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Preface

In the creation of this project, generative AI has been used on occasion for the following purposes:
spell checking, synonyms, sentence restructuring and grammar improvements; code suggestions,
code review, and explanations; and initial brainstorming and research purposes.
Bold letters denote either vectors or matrices. All symbols are their definition can be found in
the nomenclature.
All figures and tables have been produced by the author unless there is a source in the caption.

During the making of this project, the following programs have been used:

Overleaf LATEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . For text processing and layout of this report.
MathWorks MATLAB and Simulink . . . . . . . . . . For calculations, modelling, simulation,

Real-time control and data processing.
Inkscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . For diagrams and illustrations.
SolidWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . To view model of FBoT.

Kasper Juhl Mortensen

Aalborg University, 30th of May 2025
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Abstract

This thesis explores efficient control strategies for the Full Bridge Oscillation Transformer
(FBoT), a novel hydraulic transformer developed at Aalborg University. Hydraulic transformers
aim to improve the efficiency of fluid power systems by replacing traditional proportional valves,
which are prone to throttling losses.

The FBoT operates by oscillating a free-floating piston, enabling energy transfer via controlled
actuation of On/Off valves assisted by pressure-controlled check valves. A high-fidelity simulation
model of the system is developed to support analysis and control design. To minimise energy
loss when the On/Off valves are opened or closed, a 12-step control sequence is proposed for
pump-mode operation, reducing the control problem to determining six control timings which
correspond to specific On/Off valves being open.

Due to the system’s nonlinear dynamics and strong coupling, Reinforcement Learning (RL) is
selected as the control approach. The symmetric structure of the FBoT is exploited to double
the data collection rate by using both halves of each oscillation, which is critical since data
acquisition was the bottleneck during training. The RL policy is trained iteratively using a
reward function designed to minimise valve losses while achieving a centred oscillation at the
desired amplitude.

Simulation results show a wide range of policy behaviours depending on the training stage.
Notably, policies achieving the highest average rewards often fail to change the control timings
in response to error signals. This behaviour stems from the reward function favouring policies
that deliver near-optimal open-loop timings rather than learning to make corrections over time.
Consequently, significant steady-state errors emerge in piston position and chamber pressures,
leading to reduced efficiency due to large energy losses when the valves are opened.

Experimental validation demonstrates that while the trained policy can generate piston
oscillations, it does so with large variations in the amplitude from oscillation to oscillation.
Furthermore, a subpar efficiency was estimated.

Finally, a novel control framework is proposed to reduce system coupling through control signal
and error transformations. This structure may enable the application of classical PI control
for error correction, with the initial feedforward control signal set based on intuition or via
reinforcement learning.
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Nomenclature
Symbol Definition

A1, A2 FBoT piston areas
ABP Boom piston area
Amp Reference piston amplitude
Bp Piston viscous friction coefficient
Dp Pump displacement
e Euler’s Number
g Gravitational acceleration
kv1,CV Orifice constant for check valve in transition
kv2,CV Orifice constant for check valve fully open
kv,oo Orifice constant for on/off valves
L Overlap between piston and housing
Lk Loss function for critic K
M Mini batch size
mp FBoT piston mass
Ng Noise added to action during training
no Poly-tropic index for bulk modulus
obs Vector containing the observations
obsN Vector containing the normalised observations
p0 Initial pressure
p1, ṗ1 Pressure and gradient in chamber 1
p2, ṗ2 Pressure and gradient in chamber 2
p3, ṗ3 Pressure and gradient in chamber 3
p4, ṗ4 Pressure and gradient in chamber 4
∆p1,L Error in chamber 1’s pressure at the left end
∆p1,R Error in chamber 1’s pressure at the right end
∆p2,L Error in chamber 2’s pressure at the left end
∆p2,R Error in chamber 2’s pressure at the right end
∆p General pressure difference
pA Generalised pressure
pB Generalised pressure
pBC Boom cylinder pressure and gradient
pCV Pressure difference to open check valve
pFO Pressure difference, check valve fully open
Pin Power into the FBoT
Pout Power out of the FBoT
ps Supply pressure
pT Tank pressure
Q1s Supply flow to FBoT chamber 1
Q1T Flow from chamber 1 to tank
Q2s Supply flow to FBoT chamber 2
Q2T Flow from chamber 2 to tank
Q3L Boom cylinder flow to chamber 3
Q3T Flow from chamber 3 to tank

Continued on next page

III



Kasper Juhl Mortensen

Symbol Definition

Q4L Boom cylinder flow to chamber 4
Q4T Flow from chamber 4 to tank
QBC Boom cylinder flow
QCV Check valve flow
Qin Flow into FBoT
Qk Value function number k
Qle,13 Leakage flow from chamber 1 to chamber 3
Qle,1T Leakage flow from chamber 1 to tank
Qle,24 Leakage flow from chamber 2 to chamber 4
Qle,2T Leakage flow from chamber 2 to tank
Qle,3T Leakage flow from chamber 3 to tank
Qle,4T Leakage flow from chamber 4 to tank
Qout Flow out of FBoT
Qp Flow from pump
Qtk Target value function number k
Qv On/Off valve flow
R Reward
S State in operation sequence
States Vector containing the measured states
t Time
t1..6 FBoT control timings
tend end time for each episode during training
tl Local time since last end value sample
tp1,L Local time where where p1 crosses pS while moving left
tp1,R Local time where where p1 crosses pT while moving right
tp2,L Local time where where p2 crosses pT while moving left
tp2,R Local time where where p2 crosses pS while moving right
∆tp1,L Excess time with pressure above pS in chamber 1
∆tp1,R Excess time with pressure below pT in chamber 1
∆tp2,L Excess time with pressure below pT in chamber 2
∆tp2,R Excess time with pressure above pS in chamber 2
ta Control timings from agent
taN Normalised control timings from agent
tctrl Vector containing control timings
tsat Saturated control timings
tsatN Normalised saturated control timings
Td Valve opening dead time
Tfully−open Time until valve fully opened
Ts Sample time
Trig Variable used to trigger the agent subsystem and define

measurement side
V01 Dead volume in FBoT chamber 1,4
V02 Dead volume in FBoT chamber 2,3
xBP , ẋBP Boom piston position and velocity
xp, ẋp, ẍp FBoT piston position, velocity and acceleration

Continued on next page
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Symbol Definition

xv Orifice valve opening
xv,ref Valve position reference
xv,ref Vector containing valve position reference for all valves
∆xp,L FBoT piston position error measured at the left end
∆xp,R FBoT piston position error measured at the right end
∆xpref,L FBoT piston position reference for the left end
∆xpref,R FBoT piston position reference for the left end
yi Value function target for i’th experience

α Air volume fraction content of fluid
β0 Constant bulk modulus
βeff Effective fluid bulk modulus
δ Gap between piston and housing
η Efficiency
ηvp Volumetric efficiency of pump
γ Discount factor for future rewards
µ Viscosity
ωp Angular Speed of pump
π Policy function
πt Target policy function
ϕk Parameters for the k’th critic
ϕtk Parameters for the k’th target critic
ρ Density
τ Periodic smoothing factor
τv Time constant for valve opening dynamics
θ Parameters for the actor
θt Parameters for the target actor
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Abbreviations
Symbol Definition

DDPG Deep Deterministic Policy Gradient
EMSD Electro Mechanical Systems Design
FBoT Full-Bridge Oscillation Transformer
ILC Iterative Learning Control

MIMO Multiple Input Multiple Output
MPC Model Predictive Control
NN Neural Network

RGA Relative Gain Array
RL Reinforcement Learning

SISO Single Input Single Output
TD3 Twin-Delayed Deep Deterministic
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Introduction 1
The low energy efficiency of off-road hydraulics is increasingly under scrutiny due to its significant
contribution to environmental pollution. These machines typically have an average energy
efficiency of 21%, with excavators sometimes as low as 12% (Hansen and Schmidt 2024). The
primary source of energy loss in excavators lies in the hydraulic system, which operates at only
30% efficiency (Danfoss 2023, p. 17). The climate impact of these machines in the construction
sector is comparable to that of international aviation, which receives much greater attention and
scrutiny (Hansen and Schmidt 2024).

A key factor behind the inefficiency of traditional fluid power systems is the widespread use of
conventional proportional valves. These valves restrict flow, resulting in significant throttling
losses. Alternatives being explored include electro-hydraulic drives and hydraulic transformers.

1.1 The Principle Behind Hydraulic Transformers

The concept of an ideal hydraulic transformer is to maintain a constant power level P = p · Q
by converting hydraulic power along its constant power curve, seen in Figure 1.1. This system
allows for the adjustment of pressure while maintaining a steady power output. In contrast,
throttle valves adjust the desired power output by reducing pressure without altering the flow,
as depicted in Figure 1.1. Here, an actuator requires a flow Q and the pressure pB with a supply
pressure of pA. With a throttle valve, a flow Q is required at the supply side, whereas with the
ideal transformer, a flow lower than Q on the supply side can be transformed to the desired flow.

1



Kasper Juhl Mortensen 1. Introduction

Figure 1.1. Plot showing the difference between a power-conserving transformation and a throttle
valve. The power-conserving transformation follows the power-conserving line, where as the throttle
valve goes from a higher energy state to a lower power state to supply the desired flow Q at the pressure
pB . (Mortensen et al. 2025)

This pressure drop through the throttle valve corresponds to an energy loss. The efficiency of a
valve can be expressed using Equation (1.1):

η =
pB ·Q
pA ·Q

=
pB
pA

(1.1)

Valves operate most efficiently when the pressure drop across them is minimal, which can be
managed by regulating the supply pressure. However, in construction machinery, a common-
pressure rail is typically used to supply all cylinders, as there is only one pump serving them.
Since different cylinders require varying pressures to achieve the desired movement, it becomes
impractical to maintain low-pressure drops across all valves.

A more efficient alternative is the use of hydraulic transformers, which supply the required
flow to each cylinder with minimal energy loss. Additionally, hydraulic transformers enable
energy recovery. For instance, when lowering a load, the fluid can be transformed from load
pressure to supply pressure and stored in a high-pressure accumulator until needed, thereby
further enhancing overall energy efficiency.

1.2 Initial Problem Statement

One of the potential transformer types is the Full-Bridge Oscillation Transformer (FBoT)
designed and tested by Anders Hedegaard Hansen and Per Johansen. The FBoT has a
mechanically simple design, but requires a complicated control system to work properly
(Johansen and Hansen 2023).

