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eScience Center at the University of Southern Denmark.
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Introduction

The Fourth Industrial Revolution is transforming our interaction with technology,
driving increased automation, digital connectivity, and intelligent decision-making
across various sectors, including the built environment [1]. As a result, residential and
commercial buildings are undergoing a significant shift, with the Internet of Things
(IoT) playing a central role in developing smart, efficient, and secure infrastruc-
tures. Researchers have leveraged IoT technologies to enhance real-time monitoring,
automation, and control of building systems, thereby improving occupant comfort,
energy efficiency, and security.

In recent years, the development of smart building (SB) control systems has
surged. These systems connect monitored environmental variables—such as temper-
ature, humidity, luminosity, and air quality—with building management systems like
heating, ventilation, and air-conditioning (HVAC) and lighting systems to optimize
indoor environmental conditions [2], [3]. The focus of most studies has been on
optimizing energy efficiency, as buildings consume approximately 40% of global
energy to maintain healthy and comfortable indoor environments for occupants, who
spend over 90% of their time indoors [4]. Research demonstrates that occupancy
detection can lead to energy savings of 39.4% for HVAC systems [5] and up to
75% for lighting systems [6]. Given these significant potential savings, an increasing
number of buildings are being equipped with IoT sensors.

The global adoption of smart building technologies is expanding rapidly. By
2026, the number of buildings deploying these technologies is expected to reach
115 million, up from 45 million in 2022, representing over 150% growth [7]. This
increase is driven by rising energy costs and the growing demand for energy efficiency
among businesses and residents. Non-residential smart buildings will account for
90% of global smart building expenditures in 2026, maintaining a similar share to
2022. Consequently, it is reasonable to assume that most new buildings will be
equipped with IoT sensors. However, while smart technology can optimize energy
consumption, an often-overlooked issue is the waste of resources due to unused or
underutilized spaces.

In the U.S., office buildings account for approximately 4 billion square feet of
real estate [8]. At an average electricity cost of $2.10 per square foot, the total
annual utility expense amounts to $8.4 billion. Research indicates that nearly 40%
of corporate office space is paid for but remains vacant—unused conference rooms,
empty desks, decorative lounge areas, and even entire unoccupied floors. This ineffi-
ciency results in an estimated $3.36 billion wasted on electricity to power, heat, and
cool unoccupied spaces. This corresponds to approximately 32 billion kilowatt-hours
of wasted energy and more than 22 million metric tons of CO2 emissions annually.

In summary, buildings consume vast amounts of energy, making efficiency im-
provements crucial. While IoT devices enhance energy management by optimizing
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various systems, underutilized spaces remain a significant source of waste. Moreover,
improving the utilization of existing resources can prevent unnecessary new develop-
ments, leading to long-term savings. Therefore, decisions regarding space utilization
should be based on data rather than intuition to ensure efficient use of resources.

To optimize resource usage, decisions should be based on data rather than
intuition. While intuition can provide valuable insights, relying solely on gut
feelings can lead to inefficient use of resources. For instance, studies indicate that
many decision-makers prioritize intuition even when presented with contradicting
evidence [9]. However, data-driven approaches offer a more reliable foundation for
optimization. A survey of over 1,000 senior executives conducted by PwC found
that organizations leveraging data effectively are three times more likely to report
significant improvements in decision-making compared to those relying less on data
[10]. This underscores the necessity of using data to analyze space utilization rather
than assumptions, ensuring that underutilized spaces are identified and addressed
efficiently.

Occupancy detection systems have been employed to address this issue, with
commercial solutions capable of monitoring and displaying space or desk utilization
in real time. These systems are highly effective for buildings with clear functional
purposes—such as offices, where people work, or meeting rooms, where discussions
take place. However, in more complex, multi-functional buildings, room usage is not
always straightforwardly linked to function.

AAU Innovate, established at Aalborg University in 2022 to foster innovation, col-
laboration, and entrepreneurship, provides a dynamic, multi-purpose environment.
This study, undertaken in collaboration with AAU Innovate, explores resource usage
within this unique setting. A key challenge in distinguishing it from traditional office
spaces is that the actual activities taking place often cannot be determined simply
by looking at a room’s intended function.

The challenge of effectively managing resources in dynamic environments like
AAU Innovate, where simple occupancy metrics fall short, highlights the need
for advanced solutions such as digital twins. Applying this technology, however,
brings forth fundamental questions critical to its successful implementation. Central
among these is how a digital twin can move beyond mere presence detection to
accurately map and analyze resource utilization based on specific activities and user
interactions, which in turn requires clarity on the necessary data sources, analytical
techniques, and data handling infrastructure. Equally important is understanding
what specific capabilities define truly actionable insights in this context, ensuring the
model provides value beyond basic reporting for operational decisions. Furthermore,
significant considerations involve how such models can be designed for potential
replication or adaptation across other campuses and similar facilities to address
broader applicability and scalability needs. This links closely to the challenge of
ensuring these potentially complex systems remain accessible and user-friendly,
ultimately serving as viable platforms for future research endeavours and practical,
long-term facility management.

The report is organized as follows: it begins with a detailed description of the
project background in Chapter 1, including an overview of the current state of the
art. This is followed by a clear definition of the project’s motivation, scope, and
final research question in Chapter 2. To address these research questions, IoT data
from multiple systems are examined and analyzed in Chapter 3. The integration of
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these diverse systems, involving various strategies, is explored in Chapter 4, which
establishes the technical foundation for the application. The design and development
of the user interface are then presented in Chapter 5. To validate this interface, a
test environment is established as described in Chapter 6. The report concludes with
a comprehensive evaluation and reflection on the full system in Chapter 7.






Chapter 1

Background

The background of this study comprises two main parts. First, the state of the
art in smart building technologies is presented in Section 1.1, focusing on research
closely related to the topic at hand. Second, a detailed description of the AAU
Innovate building and its structural characteristics is provided in Section 1.2. This
understanding of the building’s layout and usage patterns informs the assumptions
made later in this project.

1.1 State of the Art

Recent advancements in smart building technologies have explored various ap-
proaches to energy optimization, occupancy detection, and digital twin implemen-
tations. These studies highlight the increasing significance of IoT, sensor networks,
and machine learning in improving building management and efficiency. This section
delves into three key research areas: energy optimization, occupancy detection
systems, and WiFi-based indoor positioning. While each represents a broad and
active field of inquiry, the discussion below focuses on the research most directly
relevant to the scope of this work.

One notable contribution comes from K. Bécklund, P. Lundqvist, and M. Molinari
[11], which integrates multiple aspects of the questions asked in the introduction. It
presents a novel approach to digital twin technology for higher educational buildings,
emphasizing a human-centric design that caters to both building occupants and
operators. The study showcases a digital twin developed for a Swedish university
campus, integrating 3D scanning, geospatial data, and IoT sensors to create a
real-like navigational indoor environment. Among the various components of the
digital twin, the building analysis module is used to optimize space utilization,
which optimizes space utilization by analyzing occupancy data and room booking
systems to identify underutilized areas and “no-show” rooms. This module provides
insights into how, when, and where spaces are used, enabling building managers to
improve room allocation and reduce energy inefficiencies associated with underuti-
lized spaces. Additionally, the digital twin includes features for real-time navigation,
room booking, and building operations management. It addresses challenges in
indoor environmental quality and operational efficiency, demonstrating the potential
of digital twins to enhance building management and sustainability.
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1.1.1 Digital Twins and IoT for Energy Optimization

The integration of digital twins with IoT systems has been widely studied to
improve energy efficiency in buildings. Z. Ni, C. Zhang, M. Karlsson, and S. Gong
[12] introduced the Deep Energy Twin, which combines ontology-based digital twins
with deep learning to forecast energy consumption. Their case study in a historic
Swedish building demonstrated improved prediction accuracy, with the Temporal
Convolutional Network (TCN) model excelling in point forecasting.

Cost-effective approaches have also been developed, particularly for buildings
without pre-existing sensor networks, which, as discussed in the introduction, can
be the case in older buildings. S. Anik, X. Gao, N. Meng, P. Agee, and A. McCoy
[13] proposed BDL, a system based on Raspberry Pi and modular sensors for indoor
environmental monitoring at approximately $73 per building zone. This approach
offers an affordable and scalable alternative to traditional sensor installations,
making IoT-based energy optimization accessible to a wider range of buildings.

Furthermore, data silos in the built environment sector remain a significant barrier
to effective energy analytics and building management. D. Hugo et al. [14] emphasize
that data from BMS, IoT sensors, and metering systems are often stored in isolated,
proprietary formats, creating interoperability challenges and limiting the potential
for data re-use. To address this, the author introduced the Data Clearing House—
a semantic platform designed to integrate heterogeneous data from BMS and IoT
sensors. This platform facilitates seamless data exchange and analysis, enabling more
efficient energy management strategies. However, challenges such as data health
issues (e.g., equipment faults, incorrect timestamps, and mapping discrepancies)
and the need for ongoing semantic model maintenance highlight the complexity of
achieving scalable, interoperable solutions in this domain.

1.1.2 Occupancy Detection Systems

Accurate occupancy detection is a crucial component of energy optimization and
space management. Various studies have explored sensor-based and machine learn-
ing-driven methods to achieve high detection accuracy.

For instance, A. Floris, S. Porcu, R. Girau, and L. Atzori [15] developed an IoT-
based system utilizing low-cost hardware, such as Raspberry Pi devices with cameras
and environmental sensors. Their lightweight neural network achieved 99.5% clas-
sification accuracy for room occupancy detection and accurately estimated Total
Volatile Organic Compounds (TVOC) levels via regression analysis.

A comprehensive review by Z. Chen, C. Jiang, and L. Xie [16] analyzed different
sensor technologies—including Passive Infra-Red (PIR), CO,, cameras, and Wi-Fi—
and highlighted the effectiveness of sensor fusion and machine learning techniques,
such as decision trees and neural networks, in enhancing real-time detection accu-
racy.

Another study, S. S. Kumar, R. Chandra, and S. Agarwal [17], introduced a rule-
based system that employs decision tree algorithms with predefined thresholds for
parameters like light intensity and CO, levels, achieving precise occupancy classifi-
cation. Additionally, K. H. Andersen et al. [18] utilized supervised learning with
indoor environmental quality sensors and Extreme Gradient Boosting (XGBoost)
models, demonstrating that both global and room-specific models can effectively
capture occupancy patterns, particularly in residential settings.
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Recent research goes even further by attempting to estimate human activities
in smart homes. Addressing challenges like data variability and sparsity, studies
propose the use of digital twins, such as the VirtualSmartHome simulator, to
generate realistic synthetic datasets. These datasets model daily activities, enabling
human activity recognition (HAR) algorithms to achieve robust performance, with
an average F1 score of 80% on real-world data. This approach demonstrates signif-
icant potential for improving HAR in smart home environments.

1.1.3 Wi-fi-based indoor Positioning and Occupancy Mapping

Wi-Fi-based systems offer a scalable and cost-effective solution for occupancy
mapping and indoor positioning. I. P. Mohottige, H. H. Gharakheili, T. Moors,
and V. Sivaraman [19] used Wi-Fi session logs and machine learning to estimate
classroom occupancy, achieving a 13.10% symmetric mean absolute percentage error
(sMAPE) accuracy. Meanwhile, V. Bellavista-Parent, J. Torres-Sospedra, and A.
Perez-Navarro [20] reviewed Wi-Fi-based indoor positioning systems, noting that
artificial neural networks (ANNs) dominate the field, with Deep Neural Networks
(DNNs) achieving a mean error of 0.11 meters using mmWave signals. Challenges
like signal interference persist, but advancements in ML and signal parameters like
Channel State Information (CSI) and Signal-to-Noise Ratio (SNR) show promise.
Additionally, Y. Wang and L. Shao [21] analyzed Wi-Fi-based positioning in a
university library, identifying four occupancy patterns over 30 days. The study found
most users were short-term visitors, suggesting adjustments to opening hours could
improve efficiency. This highlights Wi-Fi-based systems’ ability to provide granular
occupancy data, aiding in optimizing space utilization and energy efficiency.

1.2 Organizational Structure of AAU Innovate

AAU Innovate serves as a central hub for fostering innovation, entrepreneurship,
and the commercialization of research at the university. The building accommodates
two primary entities:

e AAU Innovation The core of the facility, dedicated to cultivating innovation
and entrepreneurial activities.

o Institute for Advanced Study in PBL (IAS PBL) An independent
institute primarily requiring office space, currently occupying a significant
portion of the second floor.

Within AAU Innovation, three key teams drive its operations:

1. Team Event & Support (E&S) Responsible for the daily management and
operations of the building, ensuring smooth functionality and an optimal
working environment.

2. Team Student Entrepreneurship (SE) Focuses on student-driven innova-
tion and business creation. Their flagship initiative, the Startup Program,
provides AAU students with support and resources to launch their own
businesses.
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Technology Transfer Office Plays a critical role in securing research fund-
ing and commercializing university research across various departments.

Beyond these core teams, AAU Innovate fosters a vibrant ecosystem by hosting
a community of resident startups. These residents, typically students who have
progressed through the Startup Program and successfully applied for dedicated
“garage” spaces (individual offices within AAU Innovate), are deeply integrated
into the building’s innovation culture despite not being formal employees. Their
consistent presence and engagement contribute significantly to the overall dynamic.

Further contextual information, including an exterior view of the building and
detailed floor plans, can be found in Appendix A.

On a typical semester week, AAU Innovate experiences a significant flow of
visitors, ranging from 2000 to 3000 individuals. These visits predominantly occur
during the standard work week and daytime hours, although activity can extend
beyond conventional closing times (e.g., 4:00 PM) due to student engagements and
scheduled events.

The building’s utility is multifaceted, encompassing a wide array of spaces and
functions. It features seven large meeting or event spaces, which regularly host
diverse events such as conferences, celebrations, PhD defenses, keynote speeches,
community meetups, social gatherings, and numerous internal workshops. These
events vary significantly in scale, accommodating anywhere from ten to over 300
attendees. Additionally, the building includes several smaller meeting rooms primar-
ily used for internal collaborations and interdepartmental meetings within AAU.

Furthermore, A AU Innovate houses six specialized laboratories: a design lab, wood
lab, metal lab, play lab, audio-video lab, and an IT lab, alongside a dedicated 3D
printing room. The building also incorporates various open collaborative spaces,
notably the AAU startup flex zone, a shared workspace specifically designed for
early-stage startups participating in the Startup Program. Beyond departmental and
employee offices, dedicated workspace is also provided to Entrepreneurs in Residence
and other specific programs or startups, such as Code Lab, which currently hosts
three software startups. The building also features a canteen, which attracts a
significant number of people from neighbouring buildings for lunch daily.



Chapter 2

Project Scope and Motivation

In Section 1.1, the state of the art is subdivided into areas such as energy savings,
occupancy detection, and Wi-Fi-based indoor positioning. As mentioned in the
introduction, empty or underused spaces in commercial buildings represent a signif-
icant waste of resources, affecting energy consumption, construction investments,
and personnel allocation. To optimize resource utilization, building management
must make decisions that are tailored to the building’s needs and are based on data
rather than intuition—a practice that research has shown leads to markedly better
outcomes [10].

This project has been developed in collaboration with AAU Innovate. With the
building now just over two years in operation, the first comprehensive reports and
insights regarding its usage after the initial startup phase have begun to emerge.
It is, therefore, an opportune moment to evaluate the current usage and steer it
towards the intended goals.

A major challenge in this context is the lack of objective insights into how spaces
are used. Take, for example, the usage of garages at AAU Innovate. As noted
in Section 1.2, startup teams have the opportunity to utilize garages within the
building. However, there are only eight garages available, in contrast to the 147
startups enrolled in the startup program in 2024 [22]. This disparity makes it crucial
to ensure that the garages are allocated to those startups that truly need them
and that their usage is effectively monitored. At present, the evaluation of usage
relies on what will be referred to as anecdotical evidence — essentially, individual
observations of activity. Such an approach runs the risk of misrepresenting actual
usage; for instance, employees may primarily work during standard weekday hours
(8:00 to 16:00), while startups, constrained by academic schedules, might only gather
in the garages after 16:00, leading to the false assumption that these spaces are
unused.

2.1 Conceptual Model for Space Utilization

To overcome the shortcomings of subjective observations, there is a clear need for an
objective observer that can supply accurate data to decision-makers. In cooperation
with several members of team E&S, the following conceptual model was developed
(see Figure 2.1). This model is designed to answer the question: “What did AAU
Innovate facilitate?”
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Activities

Resources

People

Figure 2.1: Conceptual model for space utilization

The conceptual model is structured around three primary components: activities,
resources, and people. These elements form the basis for analyzing space utilization
within AAU Innovate. A more detailed discussion of each component is presented
in sections 2.1.1, 2.1.2, and 2.1.3.

2.1.1 Activities

Activities refer to the actions or tasks carried out by individuals within the building.
These activities have been categorized as follows:

¢ Events, which include:
» Conferences

» Celebrations
» PhD defenses
» Keynotes
» Community meetups
» Social events

e Workshops

¢ Desk work

e Dining

2.1.2 Resources

Resources encompass the physical and non-physical assets that individuals utilize to
conduct their activities efficiently. These resources are classified into the following
categories:

e Rooms, which include:
» Meeting rooms

» Event rooms (e.g., auditoriums, pitch rooms, conference rooms)

» Labs



2.1 Conceptual Model for Space Utilization 11 of 112

» Offices
» Garages
» Shared spaces
e Equipment
« Competences, referring to human expertise and time availability

A distinction is made between meeting rooms and event rooms based on their
intended use and the facilities available. While meeting rooms are typically designed
for smaller gatherings (e.g., 2—4 people or 10-person meetings), event rooms cater
to larger audiences and are equipped accordingly. Although equipment and compe-
tencies could be further detailed, this level of granularity is not necessary for the
current scope of this report.

2.1.3 People

Given General Data Protection Regulation (GDPR) regulations and broader privacy
concerns, individuals are not represented as unique entities within the model.
Instead, people are categorized based on their affiliations, ensuring privacy while
still enabling meaningful data-driven insights. The classification is as follows:

¢ Building residents
» Staff (subdivided by team/department)

» Entrepreneurs (subdivided by their startup)

¢ AAU community
» Staff (subdivided by department)

» Students (subdivided by department)

« External visitors
» Categorized based on their company or domain of affiliation

This approach ensures that decision-making processes focus on broader usage
patterns rather than individual behaviours, thereby minimizing privacy risks while
still providing valuable insights into space utilization.

2.2 Problem Statement

Modern IoT devices continuously gather data without significant bias or downtime,
providing a solid foundation for making data-driven decisions at AAU Innovate.
Given that the building is equipped with a wide array of sensors to control various
systems, a critical question arises:

Can already deployed systems and sensors in smart buildings be
utilized to create an accurate and detailed picture of building
usage?
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This project explores this question as a case study in collaboration with AAU
Innovate, seeking to determine whether the current sensor infrastructure can deliver
the precise and comprehensive insights necessary for effective building management.



Chapter 3

Overview of Data Systems

This chapter presents a detailed examination of the various data-generating systems
operating within the AAU Innovate building. A thorough understanding of these
systems, their data outputs, and associated access methods is fundamental for
constructing a comprehensive digital twin and enabling nuanced analyses of building
occupancy and utilization. The section is structured to provide a clear and consistent
overview of each relevant data source.

Each system will be described using a uniform structure to facilitate comparison
and ensure clarity. This structure begins with a General Overview outlining the
system’s primary purpose and the types of data it collects. Following this, the
Potential Insights and Assumptions subsection explores how the data from this
system can be interpreted within the context of AAU Innovate. This part will involve
creating context through the use of dummy assumptions regarding the system’s
role and data characteristics, followed by a critical reflection on these assumptions
to better understand the practical value and limitations of the data for analyzing
building usage. Finally, the Data Collection and Processing subsection details how
the data can be potentially integrated and accessed, including methods for retrieval
and potential data flows.

The following subsections will explore the key data sources that are either
currently available or hold potential for future integration. These include the FMS,
which manages the spatial layout of all buildings; the Room Calendar System
(Section 3.2), responsible for handling reservations of bookable spaces; and the
Building Management System (Section 3.3), which oversees environmental controls
and sensor networks. Additional insights may be obtained from coffee machine usage
logs (Section 3.4), which can offer indirect indicators of occupant activity patterns,
and the Door Counter System (Section 3.5), which tracks pedestrian flow at main
entrances. The Door Access System (Section 3.6) records entries through secured
doors, while the Lighting System (Section 3.7) manages facility-wide illumination
—though detailed data for this system is currently unavailable. Lastly, the WiFi
System (Section 3.8) provides wireless connectivity and may also serve as a source
of location-based data.

3.1 Facility Management System

An Facility Management System (FMS) is a system used to store the layout of all
buildings within a given organization. It is typically organized hierarchically, starting
from areas, which are divided into buildings, further subdivided into floors, and

13
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ultimately into individual rooms. The system contains detailed information for each
room, and it is common for it to include floor plans for each building and floor.

AAU has such a system in place. Each campus is divided into buildings, which
contain multiple floors, each with individual rooms. For each room, data such as
room number, group, area, and perimeter are provided. The group field reflects the
intended use or function of the room.

3.1.1 Potential Insights and Data Assumptions

The data within such a system is generally static or changes only infrequently,
as modifications to physical building structures are typically time-consuming and
resource-intensive. However, the usefulness of the data increases significantly if the
following assumptions hold true:

1. Changes made to buildings are also reflected in the FMS system.

2. The room group, or function, aligns well with the actual use of the room.

These assumptions were verified, leading to the following discussions and conclusions
about the data value:

e Assumption 1: This assumption appears valid. Building modifications are
generally large-scale and well-planned operations. As a result, such changes are
systematically updated in the FMS, and floor plans are revised when needed.
However, it is worth noting that the associated Revit model is not updated
during these changes.

e Assumption 2: For the Innovate building, this assumption holds in almost
all cases. Only a single instance was found where the actual use of a room
differed from its designated function—it was used as a meeting room rather
than an office. Information about other, particularly older, buildings is not
directly available but is assumed to be relatively accurate. Room functions
tend not to change frequently, and when they do, modifications often require
structural changes, which would typically trigger updates by the same team
responsible for maintaining the FMS database.

3.1.2 Data Collection and Processing

AAU is currently in the process of transitioning to a new system, which will allow
for API integration. This feature is not yet available in the current system.

