific frames where

the gestures were detected. The paper proved that the VLMs would not work with that few frames

available, so annotations were added for each clip to evaluate the enhanced VLMs. Additionally,

the paper demonstrates VLMs’ inability to classify given classes, so this section of the dataset, for

starters, only contains classification annotations.

7.2.5 Description

The described dataset is an extension of the original VLM evaluation paper [4]. I extend this dataset

with 118 annotated samples of single gestures, bringing the total to 127 samples for this evalua-

tion. However, I only evaluate on the extended. The extended dataset includes these classes with

the amount of each: 3×‘Idle’, 26×‘Stop’, 22×‘Advance’, 19×‘Reverse’, 7×‘Decelerate’, 3×‘Left’,

8×‘Right’, 6×‘Hail’, 10×‘Attention’, and 14×‘Other’. The videos named 118 and higher in the

extended version are sequential and have not been annotated, as they require a different type of an-

notation. This is for more complex gesture understanding and will be on hold until the more basic

ones can be classified first. There are 22 ‘Sequence’ samples. The extended dataset has a total of 140,

making the whole dataset consist of The data is set in varying direct sunlight and shadow in an empty

part of a parking lot. A single participant is 1 to 20 meters away from the camera. A cone is marked

approximately every 5 meters.

7.3 Instructive Traffic Gestures In-The-Wild (ITGI)

The dataset is a part of the VLM Evaluation Paper [4], but in short, it contains police enforcement

performing real navigation gestures in-the-wild traffic. After the submission of the paper, naviga-

tion gestures were annotated according to the CANG dataset, with the help of the undergrads at UC
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Merced Mi3 lab. The recording vehicle is the same as explained in the Description Section 7.1.3 in

the CANG dataset.
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Figure 7.4: Distribution of occurring gestures in the ITGI dataset. All gestures listed in Tab. 7.2. Each count
is only of every occurrence, and not for every frame.
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8 VLM Enhancing for Navigation Gestures

We showed proof that the current VLMs are incapable of captioning and classifying human gestures

in a zero-shot setting. This study is written as a scientific paper ‘Can Vision-Language Models Un-

derstand and Interpret Dynamic Gestures from Pedestrians? Pilot Datasets and Exploration Towards

Instructive Nonverbal Commands for Cooperative Autonomous Vehicles’ [4] by Tonko Bossen (me),

with Andreas Møgelmose and Ross Greer as supervisors. It is attached as Appendix A. The final

paper was refined based on the reviews of the submitted paper. The reviews are summarized and

analyzed, along with an improvement plan, as Appendix C.

This paper lays the foundation for its primary focus: enhancing and evaluating VLMs for caption-

ing and classifying human navigation gestures in a zero-shot setting and traffic scenario.

The code for the paper is found: tbosse20/gestV LMeval,Github.com

The enhanced aspect is found in the branch Enhance: tbosse20/gestV LMeval/tree/enhance,Github.com

8.1 Enhancing Methods

This chapter explains the methods used to ‘enhance’ the VLMs to avoid fine-tuning. I discuss the

implementation of each of the two selected methods ‘Pose Projection’ and ‘Supplementary Body

Description’. These methods were selected ...

Figure 8.1: Sample video 20, ‘Decelerate’ visualized with the projection- and the SBD-method is: “They’re
face’s tilted down. Left hand is right and below their face with the palm facing down. Raised fingers are:
Thumb, Pinky. Right hand is left and below their face with the palm facing up. Raised fingers are: Thumb,
Index, Middle, Ring, Pinky.”. The cones each indicate a distance of approximately 5 meters.

The enhancements are built upon the VLM VideoLLaMA3-7B [51], since it showed the best

results in the evaluation [4]. Each method supplements the VLM to enable it to caption pedestrian
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navigation gestures. The primary enhancement methods are Pose Projection, Supplementary Body

Description (SBD) with VLM, and the two combined.

The prompt aims to endow the caption to classify the navigation gesture using the available classes

in Section 7.1.2. However, I removed some classes since they were more complex. The ‘Transition’

class, since the video is annotated as a whole, and ‘Pointing’, since some gestures include pointing,

which can be misleading, since this study excludes pointing. Early experiments showed a strong

tendency to over-predict ‘Pointing’, also resulting in removing this.”

We evaluate using an NVIDIA GeForce RTX 4090 24GB with float16 precision and Flash-

Attention 2.0 [12]. The VLM’s hyperparameters are temperature at 0.2 and 512 maximum new to-

kenssame setup used in the evaluation [4].

8.1.1 Supplementary Body Description with LLM

A preliminary experiment was conducted, parsing a manually corrected description of the partici-

pant using these degrees to the large-language model, ChatGPT-4o. The anticipated classification

of video 20 should be ‘Decelerate’, but was instead ‘Stop’. Another sample video 27 where the

participant waved their arms above their head should be classified as ‘Attention’, but again it was

classified as ‘Stop’. This gives insight into language models’ capability to understand human bodies

and the meaning of their gestures. Still, body descriptions should be explored using VLMs since

they can merge temporal visual and textual information and hopefully interpret gestures correctly. It

was thought that this setup would also be used for a complete experiment, but due to the preliminary

experiment, it was under-prioritized.

8.1.2 Pose Projection

This method enhances the VLM by projecting visual representations of pose estimations onto the

person. It includes the edges and vertices of the face mask, hands, finger joints, and general body

pose.

The selected pose estimator is MediaPipe Holistic [29], as it is an out-of-the-box model that

projects and estimates both the face, body, and hands. Other methods, such as Ultralytics YOLOv11-

Pose [22], only estimate the body and face without the hands, and OpenPose [8] is too large a model

for this initial single-person evaluation.

This method extends the prompt with the phrase: “The pose is projected upon the person, to help

understand their pose.” for the VLM to understand the usage of the pose skeleton.

8.1.3 Supplementary Body Description with VLM

This method, referred to as SBD, enhances the VLM by supplementing the prompt of each frame with

‘natural language’ to describe the person’s body position roughly. As I advance the VLM in zero-shot

classification, this method purely describes the body without interpreting any specific details. Then,
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(a) Sample video 100, ‘Right’. “Theyŕe face’s
tilted down. Left hand is left and below their face
with the palm facing the camera. Right hand is
right and below their face with the palm facing the
camera.”

(b) Sample video 102, ‘Right’. “Left hand is
right and below their face. Right hand is right and
below their face with the palm facing right.”

Figure 8.2

the interpretation is left for the VLM or an LLM. As this method employs natural language, it provides

a rough description of the body rather than using precise distances (this can be explored in a future

experiment).

We use pose landmarks to hard-code descriptions of the person’s face and hands. Initially, I used

the refined face and hand landmarks, but due to low detection (argued in Subsec. 8.2), I chose to use

the face and hand landmarks from the pose, since it was detected more often. The description details

in-capture the essence of the essential body parts to interpret gestures. I describe the following. 1. The

faces’ and palms’ direction in six states (facing: ‘Camera’, ‘Left’, ‘Right’, ‘Up’, ‘Down’, ‘Back’). 2.

Each hand’s position relative to the face vertically in three states (‘Above’, ‘Horizontal’, ‘Below’) and

horizontally in three states (‘left’, ‘vertical’, ‘right’). The left and right are described from the ego

driver’s point of view. I flip the z-axis to ensure this.