This leads to the initial problem statement:

How does the Full-Bridge oscillation Transformer work?

2



System Description 2
The FBoT consist of a free-floating piston in a housing. The movement of the piston is
controlled with 8 ON/OFF valves. For safety reasons and to simplify the control, 8 check
valves are implemented. This means that 4 valves are connected to each of the chambers, with
p1 corresponding to chamber 1, and so on in the general schematic of the FBoT can be seen in
Figure 2.1.

p4
p1

p3
p2

pBC

ps

pT
Figure 2.1. General schematic of the FBoT.

The FBoT can either transform from pS to pBC , called pump mode, or from pBC to pS called
regenerative mode. In pump mode, ps is used to drive the movement of the piston, whereas in
regenerative mode pBC generates the movement.
The transformation consists of 12 distinct states, which are described below for pump mode. The
principle is the same for regenerative mode. An animation of the transformation can be found
with the following link: https://drive.google.com/file/d/15Ox8ZqvGdZykMcbXJ29rVbO0IHSdvWdE/
view?usp=sharing. The animation is at 1/500 of the real speed, with the arrows indicating the
flow of oil, t indicating the time and S indicating the state corresponding to the list below. Note
that transient valve dynamics have been ignored in the animation.

3
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Kasper Juhl Mortensen 2. System Description

1. The kinetic energy of the piston is increased by connecting chamber 1 to the supply and
the rest to the tank.

2. Chamber 4 is isolated so that pressure in it starts increasing, by converting the kinetic
energy to pressure energy.

3. The pressure in chamber 4 surpasses pBC and oil starts to flow through the check valve.
4. Chamber 1 or 2 is isolated here, depending on which takes the longest time to reach the

desired pressure to minimise valve losses when going from state 6 to 7. (Illustrated with
chamber 1 being isolated first)

5. Both chambers 1 and 2 are isolated so that chamber 1 reaches pt at the same time as
chamber 2 reaches pS .

6. The pressure in chamber 1 becomes lower than the tank pressure (pT ) and the check valve
is opened. The pressure in chamber 2 becomes larger than ps and the check valve is opened.
The time in this state should be minimised since it is pure loss.

7. Chamber 2 is connected to supply and chambers 1 and 3 are connected to tank. This
increases the kinetic energy of the piston.

8. Chamber 3 is isolated so that pressure in it starts increasing, by converting the kinetic
energy to pressure energy.

9. The pressure in chamber 3 surpasses pBC and oil starts to flow through the check valve.
10. Chamber 1 or 2 is isolated here, depending on which takes the longest time to reach the

desired pressure to minimise valve losses when going from state 12 to 1. (Illustrated with
chamber 2 being isolated first)

11. Both chambers 1 and 2 are isolated so that chamber 1 reaches pS at the same time as
chamber 2 reaches pT

12. The pressure in chamber 2 becomes lower than pT , and the check valve is opened. The
pressure in chamber 1 becomes larger than ps, and the check valve is opened. This ends
with the piston at a standstill.

Pressure [bar]

t=0.0050

S=1

10 20 30 40 50 60

Figure 2.2. Still picture from the animation of the FBoT operation principle available at https:
//drive.google.com/file/d/15Ox8ZqvGdZykMcbXJ29rVbO0IHSdvWdE/view?usp=sharing. Arrows in-
dicate flow, t indicates the time, with S indicating the state from the list above. For the animation
pS = 60bar and pBC = 30bar
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2.1. Lab Setup Aalborg University

2.1 Lab Setup

To evaluate the performance of the FBoT, it is integrated into a wheel loader within a laboratory
setting. In this setup, chambers 3 and 4 of the FBoT are connected to the wheel loader’s boom
cylinder. The lifted mass can be adjusted by varying the number of weight plates on the pallet.
Figure 2.3a illustrates the wheel loader, while Figure 2.3b shows the FBoT installed in the
system. The setup is equipped with position sensors to measure xp and xBP along with pressure
sensors to measure p1 to p4, pS , pT and pBC . An encoder is used to measure the pump speed.
All sensors are sampled at 10 kHz.

(a) Laboratory setup. (b) Implementation of the FBoT in the wheel
loader.

Figure 2.3. Laboratory setup (Johansen and Hansen 2023).

2.2 Problem Formulation

Based on the introduction and system description, the problem formulation is:

How is the FBoT controlled to minimise valve losses and accurately track a
positional amplitude reference?

5



System Modelling 3
In this chapter, the system is modelled so that it can be utilised to design a controller. The
modelling in this chapter is, unless otherwise stated, based on the book “Fluid Power Systems:
A Lecture Note in Modelling, Analysis and Control” by Anders Hedegaard Hansen (Hansen
2023). The modelling is based on the hydraulic diagram and notation shown in Figure 3.1.

Qle,3T
Qle,13

Qle,1T
p4

p2p1
p3

Q4L

Q3T Q1T Q2T Q4T

Q1s Q2sQ3L

pT

Qacc

QBC

Qp

xBP

xp

FL

pBC

Qle,4T
Qle,24

Qle,2T

V1

V2V4V6V8

V3V5V7

CV2,1CV2,2CV2,3CV2,4

CV
1,1

CV1,2CV1,3CV1,4

g

Figure 3.1. Hydraulic diagram of FBoT in the laboratory setup
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3.1. Bulk Modulus Aalborg University

3.1 Bulk Modulus

The stiffness of the fluid is described with the bulk modulus. It varies considerably with pressure
due to the air content in the oil, particularly at low pressures. This is especially important
because the fluid pressure in the FBoT’s chambers ranges between tank pressure and supply
pressure. This can be modelled with Equation (3.1).

βeff =
(1− α) · e

(
p0−p
β0

)
+ α ·

(
p0
p

) 1
no

1−α
β0

· e
(

p0−p
β0

)
+ α

no·p0 ·
(
p0
p

)(no+1
no

) (3.1)

3.2 Supply Manifold Model

The pump itself is a flow machine driven by a variable-speed electric motor. The flow of the
ideal pump is defined by Equation (3.2).

Qp = Dp · ωp (3.2)

The speed of the motor is controlled with a frequency converter, which is controlled by the
computer in the laboratory. This is utilised with the feedback pressure controller designed by
(Mortensen et al. 2025) to achieve an approximately constant supply pressure, which leads to
the supply pressure being modelled as a constant.

3.3 Check Valves

The check valve’s function is to only allow fluid flow in one direction when a specific pressure
difference, which varies depending on the valve, is reached. Assuming the valve’s spring behaves
linearly, the opening will increase proportionally with the pressure difference until it reaches its
fully open state.

In the FBoT, two different check valves are utilised: the Bucher RKVG-08, which is installed
between the tank and the FBoT, and the Bucher RKVE-G-08, used for the load and supply
connections. The datasheets for these valves are provided in Appendix D. The black dots in
Figure 3.2 represent the flow characteristics of both check valves. Rather than following the
standard orifice equation from the initial opening at the check valve pressure difference threshold
(pCV ), the data indicates a linear transition phase leading to what is assumed to be the fully open
pressure (pFO). At the lower pressure differences, this linear region may result from a laminar
flow regime. As the pressure drop increases so does the fluid flow, which leads to a flow regime
dominated by turbulence, causing the nonlinear behaviour described by the orifice equation.

7
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(a) Modelling of flow characteristic of RKVG-08
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(b) Modelling of flow characteristic of RKVE-08

Figure 3.2. Modelling of flow characteristic of the check valves. (Mortensen et al. 2025)

The flow through a check valve will therefore be modelled as in Equation (3.3). Here pA and pB

are pressures on each side of the check valve, as seen in Figure 3.3, pCV is the minimum pressure
to overcome the spring tension and pFO is the pressure where the check valve is fully opened.

QCV =


0, (pA − pB) < pCV

kv1,CV · (pA − pB − pCV ) , (pA − pB) ≥ pCV & < pFO

kv2,CV ·
√

(pA − pB)− pCV , (pA − pB) ≥ pFO

(3.3)

Figure 3.3. Illustration of a check valve. (Mortensen et al. 2025)

3.4 On/Off Valves

The On/Off valves control the movement of the FBoT piston. To model this, the flow through
the On/Off valves has to be modelled, which can be done with the orifice equation.

Qv = xv · kv,oo ·
√

2

ρ
|pA − pB| · sign (pA − pB) (3.4)

Here, xv is the normalised valve position between 0 and 1. From Figure 3.4, which comes from
the data sheet in Appendix C, the term kv,oo ·

√
2
ρ can be derived. Once the fluid density is

known, kv,oo can be determined yielding kv,oo = 4.88 · 10−6.

8



3.5. FBoT Chamber Models Aalborg University
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Figure 3.4. Relation between flow and pressure drop for the on/off valves. (Mortensen et al. 2025)

The valve opening exhibits a transient response that consists of a time delay and a transient
response resembling a first-order system (Andersen et al. 2023, p. 17). The time delay and
first-order response can be modelled using Equation (3.5) (MathWorks 2025b).

xv
xv,ref

= e−Td·s · 1

1 + τv · s
(3.5)

The opening times given in the datasheet are very dependent on fluid pressure, viscosity, and
flow. The approximate time constant and dead time of Td = 0.0035s & τv = 0.0030 will be
used, which is at the fast end of the average time for energising and deenergising according to
the datasheet in Appendix C.

3.5 FBoT Chamber Models

The continuity equation is used to model the 4 chambers of the FBoT, which are not always
connected to the tank. This gives Equations (3.6) to (3.9).

Q1s −Qle,1T −Q1T −Qle,13 = ẋp ·A2 +
V01 + xp ·A2

βeff(p1)
· ṗ1 (3.6)

Q2s −Qle,24 −Q2T −Qle,2T = −ẋp ·A2 +
V02 − xp ·A2

βeff(p2)
· ṗ2 (3.7)

Q3L +Qle,13 −Q3T −Qle,3T = ẋp ·A1 +
V02 + xp ·A1

βeff(p3)
· ṗ3 (3.8)

Q4L +Qle,24 −Q4T −Qle,4T = −ẋp ·A1 +
V01 − xp ·A1

βeff (p4)
· ṗ4 (3.9)

The leakage flow depends on the piston’s position and the pressure difference between the two
chambers. The piston’s position determines the overlap length between the piston and the
housing, which affects the leakage. When the diameter is sufficiently large, the leakage flow
resembles the flow between two parallel plates, as described by Equation (3.10). This equation
applies to a steady-state scenario, neglecting the effects of fluid inertia.