For the Innovate building, the author received data via email. This included an
Excel spreadsheet containing detailed room data, PDF floor plans for each floor,
and a 3D Revit model. These sources collectively provide a relatively static dataset.
However, caution should be exercised, as updates made in the live system are not
automatically reflected in this data export. While such updates are expected to
be infrequent, due to the slow nature of building changes, it is recommended to
periodically validate the data to ensure continued accuracy.

3.2 Room Calendar System

Room calendar systems are increasingly vital in commercial buildings featuring
bookable meeting rooms, a trend noted by [23]. AAU Innovate utilizes such a system.
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Microsoft 365 facilitates this through room mailboxes, which function similarly to
standard Outlook accounts but are designated as resources [24]. This setup allows
meeting rooms to be invited as resources within calendar events, automatically
logging the booking in the respective room’s calendar.

This system empowers users to check room availability and reserve spaces effi-
ciently. Furthermore, door-mounted screens outside meeting rooms often display
upcoming reservations and permit Ad Hoc bookings—instant reservations made di-
rectly on the system without needing to specify participants beforehand. Specifically,
AAU Innovate employs LiveConnect from MediaConnect for functions including
room booking and visualizations on these screens. They also utilize AskCody,
another meeting room visualization tool. Regardless of the front-end tool, all under-
lying booking data resides within the AAU Exchange system. While this describes
the setup at AAU Innovate, similar resource calendars and visual display systems
are standard practice in shared office environments and conference centers.

At AAU Innovate, room calendars are configured for various spaces, such as
meeting rooms, event areas, offices, and garages. However, this study disregards the
office and garage calendars, as they are currently unused and serve no practical
function for analyzing room utilization.

3.2.1 Booking Procedures

The method for booking rooms at AAU Innovate varies by room size. Smaller and
medium-sized rooms are typically booked using the standard Outlook Room Finder
function, where the room’s email address is included as a resource invitee in the
meeting request.

However, AAU Innovate employs two dedicated staff members to manage bookings
for larger meeting rooms (those with a capacity exceeding 12 people). To reserve
these spaces, users must submit a detailed request via a Microsoft Form. This form
submission triggers a Power Automate flow, which sends an email containing the
request details to the designated staff. These employees then manually create the
booking in the room calendar, pasting the information from the form into the body
of the calendar event.

3.2.2 Potential Insights and Data Assumptions

Room calendar data, stored within Microsoft Outlook, offers valuable insights into
room usage patterns, the purpose of meetings, and attendee information. This data
aligns with the key aspects of the theoretical model (Figure 2.1), provided the
following assumptions hold true:

1. Every use of a bookable space results in a corresponding calendar booking.

2. All individuals attending the meeting (whether physically present or joining
remotely) are formally invited via the calendar event.

3. Meeting start and end times recorded in the calendar are accurate and
promptly updated to reflect any changes, such as delays, extensions, or cancel-
lations.

These assumptions were verified, leading to the following discussions and conclusions
about the data value:
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o Assumption 1: Observations and interviews indicate that most meetings are
indeed booked. Instances where individuals briefly use an empty room without
booking it (‘just jumping in’) are rare. More commonly, users create an Ad
Hoc booking directly at the room screen, primarily to avoid interruptions if
someone else checks the calendar and sees the room as available. The preva-
lence of Ad Hoc meetings is also reflected in the booking data.

e Assumption 2: Analysis of the data shows numerous bookings with only a
single participant listed. While single-person use is possible, it may not align
with the intended purpose of a meeting room. This pattern likely occurs when
individuals book rooms on behalf of others or invite attendees through alter-
native channels (e.g., separate emails or different calendar systems) instead of
directly via the room booking event. It may also happen for meetings involving
external partners not within the AAU system.

e Assumption 3: Booked meetings are generally reliable when it comes to
reflecting cancellations. However, the scheduled start and end times are less
precise. Users sometimes reserve longer durations than strictly necessary to
allow for setup or guest arrival buffers. Additionally, meeting overruns are
rarely updated in the calendar, with participants typically checking the room’s
calendar directly to see if it’s available for the additional time needed.

3.2.3 Data Collection and Processing

The room booking data is accessible via the Microsoft Graph REST API, specifically
using the events endpoint [25]. This API provides structured access to room booking
details, facilitating seamless integration into the digital twin model. Using this API,
it’s possible to retrieve events from all relevant room calendars. Since calendar events
list invited participants, the application accessing the API can determine the number
of attendees and their affiliations, leveraging the personnel information available
within the AAU Outlook directory (e.g., department data).

For the large rooms booked via the form process, the detailed information sub-
mitted through the form can be accessed within the body text of the corresponding
calendar event. This is necessary because inviting potentially hundreds of partici-
pants (e.g., for a large event) directly to the calendar entry is impractical; attendees
typically receive notifications through other means.

This relatively straightforward data access setup is visualized in Figure 3.1.
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Figure 3.1: A model representing the Outlook room calendar data access

3.3 Building Management System

At Aalborg University, all modern buildings — including AAU Innovate — are
managed using the Schneider Electric EcoStruxure Building Operation system for
comprehensive building management. This integrated Building Management System



3.3 Building Management System 17 of 112

(BMS) platform serves as the central hub for monitoring, controlling, and optimizing
key building systems such as heating, ventilation, and air-conditioning (HVAC),
lighting, power, and security [26]. By unifying these systems under a single interface,
building managers can improve energy efficiency, enhance occupant comfort, and
streamline facility operations for smarter, more sustainable buildings. It should be
noted that lighting at AAU is managed through a separate system, as detailed in
Section 3.7.

The EcoStruxure Building Operation system provides an intuitive interface,
typically starting with a campus overview where users can select specific buildings
equipped with the system. This report focuses on the AAU Innovate buildings. After
selecting a building, users are presented with an overview of various systems, includ-
ing ventilation, heating, hot water, outside lighting, and sun covers. Each system
can be explored individually, or users can switch to a floorplan view to navigate the
building spatially. Within the floorplan, individual rooms can be selected to view
near real-time data on system and sensor statuses. This detailed room view displays
information such as window status (open/closed), heating output percentage, venti-
lation openness, CO, levels, current temperature, acceptable temperature ranges,
and the temperature of incoming air. Fach room is also equipped with a Passive
Infra-Red (PIR) sensor to detect occupancy. A visual example of this room overview
interface is shown in Figure 3.2.

Figure 3.2: A screenshot of the room overview interface of the Schneider EcoStruxure
Building Operation software.

In each room, a wall-mounted physical device houses the various sensors and provides
a local user interface for adjusting the desired temperature. Open areas within the
buildings are similarly equipped with sensors but typically lack the user interface
screen.

3.3.1 Potential Insights and Data Assumptions

The data collected by this system holds significant potential for understanding room
occupancy and estimating the number of people present. By analyzing the data
from the PIR sensor in conjunction with CO2 and temperature measurements and
the ventilation state, valuable insights into room usage patterns can be derived.
However, the accuracy and reliability of these insights depend on the following key
assumptions:
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1. The PIR sensor is optimally positioned to detect all movement within the
room.

2. Individuals present in a room exhibit sufficient movement to be detected by
the PIR sensor.

3. Doors between rooms remain closed unless someone is actively passing
through.

These assumptions were verified, leading to the following discussions and conclusions
about the data value:

e Assumption 1: During testing, the PIR sensor consistently detected move-
ment within its field of view. Typically, this sensor is positioned on the wall
next to a door, approximately 1.5 meters above the floor. While this placement
generally proves effective in simple, rectangular rooms, the performance of
the PIR sensor can be affected by both the layout of the room and the
sensor’s specific placement. For instance, office C.108 on the first floor presents
a potentially problematic room configuration (refer to Appendix A for the
detailed building layout). Consequently, these factors concerning room layout
and sensor placement should be taken into account when analyzing the data
collected by the PIR sensor.

e Assumption 2: A known limitation of PIR sensors is their inability to detect
stationary individuals. To mitigate this, a sufficiently long data aggregation
interval can be used. For instance, if the interval is set such that even individ-
uals who move every 10 to 15 minutes are counted as ‘continuously present’,
this issue can be partially addressed. However, this approach introduces a
trade-off between data granularity and accuracy.

o Assumption 3: At AAU Innovate, it is generally observed that doors remain
closed, except for a few specific rooms. Furthermore, the doors are equipped
with auto-closing mechanisms. To ensure doors remain open when needed, a
common practice is to use a physical object to prop them open. This practice
aligns with the requirements of the access control system, further reinforcing
the likelihood of doors being closed.

3.3.2 Data Collection and Processing

As explained in S. P. Melgaard et al. [27], a separate BMS database was established
to enable convenient access to system data. Data from the various sensors deployed
throughout the building is first collected by local terminals (Automation Servers)
within the BMS. From there, the data is forwarded in chunks, rather than at fixed
intervals, to a centralized PostgreSQL database, which uses TimescaleDB, a time-
series optimized extension for PostgreSQL.

TimescaleDB is an open-source time-series database built on top of PostgreSQL,
designed to efficiently store and query large volumes of time-stamped data. It
enhances PostgreSQL with features such as automatic data partitioning, continuous
aggregation, and optimized time-series queries, making it particularly well-suited for
handling sensor data from building management systems.

The transfer of sensor data from the Automation Servers to the AAU BMS
database is event-driven, triggered when a certain amount of data has been collected
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rather than on a strict schedule. Due to the large number of sensors and the volume
of data, it typically takes between 10—15 minutes for data from all logged sensors to
become available in the database.

In addition to timeseries data, metadata — including sensor locations, types,
and other descriptive information — is also managed through the Schneider BMS
platform. Whenever a new sensor or data point is added to the Schneider system, the
corresponding metadata is automatically transferred into a dedicated METADATA
table within the AAU BMS database.

The system provides access via two separate API endpoints:

o Metadata Endpoint: Returns relevant information about each sensor, including
the externallD, source path, and unit. This endpoint does not require any
input arguments.

e Trend Data Endpoint: Accepts an externallD, a start time, and an end time as
input, and returns a list containing the externallD, timestamp, and recorded
value for the specified sensor and period.

An overview of the system setup is shown in Figure 3.3.
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Figure 3.3: An overview of the setup of the BMS data capture system.

3.4 Coffee Data

AAU Innovate, like many other workspaces, provides coffee machines for its
residents. Specifically, there are four Wittenborg 9100 ES 2FB machines located
throughout the building: one in the kitchen, one in the first-floor hallway, and one
each in the hallways on the second and third floors. These machines are capable of
exporting usage data either via a USB key or over a serial connection [28]. This data
logs every beverage dispensed, effectively maintaining a usage record.

It is important to note that non-residents cannot access the first floor and above,
meaning only residents have access to these machines, as mentioned in Section 1.2.
Consequently, the data gathered provides, at least in theory, insights into resident
behaviour.

3.4.1 Potential Insights and Assumptions

While coffee machine usage data may not seem significant at first glance, it has
potential applications. For example, it could offer insights into floor usage patterns
or assist in automating maintenance and cleaning schedules. The information would
provide the most valuable insights if the following assumptions hold:
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1. Individuals obtain hot beverages from the machine closest to their current
workspace.

2. Each person consumes a consistent number of beverages daily.
3. Beverage consumption is distributed evenly throughout the working day.
4. Only residents use the coffee machines.

If these assumptions hold, the data can provide a broad and generalized represen-
tation of resident movement within the building, making it a valuable dataset.
However, these assumptions were verified through discussions with residents and
direct observation.

e Assumption 1: This assumption generally holds. An exception was observed
where individuals working on the ground floor sometimes move up a floor to
get their drinks.

o Assumption 2: This assumption does not hold well. Significant individual
variations, daily fluctuations, and potential seasonal effects influence the data.

e Assumption 3: This assumption is inaccurate. Consumption patterns indi-
cate that some periods of the day, particularly in the afternoon, may not be
well represented by this data.

e Assumption 4: This assumption holds fairly well. Only employees and
students in the startup program have access to floors 1 and above. While
guests can also use the machines, their contribution is minimal compared to
residents.

Overall, while coffee machine data can reflect facility usage by residents and
capture usage variations, interpreting it requires caution. Due to the impracticality
of frequent data collection and the strong potential for variation, a one-month
collection period was chosen to balance out individual fluctuations and provide a
general activity overview. Despite this, data interpretation should be done carefully,
considering the limitations highlighted by assumption validation.

3.4.2 Data Collection and Processing

The coffee machines store usage data locally, and the most practical method for
extracting it is through a USB key. Unlike an automated system, this manual
approach limits data collection to weekly or monthly intervals, as more frequent
extraction is impractical.

To streamline processing, a computer program has been developed. Once the data
is transferred from the USB key, the program automatically uploads it to a database
and generates a CSV file for backup. The CSV format ensures easy access for non-
technical personnel. This workflow is illustrated in Figure 3.4.
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Figure 3.4: A model representing the coffee data extraction process

It is essential to highlight that the automated data extraction, utilizing the USB
key and processing software, was developed as part of my student job. Therefore, it
should not be considered an accomplishment of this project but rather a pre-existing
system.

3.5 Door Counter System

To monitor building occupancy, AAU Innovate employs a people-counting system
installed at the primary entrances. Specifically, counters are located at entrances A,
B, and C, whose positions are detailed in the ground floor plan (Figure A.3).

The system utilizes the MultiTeknik People Counter. While this counter is
generally marketed towards retail businesses for tracking customer traffic, typically
uploading data via USB to a local computer Multiteknik [29], the implementation at
AAU Innovate deviates from this standard. Instead of a USB connection, the AAU
Innovate setup transmits data over an unspecified protocol to a Thingsboard server
managed by Multiteknik. ThingsBoard itself is an open-source [oT platform designed
for collecting, processing, visualizing, and managing data from connected devices,
supporting the development of scalable IoT applications. A conceptual diagram of
the basic people counter hardware setup, adapted from Multiteknik [29], is shown
in Figure 3.5.
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Figure 3.5: A model representing the people counter setup, inspired by Multiteknik [29]

Data captured by the sensors is stored and visualized on the Multiteknik-managed
Thingsboard server. The underlying mechanism involves an infrared (IR) beam
sensor positioned approximately one meter high just inside each main door, with a
corresponding reflector placed opposite. Each interruption of this IR beam registers



22 of 112 Chapter 3 Overview of Data Systems

as a single “passage”. Periodically (specified as hourly), each of the three sensor
units (transmitters) sends a value representing the total number of detected passages
divided by two to a central receiver. This receiver assigns a unique label (c1, ¢2, or
¢3) corresponding to each sensor and forwards this labelled data to the Thingsboard
server.

3.5.1 Potential Insights and Data Assumptions

The passage data collected by the sensor system offers valuable insights into the
building’s usage patterns, particularly the number of people entering and exiting
each day. However, the validity of these insights depends on several key assumptions:

1. Visitors’ entry and exit occur within the same hourly measurement window.
2. Individuals pass through the sensor detection zone one at a time.

3. All entries and exits occur solely through the three monitored main doors (A,

B, C).

These assumptions were verified, leading to the following discussions and conclusions
about the data value:

o Assumption 1: This assumption is often inaccurate. Visitors frequently stay
for multiple hours, and their movements rarely align with hourly reporting
intervals. The sensors also lack directionality and cannot distinguish between
entries and exits. As a result, a reported value (e.g., 40 passages) may reflect
any number of entry/exit combinations. The system attempts to estimate this
by halving the count (passages/2), but this method introduces ambiguity and
limits its accuracy on an hourly basis. A more reliable approach is to analyze
data on a daily level, assuming most individuals leave before the following
morning (e.g., using a 04:00-03:59 ‘day’ definition).

o Assumption 2: This assumption generally holds. Narrow doorways and social
norms around personal space usually ensure that people pass through one at a
time. Occasional inaccuracies may arise when individuals pass closely together,
but these occurrences are considered infrequent and not a significant source
of error.

e Assumption 3: This assumption is known to be incomplete. Several alter-
native routes exist, including a fourth door to a terrace and emergency exits
connected to four staircases (Appendix A). The terrace door is often used
during working hours (e.g., 08:00-15:30), and emergency exits sometimes serve
as shortcuts to parking areas. Movements through these unmonitored routes
are not captured by the system and introduce a measurable error in estimating
total building occupancy. While the main doors account for the majority of
traffic, these alternative paths should be considered when interpreting sensor
data.

3.5.2 Data Collection and Processing

The data stored on the Thingsboard server can be accessed programmatically via
its built-in REST API. The standard procedure involves:
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1. Authenticating using valid credentials (username and password) to obtain an
access token.

2. Using the obtained token in subsequent API requests to fetch the desired
telemetry data (i.e., the hourly passage counts labelled c1, ¢2, and ¢3).

This data retrieval process, forming part of the overall system implementation at
AAU Innovate, is depicted conceptually in Figure 3.6.
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Figure 3.6: A model representing the data collection setup for the people counter system
at AAU Innovate, utilizing the Thingsboard API.

3.6 Door Access System

Aalborg University utilizes a digital door access system. Scanners are installed at
designated doors. Furthermore, every student, employee, and guest (via guest cards)
possesses a personal card equipped with an NFC chip. This chip contains the card
number. To gain entry, an individual scans their card by holding it in close proximity
to the scanner. The scanner subsequently communicates with a central server,
signalled by a flickering orange indicator light, which verifies access permissions
defined for each door or door group. If access is granted, the indicator light turns
green. Conversely, if entry is denied, the light turns red. These visual indicators are
accompanied by corresponding audible signals. Successful authentication potentially
results in the door unlocking.

3.6.1 Potential Insights and Assumptions

Given that each card is personal, the logged data could offer valuable insights into

the ‘people’ aspect (see Section 2.1) concerning individuals within the building. The

value of this information is contingent upon the validity of the following assumptions:
1. All doors consistently require a card scan prior to opening.

2. Every individual always scans their card before entry, including when entering
immediately after another person.

3. Comprehensive logs are maintained for every card-scanner interaction.

4. Each scanner possesses a unique ID and an associated position description,
ensuring clarity regarding its placement within the building.

These assumptions were verified, leading to the following discussions and conclusions
about the data value:
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e Assumption 1: This assumption does not hold universally. Main entry doors
are typically open by default during normal office hours (8:00-15:30). Certain
doors can also be set to a ‘kept open’ state, where scanning a card unlocks
the door and a second scan relocks it. This functionality is inactive outside of
normal office hours.

e Assumption 2: This assumption does not always hold. Individuals may hold
doors open for others or allow entry without an additional scan. The main
access gates to the first floor remain open for approximately 5-10 seconds,
making it relatively common for people to enter immediately after someone
else. Circumventing the gate by jumping over it is reportedly rare.

e Assumption 3: This assumption holds. When equipment theft occurs at
AAU, access logs dating back up to six months can be requested for investi-
gation.

e Assumption 4: This assumption likely holds. Each scanner must possess
a unique ID to enable permission control for specific doors or rooms. It is
presumed that scanners are organized into logical groups. Whether detailed
location descriptions are associated with scanner IDs is unknown to the author,
but it is probable to support maintenance and repair jobs.

3.6.2 Data Collection and Processing

This access data is managed by AAU Campus Security; currently, the author has
been unable to obtain access. Access would likely first require establishing an official
collaboration agreement with AAU Innovate and other relevant parties. Such an
agreement could potentially secure the necessary resources for this project. Pending
data access, a hypothetical schematic representing the author’s assumptions about
the system’s operation is provided in Figure 3.7. The specific methods for potential
(automated) log file access remain speculative and are likely system-specific.
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Figure 3.7: A model representing the believed setup of the card reader system.

3.7 Lighting System

The lighting system at AAU Innovate is based on the LITECOM platform from
Zumtobel. As one of Zumtobel’s European test buildings, Innovate often runs beta
versions of the system software. Currently, the system interface lacks user manage-
ment and is protected only through IP restrictions. The full installation comprises 16
individual controllers, each with its own interface, as the size of the building exceeds
the capacity of a single controller. All controllers and components communicate
using the Digital Addressable Lighting Interface (DALI) protocol (see Section 3.7.1).

While Zumtobel has started integrating DALI-2 devices, the sensors installed
at Innovate use the original DALI version 1. This decision was reportedly made
because version 1 sensors were more stable and reliable at the time of deployment.
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The controllers used are compatible with both DALI and DALI-2, ensuring system
flexibility.

3.7.1 Digital Addressable Lighting Interface

DALI, which stands for Digital Addressable Lighting Interface, is a standardized
digital communication protocol used for controlling lighting systems [30]. It enables
two-way communication between control devices (like sensors and switches) and
lighting components (like LED drivers), allowing precise and flexible control of
lighting installations.

Originally defined in IEC60929 and later expanded into DALI-2 (IEC62386), the
protocol supports addressability, meaning each device on the network has its own
unique address. This allows advanced features such as individual control, grouping,
scene-setting, and feedback. Unlike analog systems like 1-10V, DALI provides
consistent and stable dimming and ensures interoperability between devices from
different manufacturers, especially under the DALI-2 standard, which requires certi-
fication.

DALI uses a simple two-wire bus that supports various wiring topologies (line,
tree, star) and does not require shielding. Devices with terminals marked ‘DA’ should
be connected to the DALI bus using these terminals. While DALI-2 introduces many
improvements, both DALI and DALI-2 devices can typically coexist in the same
installation, provided compatibility is managed.

An example of all the devices in a typical DALI system can be seen in Figure 3.8.
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Figure 3.8: An overview of a DALI system [30]
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3.7.2 Potential Insights and Assumptions

The data collected by the lighting system at AAU Innovate offers significant potential
for deriving insights into room occupancy and estimating the number of people
present. By analyzing information from the PIR sensor, usage patterns can be
identified and modeled. However, the accuracy and reliability of these insights rely
on two key assumptions:

1. The PIR sensor is optimally positioned to detect all relevant movement within
the room.

2. Occupants move frequently enough for the PIR sensor to register their
presence.
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These assumptions were verified, leading to the following discussions and conclusions
about the data value:

e Assumption 1: This assumption is considered highly reliable. The PIR
sensors in the building are used to control the lighting. When someone enters
a room, the light typically turns on. During the early days after opening,
the building experienced issues with light instability, which were later traced
back to a software bug. Since then, the lights have consistently activated upon
entry, indicating that the sensors are well-placed and capable of detecting
entry reliably.

o Assumption 2: It is well known that PIR sensors have difficulty detecting
stationary individuals. To mitigate this, the lighting system is configured to
reset a 30-minute countdown timer every time movement is detected. If the
timer reaches zero, the lights turn off. According to the author’s knowledge, no
occupants have experienced the lights turning off while they were still in the
room after this configuration change. This supports the claim that the system
can reliably confirm occupancy with a time resolution of at least 30 minutes.