Initially, the depth of the hand and the fingers raised were also included. The depth of the hand

was in three states (‘In front’, ‘Beside’, ‘Behind’), using the ratio of the hand and face. However, this

was inaccurate in cases where the hand was tilted, resulting in a smaller bounding box. The raised

fingers were removed since the fingers of the hands were unreliable and were only detected in approxi-

mately 45% of the frames (Subsection 8.2). We had each hand’s fingers in multiple-label classification

(‘Thumb’, ‘Index’, ‘Middle’, ‘Ring’, ‘Pinky’), making the ‘Peace’ gesture labeled as ‘Middle’ and ‘In-

dex’ fingers raised. I trained a graph neural network (GNN) on a converted class-annotated gestures

dataset [23] to match the fingers raised in the gesture. We increased the diversity of the training data,

as most samples were directed toward the camera, making them nearly “perfect”. This was done by
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Figure 8.3: Sample video 137, ‘Decelerate’ visualized with the projection and the supplementary body de-
scription is: “They’re facing the camera. Left hand is right and below their face with the palm facing left.
Making a fist. Right hand is left and below their face with the palm facing the camera. Raised fingers are:
Thumb, Index, Ring.”

augmenting the data by applying geometric and photometric transformations: random rotations of π

radians, isotropic scaling of 20%, and 1% Gaussian.

8.2 Enhancing Methods Validation

To ensure the methods’ functionalities, a ‘short’ validation was conducted by analyzing them in isola-

tion. We validate the pose projection method in conjunction with the pose estimation functionality to

accurately predict and project poses. The most reliable method to validate this would be to annotate

each frame with the accurate pose, or, to be less precise, each subpart, such as face, hands, and general

pose. However, it was thought that avoiding the annotation of each frame would be more efficient, as

it would be too time-consuming and is not the priority of this study. To gain a general understanding

of the functionality without annotating each frame, I found it helpful to count the number of frames

for which each body part was estimated, as the participant remained on screen throughout the entire

video. As mentioned earlier, this does not validate the correct projection but rather quickly estimates

how many of the frames the pose estimation is functioning correctly. This will indicate whether the

pose-estimation model is compatible enough for this purpose. With approximately 80% of frames

estimated with the participant, the VLM could potentially have a chance to classify the gesture cor-

rectly. Still, with fewer pose-estimations, it will be less likely to prove the pose-estimation model as

the flaw instead of the enhancement method itself. Since the SBD-method depends on pose estimation

and needs frame-based annotation to perform more accurate validation, I do not investigate further

validating the body description.
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The validation shows that out of 9,150 frames across the 118 videos, the participant’s body was

detected in 86.28% (7,895 frames), detailed face in 34.96% (3,199 frames), left hand is detected

47.33% (4,331 frames), and right hand is detected 44.73% (4,093 frames). This indicates that only

the body is projected in most frames, which should be sufficient for the projection method. However,

since the SBD-method depends on the pose detection of each body part mentioned, it only makes a

complete description of the body in less than 34% of the frames. This decreases the reliability of the

final results of the SBD-method.

To fix this, I used the face landmarks of the face and hands to compute the relative position instead.

I also tried this for the orientation of the face and hands, but the landmarks were too close to compute

in 2D.
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9 Results

The evaluation method used is inspired by the Classification evaluation method in VLM evalua-

tion [4]. They ... To further analyze these methods’ capabilities, I distinguish the classifications

by the parameters’ distance’, ‘lighting’, and ‘complexity’. Since the palm direction was unreliable,

shown in Fig. 8.2, I evaluated both with and without the hand direction description.

Accuracy ↑ Precision ↑ Recall ↑ F1-Score ↑
Plain 0.04 0.11 0.04 0.05
Projection 0.07 0.14 0.07 0.06
SBD 0.09 0.01 0.09 0.02
SBD + Hand 0.10 0.01 0.10 0.02
Proj. + SBD + Hand 0.08 0.23 0.08 0.03

Table 9.1: Classification results as weighted average from the extended version of ATG. The results across 118
videos show that all methods decrease the VLM’s ability to classify static or dynamic navigation gestures. Even
the static navigation gestures were not classified correctly. The weighted average F1-scores of the enhanced
methods are ±0.03 of the plain VLM’s weighted average F1-score of 0.05.

Preliminary experiments revealed a significant skew towards predicting the classes ‘Other’ and

‘Pointing’. They were removed not only due to this skew but mainly because none of the samples

were labeled with these classes as their ground truths. They could be an ‘easy’ classification for the

model, even if it’s technically correct.
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Figure 9.1: The predictions are distributed as follows, with each model including the ground truth. The
predictions are heavily biased towards the ‘Idle’ and ‘Attention’ classes. The methods predict only these classes
combined from 50% in ‘Projection’ to 99% in ‘Describe’, whereas the data contains 11% of these two classes
combined.

We identified a pattern in the videos that was accurately predicted by all methods. None of the

samples was classified correctly by all four methods. The term ‘clear’ refers to how visible and

distinguishable the movement is. The samples classified correctly by three of the methods were

video 26, video 28, and video 29, which are all ‘Attention’. The movements are similar and clear.

Across the samples, the participant is centered at 10 m, left at 10 m, and left at 2.5 m. However,

video 27 has almost similar movements, if not slightly clearer and centered 5 m. video 98, ‘Idle’
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is the participant looking at their phone to the left and 7.5 m from the camera. The only video that

two or more methods have correctly classified, which is not a ‘Idle’ or ‘Attention’ class sample, is

video 20, ‘Slow’. This video is approximately 5 meters away, with a clear view of the arms.

It seems more or less as if the methods are guessing only with a bias towards specific classes. To

reduce ambiguity in guesses, I reran the experiment to decrease random classification.
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10 Discussion

Pedestrian-gesture classification remains an underexplored field due to the limited availability of data,

although extensive research on human gestures makes integrating these models into pedestrian detec-

tion feasible.

10.1 Annotation Framework

The data processing, handling, and annotation process must be highly structured and have a clear

set of guidelines. The data names should be consistent and rounded to zero for every process step.

For example, videos and frames would need to be zero-indexed every time. Later renaming could

potentially lead to mistakes and be tedious due to the large amount of data. The entire data structure is

also essential, especially when others need to use it. The datasets were well-structured in their various

forms, including individual videos and clusters of videos. The code was optimized to handle and

understand the different structures. This took some time to implement, but it was worth it, as it made

later adjustments easier. Seeing the annotation used by the undergrads made me change the whole

structure. It was initially thought to work dynamically with raw, clean individuals and concatenated

files, so the code would not have to be adjusted or re-implemented for each step of the data process. It

ended up being tailored specifically for individual samples by locating the corresponding data file for

each visualization. This made it time-consuming to use, since the annotator would have to write in

the specific location of each file. However, this approach seemed more straightforward to understand

than a specific data structure, where the system would search for a particular file without knowing

its name. This can be ineffective when examining the data as a whole, but since the person can only

view one sample at a time anyway, it should not be a significant issue. A potentially better structure

of the data could be to have all videos in the same folder, labeled by both the video and camera

names, rather than issuing individual folders for each cluster. It makes sense to work with them in the

clusters, by concatenating and editing them, but then merging all clusters into one folder. The issue

of having clusters as subfolders is, first of all, locating the specific file. This is not the biggest issue,

but it can become a problem if the data structure is not maintained consistently. This happens if you

were only to download a single sample from the data. Here, it also becomes an issue, as each ‘front’

camera is named accordingly in the cluster folder, as they are specified by video name in the cluster

folder name. However, when downloading multiple front files, each one must be renamed manually.

Keeping all files in a single folder would already be named by video and camera.

10.2 Evaluation Paper

Extended discussion of the paper: Overall, it demonstrates that even expert-generated captions strug-

gle to achieve a high cosine similarity score. This suggests that there should have been more par-
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ticipants to provide ground-truth annotated captions for comparison, to generalize the results more

effectively, as was attempted in the second comparison, or to include more expert-generated captions

to filter out noise. It does not seem like it would make a difference in the results, but the prompt for

the VLMs and the expert captions should have been the same or more similar.

