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Abstract:

With growing energy demands and
the transition to renewable sources,
the need for grid-scale energy stor-
age systems is increasing. Quinones,
a group of redox-active organic com-
pounds that can be derived from
fungi and bacteria, are promising
biomolecules for use in redox flow bat-
teries due to their tunability. This
study investigates the prediction of
quinone standard reduction poten-
tials using machine learning, com-
paring transformer-based large lan-
guage models (LLMs) and graphical
neural networks (GNNs). The best-
performing configurations of LLM and
GNN models achieved average test set
R² values of 0.734 and 0.721, respec-
tively. However, LLMs have exhibited
poorer performance on validation sets
compared to test sets, indicating issues
with model fitting. Within the opti-
mal configurations, the top individual
LLM and GNN models achieved an R²
of 0.777 and 0.774 on the test set, re-
spectively. While LLMs demonstrated
slightly better accuracy, they require
significantly higher training times and
computational costs.
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Chapter 1

Introduction

As technology advances and the world population rises, the energy demand also
increases. Although fossil fuels are still an important part of the energy sector,
awareness of their impact on the environment is growing. With these changes,
climate laws and agreements are focusing on transitioning away from fossil fuels,
towards renewable energy sources [1]. However, renewable energy brings its own
set of obstacles. Due to the nature of the renewable energy sources, they require
grid-scale electrical energy storage systems [2]. Redox-flow batteries are an ideal
candidate for the solution of this energy storage problem [3].

Quinones are organic molecules that have a wide array of uses in energy stor-
age, pharmaceuticals, and biological systems. In recent years, the use of quinones
in batteries as active materials has gained more attention as they can be an alter-
native to the transition metals used in lithium-ion batteries. Organic quinones are
renewable, biodegradable, and more sustainable compared to metal-based com-
pounds since they can be obtained from biomass [4]. Quinones produced by bac-
teria or fungi display promising results, showing that they can replace commonly
used quinones derived from petrochemicals [5]. Additionally, quinones are renew-
able and more affordable, making them a better and economically viable solution
for large-scale energy storage compared to metals [6].

Quinone-based systems, unlike lithium-ion batteries, are not reliant on finite
resources. Furthermore, quinones have tunable molecular properties, and their
performance can be enhanced or customized [3]. In battery applications, quinones
undergo reversible redox reactions where they accept and donate electrons. These
charge and discharge cycles make quinones suitable compounds for use in redox-
flow batteries.

Despite these advantages, choosing efficient quinone candidates is a challeng-
ing process. Discovering their standard reduction potential, which is a critical
property that determines their suitability for energy storage applications, is tradi-
tionally done with experimental work. This is a costly and resource-intensive pro-
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cess that involves laboratory tests and chemical synthesis since many bioquinones
only has been identified as secondary metabolites in too low concentrations for
experimental purification and testing [7]. ML methods can boost this process by
incorporating knowledge acquired by the traditional methods into complex models
connecting the structure of the molecules with their properties [8, 9].

ML applications are not limited to molecular property predictions of quinones.
For example, deep learning models are used in various areas such as predicting
the bioactivity of drugs, the structure of glycans from mass spectrometry data,
the properties of catalysts in chemical reactions, and many more [10, 11]. These
advancements highlight the future potential of ML in chemistry, enabling faster
and more cost-effective discovery processes.

This research focuses on comparing different ML methods to predict the stan-
dard reduction potential of quinones using their molecular structures as inputs.
The dataset used to train these ML models was generated through density func-
tional theory (DFT) calculations performed in the Gaussian 09 program, rather than
derived from experimental data [5]. By using pre-trained models and further refin-
ing them with this quinone-specific data, the study aims to demonstrate how ML
techniques can optimize the process of efficient quinone discovery. This approach
both aligns with the current focus of computational chemistry advancements and
addresses important challenges in sustainability and energy storage areas.

The structure of this report is as follows: Chapter 2 explains the theoreti-
cal background of quinones, redox-flow batteries, principles of machine learning
methods, and different molecular structure notations that are used throughout this
work. It additionally provides a review of the existing literature on relevant re-
search on quinones, computational chemistry, and ML methods. Chapter 3 shows
the experimental approach, including technical details, chosen architectures, and
training procedures. The results and discussion given in Chapter 4 analyze the
performances of the different models and their comparisons. Finally, Chapter 5
summarizes the findings, discusses limitations, and gives conclusions.



Chapter 2

Theoretical Background

This chapter provides a detailed framework for the concepts utilized in this study
and discusses advancements in their respective fields. It also explains the proper-
ties of quinones, how they are obtained, and their significance in energy storage.
Different chemical notations that represent the molecular structure of compounds
are shown and compared. Lastly, the principles of machine learning (ML) and their
importance in computational chemistry are highlighted.

2.1 Quinones

Quinones are a class of organic compounds that are characterized by their fully
conjugated cyclic dione structure. They come in various sizes, structures, and
with a wide array of functional groups. Quinones are generally named after the
main aromatic system from which they were derived. Hence, benzene-derived
quinones are classed as benzoquinones, naphthalene-derived quinones are classed
as naphthoquinones, anthracene-derived quinones are classed as anthraquinones,
etc. [12]. Different structures of these quinone classes can be seen in Figure 2.1.
Because of their redox-active structure, they play a fundamental role in chemical
and biological processes. This redox-active property makes quinones an integral
electron carrier in energy storage systems, pharmaceuticals, and biological systems
[13, 14, 15]. They are studied in a wide range of fields, from their potential in
high-performance flow batteries to their neuroprotective effects that can prevent
Alzheimer’s disease [16].
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Figure 2.1 Most common quinone classes [17].

Quinones can be found commonly in nature and exist within various organ-
isms, including algae, fungi, plants, animals, and bacteria. Ubiquinones (coen-
zyme Q) are a key component of the electron transport chain in mitochondria and
facilitate Adenosine triphosphate (ATP) production [14]. In photosynthetic organ-
isms, plastoquinones play a critical role in electron transport within photosystem II
[15]. Bacteria utilize menaquinones as electron carriers in metabolic pathways for
anaerobic respiration [18]. The structural diversity of naturally occurring quinones
comes from enzymatic modifications of their aromatic precursors and provides a
wide array of functions and adaptability to different environmental conditions [19].

Quinones can be synthesized in various ways, including the oxidation of aro-
matic hydrocarbons or phenols. Chemical oxidation using agents like chromates or
enzymatic synthesis under controlled conditions are also common methods [19].
The tunability of quinones enables their properties to be optimized for specific
applications. Solubility, redox potential, and stability can be adjusted through
modifications. For example, adding electronegative groups can increase their re-
duction potential, improving their energy density for battery applications [13].
Possible substitutions and configurations create many quinone derivatives, pro-
viding a wide selection to be researched [20]. Historically, quinone discovery and
synthesis have been done manually in laboratories. These processes include iso-
lation from natural resources or chemical synthesis and analytical characterization
steps. However, these traditional methods are time and resource-intensive. Studies
documenting the extraction and identification of quinones from various biological
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sources underline the meticulous efforts required [7].

2.2 Redox-flow batteries

Redox-flow batteries (RFBs) are a type of rechargeable battery where the energy
is stored in liquid electrolytes that flow through an electrochemical cell [21]. Two
separate tanks hold these electrolytes. Anolyte is the negative electrolyte tank that
keeps the anodic redox-active material solution on the oxidation side. Catholyte is
the positive electrolyte tank that keeps the cathodic redox-active material solution
on the reduction side. These solutions flow from tanks to separate compartments
of a cell stack. In the cell stack, RFBs contain bipolar plates that ensure electrolytes
do not contact current collectors and a membrane that allows ions but not whole
molecules to pass. Redox reactions occur at the electrode, which enables the battery
to charge and discharge. These redox reactions are reversible. Hence, the battery
can be recharged multiple times.

The separation between the reaction and the storage area makes power and
capacity independent from each other. For RFBs, the area of the electrode in the
cell stack determines the power, the difference between the reduction potentials of
the redox couples determines the cell voltage, while the volume of storage tanks
and the concentration of the contained electrolytes determine the capacity [22].
Since the concentration of the solution is an important factor, highly soluble redox-
active compounds are preferred in RFBs. Performance of RFBs is noted based on
their Coulombic efficiency, voltage efficiency, and energy efficiency. The ratio of
charge and discharge capacities is the Coulombic efficiency, the ratio of charge
and discharge voltages is the voltage efficiency, and finally, the product of the
Coulombic efficiency and voltage efficiency gives the energy efficiency[21].

In commercial applications, vanadium species are the most commonly used
electrolytes in RFBs. Vanadium RFBs (VRFBs) can achieve 80% energy efficiency
and have theoretically infinite lifetime [23]. However, VRFBs face challenges: the
limited vanadium resources causing VRFB costs to skyrocket, high corrosion rate,
and toxicity [24]. Other metal-based RFBs also suffer from similar challenges, such
as limited resources, complex preparation processes, solubility issues, harmful ex-
traction and mining practices, and lower efficiency [25]. Recent studies have been
investigating organic compounds and their redox activities to find an alternative
to metal-based RFBs [22].

2.2.1 Quinones in redox-flow batteries

Quinones gather attention for their applications in RFBs [26]. Their redox prop-
erties, tunability, and abundance make them suitable for sustainable energy stor-
age solutions [13, 27]. Quinones provide efficient energy storage and release by
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Figure 2.2 Illustration of a redox-flow battery [21].

undergoing reversible redox reactions. An example redox equilibria between ben-
zoquinone and hydroquinone can be seen in Figure 2.3. This reaction provides
high energy density and fast charge-discharge cycles in RFBs [28]. Additionally,
quinone-based systems have a lower environmental impact compared to traditional
metal-based batteries as they are biodegradable and can be obtained from renew-
able sources such as bacteria and fungi [29, 30].
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Figure 2.3 Redox and acid-base equilibria between benzoquinone (A) and hydroquinone in acid (B),
monodeprotonated (C) or dideprotonated (D) forms [31].

Anthraquinones, a group of quinones present in plants and lichens, were stud-
ied for their redox active properties in the early 1900s [32]. In 1983, Roy and
Aditya experimented with Anthraquinone-2-sulfonate for its potential use in bat-
tery systems [33]. It took some time for anthraquinones to be studied in RFBs
in particular. In 2012 Wang et al. experimented with anthraquinone derivatives
in non-aqueous metal-organic RFBs [34]. In 2014, Huskinson et al. developed a
metal-free, organic–inorganic aqueous RFB with 9,10-anthraquinone-2,7-disulfonic
acid (AQDS) and bromine as redox couples in sulphuric acid [27]. This metal-free
battery demonstrated a power density of 600 mW cm-2 at a current density of 1,300
mA cm-2. Additionally, after ten cycles, it had a 99.2% capacity retention at 500 mA
cm-2 current density. Later on, to replace the toxic bromine in the RFB, Lin et al.
deployed nontoxic, nonvolatile, and noncorrosive food additive ferricyanide as the
positive and hydroxylated anthraquinones as the negative redox couple in potas-
sium hydroxide solution [4]. At room temperature, this battery exhibited 450 mW
cm-2 power density, and at 45 °C, 700 mW cm-2. Through 100 cycles, this RFB had
0.1% capacity loss per cycle with a current efficiency exceeding 99%. Currently, an-
thraquinone derivatives are the main electrolyte material used in aqueous organic
RFBs. They can resolve several issues that aqueous metal ions exhibit with their
low cost, corrosivity, and toxicity. In addition, anthraquinones have high chemical
stability and a large molecular size, which decreases crossover issues.