3.7.3 Data Collection and Processing

Although not investigated in detail for this project, the LITECOM system provides
both a REST API and an MQTT interface, as documented in [31]. These interfaces
allow polling and subscribing to data from the lighting system, enabling advanced
integrations and data-driven control.

The REST API offers access to a range of data and functions. Users can poll
information about all effective ranges (such as rooms or groups), retrieve details
for specific zones, and access device-level information. In addition, the API allows
execution of control functions such as recalling scenes, adjusting lighting parameters
(intensity, color temperature, and color), and controlling connected motors like
blinds, windows, and screens.

The MQTT interface complements the REST API by allowing subscriptions to
various events. Thanks to a universal data model, REST resources and MQTT topics
follow a mirrored structure. For example, general zone data can be accessed via /
zones in REST or /zones/# in MQTT. Similarly, detailed device-level data can be
obtained using hierarchical paths down to specific services or global devices such as
sky scanners.

Each controller in the system has its own IP address, and access to the APIs
requires whitelisting through the firewall. In the case of this project, the author
was granted access for testing purposes. Meetings have been held to explore the
integration of this data into a central AAU database, as there is broader interest
across other projects in utilizing the available data.

To test the system, the author interacted with the REST API using the built-
in documentation hosted at https://[IP address]/docs/rest. However, since the
controllers support DALI-2 while the installed sensors operate on the earlier DALI
1 protocol, most requests returned no (meaningful) data. In particular, attempts to
retrieve information such as PIR sensor data were unsuccessful.

Although the documentation also describes how to subscribe to data using the
MQTT interface, this was not tested due to concerns about potential performance
impacts on the system. Discussions were held with Zumtobel’s advisors, and while
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expert responses were eventually received in late May, the decision was made, due to
the tight deadline of this report in early June, not to further pursue data integration
at this time.

3.8 WiFi System

Aalborg University maintains a comprehensive WiFi infrastructure, managed by IT
support (ITs), which extends to AAU Innovate. This infrastructure comprises three
primary networks designed for different user groups.

e First, the AAU 1-DAY network serves guests without university affiliations.
Access is granted via a daily password, retrievable through the dedicated
AAU 1-DAY application, which displays credentials for the current day and the
subsequent three days. This design facilitates temporary access for visitors.

e Second, the Eduroam network is the primary access point for students and staff.
Users configure unique credentials for each device they wish to connect. As
these credentials are generated while logged into an AAU account, devices
connected to Eduroam can, in principle, be associated with their respective
owners.

e Third, the AAU network is primarily intended for employees. Reportedly, only
AAU-certified computers with registered MAC addresses are permitted to
connect. As a student, I have no direct experience with this network.

This segmented network architecture presents an opportunity for user categorization.
Devices connected to AAU 1-DAY can generally be assumed to belong to guests, while
Eduroam connections signify students or staff. A potential challenge in occupancy
estimation arises from users carrying multiple devices (e.g., a smartphone and a
laptop). This issue is more pronounced on the guest network, as the device-specific
credentialing of Eduroam mitigates double-counting for affiliated users to some extent.

Leveraging this WiFi infrastructure for occupancy estimation and indoor posi-
tioning offers significant potential, building upon techniques discussed in the state
of the art (Section 1.1.3). For instance, even devices not actively connected can
contribute to occupancy counts. Research by M. Vega-Barbas, M. Alvarez-Campana,
D. Rivera, M. Sanz, and J. Berrocal [32] demonstrates methods using passive
WiFi sensing to analyze “probe request” messages broadcast by smartphones. By
developing unique fingerprints for devices, this technique overcomes MAC address
randomization challenges and estimates crowd sizes with high accuracy (reported
near 95%), making it applicable for estimating the total number of individuals
present, regardless of network connection status.

Furthermore, data from connected devices can be analyzed. Work by S. Liu, Y.
Zhao, F. Xue, B. Chen, and X. Chen [33] introduced DeepCount, a system utilizing
deep learning (specifically Convolutional Neural Networks (CNNs) and Long Short-
Term Memory networks (LSTMs)) to analyze Channel State Information (CSI) from
commercial WiFi devices. This approach infers crowd counts in multi-person indoor
environments, achieving notable accuracy (up to 90% with refinement mechanisms)
without relying solely on connection logs. Such techniques could potentially be
applied to the AAU Innovate environment.
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Accurate indoor positioning is another valuable application derivable from the
WiFi infrastructure. As surveyed by J. Dai, M. Wang, B. Wu, J. Shen, and X. Wang
[34], numerous WiFi-assisted positioning schemes exist, leveraging signal character-
istics to determine device location within buildings. Integrating such positioning
capabilities with occupancy data, potentially supplemented by alternative methods
like mobile connection analysis [35], and knowledge of the AAU Innovate floor plan,
could provide a highly detailed spatiotemporal understanding of building usage.

3.8.1 Potential Insights and Assumptions

Effective utilization of the WiFi system data could yield granular, near-real-time
estimates of occupant counts within specific rooms or zones. This enables the
mapping of movement patterns and density heatmaps throughout the building. A
significant advantage of the AAU setup is the potential to categorize occupants based
on their network affiliation (Eduroam vs. AAU 1-DAY). By correlating Eduroam usage
with AAU account types (student, staff, faculty), it may be possible to approximate
the distribution of different user groups defined in Section 2.1.3 across the building.

This detailed occupancy information holds considerable value for optimizing
internal processes, managing resources (e.g., HVAC, lighting), evaluating space uti-
lization, and informing strategic decisions. For large events, accurate visitor counts
derived from WiFi data could provide crucial feedback. However, the collection and
analysis of such data, particularly in real-time and at an individual level, must
carefully address data privacy regulations (e.g., GDPR) and ethical considerations,
likely requiring data aggregation and anonymization.

3.8.2 Data Collection and Processing

Given that the precise technical specifications and data logging policies of the AAU
WiFi system are not currently known to the author, a detailed description of the data
collection and processing pipeline cannot be provided at this stage. Accessing and
utilizing this data would require collaboration with I'Ts and adherence to university
data governance protocols.
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Data Integration

As mentioned by D. Hugo et al. [14] and discussed in Section 1.1.1, data silos
remain a significant barrier to research in the built environment. Isolated systems
and proprietary data formats make integration difficult, especially when data lacks
spatial context. For example, sensors might be identifiable by ID, but determining
their physical location, such as which room they are in, is a major challenge when
using these systems independently.

This leads to the first challenge of this project: to meaningfully assemble and
integrate all deployed systems and sensors. Achieving this not only enhances future
research opportunities but also increases the contextual value of each individual
data source.

This chapter begins with a discussion of the choice of technologies used throughout
the data integration part of the project, outlining the reasoning behind each major
technical decision in Section 4.1. It then proceeds to describe the implementation of
each individual subgraph, corresponding to the systems outlined in Chapter 3 and
described in detail in Section 4.2. For each, the setup and its corresponding Graph
Query Language (GraphQL) schema are explained. Following that, Section 4.3
describes the supergraph, showcasing the complete graph model and detailing how
Apollo Federation is applied in practice to integrate all subgraphs into a unified API.

4.1 Choice of Technologies

This chapter outlines the core technologies chosen for the implementation of the
system. Each technology was selected to support the goals of modularity, scalability,
maintainability, and ease of development. The chapter is divided into subsections,
each covering a key component: GraphQL (Section 4.1.1), Apollo Federation (Sec-
tion 4.1.2), GoLang with gqlgen (Section 4.1.3), and containerization via Docker and
Docker Compose (Section 4.1.4).

4.1.1 GraphQL

GraphQL, initially developed by Facebook and later open-sourced, is a query
language for APIs combined with a runtime for executing those queries against
existing data sources [36]. It allows clients to specify exactly what data they need,
shifting control over data fetching from the server to the client.

At the core of GraphQL is its Schema Definition Language (SDL), which
establishes a strongly typed contract describing all available objects, fields, and
relationships. This means that clients query a single flexible endpoint, typically /
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graphgl_, with queries that match exactly the data they require. Modifications to the
data are handled through mutations, and GraphQL also supports real-time updates
via subscriptions.

Compared to REST [37], [38], which uses multiple endpoints with fixed structures,
GraphQL reduces issues of over-fetching and under-fetching by letting the client
tailor the query to its needs. This is especially beneficial for complex or bandwidth-
constrained applications. Although it introduces challenges such as more complex
server-side architecture and caching, its flexibility and client-centric approach make
it well-suited for this project.

GraphQL was chosen as the primary API technology due to its strength in
handling complex data structures and its ability to unify access to disparate systems
through a single interface. Since the system must avoid requiring users to manually
query multiple independent APIs, GraphQL offers a natural and efficient solution.
Additionally, GraphQL schemas are self-documenting, which means the structure
of available data can be explored directly via tools like the GraphQL sandbox.
This removes the need for separate documentation and allows both developers and
researchers to easily understand and interact with the API.

After selecting GraphQL, the author’s confidence in this choice was further rein-
forced by insights from a recent article on the intersection of MCP and GraphQL, M.
DeBergalis [39]. The article highlighted several architectural advantages of GraphQL
in the context of Al integration, which are outlined below: GraphQL is uniquely
suited to serve as the foundation for MCP, making it an ideal choice for enabling Al
systems to interact intelligently with organizational APIs. At the heart of MCP is
the need for a clean, declarative interface that abstracts the complexity of underlying
services. GraphQL delivers this by offering a structured, schema-based language that
defines exactly what data is needed—no more, no less. This precision is essential
in Al applications where excessive or irrelevant data can mislead models and bloat
token usage. Because GraphQL queries can seamlessly traverse multiple backend
systems while enforcing access control and data policies, it enables deterministic,
efficient execution, key for creating reliable, consistent Al experiences.

Moreover, GraphQL aligns perfectly with the agility and scalability required in
modern Al development. Unlike REST or individual MCP servers for each API,
GraphQL allows organizations to compose and evolve capabilities rapidly through
a single semantic layer. This self-documenting and introspectable nature makes it
easy for LLMs to understand and reason about available capabilities. Tools like
Apollo MCP Server extend this paradigm by making GraphQL-native MCP tooling
accessible, allowing teams to orchestrate complex logic through a single, cohesive
interface.

4.1.2 Apollo Federation

Apollo Federation is an architecture designed to scale GraphQL across teams and
microservices [40]. Instead of maintaining a monolithic schema, it enables developers
to split the graph into subgraphs—modular schemas that can be owned and main-
tained independently by different teams.

These subgraphs are composed into a supergraph using an Apollo gateway, which
serves as the central entry point for client queries. This composition allows subgraphs
to extend types from other subgraphs, enabling rich inter-service relationships while
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maintaining service independence. The gateway handles query planning and routing,
ensuring each part of a query is dispatched to the correct service.

Apollo Federation was selected to support the system’s modularity and scalability.
As each subsystem (see Chapter 3) is implemented as an individual GraphQL service,
this approach allows for incremental development and maintenance while preserving
a unified client-facing API. Adding a new data source requires only the creation of
a new subgraph, which can then be integrated into the overall supergraph, offering
adaptability and ease of extension.

4.1.3 GoLang with gqlgen

In the GoLang ecosystem, gqlgen is a popular tool for developing GraphQL servers
[41]. Tt generates Go types and resolver interfaces from a GraphQL schema, ensuring
strong type safety and alignment between backend logic and schema definition.

The decision to use Go was influenced by prior experience with the language, which
enabled rapid and confident development. Go’s statically typed nature contributes
to highly readable and maintainable code, with many potential bugs being caught
at compile time. Its type system aligns naturally with GraphQL, which is also based
on strict typing through its SDL.

Additionally, Go features a robust standard library, reducing the need for external
dependencies and thereby minimizing long-term maintenance efforts. The combina-
tion of static typing, good tooling, and language familiarity made Go a natural fit
for this project.

Gqlgen in particular improves developer productivity by generating boilerplate
code and guiding developers through the resolver implementation process. It also
supports Apollo Federation, making it suitable for developing federated subgraphs
that integrate cleanly into the larger architecture.

4.1.4 Containerization with Docker and Docker Compose

Docker is a platform that packages applications and their dependencies into light-
weight, portable containers [42]. These containers ensure consistent behavior across
different environments and eliminate issues related to environmental configuration
mismatches.

Docker Compose extends Docker’s capabilities by allowing developers to define
multi-container applications in a single YAML configuration file. This makes it easy
to run and manage related services—such as databases, APIs, and web servers—
with a single command like 'docker compose up'.

Containerization was chosen to streamline the deployment and development
process. It ensures environment consistency across deployment targets, facilitates
reproducible builds, and simplifies infrastructure management. Docker Compose
further enhances productivity by allowing developers to launch the entire develop-
ment stack with minimal effort.

Together, Docker and Docker Compose make the system easier to develop, test,
and deploy, supporting the overall goals of modularity and maintainability.

4.2 Individual Data Systems

As discussed in Section 4.1, scalability and simplicity are key goals of the system.
This is reflected in the selected technologies. Apollo Federation was chosen as
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the mechanism for implementing the data API. To better understand the system
architecture, the structure of Apollo Federation is illustrated in Figure 4.1. Each
data system must first be implemented as an individual GraphQL subgraph before
it can be integrated into the federation.
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Figure 4.1: An explanatory drawing of the Apollo Federation system.
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Each individual data system is implemented as a standalone Go server using gqlgen,
as described in Section 4.1.3. The gqlgen tool generates a server.go file, which can
be executed to launch the server. This exposes both the GraphQL Playground at
the root domain and the GraphQL query endpoint at the /query path.

The GraphQL schema is defined in schema.graphqls, from which gqlgen gener-
ates the corresponding Go types. Documentation comments can be added directly
above each argument and type definition, making them an inherent part of the
schema. This ensures that relevant information is visible when exploring the system,
either through developer tools or programmatically—for instance, by an Al. In the
following subsections, these comments are omitted for clarity. The logic for handling
queries and mutations is implemented in schema. resolvers.go, maintaining a clean
separation between schema definition and business logic.

Additional configuration is specified in the gqlgen.yml file. Federation support
can be enabled here, which results in the generation of additional files, including
entity.resolvers.go, where entity resolvers are implemented to support cross-
service references. Specific implementations and schema overviews for each system
are provided in the following subsections.

4.2.1 Facility Management System

As described in Section 3.1, the current FMS system lacks an API implementation.
As a temporary solution to serve this essential information, the system operates
using static data. This data is periodically received via Excel sheets sent by email
and exported from the FMS system.

To simplify server-side processing, the Excel data is converted into a CSV file and
placed in the server’s file system. On startup, the server reads the CSV file and loads
its contents into memory. Since the dataset is relatively small, this approach poses
no memory concerns. However, if the dataset were to grow significantly, alternative
approaches should be considered, such as reading the CSV file on each request or,
preferably, importing the data into a self-hosted database for efficient querying. If
performance becomes an issue, caching strategies can be employed to optimize data
retrieval.
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This setup results in the GraphQL schema shown in Listing 4.1. The schema
defines three core types: Building, Floor, and Room. Since this is the first data source
in the supergraph and acts as the central connector for other systems, no additional
federation types are needed. Only a key definition is required for each of the current
types to support entity resolution within the federated architecture.

type Room @key(fields: "id") {
id: ID!
roomNumber: String!
type: String!
area: Float!
circumference: Float!

}

type Floor @key(fields: "id") {
id: ID!
name: String!
rooms: [Room!]!
floorplanUrl: String!

}

type Building @key(fields: "id") {
id: ID!
address: String!
city: String!
property: String!
floors: [Floor!]!

}

type Query {
buildings(ids: [ID!]): [Building!]!
floors(ids: [ID!]): [Floor!]!
rooms(ids: [ID!]): [Room!]!

}
Listing 4.1: The GraphQL schema for the Facility Management System.

4.2.2 Room Calendar System

Meeting room usage data at AAU Innovate is stored in Outlook. Although the
storage backend has changed several times, shifting between on-premise solutions
and cloud-based services, it is currently hosted on Azure servers. Accessing the cal-
endar data associated with room email accounts requires registering an application
in Azure Active Directory. This step must be performed by a system administrator.
The original setup can be seen in Figure 3.1.

At the time of writing, this registration has not yet been completed. Despite
several meetings and a prolonged email exchange, it was agreed that accessing the
calendar data should be both technically and legally feasible through a digitalization
partner. However, no single individual responsible for facilitating this process could
be identified. Several staff members initially thought to be in charge were eventually
found to have no affiliation with the Innovate building.

Due to this administrative bottleneck, alternative methods were explored. A
precedent existed: a colleague at AAU Innovation had previously developed a script
to extract room calendar data using their personal Outlook account. This was viable
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because both their account and the author’s AAU account have the necessary access
to shared room calendars.

Adopting a similar approach, a new system was developed, comprising two main
components: a data scraper and a database. This new setup can be seen in Figure 4.2.
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Figure 4.2: An overview of the custom-made Outlook scraper.

The scraper is implemented in Python using the pywin32 library, which provides
access to Windows COM APIs [43], [44], [45]. The key interface used is
win32com.client.Dispatch("Outlook.Application"), which allows Outlook to be
accessed as a COM object. Through this interface, the scraper connects to the
Outlook Messaging Application Programming Interface (MAPI) namespace, opens
the shared calendar folders associated with a list of room email addresses, and
extracts the relevant event data. Since this capability is only available on Windows,
an unused machine at AAU Innovate was repurposed as a dedicated scraping host.
The scraper runs every 15 minutes, covering events from the previous day up to
one year into the future. Updates are applied only when changes are detected. This
frequent interval ensures timely and accurate data for biannual reports and supports
potential future applications, such as automated promotion of upcoming events and
analysis of meeting room bottlenecks.
An example of this code is seen in Listing 4.2.

import win32com.client

outlook = win32com.client.Dispatch("Outlook.Application")
namespace = outlook.GetNamespace("MAPI")

recipient = namespace.CreateRecipient("room@aau.dk")
recipient.Resolve()

calendar = namespace.GetSharedDefaultFolder(recipient, 9) # 9 = calendar
items = calendar.Items

items.Sort("[Start]")

items.IncludeRecurrences = True

events = items.Restrict("[Start] >= '01/01/2024"'")

Listing 4.2: Python code to extract shared Outlook calendar data using win32com.

In addition to basic event details (subject, time, etc.), the scraper collects partic-
ipant information to support anonymized reporting. Personal data is never stored.
Instead, only the number of attendees from each department is retained. A caching
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mechanism helps improve performance by storing previously resolved mappings from
email addresses to departments.

For larger events, the participant count reported by Outlook often underrepresents
actual attendance, especially when events are booked via a form that lists only one
or two organizers. To mitigate this, the scraper also parses the body text of calendar
entries to extract the actual number of participants and the organizing department.
These adjusted values are stored in separate database fields and exposed via the
final data interface.

All scraped data is stored in a MongoDB database hosted on the Strato platform.
Given the naturally JSON-like structure of calendar data and the need for schema
flexibility in future iterations, a NoSQL database was preferred. MongoDB was
chosen based on the author’s prior experience and its widespread use. Access is
restricted via credentials and limited to the AAU network for security.

The data is made available through a GraphQL API. Specific resolvers connect
to the MongoDB backend, enabling efficient querying of room calendar data. The
following schema illustrates the structure used to represent events and participation:

type DepartmentParticipation {
department: String!
attendeeCount: Int!
isExternal: Boolean!

}

type Event {
eventID: String!
subject: String!
start: Time!
end: Time!
durationMinutes: Int!
departmentBreakdown: [DepartmentParticipation!]!
formParticipants: Int
formDepartment: String

}

type Query {
rooms (emails: [String!]): [Room!]!

}
Listing 4.3: The GraphQL schema for the room calendar system.

To integrate this system into the existing infrastructure, the Room type from the
FMS system was extended to support federation. The extension adds event data to
each room object:

extend type Room @key(fields: "id") {

id: ID! @external

name: String!

email: String!

events(startTime: Time!, endTime: Time): [Event!]!

}
Listing 4.4: The extra code in the room calendar GraphQL schema to integrate it into the
Federation.
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4.2.3 Building Management System

As described in Section 3.3.2, the BMS system exports its data into a database
consisting of two main tables: metadata and timeseries data. This process is illus-
trated in Figure 3.3. The Timescale DB can be accessed via a REST API that
exposes two endpoints—one for metadata and one for timeseries data.

Authentication is handled through HTTP Basic Authentication, with the user-
name and password included in the request header. Requests are made to https://
bms-api.build. aau.dk/api/vl/ followed by the relevant endpoint. It is important to
note that this server is only accessible from within the AAU network or through a
Virtual Private Network (VPN) connection.

When the server starts, it sends a request to the metadata endpoint and caches the
response, as this data rarely changes. This improves performance, since subsequent
incoming requests only need to query the trend data endpoint and not repeatedly
request metadata. The data structure is represented in the GraphQL seen in
Listing 4.5.

type Value {
timestamp: Time!
value: Float!

}

type Sensor @key(fields: "externalID") {
externalID: String!
sourcePath: String!
unit: String!
values(startTime: Time!, endTime: Time): [Value!]!

}

type Query {
sensors(ids: [String!]): [Sensor!]!

}
Listing 4.5: The GraphQL schema for the Building Management System.

Although the BMS system already includes spatial metadata such as area, building,
floor, and room, this information is not currently exported into the database.
Therefore, each sensor is manually connected to a corresponding Room in the FMS
schema, which is defined in Listing 4.1.

This integration is implemented by extending the schema from Listing 4.5 with
additional code, shown below in Listing 4.6.

extend type Room @key(fields: "id") {
id: ID! @external

roomNumber: String! @external
sensors: [Sensor!]! @requires(fields: "roomNumber")

}
Listing 4.6: The extra code in the BMS GraphQL schema to integrate it into the Federation.

This code declares the Room type as external and identifies it using the id field as
a key. It then extends the Room type by adding a new field, sensors, which lists all
associated sensors. The resolver for sensors requires the name field (also marked as
external) to function correctly.
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4.2.4 Coffee Data

At AAU Innovate, beverage consumption is also monitored through a semi-auto-
mated data collection process, as described in Section 3.4. As shown in Figure 3.4,
data is still manually exported to a USB key, after which a Python script processes
the data and stores it in both CSV files and a database. The CSV export function-
ality was developed during my student job at AAU Innovate, while the integration
of a PostgreSQL database was implemented specifically for this project.