Reconstruction could have used another metric, as the temporal difference would significantly

impact the result. Although the movement could be precisely accurate, it might not be reenacted in

the same frame as the original video. Reconstructing the caption from multiple sources should have

been done in a different order to avoid previous knowledge. This would require more data to show a

significant difference in the generation methods.

The difficulty of comparing sentences as a source of singular ‘truth’ is well-known, making the

optimal annotation of ground truth captions difficult to construct. With this in mind, I evaluate VLM

output in two ways: the comparison of the similarity of the model output to ground truth captions,

and the measurable utility of the output toward the success of the driving task.

10.3 Enhancing

It was hoped that the methods demonstrated capabilities in the samples that were at least 1-5 m away

from the camera. The results and post-analysis indicated that the predicted classifications are largely

random, with a predominance of ‘Idle’ or ‘Attention’. The methods do increase the capabilities of the

VLM, but not very significantly. The sample video 20 could be predicted more, since it is closer to

the camera, but since it is only one close sample, it might as well be random.

The findings indicate there is no foundation for VLMs to caption gestures with or without en-

hancement methods, especially given that the old, flawed SBD method is more accurate than the

corrected SBD.

A significant aspect of the VLM that will help it succeed in this task is to perceive and utilize

natural language. The VLM is potentially trained only on single-word or a few-word captions. This

is unsuitable for selecting a classification in the prompt or describing the entire human body in both

static poses and motion.

The paper generates longer paragraphs of text in the examples. Figure 9 shows a basketball court

with the prompt “What part of a basketball game is this?”. The caption explains how a basketball

player is holding a ball relative to themselves “He’s holding the ball and preparing to take a shot,

with his arms raised above his head in the classic free throw stance.” [51]. This makes a case where

the VLM is actually performing the task I study, even without being prompted.

It is crucial for any model during this task to fully perceive the participant’s body in relation

to both the participant and the ego driver. As the participants moved in many directions from the

perspective of the ego driver, it became complicated to recognize movement and position. This is

especially true for gestures directed towards the ego driver, which can be even more challenging to

capture using a mono-camera. An improvement to this could be utilizing 3D pose estimation of the

subject. This would not only potentially be more accurate poses, but it would also ease perceiving
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gestures towards the ego driver.

Since I mainly use the body pose in the final version, I could use Ultralytics YOLOv11-Pose [22],

or increase the accuracy with OpenPose [8]. However, these poor results do not indicate that it would

make a huge or any difference.

10.4 Research Questions

The research questions are addressed and discussed. RQ1 has been discussed in the enhancement

section. RQ2 and RQ3 are both difficult to answer, as they involve decision-making, which was

halted. After the shift in the project, a new problem statement and set of research questions would

be optimal to construct to answer, rather than those that focus on decision-making. RQ2 begs the

question of inferring a model to decide these scenes of conflict. It cannot be concluded, but a lot

of research in this study suggests the need for a more complex model than an attention model that

includes each pedestrian. This is not only to avoid training the model or doing it in a zero-setting, but

also because so many parameters go into this decision. It does not depend only on the authority, but

also on the pedestrians, and everything about it. It can vary from driver to driver. An example of this

is the recording of the Act-CANG dataset. It was thought that the driver would obey the civilians’

command, rather than the police officer’s, in the scene. This does not align with the law, but the

thought process was that the civilians had additional information or empathy that the officer did not

possess. However, the driver still followed the police officer, claiming the civilian did not seem severe

enough since they were smiling. This made the civilian untrustworthy.

To evaluate the ego drivers’ decision-making, does not come down to the individual priority, as

initially thought. This comes in the nature that the more complex decision does not lie only with the

authority, but can vary depending on a countless number of variables. To better plan the vehicle’s

action and evaluate it, it is thought to utilize trajectories instead of finite classes. This is, however,

first suggested when there is an improvement in the decision-making.

10.5 Limitations and Challenges

In some cases, it was manually observed that the VLM would prefer to ‘Stop’ or ‘Decelerate’ the car,

where it was supposed to maintain a constant speed, by arguing that driving in a narrow street would

be safer through ‘Decelerate’. However, by stating it was only driving 5 km/h and even 0 km/h in

the prompt, it still preferred this as the safest course of action. This reminds us that the loss should

minimize travel duration, as the safest option would probably be not to drive at all.
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11 Conclusion

The overall problem was bigger than initially thought. It was initially thought to be easy to find

datasets of pedestrians gesturing towards the driver, since it seems pretty familiar when driving as a

private person. Gestures in conflict, however, are a more uncommon scenario and an edge case. As

the report shows, that was not even the most significant issue. The first task, recognizing pedestrians’

gestures, was the biggest issue in this project. Taking over the focus, saving the decision-making in

conflict for another time.

In this study, the primary focus was to detect pedestrian-to-driver navigation gestures in a zero-

shot setting using VLMs. It was first proven in the VLM Evaluation paper [4] that they were not

capable of this task. The hypothesis lies in improving the ability by enhancing the VLMs using the

methods Supplementary Body Description with VLM and Pose Projection, to avoid fine-tuning. None

of these methods showed any increase in accuracy in classifying the extended dataset videos of ATG.

Across 118 samples, each method only had an F1-score between 0.02 and 0.06. This again proves the

incapability of the VLM VideoLLaMA3, as well as the insufficient increase in enhancement methods.

This calls for further research in this domain.

Regarding conflicting scenarios in traffic, further research is needed to conclude this matter. This

study, however, highlights the complexity of this problem and the scarcity of available data. This

study provides a foundation for understanding this problem through data definition and a dataset.

The problem statement and research questions can not be concluded upon. This study gives an

idea for further research to solve this problem. With the constructed datasets and defined problem,

this study is just a small piece of a bigger domain.
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12 Future Work

CANG Dataset

In this annotation, we skipped gestures that are not directed to the ego driver. To complete the anno-

tation, all gestures should be annotated. I suggest using a binary flag ego mask to indicate gestures

directed towards the ego driver. Additionally, this enables the possibility of expanding the annotation

to include gestures directed at subjects other than the ego driver. In a more complex scene under-

standing, the direction could be specified by the individual subject’s ID or location instead of using

a binary direction feature. This may be more accessible using 3D scenes and object permanence or

continuity.

Additional Enhancing Methods

This study highlights the limitations of enhancing VLMs, suggesting that other methods may likely

follow a similar path. However, another idea for a method, that was not included in the evaluation,

was Chain-of-Thought. This method involves the concept of recurring the VLM to enforce itself. The

idea lies in having it ask itself questions about what more it should be looking for about the pedestrian.

Zero-Shot Navigation Gesture Recognition

Train a foundation model encoder that embeds descriptive body movement, which an LLM would

then interpret. This idea came from reading about MotionBERT [53].