Apart from anthraquinones, other quinone types have been worked on as po-
tential electrolytes in aqueous organic RFBs. For example, phoenicin with fer-
ricyanide redox couple exhibited an initial capacity of 235.1 mAh (11.75 AhL-1)
and had 0.35% capacity loss per cycle [35]. In another study, Yan et al. devel-
oped a polymer-based aqueous organic RFB with polyhydroquinone as cathode,
polyimide as anode, and polymer particulate slurry electrolyte [36]. This battery
showed a capacity of 10 AhL-1) with 0.1% capacity loss per cycle over 300 cy-
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cles operated at 20 mA cm-2 current density. While these values are worse than
anthraquinone-based RFB, it is still a comparable performance and shows that
other varieties of quinones also have the potential to be a good candidate as an
RFB electrolyte.

Other organic compounds have been researched for battery applications apart
from quinones. For instance, nitroxide radicals have been studied due to their re-
dox activity and their rather stable radical forms. However, they have exhibited
cycling stability issues and lower energy densities [37]. Conducting polymers like
polythiophenes and polypyrroles were also considered but faced challenges related
to solubility and processability [20]. Quinones became the better candidates due
to their tunability with chemical modifications, scalability, lower cost, and redox
properties [13]. Since electrolyte concentration and the potential difference be-
tween redox couples are critical to RFB performance, the solubility and reduction
potential of redox-active compounds are key factors.

2.3 Chemical notations

Molecular properties depend on many things, including the combination of atoms
and bonds as well as the way they are combined. Such as single or double bonds,
cyclic or aromatic structures, chirality, hybridization, and conjugated bonds. There-
fore, in order to be able to find the link between the structure and the properties,
one has to find a way to represent the structure in a precise, informative, and, if
possible, unambiguous way, which can then be used for machine learning mod-
elling.

Chemical notations are standardized methods for representing such molecu-
lar structures. They are used as a tool for clear communication and data shar-
ing among chemists and computational models. Different types of notations have
many uses, such as simplifying the representation of complex structures and dif-
ferentiating similar molecules [38, 39].

SMILES (Simplified Molecular Input Line Entry System) encodes molecular
structures as linear strings using ASCII characters. Atoms are represented by their
atomic symbols (e.g., C for carbon, O for oxygen), and bonds are denoted by sym-
bols like - (single), = (double), and (triple). For instance, the SMILES string CCC
represents propane, indicating a chain of three carbon atoms connected by single
bonds. Ring structures are denoted by numbers; for example, c1ccccc1 represents
benzene, where c denotes aromatic carbon atoms, and the matching numbers 1
indicate the start and end of the ring. While SMILES is compact and widely used,
it can produce multiple valid representations for the same molecule, leading to
redundancy [38].

Canonical SMILES addresses the redundancy in standard SMILES by providing
a unique representation for each molecule. This is achieved through a canonical-



2.3. Chemical notations 9

ization algorithm that consistently orders atoms and bonds, ensuring that each
distinct molecule corresponds to a single, unique SMILES string. This standard-
ization is crucial for database indexing and comparison tasks [40].

DeepSMILES is a variant of SMILES designed to be more compatible with ma-
chine learning models. It modifies the syntax to reduce the complexity associated
with ring closures and branching. For example, instead of using paired numbers to
denote ring openings and closures, DeepSMILES uses a single symbol to indicate
ring closures, simplifying the parsing process. This streamlined syntax helps in
reducing errors during model training and generation tasks [41].

InChI (International Chemical Identifier) provides a hierarchical, layered rep-
resentation of chemical structures, capturing detailed information about atoms,
bonds, stereochemistry, and isotopes. Each InChI string begins with a version
identifier and is followed by layers separated by slashes, each conveying specific
structural information. This notation ensures a unique and unambiguous rep-
resentation of chemical substances, making it suitable for database searches and
interoperability between software systems [42]. However, InChI strings are often
longer and more complex than SMILES, which can be a drawback for certain ap-
plications.

Figure 2.4 Ascocorynin structure

Table 2.1 Different notation representations of Ascocorynin

Formula C18 H12 O5
SMILES Oc1ccc(cc1)C1=C(O)C(=O)C(=C(C1=O)O)c1ccccc1

Deep SMILES Occcccc6))C=CO)C=O)C=CC6=O))O))cccccc6
Canonical SMILES C1(=C(C(=O)C(=C(C1=O)O)c1ccccc1)O)c1ccc(cc1)O

InChI
InChI=1S/C18H12O5/c19C18H12O5/c19-12-8-6-11(7-9-12)14-
17(22)15(20)13(16(21)18(14)23)10-4-2-1-3-5-10/h1-9,19-20,23H

To illustrate these notations, consider the molecule Ascocorynin. Ascocorynin
is a member of the benzoquinone family that is obtained from the ascocoryne
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sarcoides fungus. Figure 2.4 shows the chemical structure of ascocorynin, which
consists of a quinone core with one phenyl- and one hydroxyphenyl-side chain
attached. Notation representations of ascocorynin, and its formula are given in
Table 2.1. The difference between notations can be seen in the table. The choice of
notation depends on the specific requirements of the ML model and application,
such as compatibility, simplicity, or precision [39].

2.4 Chemical graph representations

Beyond textual notations, molecules can be represented as graphs, which is a nat-
ural and intuitive approach in cheminformatics. In a molecular nodes (vertices)
represent atoms in the molecule, while edges represent chemical bonds between
atoms.

Each node is labeled with the atomic symbol, and each edge is labeled with
the bond type (single, double, triple, etc.). An example graph representation of
ascocorynin can be seen in Figure 2.5.

Figure 2.5 Ascocorynin graph representation

Graph-based representations are particularly advantageous for machine learn-
ing applications, especially with models like GNNs, which can directly operate on
graph-structured data. They allow for the incorporation of rich structural infor-
mation, such as atom types, bond types, and molecular topology, facilitating more
accurate predictions of molecular properties.

In summary, while textual notations like SMILES and InChI offer compact and
standardized ways to represent molecules, graph-based representations provide
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a more detailed and structurally informative approach, especially beneficial for
advanced computational modeling and machine learning tasks.

2.5 Machine learning

In order to connect the molecular structures, represented as a graph, text, or any
other way, and their properties, one has to create a mathematical model that will
describe this connection. This can be done in two ways. Hard models, widely uti-
lized in computational chemistry, are based on current understanding of molecular
dynamics, such as density functional theory and electronic structure theory. Such
models let researchers predict the properties of a single molecule simply by its
structure, without experimental data. The downside of these methods is that they
are computationally expensive and, therefore, not suited for, e.g., screening, when
thousands of candidates must be evaluated. Soft models, also known as black-box
models, in contrast, are data-driven, meaning they are based on empirical data,
like molecules whose properties are already known, from experiments, or by using
traditional methods. These methods are part of Machine Learning, as they learn
from data.

Machine learning (ML) is a scientific discipline that enables systems to learn
from data, recognize patterns, and make predictions and decisions with minimal
human interference. For scientific studies in areas like chemistry and material
science, ML efficiently analyzes complex datasets and predicts outcomes to speed
up the discovery processes [43, 44, 45].

ML approaches can be categorized into parametric models, non-parametric
models, and neural networks. In parametric models, a fixed set of parameters
defines the model [46]. For example, linear regression models have a fixed weight
vector and bias, and the number of parameters does not grow with more data.
Other examples of parametric methods are: logistic regression and polynomial re-
gression. On the other hand, the complexity of non-parametric models can grow
with the number of data points. For instance, the depth of a full-depth decision
tree scales as a function of the training set. Similarly, for k-nearest neighbours, the
training data is stored as learned parameters, so the number of parameters grows
linearly with the training set size [47]. Non-parametric methods include: k-nearest
neighbours, decision trees, random forest, and radial basis function kernel support
vector machines.

Artificial neural networks (ANNs) are another group of ML methods, which
are employed in this study. Typical ANNs are considered parametric models since
their structure is predetermined and has a set number of parameters, such as the
number of layers and nodes in each layer. Hence, when ANNs are trained, their
complexity remains unchanged, independent of the size of the training data. How-
ever, if the parameters are not fixed, ANNs can be considered non-parametric. An
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example non-parametric ANN has been studied by Philipp and Carbonell, aim-
ing to eliminate the difficulty of determining the optimal model structure [48].
They have employed a novel optimization algorithm, “Adaptive Radial-Angular
Gradient Descent”, where they continuously added new units while eliminating
redundant ones during training.

2.5.1 Neural network architectures

Multilayer perceptrons (MLPs) are the earliest and simplest architecture of NNs.
They are developed to mimic the structure of the human brain with neurons in
separate layers and dense connections. In feedforward networks, each neuron in
one layer is fully connected to all the neurons of the neighbouring layers [49]. Their
connected structure can be observed in the Figure 2.6.

input
layer

hidden layer

output
layer

Figure 2.6 Example MLP structure

MLPs learn complex functions via nonlinear activations. Each artificial neuron
in an MLP performs a weighted sum of its inputs, akin to multiple linear regression
[50]. Mathematically, for a neuron receiving an input vector x = [x1, x2, . . . , xn], the
output z before activation is computed as:

z =
n

∑
i=1

wixi + b = w⊤x + b, (2.1)

where wi represents the weight associated with input xi, b is a learnable bias
term, and w is the weight vector.
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To introduce non-linearity and allow the model to learn complex functions, an
activation function f (z) is applied to the output of each neuron. Without activa-
tion functions, MLPs would be limited to representing only linear transformations,
regardless of their depth [51]. Commonly used activation functions include:

• Sigmoid: f (z) = 1
1+e−z , maps input to the range (0, 1), historically used in

early networks but prone to vanishing gradients.

• Hyperbolic tangent (tanh): f (z) = tanh(z), maps input to (−1, 1), centered at
zero, and provides better gradient flow than sigmoid.

• Rectified Linear Unit (ReLU): f (z) = max(0, z), widely used due to computa-
tional efficiency and reduced likelihood of vanishing gradients [52].

Despite their simplicity, MLPs form the building blocks for more advanced
neural network architectures and remain useful in various applications, including
regression, classification, and time-series prediction [53].

MLPs, due to their structure, ignore spatial or sequential structures. Convolu-
tional neural networks (CNNs) were developed to process spatial data for image
classification and recognition. CNNs are feedforward networks with convolutional
layers, subsampling layers (pooling layer), and fully connected (dense) layers [54].
A typical CNN architecture example is given in Figure 2.7.