Since data is collected monthly, the dataset grows over time. Relying solely on
CSV files and reading them into memory becomes inefficient and problematic as
the volume increases. Additionally, using only CSV files would require manually
updating the server with new files each month and either restarting the server or
implementing logic to detect changes. This approach was considered inadequate,
which led to the implementation of a PostgreSQL database.

The database schema is defined using SQL, as shown in Listing 4.7. It consists of
a machines table containing general information about each coffee machine. There
are also two tables for beverage data: beverage counts and beverage details. The
beverage counts table stores total beverage counts, while beverage details records
the number of each specific beverage consumed.

The beverage counts table was introduced because aggregated data is queried
much more frequently than detailed beverage data. Without it, calculating totals
would require repeated aggregation of the beverage details table. Although it
would be theoretically possible to use separate tables for each drink type, this would
complicate the schema, slow down queries due to the need for frequent joins, and
offer only marginal storage benefits, as each entry would still require a joinable
identifier.

CREATE TABLE machines (
machine_id VARCHAR(20) PRIMARY KEY,
machine name VARCHAR(100) NOT NULL,
floor_id VARCHAR(30) NOT NULL

);

CREATE TABLE beverage counts (
id SERIAL PRIMARY KEY,
machine_id VARCHAR(20) REFERENCES machines(machine_id),
total beverages INTEGER NOT NULL,
timestamp TIMESTAMP NOT NULL,
UNIQUE(machine id, timestamp)
)

CREATE TABLE beverage details (
id SERIAL PRIMARY KEY,
machine id VARCHAR(20) REFERENCES machines(machine id),
beverage name VARCHAR(50) NOT NULL,
count INTEGER NOT NULL,
timestamp TIMESTAMP NOT NULL

Listing 4.7: The SQL setup for the coffee data database

Based on this structure, a corresponding GraphQL schema was created for the
coffee system, shown in Listing 4.8. The schema closely mirrors the database struc-
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ture. Data can be queried through the machines query, which accepts an optional
machineIDs argument—an array of IDs used to filter the results. If this argument is
omitted or left empty, data for all machines is returned.

For each machine, beverage data can be requested via the beverageCounts and
beverageDetails fields, both of which require a startTime and accept an optional
endTime. If endTime is not provided, it defaults to the current time.

type Machine @key(fields: "id") {
id: ID!
name: String!
beverageCounts(startTime: Time, endTime: Time): [BeverageCount!]!
beverageDetails(startTime: Time, endTime: Time): [BeverageDetail!]!

}

type BeverageCount {
id: ID!
totalBeverages: Int!
timestamp: Time!

}

type BeverageDetail {
id: ID!
beverageName: String!
count: Int!

timestamp: Time!

}

type Query {
machines(machinelIDs: [ID!]): [Machine!]!

}
Listing 4.8: The GraphQL schema for the coffee data system.

Finally, the coffee data was integrated into the federated system, as shown in
Listing 4.9. Since coffee machines are typically located in hallways rather than
specific rooms, they are associated with a Floor entity rather than a Room. The
machines field is defined as an extension on the external Floor type from the FMS
system graph.
extend type Floor @key(fields: "id") {
id: ID! @external
machines: [Machine!]!

}
Listing 4.9: The GraphQL code to implement the coffee data into the federation.

4.2.5 Door Counter System

The door counter system is initially described in Section 3.5. It was set up by an
external company, and their configuration is illustrated in Figure 3.6. The collected
data is stored in ThingsBoard, an open-source IoT platform [46], which is hosted by
Multiteknik, the company behind the system, at htip://iot.multiteknik.dk:8080 .
ThingsBoard offers a REST API that can be leveraged to access the data. To
authenticate, a POST request must be sent to the /api/auth/login endpoint with a



http://iot.multiteknik.dk:8080

4.2 Individual Data Systems 39 of 112

payload containing the username and password.! Upon successful login, an access
token is returned, along with a renewal token. The system authenticates once on
server start and uses the renewal token to refresh the access token before it expires.

The telemetry data itself is accessed via a GET request to the /api/plugins/
telemetry/DEVICE/[DEVICE _ID]/values/timeseries endpoint. The request must
include query parameters such as keys, startTs, endTs, and limit. The API returns
a JSON object structured as shown in Listing 4.10. Notably, the ts field represents
the timestamp in Unix milliseconds.

{
Ilclll: [
{
"ts": number,
"value": "string"
}I
{
"ts": number,
"value": "string"
}
// ... more objects
1,
// ... doors "c2" and "c3"
}

Listing 4.10: The structure of the response of the door counter system REST API.

This data access is encapsulated in the GraphQL schema shown in Listing 4.11. The
schema defines two types: Entrance and TelemetryData. Data can be requested using
the getEntrances query, optionally filtered by specific entrance IDs. Each Entrance
can return telemetry data for a given time range using the telemetryData field.

type Entrance @key(fields: "id") {
id: ID!
name: String!
telemetryData(startTime: Time!, endTime: Time): [TelemetryData!]!

type TelemetryData {
timestamp: String!
value: Int

type Query {
getEntrances(ids: [ID!]): [Entrance!]!

}
Listing 4.11: The GraphQL schema of the door counter system.

To integrate the door counter system into the federation, the Building type is
extended with an entrances field, as shown in Listing 4.12. While entrances could

1The author is aware that this request is transmitted over HTTP, which exposes the request
payload to interception during network transit. A request was made to Multiteknik to upgrade to
HTTPS while outlining the potential security risks; however, this request was denied. Until a new
system is in place, the credentials used are both unique and rotated regularly. In the future, AAU
Innovate plans to replace this system with one that offers more detailed data, such as direction
of movement, which could allow real-time estimations of building occupancy instead of only daily
counts.
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also be associated with a specific floor, this would often default to the ground
floor, leaving other floors with empty entrance data. This could create confusion,
for example, interpreting staircases or elevators as entrances. Therefore, associating
entrances at the building level provides a simpler and more intuitive structure.
extend type Building @key(fields: "id") {
id: ID! @external
entrances: [Entrance!]!

}
Listing 4.12: The GraphQL code to integrate the door counter system into the federation.

4.3 The Supergraph

All the individual data sources described in Section 4.2 are combined using Apollo
Federation (see Section 4.1.2). This results in the formation of a unified supergraph,
which aggregates all previously defined subgraphs. A schematic overview of this
supergraph is shown in Figure 4.3. From the diagram, it is evident that the FMS
system serves as the backbone of the entire architecture. This makes logical sense, as
it anchors each system through its spatial positioning in the building. Consequently,
the system forms a truly integrated API, now enriched with spatial context.
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Figure 4.3: The integrated API schema of the GraphQL Federation.

To implement this in practice, a NodeJS gateway server is created using the apollo-

server and @apollo/gateway packages. These packages are not available in GoLang,

which is why NodeJS is used for this component.
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The source code required to create this server is straightforward and is shown in
full in Listing 4.13. Each subgraph is defined with a name and a URL inside the
IntrospectAndCompose configuration of the ApolloGateway instance. The federated
server is then instantiated using the ApolloServer class.

const { ApolloServer } = require("apollo-server");
const { ApolloGateway, IntrospectAndCompose } = require("@apollo/gateway");

const gateway = new ApolloGateway({
supergraphSdl: new IntrospectAndCompose({
subgraphs: [
{ name: "doorcounters", url: "http://doorcounters:4001/query" },

{ name: "bms", url: "http://bms:4002/query" },
{ name: "fms", url: "http://fms:4003/query" },
{ name: "outlook", url: "http://outlook:4004/query" },
{ name: "coffee", url: "http://coffee:4005/query" },
1,
b,
1)

const server = new ApolloServer({
gateway,
subscriptions: false,

3

server.listen().then(({ url }) => {
console.log( & Server ready at ${url}’);
3
Listing 4.13: The source code to create the gateway for the Apollo Federation.

To deploy the entire system efficiently, Docker and Docker Compose are employed.
The benefits and setup of this approach are discussed in detail in Section 4.1.4.
Each subgraph service runs in its own container. Since the GoLang-based subgraphs
follow a similar hosting structure, a single reusable Dockerfile is used across them.
The gateway uses its own Dockerfile tailored to NodeJS. Docker Compose is used to
orchestrate all these containers. A full overview of this deployment setup is provided
in Appendix B.



Chapter 5

Creating a User Interface

As described in Chapter 4, the project’s data model results in a unified supergraph,
enabling access to all underlying data. While this is a crucial step, solving the
research question outlined in Section 2.2 requires more than just data access.
That section also emphasizes the role of data in supporting objective, data-driven
decisions, proven to enhance decision quality. However, at AAU Innovate, decision-
makers typically lack the technical skills to query a GraphQL endpoint or analyse
the results. While tailored scripts or interfaces could be developed for specific cases,
these are time-consuming and only address known needs.

A deeper challenge lies in the fact that AAU Innovate has never had access to
such extensive data before, making it unclear what questions should be asked or
what insights would be most valuable. This uncertainty makes it difficult to design
static interfaces. Instead, there is a strong case for using adaptive tools like Large
Language Models (LLMs). A well-integrated language model could dynamically
query the data, perform relevant analysis, and deliver insights—all without requiring
technical knowledge from the user. This approach eliminates the need for predefined
interfaces, offering a flexible and future-proof solution that can adapt to new data
sources and evolving user needs.

The chapter begins by introducing data integration into LLMs in Section 5.1.
Subsequently, the LLM used in the project is selected, establishing the user interface
of the final application in section Section 5.2.

5.1 Large Language Model Data Integration

As mentioned earlier, the data must be made available to the LLM in a meaningful
and accurate way. As T. Sassmannshausen [47] describes, there are essentially two
main methods for integrating company-specific data into a Large Language Model:
fine-tuning and Retrieval-Augmented Generation (RAG).

Fine-tuning refers to adapting an existing language model by training it further
on organization-specific content such as marketing material, internal reports, or
domain-specific language. While this can result in a deeply specialized model, it is
also resource-intensive and costly. Estimates range from $10,000 to over $1,000,000,
depending on scope and data preparation. Moreover, fine-tuning carries risks related
to overfitting and data balance. For example, a model trained on 90% code and 10%
support tickets will reflect this imbalance in its performance.

RAG, on the other hand, dynamically injects relevant data into prompts at
runtime. Instead of storing facts inside the model, RAG retrieves them on demand

43
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using methods such as vector search and knowledge graphs. This makes RAG more
adaptable, cost-effective, and easier to update. However, the quality of the output
depends heavily on the retrieval system’s design. Combining vector search with
metadata filters or structured knowledge bases can significantly enhance RAG’s
performance.

The general consensus is that RAG should be the default approach, while fine-
tuning is best reserved for highly specialized or offline scenarios. Even in domains
such as finance and medicine, fine-tuned models have frequently been outperformed
by general-purpose LLMs models combined with well-designed RAG pipelines. This
trend underscores the strength of generalist models when paired with robust retrieval
strategies. For our use case—where data is dynamic and questions are constantly
evolving—RAG offers a more scalable, maintainable, and future-proof solution.

“The smartest generalist frontier models beat specialized models in spe-
cialized topics.”

— T. Sassmannshausen, 2024, [47]

This highlights a key concern: training and maintaining a specialized model is not
only costly, but also risky, given the rapid pace of Al advancements. Even a newly
fine-tuned model may quickly be surpassed by the next generation of general-purpose
models.

5.1.1 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) is a method for improving the performance
of LLMs by integrating external knowledge at inference time [48]. Instead of relying
solely on the static information stored in a model’s parameters, RAG retrieves
relevant documents from an external corpus and conditions the generation on this
information. This approach enables the model to provide more accurate, factual,
and context-aware responses, especially in knowledge-intensive tasks.

Traditional language models are limited by the knowledge encoded during pre-
training, which becomes outdated over time and may not include domain-specific
or proprietary information. RAG addresses this limitation by combining two com-
ponents: a retrieval mechanism and a generation model. The retrieval component
provides real-time access to external information, while the generation component
uses this retrieved information to produce informed and relevant outputs.

The RAG process typically consists of the following steps:

1. Query Formulation: The user provides a prompt or question. This prompt
is either directly used as a query or transformed into one using an optional
query rewriting step, especially in multi-turn conversations.

2. Document Retrieval: The query is passed to a retrieval system, such as a
dense vector index or traditional keyword-based search engine. This system
searches an external corpus and returns the top-k relevant documents based
on similarity to the query.

3. Context Construction: The retrieved documents are combined with the
original prompt to form an augmented input. This may include concatenating
document text, titles, metadata, or summaries alongside the query.
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4. Generation: The augmented input is passed to a language model, which
generates a response conditioned on both the original prompt and the retrieved
context. This allows the model to incorporate information it was not trained
on.

5. Post-processing (optional): In some applications, the output may be
filtered, ranked, or further validated to improve accuracy, coherence, or format
compliance.

5.1.2 Functions calling with LLMs

RAG is good when specific information does not change often. However, it fails to
provide a good solution for ever-changing information, such as “What is the time now
in Brazil?” or “What is the current stock price of Apple?”. This type of information
is often available through APIs, which cannot be retrieved effectively using static
documents alone. To solve this, function calling, also referred to as tool usage, can
be used.

Function calling allows LLMs to interact with external tools or APIs in a struc-
tured and reliable manner [49]. Instead of generating a final answer directly, the
model detects when a function should be invoked and produces a JSON object
containing the necessary arguments. These arguments are then used to call the
external function, after which the result can be incorporated back into the final
response.

For instance, when a user asks “What is the weather like in London?”, the model
may output a structured call like get current weather(location: "London", unit:
"celsius"). The function is executed outside the model, and the returned weather
data is passed back to the model to generate a natural-language summary for the
user.

Function calling can be used to build conversational agents that access up-to-
date weather, financial, or calendar data, as well as to convert natural language into
valid API requests or database queries. This mechanism enables a new generation
of LLM-powered applications that can:

e Access live or dynamic data sources through APIs

Extract and structure information from user prompts

Automate tasks that require real-time information

Support knowledge retrieval from structured databases rather than free text
e Solve complex problems by delegating parts of the reasoning to external logic

By combining RAG and function calling, systems can benefit from both document-
based grounding and dynamic tool use. RAG excels in knowledge-intensive tasks
where up-to-date information is not critical, while function calling empowers LLMs
to act as orchestrators that query live systems and react to external context.

5.1.3 Model Context Protocol

The growing demand for LLM-based applications has led to a proliferation of ad
hoc integrations between models and external tools or data sources. These imple-
mentations are often tightly coupled, fragile, and difficult to maintain, especially
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in a rapidly evolving ecosystem where new models and capabilities are frequently
released.

The Model Context Protocol (MCP), developed by Anthropic and announced on
25 November 2024, tackles this challenge by introducing a standardized interface for
communication between models and tools [50], [51]. Rather than requiring bespoke
integrations for each tool-model pair, MCP offers a scalable, interoperable solution
where models can dynamically discover and invoke external capabilities using a
universal protocol.

Although introduced in late 2024, the protocol only began gaining significant
traction in early 2025 and has since emerged as one of the most prominent trends in
the Al field. Its adoption is particularly timely, given the pace of model innovation
and shifting APIs. By embracing MCP, organizations can decouple model selection
from integration logic—future-proofing their systems and substantially reducing
development overhead.

For a detailed discussion of the protocol’s architecture, communication mecha-
nisms, and benefits, see Appendix C.

5.2 Large Language Model Selection

Next, an LLM must be selected. There are many different models available, each with
varying capabilities and training methods. For our purposes, models are evaluated
based on the following criteria:

o As discussed in Section 5.1, the model must support tool calling to retrieve
additional context. For instance, the deepseek-rl model lacks this capability.
In Ollama, this can be filtered directly.

e The model must run locally with no data being shared externally. Cloud-
based models like ChatGPT, Gemini, or Claude cannot fulfill this requirement.

¢ The model must be free to use.

e It must be able to run on the available hardware. While this often depends on
model size and quantization, access to the UCloud environment removes most
hardware constraints.

The following subsections highlight a curated set of well-known models that satisfy
the previously established criteria. Only high-performing models have been included,
with smaller variants omitted when clearly outperformed by their larger or more
capable counterparts. Each model is briefly described in terms of its size, perfor-
mance characteristics, and typical use cases.

5.2.1 Qwen3

Qwen3 is the latest generation in the Qwen series, featuring both dense and mixture-
of-experts (MoE) variants [52]. It shows significant improvement in reasoning,
outperforming previous models such as Qwen2.5 and QwQ across benchmarks in
mathematics, code generation, and commonsense reasoning.

The flagship model, Qwen3-235B-A22B, performs competitively against DeepSeek-
R1, ol, 03-mini, Grok-3, and Gemini-2.5-Pro. Benchmark results are illustrated in
Figure 5.1.
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Quen32358.A228  Quen3328 | OpenAlol DeepseekR1 Grok3Beta  Gemini2.5Pro  OpenAlodmini
ArenaHard 95.6 93.8 921 93.2 - 96.4 89.0
AIME24 85.7 81.4 743 79.8 83.9 92.0 79.6
AIME25 815 72.9 79.2 70.0 773 86.7 74.8
LiveCodeBench 707 5.7 63.9 64.3 70.6 70.4 66.3
CodeForces 2056 1977 1891 2029 L 2001 2036
Aider 61.8 50.2 61.7 56.9 53.3 72.9 53.8
LiveBench 771 74.9 757 716 - 82.4 70.0
BFCL 70.8 70.3 67.8 56.9 - 62.9 64.6
MulsIF 719 73.0 488 677 - 778 484

Figure 5.1: Performance of Qwen3 compared to other leading models [52].

5.2.2 LLaMA

Meta’s LLaMA series includes two main families: the recently released LLaMA 4 and
the older LLaMA 3, the latest model of which is 11ama3.3 [53].
LLaMA 4 includes three models:
o Behemoth: 288B x 16 experts (2T total parameters)

o Maverick: 17B x 128 experts (400B total)
e Scout: 17B x 16 experts (109B total)

At the time of writing, Behemoth is still undergoing training and is therefore not yet
available for use. Performance comparisons are illustrated in Figure 5.2. As shown
in the figure, even though the largest model has not been released, the fourth-
generation models already outperform all models from the third generation.
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# Llama3.3 Llama3.1 Llama4 Llama4
Category Benchmark Metric
Shots 70B 405B Scout  Maverick

Image MMMU o] accuracy No multimodal 69.4 734
Reasoning support

MMMU Pro” o] accuracy 52.2 59.6

MathVista 0 accuracy 70.7 737
Image ChartQA 0 relaxed_accuracy 88.8 90.0
Understanding

DocVQA (test) 0 anls 94.4 94.4
Code LiveCodeBench 0 pass@1 33.3 27.7 32.8 43.4

(10/01/2024-02/01/2025)
Reasoning & MMLU Pro 0 macro_avg/acc 68.9 73.4 74.3 80.5
Knowledge

GPQA Diamond 0 accuracy 50.5 49.0 57.2 69.8
Multilingual MGSM 0 average/em 911 91.6 90.6 92.3
Long Context MTOB (half book) eng- - chrF Context 422 54.0

>kgv/kgv->eng window is 128K ! /

36.6 46.4
MTOB (full book) eng- - chrF 39.7 50.8
>kgv/kgv->eng / /
36.3 46.7

*reported numbers for MMMU Pro is the average of Standard and Vision tasks

Figure 5.2: Performance of LLaMA 4 compared to other LLaMA models [53].

5.2.3 Mixtral

Mixtral is a family of pretrained sparse MoE models [54]. The largest variant is
Mixtral 8x22B (80GB). Other models in the Mistral family, such as Mistral Nemo,
focus more on efficiency than raw performance, and are not considered here.

5.2.4 Mistral Large

Mistral Large 2 is the latest flagship model from Mistral, offering strong capabilities
in code generation, mathematics, and reasoning. It supports a 128k context window
and multilingual output [55].

5.2.5 Hermes 3

Hermes 3 is fine-tuned from LLaMA 3.1 (8B, 70B, and 405B variants) and trained
on a synthetic dataset [56]. It demonstrates strong long-context handling, roleplay,
and precise instruction-following, making it particularly suited to structured tasks
such as strict GraphQL schema adherence.

5.2.6 Command R+

Command R+ is Cohere’s open model optimized for real-world enterprise use cases
[57]. Tt balances efficiency and accuracy, with a strong emphasis on production-
readiness.
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5.2.7 DBRX

DBRX is a decoder-only transformer with a fine-grained MoE architecture (132B
total parameters, 36B active per input) [58]. It excels in programming tasks,
outperforming CodeLLaMA-70B, and achieves 70.1% on HumanEval and 73.7% on
MMLU [59].

5.2.8 Watt-tool

Watt-tool-70B is a tool-optimized model based on LLaMA-3.3-70B-Instruct [60]. It
ranks highly on the Berkeley Function Calling Leaderboard (BFCL), which evaluates
models on structured function-calling tasks such as correct function selection, multi-
function execution, and relevance detection. Watt-tool stands out for its enhanced
tool usage and strong performance in multi-turn conversations. More specifically, the
fireshihtzu/watt-tool-70B-formatted model is selected, as it supports tool usage.

5.2.9 Final Selection

Selecting a model based purely on benchmarks may not always yield the best real-
world results. However, due to time and resource constraints, evaluating all models
through hands-on testing is infeasible. Instead, benchmark results will be used to
narrow down the strongest candidates.

According to [59], DBRX Instruct stands out as a top-performing open model
across a wide range of benchmarks, excelling in programming, mathematics, and
general knowledge. It outperforms models like Mixtral Instruct and Grok-1—even
though Grok-1 has more than twice the parameters. DBRX achieves 70.1% on
HumanEval (surpassing CodeLLaMA-70B Instruct) and 73.7% on MMLU, outper-
forming GPT-3.5. With strong results in long-context tasks and retrieval-augmented
generation, DBRX offers robust general-purpose performance that rivals both open
and proprietary models. Despite these strengths, DBRX is ultimately excluded.
While it clearly outperforms Mixtral (which itself is often compared to LLaMA 2 70B
and GPT-3.5 by [61]), newer models such as LLaMA 4 have advanced significantly.
As shown in Figure 5.2, DBRX delivers similar performance to models that are now
considered outdated. With DBRX being nearly a year old and largely benchmarked
against older models, its continued inclusion is no longer justified.