9



Kasper Juhl Mortensen 3. System Modelling

Q =
δ3 · π ·D
12 · µ · L

·∆p (3.10)

Equation (3.10) highlights the significant influence of the gap δ between the piston and housing
on leakage. This gap is determined by the tolerances on the piston and the housing where the
mean of the two tolerances is used here. However, the steady-state assumption is invalid for the
FBoT as the piston direction changes rapidly, preventing the fluid flow from fully developing a
steady-state profile. Upon studying this in simulation, the actual leakage used was scaled by a
factor 10−4 giving more resemblance to the actual behaviour.

The movement of the FBoT piston can be described using Newton’s second law. This is done
in Equation (3.11) where a viscous friction model is utilized. Furthermore, gravity is included
since the piston moves vertically in the FBoT.

ẍp ·mp = (p1 − p2) ·A2 + (p3 − p4) ·A1 − ẋp ·Bp −mp · g (3.11)

3.6 Load Model

The FBoT’s load side is connected to the boom cylinder in the laboratory setup. The pressure
in the boom cylinder varies depending on the load and the position of the boom. To simplify
the training process in Chapter 4, the boom cylinder pressure, pBC , is modelled as a constant
which can be varied during training.
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Control 4
Throughout this chapter, a control approach is developed for the FBoT operating in pump mode.
The same principles can be used for regenerative mode by substituting p1 and p2 with p3 and p4.
The relevant state measurements are determined before different control approaches are
investigated. This leads to the implementation of a Reinforcement Learning (RL) based control
strategy.

4.1 Control Considerations

The frequency of the FBoT piston’s movement is fairly high compared to the response times of
the valves. This makes it difficult to control it with classic feedback control since the valves will
close too late here due to their transient response. Furthermore, to reduce losses when the valves
are switched, pressure transition periods are needed where the chambers go from either high to
low pressure or low to high. This is illustrated with the 12 steps from Chapter 2 in Figure 4.1.
Due to this, it is determined that some sort of feed-forward control is required. To do this, the
timings for states 1-4 and 7-10 are used as control signals. States 5-6 and 11-12 have the same
ON/OFF valve positions, which are held until the piston is at standstill.
Furthermore, it should be noted that for states 4 and 10, there are two different options depending
on which chamber takes the longest to achieve the desired pressure at standstill. In states 4 and
10, the specific substate is chosen based on the sign of the corresponding time.
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if t3 > 0if t3 < 0
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Figure 4.1. FBoT states when operating in pump mode. A larger version can be seen in Appendix A.
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4.1.1 State Measurement

Due to the valves being fairly slow compared to the oscillation of the FBoT piston, the specific
movement cannot be controlled to, for example, a Sine wave.
Due to this, the states are only measured at each end of the piston oscillations, which here is
defined as when the velocity is 0. It is desired to control the amplitude of the piston oscillation
while keeping it centred. The position error at the endpoints is therefore measured, as illustrated
in Figure 4.2 with separate reference values and measurements for the two ends. Here, the
subscript “ ,R” indicates that it is a measurement at the right end of the oscillation relative to
Figure 4.1, whereas the subscript “ ,L” indicates that it is a measurement at the left end of the
oscillation.

t

xp
xpref,R

xpref,L

Δxp,R

Δxp,L

Figure 4.2. Measurement of position error at the two ends poits where ẋp = 0.

To reduce losses, it is desired that states 6 and 12, from figure 4.1, are reached so that the
pressure drops over the valves are minimised when they are opened. This is measured by the
pressure difference between the desired pressure, pS or pT , and the chamber pressure for each
side when ẋp = 0. This is illustrated in Figure 4.3.

pS

t

p1
Δp1,L

pTΔp1,R
xp=o xp=o

(a) Chamber 1

pS

t

p2
Δp2,R

pTΔp2,L
xp=o xp=o

(b) Chamber 2

Figure 4.3. Measurement of the pressure difference between desired pressure,pS or pT , and the chamber
pressure when at end points where ẋp = 0
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However, spending excess time in states 6 and 12, where the desired pressure is reached, leads
to unnecessary losses. Due to the check valves, the pressure does not increase or decrease
significantly beyond the desired pressure. The time since the desired pressure has been reached
is therefore added as a state for each side and chamber. This is illustrated in Figure 4.4 where
the desired pressure is reached at the grey dashed line while the piston is at a standstill at the
black dashed line. It is desired that this time becomes as small as possible.

pS

t

p1
Δtp1,L

Δp

Δtp1,R pT
xp=o xp=o

(a) Chamber 1

pS

t

p2
Δtp2,R

Δp

Δtp2,L pT
xp=o xp=o

(b) Chamber 2

Figure 4.4. Excess time spent at the desired pressure state, corresponding to states 6 and 12, before
ẋp = 0 is measured from the grey dashed line to the black dashed line.

4.1.2 MIMO System

The system has multiple inputs and multiple outputs and is therefore a MIMO system. For
MIMO systems, it is relevant to investigate the coupling between the inputs and outputs. This
is done to determine if SISO control can be utilised. This is usually done with an RGA analysis
but that is not possible here due to the choice of control signals.
The coupling has instead been investigated by increasing t1, t2 and t3 independently by 2ms at
three different reference points while measuring the change in error measurements. It is only done
for t1 to t3 and the corresponding measurements at the right end, since the FBoT is symmetrical
except for gravity. Table 4.1 shows that t1 and t2 effects on the position error are similar at
the three reference points, whereas their effect on the pressure-related states varies significantly.
While at some points being negligible, that is not the case for all situations. t3 generally has the
largest effect on the pressure-related states, but the effect varies significantly between the three
reference points. For the position-related errors, the effect of t3 changes a lot but is generally
lower than for t1 and t2.
Based on this, it is concluded that the system shows significant coupling and non-linearities at
times.
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Reference Changed time ∆(∆xp,R) [mm] ∆(∆p1,R) [bar] ∆(∆p2,R) [bar] ∆(∆tp1,R) [ms] ∆(∆tp2,R) [ms]
t1 -3.59 1.00 0.160 0 1.10

t1 = 2, t2 = 2, t3 = 1 t2 -2.83 -0.515 -0.0190 0 0.200
t3 -1.29 -11.9 -0.868 0 2.20
t1 -4.11 1.77 -7.75 0 0

t1 = 0, t2 = 4, t3 = −1 t2 -2.50 0.331 -2.12 0 0
t3 8.22 · 10−3 -6.31 -15.8 0 0
t1 -4.61 6.58 · 10−4 -2.71 0.500 0

t1 = 10, t2 = 0, t3 = −1 t2 -3.78 4.48 · 10−4 0.944 -0.300 0
t3 2.12 -2.13 -11.8 -3.30 3.10

Table 4.1. The effect of changing the control timings, t1, t2 or t3, by 2ms at three different reference
points. Note that t3 being negative means that state 4.1 is used instead of state 4.2 in Figure 4.1.

4.1.3 Control Approaches

There are multiple possible control approaches for the FBoT, each with its advantages and
disadvantages. Here, Model Predictive Control (MPC), Reinforcement Learning (RL) and
Iterative Learning Control (ILC) are investigated.
MPC is an optimal control technique where the goal is to find the control actions which minimise
the defined cost function over a finite time horizon. To solve this optimisation problem, a fast
and accurate model of the system is needed to get the proper control signals. (MathWorks 2025e)
Due to this, MPC has not been investigated further since the current model can only be executed
at approximately real time, which is too slow.
RL is a branch of machine learning which interacts with a dynamic environment and learns from
these interactions based on trial and error. A reward function is used to quantify if the applied
action was good or bad. This is then used to update the policy. Some advantages of RL are
that it can learn directly from the non-linear model and that once it is trained, the final policy
is generally fast to execute. A disadvantage is that it is sample-inefficient, which means that it
can take a long time to train the algorithm.(MathWorks 2025f)
ILC updates the control parameters from iteration to iteration which is useful for systems that
repeat the same motion again and again as the FBoT. The initial conditions, however, have to
be the same, which is likely not the case for the FBoT since the movement in one direction can
start from different positions. To use ILC for MIMO systems, a model of the relation between
the control signals and errors is needed which as shown by (Mortensen et al. 2025) was difficult
to achieve.
Based on this initial investigation into different control approaches, it has been decided to move
forward with an RL-based control approach.

4.2 Reinforcement Learning

As stated earlier, reinforcement learning (RL) could potentially be an approach to control the
FBoT. Firstly, general terminology is explained, after which important choices are considered
and the general implementation is explained.
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4.2.1 RL Structure

RL is a subsection of machine learning, separate from unsupervised and supervised learning.
Resembling supervised learning, where an output is predicted, gets a correct or incorrect result
and updates the policy to learn the right patterns. RL uses a reward function to determine if the
applied control signals were good or bad. RL is therefore regarded as a data-driven control using
machine learning techniques. RL iterates towards an optimum through enough data exploration.
An illustration of an RL network is seen in Figure 4.5, and the RL terminology and the control
analogy then becomes (MathWorks 2025a):

Agent - The agent is a combination of a policy (control law) and a reinforcement learning
algorithm. The goal of the agent is to create a policy which can be deployed independently
of the agent.

Policy - Control law The policy takes the observations as input and gives actions as output.
The goal of the training process is to determine the optimal policy.

Environment - Plant + more The environment is everything which is not the agent. This
includes system dynamics (plant), measurements, disturbances and reward calculations.
The environment can also include reference values if the desired behaviour changes.

Observation - measured output Not to be confused with observers, observation in RL is
everything that is given as input to the policy. This can be measured states, reference
values, integrals or derivatives of states, previous actions or whatever is needed to determine
the next appropriate action.

Action - Control signal The actions are similar to the control signals in control problems in
that it is signals that are applied to the environment. Depending on the type of agent,
both Discrete and Continuous actions can be applied.

Reward - Optimality criteria A custom function that RL agents try to maximise, i.e. take
actions that provide the highest reward.

EnviormentAction Observation

Reward

Policy

RL Algorithm

Agent

Update

Figure 4.5. Working principle of reinforcement learning.
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Beyond the reward function, there are multiple hyperparameters which affect the learning
process. This has todo with the optimisation process, exploration and utilisation of the sampled
data.