Figure 2.7 Architecture of a CNN with multiple convolutional layers that classifies images [55].

In the convolutional layers, a small learnable matrix known as a kernel or filter
slides over the input data to compute local features. The kernel size (e.g., 3×3,
5×5) defines the spatial extent of the filter, and the stride determines how far the
filter moves at each step. Each kernel extracts different kinds of patterns, such as
edges, textures, or shapes [56]. The result of this convolution operation is a feature
map that encodes the presence and location of learned features across the input
space. This mechanism enables weight sharing, meaning the same set of weights
is reused across different parts of the input, dramatically reducing the number of
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trainable parameters compared to MLPs. Following each convolutional operation,
a non-linear activation function such as ReLU (Rectified Linear Unit) is applied to
introduce non-linearity and allow the network to learn complex patterns [57].

In the pooling layers, often max-pooling or average-pooling, the feature maps
get downsampled by summarizing the presence of features in subregions. This
operation reduces spatial dimensions, speeds up training, and adds spatial invari-
ance by making the network less sensitive to the exact position of features [58].
The final layers are typically fully connected (dense) layers, which use learned fea-
tures to make predictions. CNNs are powerful for image and structured data since
they can utilize shared weights and translation invariance. With the local filtering,
CNNs can capture details in images since pixels close to each other are more likely
to be related. VGG, ResNet, and EfficientNet are examples of CNNs with different
design strategies.

Recurrent neural networks (RNNs) are sequential learning models. They pro-
cess data one step at a time and have cyclic (recurrent) connections that can hold
a hidden state. This hidden state acts as a memory that carries information for-
ward to understand data like text or time series [59]. When training RNNs via
backpropagation through sequences, the gradients must travel backward through
many time steps. In this process, gradients can become very small (vanish) or
very large (explode). If they vanish, RNNs can’t retain long-term dependencies,
like remembering the beginning of a paragraph. As a solution to this vanish-
ing/exploding gradient problem, Long Short-Term Memory (LSTM) models were
introduced. LSTMs contain gates that can manage long-term memory [60]. In an
LSTM forget gate decides what to discard, the input gate decides what new info to
store, and the output gate controls what to send to the next step. With this architec-
ture, LSTMs resolve the gradient vanishing/exploding issue of the classical RNNs.
Since RNNs can process sequential data, they have been the traditional method for
language processing. However, due to their inability to parallelize, they are slow to
train, and even with an LSTM solution, they struggle with long-range dependency
retention.

In 2017, Vaswani et al. reported a new architecture, the Transformer, in their
paper All You Need Is Attention. Transformer models are based on multi-head self-
attention mechanisms and remove the use of convolution and recurrence [61]. Un-
like recurrent neural networks (RNNs), which process inputs sequentially, Trans-
formers convert input data into tokens and allow for parallel processing of in-
put sequences, improving computational efficiency and enabling the modeling of
long-range dependencies. The main improvement is the multi-head self-attention
mechanism, which enables each token to compute attention scores with every other
token in the input. With the help of positional encodings added to the input em-
beddings, they can retain order and process sequences without needing recurrence.
These can be fixed (e.g., sinusoidal) or learned embeddings that allow the model
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to distinguish between different positions in the sequence.

Figure 2.8 Architecture of the Transformer model [61].

The standard architecture includes encoder blocks with multi-head attention
and feed-forward layers, layer normalization, residual connections, and dropout
for regularization, and decoder blocks for sequence generation tasks (e.g., transla-
tion). Transformer architecture is demonstrated in Figure 2.8. Transformers have
become the foundation of state-of-the-art models like GPT, BERT, Llama, DALL-E,
Stable Diffusion 3, and Sora, which extend the architecture for tasks ranging from
language modeling to image generation and chemical property prediction [62]. In
cheminformatics, Transformer models can process chemical notations by tokeniz-
ing them, enabling them to predict molecular properties, reactivity, and even gen-
erate novel compounds. For example, the Psiformer applies self-attention to ap-
proximate quantum wavefunctions and has outperformed traditional variational
methods in predicting molecular energies [63]. The transformer-based language
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model is the first type of ML that will be investigated in this paper.
Graph Neural Networks (GNNs) are a class of neural networks designed to

operate on graph-structured data, where information is represented as nodes (en-
tities) and edges (relationships). Unlike CNNs or RNNs, GNNs can model non-
Euclidean data structures such as social networks, molecules, or citation graphs
[64]. The main idea behind GNNs is that each node aggregates information from
its neighbours. In each layer, nodes update their representations based on the
features of adjacent nodes and the edges connecting them. This allows GNNs to
learn both local and global structural patterns in graphs. Message Passing Neural
Networks (MPNNs) are a widely used GNN framework where nodes exchange
and update messages over multiple iterations. The aggregation between nodes
occurs through this message passing. MPNNs are a commonly used architecture
for molecular discovery studies, and Chemprop is a useful Python package that
provides MPNN models and tools [65]. The architecture of a Chemprop MPNN is
given in Figure 2.9.

Figure 2.9 Architecture of a Chemprop MPNN [65].

Other variants of GNNs include Graph Convolutional Networks (GCNs), Spec-
tral GNNs (based on graph Fourier transforms), Graph Attention Networks (GATs),
and Graph Isomorphism Networks (GINs), each proposing different ways of ag-
gregating neighbour information. GNNs have shown strong performance in tasks
like node classification, link prediction, and molecular property prediction [66].
For molecular chemistry, atoms are represented as nodes, and the bonds as edges
in GNNs. This structure enables GNNs to capture the spatial relations, distance,
and interactions between atoms. They can effectively predict molecular properties
and aid discovery processes [66, 67]. Hence, GNNs will be the second investigated
ML type in this paper to predict standard reduction potentials of quinones.
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2.5.2 Machine learning training

ML models have some fundamental concepts that define the main steps and their
properties that are used for training and optimization of the models. It starts with
forward propagation, where the data is passed as input, goes through the model,
and a prediction is obtained as output. Then, the loss is calculated between the true
value and the predicted value. As the final step, backpropagation occurs, where
each neuron’s weights and biases are updated according to the gradient, starting
from the output layer.

To train a model, one typically partitions data into three sets: training, vali-
dation, and test. The training set is used to fit the model parameters (weights)
via optimization. A separate validation set is used to tune hyperparameters and
check for overfitting (e.g., by early stopping). Finally, the test set that was not used
during training or validation provides an unbiased estimate of final performance.
The training set is fed into the model in batches and repeated in epochs. A batch
refers to a subset of the training data processed per model update, while an epoch
represents one complete pass of the entire dataset [50].

During both training and evaluation, the model produces predicted outputs ŷ
for each input, which are compared to the true (measured) values y. In regression,
y is a real target and ŷ is a prediction. The discrepancy between ŷ and y is quanti-
fied by a loss function [68]. For regression tasks, the mean squared error (MSE) is a
common loss function that was also used in this study and is calculated as follows.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2.2)

Training a neural network involves minimizing the loss function over the train-
ing set by iteratively adjusting the model’s weights and biases. The gradients of
the loss concerning each parameter are computed using the backpropagation algo-
rithm. These gradients are then used by an optimization algorithm to update the
parameters. In this study, the Adam optimizer was employed due to its adaptive
learning rate capabilities and computational efficiency.

Adam (Adaptive Moment Estimation) combines the advantages of two pop-
ular optimization methods: AdaGrad and RMSProp. It maintains exponentially
decaying averages of both the gradients (first moment) and the squared gradients
(second moment), which are used to compute individual adaptive learning rates
for each parameter [69].

The update rules for Adam are as follows:



2.5. Machine learning 18

mt = β1mt−1 + (1 − β1)∇L(θt) (2.3)

vt = β2vt−1 + (1 − β2) (∇L(θt))
2 (2.4)

m̂t =
mt

1 − βt
1

(2.5)

v̂t =
vt

1 − βt
2

(2.6)

θt+1 = θt − η
m̂t√

v̂t + ϵ
(2.7)

Here, θt denotes the parameters (weights and biases) at time step t, ∇L(θt) is
the gradient of the loss function concerning those parameters, and η is the learning
rate, a hyperparameter that determines the size of the step taken in the direction
of the negative gradient, which means how quickly or slowly a model learns and
adapts [69]. β1 and β2 are decay rates for the moment estimates. ϵ is a small
constant (e.g., 10−8) added for numerical stability. m̂t and v̂t are bias-corrected
estimates of the first and second moments.

This optimizer adaptively adjusts the learning rates of each parameter, which
allows it to converge faster and more robustly than traditional stochastic gradient
descent, particularly on noisy or sparse gradients. This iterative process gradually
reduces the loss on the training data and improves model performance.

Figure 2.10 Overfitting and underfitting model examples [70].

Tuning and choosing the optimal values for hyperparameters such as learning
rate, number of epochs, batch size, and optimizers are essential to obtain a proper
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fit for a model. Poorly tuned models may suffer from underfitting or overfitting.
Examples of different model fittings for classification and regression models are
given in Figure 2.10. Overfitting happens when a model learns the training data,
including noise and outliers, too well, due to too much training or high complexity
of the model, resulting in poor generalization and adaptation to new data. Under-
fitting happens when a model is too simple or the training is insufficient to capture
the complex patterns in the data, resulting in poor performance on both training
and new data [71].

Figure 2.11 Visualization of early stopping on a learning curve [72].

To mitigate overfitting, one commonly used technique is early stopping. During
training, the validation loss is monitored after each epoch. A patience parameter
defines the number of epochs to wait for improvement in validation loss. If no
improvement is observed within this window, training is stopped. Figure 2.11 il-
lustrates this concept: while the training loss continues to decrease, the validation
loss begins to increase after a certain point. The optimal stopping point corre-
sponds to the minimum validation loss, which prevents the model from further
overfitting. If training continues past this point, the model begins to overfit the
training data. Contrarily, if training is stopped too early, before reaching the val-
idation loss minimum, the model may be underfit and fail to learn meaningful
patterns.

2.5.3 Transfer learning

Deep learning methods require large datasets to train accurate models. However,
in many cases like chemical discovery, datasets at hand are limited [9]. Similarly,
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in our case, the present dataset consists of only 988 quinones with their structures
and standard reduction potentials. In these types of cases, a model trained on one
task, like generic molecular data, is repurposed for a related, more specific task,
like drug discovery. Since more generic datasets can contain large amounts of data,
pre-trained models can learn general features [73]. To be applied to the target task,
they will then be fine-tuned. Fine-tuning enables the pre-trained model to adapt
to the specific task at hand. While fine-tuning, early layers can be frozen so their
weights do not update to retain the learned general features. On later steps, they
can be unfrozen, allowing them to update. Freezing and unfreezing layers and
weights help balance stability vs. adaptability during fine-tuning.

An example of transfer learning can be taking a GPT model that is pre-trained
on a large language database, then fine-tuning it to specifically classify scientific
papers according to their field. Similarly, the ChemBERTa model that was pre-
trained on the SMILES notations of 77M PubChem molecules can be fine-tuned
with our rather small dataset of quinones to predict their standard reduction po-
tentials [74].

