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Preface

This is Jacob El-Omar’s master thesis specialising in Electronics Systems at AAU. The
report has been made in the period: September 2024 - May 2025. The report deals
with the design and construction of an Active/Adaptive Noise Cancellation For Electronic
Stethoscopes. The report consists of an introduction, technical analysis, system design,
results, discussion and conclusion. A formal thank you is extended to my supervisor,
Jan Østergaard, for his support and guidance, as well as the company partners at Ai
Health Highway India Pvt Ltd, particularly Alex Paul Kamson, for his involvement and
contributions.

Aalborg University, May 28, 2025

Jacob El-Omar

Page ii of 150



Reading Guide

The project is divided into nine parts; introduction, technical analysis, requirement
specification, system design, results, discussion, conclusion and appendix.

Source citation

In the report, sources are cited by putting numbers in brackets [ ] that refer to the same
number in the bibliography on page 82. Appendix: Simulations and Test Reports is used
for larger figures, simulations, tables, code and calculations used in the project. Tables and
figures arenumberedaccording to chapters, i.e. thefirst figure in chapter 1has thenumber
1.1, etc. Figures and tables without source references are self-made.

Nomenclature
f(t) Continuous function of t (continuous variable)
x[n] Discrete sequence x at index n (discrete variable)
x Scalar variable x
x Vector x
X MatrixX
x∗ Complex conjugate of scalar x
XT ,XH Transpose and Hermitian transpose of matrixX
X−1 Inverse of matrixX
xi,Xij The ith element of vector x and the (i, j)th element of matrixX
tr(X) Trace of matrixX (sum of diagonal elements)
rxx(l) Autocorrelation at lag l for the discrete sequence x
rxy(l) Cross-correlation at lag l between the sequences x and y
Rxx = E{xxT } Autocorrelationmatrix of vector x
Rxy = E{xyT } Cross-correlationmatrix between vectors x and y
Sxx Power spectral density of x
Sxy Power spectral density of x and y
E{·} Expectation operator
x̂, x̂, X̂ Estimate of scalar x, vector x, andmatrixX
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Introduction 1
This thesis explores the application of adaptive noise cancellation techniques to enhance
the quality of heart and lung sound auscultation. Auscultation remains a cornerstone of
clinical examination, providingvaluablediagnostic informationatminimal cost. However,
its effectiveness is significantly compromised in noisy environments, which presents a
particular challenge in resource-constrained settings.

1.1 Motivation

The primary motivation for this project stems from the need to support heart sound
screening initiatives in rural India, where healthcare providers face significant challenges
in obtaining clean heart sound recordings. In these settings, ambient noise from
various sources, including conversations, equipment, and environmental factors, often
contaminate the recordings, making accurate interpretation difficult. This issue is
especially critical in primary care settings, where initial screening takes place without the
benefit of soundproofed examination rooms [1, 2].

Improving signal quality through digital processing can potentially enhance diagnostic
accuracy without requiring expensive infrastructure upgrades or specialized equipment.
This approach aligns with the broader goal of making healthcare more accessible and
effective in resource-limited regions, where cardiovascular diseases remain a significant
health burden [3, 4]. The noise samples and project proposal were provided by company
partners at Ai Health Highway India Pvt. Ltd.

1.2 State of the Art

Heart and lung sound enhancement has been approached through various signal
processing techniques in recent literature. Traditional methods have used fixed filters,
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Gruppe 924 1. Introduction

wavelet transforms, and empirical mode decomposition to separate desired signals from
noise [5]. More recent approaches have utilized adaptive filtering, which dynamically
adjusts filter parameters based on the input signal characteristics.

Several studieshavedemonstrated theeffectivenessof adaptivenoise cancellation inheart
sound analysis. Kumar et al. [6] implemented least mean squares (LMS) algorithms to
reducenoise in phonocardiogramsignals, whileMesser et al. [7] investigatedoptimal filter
designs for extracting heart sounds from lung sounds. Independent Component Analysis
(ICA) has also emerged as a promising technique for separatingmixed biomedical signals,
with applications in separating maternal and fetal cardiac signals [8] and isolating heart
sounds from respiratory noise [9].

In recent years, deep learning-based approaches such as convolutional neural networks
and hybrid frameworks have also been explored for heart sound enhancement [4].
Despite these advancements, there is limited literature that compares adaptive filtering
approaches and ICA techniques, specifically for heart sound enhancement across diverse
noise environments usually they only test one noise type. Furthermore, the practical
application of these methods in real-world clinical scenarios remains underexplored,
particularly in the context of rural or resource-limited environments [1, 2].