Command R+ shows comparable tool usage performance to the original Mistral
Large model [62]. However, since the release of Mistral Large 2—which significantly
improves upon its predecessor—Command R+ has been outclassed [63]. As such, it
is excluded from further consideration.

The Hermes 3 model, evaluated in [64], delivers results on par with LLaMA 3.1
Instruct 405B. However, as seen in Figure 5.2, LLaMA 4 Maverick surpasses these
models on all fronts. Given this, Hermes 3 is also excluded.

After applying these filters, four models remain:

e Watt-tool: A function-calling specialist with strong tool integration and multi-
turn performance.

e Mistral Large: A high-performance general-purpose model with an excellent
cost-to-performance ratio.
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e LLaMA 4 Maverick: A state-of-the-art general-purpose model with strong
reasoning and tool usage.

e Qwen3: A versatile model with competitive benchmark results, comparable to
proprietary models like Gemini 2.5 Pro (Figure 5.1).

Since those models were selected based on theoretical criteria, the final choice will be
made based on their actual performance in the implementation found in Chapter 7.



Chapter 6

The Test Setup

This section describes the evaluation framework used to compare expert-driven and
Al-assisted data analysis in a smart building context. Specifically, we pose five data-
centric questions that can be answered using the current GraphQL-based platform.
Each question is answered twice:
1. Once by a technical expert who writes custom scripts and queries the data
manually.

2. Then by the LLM, which uses the same data — exposed via MCP — to
produce its response autonomously.

The goal of this dual-analysis approach is to assess how effectively the LLM
can interpret and act on complex, real-world sensor data using structured access
mechanisms. The following sections detail the preparation of both the expert and
LLM environments, including server integration, AI model selection, and network
configuration.

The chapter begins with the question selection process, described in Section 6.1.
Subsequently, the test environment for both the expert and the LLM is detailed
in Section 6.2. Finally, a brief overview of the expert test results is presented in
Section 6.3, which serves as a basis for comparison with the LLM test outcomes.

6.1 Question Selection

All currently available data sources are discussed in Chapter 3. After brainstorming
together with Innovate, we identified key areas of interest to guide our data evalu-
ation.

One of Innovate’s primary goals is to attract as many people as possible to the
building. To support this, they regularly organize events aimed at bringing in new
visitors. Understanding which days and events have been the most successful is
therefore crucial. This led to the formulation of the following question:

1. Which have been the busiest days of the year and overall? Can we
identify which events were organized on those days?

Another commonly mentioned issue is that meeting rooms are often hard to find.
To determine whether this is a real problem, the following question was created:

2. What can we say about meeting room usage? What is the average
usage between 8:00 and 16:00 (in %), both overall and per room?

o1
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What was the peak usage and when did it occur? Have we reached
100% utilization at any point?

One of Innovate’s goals is to support external collaboration. This often leads to
meetings, or at least the booking of meeting rooms. To assess how well Innovate is
achieving this goal, we pose the following question:

3. How many meetings have we hosted where an external partner was
present?

Innovate has been in use for a little over two years. During that time, rooms were
assigned specific functions, although not everything was set in stone. As teams and
processes evolve, it’s important to reevaluate how space is being used. There have
been rumors that some rooms on the second floor are underutilized. Can we confirm
this through the data? Or are there other, even less-used rooms?

4. Which rooms are underused or show the least activity year to date?
And which rooms show the most activity?

Finally, data should not only be used to analyze the current situation or identify
where change is needed, but it can also be a powerful tool to evaluate the impact of
those changes.

For example, Innovate realized that its IT lab was underused. Despite having
exciting equipment, people rarely visited the room. As a result, part of the space was
transformed into a prototype lab, now hosting Al computers and some 3D printers.
Initial impressions suggest increased activity, but is that truly the case?

5. Innovate changed the function of the IT lab to attract more users.
Can a measurable increase in activity be seen, and if so, how much
more is it being used?

6.2 Preparing the Test Environment

To enable the expert to run the tests, several preparatory steps must be undertaken.
First, the expert test setup needs to be created by leveraging the expert’s responses
to the previously defined questions, as outlined in Section 6.2.1. Next, in preparation
for the LLM tests, the GraphQL schema must be made available over the MCP
interface, which is described in detail in Section 6.2.2. Following this, an Al model
runner must be selected that is capable of executing the model chosen in Section 5.2;
this selection process is discussed in Section 6.2.3. Subsequently, the actual setup
of the LLM test machine can be performed, according to the procedures described
in Section 6.2.4. Afterward, connectivity between the various systems must be
configured to enable proper communication, as explained in Section 6.2.5. Finally,
the tool enabling the deployment of an MCP host, which integrates all components
of the system, should be set up as detailed in Section 6.2.6.

6.2.1 The expert test setup

To test the system, the following setup was used, shown visually in Figure 6.1. The
hosting of the Apollo Federation, etc, is described in Appendix B.
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Figure 6.1: The test setup used by the expert.

The tests are conducted on the expert’s own computer. First, Apollo Federation
is run on a server at AAU. Note that Figure 6.1 is not fully complete, as the
actual components involved are already described in Figure 4.1. The current schema
could be extended with that figure and further with the schemas of each individual
subsystem to provide the full picture.

To ensure the data remains inaccessible to unauthorized users, the server only
runs on the AAU network. This means that a VPN connection is required to access
it when working off-campus. This is an added security precaution.

6.2.2 MCP Server Integration

The GraphQL schema described in Section 4.3 can easily be exposed over MCP
using the mcp-graphgl tool [65]. This tool takes a running GraphQL server as input
and exposes it as an MCP server with two main tools available:

o introspect-schema: Retrieves the GraphQL schema. This tool should be
used first if the schema is not available as a local resource. It supports either
a local schema file or an introspection query against the server.

e query-graphql: Executes GraphQL queries against the endpoint. By default,
mutations are disabled unless the environment variable ALLOW MUTATIONS is
explicitly set to true.

This approach allows the schema to be used by any MCP host, enabling both
introspection and querying of data without the need to write a custom server. Since
the GraphQL structure includes self-contained documentation within the schema
itself, the LLM has access to all necessary context to understand the available data
and its structure.

6.2.3 AI Model Runner Selection

To enable a usable Al system, the underlying language model must be executed in
an environment that supports external tool calling and the integration of additional
context. As explained in Section 5.1, this capability is essential for enabling the
model to perform dynamic lookups, access private datasets, and support user-specific
workflows.
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However, much of the data used in this project (see Chapter 3) is provided by AAU
and may contain AAU specific data. Based on discussions with the case partner AAU
Innovate, it was concluded that the Al system must not rely on external cloud-based
services unless full control over data flow can be guaranteed. In practice, this means
the language model must be hosted and run locally, ensuring that all processing
remains behind closed doors and under our governance.

Among the available options for running LLMs locally, Ollama stands out as the
most robust and accessible solution. Ollama is a local LLM runner that supports a
wide range of state-of-the-art models—including Mistral, Meta’s Llama family, and
Google’s Gemma, through a simple command-line interface and an HTTP API [66].

One of the reasons Ollama is particularly suited for this use case is its use
of quantization, which allows large models to run efficiently on consumer-grade
hardware by reducing their computational and memory requirements. This enables
real-time, offline Al interaction without the need for expensive GPU clusters or
constant internet connectivity. In addition, Ollama ensures that all model inputs
and outputs remain on the host device, aligning well with privacy constraints.

Another strength of Ollama lies in its support for lightweight customization
through LoRA (Low-Rank Adaptation) adapters. Using a simple text-based config-
uration called a Model file, developers can define base models, default prompts,
and task-specific LoRA adapters—all without retraining the model from scratch.
These configurations can be reused, shared, and swapped to adapt the same model
to different use cases efficiently.

Due to prior positive experience with Ollama, its excellent documentation, active
open-source community, and full support for offline, privacy-conscious model execu-
tion, Ollama was selected as the model runner for this project.

As Ollama does not come with out-of-the-box support for MCP, the tool mcphost
was used. MCPHost is a CLI host application that enables LLMs to interact with
external tools through the MCP [67].

6.2.4 Creating the LLM Test Machine

To run the large LLMs model selected in Section 5.2, a machine with substantial
GPU capacity is required. AAU Innovate provides access to two Al machines
equipped with NVIDIA RTX 4090 GPUs, each featuring 16,384 CUDA cores and
24 GB of vVRAM [68]. However, this hardware is insufficient for hosting most of the
selected LLM models, which have substantial memory requirements:

o Watt Tool: 128k context window, 43 GB [60]

o Mistral Large: 128k context window, 73 GB [55]
o Qwen3: 40k context window, 142 GB [52]

o Llama4: 1M context window, 245 GB [53]

To meet these demands, other High Performance Computing (HPC) options offered
by AAU were evaluated: Strato, UCloud, AI Cloud, and AI-Lab [69]. AI-Cloud is
excluded from this evaluation, as it is not accessible to students. Al-Lab provides a
system with 8x NVIDIA L4 GPUs, each with 24 GB of vRAM [70]. Strato allows
student access to a single NVIDIA T4 instance with 2,560 CUDA cores and 16 GB
of vVRAM [71].
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UCloud, in contrast, offers access to three clusters: SDU/K8, AAU/KS8, and AAU/
VM [72]. The SDU/KS cluster includes high-end GPUs but restricts their use to
researchers. On the AAU/VM cluster, the most powerful configuration available to
students is 3x NVIDIA A10 GPUs, each with 48 GB of vRAM, 696 GB/s of memory
bandwidth, and a bidirectional interconnect of 112.5 GB/s [73]. The AAU/KS cluster
supports configurations with 1 to 8 NVIDIA L40 GPUs, each offering 48 GB of
vRAM and 864 GB/s of memory bandwidth [74]. This enables configurations of up
to 144 GB of vRAM (6 GPUs) or 192GB (8 GPUs).

Given the superior memory capacity and performance of the AAU/KS8 cluster,
this platform was selected for experimentation. However, due to long queue times
—exceeding 48 hours—for the 8x L40 GPU configuration, the decision was made
to proceed with the 6x GPU configuration. This setup is easier to access and still
supports running the largest LLaMA4 model, with partial offloading to the CPU
when required.

6.2.5 Network Access to GraphQL Federation

The next challenge was enabling data access on the UCloud machine, which, like the
expert setup shown in Figure 6.1, must communicate with the GraphQL Federation.
VPN access was not viable, and the UCloud instance is not part of the AAU internal
network. Furthermore, the GraphQL endpoint is not authenticated and cannot be
exposed to the public internet.

To resolve this, the data server was migrated to a public IP space on Strato. Access
was restricted by opening only specific ports for designated IP addresses, relying on
IP-based filtering as a security measure. While effective for external systems, this
approach encountered a limitation: due to AAU’s internal security policies, machines
within the AAU network, even those with public IPs, cannot directly communicate
with each other.

After discussions with the AAU CLAAUDIA team and testing various configura-
tions, a viable solution was established, as illustrated in Figure 6.2.

Rest of
@ Federation setup

UCloud @ docker.
ul-standard-1
g
5]
openstack.
UCloud Strato
uc1-140-6 server

Figure 6.2: The LLM test setup used.

A proxy server was deployed on the SDU/KS cluster. Its sole purpose is to hold the
correct private SSH key to access the Strato resource. The SDU UCloud machine
was configured for SSH access, and the key was uploaded to the AAU/K8 machine.
Using SSH tunneling, the required port (4000) was forwarded to localhost on the
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AAU/KS8 machine, thereby granting access to the data server. This is accomplished
using the command shown in Listing 6.1.

ssh -J ucloud@ssh.cloud.sdu.dk: [ucloud-port] \
ubuntu@[strato-ip] -L 4000:localhost:4000
Listing 6.1: The command needed to forward port 4000 on Strato to the UCloud machine,
giving it access to the GraphQL Federation.

6.2.6 Running the Model with mcphost

With networking in place, the model was run on the UCloud server using 0llama
and mcphost, as described in Section 6.2.3. mcphost connects to the MCP server,
created using the mcp-graphgl tool detailed in Section 6.2.2. The tool configuration
for mcphost is shown in Listing 6.2.

{
mcpServers: {
time-server: {
command: "
args: [
"mcp-server-time",
"--local-timezone=Europe/Copenhagen”

]

uvx",

}
mcp-graphql-aau-innovate-data-server: {
command: "npx",
args: ["mcp-graphgl"],
env: {
ENDPOINT: "http://localhost:4000/graphqgl",
NAME: "mcp-graphgl-aau-innovate-data-server"
}
}

}
}

Listing 6.2: The config file for mcphost used to perform the experiments.

During testing, a bug was discovered in mcphost versions 2.0.1 to 2.0.3. When the
tool introspect-schema was invoked with the argument undefined instead of {3}, it
would break the MCP protocol.?

Additionally, the configuration includes a time server. This provides temporal
context to the LLM, enabling it to answer time-sensitive questions such as those
involving “Year to Date” metrics more accurately.

6.3 The Expert Test Results

The expert (the author of this report), who has extensive knowledge of the systems
and data structure, attempted to solve the five selected questions defined in collab-
oration with AAU Innovate (see Section 6.1). Each question was answered by writing
custom Python scripts and manually issuing queries to the data platform. The steps
taken and complete output are documented in Appendix D. Below, a brief summary

2Issue reported to developer. A workaround was implemented by forcing a dummy argument to
ensure valid JSON transmission, as no fix is yet available.
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of each task and outcome is presented, along with an estimate of the time spent,
later to be compared with the LLM.

6.3.1 Question 1: Identifying the Busiest Days and Their Causes

To determine the busiest days at AAU Innovate and understand what caused the
spikes in activity, entrance telemetry data was queried and aggregated by day. Total
foot traffic was summed across all entrances, and calendar data from the same days
was analyzed to identify large events and their expected attendance. The following
steps were taken to complete the analysis:

1. Retrieve the unique identifier for the relevant building, which is TMV25.
2. Fetch entrance telemetry data for building TMV25 starting from 2025-01-01.

3. Use a Python script to sum hourly entrance data into daily totals across all
entrances.

4. Generate an overview of the busiest days based on total daily traffic.

5. For each of these dates, issue a query to the events endpoint to retrieve
scheduled activities.

6. Write a Python script to process the event data and list events by estimated
attendance.

This process can be repeated to produce results for all available data, not just Year
to Date (YTD).
The analysis led to the following key results:
o The busiest day in 2025 was 2025-04-29 (1057 entries), primarily due to
Energy Research Day 2025 with more than 1000 expected attendees.

e 2025-04-03 (1027 entries) featured several small to medium-sized meetings,
with no single large event.

e 2025-04-01 (930 entries) was driven by a combination of the ALF meeting
and the Game Tech Academy Partner Meeting.

o The all-time peak occurred on 2024-10-02 (1109 entries), largely due to
Science Day, supported by several smaller events.

The full details, including GraphQL queries, raw output, and event breakdowns, are
available in Section D.1. Estimated time spent: 1 hour.

6.3.2 Question 2: Meeting Rooms Usage Analysis

Meeting rooms are a key resource at AAU Innovate. To evaluate their usage, Outlook
calendar data from 2022 onward was queried and processed, excluding PIR data due
to its unreliability. A typical workday was defined as 8 hours, allowing daily room
usage to be expressed as a percentage. The following steps were taken:

1. Query all calendar events for meeting rooms from 2022 onward, including
durationMinutes.

2. Use Python to calculate daily usage percentages per room.

3. Identify peak usage days where rooms were booked well over 100%.
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4. Compute long-term average usage per room from 2022 to 2025.
5. Segment the data into half-year intervals to detect usage trends over time.

6. Analyze occupancy per hour to find periods with the highest simultaneous
usage.

This led to several key results:
e Some rooms showed extremely high booking rates on specific days (e.g.,
TMV25-Stue-C.004 at 2593.8%).

o Usage peaked in late 2023 (32.32%) and has slightly declined since.

o Peak hourly demand never exceeded 14 out of 26 rooms booked simultaneously,
disproving the notion of meeting room overuse.

Listing D.13 and related charts confirm that while some rooms are highly used, the

building has adequate capacity for meetings. The full details, including GraphQL

queries, raw output, and event breakdowns, are available in Section D.2.
Estimated time spent: 1.5 hours.

6.3.3 Question 3: Meetings with External Partners

Collaboration with external partners is central to AAU Innovate’s mission. While
meetings alone do not provide the full picture, they offer a strong proxy. To estimate
how often external partners are involved, the following steps were taken:

1. Query all meetings from 2022 onward, including the start field to group by
year and the isExternal flag within departmentBreakdown to identify external
attendees.

2. Write a Python script to filter and count meetings per year that include at
least one external participant.

This yielded the following results: External collaboration peaked in 2023 with 1146
meetings involving external partners, followed by a slight decline in 2024 (823
meetings), reflecting a similar trend seen in room usage (Section 6.3.2). Notably,
large events not tied to a specific meeting room are excluded, so the actual numbers
are likely higher. The full details, including GraphQL queries, are available in
Section D.3.

Estimated time spent: 30 minutes.

6.3.4 Question 4: Analyzing Room Usage

Understanding which rooms are most and least used is key to optimizing building
layout and function. Due to the lack of access to lighting data, BMS PIR sensors
were used as a proxy for motion-based activity. The following steps were taken:

1. Query all sensors in the building to identify potential PIR devices.
2. Use Python to filter sensors with PIR and TM025 in their sourcePath.

3. Collect sensor data month-by-month from 2022-09-01 onward using the filtered
externallDs.
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4. Calculate active hours by measuring the time between 1.0 (motion start) and
the next 0.0 (motion end).

5. Correlate sensor activity with room names and total hours per room.
6. Summarize usage both since 2022 and for 2025 year-to-date.

Querying all rooms at once failed due to response size limits, and because the BMS
system lacks metadata for identifying sensor types, data had to be fetched in smaller
batches. A start date of 2022-09-01 was selected based on availability, and data
collection proceeded monthly per sensor using an iterative script.
The results reveal:
e Most used rooms: A.115, B.106b, A.314, B.008, A.215

e Least used rooms: A.106, A.001b, B.111, A.310, A.011

Rooms like A.314 and A.115 consistently show high activity, while others like A.310

and B.111 appear largely unused. These insights are valuable for space planning

and reassignment, though they should not be taken literally. PIR sensors may be

imperfectly placed, and other contextual factors can affect the data. The full details,

including GraphQL queries and raw output, are available in Section D.4.
Estimated time spent: 3—4 hours.

6.3.5 Question 5: IT Lab Change Detection

To evaluate whether the IT Lab at AAU Innovate experienced increased usage
following a functional change in January 2025, PIR sensor data was analyzed. The
dataset from Section 6.3.4 could be reused for this purpose. While anecdotal evidence
suggested a rise in activity, this analysis aimed to quantify that change.

1. Identify rooms A.101a and A.101b as the IT Lab using Innovate’s floor plan.

2. Use the same method from Section 6.3.4 to collect monthly PIR data for
these rooms.

3. Write a Python script to compute monthly active hours and month-over-month
percentage changes.

4. Perform a year-over-year comparison to correct for seasonal variation.

The results show a marked increase starting in January 2025, with substantial
growth in February and March, as shown in Listing 6.3. Compared to the same
months in 2024, usage increased by an average of 66% between February and April.

Month A.101a (Hours / % YoY) A.101b (Hours / % YoY)
2025-01: 239.45h (-1.1%) 201.99h (-3.5%)

2025-02: 253.57h (+22.4%) 228.63h (+54.4%)
2025-03: 287.78h (+78.1%) 269.05h (+103.4%)
2025-04: 229.74h (+40.3%) 191.65h (+40.2%)

Listing 6.3: Monthly usage hours of the IT Lab compared to the same months in the

°

°

previous year.

These results strongly suggest that the policy change successfully increased the IT
Lab’s usage. As this question is treated as a separate instance, the time estimate
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includes data fetching. The full details, including GraphQL queries and raw output,
are available in Section D.5.
Estimated time spent: 3 hours.



Chapter 7

The LLM Test Results

This chapter evaluates the LLM solution’s capability to answer data-related insight
questions. Initially, the models selected in Section 5.2 are tested, leading to the
identification of a final model in Section 7.1. Subsequently, the chosen solution is
assessed using the questions listed in Section 6.1, and its responses are compared
against expert answers provided in Section 6.3. The expert’s ability to address all
questions underscores the data’s potential for generating insights.

7.1 Final Model Selection

As described in Section 5.2, four language models were shortlisted based on bench-
marks, model size, and general capabilities. While these criteria provide an initial
indication of performance, selecting the best model for production requires practical
evaluation on real-world tasks.

As the Evaluation Strategy, Part 1 of Question 1 (see Section 6.3.1) was selected
as the primary benchmark. This question involves identifying the busiest days of the
year in the building TMV25, which requires:

1. Calling the get current time endpoint to determine the current year.
2. Using the introspect schema endpoint to understand the available data.

3. Querying the buildings endpoint with TMV25 as the ID and requesting all
telemetryData from each entrance, starting from the beginning of the year.

4. Parsing the telemetry data to calculate visitor counts per day.
5. Sorting these counts in descending order and returning the top 10 days.

This task is challenging due to the nested data structure, large telemetry volume,
and need for cross-day aggregation and tool use. Some interactions with each model
are listed in Appendix E.

7.1.1 Qwen3

Qwen3 performed well in identifying required steps, including schema introspection,
query formulation, and temporal reasoning. It:

e Understood tool use and made correct GraphQL queries.
e Called the right query and got back the required data.

o Attempted Python script generation for aggregation tasks.
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However, it ultimately failed to deliver a complete result due to:
e Exceeding the context window during large telemetry data processing.

o Inability to iteratively debug or correct execution logic in external code.

7.1.2 LLaMA 4

LLaMA 4 demonstrated basic schema understanding and could generate plausible
query templates. However, it struggled to:

e Use tools effectively, often returning Python-style pseudocode instead of
actionable queries.

e Maintain state across multi-step interactions due to prompt truncation.
e Complete the aggregation logic required for the task.

Its failure to execute the required data analysis made it unsuitable for this use case.

7.1.3 Watt Tool

Although the Watt Tool model showed excellent awareness of available tools and
could suggest accurate tool calls, it:

e Lacked the capability to execute them.
e Only returned static suggestions without interaction.
Due to its static-only nature, it was disqualified from further evaluation and deemed

unusable for this usecase.