2.5.4 Feature representation

To utilize molecular data in neural networks, the input must be numerically en-
coded to be interpretable by ML models. ML algorithms do not inherently un-
derstand chemical or textual representations such as SMILES or InChI. Instead,
these chemical notations are first tokenized, segmented into discrete, meaningful
units, before being transformed into vector embeddings via methods like one-hot
encoding, WordPiece, or domain-specific learned embeddings [75]. In transformer-
based models tailored for chemical applications, tokenization plays a central role.
Chemical strings are treated similar to natural language sentences, where each
character or substring can correspond to atoms (e.g., ’C’, ’N’), bonds (’=’, ’#’), or
structural markers like ring closures ’1’, ’2’ [76]. These tokens capture both local
features, like adjacent bonded atoms, and global features as ring systems or func-
tional group patterns, providing a rich and structured input for ML algorithms.
Steps of converting an example SMILES string to tokens can be observed in Fig-
ure 2.12. Recent advances have highlighted that tokenization schemes significantly
affect model performance in chemical property prediction. For example, atom-in-
SMILES tokenization improves token specificity and model accuracy by preserv-
ing chemically meaningful units [76]. Similarly, subword methods like Byte Pair
Encoding and the novel Atom Pair Encoding (APE) have shown enhanced classi-
fication performance across biological datasets by retaining semantic cohesion in
chemical sequences [77].
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Figure 2.12 Tokenizing a SMILES string [78].

For GNNs, feature representation can get more detailed and customized. In
the molecular prediction field, atoms are represented as nodes, and bonds are
represented as edges in graphical data. Graph featurizers use an adjacency ma-
trix for connectivity plus feature vectors for atoms and bonds [66]. Typical atom
features can include atomic number, degree, formal charge, chiral tag, number
of bonded hydrogens, hybridization type, aromaticity, and mass. Typical bond
features can include may include bond type (single/double/triple/aromatic), con-
jugation (yes/no), ring (yes/no), and stereochemistry. In 2D graphs, molecule ge-
ometry is often lost. Advanced specialized models can incorporate spatial features,
such as bond angles and inter-atomic distances, if needed. The choice of featurizers
crucially affects model performance and should be determined carefully.

2.5.5 Machine learning applications in chemistry

Machine learning (ML) has revolutionized chemical research by providing new
methods for molecular chemistry. ML can help speed up processes like predicting
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molecular properties, designing new compounds, and developing pharmaceuticals
[79, 80]. ML methods can quickly identify promising molecule candidates by ana-
lyzing big datasets with their pattern recognition and outcome prediction features
[81, 82, 83, 84, 45].

ML model applications have even been recognized by receiving the Nobel Prize
in Chemistry 2024. One half of it has been awarded to David Baker for his work
on computational protein design, and the other half has been awarded to Hassabis
and Jumper for developing the AlphaFold2 model. Baker and his coworkers have
developed a program that can produce proteins with imaginative generation. This
program can design proteins that do not exist in the Protein Data Bank, are unlike
any naturally occurring protein, and whose predicted structure matches the exper-
imental one. Winner of the second half of the prize, AlphaFold2, is a convolutional
neural network model developed by DeepMind that can predict the 3D structures
of proteins from amino acid sequences. It has been an over-50-year effort for scien-
tists to understand the complex structures of proteins. With AlphaFold2, it is now
possible to predict structures, which enables researchers to understand antibiotic
resistance and advance many other studies [85].

Many other works have used ML methods for energy applications. Shafian et
al. combined computational quantum chemistry with reinforcement learning to
optimize organic semiconductor materials that are used for solar cell applications.
Their research represents the use of machine learning for quantum chemistry and
how it can address energy challenges [86]. Amin et al. introduced an ML-based
energy Hessian method for creating fast and specialized molecular force fields,
which significantly reduced computational costs and time for energy calculations
in molecular dynamics [87]. Chen et al. explored atomic mechanisms in lithium-
ion diffusion using ML, contributing to advancements in battery technology [88].
Gomez et al. studied how ML enhances the analysis of data generated from mi-
crofluidic systems, emphasizing applications in monitoring molecular interactions
[89].

Similarly, there are plenty of studies that have utilized ML for drug discovery
or similar molecular property prediction purposes. Noviandy et al. used voting-
based ML frameworks to predict hepatitis C virus inhibitors. This work demon-
strates the potential of interpretable ML in drug discovery [90]. Tian et al. utilized
transfer learning techniques to improve the predictive accuracy of bioactive small
molecules [91]. Ghosh et al. developed an automated ML-based workflow for vir-
tual screening of COX-2 inhibitors, providing a framework for fast and scalable
drug screening [92]. Wang et al. utilized ML models for ADMET evaluation for
drug permeability prediction, facilitating the development of safer and more effec-
tive pharmaceuticals. Their results have also shown that deep learning methods
still do not outperform simple ML methods in drug discovery applications [93].

In another study, deep learning was utilized by interpreting chemical language
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representations to predict the bioactivity of compounds by Özçelik and Grisoni.
By applying natural language processing techniques, the model learned chemical
notations and predicted molecular functions with high precision [94]. Their work
is very similar to the methods that are used in this paper, using language models to
predict molecular properties with chemical notations, and they obtained promising
results. Urban et al. applied deep learning models to predict glycan structures
from tandem mass spectrometry. This method significantly sped up the glycan
structure analysis and showed the potential of ML in simplifying complex chemical
procedures [8]. Jain et al. utilized ML models and quantum chemical calculations
to predict molecular toxicology. Their work shows the role of ML in understanding
the molecular basis of toxicity [95].

GNNs are emerging as a powerful tool for predicting molecular properties [96].
They can represent molecules as graphs with atoms as nodes and bonds as edges.
This special representation of molecules enables GNNs to capture intricate struc-
tural details, such as bond lengths, angles between bonds, chiral tags, number of
neighbouring atoms for each atom, conformers, etc., and accurate prediction of
properties like solubility, toxicity, and reactivity. They are also highly adaptable
for various molecular representations, which increases their potential to advance
computational chemistry [97].

Tran et al. used a combination of GCNs with iterative refinement of LSTMs
that can learn distance metrics of small molecules [98]. While their method strug-
gled to generalize to unseen molecular scaffolds, it performed significantly better
than prior methods for low-data learning for drug discovery. Gilmer et al. uti-
lized MPNNs’ ability to featurize local and global features of the entire input
graph to predict molecular properties [99]. Their MPNN method demonstrated
promising results and can predict quantum properties of organic molecules sig-
nificantly faster than the alternative, expensive quantum mechanical simulation
method (DFT). Jo and his co-workers combined message passing with an attention
mechanism for chemical classification [Jo2017]. Their work was the first application
of using SMILES strings as direct input to MP algorithms for molecular property
prediction, and they obtained comparable results to several benchmarks. Okabe
et al. developed a Virtual Node Graphical Neural Network (VNGNN) to predict
phonon properties in materials. VNGNNs use extra virtual nodes to augment the
flexibility of GNNs to account for the variable and arbitrary dimensions of their
outputs [11]. The addition of the virtual nodes was deemed necessary due to the
unstable nature of phonons in Okabe et al.’s work.

2.5.6 Challenges and future directions

Despite its advantages, ML in molecular chemistry faces challenges. The quality
and diversity of training datasets are critical, as poor or biased data can lead to
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inaccurate predictions. Building a high-quality training dataset requires extensive
research, careful pre-processing, and rigorous validation to ensure accuracy and
robustness, while also aiming to collect as many data points as possible. Addi-
tionally, meticulously adjusting model hyperparameters is an important but time-
consuming step. Without finetuning, ML models tend to overfit or underfit to the
training data, making future predictions inaccurate. Especially for work with large
datasets that require high computational power to train models, this finetuning
step can be very time and resource-intensive. However, after finding ideal parame-
ters and obtaining a model, that same model can be used as many times as needed,
quickly.

In conclusion, the integration of ML into molecular chemistry is a significant
alternative tool for researchers that can accelerate the discovery processes if the
correct tools and previous research, and data exist. While specific references for
quinones are sparse, different ML types like the transformer and GNNs are promis-
ing tools for identifying new quinone derivatives.

2.6 Problem formulation

The development of efficient and sustainable energy storage systems, such as RFBs,
relies heavily on the identification of suitable redox-active materials. Quinones
have emerged as promising candidates due to their favorable electrochemical prop-
erties and structural tunability. A key parameter in evaluating quinones for RFB
applications is their standard reduction potential. Traditionally, accurate estima-
tion of redox potentials requires quantum chemical calculations, such as density
functional theory (DFT), which are computationally expensive and time-consuming,
or resource-intensive laboratory experiments.

Efficient and scalable prediction of standard redox potentials is critical for accel-
erating the discovery of redox-active materials for RFBs. While machine learning
(ML) can accelerate the screening process, it remains unclear which ML architec-
tures and molecular representations yield the best predictive performance for this
task. If reliable predictions can be made using ML models, costly computational
or experimental methods can be reserved for the most promising candidates, re-
ducing the time and resources spent on less viable options.

The objective of this thesis is to investigate and compare two types of ML meth-
ods: transformer-based pre-trained large language models (LLMs) and GNNs,
both of which will use chemical notation representations as input. The goal is
to evaluate and compare these methods in terms of predictive accuracy and com-
putational efficiency, in the context of accelerating the discovery of quinone-based
materials for energy storage applications. For LLMs, two pre-trained models will
be explored, and the study will investigate which chemical notation yields the best
performance. For GNNs, SMILES strings will first be converted into graphs to de-
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termine whether representing molecular structure as graphs, rather than tokens,
leads to improved predictive performance, despite both formats taking an equiv-
alent amount of information. As a step further, a 3D GNN will be employed to
assess whether incorporating 3D structural features further enhances model ac-
curacy compared to using 2D representations alone. The methods, models, and
datasets used in this study will be described in detail in the following chapter.

Based on this objective, the thesis aims to answer the following research ques-
tions:

• Which pre-trained transformer-based LLM provides the best performance for
predicting the redox potential of quinones?

• Which chemical notation (SMILES, SMILES Canonical, Deep SMILES, InChI)
yields the highest predictive accuracy when used as input to LLMs?

• Does converting chemical notations into graph-based representations and us-
ing GNNs improve predictive accuracy compared to LLMs, despite both us-
ing equivalent input information?

• Does incorporating 3D features, such as bond distances and angles, enhance
the performance of GNNs over 2D representations?

• Are the performance differences between the ML models statistically signifi-
cant, and which model is optimal for the task of predicting the electrochemi-
cal potential of quinones?



Chapter 3

Methods

This chapter of the report explains the methods used for this study. It outlines the
steps taken during experimentation, describes how the data was gathered, identi-
fies the models utilized, and explains how they were tuned.