1.3 Focus and Scope

This thesis focuses specifically on enhancing normal heart sounds, primarily due to
the need to preserve signal fidelity in screening applications. In such contexts, it is
essential that the denoising process does not introduce artifacts that could be mistaken
for pathological sounds or obscure subtle clinical features in healthy signals, as this could
lead to false negatives with serious consequences. Although this work focuses on normal
heart sounds, testing on lung sounds will also be conducted briefly as an additional data
type.

The thesis specifically explores two complementary approaches to noise cancellation:

1. Adaptive filtering using least mean squares (LMS), normalised least mean squares
(NLMS), and recursive least-squares (RLS) algorithms

2. Independent Component Analysis (ICA) using the FastICA algorithm
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1.3. Focus and Scope Aalborg University

Theuse of thesemethodswasparticularly appropriate for this application as the recording
setup involved twomicrophones, providing the necessary inputs for both reference-based
adaptive filtering and source separation via ICA. This dual-microphone configuration
is relatively easy to implement in practical settings and does not significantly increase
complexity or cost compared to single-microphone solutions.

It is important to note that the detailed analysis of abnormal heart sounds falls outside the
scope of this thesis. This complex task requires specialised clinical expertise and will be
addressed by the company’s ongoing collaborations with medical professionals. Instead,
this work focuses on providing the foundational signal processing capabilities that can
deliver cleaner recordings for subsequent medical analysis.

Page 3 of 150



Technical Analysis 2
This chapter explains the theory and concepts underlying various adaptive filter
algorithms. The content is primarily based on Adaptive Filter Theory - Fifth Edition (2014)
by Simon Haykin and Lecture Notes in Adaptive Filters - Second Edition (2014) by Jesper
K. Nielsen and Søren H. Jensen [10, 11].

2.1 Wiener Filter

The Wiener filter is an essential adaptive filter, known for providing the best linear
solution in stationary environments by minimising the mean-square error (MSE) [10].
When choosing a filter, you can select between finite or infinite impulse responses.
Finite-duration impulse response (FIR) filters are commonly preferred for their stability,
as they use only forward paths, whereas infinite-duration impulse response (IIR) filters,
with feedback, can become unstable [10]. This project will use FIR filters and real values
for the signals and filter coefficients. Figure 2.1 shows a filtering system that uses aWiener
filter.

Input Output

Wiener Filter

Desired 
response

Estimation
error

Figure 2.1: General block diagram of theWiener filter - Modified from [10]

TheWiener Filter is an FIR filter withM taps, defined by the coefficients w0, w1, . . . , wM−1

[10, 11].
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2.1. Wiener Filter Aalborg University

The estimation error e[n] in figure 2.1 is defined as:

e[n] = d[n]− y[n] (2.1)

d[n] Desired response

y[n] Output

The output is calculated as a linear convolution of the filter coefficients and the input
sequence u[n]:

y[n] =

M−1∑
k=0

wku[n− k] (2.2)

The u[n] and d[n] are assumed to be wide-sense stationary (WSS) stochastic processes
with constant mean values, both set to zero [11]. This ensures that e[n] represents signal
variations without offsets, preventingmisinterpretation of offsets as part of the signal.

Tominimise the error, we define the cost function as theMSE at time n:

J(w) = E
[
e2[n]

]
(2.3)

Here, E represents the statistical expectation [10]. The minimisation of this cost function
leads us to the principle of orthogonality.

2.1.1 Principle of Orthogonality

This principle ensures that, at optimality, the estimation error e[n] is orthogonal to all
components of the input sequence u[n] [10]. This principle underpins the minimisation
of theMSE and defines the conditions for an optimal filter.