Optimizer Options

There are multiple optimization options that guide the learning process for RL. Some of them
are:

Learn Rate Affects how fast the actor and critic learns during training. A too-large learn rate
will lead to instability, whereas a too-low learn rate will make the training take a long time.

Gradient Threshold - This is used to clip the gradient to the specified value if it exceeds it.
This is done to limit how much the model parameters can change each iteration to improve
stability

Exploration vs. Exploitation

This is the tradeoff between using what the agent has already learned (exploitation) and exploring
new actions to see if they are better. Initially, large exploration is desired to get the general area
of the optimal policy, whereas lowering the exploration will help fine-tune the parameters. The
exploration is done by adding a Gaussian-distributed noise signal to the action signal from the
Actor.

Experience Buffer

The agent stores the experiences, which consist of the Action, reward, observation and next
observation in the experience buffer. The length of the experience buffer can be varied. From
the experience buffer, a random batch of experiences is sampled. This batch is used to update
the Critic. A large experience buffer reduces variance but increases the computational expense.
The number of times the agent learns from the data in the experience buffer can also be changed,
which is known as the number of epochs.
The parameters related to the experience buffer are generally tuned based on whether the data
gathering or learning process takes the longest. For a slow data-gathering process, the number
of epochs is increased along with the mini-batch size.

Parallelisation

Parallelisation can be utilised to increase the creation of data from the environment, as multiple
combinations of environment and agents are simulated at the same time. This can greatly
increase the data available for the learning process.
The training can be run synchronously, where the workers wait until all workers have finished or
in asynchronous mode, where the worker gets a new set of agents and environment when it has
completed its task. Asynchronous is faster but less reproducible due to slight variation in worker
execution time, which can give significantly different results in the end (MathWorks 2025c).
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4.3 Reinforcement Learning For FBoT Control

With general information about RL given above, some specific choices can be made with regard
to implementing it to control the FBoT. To train the RL Agent, the data from the simulation
has to be read, the agent has to be executed at the right time, and the determined actions
have to be applied. To do this, the system shown in Figure 4.6 is used. The Agent and all the
functions within the grey dashed box in Figure 4.6 run at a variable sample time, double the
piston oscillation frequency, since it is only executed at each end. The “State Measurement” and
“Timings To Valve Signals” Algorithms are executed with a constant sample rate of 10 kHz to
mimic the laboratory setup. The function of the different blocks is described in further detail in
the following paragraphs.

Rearrange

Agent
Inverse 
Normalise
 Action

Saturation

1
Z

Update
timings

Normalise 
Observation

Reward

Normalise 
Action

System
Model

Ts=Variable

Timings
To Valve
Signals

Ts=10-4

xp,xp,pBC

pS,p1-p4

tctrltsatta

1
Z

xp

xp

TrigState
Measurement

Ts=10-4

xL,ref

xR,ref

Stick

States

R

obs

taN

obsN

tsatN

Figure 4.6. Block diagram of the setup for the training process.

State Measurement The states are measured with Algorithm 1. An initial state measurement
is done if the piston is at standstill and the joystick value is non-zero. Otherwise, it measures
the states at the endpoint of the piston oscillations, based on the change in sign of the piston
velocity, if the joystick signal is non-zero. Trig is a variable which is set to −0.5 at the left end
and 0.5 at the right end while keeping the value until the next end. This is illustrated in Figure
4.7.

xp

t
xp=o

Trig

t
0.5

-0.5

xp=o xp=o
Figure 4.7. Illustration showing how the Trig variable varies with the position oscillation.
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Algorithm 1: State Measurement
Determine the initial measurement side and movement direction at the first sample after stick is
changed from 0

if Stick ̸= 0 then
if Trig == 0.5 then

tp1,L = 0; tp2,L = 0

if p1 < pT & tp1,R == 0 & tl > 0.005 then
tp1,R = tl

end
if p2 > pS & tp2,R == 0 & tl > 0.005 then

tp2,R = tl

end
end
else if Trig == −0.5 then

tp1,R = 0; tp2,R = 0

if p1 > pS & tp1,L == 0 & tl > 0.005 then
tp1,L = tl

end
if p2 < pT & tp2,L == 0 & tl > 0.005 then

tp2,L = tl

end
end
if sign(ẋp(t)) > sign(ẋp(t− 1)) || calci,L == 1 then

∆xp,L = xp,refL − xp; ∆p1,L = pS − p1; ∆p1,L = pT − p2

if tp1,L == 0 then
∆tp1,L = 0

else
∆tp1,L = tl − tp1,L

end
if tp2,L == 0 then

∆tp2,L = 0

else
∆tp2,L = tl − tp2,L

end
Trig = −0.5

end
else if sign(ẋp(t)) < sign(ẋp(t− 1)) || calci,R == 1 then

∆xp,R = xp,refR − xp; ∆p1,R = pT − p1; ∆p1,R = pS − p2

if tp1,R == 0 then
∆tp1,R = 0

else
∆tp1,R = tl − tp1,R

end
if tp2,R == 0 then

∆tp2,R = 0

else
∆tp2,R = tl − tp2,R

end
Trig = 0.5

end
end
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Rearrange During training, gravity is removed from the simulation model to achieve a symmetric
response since this doubles the number of samples. To do this, the order of the samples in the observation
vector has to be rearranged, which is done in Algorithm 2.

Algorithm 2: Rearrange
if Trig == -0.5 then

obs =[
∆xp,R ∆p1,R ∆p2,R ∆tp1,R ∆tp2,R ∆xp,L ∆p1,L ∆p2,L ∆tp1,L ∆tp2,L pBC pS Amp

]
else

obs =[
∆xp,L ∆p2,L ∆p1,L ∆tp2,L ∆tp1,L ∆xp,R ∆p2,R ∆p1,R ∆tp2,R ∆tp1,R pBC pS Amp

]
end

Reward The reward function is the basis for the policy updates. This means that a good reward
function is essential for the RL algorithm to converge to a desirable result. It is in the reward function
that the different errors can be weighted. For this project, the reward function in Equation (4.1) is used.
Here, a positive reward of 100 is given every time step with a negative reward for different errors. Here,
a position error of 1mm gives the same negative as a pressure error of 10 bar and a time error of 1ms.
Furthermore, a negative reward is given if the piston hits the end position of 0 and 0.035, respectively.
The penalty for hitting the end is dependent on the speed just before impact to guide the learning process.

R =



100−
(

∆xp,L

0.001

)2
−
(

∆p1,L

10·105

)2
−
(

∆p2,L

10·105

)2
−
(

∆tp1,L
0.001

)2
−
(

∆tp2,L
0.001

)2
−(xp ≤ 0) · (15 + 100 · |ẋp(t− 1)|) , if Trig = −0.5

100−
(

∆xp,R

0.001

)2
−
(

∆p1,R

10·105

)2
−
(

∆p2,R

10·105

)2
−
(

∆tp1,R
0.001

)2
−
(

∆tp2,R
0.001

)2
−(xp ≥ 0.035) · (15 + 100 · |ẋp(t− 1)|) , else

(4.1)

Saturation The Actions are saturated with Algorithm 3 which saturates ta(1 : 2) between 0ms and
20ms whereas ta(3) is saturated between −10ms and 10ms. To ensure that the piston always oscillates
during training, a combined minimum is set for tsat(1) and tsat(2), which accelerates the piston, to
0.1ms.

Algorithm 3: Saturation

tsat = max
(
min

(
ta,

[
0.02 0.02 0.01

])
,
[
0.0 0.0 −0.01

])
if tsat(1) + tsat(2) < 0.0001 then

tsat(1) = 0.0001

end

Update Timings The saturated timings are given to Algorithm 4, which updates the vector tctrl,
which contains t1 to t6. At the left end, entrances 1 to 3 are updated, and at the right end, entrances 4
to 6 are updated. This can be seen in Algorithm 4
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Algorithm 4: Update Timings
if First Execution then

Define tctrl as a persistent variable
tctrl = zeros(6, 1)

end
if Trig == −0.5 then

tctrl(1 : 3) = tsat
else if Trig == 0.5 then

tctrl(4 : 6) = tsat
end

Timings To Valve Signals The timings are converted to valve signals with Algorithm 5 according
to Figure 4.1. xv,ref is a vector which contains the reference value for the 8 On/Off valves, where 1 is
open and 0 is closed. The reference values are sent to the system model described in Chapter 3.

Algorithm 5: Determination of valve signals based on defined timings and measured time.
if Trig = −0.5 then

if tl ≤ t1 then

xv,ref =
[
1 0 1 0 0 1 0 0

]
else if tl > t1 & tl ≤ (t1 + t2) then

xv,ref =
[
0 0 1 0 0 1 0 0

]
else if tl > (t1 + t2) & tl ≤ (t1 + t2 + |t3|) & t3 < 0 then

xv,ref =
[
0 0 1 0 0 0 0 0

]
else if tl > (t1 + t2) & tl ≤ (t1 + t2 + |t3|) & t3 > 0 then

xv,ref =
[
0 0 1 0 0 0 0 0

]
else

xv,ref =
[
0 0 0 0 0 0 0 0

]
end

else if Trig = 0.5 then
if tl ≤ t4 then

xv,ref =
[
0 0 0 1 1 0 1 0

]
else if tl > t4 & tl ≤ (t4 + t5) then

xv,ref =
[
0 0 0 1 1 0 0 0

]
else if tl > (t4 + t5) & tl ≤ (t4 + t5 + |t6|) & t6 < 0 then

xv,ref =
[
0 0 0 0 1 0 0 0

]
else if tl > (t4 + t5) & tl ≤ (t4 + t5 + |t6|) & t6 > 0 then

xv,ref =
[
0 0 0 1 0 0 0 0

]
else

xv,ref =
[
0 0 0 0 0 0 0 0

]
end

else

xv,ref =
[
0 0 0 0 0 0 0 0

]
end
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4.3.1 Agent

For this project, a Twin-Delayed Deep Deterministic (TD3) policy gradient agent has been chosen, which
is an improvement of the classic deep deterministic policy gradient (DDPG) agent. (MathWorks 2025d)
TD3 has a continuous deterministic policy, which means that the same observations will result in the same
actions as for a classical controller. This is appropriate for physical systems since they are deterministic
in nature. The observations can be both discrete and continuous, but in this case, all the observations
are continuous.
TD3 is an Actor-Critic method where the critic is used to guide the actors’ learning by giving an estimate
of the expected long-term reward called the Q-value. To estimate the Q-value, the critic gets the current
observation and action as input and outputs a Q-value, which is compared to the reward received from the
environment after the action has been applied, which is illustrated in Figure 4.8. The Critic is updated
to minimise this difference with a least squares method. The Actor is updated by gradient ascent, where
the gradient of the critic output with regards to the actions and the gradient of the actor with regards to
the actor parameters are used. (MathWorks 2025d) The specific details with regard to when the learning
takes place are described further down.