End-to-end

Instead of classifying or captioning the gesture, have the image and pose as input, and have the

trajectory as the output. The pose can be complex to classify and describe accurately in relation to

another model to understand it fully. With sufficient navigation gestures, the model should be able to

be trained end-to-end. This avoids middle steps, where the meaning can be lost in translation between

models.
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Abstract

In autonomous driving, it is crucial to correctly interpret
traffic gestures (TGs), such as those of an authority figure
providing orders or instructions, or a pedestrian signaling
the driver, to ensure a safe and pleasant traffic environ-
ment for all road users. This study investigates the capabil-
ities of state-of-the-art vision-language models (VLMs) in
zero-shot interpretation, focusing on their ability to caption
and classify human gestures in traffic contexts. We create
and publicly share two custom datasets with varying for-
mal and informal TGs, such as ‘Stop’, ‘Reverse’, ‘Hail’,
etc. The datasets are “Acted TG (ATG)” and “Instructive
TG In-The-Wild (ITGI)”. They are annotated with natu-
ral language, describing the pedestrian’s body position and
gesture. We evaluate models using three methods utilizing
expert-generated captions as baseline and control: (1) cap-
tion similarity, (2) gesture classification, and (3) pose se-
quence reconstruction similarity. Results show that current
VLMs struggle with gesture understanding: sentence sim-
ilarity averages below 0.59, and classification F1 scores
reach only 0.14–0.39, well below the expert baseline of
0.70. While pose reconstruction shows potential, it requires
more data and refined metrics to be reliable. Our findings
reveal that although some SOTA VLMs can interpret zero-
shot human traffic gestures, none are accurate and robust
enough to be trustworthy, emphasizing the need for further
research in this domain. We make our code publicly avail-
able at github.com/tbosse20/gest VLM eval

1. Introduction
Scene understanding and decision-making in autonomous
driving rely on the ability of systems to predict the future
location of moving objects [1–3]. Still, a limitation of safe
autonomy lies in understanding the gestures of surrounding
humans. This decreases the safety and trust of these systems
in interactive traffic scenarios.

Figure 1. In autonomous driving scenarios, navigation instruc-
tions may come from pedestrians’ dynamic, nonverbal gestures.
Interpreting and responding to such gestures is vital for safe au-
tonomous driving.

While physical constraints of motion may inform tra-
jectory prediction methods for dynamic objects, in this re-
search, we approach the challenge of intent prediction [4],
where motion must be anticipated before it begins. How-
ever, our research considers not only the intention of an
individual agent but also the intentions the agent imposes
on others in the form of instructions [5]. We make a clar-
ifying distinction in uses of the word ‘intention’: borrow-
ing from attention-based learning architecture terminology,
an agent’s self-intention describes their intended future ac-
tions, while an agent’s cross-intention describes the future
actions of other agents as intended by the observed agent.

An agent’s intentional gestures may communicate intent,
querying, and instruction, and often require comprehensive
scene understanding to ensure a safe response, especially
when other independent agents are present in the scene,
making the complete scene motion less predictable. In ideal
settings, a scene may have a formalized focal point, such as
a law enforcement or traffic-directing officer, such as in Fig.
1, whose authority reduces the complexity of interpreting
the scene and selecting gestures to follow. Understanding
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traffic gestures is crucial for autonomous vehicles (AVs) to
function in these formally-directed settings, where the abil-
ity to follow instructions is essential. In non-authoritative or
informal situations, though there is no direct jurisdiction of
control. Pedestrians can signal their own intent, expectancy
of the ego drivers’ intent, or information about the scene.
For example, acting as a vantage point for occluded areas.
While explicit communication from pedestrians occurs in
only 2.7% of road-crossing events [6], it can enhance the
experience and safety of pedestrians and drivers by increas-
ing the scene understanding. In this research, we consider
that the pedestrian is not just a passive agent in the traf-
fic scene, but a source of deliberate, intentional information
and instructions to the ego vehicle, whether or not they are
ordained with authority.

Human gestures can be subtle, yet through common
sense and experience, people can often understand one an-
other using only gestures. However, the interpretation of
gestures can vary between countries and cultures, adding
to the complexity of intention understanding [7]. The wide
range of subtle variations in gestures may be difficult to cap-
ture in any limited-size training dataset, and further may
be difficult to extrapolate in meaningful ways through pose
estimation subtask modules towards gesture understanding.
So, in this study, we seek to understand if vision-language
models (VLMs) trained on foundation-model-scale data
may encode this information to be recovered in a zero-shot
manner. Teaching AV systems to interpret pedestrians’ in-
coming gestures can create a more maneuverable, efficient,
and safer road environment. This research explores how AI
can perceive and utilize pedestrian gestures to make better
decisions.

We perform an initial evaluation using a few online de-
mos to gain insight into this task. Figures 2a and 2b show
two pedestrians extracted from left-to-right from a real traf-
fic scene of the COOOL dataset [8]. Fig. 2b provides
a preliminary example that hints toward the general inca-
pability of VLMs to caption traffic gestures. The VLM
received the image along with the prompt: “What is this
pedestrian gesturing?” using available online VLM demos
BLIP21, VideoLLaMA22, VideoLLaMA33, VideoLLaMA3-
Image4, and ChatGPT-4o5 .

The output prompting these images varied from “The
person in the video is gesturing something that resembles a
farting sound or action.” from VideoLLaMA2, to “...their
body posture suggests they might be trying to stop some-
thing or someone, maintain balance ...” from ChatGPT-4o.
However, even the slightly more promising ChatGPT model

1huggingface.co/spaces/hysts/BLIP2
2huggingface.co/spaces/lixin4ever/VideoLLaMA2
3huggingface.co/spaces/lixin4ever/VideoLLaMA3
4huggingface.co/spaces/lixin4ever/VideoLLaMA3-Image
5chatgpt.com

(a) Girl pedestrian walking in
front of the ego car, looking
down the road, with her arms
down her side (crop).

(b) Man pedestrian gesture ego
driver to ‘Stop’ with one arm
(crop).

Figure 2. Pedestrians from frame 71 from video 0153 of the
COOOL dataset [8]. Zero-shot analysis of these pedestrians us-
ing VLMs fails to capture the significance of their gestures (or
non-gestures) toward the traffic scene.

was quick to hallucinate or misinterpret gestures when pre-
sented with the same prompt accompanying Fig. 2a. This
image was a crop of a little girl walking in front of the ego
driver, facing away from the ego driver with her arms down
her sides. Still, ChatGPT’s output stated she was raising
one arm and waving or pointing. This output expressed fur-
ther insecurity due to image quality despite the visual clar-
ity. These brief examples highlight the impetus for a more
thorough research into the limitations of these models in
recognizing gesture-based human communication.

2. Related Work
Existing VLMs can generate various output forms sup-
porting autonomous driving, ranging from natural language
captions that might inform trajectory generation [9, 10], se-
lection of specific control commands [11], novelty detec-
tion [12, 13], or even end-to-end learning of direct way-
point trajectories [14, 15]. A particular class of models that
are most relevant for gesture recognition are Video Founda-
tion Models (ViFMs) due to the temporal nature of gesture-
based communication [16].In this section, we elaborate on
some existing VLM techniques and datasets toward the safe
navigation task.

CoVLA combines VLMs and object detection to gen-
erate a caption of the scene, which is used to learn a tra-
jectory projected upon the scene image [17]. The usage
of VLMs is considered for the end-to-end training of net-
works, which may naturally include gesturing pedestrians.
Still, we suggest that scene agent gestures can be so funda-
mental to control decisions that implicit end-to-end learning
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may not be sufficient. Further, the existence of confounding
factors (e.g., a green light with a traffic controller simulta-
neously indicating forward motion) may inhibit the model
from learning causality between scene object patterns and
control decisions [18–20]. Further, models like CoVLA
and DriveLLaVA [21] learn precise trajectory outputs rather
than abstract direction commands; the alignment of the lat-
ter may be more suited to learning from gesture, though it
is our intention in developing methods for such gesture fea-
ture extraction that this may also be used modularly within
trajectory learning pipelines.

While existing RGB-media datasets around pose and
gesture focus on ‘action’, ‘pose estimation’, ‘sign lan-
guage’, and ‘hand gesture’ [22–25], there is a gap in data
within the navigation/traffic gestures domain, which pre-
dominantly utilize the upper-body. Non-domain datasets
still provide utility for general pose classification using
VLMs, expanding the general understanding of the capabil-
ities of these models. Within the domain, the Traffic Control
Gesture (TCG) dataset includes 250 sequences of 3D body
skeleton [26]. While this dataset is highly pertinent to our
study, it solely provides 3D pose annotations without the ac-
companying visual data, limiting its applicability in VLMs.
While the anomaly detection dataset COOOL [8] contains
a few scenes of pedestrian gesture-based communication to
the ego driver, the scenes are unannotated and are too few
in number for a gesture-specific analysis.