To find the filter coefficients thatminimise J(w), we apply the k-th element of the gradient
vector operator∇k with respect to the k-th coefficientwk to the J(w):

∇kJ(w) =
∂J(w)

∂wk
, k = 0, 1, 2, . . . (2.4)
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Gruppe 924 2. Technical Analysis

Expanding the partial derivative:

∇kJ(w) =
∂J(w)

∂wk

=
∂E[e2[n]]

∂wk

= 2E
[
e[n] · ∂e[n]

∂wk

]
= 2E

[
e[n] ·

∂(d[n]−
∑M−1

k=0 wku[n− k])

∂wk

]
= −2E[u[n− k]e[n]]

(2.5)

For the cost function J(w) to attain its minimum value, all the elements of the gradient
vector∇J(w)must be simultaneously equal to zero; that is,

∇kJ(w) = 0, 0 ≤ k ≤M − 1 (2.6)

This leads to the Principle of Orthogonality [10]:

E[u[n− k]eo[n]] = 0 (2.7)

Here, eo[n] is the optimal estimation error. Equation (2.7) ensures that the input signal and
the error signal are uncorrelated, and thus the filter has minimised theMSE.

Further, at the optimal point, the filter output yo[n] and the estimation error eo[n] are
orthogonal:

E[yo[n]eo[n]] = E

[
M−1∑
k=0

wo,ku[n− k]eo[n]

]
= 0 (2.8)

Here, wo,k represents the k-th filter coefficient in the optimal state. This implies that the
filter output cannot be further improved by using the error signal. If eo[n] = 0, the filter
output yo[n] completely estimates the desired response d[n].

2.1.2 Wiener-Hopf Equations

The Wiener-Hopf equations describe how to calculate the optimal filter coefficients [10].
Based on the orthogonality principle from equation (2.7):
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2.1. Wiener Filter Aalborg University

E

[
u[n− k]

(
d[n]−

M−1∑
i=0

wo,iu[n− i]

)]
= 0 (2.9)

wherewo,i is the ith coefficient in the impulse response of the optimum filter.

Rearranging gives:
M−1∑
i=0

wo,iE [u[n− k]u[n− i]] = E [u[n− k]d[n]] (2.10)

where the left side represents the auto-correlation function of the filter input, and the
right side represents the cross-correlation functionbetween thefilter input and thedesired
signal. For stochastic processes, the correlation functions depend only on the delay
between them, allowing equation (2.10) to be rewritten as:

M−1∑
i=0

wo,ir[i− k] = p[−k], 0 ≤ k ≤M − 1 (2.11)

TheWiener–Hopf equations can be written in compact matrix form [10]:

Ruuwo = pud (2.12)

where

Ruu M ×M symmetric correlationmatrix of the input signal vector u[n]

wo Optimal filter weights vector

pud Cross-correlation vector between the input signal vector and the desired signal

u[n] M × 1 tap-input vector

The correlationmatrixRuu is defined as [10]:

Ruu = E
[
u[n]uT [n]

]
=


r[0] r[1] . . . r[M − 1]

r[1] r[0] . . . r[M − 2]
...

... . . . ...
r[M − 1] r[M − 2] . . . r[0]

 (2.13)

The vectorswo and pud are defined as:
wo = [wo,0, wo,1, . . . , wo,M−1]

T (2.14)

pud = E[u[n]d[n]] = [p[0], p[−1], . . . , p[1−M ]]T (2.15)
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Gruppe 924 2. Technical Analysis

AssumingRuu is non-singular, the optimal filter weights are given by [10]:

wo = R−1
uupud (2.16)

This solution is valid if both u[n] and d[n] are wide-sense stationary (WSS) processes with
known correlation and cross-correlation functions.

2.2 The Least Mean Squares (LMS) Algorithm

In practice, the information in Ruu and pud about the environment is often unavailable,
making it impossible to directly compute the Wiener solution wo [10]. To address
this, adaptive filtering algorithms is used to adjust to statistical variations in unknown
environments. These algorithms are in this project derived using twomethods: Stochastic
GradientDescent (SGD) andLeast Squares [10]. Thefirst applicationof stochastic gradient
descent is the the LeastMean-Square (LMS) Algorithm, introduced byWidrow andHoff in
1960 [10]. Key features of the LMS algorithm include [10]:

• Simplicity: Its computational complexity scales linearly with the size of the
finite-duration impulse response (FIR) filter.

• No prior knowledge required: Unlike the Wiener filter, it doesn’t require statistical
information about the environment.

• Robustness: It performs reliably even under unknown environmental disturbances.

• No matrix inversion needed: Unlike the Recursive Least Square (RLS) algorithm, it
avoids computationally expensive correlationmatrix inversion.