3.1 Transformer based models

Two pretrained transformer-based models were used for comparison. These mod-
els use chemical notation texts as inputs and transform them into tokens, allowing
them to process and predict an output. ChemBERTa-77M-MTR is the first pre-
trained model used for this work and will be referred to as the ChemBERTa model.
It is a transformer-based model pre-trained on 77 million SMILES strings from the
PubChem database by Seyone Chithrananda [74]. It employs a multitask regres-
sion (MTR) objective, where the model learns the similarities in the outputs simul-
taneously [100]. Even though it was pre-trained with SMILES notation inputs, its
performance with other notations will be evaluated and compared as well.

The PubChem10M_SMILES_BPE_450k model is the other transformer-based
model that was used for this work and will be referred to as the PubChem model. It
is pretrained on 10 million SMILES strings from PubChem by Seyone Chithrananda.
It utilizes Byte Pair Encoder (BPE) for tokenization, capturing substructures within
molecules. BPE is a combination of character and word-level representation that
can decompose unfamiliar strings down to subwords it might recognize. This use
of BPE can help a model better identify key characteristics of molecules such as
atomic composition, bond types, and molecular configurations [74].

Using pre-trained models speeds up the training process. Since these models al-
ready come with a general knowledge of chemical compounds, by just adding extra
hidden layers and training them with our dataset, they can predict quinone prop-
erties effectively. To use these pre-trained models, training and evaluation were
performed using Huggingface Transformers and PyTorch packages on Python.

26
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3.1.1 Model Training and Hyperparameter Tuning

Each model was trained using the respective input representations. The data set
was split in a stratified order to ensure the same sets for all models. The data
was split as 80% training, 10% validation, and 10% test. Mean squared error was
used as the loss function, and Adam optimizer with weight decay was used. An
exponential learning rate scheduler was also used with different gamma values.
To prevent overfitting, early dropout was added. If the loss of the validation set
during training did not improve for 20 epochs in a row, the training loop stopped
early, and the model with the best validation loss value proceeded to the evaluation
step.

A comprehensive hyperparameter tuning process was conducted, comparing
various configurations to identify the optimal settings for each model. The hyper-
parameters considered included: learning rate, weight decay, gamma, batch size,
and number of nodes in hidden layers. These hyperparameter values were chosen
after numerous trials and errors, and best best-performing candidates were chosen.
In Table 3.1, all the different parameter configuration sets are given.

The models were structured to have three hidden layers and a one-node output
layer to predict the reduction potential of the quinones. The number of nodes in
hidden layers was one of the parameters that was tuned and compared as well.
The alternative number of nodes was chosen as 32-16-8 and 64-32-16. All the
configurations were tried one by one for all model types with all the different
notations and number of node alternatives.
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Table 3.1 Configuration numbers and hyperparameter options

Configuration no. Batch size Learning rate Weight decay Gamma
1 5 1.00E-04 0.05 0.9
2 10 1.00E-04 0.05 0.9
3 5 5.00E-05 0.05 0.9
4 10 5.00E-05 0.05 0.9
5 5 1.00E-05 0.05 0.9
6 10 1.00E-05 0.05 0.9
7 5 1.00E-04 0.1 0.9
8 10 1.00E-04 0.1 0.9
9 5 5.00E-05 0.1 0.9
10 10 5.00E-05 0.1 0.9
11 5 1.00E-05 0.1 0.9
12 10 1.00E-05 0.1 0.9
13 5 1.00E-04 0.05 0.95
14 10 1.00E-04 0.05 0.95
15 5 5.00E-05 0.05 0.95
16 10 5.00E-05 0.05 0.95
17 5 1.00E-05 0.05 0.95
18 10 1.00E-05 0.05 0.95
19 5 1.00E-04 0.1 0.95
20 10 1.00E-04 0.1 0.95
21 5 5.00E-05 0.1 0.95
22 10 5.00E-05 0.1 0.95
23 5 1.00E-05 0.1 0.95
24 10 1.00E-05 0.1 0.95

All 24 model configurations given in Table 3.1 were used as training configura-
tions, and the optimal setup for each model was chosen later on. Due to the nature
of machine learning and how weights are randomized within a limit during train-
ing, each configuration was used three times to ensure that no outliers under- or
overperformed. As a result, for all the different models with different input types,
24 different parameter configurations, and 2 different node layer structure models
were trained 3 separate times. Meaning a total of 144 models were trained for each
input type, for each model was trained and used to choose the optimal one. R
Studio was utilized to graph and assess the performance of these models.
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3.2 Graphical neural networks

In this study, GNNs are utilized in two different ways. The first method is using
GNNs with SMILES notations. This model derives 2D graph representations from
SMILES chemical notations and will be referred to as 2D-GNN. The second method
is using GNNs with 3D Coordinates. This model utilizes 3D spatial information
as input to construct graphs, where nodes represent atoms positioned in three-
dimensional space, and edges represent bonds, allowing the model to learn from
the spatial configuration of molecules. The coordinate information will be taken
from the Gaussian files of the molecules. This second model will be referred to as
3D-GNN.

Unlike transformer-based models, a suitable GNN model pre-trained on a large
chemical dataset was not found. Hence, building the models and training them
from scratch was necessary, requiring more epochs and precise fine-tuning steps.
After careful consideration and investigating related papers, it was determined to
proceed with MPNNs. The Chemprop package, as it was easy, user-friendly, and
open source, was chosen to build our MPNNs [36, 65].

3.2.1 Featurizers

As mentioned in the previous chapter, the selection of the featurizers is a crucial
step and can determine the performance of a GNN. The default atom and bond
featurizer types from Chemprop were used while customizing their feature op-
tions, such as which atomic numbers or hybridization types to include. To not
include redundant features, all the atoms and bonds in the quinone dataset were
analyzed using the RDKit package, and all possible features were recorded. Some
quinones in the dataset contain stars (*) in their notations. In chemical notations,
a star can represent a chiral center or an asymmetric carbon atom. To be able to
retain the stars in the featurizers, some additional features were included, such as
0 atomic number, unspecified chiral tag, and unspecified hybridization type. All
the utilized custom featurizers are given in Table 3.2.
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Table 3.2 Featurizers used for the GNN models

Featurizer Options Correspondence
Atom Featurizers
Atomic number 0, 6, 7, 8, 16, 17, 35 *, C, N, O, S, Cl, Br
Degree 0, 1, 2, 3, 4 number of neighbors
formal charge 0 Charge of the atom
Chiral tag 0, 1, 2 Unspecified, CW, CCW
Number of H 0, 1, 2, 3, 4 Hydrogens bonded
Hybridization Unspecified, SP, SP2, SP3 Hybridization type
Aromaticity 1, 0 Aromatic or not
Mass float32 value (0 - 1) Atomic Mass/100
Bond Featurizers
Bond type Single, Double, Triple, Aromatic Type of the bond
Conjugated 1, 0 Aromatic or not
In ring 1, 0 In a ring or not
Stereochemistry 0, 1, 2, 3 None, Any, Z, E

2D-GNN model uses solely the given featurizers and options. 3D-GNN also
utilizes all of the featurizers given in the table. However, to capture spatial data,
they need more feature extractors added to the default bond featurizers. Hence, on
top of the ones given in the Table 3.2, an additional block that calculates the bond
angle and the bond distance was added to the bond featurizers for the 3D-GNN.
To keep all the features between 0 and 1, similar to the atomic mass operation,
distance and angle values were divided by 10 before returning them to the model.

3.2.2 Model Training and Hyperparameter Tuning

The data set was split with Chemprop’s built-in tool using a structure-based split-
ting method, Kennard Stone, that uses Euclidean distances to group the data. The
data was split as 70% training, 15% validation, and 15% test.

For training, Adam optimizer with Noam learning rate scheduler is used.
Noam scheduler increases the initial learning rate linearly to the given maximum
learning rate during the first warmup steps. Afterwards, it decreases the learning
rate exponentially to the target final learning rate over the remaining epochs. The
lightning package is utilized in Chemprop for training and evaluating steps. The
lightning package provides useful tools like the learning rate finder and monitor
to streamline the process of choosing an optimal learning rate. Mean squared error
(MSE) was used as the loss function, and root mean squared error (RMSE) and Co-
efficient of Determination (R²) were monitored as evaluation metrics. Models were
trained over a maximum of 300 epochs, and the first 10 epochs were used as the
warmup epochs. To prevent overfitting, early dropout was added with a 50-epoch
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patience.
The overall MPNN consists of three components: message passing layer, aggre-

gation, and the predictor. Apart from the learning rate that was determined with
the help of the lightning tool kit. The number of hidden layers of the different
sections of the GNNs and their dropouts must be tested to determine the optimal
GNN structure. After numerous trials and errors, the best two options for each pa-
rameter were determined, and 16 possible configurations given in Table 3.3 were
experimented with similarly to the transformer-based models’ configurations.

Table 3.3 Configuration numbers and hyperparameters for GNNs

Configuration no.
Depth of

MP (d_mp)
Dropout of

MP
Layers of

FFN (n_ffn)
Dropout of

FFN
1 4 0.05 1 0.15
2 3 0.05 1 0.15
3 4 0.1 1 0.15
4 3 0.1 1 0.15
5 4 0.05 2 0.15
6 3 0.05 2 0.15
7 4 0.1 2 0.15
8 3 0.1 2 0.15
9 4 0.05 1 0.2
10 3 0.05 1 0.2
11 4 0.1 1 0.2
12 3 0.1 1 0.2
13 4 0.05 2 0.2
14 3 0.05 2 0.2
15 4 0.1 2 0.2
16 3 0.1 2 0.2

The message passing layer used is BondMessagePassing, which passes mes-
sages along directed bonds rather than atoms. This approach allows the model
to capture edge-level information more effectively. The message passing compo-
nent has d_mp number of fully connected layers: an input layer, (d_mp - 2) hidden
layers of size 300, and an output layer. A ReLU activation function and a chosen
dropout rate are applied to introduce non-linearity and reduce overfitting, respec-
tively. Dropout works by randomly deactivating a fraction of the neurons during
training, which helps prevent the model from relying too heavily on specific fea-
tures and improves generalization. NormAggregation is used in the aggregation
step to combine atom-level representations into a single graph-level embedding.
After aggregation, a batch normalization layer is applied to stabilize training by
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normalizing feature distributions. Finally, the predictor is a regression-type feed-
forward network (RegressionFFN) consisting of n_ffn hidden layers followed by
an output layer, for a total of (n_ffn + 1) layers. Each layer has 300 hidden units,
with a chosen dropout rate applied between them. This predictor maps the graph
embedding to the target molecular property.

3.3 Data Collection

The dataset used in this study comprises 988 quinone molecules and was originally
generated through density functional theory (DFT) calculations performed using
the Gaussian 09 program, as described by Kristensen et al. [5]. Each molecule entry
includes its molecular formula, computed standard reduction potential, solvation
free energy (Gsolv), molecular weight, biological source, and molecular structure.
The dataset is accompanied by a directory of output files in the .gau format.