Actor

Critic

Agent

obsN taN

R
Update based
on least square

Compare

Gradient bas-
ed update

Figure 4.8. Block diagram illustrating the learning process for the actor and critic within the agent.

For this agent, there are multiple choices to take with regard to Actor, Critic, Optimiser Options and
Exploration vs Exploitation.

Actor

A deep Neural Network is used to represent the policy since they are great at representing the complicated
non-linear relations between the Observations and the desired Actions. More information on Neural
Networks can be found in Appendix B. It is desired to have as small a Neural Network as possible while
still being able to create desirable control signals. This leads to a network with 3 hidden layers, with
each hidden layer having a width of 64. This was found through trial and error.
For the actor, a sigmoid action function has been used, which gives an output between 0 and 1. This is
desirable since it can easily be scaled to the intervals of the control timings.

Critic

The TD3 agent uses 2 Q-value functions, which in this case are both represented with deep neural
networks since they are great at representing the complicated non-linear relations between action, state
and cumulative rewards. Each Q-value function is represented with a Neural Network with 4 hidden
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layers, each with a width of 64. The layers are fully connected with the RELU activation function being
utilised.

Training Process

With the overall update of the actor and critic described previously, the full training process can be
described. All the agents in this project have been trained using experience-based parallelisation. This
means that the different workers simulate the environment with an agent to create experiences, which
are stored in a combined experience buffer. The experience buffer is used to update the parameters of
the actor and the critic.
The training process is described in Algorithm 6 (MathWorks 2025d). To improve reproducibility, the
same seed is used to create the “random” numbers that initialise the actor and critic every time a new
training process is started. The TD3 agent consists of the standard actor and critic, along with the target
actor and target critic. The target actor and critic are used to improve the stability of the optimisation
process by updating at a slower rate.
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Algorithm 6: Training algorithm
Initialise the two critics, Qk(obsN , taN ; ϕk), with random parameters, ϕk and the corresponding
target critic Qtk(obsN , taN ; ϕtk with random parameters ϕtk

Initialise actor,π(obsN ; θ), and target actor πt(obsN ; θt) with the same “random” parameters θ and
θt

while Training == 1 do
while StopEpisode == 0 do

Calculate the Action based on the current observation and policy. taN,i = π(obsN,i; θ) + Ng

where Ng is the noise from the exploration model.
Execute the Action in the environment and measure the next observation, obs

′

i, and the
corresponding reward.

Add the experience
(
obsN,i, taN,i( obsN,i ), Ri,obs

′

N,i

)
to the experience buffer.

if xp ≥ 0.035 || xp ≤ 0.0 || t ≥ tend then
StopEpisode = 1

end
end
if nexperience ≥ M then

Sample a random mini batch of M experiences from the experience buffer
Calculate the value function target, yi, from the current reward and the discounted reward
from the next step based on the critic.

yi = Ri + γ ·min
k

(
Qtk

(
obs

′

N,i, πt

(
obs

′

N,i; θt
)
+ε;ϕtk

))

Update the critic by minimising the loss function

Lk =
1

2M

M∑
i=1

(
yi −Qk

(
obsN,i, taN,i; ϕk

))2
Update the policy every other episode using gradient ascent to maximise the discounted
cumulative long-term reward.

Update the target actor and critic every other time the critic is updated with periodic
smoothing

ϕtk = τϕk + (1− τ)ϕtk

θt = τθ + (1− τ)θt
end
if nepisodes ≥ maxepisodes then

Training = 0
end

end
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With the setup completed, a policy can be trained with the RL agent before it is implemented in it
simulation model and laboratory for testing.

5.1 Training of Policy

To test the possibility of RL being able to control the FBoT, a policy has to be trained. Before the
training process is started, multiple hyperparameters have to be set. During this project, many different
combinations of hyperparameters have been investigated. The combination which yielded the best results
can be seen in Table 5.1. The large mini-batch relative to the size of the experience buffer has been chosen
since the generation of data was slow relative to the time it takes to update the neural networks.

Parameter Learn
rate

Gradient
threshold

Mini-
batch

Experience
buffer

Number
of epochs

Standard De-
viation (STD)

Min
STD

STD
decay

tend

Value 10−5 1 10000 10000 2 0.1 0 0 0.5

Table 5.1. Hyperparameters which gave the best performing policies.

For the policy to work at different manifold pressures, it has to be trained with this in mind. To do
this, pS was set as a uniformly distributed random value between 40 bar and 80 bar at the start of each
episode whereas pBC was set between 20 bar and 40 bar

The episode reward and average episode reward, over 200 episodes, from the training with these
hyperparameters can be seen in Figure 5.1. Here, the mean reward is fairly constant until after 10000
episodes. This is because the experience buffer needs to be filled with 10000 experiences before the
training begins, since that is the size of the mini-batches used during training.
After the initial 10000 episodes, the training starts, where multiple spikes are observed in the mean reward,
but all below the threshold of 200, which was found to deliver agents that could operate continuously
in a simulation without gravity based on the current reward function. This leads to a maximum mean
reward just below 400 after 34400 episodes, whereafter the average reward is reduced before it starts
rising again.
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Figure 5.1. The episode reward and mean reward from the training of the agent.

5.2 Test of RL-Controller

With the training completed, the trained policy can be tested, which is done by replacing the agent with
the policy. Since the policy only needs the normalised observation as an input, the block diagram can be
simplified, which can be seen in Figure 5.2.

Inverse 
Normalise
 Action

Saturation Update
timings

System
Model

Ts=Variable

Timings
To Valve
Signals

Ts=10-4

xp,xp,pBC

pS,p1-p4

Trig
State
Measurement

Ts=10-4

xL,ref

xR,ref

Stick Rearrange Normalise 
ObservationStates

Policy

Figure 5.2. Block diagram for testing/implementing the policy.

The policy from the agents after 34400, 50000 and 57000 episodes is compared to each other to see how
the policy changes through the training and if the mean reward represents the best performing agent.
Firstly they are compared at pS = 50bar and pBC = 30bar which is shown in Figure 5.3. Here, it can
be seen that all the policies can oscillate the piston nicely, but with some steady-state error. The only
policy that somewhat corrects this over time is the one after 50000 episodes, which increases t2 and t5

through the test. It however has the largest error for ∆p2,R and ∆p1,L which might have to do with the
significantly lower t3 and t6 which means that state 4.1 and 10.1 from Figure 4.1 is held significantly
longer.
Interestingly the policies keep t1 and t4 at 0 all the time even though an increase in t1 and corresponding
decrease in t2 will likely lead to lower pressure errors due to an increased amount of kinetic energy when
the chambers are isolated in state 5.
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Figure 5.3. Comparison of the trained policies after 34400, 50000 and 57000 episodes with pS = 50bar
and pBC = 30bar.

Throughout the training, ps and pBC have been varied so that the policies should work at different
manifold pressures. This is investigated in Figure 5.4 where pS = 70bar and pBC = 30bar. Interestingly,
it can be seen that the policy after 34400 episodes gives approximately the same control timings here,
which suggests that the control timings are minimally affected by the manifold pressures, which are some
of the inputs. The policy after 50000 episodes again slowly corrects its amplitude, which suggests that
it might have learned how to correct its control timings based on the position error ∆xp,R and ∆xp,L.
Looking at the pressure error ∆p1,L and ∆p2,R is significantly reduced here compared to the simulation
with pS = 50bar this is likely due to the increased ratio between pS and pBC which means that the
kinetic energy should be higher when going into states 5 and 11 which leads to an increased chamber
compression/decompression.
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Figure 5.4. Comparison of the trained policies after 34400, 50000 and 57000 episodes with pS = 70bar
and pBC = 30bar.

To see how the policies handle a variation in oscillation amplitude, the amplitude is increased throughout
the simulation. Here, it can be seen that none of the policies change the control timings to keep the
oscillation centred based on the position error ∆xp,R and ∆xp,L. Both policies 50000 and 57000 seem to
have learned to increase t2 and t5 as the amplitude increases, which is unexpected since the amplitude
was kept constant during training. This does however not lead to an oscillation that could be continued
since they are approaching the maximum position of 35mm quickly.
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Figure 5.5. Comparison of the trained policies after 34400, 50000 and 57000 episodes with varying
amplitude. pS =50bar and pBC =30bar

5.2.1 Efficiency Test

The goal of the FBoT is to increase the efficiency of hydraulic systems. The efficiency has been calculated
as a moving average of the ratio between the power in and out of the FBoT:

η =
Pout

Pin
=

−(Q3L +Q4L) · pBC

(Q1S +Q2S) · pS
(5.1)

The efficiency is seen to increase as the oscillation amplitude increases in Figure 5.6 where the efficiency
ends at around 50%. Furthermore, it can be seen that the losses primarily come from the On/Off valves.
Beyond the two losses shown, there is a loss in the check valves and through leakage within the FBoT.
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Figure 5.6. Plot showing that the efficiency increases as the amplitude increases. The plot is created
with the policy from episode 50000 while pS =40bar and pBC =30bar.

To investigate where in the transformation the losses happen, a single oscillation is investigated. This is
done by an animation which can be found at https://drive.google.com/file/d/1gv-nNIcI5lppQFCtHojNH6ldgsdXyJ7y/
view?usp=sharing with one of its frames shown in Figure 5.7.
Here, it can be seen that there is a delay from the endpoint until the valves start opening, due to the
delay in the valve opening response. This results in a large spike in power loss since there is a large
pressure difference when the valves are opened, combined with a large flow. The other significant point
of energy loss is when the valves are closed, where the power loss happens over a longer period since the
flow continues as the valve closes with an increasing pressure difference.
The energy loss at the start of the oscillation could be reduced significantly if there was minimal pressure
difference as the valve was opened. To do this, the FBoT has to be controlled so that state 6/12 from
Figure 4.1 is reached. Furthermore, it has to be anticipated when the endpoint is reached so that the
valves are opened at that exact moment. To do this properly, you have to accurately determine the time
until the end point so that the valve signals can be sent ≈ 0.35ms before. The energy loss in the middle
of the oscillation, when the valves are closing, cannot be reduced by smarter controls without neglecting
the pressure buildup/reduction phase. A way to reduce these losses is to get faster operating valves.
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Figure 5.7. Investigation of energy loss during one oscillation. An animation of this plot
is available at https://drive.google.com/file/d/1gv-nNIcI5lppQFCtHojNH6ldgsdXyJ7y/view?usp=
sharing. Note that the definition of valve numbers can be found on Figure 3.1.