Its goal is to find the weightswo that minimise the cost function J , satisfying [10]:

J(wo) ≤ J(w), for allw (2.17)

The weights are updated iteratively. At each step, the updated weight vector w[n + 1]

reduces the cost function J compared to the current weight vectorw[n]:

J(w[n+ 1]) < J(w[n]) (2.18)

The cost function to minimise is the mean-squared error from equation (2.3). Since
environmental statistics are not used, the statistical expectation operator E is removed.
The resulting objective function is approximated instantaneously as:
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2.2. The Least Mean Squares (LMS) Algorithm Aalborg University

Js(w[n]) ≈ e[n]2 (2.19)

The subscript s in Js(w[n]) distinguishes it from the ensemble-average cost function J .
Since the estimation error e[n] is a sample of a stochastic process, Js(w[n]) is also a sample
value of a stochastic process. As a result, the derivative of Js(w[n])with respect to the k-th
tapweightwk[n] is stochastic, consistentwith the stochastic gradient descentmethod. The
gradient of the cost function is calculated using∇k:

∇Js,k[n] =
∂Js[n]

∂wk[n]

= −2u[n− k]e[n], k = 0, 1, . . . ,M − 1

(2.20)

Unlike E[u[n − k]e[n]] from the ideal case, the term u[n − k]e[n] in the simplified objective
function causes gradient noise. As a result, the LMS algorithm does not converge to
the exact Wiener solution wo but instead to a "suboptimal" solution ŵ, which fluctuates
aroundwo [10].

The k-th weight of the LMS filter is updated as follows [10]:

ŵk[n+ 1] = ŵk[n] + δŵk[n] (2.21)

= ŵk[n]−
1

2
µ∇Js,k[n] (2.22)

where

δŵk[n] A correction, applied in the opposite direction of the gradient of the cost function

µ A small positive constant balancing convergence speed and stability.

Substituting equation (2.20) into equation (2.22) gives:

ŵk[n+ 1] = ŵk[n] + µu[n− k]e[n], k = 0, 1, . . . ,M − 1 (2.23)

This can also be expressed in vector form [10]:

ŵ[n+ 1] = ŵ[n] + µu[n]e[n]. (2.24)

where ŵ[n] and u[n] are defined as:
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Gruppe 924 2. Technical Analysis

ŵ[n] = [ŵ0[n], ŵ1[n], . . . , ŵM−1[n]]
T (2.25)

u[n] = [u[n], u[n− 1], . . . , u[n− (M − 1)]]T (2.26)

Figure 2.2 shows a block diagramof the LMS algorithm and its weight controlmechanism.

Input vector

FIR filter

Adaptive weight-
control mechanism

(a) Adaptive FIR filter using the LMS algorithm

Step-size
parameter

(b)Detailed weight-control mechanism

Figure 2.2: LMS algorithm and weight-control mechanism [10].
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2.2. The Least Mean Squares (LMS) Algorithm Aalborg University

In Figure 2.2b, theweight adjustments δŵk[n] are computed based on the input vectoru[n]
and the estimation error e[n]. These adjustments update the FIR filter weights in the next
cycle n+ 1.

The LMS algorithm steps are summarised below [10]:

Algorithm 1 Least Mean-Square (LMS)
1: Initialise µ // Step-size parameter
2: InitialiseM // Number of taps (i.e. filter length)
3: Initialise ŵ[0] // Initial tap-weight vector
4: for n = 0, 1, 2, . . . do
5: y[n] = ŵT [n] · u[n] // Filter output
6: e[n] = d[n]− y[n] // Estimation error
7: ŵ[n+ 1] = ŵ[n] + µ · u[n] · e[n] // Update weights
8: end for

2.2.1 Stability of the LMS Algorithm

The stability of the LMS algorithm depends on the step-size parameter µ, constrained by
[11]:

lim
n→∞

∆w[n] ≈ 0 (2.27)

where∆w[n] = wo − ŵ[n] is the weight-error vector with the optimal Wiener solutionwo.
To ensure convergence, µmust satisfy :

lim
n→∞

(1− µλk)
n = 0, k = 1, 2, . . . ,M, (2.28)

where λk are the eigenvalues of the correlationmatrixRuu. This requires:

−1 < 1− µλk < 1, ∀k (2.29)

which leads to the step-size constraint, ensuring LMS stability:

0 < µ <
2

λmax
, (2.30)

where λmax is the largest eigenvalue of Ruu. Since the correlation matrix Ruu and its
eigenvalues λk are unknown, its trace cannot be directly computed. However, an upper
bound on the largest eigenvalue can be estimated based on the statistical properties of the
input signal [11]:
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Gruppe 924 2. Technical Analysis