A promising advancement in zero-shot recognition of
hand gestures using image data is GestLLM [27], which in-
tegrates large-language models with pose-based feature ex-
traction. GestLLM system showed robust performance in
hand gesture recognition, providing one path towards im-
proving the zero-shot VLM issues studied in this paper.

3. Methodology

This study seeks to understand the zero-shot capabilities of
VLMs in recognizing and responding to static, dynamic,
and composite human traffic gestures in RGB videos with
physical body descriptions and contextual interpretations
within driving scenarios. To do this, we utilize three evalua-
tion methods 1. Embedded Similarity, 2. Classification, and
3. Reconstruction to quantify the performance of models in
converting human gestures and motion to text and derivative
meaning.

By using VLMs, intentional gestures (e.g., hand ges-
tures) are emphasized with accompanying (e.g., body lan-
guage and facial cues) second-hand information, which
may or may not agree with the manual (i.e., hand-
communicated) intention.

3.1. Dataset

We create and publish two datasets for this study6: 1. ‘Acted
Traffic Gestures’ (ATG) with a single actor portraying var-
ious gestures to the camera as a hypothetical ego vehicle,
used for this evaluation. 2. ‘Instructive Traffic Gestures In-
the-Wild’ (ITGI) is a real-world encounter of an ego vehicle
with traffic conductors, filmed from four synchronized dash
cameras for a multi-directional surround view, added as ad-
ditional data.

Acted Traffic Gestures (ATG) The ATG dataset fea-
tures a single actor gesturing towards a static camera
recorded at 30 FPS. The camera is 1.6 meters above the
ground and 1 - 2 meters from the participant, acting as a ve-
hicle dash-cam. It is recorded inside a closed room against a
white wall, to lock parameters and reduce noise. The dataset
includes 8 short videos with gestures for ‘Idle’, ‘Reverse’,
‘Go’, ‘Stop, pass’, ‘Follow’, ‘Forward’, ‘Stop, go’, and
‘Hail’, ranging from 1 to 4 seconds. The ‘Stop, pass’ and
‘Stop, go’ are composed gestures of ‘Stop’ to the ego driver,
and ‘Pass’ or ‘Drive’ to other vehicles. These gestures
are acted out as an unofficial but naturalistic traffic guide
rather than following any municipality’s official traffic war-
den gestures. In this report, we detail the initial dataset
properties at the time of writing, and the dataset continues
to be extended with varying environments, distances, and
gestures to enable research across a wider range of scenes
and parameters. Updated dataset details are available in
the repository README.

Ground truth annotations were made by a licensed driver
with oracle knowledge of the underlying gestures instructed
to the actor. This annotator reviewed each video at 8-frame
intervals, without overlapping segments. The traffic ges-
ture label is described from both the pedestrian’s and the
driver’s perspectives combined in each annotation, and it is
interpreted in terms of the pedestrian’s intended communi-
cation towards the ego driver or other drivers. Additionally,
expert-generated captions were made by additional licensed
drivers. They serve both as a ‘baseline’ to assess the over-
all effectiveness and accuracy of the evaluation method, and
as ‘supplementary’ ground truths to emphasize the intended
meaning of the gestures, rather than the specific wording.
The ‘instructions’ considered when generating the ground
truth is formulated as follows: ”Describe the pedestrians’
body posture focusing on their arm position and movement
relative to both themselves (e.g., at their side, in front of
them) and the ego driver (e.g., towards the ego driver, left
of the ego driver), their hand position and shape (e.g., flat
hand faced downward), and the orientation of their body
and face (e.g., facing to the left). Include an interpretation
of potential gestures and their intended recipient (e.g., sig-
naling to stop, requesting to pull over).” A ground truth cap-

6Link to datasets in README: github.com/tbosse20/gest VLM eval
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Figure 3. Frame 18 from the “Reverse” command gesture video.
This frame’s set was annotated with the caption, ”The pedestrian
is standing in front of the ego driver. They are facing their torso
and head towards the ego driver. They are moving their flat palms
back and forth towards the ego driver, gesturing for it to reverse.
They are moving slightly to the side.”

tion example and a corresponding frame from an 8-frame
sequence are provided in Fig. 3. In addition to the short-
term motion analysis annotations, we provide a complete
caption describing the gesture for each complete video.

Instructive Traffic Gestures In-the-Wild (ITGI) The
dataset is collected while driving around town during a bike
race, which involved police enforcement guiding in inter-
sections. It varies from minor intersections with a single
idle police officer and a few cones, to light intersections
blocked by police vehicles with multiple officers guiding
cars. The scenes are all set in formal settings, including of-
ficial traffic regulation gestures and more casual/unofficial
gestures. It was recorded from a Tesla with four built-in
cameras: front, back, right-back, and left-back at 36 FPS.
The data consists of 18 videos ranging from 8 seconds to 2
minutes. We provide this dataset without annotation.

3.2. Models and Setting

The selected models evaluated in this study are VideoL-
LaMA2 [28], VideoLLaMA3 [29], and Qwen2 [30]. The
VideoLLaMA models were selected for their recent notable
performance in the CoVLA paper [17], and Qwen’s near re-
lationship as a subset of VideoLLaMA. We limited our eval-
uation over models which are available to run locally on an
edge device without internet access or API charge, which
excludes candidate model ChatGPT-4o. All evaluations
were run on one NVIDIA® GeForce RTX™ 4090 24GB
compatible with float16 precision and Flash-Attention
2.0 [31]. We use a model temperature of 0.2 and 512 maxi-
mum new tokens.

We use 8-frame samples per caption. This window span
was selected as a baseline for experiments to engage frame-
to-frame captioning with temporal context. The frame rate
was chosen as an estimate of the necessary temporal infor-
mation to reasonably represent a gesture, an area we high-

light for future research. The correct frame rate is a study in
itself, as traffic gestures in this dataset can vary from 0.1 to
5 seconds long, and multiple gestures can be combined into
one command interpretation, making it challenging to cap-
ture a complete gesture and its communicative intent within
a short window of eight frames.

3.3. Prompting

For the purpose of this research, we craft a series of prompts
intended to extract varying types of information from the
VLM. We acknowledge that partial information may en-
able chain-of-thought reasoning as opposed to zero-shot
task success, and that analysis of subtasks may be valu-
able toward ongoing research. Two central pieces of in-
formation included in the prompts are the ‘Context’ (a driv-
ing autonomous vehicle from a dash-cam perspective), and
the ‘Objective’ (retrieving information for safe, intention-
aligned decision-making). Additionally, to the point of sub-
task analysis, our prompts seek to extract either an ‘Expla-
nation’ of the agent’s physical motion involved in the ges-
ture, for an LLM to interpret downstream, or a direct inter-
pretation of the gesture from the VLM itself. This is use-
ful in cases when the VLM does not grasp the concept of
the meaning of the gestures, but could explain the agent’s
movements well enough for an LLM to interpret.

To give the models a broader chance to successfully cap-
tion the gesture correctly, varying text prompts were used
to evaluate each model. The five varying prompts used
are referred to as ‘Blank’ (The prompt is left empty; the
images alone serve as prompt), ‘Determine’ (”Determine
what gesture the pedestrian is making.”), ‘Body’ (”Provide
a detailed explanation of the pedestrian’s body posture and
movements.”), ‘Context’ (”You are an autonomous vehicle
navigating a road. Determine what gesture the pedestrian
is making.”), and ‘Objective’ (”You are an autonomous ve-
hicle navigating a road. Determine what gesture the pedes-
trian is making. Your response will be used by an AI system
to make real-time driving decisions.”), which vary in un-
derstanding and focus. While ideally the accurate interpre-
tation of motion should be enough to inform the meaning
of the gesture, in some prompts we suggest that the VLM
consider the context of the 3D driving scene.