Gaussian 09 is a widely used quantum chemistry software package that allows
for detailed electronic structure calculations [101]. It offers a comprehensive suite
for electronic structure calculations. Gaussian predicts molecular properties, reac-
tion pathways, and spectroscopic characteristics using quantum mechanical prin-
ciples. It can be used for applications like modeling complex chemical systems,
interpreting experimental data, and designing molecules with specific attributes.
It is a versatile and reliable program. This makes it indispensable in both academic
and industrial research environments.

Following the completion of this study’s modeling and training phases, it came
to light that certain molecules in the dataset, specifically some fusarubins and
phenicin, exhibited inconsistencies between their DFT-calculated redox potentials
and experimental electrochemical behavior. Internal correspondence with the co-
supervisor indicated that fusarubin compounds did not display meaningful re-
versible redox peaks experimentally, and that early calculations for phenicin sig-
nificantly overestimated its redox potential. It was found to be -0.216 V through
experimentation instead of 1.666V, which is given in the dataset.

Due to the timing of this information becoming available, these specific molecules
were retained in the modeling process. However, this insight highlights the impor-
tance of exercising caution when relying solely on theoretical data for machine
learning tasks. While DFT methods are generally robust and widely accepted for
redox potential prediction [102, 103], they are not without limitations, particularly
when applied to structurally complex or electronically unusual molecules. These
limitations should be considered when interpreting model performance and as-
sessing generalization to experimental systems.

The statistics of the quinone dataset are given in Table 3.4. The distribution of
the reduction potentials can also be seen in the Figure 3.1.
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Table 3.4 Statistics of the reduction potential dataset

Statistic Value

Units Volt [V]
Number of data 988
Minimmum -1.382
Maximum 1.666
Mean 0.201
Median 0.251
Standard deviation 0.363

Figure 3.1 Histogram of the reduction potentials of quinones

To be used and compared as the different input types for the transformer-based
models, the four chemical notations for each quinone were generated. By using the
formula and ID of each molecule and the OpenBabel tool, SMILES, DeepSMILES,
Canonical SMILES, and InchI notations of each quinone were obtained. These nota-
tions, along with the reduction potentials of the quinones, were used as the training
data for the transformer-based models. For 2D-GNN, only SMILES notations were
utilized along with reduction potentials of the quinones.

For the 3D-GNN model, Gaussian files were utilized. The Gaussian file of each
quinone molecule contains a list where every atom’s 3D coordinates are given.
However, these files fail to provide the bonds between the atoms. Since quinone
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molecules are large and have complex structures, it is a challenge to extract the
exact structure from the coordinates alone. A custom script was written in Python
to draw the structures of molecules from their Gaussian files by drawing bonds be-
tween atoms that are closer than a threshold (Figure 3.2a). These molecules, while
having inaccurate bond types between atoms, can provide accurate 3D atomic co-
ordinates and an estimated structure. Afterwards, SMILES notations are utilized
to draw 2D structures of the quinones (Figure 3.2b). These SMILES molecules can
act as a template with accurate bonds between atoms, even though the angles and
bond distances are wrong. For heavy atoms, a signature (element, degree, neigh-
bor elements) is computed from both molecules. The code then pairs atoms from
the SMILES and Gaussian molecule that share the same signature and creates an
atom mapping. Utilizing the atom mapping, the Gaussian molecule is reordered
to match the atom indices with the template molecule. To obtain the final 3D struc-
ture with accurate atomic positions, bonds, and structure, the Gaussian molecule’s
bond orders are rewritten using the template molecule (Figure 3.2c).

(a) (b)

(c)

Figure 3.2 Initial Gaussian (a), 2D SMILES template (b), and Combined 3D (c) structure of the Asco-
corynin molecule.

This custom script was used to combine all the Gaussian files and SMILES
notations of all the quinones. The obtained RDKit molecule objects were saved
as .mol files. Unlike Gaussian files, RDKit molecules contain information on a
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molecule’s atoms, 3D structure, bonds, bond types, and many more elaborate atom,
bond, and molecule features. Moreover, RDKit molecule files are compatible with
common chemical computational tools like Chemprop and OpenBabel, and the
RDKit package provides many useful tools to analyze molecules in Python.

As a summary, transformer-based models use four different notations as inputs
to determine which notation performs better. 2D-GNN uses SMILES notations
to extract atom and bond features as inputs. Lastly, 3D-GNN uses the SMILES-
Gaussian combination .mol files to extract atom and bond features, including spa-
tial features (bond angle and bond distance) as inputs. All models aim to predict
the reduction potential of the quinones and compare which method and input type
can provide higher accuracy. All model training and calculations were done us-
ing a computer with Nvidia GeForce RTX 3080 graphics processing unit (GPU). For
comparison and simulating conditions where a strong GPU is not present, sample
model calculations were done using the CPU as the device instead of utilizing the
graphics card. The time it takes for each model to train with GPU vs CPU was
noted, as it indicates the computational cost of a model.

To compare the performances of the models, Root Mean Squared Error (RMSE)
and Coefficient of Determination (R²) were used as figures of merit. To compare
the performance of the machine learning models, two commonly used regression
metrics were employed: Root Mean Squared Error (RMSE) and the Coefficient
of Determination (R²). These metrics provide complementary insights into model
accuracy and goodness of fit.

The Root Mean Squared Error (RMSE) quantifies the average magnitude of
the prediction errors, penalizing larger errors more heavily due to the squaring
operation. It is derived from the Mean Squared Error (MSE), which is also derived
from Residual Sum of Squares (SSR), which is calculated as:

SSR =
n

∑
i=1

(yi − ŷi)
2 (3.1)

MSE =
SSR

n
(3.2)

RMSE =
√

MSE (3.3)

where yi is the actual and ŷi is the predicted value by the regression model.
Where n is the number of observations.

Here, yi represents the true value, ŷi the predicted value, and n the number
of data points. RMSE retains the same unit as the target variable, making it di-
rectly interpretable in the context of the problem. A lower RMSE indicates better
predictive accuracy.

The Coefficient of Determination (R²), on the other hand, measures how well
the model explains the variance in the target variable. It is defined based on the
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total variability in the data (Total Sum of Squares, SST) and the unexplained vari-
ability (Residual Sum of Squares,SSR):

Mean = ȳ =
∑n

i=1 yi

n
(3.4)

SST =
n

∑
i=1

(yi − ȳ)2 (3.5)

R2 = 1 − SSR

SST
(3.6)

An R² value of 1 indicates perfect prediction, whereas a value of 0 suggests
that the model performs no better than simply predicting the mean of the target
variable. In this study, RMSE and R² were used together to asses prediction errors
and model fits.



Chapter 4

Results and discussion

In this chapter, a thorough comparison of all the different models and their re-
sults is given. The optimal configuration for each input type of transformer-
based models is chosen. Results of the GNN models are also explained. All the
best-performing models are compared with each other. As a result, which input
with which ML model is the best option for predicting the reduction potential of
quinones is determined.

4.1 Results

The results of each model were logged into CSV files during training for assess-
ment. Both validation and test sets’ Root Mean Squared Error (RMSE) and Coeffi-
cient of Determination (R²) values were used as metrics. The progression of loss at
each epoch and predicted values vs. the real values of the output were utilized to
aid in choosing the best configurations.

4.1.1 Transformer based models

First, transformer-based model results will be compared. Different hyperparame-
ters were compared using R Studio, and optimal configurations were chosen. For
example, for the ChemBERTa model by plotting learning rate vs test R² of the
model with Deep SMILES notation inputs and coloring the points by their gamma
values in figure 4.1a, it can be determined that for all learning rate values, 0.95
gamma values performs the best and the learning rate 1e-04 and 5e-05 performs
similarly.

37
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(a) (b)

Figure 4.1 Learning Rate vs test R² plot, colored by gamma values (a), and Number of nodes vs test
R² plot, colored by learning rates(b) plots of ChemBERTa model with Deep SMILES notation inputs

By subsetting the dataset to choose only gamma = 0.95 models, and comparing
other parameters, like test R² vs. the number of nodes in the first hidden layer in
Figure 4.1b, and coloring the graph by learning rate, it can be seen that the optimal
learning rate for this model is 1e-04.

Similarly, if batch size is plotted against a loss metric, optimal weight decay can
be determined as 0.1. The best configurations were systematically determined by
repeating these steps across all input notation types and models. In the provided
example involving Deep SMILES notation input, the results had a clear distinction,
making selecting an optimal configuration easier than other notation types. How-
ever, for other models and notations, there was no clear distinction every time. In
scenarios where the results were closer and choosing a configuration proved more
challenging, epoch vs loss graphs, validation and test R² plots, and predicted vs
true output graphs were all taken into account. As a result, the final model setups
were chosen and presented in Table 4.1.
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Table 4.1 Chosen optimal configurations for transformer-based models

Input notation
Configuration

no.
Hidden

layer nodes
Mean

validation R²
Mean
test R²

ChemBERTa
SMILES 19 64-32-1 0.592 0.666
SMILES Canonical 19 64-32-1 0.547 0.628
Deep SMILES 19 64-32-1 0.532 0.560
InChI 20 64-32-1 0.157 0.343
PubChem
SMILES 16 64-32-1 0.623 0.662
SMILES Canonical 16 64-32-1 0.580 0.740
Deep SMILES 20 32-16-1 0.595 0.537
InChI 21 32-16-1 0.234 0.494

The ChemBERTa model performed best when the hidden layer structure was
with 64 and 32 nodes for all input types, while the PubChem model had mixed
results, with half of the notations performing better with 32 and 16-node hidden
layers. Optimal batch size and weight decay have varied results for different input
types. However, for some notations, batch size and weight decay changes did not
have very significant differences. In those cases, epoch vs loss graphs and vali-
dation performances were taken into account to determine the best configuration.
Another thing to note is how the test set performs better than the validation set.
It is not an expected behaviour since the model is evaluated over the validation
set after each epoch, and the validation results guide the hyperparameter adjust-
ments. For ChemBERTa models, SMILES notation inputs, and for PubChem mod-
els, SMILES Canonical inputs were chosen as the best. Computation times were
also recorded, revealing that training a ChemBERTa model takes approximately 3
minutes, whereas training a PubChem model requires about 10 minutes when the
calculations were done with the GPU. However, these numbers were significantly
higher when only the CPU was available for calculations, with ChemBERTa taking
50 minutes, and the PubChem taking 3 hours to train a single model.
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(a) (b)

Figure 4.2 Epoch vs Loss graphs of ChemBERTa model with SMILES (a), and PubChem model with
SMILES Canonical (b) inputs.

By examining epoch vs loss graphs in Figure 4.2, a trend can be seen. The
training loss decreases at a rapid pace, while the validation loss does not improve
significantly after a few initial epochs. The number of epochs does not always reach
100 either, due to the early stopping system that was added to avoid overfitting.
This countermeasure seems to be functioning well since no significant overfitting
can be seen in graphs where the validation loss shows an increasing trend. Overall,
the epoch vs loss plots show an expected trend where the training loss is lower than
validation, and they both become stable after the model has been through sufficient
epochs. The main things to note in these plots would be that the ChemBERTa
model has closer validation and training losses, while the PubChem model shows
a bigger discrepancy.