λmax ≤ tr(Ruu) =
M∑
i=1

λi ≈Mr[0] = ME[u[n]u[n]] = ME[u2[n]] (2.31)

where r[0] is theautocorrelationof the inputat zero lagandE[u2[n]] represents theexpected
power of the input signal. The trace provides an upper bound since the largest eigenvalue
cannot exceed the sumof all eigenvalues. Using this approximation, the stability condition
for µ can be reformulated as:

0 ≤ µ ≤ 2

ME[u2[n]]
. (2.32)

SinceE[u2[n]] is typically unknown, it can be estimated using anM-sample segment of the
input signal:

Ê[u2[n]] =
1

M
uT [n]u[n] =

1

M
∥u[n]∥2 = 1

M

M−1∑
i=0

u2[n− i] (2.33)

Simulation Setup

To illustrate the impact of µ on LMS convergence, Figure 2.3 depicts the evolution of (1 −
µλ)n over 50 adaptation cycles for different step-size values. The input signal ismodeled as
a unit-power white noise sequence with eigenvalues λk = 1. The LMS update equation is
simulated using varying µ values, including cases where the algorithm remains stable µ =

0.1, 0.2, 0.5 and an unstable scenario µ = 2, highlighting divergence. The results show that
smaller step sizes ensure stability but slow convergence, whereas larger values accelerate
learning at the cost of potential instability.

0 5 10 15 20 25 30 35 40 45 50

Number of adaptation cycles, n

-1.5

-1

-0.5

0

0.5

1

1.5

(1
!
7

k
6
)n

7 = 0.1
7 = 0.2
7 = 0.5
7 = 2.0

Figure 2.3: Evolution of (1− µλ)n over 50 adaptation cycles for varying step-size values and λk = 1.

With a large step-size parameter (µ = 0.5), the equaliser reached steady state in about five
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2.3. The Normalised Least Mean Squares (NLMS) Algorithm Aalborg University

cycles. Witha smaller step-size (µ = 0.1), convergenceslowedsignificantly. However, ifµ >

1, the systembecomesunstable, causingdivergence,where the error increases indefinitely
and filter weights oscillate.

2.2.2 Computational Complexity of the LMS Algorithm

The computational complexity of the LMS algorithm estimates the computations needed
per adaptation cycle. Table 2.1 outlines the cost for real-valued data, based on the steps in
algorithm 1 [11, 12]:

Table 2.1: Computational cost per iteration for the LMS algorithm.

Term × + or –
y[n] = ŵT [n]u[n] M M − 1
e[n] = d[n]− y[n] 1
µe[n] 1
µu[n]e[n] M
ŵ[n+ 1] = ŵ[n] + µu[n]e[n] M

Total 2M + 1 2M

The algorithm requires 2M + 1multiplications and 2M additions, or 4M + 1 operations
per iteration. Its complexity is linear, O(M), meaning number of operations grow
proportionally with the filter length, making the LMS algorithm efficient even for large
filter sizes [12].

For comparison, O(1) implies number of operations remains the same regardless of the
input size, O(M2) implies number of operations increases with the square of the filter
length butO(M) signifies linear growth in operations with filter length.

2.3 The Normalised Least Mean Squares (NLMS) Algorithm

The LMS algorithm has a limitation where weight adjustments depend on the input
signal power. This dependence can cause poor convergence when the input power varies
significantly, as adjustments are influenced by power levels rather than the actual signal
content in u[n] or the error signal e[n]. To address this, the normalised LMS (NLMS)
algorithm is used.
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Gruppe 924 2. Technical Analysis

2.3.1 The NLMS Algorithm

The NLMS algorithm normalises weight updates by the squared Euclidean norm of the
input vector u[n] [10]. The weight update is expressed as:

ŵ[n+ 1] = ŵ[n] +
µ̃

∥u[n]∥2
u[n]e[n] (2.34)

where

µ̃ Adaptation constant

∥u[n]∥2 Estimated input power (instantaneous)

Normalization adjusts the step size based on input power, providing scale invariance and
consistent convergence behavior [10].