4. Evaluation

The evaluation section consists of the three evaluation meth-
ods: ‘Embedded Similarity’, ‘Classification’, and ‘Recon-
struction’. We approach this topic from multiple angles, in
different degrees of abstractions and focus points. The eval-
uations are conducted using the ATG dataset. Each section
provides a description of the method and the results. Dis-
cussions are combined in Section 5.
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4.1. Embedded Similarity

This evaluation method seeks to understand the similar-
ity between the generated caption and the ground truth
caption. The generated captions’ similarity was eval-
uated by embedding them using the SBERT encoder
(all-MiniLM-L6-v2) [32] and measuring their similar-
ity to the ground truth embeddings using Cosine Similarity
[33]. The cosine similarity scores of the expert-generated
captions serve as a baseline for assessing the overall ef-
fectiveness and accuracy of the evaluation method. To en-
sure that the results are not biased by a particular gesture
or prompt, the outcomes are analyzed separately by prompt
type in Fig. 6 and by gesture in Fig. 7.

To argue for the selected metric, we validated multiple
metrics on decreasing similarity rephrasing of a target cap-
tion. We expect to see a trend of metric values decreasing as
caption quality decreases (relative to the original target cap-
tion). We illustrate the results of this experiment in Fig. 4,
with ‘Ideal’ as the optimal metric trend, which is hardcoded.
The sampled metrics are BERT score [34] (not to confuse
with the SBERT encoder), BLEU [35], Cosine Similarity
[33], Semantic Textual Similarity (STS) [32], Jaccard [36],
METEOR [37], and ROUGE [38].

SBERT was selected as the implemented encoder, due to
its 74% difference in cosine similarity between ‘Equivalent’
and ‘Unrelated’ validation captions, in contrast to Vanilla
BERT [39], showing only an 11% difference. This makes
it easier to distinguish. Other evaluation metrics remained
consistent regardless of the encoder used.

We do not expect a similarity score of 1.0, as the wording
has to be exact for this to happen. That is neither likely nor
intended. The similarity score is considered highly accu-
rate at around 0.80, the score of the ‘Equivalent’ validation
captions, by looking at the validation at Fig 4. Scores near
0.75 are considered moderately accurate as ‘Extended’ or
‘Partial’. Scores near and below 0.55 are considered low
accuracy as ‘Slight’ similarity.

4.2. Classification

Arguing that the semantic sentence comparison is complex
to generate and evaluate, we reduce the model task to pre-
dicting a precise answer with complete interpretation. The
possible classes are the same as the videos provided, plus
additional common traffic gestures, making a total of 9
classes: ‘Follow’, ‘Hail’, ‘Forward’, ‘Right’, ‘Left’, ‘Idle’,
‘Reverse’, ‘Stop’, and ‘Other’. The provided videos include
more complex gestures like ‘Stop, pass’, but to simplify it,
this evaluation method only focuses on the gesture towards
the ego driver. The prompt was formulated with the con-
text, steps to identify the matter, output format, and possible
classes, each with a short description.

Ideal BERT
Score

BLEU Cosine Jaccard METEOR ROUGE STS

Metrics
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Figure 4. We validate the selected encoder and metric by testing
their ability to illustrate the expected similarity trend. The ‘Ideal’
ratio trend is illustrated on the left, used to validate the most suit-
able metric. This involves comparing a target sentence to a series
of rephrased versions with progressively decreasing similarity lev-
els. Two target captions were formulated about the same hypo-
thetical scenario (e.g., “A person signals the ego driver to stop, by
putting their hand towards the ego driver.”). Each similarity level
contains two rephrases cross-validated against both target captions
to reduce sentence noise. The rephrases span five levels of similar-
ity: ‘Extended’ with additional information, which can be difficult
to know it is irrelevant (noise) or incorrect (false positive) informa-
tion (e.g., “A pedestrian raises their hand towards the ego driver
to stop traffic. They are looking scared and in need of help.”),
‘Equivalent’ with the same information (e.g., “A pedestrian raises
their hand towards the ego driver to stop traffic.”), ‘Partial’ with
partially equivalent information (e.g., “A person raises their hand
towards the ego driver.”), ‘Slight’ which is missing important de-
tails (e.g., “A human gestures to the ego driver.”), and ‘Unrelated’
information (e.g., “The sky is blue and the sun is shining.”).
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(a) Expert captions as baseline

Qwen
VLLaMA2

VLLaMA3

Model

0.00

0.25

0.50

0.75

1.00

Sc
or

e

(b) Performance averaged across all
human annotations

Figure 5. Cosine similarity with the generated captions relative to
only the ground truth captions (5a, left) and both the ground truth
and expert captions (5b, right). They are visualized together to
illustrate the decreasing standard deviation due to the denoising.
In 5a VideoLLaMA2 and VideoLLaMA3 show a slightly higher
Q1 than the expert-generated captions. However, experts’ mean
is 0.54, while the mean of VideoLLaMA2 is 0.50, and VideoL-
LaMA3 is 0.49. The mean of Qwen is 0.44. In 5b Qwen is in-
creased to 0.46, but VideoLLaMA2 and VideoLLaMA3 are de-
creased to 0.48 and 0.47. This again shows a diversity in the non-
VLM captions, and there are multiple ways to describe a certain
gesture.
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Figure 6. Cosine similarity between expert and ground truth cap-
tions, across prompts. The varying prompts do not score higher
than 0.75 in any samples, with means from 0.31 in VideoLLaMA3
‘Blank’ to 0.59 in VideoLLaMA3 ‘Body’. This indicates that spe-
cific prompts output more accurate captions than non-VLM cap-
tions. ‘Context’ and ‘Objective’ are around 0.51 across all models,
while ‘Body’ is only more accurate when used with the VideoL-
LaMA models.
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Figure 7. Cosine similarity between expert and ground truth cap-
tions, across gestures. No gesture interpreted by a VLM reaches a
score of 0.75 in any sample. The means vary from 0.43 in Qwen
‘Left’ to 0.52 in VideoLLaMA3 ‘Idle’. Further, no specific gesture
stands out as most readily interpretable.

Model Caption
Ground
Truth

“The pedestrian is standing in front of the ego driver.
They are facing their torso and head towards the ego
driver. They are moving their flat palms back and forth
towards the ego driver, gesturing it to reverse. They are
moving slightly to the side.”

Expert “The person pushes their hands that are facing the cam-
era outwards and brings them back in almost as if their
signaling to stop or slow down”

Qwen (abr.) “The person in the image appears to be making a
stop or ”no” gesture with both hands extended forward
and fingers spread apart, palm facing outward ...”

VLLaMA2 “The pedestrian is making a stop gesture.”

VLLaMA3 “The pedestrian is making a gesture with his hands.”

Table 1. Examples of captions from the video sequence “Reverse”
from frame 16 - 24 given the “Determine” prompt. We manually
analyze the captions focusing on body movement, direction de-
scription, biases, and common traits. We see that the outputs from
VideoLLaMA are short, with only VideoLLaMA2 giving a ges-
ture response, albeit inaccurate. The example from Qwen is only a
snippet, since its response is quite long, and it also responds inac-
curately with ‘Stop’. Examples of generated captions from whole
videos are shown in Table 2.

Model Caption
Ground
Truth

(abr.) “..They look up, and move their hands back and
forth towards me at their chest, indicating me to re-
verse..”

Qwen (abr.) “The pedestrian appears to be waving or ges-
turing with both hands as they walk past the camera.
The movement suggests that they might be saying hello,
goodbye, or simply acknowledging someone..”