7.1.4 Mistral

Mistral demonstrated several promising capabilities during the task:

e It exhibited an understanding of the overall multi-step process required,
including data aggregation and sorting.

e It showed initiative by invoking the get current time endpoint and at-
tempting schema introspection.

o It correctly identified the need to use the requests library for making API calls.

Despite these strengths, Mistral’s output suffered from critical issues that ultimately
impeded task completion:

o It consistently generated invalid GraphQL queries, referencing nonexistent
fields such as name on the Building type and visitorCount on the
TelemetryData type.

e It failed to correctly introspect and apply the schema structure, leading to
logically flawed queries.

e The generated Python scripts included persistent syntax errors and incorrect
use of query structures.

While Mistral demonstrated a solid understanding of the intended process, its inabil-
ity to produce syntactically and semantically valid GraphQL queries, combined with
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persistent scripting errors, ultimately made it ineffective for successfully completing
the task. It often generated strong initial results but consistently veered off course
when asked to fix small bugs or make minor improvements.

7.1.5 Conclusion

This initial testing leads to the creation of the following overview table (see
Table 7.1). The table uses checkmark syntax to provide a visual summary of how
effectively each model approached solving the first question.

Each model was tested across at least three to four independent conversations.
Conversations were continued until the author determined that the LLM’s responses
were no longer progressing or providing useful direction.

Qwen3 Mistral LLama4 Watt Tool

Able to call tools v v v X
Capabl'e of mult'l—step v n » 9
reasoning (“deepthink”)
Correct GrathL query v " 9 »

construction
Produced meaningful an-
X X X X
swer
Avg. response time 5m 11s 4m 56s 1m 46s 1m 41s
Median response time 4m 18s 2m 47s 1m 6s 59s

Table 7.1: An overview of model performance on question 1.

Both Qwen3 and Mistral demonstrated a good understanding of the task and were
able to produce Python code that was close to functioning correctly, with only minor
syntax issues. However, Mistral had more difficulty recovering from its own mistakes.
When asked to fix small problems, it often lost track of the earlier context and drifted
away from its initially promising answers. In contrast, Qwen3 handled follow-up
interactions more effectively by retaining context and making focused corrections.

Although Qwen3 was slower than the other models, it ultimately proved to be the
most reliable. It responded better to user input and showed a slightly deeper under-
standing of the problem through its more deliberate reasoning. For these reasons,
all further experimentation was carried out exclusively with Qwen3. The slower
performance was an acceptable tradeoff given the significantly higher reliability and
consistency in task completion.

7.2 LLM Solution Evaluation

Next, Qwen3 is used to solve questions 1 through 5. The evaluation in Table 7.2
summarizes its performance using checkmark symbols to indicate where the LLM
succeeded, partially succeeded, or failed. The figure covers all five questions, with
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particular emphasis on how well the LLM understood the tasks, constructed queries,
handled data, and generated accurate and extendable code.

For questions 4 and 5, the data retrieval process had already been completed by
the expert using custom Python tools, due to the complexity and volume involved.
Therefore, Qwen3 was only expected to analyze the provided data, not to extract
it. The structure of the input data was explicitly known to the LLM, allowing it to
focus on generating meaningful and functional Python code for analysis.

Qwen3 Q1 Q2 Q3 Q4 Q5

Understood the question v v v v +
Created the right query v v v + X

Got the required data + v v v v
Analysed the data into an answer + v v v v
Got a complete and correct answer X X v + +
Able to extend the program x + v X v

Table 7.2: An overview of Qwen3’s performance to solve the questions

In Question 1, Qwen3 was able to understand the question and correctly query
the time tool to determine the starting year for a year-to-date analysis. It then
constructed and executed the appropriate query. Unfortunately, this led to an input
prompt that exceeded the context window that Ollama can handle. Two additional
attempts were made, this time requesting a Python script. However, these attempts
were not successful and resulted in buggy output.

Question 2 involved a single long attempt. While it took some time to construct the
correct query—and one query resulted in a server error despite being theoretically
valid, the final result used the rooms endpoint instead of the buildings endpoint.
Although functional in this context, this approach did not align with the specific
request to retrieve data for the TMV25 building.

An answer was eventually achieved, but it did not reach the quality of the
expert answer. Despite being adaptable to follow-up instructions, it lacked essential
correctness. The produced output is displayed in Listing 7.1.

Utilization Analysis Results:

Total meeting rooms analyzed: 237
Average daily utilization: 0.08 hours
Peak room utilization: 24.0 hours

Peak room name: TMV25 C.004 - Auditorium
Any room at full capacity (8h+): Yes

Listing 7.1: The output of Qwen3’s Python program to solve question 2.

This result is problematic. The number of meeting rooms is incorrect, as it included
all rooms rather than just meeting rooms. While the script attempted to filter by
type,which is uncluded in the dataset, but does not hold whether a room is a meeting
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room. The actual meeting room status should be inferred from whether the room has
an email address. As a result, the average daily utilization and peak usage figures
were misleading and did not add meaningful value. Therefore, this attempt received
a crossmark for completeness and correctness.

In contrast, Question 3 proceeded very smoothly. As shown in Section 6.3.3, the
expert also found this task relatively straightforward. The first attempt tried to solve
the task directly in the LLM but ran into context limitations in Ollama. A subse-
quent attempt, in a fresh conversation and requesting a Python solution, was highly
successful. One prompt resulted in a fully functional script and a correct answer. A
follow-up request for more detailed yearly information was handled flawlessly. The
LLM completed the initial task in 8 minutes and 7 seconds, clearly outperforming
the expert in this case.

For Question 4, the LLM correctly analyzed the PIR sensor data and identified
active periods based on 1.0-0.0 transitions. It produced a working Python script
that sorted sensors by usage time. However, the output was hard to interpret due
to raw seconds and a lack of room names. Attempts to query the BMS GraphQL
API to map sensor IDs to room names failed due to incorrect request formats and
endpoint mismatches. As shown in Listing 7.2, the code was functional but stranded,
producing results with sensor IDs only and no readable time or room context. Later
efforts to improve the code failed, as did attempts to start over from scratch and
try again.
Least used rooms (sensor ID, active time in seconds):

Sensor 235558: 467095.00 seconds
Sensor 235564: 2663663.00 seconds

Most used rooms (sensor ID, active time in seconds):
Sensor 176740: 35440115.00 seconds
Sensor 179983: 38964240.00 seconds

Listing 7.2: The output of Qwen3’s Python program to solve question 4.

For Question 5, the LLM was tasked with detecting whether a functional change
to the IT lab led to increased activity. It successfully extracted the externallDs for
rooms A.101a and A.101b using a Python script that parsed a nested JSON file.
Initially, the LLM struggled, failing to construct the correct GraphQL query to find
the IDs. However, when asked to write a script using a local file, it managed the
task effectively.

The LLM then analyzed PIR trend logs for these sensors, calculating active
durations between 1.0 and 0.0 transitions. This led to the result in Listing 7.3. While
Qwend did produce a working program, it forgot previously gathered information,
like the sensor IDs and data folder, when writing the second script. Furthermore,
the analysis used January 2023 as the threshold instead of the correct date (January
2025), failing to utilize the time tool for dynamic year detection.



66 of 112 Chapter 7 The LLM Test Results

{

"176558": {
"pre_avg _hours": 242.06,
"post_avg hours": 236.03,
"increase percent": -2.49

}

"176567": {
"pre_avg hours": 153.33,
"post avg hours": 209.59,
"increase percent": 36.69

}

}

Listing 7.3: The initial output of Qwen3’s Python program to solve question 5.

The code, while functional, did not offer a clear or meaningful comparison. It simply
splits data into “before” and “after” the change, without a temporal breakdown
or better granularity. After further clarification, the LLM produced a refined and
structured script to compare monthly usage before and after January 2025. As
shown in Listing 7.4, the final result matches the expert output in Listing D.20, but
expressed in seconds here.

Sensor 176567:
Pre-Avg (2024): 522043.20h
Post-Avg (2025): 754536.00h
Overall Change: 44.54%
Monthly Changes
Month 1: 753914.00h - 727156.00h (-3.55%)
Month 2: 533177.00h - 823083.00h (54.37%)
Month 3: 476187.00h - 968587.00h (103.40%)
1%)
)

{

1

hWNI—'

Month 4: 492066.00h - 689940.00h (40.21%
Month 5: 354872.00h - 563914.00h (58.91%
Sensor 176558:

Pre-Avg (2024): 650658.00h

Post-Avg (2025): 849692.40h

Overall Change: 30.59%

Monthly Changes
Month 1: 871533.00h - 862004.00h (-1.09%)
Month 2: 745553.00h - 912859.00h (22.44%)
Month 3: 581764.00h - 1036012.00h (78.08%)
Month 4: 589443.00h - 827048.00h (40.31%)
Month 5: 464997.00h - 610539.00h (31.30%)

Listing 7.4: The final output of Qwen3’s Python program to solve question 5.

{

U'I-bb.)Nl—'

To compare, the entire conversation spanned 53 minutes, of which the LLM actively
reasoned for 12 minutes and 20 seconds. In contrast, the expert spent approximately
1 hour reasoning through the same question, not including the time required to
obtain the data. This places the LLM’s performance on par with the expert in terms
of analytical time, despite the expert having prior familiarity with the task context.
However, the LLM needed some expert help to get the right answer.



Chapter 8

Discussion

As outlined in Section 2.2, the central question initially posed was whether existing
systems and sensors in smart buildings could be leveraged to gain meaningful insights
into building usage. The concept of interfacing this data with an LLM emerged only
later, as introduced in Chapter 5. This discussion will first evaluate the expert’s
results in Section 8.1, followed by an assessment of the LLM’s performance in
Section 8.2.

8.1 Expert Analysis and Insights

The expert successfully addressed all questions posed in collaboration with Innovate.
These questions were carefully constructed with available data access in mind.

For question 1, the busiest days were estimated using laser sensor data. However,
since these sensors do not cover a fourth entrance at Innovate, but only the three
main doors, the resulting data may be an underestimate. To investigate the cause
of peak activity, only Outlook meeting data was considered. This relied on the
formParticipants field, which represents expected rather than actual attendance.
Despite these limitations, the data still provided useful insights.

Question 2 was more straightforward. Assuming all meetings are correctly
registered in the room calendar, which is standard procedure, the results can be
considered reliable. These findings were particularly valuable as they countered the
assumption that there are not enough meeting rooms available.

Question 3, however, yielded a significant underestimation. Major events were
not accounted for, and the number of meetings alone says little about their impor-
tance or the number of attendees. While the task was completed quickly, the analysis
fell short of addressing the deeper question of whether Innovate is attracting more
external collaboration or whether existing collaboration simply moved into the new
facilities.

Question 4 encountered challenges due to the large volume of data. A potential
improvement would be to implement a cache system that continuously logs room
activity based on BMS PIR sensors, making future analysis more efficient. Alterna-
tively, lighting system data, when available, could improve precision. The results,
while demanding to produce, were promising and likely valuable for Innovate’s
management.

Question 5 delivered particularly interesting insights, showing that a functional
change had the desired effect. Since the analysis compared relative changes before
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and after the modification, the results were more robust against potential data
inaccuracies.

8.2 Evaluating the LLM

The performance of the LLM was notably mixed. Setting up the model was complex,
and despite access to powerful hardware, response times were relatively slow. Discus-
sions with CLAAUDIA revealed that the bottleneck was not GPU speed but rather
the interconnect between GPUs, as usage often remained below 20%. Nevertheless,
response times remained within acceptable bounds for the experiment.

The initial goal—to have the LLM answer questions directly within a prompt
without writing a Python script—quickly proved unfeasible. While the model could
retrieve data using queries, it frequently ran into context window limitations.
Although these parameters could be adjusted in Ollama, the data-intensive nature
of the questions made such adjustments impractical. The query endpoint itself
performed well and could be valuable in scenarios requiring smaller, focused data
retrieval. However, the use case here required long-term analysis, making such an
approach unsuitable.

As a result, the strategy shifted toward having the LLM generate Python pro-
grams. Given Python’s strong support for data processing and the LLM’s aptitude
for code generation, this made sense. In many cases, the initial code output was
impressive, and when it worked, extending or adapting the script was relatively easy.
However, if bugs were present or additional logic was needed, progress often stalled.
The LLM frequently forgot previously obtained context, such as specific years or
endpoint URLSs, and failed to reuse it in subsequent code.

Overall, the LLM was capable of writing functional Python scripts, but typically
only when given one task at a time, such as in question 3, or after breaking down
tasks into steps, as was done in question 5. More complex requests, such as those
in question 1, or tasks that required combining code with external data queries,
were consistently unsuccessful. It also never demonstrated a fundamentally different
approach to solving a problem, instead trailing behind the expert in both reasoning
and creativity.

In conclusion, while the experiment showed that the LLM could answer simpler
data questions independently or with minor guidance, it struggled with complex
tasks, even when aided by expert knowledge. It often failed to complete the full
pipeline from data to insight. Even when it succeeded, the time saved was marginal.
The most promising path forward is likely for experts to use LLMs as assistants for
generating Python scripts, especially when the model has access to the GraphQL
schema and can understand small, well-scoped examples. With this setup, the LLM
could help rapidly scaffold analysis tools that the expert then completes or validates.



Conclusion

This project demonstrates that integrating heterogeneous sensor and system data
from a smart building, such as FMS, BMS, door counters, coffee machines, and
meeting calendars, can provide actionable insights that support evidence-based
decision-making. The successful creation of a unified, hostable data graph for AAU
Innovate proves the feasibility of connecting multiple systems into a coherent struc-
ture that management can use for ongoing monitoring and strategic planning.

The project’s first achievement is getting access to certain data systems, both
procedural and technical. This was proven to be a sometimes difficult challenge. As
well as documenting the different systems and the status/ possibilities with them.
Next, the integrated GraphQL federation was created. Making an easy, documented
way of data collection at AAU Innovate possible, with possibilities to extend to other
buildings at AAU. As well a the creation of a system architecture which is scalable
for new systems to integrate in, when rolled out or access is achieved. Apart from a
platform, which can be used for future research, it is a proof of concept, which can
be used to roll out data collection over all of AAU, as imagined by AAU building
support.

To validate the value of this integration, five relevant data-driven questions were
formulated in collaboration with AAU Innovate. These were then solved by the
report’s author, acting as the expert. Importantly, all five questions led to actionable
insights, clear evidence of what becomes possible only through the unified data
scheme. These results establish a strong benchmark and proof-of-concept for how
integrated building data can empower better decisions and deeper understanding of
real usage patterns.

In exploring the potential of using LLMs as an interface to this data, results
were more mixed. While the LLM could not handle complex queries directly within
prompts, due to limited memory and context size, it performed well in generating
Python scripts for single, focused tasks. These scripts occasionally reached expert-
level quality and produced valuable outputs, particularly when tasks were broken
into smaller steps.

However, limitations remained. The LLM struggled with multi-step logic, remem-
bering previously gathered context, and chaining tools together effectively. It did
not propose novel approaches and consistently lagged behind expert performance
in more complex cases. Despite this, for simpler questions, the time-to-solution was
often comparable to human effort, suggesting potential as a useful coding assistant.

These findings suggest that LLMs may not yet replace expert data analysts
but could significantly enhance their workflow. Used interactively, and especially
with access to structured help, such as GraphQL schema awareness or retrieval-
augmented generation (RAG), LLMs could accelerate scripting and lower the barrier
to insight.
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Although the LLM results were limited, the system still proved highly valuable
to AAU Innovate. The answers were presented to them and led to positive feedback
and useful insights, demonstrating the potential of the acquired data access and
platform. While a non-technical user may not yet be able to independently extract
meaningful insights using only the LLM, a technically proficient student assistant
could leverage the platform to explore new questions as they arise or to investigate
observed trends more deeply. A particularly valuable aspect is the ability to use the
data to reflect on policy changes, as illustrated by question 5.

Future Work

Looking ahead, improvements can be made across several dimensions. The MCP
server could be extended with more tools beyond just the query function, allow-
ing LLMs to operate more autonomously. While stronger models like Gemini or
OpenAl’'s GPT currently outperform local open-source models, they cannot be
deployed self-hosted due to licensing and privacy constraints. Nonetheless, they offer
a glimpse of what open-source models will likely achieve in the near future as they
continue to improve.

The system architecture also makes it straightforward to integrate additional data
sources, such as lighting systems or upcoming machine usage data, enabling richer
insights into room activity and operational efficiency. Making computation-heavy
metrics, such as active room hours or daily building occupancy, available directly in
the GraphQL schema, and optionally caching them server-side, could significantly
enhance both performance and user experience.

Future research may extend this platform toward optimization, e.g., improving
heating strategies using not only BMS data but also calendar and entrance data.
It could also investigate how RAG or pre-defined code snippets can guide LLMs
toward more accurate, context-aware answers. Another direction involves designing
“shortcuts” that offload heavy computations to the server, making frequent queries,
such as the number of people in the building on a given day, efficient and scalable.

In summary, this work proves that with the right data architecture, valuable
building insights are within reach. While LLMs are not yet ready to take over the
analyst’s role, they show promise as co-pilots—especially when the system is tailored
to their strengths.
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Appendix A

A AU Innovate’s Layout

This section details the layout of the AAU Innovate building, which serves as the
case study for this report. The building comprises five levels, ranging from the
basement to the third floor. The detailed floor plans for each level are illustrated in
the following figures: Figure A.2, A.3, A4, A.5 and A.6 To provide context for the
floor plans, Figure A.1 shows the exterior view of the AAU Innovate building.

Figure A.1: The AAU Innovate building viewed from the outside.
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Figure A.2: The floorplan of the basement floor of the AAU Innovate building.
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Appendix B

Hosting the Data Application

The data application is hosted using Docker containers, orchestrated through Docker
Compose to manage inter-container networking and simplify service configuration.
This setup is illustrated in Listing B.1.

# Stage 1: Builder
FROM golang:1.24-alpine AS builder

# Define an argument for the application source directory relative to the
context
ARG APP_SRC=.

WORKDIR /app

# Copy only necessary files first for layer caching
COPY ${APP_SRC}/go.mod ${APP SRC}/go.sum ./
RUN go mod download

# Copy the specific application source code using the build argument
COPY ${APP_SRC} ./

# Build the application binary, ensure static linking
RUN CGO_ENABLED=0 GO0S=linux go build -ldflags="-w -s" -o /app-binary .

# Stage 2: Runner
FROM alpine:latest

# Create a non-root user for security
RUN adduser -D -u 10001 appuser
WORKDIR /app

# Copy the compiled binary from the builder stage
COPY --from=builder /app-binary .

# Change ownership if using a non-root user

RUN chown appuser:appuser /app/app-binary

# Switch to the non-root user
USER appuser

Listing B.1: The Dockerfile used by all the GoLang individual graphs

Fach Go-based microservice is built using a multi-stage Dockerfile. The first stage
uses the golang image to compile the source code into a statically linked binary,
optimizing for size and performance. In the second stage, the compiled binary is
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transferred to a lightweight alpine image. For enhanced security, a non-root user
is created and assigned ownership of the binary. This practice reduces the attack
surface in production environments.

The gateway, a Node.js application, uses a straightforward setup based on the official
Node.js image. It installs dependencies via npm ci for reproducible builds, and then
copies over the core application file. This configuration is shown in Listing B.2.

# Use a specific, minimal Node.js image
FROM node:22-alpine

# Set the working directory inside the container
WORKDIR /app

# Copy package.json and package-lock.json (or yarn.lock, pnpm-lock.yaml)
first

# This allows Docker to cache this layer, speeding up builds if only code
changes

COPY package*.json ./

# Install dependencies
RUN npm ci --production

# Copy the rest of the application code
COPY ./server.js ./server.js

Listing B.2: The Dockerfile for the NodeJS gateway.

To coordinate all services, a docker-compose.yaml file is used. This file defines how
containers should be built and configured, including port mappings, environment
variables, and command overrides. It also specifies volumes and context paths for
individual services. A portion of this configuration is shown in Listing B.3. Running
docker compose up brings up the entire system, whether locally or on a remote
server, thanks to Docker’s platform-independent nature.
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services:
gateway:
build:
context: ./service-gateway
ports:
"4000:4000"
environment:
- APP_LISTEN PORT=4000
command: ["node", "server.js"]

doorcounters:
build:
context:
args:
APP _SRC: ./service-doorcounters
ports:
"4001:4001"
environment:
- APP_LISTEN PORT=4001
env_file:
- ./service-doorcounters/.env
command: ["./app-binary"]

...All other subgraph systems

coffee:
build:
context:
args:
APP_SRC: ./service-coffee
ports:
"4005:4005"
environment:
- APP_LISTEN PORT=4005
env file:
- ./service-coffee/.env
command: ["./app-binary"]
Listing B.3: The Docker Compose file defines the interaction between all the containers.






Appendix C

The Model Context Protocol

The Model Context Protocol (MCP) is an open standard developed by Anthropic
to facilitate seamless integration between LLMs and external tools, data sources,
and services [50], [51], [75], [76]. Introduced in late 2024, MCP addresses the
complexities associated with integrating Al systems into real-world applications by
providing a standardized protocol for communication between Al assistants and
various resources.

C.1 Motivation and Problem Statement

With the growing adoption of Al-driven applications, the need to connect models to
a wide variety of external tools, services, and data sources has introduced significant
complexity. Traditionally, every AI application (N) required bespoke integrations
with each tool or system (M), resulting in an NxM integration problem. This pattern
is inherently unscalable and creates major barriers to rapid Al development and
deployment.

Prior to the introduction of MCP, developers relied on ad hoc methods such
as manual API wiring, plugin-based interfaces, or specialized agent frameworks to
enable tool interactions. These approaches not only increased development overhead
but also resulted in fragmented, fragile, and hard-to-maintain systems.

As illustrated in Figure C.1, provided by X. Hou, Y. Zhao, S. Wang, and H. Wang
[76], each tool integration previously required defining custom interfaces, authenti-
cation mechanisms, and data handling logic. In contrast, MCP offers a universal,
standardized protocol for Al-to-tool communication. This abstraction significantly
reduces integration effort by allowing AI agents to interact with diverse tools through
a shared, structured interface.

With MCP

Without MCP . T )
Al Application | Al Application (MCP Client)

I Model Context Protocol

Specific API
Specific| API Specific MCP Server
ifig

VS.