The time-varying step size µ[n] is defined as:

µ[n] =
µ̃

∥u[n]∥2
(2.35)

To prevent numerical issues in equation (2.34), such as division by zero when input
elements are small, a Regularisation constant δ ≳ 0 is added [10, 11]:

µ[n] =
µ̃

δ + ∥u[n]∥2
(2.36)

The NLMS algorithm is detailed in Algorithm 2.

Algorithm 2 normalised LMS (NLMS)
1: Initialise µ̃ // Adaptation constant
2: Initialise δ // Regularisation constant
3: InitialiseM // Number of taps (i.e. filter length)
4: Initialise ŵ[0] // Initial tap-weight vector
5: for n = 0, 1, 2, . . . do
6: y[n] = ŵT [n]u[n] // Filter output
7: e[n] = d[n]− y[n] // Estimation error
8: µ[n] = µ̃/(δ + ∥u[n]∥2) // Step-size parameter
9: ŵ[n+ 1] = ŵ[n] + µ[n]u[n]e[n] // Update weights
10: end for

2.3.2 Stability of the NLMS Algorithm

For the LMS algorithm, stability is ensured if [10]:
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0 ≤ µ ≤ 2

ME[u2[n]]
(2.37)

Substituting E[u2[n]] = 1
M ∥u[n]∥

2 from equation (2.33), the stability condition for NLMS
becomes:

0 ≤ µ ≤ 2

∥u[n]∥2
(2.38)

The time-varying step-size µ[n] is normalised by the input signal power:

µ[n] =
µ̃

∥u[n]∥2
(2.39)

To satisfy the stability condition, the adaptation constant µ̃must meet:

0 < µ̃ < 2 (2.40)

A proper choice of µ̃ ensures stable and reliable convergence of the NLMS algorithm [11,
12].

2.3.3 Computational Complexity of the NLMS Algorithm

The computational complexity of the NLMS algorithm is summarised in Table 2.2, based
on real-valued data [11, 12].

Table 2.2: Computational cost per iteration for real-valued data in the NLMS algorithm.

Term × + or – ÷
∥u[n]∥2 M M − 1
y[n] = ŵT [n]u[n] M M − 1
e[n] = d[n]− y[n] 1
e[n]µ̃/(δ∥u[n]∥2) 1 1 1
u[n]e[n]µ̃/(δ + ∥u[n]∥2) M
w[n+ 1] = w[n] + µ[n]u[n]e[n] M

Total 3M + 1 3M 1

In total, each iteration of the NLMS algorithm requires 3M + 1 multiplications, 3M
additions, and one division, summing to 6M+2 operations. Its computational complexity
is linear with respect to the filter length,O(M), making NLMS algorithm efficient even for
large filter sizes.
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2.4 The Recursive Least Squares (RLS) Algorithm

This section introduces the Recursive Least-Squares (RLS) algorithm, an adaptivemethod
designed for fast convergence andhigh accuracy, ideal for rapidly changing environments.

2.4.1 The RLS Algorithm

TheRLS algorithmminimises a least-squares cost functionJ2(w), which sums the squared
errors over a data segment [10]:

J2(w) =

i2∑
i=i1

e2[i] =

i2∑
i=i1

(d[i]− y[i])2 =

i2∑
i=i1

(
d[i]−

M−1∑
k=0

wku[i− k]

)2

(2.41)

where

i1 and i2 Define the segment’s length

w Filter weights

To prioritise recent data, the RLS algorithmuses aweighted cost functionwith aweighting
factor β[n, i] for 0 < β ≤ 1 [10]:

Jβ(ŵ[n]) =
n∑

i=1

β[n, i]e2[i] =
n∑

i=1

β[n, i]
(
d[i]− ŵT [n]u[i]

)2 (2.42)

Where n is the length of the observable data and the current adaptation cycle. Figure 2.4
illustrates the FIRmodel used to determine the filter output and error.

...

...

...
Output 
signal

Input signal

Figure 2.4: FIR filter structure where the input u[i] is processed with weights ŵk[n] to produce the output y[i],
which is compared to the desired signal d[i] to compute the error e[i] [10].
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In equation (2.42), the filter weights are applied to both recent and past input
measurements to improve performance. The weighting function β[n, i] can take different
forms, including the exponential function [10]:

β[n, i] = λn−i, 0 < λ ≤ 1, i = 1, 2, . . . , n, (2.43)

where λ is the forgetting factor which decreasing weight to older error values, as shown in
figure 2.5.