VLLaMA2 “The pedestrian is making a stop gesture.”

VLLaMA3 “The pedestrian is making a gesture with his hands.”

Table 2. Examples of captions from the whole ‘Reverse’ video
parsed the ‘Determine’ prompt (without expert-generated cap-
tion). The VideoLLaMA models output the same responses even
when given more video information. Qwen outputs another inac-
curate gesture interpretation. Examples of captions per 8 frames
are shown in Table 1.

Model Accuracy ↑ Precision ↑ Recall ↑ F1-Score ↑
Expert 0.72 0.71 0.72 0.70
Qwen 0.33 0.11 0.33 0.17
Vllama2 0.15 0.28 0.15 0.14
Vllama3 0.52 0.32 0.52 0.39

Table 3. Classification accuracy with 9 classes on ATG with 8-
frame interval. All VLMs have difficulty interpreting gestures cor-
rectly, even toward this reduced task, with a best F1 score lower
than 0.40. This shows they can perceive and interpret traffic ges-
tures to some extent, but are unreliable toward autonomous driv-
ing in their current form. Processed expert annotations success-
fully classify ‘Left’, ‘Reverse’, and ‘Stop’ with F1 above 0.80.
Qwen captions predict ‘Stop’ 56 times and ‘Hail’ 6 times out of
62. VideoLLaMA2 predicts ‘Hail’ 53 times out of 62. VideoL-
LaMA3 confuses ‘Left’ with ‘Forward’ and ‘Reverse’ with ‘Stop’,
and has ‘Hail’ and ‘Stop’ with an F1 above 0.70.

4.3. Reconstruction

We design one additional method of evaluation of machine-
generated captions, built around the premise that precise
and detailed language should carry sufficient information
for a movement to be reenacted accurately. For example,
“raise one arm” can have many meanings, while ”raise your
left arm right above your head” is much more precise and
less likely to be misunderstood. An example is visualized
in Fig. 8.

This evaluation was constructed by reading the captions
aloud to a participant, who would reenact the described
movements as informed in the caption with their interpre-
tation. This reenacted scene was compared with the origi-
nal video to compute a coarse evaluation metric, using pose
estimation and MSE upon the equivalent pose points. The
reconstructed videos were cut only to contain the movement
and sped up to match the length of the original video. Re-
sults of this analysis are shown in Fig. 9.
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Figure 8. Reconstructed gesture using the ground truth caption,
overlay upon the original ‘Reverse’ video (timestamp 00:03).

Qwen VLLaMA2 VLLaMA3 Ground Truth
Model

0

500

1000

Av
er

ag
e 

Po
se

 E
rr

or

Figure 9. The results show MSE for every frame with the cap-
tion from the whole video ‘Reverse’. The participant is not the
same height (Fig. 8) as in the original video, which makes it more
challenging to be accurate, but leaves an opportunity for future
research as an evaluation method. As a further complication for
future consideration, it was found that it was either not tempo-
rally correct to reenact the gesture as it was read out loud, or could
miss minor details if reenacted after reading the whole caption.
However, the ground truth scored better than the VLM caption
reenactments. The Qwen model had a mean score around 600,
VideoLLaMA models around 400, and ground truth around 300.
A few frames scored around 0, an exact pose in the same frame.
However, considering the difficulty of complete synchronous pose
matching, we consider this largely a coincidence with the large
number of frames evaluated.

5. Discussion
Due to the desired application of the VLMs, we explored
prompting for detailed captions and closed-set interpreta-
tion classes. Some of these models vary considerably in
their capabilities of captioning human gestures. Occasion-
ally, some captions would be spot-on, or more accurate to
certain gestures like ‘Stop’ and ‘Hail’, but in all three evalu-
ation methods, the VLMs had a lower score than the expert
baseline. As the expert baseline was also considerably low,
ambiguity and evaluation strategies merit future research for
reliable interpretation of human traffic gestures.

For data collection and experimental design, we note
that the expert-generated captions are biased in knowing
the whole video and the name of the video, which gives
more information about the gesture than the individual se-

quences. To increase fidelity, each expert should too have
varying prompts like the VLMs and the ground truth cap-
tions, but this would require more participants to avoid
‘preknowledge’-biases. This further begs the additional
question of bias: will pedestrians use the same gestures
and behave the same, knowing the vehicle they are gestur-
ing to is an autonomous vehicle and not a human driver?
And what gestures will still be relevant? To ‘Hail’ an au-
tonomous taxi, one may order only through their phone.
For now, we assume pedestrians behave and use gestures
towards the AV like a human driver.

5.1. Gesture Annotation

Annotating the videos could be done in many ways, espe-
cially regarding direction, which could also be challenging
for the VLM or an LLM to understand. Directions could
be explained from both the ego driver’s and the pedestrian’s
perspective using the road.

As the captions are supposed to be combined as a prompt
for an LLM to decide on an action, the captions should in-
clude enough information to assist with this decision. As-
suming the caption is accurate, interpretation of the gesture
should be enough for the LLM to avoid including a physical
description of the pedestrian, which is less quantizable to
discrete control decisions for the autonomous agent. How-
ever, if the model does not understand the complexity of the
real-life scenario and misinterprets, the LLM can still inter-
pret the gesture using the body analysis, depending on the
accuracy of the VLM. Our study also highlights that sen-
tence comparison is difficult to use as a proper evaluation,
as it can be challenging to find a ‘language’ that expresses
all important properties of the body in the context to get the
whole picture. Annotating the captions of the pedestrian can
be tricky and must follow specific rules, as direction alone
can have meaning from multiple perspectives, describing it
as first- or third-person. Additionally, ‘Left’ and ‘Right’ are
not always enough to be precise, and can easily be misun-
derstood as another perspective or direction, and can be es-
pecially confounding in multiview input situations [40]. Us-
ing clock time or compass directions allows a broader scope
of precision. This precision, however, may not be required
and would be inefficient token utilization. In formal set-
tings, directions do not require as much precision, whereas
in informal settings, especially in emergencies, they require
high precision.

We highlight some common characteristics here: P1
(‘Forward’, ‘Follow’, ‘Hail’) mentions the specific arm,
uses “me” as an ego driver, and does not always include
interpretation. P2 (‘Idle’, ‘Left’) changes from “person”,
“guy”, and “subject” when talking about the pedestrian,
states perspective of left and right, (the driver’s left side). P3
(‘Reverse’, ‘Stop + pass’) uses ‘person’ as the pedestrian.
P4 (‘Stop, go’) states both perspectives from the driver and
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the pedestrian. We highlight these differences to illustrate
the inherent ambiguity in interpretation and language de-
scribing an instructive gesture.

5.2. Embedded Similarity - Method 1
The cosine similarity had some issues in terms of ‘Ex-
tended’ information. Especially Qwen habitually expanded
the caption with additional and sometimes hallucinated in-
formation. Indeed, it would not be directly similar to the
ground truth, but as an LLM would interpret the correct ges-
ture even with additional information, it should be evaluated
as similar. However, this would not be possible if the cap-
tion contained too many tokens for the LLM to gather all the
information, and it is also inefficient; the goal is a complete
and compact representation of the relevant information.

Additionally, to validate the metric selection further, the
number of captions could be extended to reduce noise even
more. Adding one more caption to each level found a slight
improvement towards the ideal metric. With more samples,
utilizing, e.g., a boxplot instead of a barplot would enable
more accurate statistical analysis. Specifically, ‘Extended’
should be punished according to the length of the sentence.

5.3. Classification - Method 2
Requesting the VLM to respond with a single classification
from possible classes may eventually be the most reliable
way of evaluating task-specific capabilities. At least before
continuing with more complex evaluation methods. How-
ever, our study shows that the VLMs are incapable of accu-
rate classification. The models had a limited understanding,
with output generalizing mainly to ‘Stop’ gestures.