(a) (b)

Figure 4.3 True vs Predicted reduction potential E[V] graphs of ChemBERTa model with SMILES (a),
and PubChem model with SMILES Canonical (b) inputs.

The true and predicted values of the reduction potentials of the quinones in the
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test and validation sets were also plotted for comparison for all the chosen model
configurations in figures 4.3a and 4.3b.

4.1.2 GNN models

To choose the learning rate intervals, the learning rate finder tool from the lightning
package was used. With the help of the plot that the learning rate finder computed,
the optimal initial learning rate was determined as 0.0005, the maximum learning
rate as 0.003, and the final learning rate as 0.0003. In Figure 4.4, the results of the
learning finder, and how the Noam learning rate scheduler changes the learning
rate through epochs of the GNNs can be seen.

(a) (b)

Figure 4.4 Results of the learning rate finder (a) and the progression of the learning rate of GNNs
over batch steps (b).

Following a similar approach to that used for selecting the optimal configu-
ration of transformer-based models, each GNN model was trained three times
per configuration, with the average performance used to identify the best option.
Training a 2D-GNN model took only 1 minute, and a 3D-GNN model required
around 7 minutes to complete on a GPU. When using CPU only, their computa-
tion times did not show a significant increase; a 2D-GNN model took around 3
minutes, and a 3D-GNN model took 10 minutes to complete training. Meaning,
training GNNs without a GPU takes less time than transformer-based pre-trained
models take with a strong GPU. This shows that even without a high-spec GPU
available, GNN models are a viable choice.

In Table 4.2, chosen configurations for GNN models and their mean R² values
for the test and validation sets can be seen.
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Table 4.2 Results of the GNN models

Model Configuration no. Mean Validation R² Mean Test R²
2D-GNN 2 0.840 0.742
3D-GNN 15 0.809 0.727

The issue with the test set performing better than the validation set does not ex-
ist for the GNN models. As per the expected behaviour, validation sets fit the GNN
models better than the test sets. The predicted vs true reduction potential values
of the best performing models with the chosen configurations are also plotted and
given in Figure 4.5.

(a) (b)

Figure 4.5 True vs Predicted reduction potential E[V] plots of 2D-GNN(a) and 3D-GNN(b)

4.1.3 Statistical comparison of model performances

To enable a robust comparison between the machine learning methods explored in
this study, a final evaluation was conducted on the best-performing configuration
of each model type. The selected models were: ChemBERTa (configuration 19 with
SMILES input), PubChem (configuration 16 with SMILES Canonical input), the
2D-GNN (configuration 2), and the 3D-GNN (configuration 15). Each model was
trained independently 30 times to capture the variability in training performance.

The root mean square error (RMSE) on the validation set was chosen as the
primary metric for statistical evaluation. Figure 4.6 displays the distribution of
RMSE values across the 30 runs for each model, and the corresponding mean
RMSE and R² scores on both validation and test sets are summarized in Table 4.3.
These results serve as the basis for the subsequent statistical analyses.
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(a) (b)

Figure 4.6 Box plots for the validation (a) and test (b) RMSE values of each model

Table 4.3 Results of models

Model
Mean

Validation RMSE
Mean

Validation R²
Mean

Test RMSE
Mean Test R²

Chemberta 0.200 0.626 0.219 0.637
PubChem 0.211 0.581 0.188 0.734
2D-GNN 0.145 0.834 0.204 0.721
3D-GNN 0.168 0.782 0.210 0.704

To assess whether the observed differences in model performance are statisti-
cally significant, an analysis of variance (ANOVA) was conducted. This test eval-
uates the null hypothesis that the mean RMSE values of all models are equal,
formally expressed as:

H0 : µ1 = µ2 = µ3 = µ4 (4.1)

where µi denotes the mean validation RMSE of model i. The ANOVA test
computes an F-statistic, defined as the ratio of between-group variance to within-
group variance:

F =
MSbetween

MSwithin
(4.2)

Here, MSbetween represents the mean square error between the model groups,
and MSwithin corresponds to the average variance within each model group. A
resulting p-value less than the significance threshold (α = 0.05) indicates that at
least one model exhibits statistically different performance from the others [104].

The ANOVA test yielded a statistically significant result (p < 0.05), rejecting
the null hypothesis and justifying further pairwise comparisons through Tukey’s
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Honestly Significant Difference (HSD) test for all pairs except 2D and 3D-GNN,
as well as 3D-GNN and ChemBERTa. This post-hoc analysis determines which
specific model pairs differ in performance by computing confidence intervals for
the differences in their group means. The Tukey HSD criterion uses the following
formula:

HSD = qα,k,N−k ·
√

MSwithin

n
(4.3)

In this equation, qα,k,N−k is the critical value from the studentized range distri-
bution for significance level α, k is the number of groups, N is the total number
of observations, and n is the number of observations per group. If the confidence
interval for a mean difference between two models does not include zero, the dif-
ference is deemed statistically significant. The resulting pairwise comparisons are
visualized in Figure 4.7 for all model combinations.

Figure 4.7 Tukey HSD results of the models

Based on the test outcomes, ChemBERTa exhibited the weakest overall perfor-
mance, with the highest mean RMSE on the test dataset. The PubChem model
achieved the best test set performance, showing the lowest RMSE values among
all models. The Tukey HSD test confirmed that PubChem’s test RMSE was sig-
nificantly lower than those of the other three models. However, a counterintuitive
observation, which was already noted previously, was made in that PubChem-
BERT also had the lowest validation set accuracy among all. This discrepancy may
suggest model fitting issues that warrant further investigation.

The 2D-GNN model demonstrated the highest validation set accuracy and also
achieved the second-best performance on the test set, indicating strong generaliz-
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ability. Besides, the addition of 3D structural features in the 3D-GNN did not lead
to a statistically significant improvement. According to the Tukey test, the differ-
ence in performance between the 2D and 3D GNNs was not significant at the 95%
confidence level, suggesting that incorporating 3D molecular geometry does not
provide added value in this specific prediction task.

Moreover, the statistical comparisons validated a performance distinction be-
tween transformer-based language models (LLMs) and graph neural networks
(GNNs), with the ANOVA and Tukey tests indicating significant differences in
their predictive capabilities.

4.2 Discussion

For both types of models, certain molecules consistently appear as outliers, as il-
lustrated in Figures 4.3 and 4.5. These recurring outliers are listed in Table 4.4.
As briefly mentioned in the previous chapter, further investigation revealed that
furasubins behave markedly differently in experimental settings compared to pre-
dictions made by DFT calculations [105]. Phenicin, which has the highest reduc-
tion potential value in the dataset, was observed to exhibit a reduction potential
of -0.216V in experimental studies, contradicting DFT predictions. These findings
show that ML models might perform more accurately if the provided training set
has more reliable data and the DFT dataset is revised. In contrast, the Altertoxin I
and julichrome Q3,3 molecules stand out as outliers in the ML models without any
clear experimental or structural explanation. One possible reason for this may be
Julichrome’s unusually large size, which contains 38 carbon atoms, making it sig-
nificantly more complex than most other molecules in the dataset. This increased
complexity may challenge the models’ ability to accurately capture their behavior.

Table 4.4 Outlier quinones

Quinone Formula
Standard
reduction

potential (V)

Errored
model

5-Hydroxy-3-methoxy
dihydrofusarubin D

C16 H20 O7 1.028 GNNs

5-Hydroxy
dihydrofusarubin B

C15 H18 O7 1.126
ChemBERTa,

PubChem, 2D-GNN

Phenicin C14 H10 O6 1.666
ChemBERTa,

PubChem
Julichrome Q3, 3 C38 H38 O16 -0.585 3D-GNN

Altertoxin I C20 H16 O6 -1.094
ChemBERTa,

PubChem
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Among transformer-based models, the PubChem model performed better on
the test sets, with the SMILES Canonical notation input being the best with a mean
0.734 test R² value. However, the validation set had significantly worse results than
the test set, with 0.581 R². This issue exists across all the input notation types
for all transformer-based models. While this problem was less prevalent on the
ChemBERTa model, the best R² value of the validation sets was 0.626, while it was
0.637 for the test set with SMILES input. Stratified split, in theory, should distribute
quinone molecules to the sets equally according to their reduction potentials and
minimize the chance of lucky splits. To test if this was due to a lucky split, different
splitting methods were tested. The same issue was observed with the random
splitting method and different split ratios. This is not an expected behaviour since
ML models are evaluated by the validation set during training and aim to minimize
the validation loss. The validation set is expected to have a better fit than the test
set. These results can point to potential model fitting issues. Apart from this issue,
the PubChem model with SMILES Canonical notation input was determined as the
best-performing transformer model.

While GNNs showed slightly poorer accuracy on test sets, they exhibited the
expected behaviour of validation set fitting better than the test set. This might be
due to both the different architecture of the MPNN models and the structure-based
splitting method, Kennard Stone split, that the Chemprop tool provides. Between
2D and 3D GNNs, 2D-GNN has a better performance. This was a surprising result
since the 3D-GNN has the additional featurizers with bond distances and bond
angles, and the atoms are positioned on the accurate 3D coordinates provided by
their Gaussian files. These extra features were expected to help the model under-
stand the complex structure of the quinones and predict their reduction potentials
better. However, it seems that the 2D features were enough to capture the fun-
damental patterns of the quinone molecules. While the mean test R² value of
0.721 of the 2D-GNNs with optimal configuration is slightly lower than the Pub-
Chem/SMILES Canonical models, the validation R² value of 0.834 is significantly
higher and makes the model fitting more reliable.

In addition to the performance differences, training a 2D-GNN model without
an available GPU takes only 3 minutes, whereas PubChem requires 3 hours. With
a strong GPU, the difference is smaller, as 2D-GNN takes 1 minute while PubChem
requires 10 minutes. Even though it might seem as only 9 minutes of difference,
it is still 9 times more computing time. This computation cost can add up if fine-
tuning is necessary, as it was in this case, and many different configurations should
be trialed multiple times. There is a significant computational cost difference, even
for a high-spec computer that was used in this work. With a lower-spec computer,
this gap can prove to be even larger, making the PubChem model a non-viable
option for cases with limited budget and time. In such cases, 2D-GNNs provide
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significantly faster training times with a very slight drop in test set accuracy.
Furthermore, the best-performing model out of all the trials for the PubChem

model shows a 0.777 test R² value, while the best 2D-GNN has a test R² value
of 0.774. These two have very close values, and obtaining an as accurate model
with 2D-GNNs might be possible with more trial runs. With that said, if time and
budget are not a concern and obtaining the highest possible test set performance
is the goal, the PubChem model would be the ideal choice.

As a future direction, it can be aimed to collect more data on different quinone
molecules to have a larger dataset than 988. While the current amount was suffi-
cient to do initial testing, configuration, and decision making, a larger dataset will
provide more material to both train and test models. The solubility of the redox
active compounds is just as important as their reduction potential for their perfor-
mance in RFBs. Hence, another opportunity to utilize the ML models would be
to deploy them to predict the solvation energies of quinones. This can be done in
a process similar to the one provided in this study. That said, these methods and
models can be used for many applications in molecular discovery and drug design
fields, as the investigated literature suggests.