1 n

i

0

1

-
 [

n
, i

]

6 = 0.1
6 = 0.7
6 = 0.9

Figure 2.5: The weighting function β[n, i] = λn−i for λ = {0.1, 0.7, 0.9}.

The sum in equation (2.42) gives the highest weight to the most recent measurements,
with λn−n = 1. The algorithm’s stability depends on the forgetting factor λ, and stability is
ensured if λmeets the condition 0 < λ ≤ 1.

Initially, when n is small, the cost functionmay be affected by noise due to limited data. To
address this, a Regularisation term is added, resulting in the following cost function:

Jβ(ŵ[n]) =

n∑
i=1

λn−ie2[i] + δλn∥ŵ[n]∥2 (2.44)

Here, δ is the Regularisation parameter, and its effect diminishes as n increases.

Theoptimal filter coefficients are determinedusing the cost function in equation2.44. The
gradient of this cost functionwith respect to the filter weights is calculated and set to zero,
resulting in the following system of equations [10]:
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∇Jβ(ŵ[n]) = 0 (2.45)
n∑

i=1

λn−iu[i]uT [i]ŵ[n] + δλnŵ[n] =
n∑

i=1

λn−iu[i]d[i] (2.46)

Φ[n]ŵ[n] = z[n] (2.47)

where

Φ[n] M ×M time-average auto-correlationmatrix of the filter input

z[n] M × 1 time-average cross-correlation vector

The correlation matrixΦ[n] is symmetric and positive definite, ensuring invertibility. The
Regularisation termmakes sureΦ[n] is invertible from the start. To make the calculations
recursive, themost recent data point is used to updateΦ[n] and z[n] [10]:

Φ[n] =
n∑

i=1

λn−iu[i]uT [i] + δλnI

= λ

[
n−1∑
i=1

λn−1−iu[i]uT [i] + δλn−1I

]
+ λn−nu[n]uT [n]

= λ

[
n−1∑
i=1

λn−1−iu[i]uT [i] + δλn−1I

]
+ u[n]uT [n]

= λΦ[n− 1] + u[n]uT [n].

(2.48)

This equation indicates that the present value of the correlation matrixΦ[n] is computed
by the oldmatrixΦ[n− 1] and the outer product of the newly arrived input sequence. The
same approach for z[n] leads to [10]:

z[n] =
n∑

i=1

λn−iu[i]d[i]

= λ

[
n−1∑
i=1

λn−1−iu[i]d[i]

]
+ u[n]d[n]

= λz[n− 1] + u[n]d[n].

(2.49)

After calculatingΦ[n] and z[n], the filter weights are obtained by inverting the matrixΦ[n]

and solving the system. However, this can be computationally expensive, especially for
large filter lengths. To address this, theMatrix Inversion Lemma is used.
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2.4.2 TheMatrix Inversion Lemma

The matrix inversion lemma, also called Woodbury’s Identity, simplifies the computation
of a matrix inverse [10, 13]. It applies to anM ×M matrixA defined as:

A = B−1 +CD−1CT (2.50)

where

B andD Positive-definite matrices

C M ×N matrix

The inverse ofA is:

A−1 = B−BC(D+CTBC)−1CTB (2.51)

The following relationships can be derived from equations 2.48 and 2.50:

A ≡ Φ[n] (2.52)

B−1 ≡ λΦ[n− 1] (2.53)

C ≡ u[n] (2.54)

D ≡ 1 (2.55)

Using the lemma, the inverse ofΦ[n] is computed as:

Φ−1[n] = λ−1Φ−1[n−1]−λ−1Φ−1[n−1]u[n]
(
1 + uT [n]λ−1Φ−1[n− 1]u[n]

)−1
uT [n]λ−1Φ−1[n−1]

(2.56)

or, equivalently:

Φ−1[n] = λ−1Φ−1[n− 1]− λ−1 λ−1Φ−1[n− 1]u[n]

1 + λ−1uT [n]Φ−1[n− 1]u[n]
uT [n]Φ−1[n− 1]

= λ−1Φ−1[n− 1]− λ−1k[n]uT [n]Φ−1[n− 1]

(2.57)

Using equation (2.57), the inverse of the auto-correlationmatrixΦ[n] is not recalculated at
every cycle. Instead, thematrix inversion lemma allows direct updates toΦ−1[n], avoiding
costly computations. The filter weight update is expressed as:
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ŵ[n] = Φ−1[n]z[n] (2.58)

= ŵ[n− 1] + k[n](d[n]− ŵT [n− 1]u[n]) (2.59)

= ŵ[n− 1] + k[n]ξ[n] (2.60)

where

k[n] Gain vector, determines the weight adjustment

ξ[n] Priori estimation error

This error is the difference between the desired signal and the filter output, computed
before updating the coefficients, unlike LMS algorithms. Figure 2.6 shows the RLS
algorithm’s block diagram:

Figure2.6: RLSalgorithmblockdiagramwithfilteringandweightadaptation loops [10]. Theupdate forΦ−1[n]
is not shown.