This evaluation is only 0.70 accurate even with human
expert captions. This was possibly due to the low number
of 8 frames, making it difficult to interpret. Also, some
classes were similar, like ‘Forward’ and ‘Follow’, which
can be challenging to distinguish.

5.4. Reconstruction - Method 3
Using MSE to compute the error for the movement has
some limitations left to future research regarding hand ges-
tures that can change the intent of a gesture significantly,
especially in relation to arm position and with regard to the
movement of various pose keypoints. This would be accom-
modated by weighting the smaller body parts, but an open
question is with what ratios? Further, temporal alignment
of most-similar poses is another important area for future
development of such a reconstruction metric. Forcing both
to stand on a specific mark would eliminate the distance and
location variable, to focus more on the gesture itself.

This evaluation method computes the pedestrian’s exact
position, build, and movement, making an exact reenact-
ment very difficult. Also, to a point where the details to
reenact it correctly are not necessary to interpret the ges-

ture. Reconstructing the human movements could also be
done using Video Generative Models (VGMs), to enable ef-
ficient data generation. This would also show how well an
LLM interprets information and avoids human unconscious
or cultural interpretation.

6. Concluding Remarks
In conclusion, this study evaluated VLM’s capability to rec-
ognize and caption human traffic gestures in the format of
longer descriptions and interpretations. This was evaluated
across three evaluation methods, each varying in abstrac-
tion, reasoning, and response details. Throughout the evalu-
ation, the method results show that currently-trained VLMs
are unreliable in capturing human traffic gestures with one
individual participant in the frame.

The evaluation methods provide a range of evaluation
foci. They can be applied in multiple evaluation studies
containing information comparison in sentences, abstract
human movement description forwarding, and concrete cat-
egorical human gesture classification.

6.1. Future Research
Expanding this study would include varying static and tem-
poral inputs, additional models, and videos with varying
but realistic pedestrians and scenes. Separate studies would
look into varying window sizes and frame rates, and how
the VLMs would behave on only crops of the individual
pedestrian. Alternative methods to evaluate captions should
be explored, such as utilizing an LLM to compare generated
captions with ground truth or identifying missing informa-
tion within the captions as a basis for evaluation.

Advancing VLMs in zero-shot to caption human move-
ment and traffic gestures could be enforced by using pose
models to help explain poses to the VLM or by augmenting
the video by projecting poses upon the video.

Overall, this research highlights the relevance but
difficulty of the task of gesture understanding for au-
tonomous systems to safely navigate in driving envi-
ronments where human interpretation and interaction are
necessary. Future research in both model performance
and evaluation can drive the development of interpretable
and robust human-cooperative autonomous driving sys-
tems.
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APPENDIX C. REVIEW ANALYSIS OF THE “VLM EVALUATION” PAPER

C Review Analysis of the
“VLM Evaluation” Paper

This section summarizes and analyses the received reviews for the first version of the “VLM Evalu-

ation” [4] paper. This helps determine proper changes, additions, and rewriting. We describe a brief

understanding of the review, a discussion, and a camera-ready revised version.

Strengths/Pros

1. Relatively novel, pioneering, and relevant research area.

2. Figures and tables offer a clear and intuitive representation.

3. Datasets fill a gap in gesture-based interaction (Very strong).

4. Evaluation from varying angles.

5. Prompt design insights illustrate influence on VLMs.

6. Similar results demonstrate a lack in VLMs.

7. Discussion section about limitations

Weaknesses/Cons
1. General
(a) Title is excessively long.

(b) The Length of sentences is too long.

2. Related work
(a) Figure 2, clarity in caption, as the girl is difficult to understand (Note: Maybe add full image. I

have maybe seen myself blind upon it)

(b) ”Related work” section should be broader. VLM outside of AV. And influence to study. More than

two references. At least ten.

3. Dataset
(a) Add more variation to the acted dataset (distance, people, gestures) (Note: Wanted to but didn’t

have time..)

(b) Add camera specs and parameters

(c) Scale of datasets is unclear. More specific data and labels. Greater details

4. Models
(a) Include more VLMs (CLIP, ViLA, etc.) (This was tried, without success)

5. ‘Baseline’
(a) Lack of a non-VLM baseline, such as pose estimation. Non-contextualization of the capabilities

of VLMs.
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(b) Include VLMs capability upon general gesture recognition datasets!

6. Semantic
(a) Semantic bias in similarity. May not work using cosine similarity. More claims this. More metrics.

(This should be looked into)

(b) Clarify the selection of similarity metrics

(c) The ”Extended” caption seems unnecessary. Clarify

7. Classification
(a) Classification using ChatGPT introduces additional bias. (Note: This was only done with the

export annotators. Clarify or redo)

8. Reconstruction
(a) Reconstruction is very subjective. Interpretation, embodiment, and timing. (Note: Clarify, that is

the purpose - to illustrate this.

9. Evaluation
(a) Clear explanation of which dataset is used in what evaluation

10. Format
(a) Figure, table, and colors format according to CVPR guidelines

(b) Reference to original published papers (I did that?)

11. Discussion
(a) Add more to limitations, like real-world deployment,

(b) Discuss the reason for the desired caption output, not simply classification.

12. Other
(a) Lack of proposing innovation

Forward Plan

The research of the paper leads to a lot of changes, and additions in the paper (e.g., context window,

additional non-VLM baseline, VLM advancing), but instead of changing them in this paper, it is dis-

cussed and used for future development of the dataset and other papers referring to this paper’s flaws.

(Trial and error). This concludes the forward plan of changes and additions to this paper following

the reviews. A short peek into what the paper leads up to is mentioned below.

Plan for camera-ready version:
1. Formulate parts of the paper that may seem unspecific, unclear, and lacking in detail

2. Format CVPR guidelines references, figures, tables, etc.

3. Add an ‘Ideal’ representation of the metric validation similarity trend

4. Expand Related work with datasets that don’t compile, etc.
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5. Conclude the property of only eight frames, and future work will be across whole videos, as

each video is a single actor and gesture.

6. Expand the acted dataset, with a single caption and classification for each video (can be done

after)

7. (Opt. include CLIP, ViLA, etc. (if works))

Plan after and maybe for the presentation:
1. Enhancing methods: Augmented, described body (fine-tuning)

2. (*‘international ground-to-air emergency signaling system’*?)
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D Post ‘VLM Evaluation Paper’ Planning

1. Evolve VLM evaluation paper

• Record and add more videos, even of me or other people.

• Add the instructive real-life data, with annotations

• General clean up

2. Advance VLM models in traffic gesture detection

• I found a paper advancing VLM in hand gestures enhanced by hand pose

• Use the classification method to evaluate first, and the sentence comparison later

• After VLMs didn’t work, my original idea was to train a classifier from a traffic gesture dataset

I would make myself. That’s also an option, to make that dataset, and separate the VLM and

gesture classification. More or less

3. Evolve reconstruction method

• Try more aspects, such as single frame, fixed position, etc.

• Utilize GenAI

4. Zero-shot VLM and LLM in pedestrian classification and hierarchy ranking evaluation

• Clean up the acted multi-pedestrian dataset (maybe write a publishable paper)

• Make a similar evaluation as we just did

1 makes sense to make a more reliable point, but to do more diverse development too, 2 would be

good. I’ve started a bit on 2 before WACV, and this should hopefully prove the evaluation methods

work. 3 could be fun, but it’s a bit of an entirely new topic. 4 is a part of the bigger picture, and the

cleaning, sorting, and annotating of the dataset at least needs to be completed with the help of the

undergrads, which I’ll be in charge of.
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