5.3 Laboratory Test

With the somewhat successful test in the simulation model, the policy from episode 50000 is deployed in
the laboratory setup. This gives the results shown in Figure 5.8. Here, it can be seen that the oscillation
amplitude varies significantly from oscillation to oscillation. This corresponds with significant variations,
especially in t5 and t6. It is suspected that the change in control timings is due to the variations in pBC

or ∆p1,L since the position errors, ∆xp,R and ∆xp,L, have shown no effect on the control timings in the
simulations. Note that it is pBC,a that is given to the policy.
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Figure 5.8. Long timeseries for policy 50000 executed with the laboratory setup.

During the test around 42 s, the oscillation suddenly varies to very small oscillations away from the centre.
To investigate this, a shorter timeseries is shown in Figure 5.9. Here it is observed that both t2 and t5

are updated very close together around 41.81 s, which suggests that the policy has been called in quick
succession due to either noise in the position measurement or an actual physical oscillation which affects
the speed signal that is determined based on the position.
The bump in the position measurement shortly after the end points happens when the chamber pressures
are about to equalise on both sides of the piston before the valves are opened due to their transient
response. This is also evident in the p1 and p2 measurements, which have a significant bump at the ends
of the oscillations where they are supposed to stay at tank pressure. This is due to the mistiming of the
opening of the On/Off valves for the next state. This is not the case for p3 and p4 since they are only
affected by the check valves, which are pressure-actuated.
This can also be done for chambers 1 and 2 with a controllable check valve similar to what Danfoss does
with their digital displacement pumps.
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Figure 5.9. Short timeseries for policy 50000 executed with the laboratory setup.

5.3.1 Efficiency Test

To determine the efficiency of the FBoT, the power in and out of the FBoT is needed. The pressure is
measured at both the source and the boom cylinder, but no flow measurements exist. The flow out of
the FBoT is determined from the volume expansion of the boom cylinder chamber, assuming constant
pressure.

Qout = ẋBP ·ABP (5.2)

The flow into the FBoT can be determined in multiple ways which each comes with its own assumptions.
Firstly, it can be based on the flow from the pump. This includes the leakage outside the FBoT and
the flow needed to produce potential pressure changes in the supply chamber and accumulator. Here, a
volumetric efficiency, ηvP , of 90% is assumed, which was found from a similar pump.

Qin1 = ωp ·Dp · ηvP (5.3)

Another approach is to base the flow into the FBoT on the On/Off valve models created in Chapter
3 where the flow is dependent on the opening of the valve, which is modelled as a first-order system,
and the pressure difference. This model is a simplification of the actual opening, which is significantly
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dependent on pressure difference, flow, fluid viscosity, and more.

Qin2 = xv,ref (6) · e−Td·s · 1

1 + τv · s
· kv,oo ·

√
2

ρ
|pS − p1| · sign (pS − p1)+ (5.4)

xv,ref (4) · e−Td·s · 1

1 + τv · s
· kv,oo ·

√
2

ρ
|pS − p2| · sign (pS − p2) (5.5)

The third approach is to base the flow into the FBoT on the continuity equation for chambers 1 and 2.
Here, only the positive flow is counted since the flow is out of the FBoT when it is negative. This ignores
the leakage flow inside the FBoT and assumes that the pressure gradient can be accurately estimated
based on the pressure measurements.

Qin3 = max

(
ẋp ·A2 +

V01 + xp ·A2

βeff(p1)
· ∆p1
∆t

− ẋp ·A2 +
V02 − xp ·A2

βeff(p2)
· ∆p2
∆t

, 0

)
(5.6)

The efficiency can be calculated for the 3 different approaches with Equation (5.7).

η =
Qout · pBC

Qin · pS
(5.7)

The efficiency from the three different methods is shown in Figure 5.10, where a moving average over
1 second is used. Here, it can be seen that the efficiency is between 7% and 12.5% for the given
transformation with η1 and η2 showing the lowest efficiency while η3 shows the highest. η1 is expected
to be the lowest since it gets the input power from the pump, thereby ignoring losses before the FBoT,
whereas η3 ignores the leakage losses within the FBoT, which means it should have the highest efficiency.
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Figure 5.10. Comparison of the different efficiency estimates for this specific oscillation in the
laboratory.
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Through this project, some things have been learned which warrant further discussion for the development
of future control strategies for the FBoT, whether they are based on RL or some other method

6.1 Learnings From The Training of Agents For FBoT Control

Throughout the course of the project, numerous agents were trained, resulting in valuable insights and a
deeper understanding of the learning dynamics. Some of these insights are described below.

Reproducibility One of the primary challenges has been reproducibility since it is difficult to iterate
and improve something that cannot be reproduced, since there is no way to tell if an improvement is
from better hyperparameters or a “random” coincidence. It was found that it was easier to reproduce
the results when the agents were trained with an exploration policy with a constant standard deviation.
This is since small variations in the training could give some good episodes, which lowers the standard
deviation of the exploration policy away from the other training results. Furthermore, an increased
mini-batch size was observed to improve the reproducibility.

Convergence Challenges When training agents, one has to determine when it has converged based
on the episode reward. However, through many of the trainings, significant oscillations were seen in the
reward. Increasing the mini-batch size was seen to reduce this since more experiences were used, which
gave smoother convergence. This could also be achieved by reducing the standard deviation in the
exploration model, but that comes with its own challenges.

Episode Length The length of the episodes has been limited by the variable tend, which is the
maximum time for each episode. Long episodes often lead to policies that only worked at specific manifold
pressure combinations, since a long episode could give over 50 experiences, while the other manifold
pressure combinations gave 1-5 experiences. This led to this specific pressure combination dominating
the experience buffer. Too short episodes meant that it did not observe enough of the observation space,
the actions could lead to over time.

Error Correction At the start of the project, it was expected that the agents could learn to correct
the timings based on the error measurement from the previous oscillation to that side. However, through
the project, it became clear that the agent learned the timings based on the manifold pressures, which
meant that it behaved similarly to open-loop control. With a deeper understanding of the training
process, this observation becomes intuitive: in a disturbance-free environment, the most effective strategy
for maximising the reward, based on errors observed on both sides, is to provide optimal parameters from
the outset in an open-loop manner.
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6.2 Control Signal Transformation

Throughout this project, the system has been treated as coupled and non-linear as determined in Section
4.1.2. They could potentially be reduced by changing the control and error signals.
Instead of controlling t1 and t2, the ratio r = t1

t1+t2
could be controlled based on a normalised average

pressure vs. normalised time error for chambers 1 and 2. A pressure error should increase the ratio
since more kinetic energy is needed to compress/decompress the chambers before standstill, while still
outputting power to the load.
To get the actual values for t1 and t2 a scalar, Mt, is used so that t1 = Mt · r and t2 = Mt · (1− r). Mt

should be determined based on the position error, where a positive error should lead to an increased Mt

since there was not enough input power.
t3 should be based solely on which chamber is closest to reaching the desired pressure at the correct time.
This could be determined by the difference in pressure error and time error for the two chambers.
This setup is sketched with the block diagram in Figure 6.1 for calculating t1 to t3 while at the left end.
Here, it is illustrated with an agent trained to give the initial parameters, but these could potentially be
constant or determined by simple linear relations.

Agent
t3,i

Mt,i

ri

pBC

pS

Amp

PI
Δxp,R ΔMt

-Δp1,R + Δp2,R
pscale

- Δtp1,R + Δtp2,R
tp,scale

PI Δr

PI
Δt3

+
+

+
+

+
+ t1=Mt·r

t2=Mt·(1-r)r

Mt

t3

t1

t2

- tp,scale

Δtp1,R - Δtp2,RΔp2,R-(-Δp1,R ) 
pscale

Figure 6.1. A block diagram for a potential new control structure based on the learnings from this
project.

In the block diagram, PI-controllers are proposed to correct the control signals based on the errors in
the previous oscillation. One potential problem with this is that the initial condition for each oscillation
varies. This means that the previous control signal might give a different result this oscillation. This
could potentially lead to an overall oscillatory behaviour as was observed by (Mortensen et al. 2025).
The varying initial condition is sketched for the position in Figure 6.2. One way to overcome this could
be to have different integrator gains for each side so that one side settles first, leading to a less oscillatory
response.
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t

xp
xpref,R

xpref,L
Figure 6.2. Case of when the variation in left position might fix the right end position without any
changes in control timings for the movement towards the right.
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Conclusion 7
This thesis investigated efficient control strategies for the Full Bridge Oscillation Transformer (FBoT), a
novel hydraulic transformer developed at Aalborg University. To minimise energy losses associated with
valve switching, a 12-step control sequence was proposed for pump-mode operation to simplify the control
task. Given the nonlinear and coupled nature of the FBoT dynamics, reinforcement learning (RL) was
employed to develop a control policy.

The RL-based controller was trained in simulation using a reward function designed to minimise valve
losses while maintaining a desired oscillation amplitude. However, simulation results revealed that high-
reward policies often failed to adjust control timings based on feedback errors. Instead, these policies
favoured delivering near-optimal open-loop timings from the outset. While this approach maximised
the reward function, it led to significant steady-state errors and inefficient valve actuation, ultimately
reducing the system’s overall efficiency.