Specific APT

i
]
@ch Scrviccs] [ Databasc] [ Local Filcs] 1
]
]
]

1
'

[@Web Services] [ DalabaseJ [ Local Files] |
= !

1

'

External Tools and Resources

_________________________________________

External Tools and Resources

Figure C.1: Comparison of tool invocation with and without MCP [76].

By eliminating the need for tool-specific wiring and enabling dynamic discovery and
invocation of external capabilities, MCP improves scalability, reduces duplication of

85



86 of 112 Appendix C The Model Context Protocol

effort, and promotes interoperability. This shift lays the foundation for more flexible,
maintainable, and autonomous Al systems capable of handling real-world workflows.

C.2 Architecture Overview

MCP follows a modular client-server architecture designed to standardize and
simplify interactions between Al applications and external tools, services, and data
sources. The architecture comprises three main components:

« MCP Client: Typically embedded in the AI system, the client is responsible
for initiating requests, managing interactions, and interpreting responses. It
represents the interface through which the model accesses external capabilities.

e MCP Server: An independent service that exposes the functionality of a
specific external tool or dataset. It translates structured requests from the
client into concrete actions, such as file operations, API calls, or database
queries.

o Services: The actual external systems (e.g., file systems, APIs, databases)
that the MCP server interfaces with to perform the requested operations.

Communication between the client and server is conducted using structured data
formats, primarily JSON, to ensure clear semantics, cross-language compatibility,
and ease of parsing.

Furthermore, MCP defines three key interaction primitives that enable standard-
ized and modular tool usage:

« Resources: Represent referenceable data objects such as files, images, docu-
ments, or records that can be retrieved or manipulated.

o Tools: Represent operations that can be invoked by the AT agent, including
APIs, scripts, or workflows (e.g., search, transform, send message).

« Prompts: Represent task-specific templates or instructions that guide how
AT models should interact with tools or resources, including inputs, outputs,
and formatting.

MCP servers can be implemented in a variety of languages such as Python,
TypeScript, Java, or C#, using open-source SDKs. They support both local (on-
device) and remote (cloud-hosted) deployments, enhancing flexibility in use cases
ranging from personal assistants to enterprise-scale agents. Servers handle authen-
tication, capability registration, and return structured responses compatible with
LLM reasoning workflows.

C.3 Protocol Overview

The Model Context Protocol (MCP) defines a robust, extensible communication
protocol that connects LLMs with external tools, resources, and workflows [77],
[78]. It is designed to support secure, real-time, bi-directional communication and is
capable of dynamic tool discovery, invocation, and structured result retrieval. The
protocol promotes clarity and standardization through schema-based interfaces and
interoperable message formats.
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C.3.1 Communication Model

MCP’s communication is based on a structured message exchange process that
enables Al agents to understand and interact with tool servers:

1. Initialization: The MCP client initiates a connection by requesting the
server’s capabilities, which include metadata about exposed tools, accessible
resources, and prompt templates.

2. Capability Exchange: The server responds with a manifest describing its
interface and supported operations. This enables the model to plan interactions
based on what is available.

3. Active Message Exchange: Once initialized, the system enters an oper-
ational state in which the client and server exchange requests, results,
notifications, and error messages. This enables real-time task orchestration,
asynchronous event handling, and flexible agent-driven control.

This design promotes modularity and general-purpose use, allowing Al agents to
interact with a wide variety of tools and services using the same messaging and
discovery patterns.

C.3.2Transport and Message Semantics

MCP adopts JSON-RPC 2.0 as its wire format, enabling cross-language interoper-
ability and structured communication. Four primary message types are defined:

Request: A message sent by a client or server that expects a response.

Result: A successful response to a request.

Error: A structured error response, with codes and messages.
e Notification: A one-way message that does not expect a reply.

Transports handle the delivery of these messages. MCP supports multiple transport
mechanisms:

o Standard Input/Output (stdio): Best suited for local tools or CLI-based
integrations, using stdin and stdout streams to send and receive messages.

o HTTP with Server-Sent Events (SSE): Ideal for web-based or remote
tools, using POST for sending messages and SSE for receiving server-side
updates.

Both transports adhere to the same JSON-RPC structure and may be extended or
replaced with custom transports that conform to the defined interface.

SDKs in Python and TypeScript abstract these layers, allowing developers to
focus on tool implementation rather than low-level messaging details.

C.3.3Connection and Server Lifecycle

The MCP connection lifecycle is structured into three phases:

o Imnitialization: A version negotiation handshake occurs, during which the
client and server exchange supported features and capabilities. The client
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sends an initialize request, the server responds, and a final initialized
notification is sent to confirm readiness.

e Active Communication: Once initialized, both parties can exchange
requests and notifications as needed. The protocol supports bidirectional
communication, tool invocation, progress updates, and event handling.

e Termination: Either side can close the session due to task completion, error
conditions, or disconnection. Graceful shutdown via a close command ensures
resource cleanup.

The server itself also follows a lifecycle with three operational phases:

o Creation: The server is configured with metadata (name, version, tool list,
prompts, permissions), deployed with source code and manifests, and option-
ally registered for discovery. Security checks, such as code integrity verification,
are essential during this phase.

e Operation: The server handles incoming requests and notifications, executes
tool actions, and ensures safe interaction via sandboxing and access control.
It may also interpret multi-step commands or slash-style queries.

e Update: This phase includes version control, privilege reassessment, and
deprecation of insecure configurations. Proper update management prevents
configuration drift, ensures continuity, and supports long-term maintainability.

Understanding both the protocol and server lifecycle is crucial for secure and scal-
able implementation of MCP-based Al systems. By combining dynamic discovery,
structured messaging, and flexible transport options, MCP enables powerful model-
to-tool integrations across a wide range of environments.



Appendix D

The Expert Test Results

This section provides a more detailed account of the expert’s work, expanding on
Section 6.3. It describes the process and results for each question in depth in the
subsections below.

D.1 Question 1: Identifying the Busiest Days and Their
Causes

Understanding the usage patterns of the building is essential for evaluating how space
and resources are utilized. One of the key questions investigated in this report is:

Which have been the busiest days of the year and overall? Can we identify
which events were organized on those days?

The first step is to retrieve the unique identifier for the relevant building. This is done
using a GraphQL query (shown in Listing D.1) that returns all available buildings
along with their addresses.
query GetBuildingIDQuery {
buildings {
id
address
}

}
Listing D.1: GraphQL query to fetch all buildings and their addresses.

Manual inspection of the results yields the building ID TMV25. Using this identifier,
entrance telemetry data is collected, limited to the current calendar year, and ex-
cluding unnecessary metadata for efficiency. The used query is shown in Listing D.2.
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query GetBuildingIDQuery {
buildings(ids: ["TMV25"]1) {
entrances {
telemetryData(startTime: "2025-01-01T00:00:00Z2") {
timestamp
value
}
}
}
}
Listing D.2: GraphQL query to fetch entrance telemetry data for building TMV25 from
2025-01-01 onward.

The query returns a nested JSON structure containing hourly visitor counts per
entrance. Since manual analysis is impractical, a Python script is used to aggregate
the data by date. Hourly values are first summed into daily totals per entrance, then
combined across all entrances. The five days with the highest total foot traffic are
extracted, as shown in Listing D.3.

2025-04-29: Total = 1057, Per Entrance {0: 354, 1: 80, 2: 623}
2025-04-03: Total 1027, Per Entrance {0: 408, 1: 181, 2: 438}
2025-04-01: Total = 930, Per Entrance = {0: 281, 1: 184, 2: 465}
2025-05-02: Total = 869, Per Entrance {0: 215, 1: 105, 2: 549}
2025-05-15: Total = 801, Per Entrance {0: 427, 1: 150, 2: 224}

Listing D.3: The top 5 busiest days at AAU Innovate in 2025

To determine the cause of these peaks, scheduled events and their expected atten-
dance are examined for each corresponding date. This is done using the query shown
in Listing D.4, with the startTime and endTime adjusted to match the date in

question.

query getEventsOnCertainDay {
buildings(ids: ["TMV25"1) {
floors {
name
rooms {
id
name
email
events(startTime: "2024-10-02T00:00:00Z2",
endTime:"2024-10-02T23:59:597") {
departmentBreakdown {
attendeeCount
}
formParticipants
subject
start
end

Listing D.4: The GraphQL query, used to query all events on a certain day.
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This leads again to a JSON output, which is read out and analysed in another
Python processing program, especially written for this purpose. For the first 3 days,
the results are shared in Listing D.5, Listing D.6, and Listing D.7.

o 2025-04-29:

AAU Energy Research Day 2025: 1000 attendees

Manedsmgde (morgenmad fra 8:45 - mgdestart kl. 9.00): 53 attendees
AI Nordjylland Netvarksmgde temarzkke 2: 50 attendees

Aben Workshop 3: 50 attendees

Listing D.5: The events with the most attendees on 2025-04-29.

This clearly shows that the AAU Energy Research Day 2025 was the main driver
for the high foot traffic.

e 2025-04-03:

Besgg af VL-gruppe: 25 attendees

IAS PBL TAP: 16 attendees

Mgde i Tvargdende Sikkerhedsorganisering pad AAU: 15 attendees
Aftagerpanel for Internationale Relationer og GRS: 12 attendees
LabSTEM: 10 attendees

Mgde i styregruppen - GIRAF - Generativ, Interaktiv og Refleksiv Ai i
Faglig forankring};: 10 attendees

Listing D.6: The events with the most attendees on 2025-04-03.

No single large event is visible here; instead, the day includes several small to
medium-sized events.

e 2025-04-01:

ALF-mgde: 72 attendees
Game Tech Academy Partnermgde: 40 attendees
Drogftelse af dagsorden for kommende SAU mgde: 13 attendees

Listing D.7: The events with the most attendees on 2025-04-01

A combination of two moderately sized events seems to explain the elevated visitor
numbers.

To answer the broader question of the busiest days overall, the data query is extended
to include all available telemetry records starting from early 2022. Applying the
same aggregation method reveals the five days with the highest total visitor counts
across the full dataset, as shown in Listing D.8.

2024-10-02: Total = 1109, Per Entrance = {0: 547, 1: 169, 2: 393}
2024-09-18: Total = 1085, Per Entrance = {0: 641, 1: 111, 2: 333}
2025-04-29: Total = 1057, Per Entrance = {0: 354, 1: 80, 2: 623}
2025-04-03: Total = 1027, Per Entrance = {0: 408, 1: 181, 2: 438}

2023-04-25: Total 1015, Per Entrance = {0: 286, 1: 86, 2: 643}
Listing D.8: The top five busiest days at AAU Innovate since 2022.

To illustrate the connection between high traffic and scheduled activities, only
the events registered on the most visited day, 2024-10-02, are presented below in
Listing D.9. The same analytical approach applies to the other dates.
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Science Day: 1200 attendees
ALF mgde: 70 attendees
AAU Startup Program [indsat workshop-navn] (AAL 3-24) : 30 attendees
NTNU: 30 attendees
Listing D.9: Events scheduled at AAU Innovate on 2024-10-02.

The results confirm that a single large-scale event, Science Day, served as the
primary driver of foot traffic, supported by three medium-sized events. Together,
these contributed to the highest recorded visitor count in the building’s history.

D.2 Question 2: Meeting Rooms Usage Analysis

Meeting rooms are central to daily activities at AAU Innovate — from hosting
project meetings to facilitating external collaborations. Understanding how these
rooms are used can help optimize resources and ensure that space is allocated
effectively. To analyze usage patterns, both the Outlook meeting data and the BMS
system’s PIR sensor data were considered. However, due to the imperfect placement
and reliability of the PIR sensors, only the Outlook calendar data was used in this
analysis.

To explore usage trends, all meeting data from the start of 2022 until now was
retrieved. This was done using a GraphQL query (see Listing D.4), with startTime
set to 2022-01-01T00:00:00Z and endTime omitted, defaulting to the current time.
The durationMinutes field was included to make parsing more efficient.

A typical workday is defined as lasting from 08:00 to 16:00, that is, 8 hours or 480
minutes. Daily room usage percentages were thus calculated by dividing the total
minutes a room was booked by 480. As a result, some rooms may show occupancy
rates above 100%, indicating overlapping bookings or back-to-back meetings. A
truncated result can be seen in Listing D.10.

Room: TMV25-Stue-A.006

2024-09-17: 1050.0% occupied (5040 min)
2023-10-12: 712.5% occupied (3420 min)
2025-11-04: 425.0% occupied (2040 min)
2024-04-26: 412.5% occupied (1980 min)
2025-04-15: 393.8% occupied (1890 min)
2023-05-11: 350.0% occupied (1680 min)

Room: TMV25-Stue-C.004

2024-06-21: 2593.8% occupied (12450 min)
2023-07-24: 1500.0% occupied (7200 min)
2023-07-17: 1500.0% occupied (7200 min)

Listing D.10: The peak occupancy moments of each meeting room at AAU Innovate

These records highlight the peak usage days per room, showing that at certain times,
bookings far exceeded the expected maximum. However, to understand general
trends, average usage since the beginning of 2022 was calculated for each room.
These averages assume a constant 5-day workweek (excluding holidays and special
periods).
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Average usage per room (from start 2022):
TMV25-Stue-C.004: 49.10% average usage
TMV25-Stue-C.009: 38.27% average usage

TMV25-1.
TMV25-1.
TMV25-3.
TMV25-2.
TMV25-3.
TMV25-2.
TMV25-3.
TMV25-3.

Sal-C.
Sal-C.
Sal-A.
Sal-A.
Sal-A.
Sal-B.
Sal-A.
Sal-A.

104a: 37.73% average usage
104b: 36.23% average usage
314: 26.34% average usage
202: 25.92% average usage
313: 25.90% average usage

o°

203: 22.32% average usage
301: 20.20% average usage
315: 18.85% average usage

TMV25-Stue-A.006: 15.44% average usage

TMV25-2.
TMV25-1.
TMV25-1.
TMV25-1.
TMV25-1.
TMV25-1.
TMV25-1.
TMV25-1.
TMV25-2.
TMV25-1.
TMV25-3.
TMV25-2.

Overall

Sal-A.
Sal-C.
Sal-C.
Sal-A.
Sal-A.
Sal-A.
Sal-A.
Sal-B.
Sal-A.
Sal-A.
Sal-A.
Sal-A.

average usage across all rooms: 15.46%

218b: 11.20% average usage
107: 10.78% average usage
106: 8.28% average usage
119a: 2.78% average usage
120a: 2.14% average usage
115: 1.47% average usage
111: 0.83% average usage
106a: 0.83% average usage
207: 0.55% average usage
112: 0.28% average usage
310: 0.15% average usage
20la: 0.08% average usage
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Listing D.11: The total average usage of each meeting room at AAU Innovate

While this provides a general overview, it does not reflect temporal developments

or account for the fact that the building only opened in January 2022 and has not

yet reached full capacity. To better capture these dynamics, the data was segmented

into half-year intervals to reveal trends over time. Listing D.12 illustrates how room

usage has evolved from 2022 onwards.



94 of 112

- 2022-H2 ---

Appendix D The Expert Test Results

TMV25-1. Sal-C.104a: 41.87% average usage
TMV25-1. Sal-C.104b: 35.04% average usage
TMV25-Stue-C.004: 32.84% average usage
TMV25-Stue-C.009: 25.52% average usage

TMV25-2.
TMV25-3.
TMV25-3.
TMV25-2.
TMV25-3.
TMV25-2.
TMV25-1.
TMV25-1.
TMV25-2.
TMV25-1.

Sal-A.
Sal-A.
Sal-A.
Sal-B.
Sal-A.
Sal-A.
Sal-C.
Sal-C.
Sal-A.
Sal-A.

202:
313:
314:
203:
315:
218b:
106:
107:
201a:
115:

TMV25-Stue-A.006: 0.
TMV25-1. Sal-A.119a: 0.05% average usage
TMV25-1. Sal-B.106a: 0.05% average usage

Form-wide
Form-wide
Form-wide
Form-wide
Form-wide
Form-wide

average
average
average
average
average
average

23.

21

19.
14,
10.

7

74% average
.77% average
35% average
27% average
79% average
.05% average

.68% average
.83% average

usage
usage
usage
usage
usage
usage

usage

usage

0.52% average usage
0.25% average usage
05% average usage

for
for
for
for
for
for

2022-H2: 14.
2023-H1: 27.
2023-H2: 32.
2024-H1: 26.
2024-H2: 25.
2025-H1: 23

Listing D.12: The average usage, total and for each room,
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of AAU Innovate’s meeting

rooms, segmented into half-year intervals.?

These values show that overall usage peaked in the second half of 2023 and has

gradually declined since then. It is important to note that this does not directly

reflect the number or quality of activities at Innovate — rather, it offers an opera-

tional insight into space utilization and potential areas for improvement.

Finally, peak usage moments were analyzed by dividing each workday into 1-

hour intervals and comparing the number of rooms occupied in each interval against

the total number of meeting rooms. For this, only rooms with a non-empty email

field were considered. This granular approach helps identify specific times of high

demand and can assist with future planning, for example, by highlighting periods

when booking a room might be difficult or when shared spaces are underutilized.

3The data for 2025 is not yet final, as this data is requested on the 20th of May, and only events
which are already in the calendar now are taken into account for the usage calculation.
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2024-05-13 13:45-14:45: 14 rooms occupied out of 26
2024-05-13 14:00-15:00: 14 rooms occupied out of 26
2023-10-23 10:15-11:15: 14 rooms occupied out of 26
2023-10-23 10:30-11:30: 14 rooms occupied out of 26
2024-09-17 12:45-13:45: 14 rooms occupied out of 26
2024-09-17 13:00-14:00: 14 rooms occupied out of 26
2025-04-22 08:45-09:45: 14 rooms occupied out of 26
2025-04-22 09:00-10:00: 14 rooms occupied out of 26
2025-03-10 13:00-14:00: 13 rooms occupied out of 26
2024-11-14 09:15-10:15: 13 rooms occupied out of 26

Listing D.13: The top 10 busiest meeting room 1-hour periods at AAU Innovate.*

Listing D.13 shows that rumors about meeting room overusage are not supported
by the data. Throughout the existence of AAU Innovate, there has not been a single
instance, according to the Outlook calendar used to book rooms, where all meeting
rooms were simultaneously occupied. While it is true that not every room serves the
same purpose or offers the same facilities, a peak occupancy of 14 out of 26 suggests
that there is still significant headroom in the system. This is reassuring, especially
given that Innovate is a newly constructed building, designed with flexibility and
future growth in mind.

D.3 Question 3: Meetings with External Partners

As mentioned in Section 6.1, collaboration with external partners is important for
AAU Innovate. Although meetings do not give the full picture, they can be an
indication of it.

How many meetings have we hosted where an external partner was present?

First, all meetings from the start of 2022 are requested using a similar query to
Listing D.4, with startTime set to 2022-01-01T00:00:00Z and endTime omitted,
defaulting to the current time. The arguments are also changed slightly. Only
start is needed to find the year the meeting was in, but isExternal is added to
departmentBreakdown to see whether an event has external people invited. The results
are shown in Listing D.14.

2022: 245 meeting(s) with external participants
2023: 1146 meeting(s) with external participants
2024: 823 meeting(s) with external participants
2025: 268 meeting(s) with external participants

Listing D.14: The number of meetings an external partner was invited into the meeting at
AAU Innovate each year.

Here, the same pattern as in Section D.2 is seen, where fewer meetings were organised
in 2024 compared to 2023. Note that these numbers assume that external partners
are invited into the meeting, where the meeting room is invited into. For example,
for bigger events, this is not the case, and this is thus not seen in the data. The
actual numbers will thus be higher.

4The data for 2025 is not yet final, as this data is requested on the 20th of May, and only events
which are already in the calendar now are taken into account for the usage calculation.
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D.4 Question 4: Analyzing Room Usage

Efficient use of resources is important, and while some rooms may appear underused
yet remain essential, mapping out room activity is a valuable tool to optimize
building usage, room function, and layout.

Which rooms are underused or show the least activity year to date? And
which rooms show the most activity?

At the time of writing, access to lighting system data is not available. Instead, the
BMS system is used. Although the lighting data might later offer more accuracy, the
current process remains applicable and can easily be repeated once access is granted.
The initial step involved querying all sensors via Listing D.15. Unfortunately, the
BMS does not provide sensor types, making it necessary to manually identify PIR
sensors. Using domain knowledge, a Python script filtered sensors whose sourcePath
contained PIR. This returned a subset of externallDs, which could then be used
to extract sensor data. Additional filtering was implemented to handle cases where
multiple PIR logs existed for the same room. Specifically, only sensors with both pir
and TMO25 in the sourcePath were selected. This is a fragile but effective method,
relying on consistent naming conventions used during the Innovate building setup.

query getRoomActivity {
buildings(ids: ["TMV25"]1) {
floors {
name
rooms {
name
sensors {
externallD
sourcePath
unit

Listing D.15: The initial query to identify all available sensors in the building.

Attempting to query sensor values for all rooms at once failed due to response size
limits. The BMS system provides no metadata to distinguish sensor types, and sensor
naming varies across buildings. Therefore, data was fetched in smaller batches, using
the filtered list of relevant externalIDs from the PIR sensors.

A starting date of 2022-09-01 was chosen based on observed data availability.
Data was then collected month-by-month for each room using an iterative script,
referencing the query in Listing D.16. This process alone took several hours due to
the size and granularity of the data.
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query getAllSensors {
sensors(ids: [...selected ids]) {
externallD
sourcePath
unit
values(startTime: "2022-09-01T00:00:00Z2") {
timestamp
value
}
}
}

Listing D.16: GraphQL query to retrieve value data for selected PIR sensors.

The next step involved calculating the number of hours a room was active. This was
defined as the duration between a 1.0 value (motion detected) and the next 0.0.
Consecutive 0.0 values and any non-binary values were ignored. A second Python
script batched this processing, computing monthly active hours per room. These
results were then correlated with room data from Listing D.15 using the externalID
as a key.

Finally, a third Python script analyzed the total active hours to determine the
most and least used rooms. Results from September 2022 to the present are shown
in Listing D.17, and from January 2025 to now in Listing D.18.

Top 5 Most Active Rooms:
A.314: 15291.6 hours
B.106b: 13163.9 hours
A.115: 12156.9 hours
B.008: 12005.1 hours
B.002: 10822.9 hours

Top 5 Least Active Rooms:
.014a: 1492.5 hours
.001b: 1040.1 hours
.310: 784.3 hours

.208: 646.7 hours

.-111: 129.8 hours

Listing D.17: Top 5 most and least used rooms from 2022-09 until now at AAU Innovate.