Chapter 5

Conclusions

Quinones are redox-active organic compounds that are renewable, configurable,
and obtainable from fungi and bacteria. The abundance and the wide array of
structures and properties they provide make them good candidates for electrolytes
in RFBs. ML methods can cut down the resources and time required for determin-
ing good quinone candidates by predicting their reduction potentials. Transformer-
based models have options that are pre-trained on relevant large molecular data.
The tested ChemBERTa and PubChem models, which performed well on the test
sets with R² values of 0.637 and 0.734, exhibited unexpectedly poor performance
on the validation sets, with R² values of 0.626 and 0.582, respectively. Apart from
this issue, the PubChem model with SMILES Canonical inputs has the overall best
performance on the test set. GNN models proved that the addition of spatial fea-
tures does not improve the model accuracy. On the contrary, 2D-GNNs performed,
albeit statistically insignificantly, better than the 3D-GNNs. Among all the mod-
els, 2D-GNNs showed the second-best performance behind the PubChem model.
Although the PubChem model proved to be the superior model, the training time
and computational cost of the model were also significantly higher compared to
the GNN models. With the high computational cost and the validation set fitting
issues in mind, the choice of the best model for the task of predicting the standard
reduction potentials of quinones depends on specific conditions such as time and
budget restrictions and precision requirements.
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Appendix A

Results of model trials

Table A.1 Results of 2D-GNN Configurations

Configuration no. Mean Validation R² Mean Test R²

1 0.8373 0.7203
2 0.8400 0.7421
3 0.8177 0.6997
4 0.8062 0.7336
5 0.8248 0.7004
6 0.8650 0.6689
7 0.8361 0.6767
8 0.8612 0.6729
9 0.8082 0.7237
10 0.8355 0.7154
11 0.8198 0.7368
12 0.8335 0.7249
13 0.8249 0.7118
14 0.8661 0.6708
15 0.8378 0.6675
16 0.8559 0.7090
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Table A.2 Results of 3D-GNN Configurations

Configuration no. Mean Validation R² Mean Test R²

1 0.7736 0.6796
2 0.7445 0.6462
3 0.7776 0.6785
4 0.7462 0.6641
5 0.7677 0.6921
6 0.8036 0.7001
7 0.7815 0.6861
8 0.7618 0.7089
9 0.7767 0.6605
10 0.7734 0.7081
11 0.7697 0.6966
12 0.7334 0.6585
13 0.7621 0.6844
14 0.7028 0.6150
15 0.8089 0.7271
16 0.7529 0.6831



63

Table A.3 Results of ChemBERTa with SMILES input and configuration 19

Model Validation RMSE Validation R² Test RMSE Test R²

ChemBERTa 0.2182 0.5546 0.2132 0.6583
ChemBERTa 0.2006 0.6219 0.2255 0.6185
ChemBERTa 0.201 0.6223 0.2056 0.6817
ChemBERTa 0.1913 0.6591 0.253 0.5204
ChemBERTa 0.2008 0.623 0.2055 0.6823
ChemBERTa 0.2076 0.5966 0.2215 0.6326
ChemBERTa 0.1989 0.628 0.2448 0.5486
ChemBERTa 0.193 0.6524 0.2181 0.6432
ChemBERTa 0.2042 0.6088 0.2388 0.5707
ChemBERTa 0.1996 0.627 0.2108 0.6652
ChemBERTa 0.2017 0.6211 0.2226 0.6275
ChemBERTa 0.187 0.674 0.2065 0.679
ChemBERTa 0.196 0.6395 0.2206 0.6336
ChemBERTa 0.1895 0.662 0.2277 0.6092
ChemBERTa 0.1959 0.6395 0.217 0.6458
ChemBERTa 0.1933 0.6495 0.2188 0.6404
ChemBERTa 0.1993 0.6282 0.2082 0.6751
ChemBERTa 0.2212 0.542 0.2149 0.653
ChemBERTa 0.2218 0.5384 0.2125 0.6615
ChemBERTa 0.1895 0.6643 0.2047 0.6849
ChemBERTa 0.1921 0.6558 0.2093 0.674
ChemBERTa 0.2035 0.6137 0.2269 0.6159
ChemBERTa 0.1987 0.6295 0.2491 0.5345
ChemBERTa 0.1884 0.667 0.2223 0.6281
ChemBERTa 0.201 0.6223 0.2055 0.6822
ChemBERTa 0.2102 0.5868 0.2113 0.6665
ChemBERTa 0.2001 0.6241 0.2032 0.69
ChemBERTa 0.2029 0.6157 0.2216 0.6312
ChemBERTa 0.1952 0.645 0.224 0.6235
ChemBERTa 0.1856 0.6755 0.2177 0.6443
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Table A.4 Results of PubChem with SMILES Canonical input and configuration 16

Model Validation RMSE Validation R² Test RMSE Test R²

PubChem 0.2351 0.4834 0.197 0.7071
PubChem 0.2174 0.5557 0.1878 0.7345
PubChem 0.2167 0.5603 0.1857 0.7401
PubChem 0.2133 0.5755 0.1888 0.7319
PubChem 0.2046 0.6101 0.1906 0.7261
PubChem 0.2247 0.5304 0.19 0.7288
PubChem 0.2115 0.5807 0.188 0.734
PubChem 0.2052 0.6061 0.1783 0.7602
PubChem 0.212 0.5791 0.1803 0.7554
PubChem 0.2061 0.6031 0.1769 0.7645
PubChem 0.196 0.6405 0.1975 0.7059
PubChem 0.2111 0.5834 0.1972 0.7067
PubChem 0.2014 0.6186 0.181 0.7531
PubChem 0.2159 0.5643 0.1867 0.7374
PubChem 0.2266 0.5185 0.1975 0.7057
PubChem 0.2096 0.5895 0.1978 0.7046
PubChem 0.2167 0.5622 0.1983 0.7036
PubChem 0.2006 0.6256 0.196 0.7108
PubChem 0.2107 0.5849 0.1741 0.7716
PubChem 0.2081 0.5973 0.1878 0.7347
PubChem 0.2213 0.5419 0.1782 0.7607
PubChem 0.2043 0.6091 0.1911 0.7247
PubChem 0.1966 0.6384 0.1838 0.7455
PubChem 0.2116 0.5796 0.1821 0.7499
PubChem 0.2173 0.5587 0.1838 0.7456
PubChem 0.1967 0.6374 0.172 0.7774
PubChem 0.2178 0.5568 0.1788 0.7594
PubChem 0.1969 0.6364 0.2005 0.6972
PubChem 0.2118 0.5787 0.2006 0.6964
PubChem 0.2273 0.5161 0.1885 0.733
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Table A.5 Results of 2D-GNN with configuration 2

Model Validation RMSE Validation R² Test RMSE Test R²

2D-GNN 0.1398 0.8464 0.1992 0.7346
2D-GNN 0.1408 0.8443 0.2092 0.7074
2D-GNN 0.1554 0.8103 0.1956 0.7441
2D-GNN 0.1382 0.85 0.209 0.708
2D-GNN 0.1501 0.823 0.2038 0.7222
2D-GNN 0.135 0.8569 0.199 0.7353
2D-GNN 0.1393 0.8475 0.226 0.6586
2D-GNN 0.1395 0.847 0.2093 0.7071
2D-GNN 0.1481 0.8277 0.1889 0.7613
2D-GNN 0.1379 0.8505 0.2208 0.6739
2D-GNN 0.144 0.837 0.1942 0.7477
2D-GNN 0.1336 0.8597 0.223 0.6674
2D-GNN 0.1365 0.8536 0.1919 0.7539
2D-GNN 0.1433 0.8386 0.2109 0.7027
2D-GNN 0.1552 0.8108 0.2123 0.6986
2D-GNN 0.1899 0.7168 0.1839 0.7739
2D-GNN 0.1418 0.842 0.1994 0.7341
2D-GNN 0.137 0.8526 0.1962 0.7427
2D-GNN 0.1598 0.7995 0.1955 0.7444
2D-GNN 0.1421 0.8413 0.2035 0.7231
2D-GNN 0.1356 0.8556 0.2204 0.6751
2D-GNN 0.1402 0.8457 0.2125 0.6981
2D-GNN 0.148 0.8278 0.1976 0.739
2D-GNN 0.1561 0.8085 0.2261 0.658
2D-GNN 0.1506 0.8217 0.202 0.7271
2D-GNN 0.1429 0.8396 0.199 0.7353
2D-GNN 0.1306 0.8661 0.1965 0.7418
2D-GNN 0.1607 0.7971 0.1922 0.7529
2D-GNN 0.1428 0.8398 0.1932 0.7505
2D-GNN 0.1291 0.8692 0.2051 0.7186
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Table A.6 Results of 3D-GNN with configuration 15

Model Validation RMSE Validation R² Test RMSE Test R²

3D-GNN 0.1598 0.8055 0.2004 0.7321
3D-GNN 0.1924 0.7181 0.2173 0.685
3D-GNN 0.174 0.7693 0.2138 0.6949
3D-GNN 0.1766 0.7624 0.2286 0.6511
3D-GNN 0.1718 0.7753 0.2069 0.7143
3D-GNN 0.1431 0.8439 0.2012 0.7299
3D-GNN 0.1725 0.7734 0.2091 0.7082
3D-GNN 0.2009 0.6926 0.2473 0.592
3D-GNN 0.1515 0.8252 0.2243 0.6642
3D-GNN 0.188 0.7308 0.2024 0.7267
3D-GNN 0.1624 0.799 0.1989 0.7359
3D-GNN 0.1821 0.7474 0.2219 0.6714
3D-GNN 0.18 0.7533 0.2103 0.7049
3D-GNN 0.1797 0.7539 0.2197 0.678
3D-GNN 0.1709 0.7775 0.2192 0.6794
3D-GNN 0.1641 0.7948 0.2237 0.6661
3D-GNN 0.1558 0.8152 0.1957 0.7445
3D-GNN 0.1477 0.8339 0.1961 0.7433
3D-GNN 0.162 0.8001 0.215 0.6915
3D-GNN 0.1705 0.7786 0.2089 0.7087
3D-GNN 0.1533 0.8211 0.2156 0.6898
3D-GNN 0.1887 0.7287 0.2043 0.7213
3D-GNN 0.1533 0.821 0.2021 0.7274
3D-GNN 0.1605 0.8038 0.2089 0.7088
3D-GNN 0.1429 0.8445 0.2068 0.7145
3D-GNN 0.1607 0.8033 0.2038 0.7229
3D-GNN 0.1587 0.8083 0.2007 0.7311
3D-GNN 0.1739 0.7696 0.2016 0.7288
3D-GNN 0.1655 0.7912 0.1926 0.7524
3D-GNN 0.1872 0.733 0.2124 0.6989
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