Experimental validation confirmed that the trained policy could induce piston oscillation, but with
considerable variability in amplitude and pressure errors. The efficiency, estimated using three different
flow approximation methods, remained low, likely due to substantial valve loss due to the controller’s
inability to minimise the pressure differences as the valves were opened or closed.
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Figure A.1. Larger version of the states when moving from left to right.
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Figure A.2. Larger version of the states when moving from right to left
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General Theory of Neural
Networks B

A Neural Network is a general function approximation which consists of artificial neurons, also called
units, gathered in layers. Signals travel from the input layer through the hidden layers to the to the
output layer. A depiction of this can be seen in Figure B.1. The depth of the Neural Network is defined
by the number of hidden layers. Neural Networks are generally classified as deep neural networks if there
is more than one hidden layer. The width of a neural network is defined as the number of units in each
hidden layer. The layers can be connected in multiple different ways

Input Layer Hidden Layers Output Layer

Input 1

Input 2

Input 3

Output 1

Output 2

Figure B.1. Depiction of fully-connected feed-forward neural network with an input layer, two hidden
layers and an output layer.

The output of each unit is called its activation. This is calculated for each layer with Equation (B.1).
The function f is the activation function which is normally non-linear, as this is necessary for capturing
non-linear relations.

f(Wa(0) + b) = a(1) (B.1)

Here, W is a m× n matrix of the weights where m is the number of units in the given layer and n is the
number of units in the previous layer. a(0) is a vector of activations from the previous layer, and a(1) are
the outputs from a given layer, b is a vector of biases.

The two activation functions used in this project is the sigmoid activation function and the RELU
activation function which is shown in Equation (B.2). The input x to the activation function is given as
Wa(0) + b

σ(x) =
ex

ex + 1
, ReLU(x) =

x+ |x|
2

(B.2)
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2/2 Cartridge Seat Valve, Size 5
Qmax = 30�l/min,�pmax = 350�bar
Digital valve, bidirectional seat-valve shut-off, direct acting
Series WS22GD…/ WS22OD…

1/6

Reference: 400-P-121110-EN-00

Issue: 09.2015

� For use in digital hydraulics

� With bidirectional seat-valve shut-off

� Compact construction for

cavity type ALM – M20x1.5

� High switching performance

� Short response times

� All exposed parts with zinc-nickel plating

� High pressure wet-armature solenoids

� The slip-on coil can be rotated, and it can be

replaced without opening the hydraulic envelope

� Can be fitted in a line-mounting body

1 Description

These direct acting 2/2 solenoid operated directional seat

valves, series WS22GD… / WS22OD…, are screw­in cart­

ridges with a M20x1.5 or 3/4­16 UNF mounting thread. They

are designed on the poppet/seat principle, and are there­

fore virtually leak­free in both directions of flow (bidirectional

seat­valve shut­off). Over­excitation, preferably through an

electronic switching device (booster), is required to operate

the solenoid. Combined with the low mass of the moving

parts, this results in short response times and high switching

performance in a compact package. "De­energised closed"

and "de­energised open" functions are available. The

straightforward design delivers an outstanding price/per­

formance ratio. The valves are used in applications in digital

hydraulics, where fast response and long life with minimum

size are vitally important. All external parts of the cartridge

are zinc-nickel plated to DIN 50�979 and are thus suitable

for use in the harshest operating environments. The slip-on

coils can be replaced without opening the hydraulic enve­

lope and can be positioned at any angle through 360°.

2 Symbol

2

1

2

1

WS22GD… WS22OD…

3 Technical data

General characteristics Description, value, unit

Designation 2/2 cartridge seat valve

Design digital valve, bidirectional seat-valve shut-off, direct acting

poppet/seat design (pressure balanced)

Mounting method screw-in cartridge M20x1.5 or 3/4-16 UNF

Tightening torque 50�Nm�± 10�%

Size nominal size 5, cavity type ALM M20x1.5

cavity type AL 3/4-16 UNF

please contact BUCHER

Weight 0.20 kg
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Series WS22GD…/ WS22OD…
2/6

Description, value, unitGeneral characteristics

Mounting attitude unrestricted

Ambient temperature range -25°C…+80�°C

Hydraulic characteristics Description, value, unit

Maximum operating pressure  (ports 1 and 2) 350�bar

Maximum flow rate 30�l/min

Flow direction 1  2 / 2  1, see symbols

Hydraulic fluid HL and HLP mineral oil to DIN 51 524;

for other fluids, please contact BUCHER

Hydraulic fluid temperature range -25�°C … +80�°C

Viscosity range 10…500�mm2/s (cSt), recommended 15...250�mm2/s (cSt)

Minimum fluid cleanliness

Cleanliness class to ISO 4406�:�1999

class 20/18/15

Electrical characteristics Description, value, unit

Excitation voltage 48�V DC (standard)

Length of over-excitation 4…5 ms

Supply voltage 12�V DC (standard)

Voltage tolerance ±�5�% (at ambient temperature < 60°C : ±�10�%)

Nominal power consumption 15 W at 12 V DC

Switching time - model WS22G…

- model WS22O…

 6 … 20�ms (energising)

10�…�30�ms (deenergising)

 6 …�30�ms (energising)

 5 …�20�ms (deenergising)

These times are strongly influenced by fluid pressure, flow rate and viscosity, as well as by
the dwell time under pressure.

Relative duty cycle - static 100�%

Duty cycle / switching frequency - dynamic see characteristics

Protection class to ISO�20�653 / EN�60�529 IP 65

Electrical connection:

- PIN 1

- PIN 3

- PIN 4

3-pin plug M8x1

48 / 12�V DC

0 V

not used
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4 Performance graphs

measured with oil viscosity 33�mm2/s (cSt), coil at steady-state temperature and 10 % undervoltage
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5 Dimensions & sectional view

5.1 “Normally closed” design WS22GD…
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M20x1,5

MA=50 [Nm]±10%
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(nicht belegt)

1 (+)

3 (-)

2

1

with 3/4-16 UNF thread – cavity type AL

please contact BUCHER

with M20x1.5 thread – cavity type ALM

5.2 “Normally open” design WS22OD…
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6 Installation information

IMPORTANT!

When fitting the cartridges, use the specified tigh­

tening torque. No adjustments are necessary,

since the cartridges are set in the factory.

ATTENTION!

Only qualified personnel with mechanical skills

may carry out any maintenance work. Generally,

the only work that should ever be undertaken is to

check, and possibly replace, the seals. When

changing seals, oil or grease the new seals tho­

roughly before fitting them.

ATTENTION!

If an orifice is fitted directly in port 2 close to the

valve, and if the flow direction is from 2 to 1, it is im­

portant to ensure that the axis of the orifice drilling

is offset from the valve axis by at least 2 mm!

min.2

3/4-16 UNF  “A” – NBR seal kit no. DS-435-N 1)

Item Qty. Description

1 1 O-ring no.�017 �17,17�x 1,78 N90

2 1 O-ring no.�014 �12,42�x 1,78 N90

3 2 O-ring �12.00�x 1.50 Viton

4 2 Backup ring 10.70�x�1,45�x�1,0 FI0751

IMPORTANT!

1) Seal kit with FKM (Viton) seals, no. DS-435-V

M20x1.5  “Z” - NBR seal kit no. DS-436-N 1)

Item Qty. Description

1 1 O-ring no.�017 �17,17�x 1,78 N90

2 1 O-ring no.�013 �10,82�x  1,78 N90

3 2 O-ring �12.00�x 1.50 Viton

4 2 Backup ring  9.90�x�1,45�x�1,4 FI0751

IMPORTANT!

1) Seal kit with FKM (Viton) seals, no. DS-436-V

7 Ordering code
22G

W = directional valve

S = seat valve, direct acting

22G = 2/2 function, de-energised closed

22O = 2/2 function, de-energised  open

D = digital valve

Z = special features - with M20x1.5 thread (standard)

A = standard model - with 3/4 - 16 UNF thread (please contact Bucher)

5 = nominal size 5

(blank) = NBR (Nitrile) seals  (standard)

V = FKM (Viton) seals

(special seals - please contact BUCHER)

1 ... 9 = design stage (omit when ordering new units)

... = voltage e.g. 12 (12 V)

D = current  DC

(blank) = M8x1 male connector (standard)

F = for flying leads (1000 mm), please contact Bucher

_-Ex. 12_ZS D 15W D
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8 Related data sheets

Reference (Old no.) Description

400-P-040011 (i-32) The form-tool hire programme

400-P-040171 (i-33.10) Cavity type AL

400-P-040201 (i-33.13) Cavity type ALM

400-P-720101 (G-4.10) Line-mounting body, type GALA  (G 3/8”)

400-P-720105 (G-4.11) Line-mounting body, type GALMA  (M20�x�1.5)

� 2015 by Bucher Hydraulics AG Frutigen, CH-3714 Frutigen

www.bucherhydraulics.cominfo.ch@bucherhydraulics.com

All rights reserved.

Data is provided for the purpose of product description only, and must not be construed as warranted characteristics in the legal sense. The

information does not relieve users from the duty of conducting their own evaluations and tests. Because the products are subject to continual

improvement, we reserve the right to amend the product specifications contained in this catalogue.

Classification: 430.300.-.305.305.300
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 1 / 4 Classification: 4.30.30.40.16 
  Reference: 170-P-051100-E-07 / 08.15 

Check Valves, Size 04 ... 16 
Spherical Poppet-type, Screw-in Design 
Series RKVG ...  80 l/min, 350 bar (500 bar) 
 
 
 

 
 
 

 
 

 
 
 
 

 
 
1  General 
1.1 Product description 

Series RKVG units are screw-in check 
valves with mounting threads ranging 
from G 1/8" to G 3/4". For other thread 
forms, contact Bucher Hydraulics. 
 
The valves prevent flow against the 
screw-in direction (A  B). In the 
opposite direction, the opening 
pressure is 0.2 to 1 bar. 

 

The cavities are identical to those of the 
RVE/RKVE valves (REG-02 cavity only). 
 
The units are spring-closed poppet 
valves with hardened poppets and 
seats. The poppet is fully guided, with 
a spherically shaped sealing surface. 
 
A metal cutting lip seals the leakage 
path between the valve and cavity wall. 
 
The valves can be used for pressure 
relief in the opening direction, but only 
to a limited extent (consult Bucher 
Hydraulics for such applications). 
 