W > > >

w

Top 5 Most Active Rooms:
A.115: 3238.5 hours
B.106b: 2193.3 hours
A.314: 2151.7 hours
B.008: 1829.4 hours
A.215: 1766.4 hours

Top 5 Least Active Rooms:
.106: 158.3 hours

.001b: 96.9 hours

.-111: 25.0 hours

.310: 0.0 hours

A.011: 0.0 hours

Listing D.18: Top 5 most and least used rooms from 2025-01 until now at AAU Innovate.

> W > >
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Overall, the data collection and analysis took approximately 3 to 4 hours, high-
lighting both the complexity of the dataset and the importance of automation and
structured querying in working with the BMS system.

D.5 Question 5: IT Lab Change Detection

The final analysis investigates whether a noticeable change in the number of visitors
to the IT Lab can be observed, indicating a successful policy change. Anecdotal
evidence and casual observation suggest increased activity. The policy change was
implemented over the course of January 2025.

Innovate changed the function of the IT lab to attract more users. Can
a measurable increase in activity be seen, and if so, how much more is it
being used?

To evaluate this, the floor plan of AAU Innovate was consulted to identify the room
IDs corresponding to the IT Lab. While room names are not included in the dataset,
the room type LABORATORIUM provided a helpful clue. This investigation identified
A.101a and A.101b as the rooms used for the I'T Lab. These rooms are typically used
together and are rarely divided.

The same approach as outlined in Section D.4 was used to extract relevant PIR
data from the BMS system, filtering only these two rooms and their corresponding
PIR sensors.

The monthly usage was then mapped using a Python program, calculating the
month-over-month differences. The results are shown in Listing D.19.
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2023-01: 345.34h 266.13h

2023-02: 411.06h (+19.0%) 197.42h (-25.8
2023-03: 390.13h (-5.1%) 188.08h (-4.7%)
2023-04: 521.53h (+33.7%) 103.99h (-44.7
2023-05: 406.34h
2023-06: 312.57h
2023-07: 179.65h
2023-08: 199.06h

197.06h (-21.0
71.27h (-63.8%
94.51h (+32.6%

)
)
2023-09: 222.160h (+11.6%) 149.70h (+58.4%)
2023-10: 231.16h (+4.1%) 204.37h (+36.5%)
2023-11: 223.95h (-3.1%) 225.40h (+10.3%)
2023-12: 208.91h (-6.7%) 195.04h (-13.5%)
5.9%) 209.42h (+7.4%)
2024-02: 207.160h (-14.5%) 148.10h (-29.3%)
2024-03: 161.60h (-22.0%) 132.27h (-10.7%)
2024-04: 163.73h (+1.3%) 136.69h (+3.3%)
2024-05: 129.17h (-21.1%) 98.58h (-27.9%)
2024-06: 166.54h (+28.9%) 72.74h (-26.2%)
2024-07: 148.45h (-10.9%) 51.38h (-29.4%)
2024-08: 178.40h (+20.2%) 104.90h (+104.2%)

2024-09: 172.25h

-3.4%) 85.36h (-18.6%
2024-10: 147.77h %

)
76.56h (-10.3%

2024-11: 173.906h

(
(
(
(
(
(
(
(
(
(
(
2024-01: 242.09h (+15.

(
(
(
(
(
(
(
(
(
( )
(

2%) )

.7%) 132.20h (+72.7%

2024-12: 175.52h %) 105.62h (-20.1%)

2025-01: 239.45h (+36.4%) 201.99h (+91.2%)
2025-02: 253.57h (+5.9%) 228.63h (+13.2%)
2025-03: 287.78h (+13.5%) 269.05h (+17.7%)
2025-04: 229.74h (-20.2%) 191.65h (-28.8%)
2025-05: 169.59h (-26.2%) 156.64h (-18.3%)

Listing D.19: Monthly usage hours of the IT Lab at AAU Innovate. Room A.101a on the

left, A.101b on the right.

Listing D.19 shows a significant increase in usage starting in January 2025, with
continued growth in February and March. Although April still shows elevated usage,
May appears to decline. Since the data for May was gathered before the end of the
month, it is likely incomplete. Nevertheless, usage levels remain clearly above those
from the previous year. To ensure a fair comparison and minimize the impact of
vacation periods and other irregularities, a year-over-year comparison is provided in
Listing D.20.
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Month A.101a (Hours / % YoY) A.101b (Hours / % YoY)
2024-01: 242.09h (-29.9%) 209.42h (-21.3%)
2024-02: 207.10h (-49.6%) 148.10h (-25.0%)
2024-03: 161.60h (-58.6%) 132.27h (-29.7%)
2024-04: 163.73h (-68.6%) 136.69h (+31.4%)
2024-05: 129.17h (-68.2%) 98.58h (-60.5%)
2024-06: 166.54h (-46.7%) 72.74h (-63.1%)
2024-07: 148.45h (-17.4%) 51.38h (-27.9%)
2024-08: 178.40h (-10.4%) 104.90h (+11.0%)
2024-09: 172.25h (-22.4%) 85.36h (-43.0%)
2024-10: 147.77h (-36.1%) 76.56h (-62.5%)
2024-11: 173.90h (-22.3%) 132.20h (-41.3%)
2024-12: 175.52h (-16.0%) 105.62h (-45.8%)
2025-01: 239.45h (-1.1%) 201.99h (-3.5%)
2025-02: 253.57h (+22.4%) 228.63h (+54.4%)
2025-03: 287.78h (+78.1%) 269.05h (+103.4%)
2025-04: 229.74h (+40.3%) 191.65h (+40.2%)
)

w W

o°

2025-05: 169.59h (+31. 156.64h (+58.9%)
Listing D.20: Monthly usage hours of the IT Lab compared to the same months in the
previous year.

This year-over-year comparison confirms a significant increase in usage during 2025.
Excluding January and May (due to ongoing changes and incomplete data), the
average increase between February and April is approximately 66%, indicating that
the policy change achieved its intended effect.



Appendix E

LLM Output Snippets

This section presents representative snippets from each tested LLM to illustrate the
types of responses they generate. Although many more interactions were conducted,
this overview focuses on two key prompts for each model: the instruction to
"introspect the GraphQL schema' and a step-by-step guide on how to solve question
1, shown in Listing E.1.

These two examples already reveal significant differences between the models. For
some, additional instructions were later added, such as performing the task within
a Python script. Most responses have been truncated for brevity; where this is the
case, it is indicated using '[]".

me> Determine the busiest days of the year in the TMV25 building, I have a
step by step plan for you to follow and answer the question. You have
access to all the required data.

1. use the time endpoint to get the current time, use this to determine
the current year. this endpoints returns the current time, which you can
use to infer what year it is
currently.

2. Now use the entrances values on the buildings query to get information
about all the entrances of each building. Here telemetryData can be
requested, returning the number of visitors for that door during one hour.
Use as a starttime the start of the year you just figured out in step 1.
Endtime is an optional parameter here, as defined in the schema and will
default to now, just like requested.

3. This return will be a highly nested structure, witch the amount of
people entering/leaving the building during that hour. To get the amount of
visitors the building had in a certain day, the individuals values for each
hours should be summed together for each day. This sum of values (for each
hour) should be summed with the values of each of the 3 doors. All this
together results in the number of visitors in the TMV25 building that day

4. Lastly, I want you to sort each day on number of visitors and return
the 10 most visited days, acoording to this data, return the amount of
visitors and the day it happend.

Listing E.1: The input given to each model to test its ability to solve question 1.

101
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E.1 Qwen 3

Listing E.2 and Listing E.3 show the relative good understanding of Qwen3 of the
questions. Especially its deepthink mode, which is somewhat seen in Listing E.3,
but further truncated, is interesting.

me> introspect the graphql schema

server logs> 2025/05/26 14:10:02 INFO Using tool name=mcp-graphqgl-aau-
innovate-data-server__introspect-schema

gwen> Looking at the schema, there are several types like BeverageCount,
BeverageMachine, Building,

Entrance, Event, Floor, Room, Sensor, etc. The Query type has various
fields to retrieve data such as

sensors, beverageMachines, getEntrances, buildings, floors, rooms, and
events.

If the user wants to query data, they might need to know the available
fields and their parameters.

For example, to get beverage machine data, they can use the
beverageMachines query with optional

machine IDs. Similarly, events can be fetched using the events field on the
Room type, specifying a

time window.

I should probably prompt the user to ask a specific question or what they
want to query. Maybe they

need help constructing a GraphQL query, like getting all beverage machines,
checking telemetry data

for an entrance, or events in a room. Since the schema is large, guiding
the user to specify their

needs would be helpful. I can offer examples of possible queries based on
the schema to assist them.

Now that we have the schema, what specific data would you like to query?
Here are some examples based
on the schema:

1. Get all
buildings:
[... correct query]

2. Get telemetry data for an entrance:
[... correct query]

3. Get events in a room:
[... correct query, on “roooms  endpoint]

4. Get beverage machine statistics:
[... correct beverages queryl

Would you like to execute any of these queries, or do you have a different
request?

Listing E.2: The output of Qwen 3, when asked to inspect the GraphQL schema.
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First, I need to get the current time to determine the current year. The
user mentioned using the time
endpoint for this. The function time-server get current time requires a
timezone. Since the example
uses Europe/Copenhagen as the default, I'll use that unless told otherwise.
Once I get the current
time, I can extract the year from it.

Next, I have to use the entrances values on the buildings query to get
telemetry data for all

entrances of TMV25. [...] I'll have to use the mcp-graphql-aau buildings
query [... way more thinking]

Now, putting it all together in the required format with the tools
available.

Step 1: Get Current Time and Year I'll first retrieve the current time to
determine the year.
[... correct time tool call, listed]

Step 2: Query Building Entrances Next, I'll fetch telemetry data for all
entrances of TMV25 from the start of the year to the present.

{
"tool": "mcp-graphql-aau_ buildings",
"parameters": {

"query": "query ($id: String!, $startTime: String!) { buildings(id:
$id) { entrances { id telemetryData(startTime: $startTime) { timestamp
value } } }}",

"variables": {

"id": "TMV25",
"startTime": "2023-01-01T00:00:00Z"

Step 3: Process Data I'll aggregate hourly values per day across all
entrances:

10. Parse timestamps into dates (e.g., 2023-01-01).

11. Sum all values for each date.

Step 4: Sort and Return Top 10 Days Finally, I'll sort the days by total
visitors and return the top

12.
{
"top_busiest days": [
{"date": "2023-03-15", "total visitors": 1245},
[... truncated]
1
}

Note: The actual dates and values depend on the telemetry data retrieved.
This example illustrates the
final output format.

Listing E.3: The output of Qwen3, when asked to solve question 1 with a step-by-step guide.
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First, I need to understand the data structure. From the previous schema
provided, there's a Building type with entrances, and each entrance has
telemetry data. The telemetry data probably includes timestamps and counts.
So, the steps would involve querying all entrances for TMV25, then getting
their telemetry data over a specific period, summing up the counts per day,
and finding the day with the highest total.

[... truncated thinking]

So, the plan is:

1. Find the entrance IDs for TMV25.

2. For each entrance, get all telemetry data entries (which include hour
and count) over a certain period.

3. Sum the counts for each day across all entrances.

4. Determine which day has the highest total.

[... truncated thinking, plan getting updated along the way]
[... truncated step by step with code snippets and query info + final plan]

### Python Program
import requests
from datetime import datetime
from collections import defaultdict

# Configuration
GRAPHQL URL = "https://aau-innovate-api.example.com/graphql”
HEADERS = {

"Authorization": "Bearer YOUR ACCESS TOKEN",

}

# Helper function to execute GraphQL queries
def run_graphql query(query, variables=None):
[... function to send query]

# Step 1: Get entrances for TMV25

building query = """[... entrances id + name query]"""
building data = run_graphql query(building query)
entrances = building data["data"]["building"]["entrances"]

# Step 2: Define date range (example: January 2023)
start_date = "2023-01-01T00:00:00Z"
end date = "2023-01-31T23:59:592"

# Step 3: Aggregate telemetry data by day
telemetry query = """query EntranceTelemetry [... correct query]"""
for entrance in entrances:

[... send query for each found entrance + calculate daily counts]

# Step 4: Find the busiest day
busiest day = max(daily counts, key=daily counts.get)
print(f"The busiest day was {busiest day} with
{daily counts[busiest day]} total entries.")
[... truncated explanation and notes]
Listing E.4: The output of Qwen 3, when asked to solve question 1 in a Python script.
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Listing E.4 shows a Python script with a solid structure that, apart from a few minor
syntax errors, should have worked. All compiler-detected bugs were resolved, but the
program still failed to run due to an incorrect input argument in the query. Qwen 3
correctly identified this issue in the following response, but then began generating
unrelated scripts in an attempt to debug the query, failing to retain the schema or
the previous context.

Interestingly, it chose to query the data separately for each entrance. While not
strictly necessary, since the backend could handle all entrances at once, this could
be seen as a thoughtful design choice and even an improvement over the expert’s
approach.

E.2 LLaMa 4
Listing E.5 and Listing E.6 show example interactions with the LLaMa 4 LLM.

me> introspect the graphql schema

server log> INFO Using tool name=mcp-graphql-aau-innovate-data-
server _introspect-schema

Llama> <|python start|>query { buildings { id rooms { id name } } }<|
python _end|>.
Listing E.5: The output of LLaMa 4, when asked to inspect the GraphQL schema.

Listing E.5 shows that LLaMa 4 successfully called the required tool, but then
returned with a query wrapped in some Python tags. Although not wrong in itself,
it is a rather unseen response compared to other LLMs. Also note that the returned
query is wrong, as a building has floors, which have rooms. rooms cannot be queried
on buildings themselves. And it thus read the introspect response wrong and did
not get the schema correctly.
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1lama> <|python_start|>import datetime import
requests

def get current time(): response

time server get current time(timezone="Europe/Copenhagen") return
response

[... same for other exposure tools, truncated]

query =
fumn

query {{
buildings(name: "TMV25")

{H

entrances

{{

telemetryData(startTime: "{start time}")

{{
timestamp

peopleCount
I3
1}
13
3

response =
query graphgl(query)

data = response['data']['buildings'][0]
['entrances']

[... truncated wrong data parsing]
busiest days = get busiest days() for day, visitors in
busiest days:
print(f"{day}: {visitors}")<|python_end|>

me> This code is unusable, with some function calls that are tools
available to you, not in a standard python program

1lama> <|python start|>query { buildings { id name } }<|python _end|>
Listing E.6: The output of LLaMa 4, when asked to solve question 1 with a step-by-
step guide.

Listing E.6 shows that although LLaMA 4 understood it needed to create a Python
script using the requests module to send a query, there are several issues with the
code. It attempted to call MCP endpoints that are accessible to the LLM itself, but
incorrectly tried to do so from within Python. While parts of the query it constructed
were partially correct, elements like peopleCount do not exist in the schema, making
the query invalid.
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When following up on this code and pointing out the misuse of MCP-style
requests, the response was essentially a non-answer. Further attempts (not shown
in Listing E.6) resulted in unrelated Python scripts, as if the LLM had lost track of
the entire context of the conversation.

E.3 Watt Tool

Listing E.7 and Listing E.8 show an example of an interaction with the Watt Tool
LLM. Here can be seen that Watt Tool cannot send tool requests, but only output
the ones it would send.

me> inspect the graphql schema
watt-tool> [mcp-graphgl-aau-innovate-data-server introspect-

schema(argument="")]
Listing E.7: The output of Watt Tool, when asked to inspect the GraphQL schema.
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me> Determine the busiest days of the year in the TMV25 building, I have a
step by step plan for you to follow and answer the question. You have
access to all the required data.

1. use the time endpoint to get the current time, use this to determine
the current year. this endpoints returns the current time, which you can
use to infer what year it is
currently.

2. Now use the entrances values on the buildings query to get information
about all the entrances of each building. Here telemetryData can be
requested, returning the number of visitors for that door during one hour.
Use as a starttime the start of the year you just figured out in step 1.
Endtime is an optional parameter here, as defined in the schema and will
default to now, just like requested.

3. This return will be a highly nested structure, witch the amount of
people entering/leaving the building during that hour. To get the amount of
visitors the building had in a certain day, the individuals values for each
hours should be summed together for each day. This sum of values (for each
hour) should be summed with the values of each of the 3 doors. All this
together results in the number of visitors in the TMV25 building that day

4. Lastly, I want you to sort each day on number of visitors and return
the 10 most visited days, acoording to this data, return the amount of
visitors and the day it happend.

Note that the tool is setup this was that all variables should be included
into the query string, so don not work with graphql variables to get the
data through the tools

Inspect the schema after step 1 to understand the structure of the schema,
before getting to step 2

Instead of calling the data query tool yourself for all the data, write a
pyhton program that will do so and will answer the question, which were the
10 busiest days this year in the tmv25 building. Use the time and
introspect, and maybe even test the query to create a pyhton progam that
will answer this question without problem. Bake as much info as you know
into the program

watt-tool> [time-server get current time(timezone="Europe/Copenhagen")]
Listing E.8: The output of Watt Tool, when asked to solve question 1 with a step-by-
step guide.

E.4 Mistral

Listing E.9, Listing E.10, and Listing E.11 show example interactions with the
Mistral LLM.
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me> introspect the graphql schema

mistral> To introspect the GraphQL schema, I need a specific argument to
pass to the function. Could you please provide the necessary argument?

me> the argument is test
[... truncated]

server logs> INFO Using tool name=mcp-graphql-aau-innovate-data-
server _introspect-schema

mistral> query($dummyArgument: String!) {
beverageMachines(machineIDs: [$dummyArgument]) {
id
name
beverageMachines {
id
name
beverageCounts(startTime: "2023-01-01T00:00:00Z", endTime:
"2024-01-01T00:00:00Z2") {
timestamp
value
}
}
}
}
Listing E.9: The output of Mistral, when asked to inspect the GraphQL schema.

Listing E.9 shows that Mistral was able to introspect the schema and construct a
correct query.

In Listing E.10, it can be seen that Mistral, with some additional guidance,
managed to call the query, target the correct data, and retrieve a response. Although
it failed to calculate daily visitors and got stuck comparing the raw hourly values,
using only the range up to January 6th, it correctly focused on the year 2025, which
it had previously determined using the getTime tool.
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mistral> The current year is 2025. Now I will gather information about
all the entrances of each building using

the buildings query.

[...]

server logs> INFO Using tool name=mcp-graphql-aau-innovate-data-
server query-graphqgl
INFO Using tool name=mcp-graphql-aau-innovate-data-server query-graphqgl

mistral> The data you've provided appears to be a nested JSON structure
containing timestamped values. To

analyze this data, let's break it down step by step:

1. Top Level Structure: The top-level object contains an array with one
element.

2. First Nested Array: Inside the first nested array, there is another
array of objects.

3. Innermost Objects: Each innermost object has two keys: timestamp and
value.

### Key Observations:
* The timestamps are in ISO 8601 format (e.g., "2024-01-05T23:00:00Z").
e The values are integers, ranging from 0 to 30.

### Patterns and Insights:
4. Time Range: The data spans from January 1, 2024, to January 6, 2024.
5. Value Distribution: Most of the values are zero, with occasional non-
zero values.
6. Peak Times: There are notable peaks on specific dates and times:
e January 2, 12:00 PM has a value of 30.
[listed more peak times]

### Potential Analysis:

e Daily Activity: The non-zero values suggest there is some activity or
events occurring at specific times of the day.

e Peak Hours: Midday (around 12:00 PM) seems to be a peak time for
activity, especially on January 3 and 5.

* Consistency: There are consistent zero values during night hours,
indicating no activity during these periods.

### Visualization Suggestions:

e Line Chart: A line chart with timestamps on the x-axis and values on
the y-axis can show the variation over time.

* Heatmap: A heatmap can visualize the intensity of values across
different times and dates, highlighting peak periods.

[... Pyhton script to visualize the data in a graph]

### Conclusion:

This JSON data represents a time series with varying values at different
times of the day. Analyzing

this data can help identify patterns, peak hours, and periods of
inactivity. Visualizing the data

using tools like pandas and matplotlib can provide deeper insights into
these patterns.
Listing E.10: The output of Mistral, when asked to solve question 1 with a step-by-step

guide.
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Listing E.10 looked very promising, but the LLM spiraled off track after being asked
to make small changes or optimizations.

Got the current time. The year is 2025.

Now, we need to fetch the entrances data for the TMV25 building for this
year. Let's start by inspecting the GraphQL schema to understand its
structure and how we can query the required data. Here is a Python program
that will perform the necessary steps to determine the busiest days of the
year in the TMV25 building:

import requests
from datetime import datetime, timedelta
import json

GRAPHQL_ENDPOINT = "https://your-graphgl-endpoint.com/graphqgl"

# Step 1: Get the current year
current _year = 2025

# Step 2: Query to get information about all entrances of each building
entrances query = f"""[correct entrance query, using ‘current year ]"""

def run query(query):
[... function to run the graphgl query, but using 'visitors']

entrances _data = run _query(entrances_query)

# Step 3: Process the data to sum visitors for each day
visitors by day = {}
for building in entrances data['data']['buildings']:
if building['name'] == 'TMV25':
for entrance in building['entrances']:
for telemetry in entrance['telemetryData'l]:
timestamp =
datetime.fromisoformat(telemetry['timestamp'].replace('Z', '+00:00'))
date str = timestamp.date().isoformat()
if date str not in visitors by day:
visitors by day[date str] =0
visitors by day[date str] += telemetry['visitors']

# Step 4: Sort the days by number of visitors and get top 10 busiest days

sorted days = sorted(visitors by day.items(), key=lambda x: x[1],
reverse=True)

top 10 busiest days = sorted days[:10]

print("Top 10 Busiest Days in TMV25 Building:")
for day, visitors in top 10 busiest days:
print(f"{day}: {visitors} visitors

[... explanation and notes]
Listing E.11: The output of Mistral, when asked to solve question 1 in a Python script.

Listing E.11 shows a program that, at first glance, appears quite reasonable. It
follows the requested steps and constructs a somewhat correct query. However, when
the program was executed and the resulting error was returned to Mistral, it failed
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to handle the issue, losing this relatively good answer and spiraling off course. In
subsequent attempts, Mistral was never able to reach a similarly promising result

again.
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