1.2 Advantages 
 Virtually leak-free 
 High pressure rating 
 Compact construction 
 Spring is enclosed 

 

 
 
2  Main characteristics 
Designation check valve / non-return valve
Design spherical poppet design
Mounting method screw-in cartridge
Size nominal 4...16 mm. See Table in section 5, Dimensions 
Dimensions see Table in section 5, Dimensions
Mounting attitude unrestricted
No-flow direction A  B (see symbol)
Operating pressure range ... 350 bar (for higher pressures, contact Bucher Hydraulics) 
Opening pressure 0.2 … 1 bar
Flow rate, Q max. ... 80 l/min
Fluid HL and HLP hydraulic oils to DIN 51524
Temperature range -30°C... +80°C
Viscosity range 10... 500 mm²/s (cSt)
Min. fluid cleanliness 18/14 to ISO 4406 / CETOP RP70H,  8…9 to NAS 1638 
 
For applications outside these parameters, please contact Bucher Hydraulics. 
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3  Schematic section 4  Components 
 

 

Item Qty. Description 
1 1 Valve seat 
2 1 Valve body 
3 1 Valve poppet 
4 1 Spring 

 
 
 
 
 
 

 
 
5  Dimensions 

5.1 Valve 

 
 
 

 

 
 
 
 
 
 

 
5.2 Dimensions – cavity type REG-02 
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6  Performance graphs 
measured with oil viscosity 33 mm²/s (cSt) 
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7  Ordering details 

 Model code key Ex. R K V G - __ - __ - __ 
 
Check valve, screw-in type 
K = spherical poppet 
G = no-flow direction opposite to screw-in direction 
Thread 
Whitworth pipe thread  G 
Metrical thread   M 
UNF thread   U 
Nominal size 
04 
06 
08 
10 
16 
Opening pressure 
0.2 bar                             02  
0.5 bar                             05   
1 bar                                1 
 
Contact Bucher Hydraulics for further advice on: 
- other opening pressures 
- special materials 
- customised designs 
 
 
8  Design and installation notes 
The installation dimensions and toler-
ances must be maintained. 
 
We offer form tools for hire or sale. 
 
Referring to the free-flow direction, 
nozzles and orifices must not be situ- 
 

ated directly before the check valve 
(see Data Sheet 170-P-059000-E). 
 
When fitting the valve, take particular 
care to ensure that:  
 the valve cutting lip is firmly seated 

on the sealing surface 
 
 

 valve components are not defor-
med by the use of excessive force 

 
Use the specified tightening torque 
when fitting the valve. 
 
 

 
 
9  Application notes 
The maximum operating pressure must 
not be exceeded and any pressure 
peaks must be taken into consideration. 
 
The specified nominal flow rate must 
not be exceeded. 
 

In applications such as accumulator 
circuits, where sudden pressure can 
be applied to the valve in the free-flow 
direction, ensure that the specified 
flow ratings are not exceeded. In 
dynamic accumulator circuits, use the  
internally damped valves.  
 

Buyers bear the sole responsibility for 
ensuring that the selected products are 
suitable for their applications. Buyers 
normally establish this by undertaking 
qualification programs on test stands, 
or by evaluating the performance of 
prototype machines or systems. 
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Check Valve, Size 04 … 16
Spherical poppet-type, screw-in design
Series RKVE …-VD 120 l/min, 350 bar

1/6

Reference: 170-P-051300-EN-04

Issue: 08.2018

� for the same pressure differential, Qmax. is around

50% higher than with standard RKVE valves

� no soft seal, therefore not temperature dependent

� same cavity as the RKVG and RVE series

� very low leakage

� with enclosed spring

1 Description

Series RKVE ...-VD screw-in cartridge check valves are fur­

nished with G ⅛” …  G ¾" threads, depending on their nom­

inal size. Requests for other mounting threads will be sub­

ject to negotiation with the factory.

The valves prevent flow in the screw-in direction (B -> A)

and open in the opposite direction. Opening pressures of

0.2, 0.5 and 1 bar can be supplied. For higher opening pres­

sures, our RVVE preload valves with extended overall

length are available (see data sheet 170-P-051010-E).

The cavity used is the REG-02 (118°), which can be manu­

factured by simple recessed thread tapping. Our RKVG and

RVE series valves can also be used in this cavity. Installing

the valves needs special fitting tools, which we can supply.

A metal cutting lip on the valve engages with the 118° bevel
in the cavity, providing a metal-to-metal seal. By eliminating

the soft seal, the valves can be applied without regard to

temperature.

The units are spring-closed spherical-poppet valves. The

body and seat are press-fitted together, with a guided pop­

pet and an enclosed spring fitted between them. The valve

seat, poppet and body are hardened. The properties of the

sealing faces have been enhanced by precision mechanic­
al processing.

Thanks to a fundamental redesign of the standard

RKVE04…16 valves, we have achieved a 50% increase in

the permissible flow rate of the new RKVE…-VD valve

series for the same pressure differential. This means that in
many cases it is possible to use a smaller valve and thus

save installation space and costs.

The valves can be used for pressure relief in the opening dir­

ection, but only to a limited extent (please contact Bucher

Hydraulics for such applications).

2 Symbol

A

B
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3 Technical data

General characteristics Unit Description, value

Type check valve

Design spherical poppet-type

Mounting method screw-in cartridge

Size nominal 04…16 mm (see table section 5 Dimen­
sions)

Dimensions mm see table section 5: Dimensions

Mounting attitude unrestricted

No-flow direction B -> A (symbol see section 2)

Operating pressure bar 350 (for higher pressures please contact Bucher
Hydraulics)

Opening pressure bar 0,2 / 0,5 / 1

Flow rate Qmax. l/min 120

Fluid HL and HLP hydraulic oils to DIN 51524,
for other fluids please contact Bucher Hydraulics

Temperature range °C -30 … + 120

Viscosity range mm2/s [cSt] 10 … 500

Minimum fluid cleanliness ISO 4406 code 20/18/15 (see section 11)

4 Performance graphs

Measured with oil viscosity 33 mm2/s (cSt)
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4.3 RKVE-G-08-..-VD
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5 Dimensions

5.1 Dimensions - valve
G”

D

X

H

Type QNom=Qmax

[l/min]

G

[mm]

�D

[mm]

H

[mm]

X

[mm]

Tightening torque
[Nm]

Fitting tool
type

RKVE-04-…-VD 12 G1/8“ 8,5 10,0 5,0 8 M-04

RKVE06-…-VD 25 G1/4“ 11,5 11,3 5,5 20 M-06

RKVE-08-…-VD 50 G3/8“ 14,9 13,3 7,0 25 M-08

RKVE-10-…-VD 80 G1/2“ 18,8 15,9 9,0 50 M-10

RKVE-16-…-VD 120 G3/4“ 24,3 18,9 10,5 60 MKS-16 / M-16

5.2 Dimensions - cavity type REG-02

A

118°

G”

H
 (

m
in

)

Y
 (

m
a
x
)

0,03 A

K +0,1

d (max)

Type G � K
[mm]

� d
[mm]

Y
[mm]

H
[mm]

RKVE-04-… G1/8“ 8,7 6,0 2,5 10,0

RKVE-06-… G1/4“ 11,75 8,0 4,0 11,3

RKVE-08-… G3/8“ 15,25 11,5 4,0 13,3

RKVE-10-… G1/2“ 19,0 15,5 4,5 15,9

RKVE-16-… G3/4“ 24,5 20,0 6,0 18,9

6 Schematic section

1

2

3

4

Cutting lip for
metal-to-metal seal

Item Qty. Description

1 1 Valve body

2 1 Valve seat

3 1 Valve poppet

4 1 Spring
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7 Design and installation notes

IMPORTANT:

� Be sure to keep to the installation dimensions and toler­

ances

� Use the specified tightening torque when fitting the valve

� Do not situate nozzles and orifices directly before the

check valve (referring to the free-flow direction) (see data

sheet 170-P-059000-E)

When fitting the valve, take particular care to ensure that:

� The valve is seated on the sealing surface

� Valve components are not deformed by the use of ex­

cessive force

Special fitting tools can be supplied.

8 Ordering code

R K V E - - - -G 1 0 0 2 VD

Check valve, screw-in type

spherical poppet

Thread

Whitworth pipe thread G
Metric thread M (contact Bucher Hydraulics)

UNF thread U (contact Bucher Hydraulics)

Nominal size

04

06
08

10

16

Opening pressure

0,2 bar 02
0,5 bar 05

1 bar 1

Δp optimized version for pressures up to 350 bar

9 Application notes

The maximum operating pressure must not be exceeded

and any pressure peaks must be taken into consideration.

The specified nominal flow rate must not be exceeded.

In applications such as accumulator circuits, where sudden
pressure can be applied to the valve in the free-flow direc­

tion, ensure that the specified flow ratings are not exceeded.

Buyers bear the sole responsibility for ensuring that the se­

lected products are suitable for their applications. Buyers

normally establish this by undertaking qualification pro­
grams on the test stands or by evaluating the performance

of prototype machines or systems.

Buyers bear the sole responsibility for ensuring that the se­

lected products are suitable for their applications. Buyers

normally establish this by undertaking qualification pro­

grams on the test stands or by evaluating the performance

of prototype machines or systems.
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10 Fluid

The oil for check valves RKVE must have a minimum
cleanliness level of 20/18/15 to ISO 4406.

We recommend the use of fluids that contain anti-wear addi­

tives for operation with boundary lubrication. Fluids without

appropriate additives reduce the service life of check

valves. The user is responsible for maintaining, and regular­
ly checking, the fluid quality.

11 Fluid cleanliness

Cleanliness class (RK) onto ISO 4406.

Code
ISO 4406

Dirt particle number / 100 ml

� 4 m � 6 m � 14 m

23/21/18 8000000 2000000 250000

22/20/18 4000000 1000000 250000

22/20/17 4000000 1000000 130000

22/20/16 4000000 1000000 64000

21/19/16 2000000 500000 64000

20/18/15 1000000 250000 32000

19/17/14 500000 130000 16000

18/16/13 250000 64000 8000

17/15/12 130000 32000 4000

16/14/12 64000 16000 4000

16/14/11 64000 16000 2000

15/13/10 32000 8000 1000

14/12/9 16000 4000 500

13/11/8 8000 2000 250

� 2018 by Bucher Hydraulics Dachau GmbH, D- 85221 Dachau

www.bucherhydraulics.cominfo.dah@bucherhydraulics.com

All rights reserved.

Data is provided for the purpose of product description only, and must not be construed as warranted characteristics in the legal sense. The

information does not relieve users from the duty of conducting their own evaluations and tests. Because the products are subject to continual

improvement, we reserve the right to amend the product specifications contained in this catalogue.

Classification: 430.315.340
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