An intermediate vector, π[n] = Φ−1[n − 1]u[n], is introduced to simplify the gain vector,
which is expressed as [10]:

k[n] =
Φ−1[n− 1]u[n]

λ+ uT [n]Φ−1[n− 1]u[n]
=

π[n]

λ+ uT [n]π[n]
(2.61)

The update forΦ−1[n] also uses π[n], asΦ[n] is symmetric:

Φ−1[n] =
Φ−1[n− 1]− k[n]πT [n]

λ
(2.62)

The initial inverse auto-correlationmatrixΦ−1[0] is set as:

Φ[0] = δI ⇒ Φ−1[0] = δ−1I (2.63)

This is used in the first adaptation cycle, whereΦ−1[0] Initialises the process. Algorithm 3
summarises the RLS steps [10].
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Algorithm 3 Recursive Least-Squares (RLS)
1: Initialise λ // Forgetting factor
2: Initialise δ // Regularisation constant
3: InitialiseM // Number of taps (i.e. filter length)
4: Initialise ŵ[0] // Initial tap-weight vector
5: InitialiseΦ−1[0] = δ−1I // Initial correlationmatrix
6: for n = 1, 2, . . . do
7: π[n] = Φ−1[n− 1]u[n] // Intermediate vector
8: k[n] = π[n]/(λ+ uT [n]π[n]) // Gain vector
9: y[n] = ŵT [n− 1]u[n] // Filter output
10: ξ[n] = d[n]− y[n] // Priori error
11: ŵ[n] = ŵ[n− 1] + k[n]ξ[n] // Update weights
12: Φ−1[n] = (Φ−1[n− 1]− k[n]πT [n])/λ // Update correlationmatrix
13: end for

2.4.3 Computational Complexity

The computational complexity of the RLS algorithm is summarised in Table 2.3 based on
real-valued data [11, 12].

Table 2.3: Computational cost of the RLS algorithm for real-valued data.

Term × + or – ÷
π[n] = Φ−1[n− 1]u[n] M2 M(M − 1)
k[n] = π[n]/(λ+ uT [n]π[n]) M M 1
y[n] = ŵT [n− 1]u[n] M M − 1
ξ[n] = d[n]− y[n] 1
ŵ[n] = ŵ[n− 1] + k[n]ξ[n] M M
Φ−1[n] = (Φ−1[n− 1]− k[n]πT [n])/λ M2 M2 M2

Total 2M2 + 3M 2M2 + 2M M2 +M

In total, the RLS algorithm performs 5M2 + 6M operations. Operations increases with the
square of the filter length,O(M2), which makes it the more computational demanding in
comparison to the LMS and the NLMS algorithm. Figure 2.7 compares the complexities of
LMS, NLMS, and RLS algorithms.
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Figure 2.7: Computational cost of the LMS, NLMS and RLS algorithms.

Figure 2.7 highlights the RLS algorithm’s high computational cost.

2.5 Independent Component Analysis

Independent Component Analysis (ICA) is a method used to separate a mixture of signals
into their original, independent sources. For example, if several people are speaking at
the same time and their voices are recorded together, ICA can help isolate each person’s
voice from themixture. It works by assuming that the original signals come from different
sources and are statistically independent of one another. This technique is especially
useful in situationswhere the signals of interest aremixedwithunwantednoise evenwhen
no clean reference signal is available.

2.5.1 Mathematical Definition of ICA

Let x = (x1, x2, . . . , xm)T represent an observed data vector, where each xi is a linear
mixture of n unknown, independent source signals. This mixing process can be modeled
as [14]:

x = As (2.64)

where
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x = (x1, x2, . . . , xm)T Observedmixed signal vector

s = (s1, s2, . . . , sn)
T Original independent source vector

A Unknownmixingmatrix of sizem× n

The goal of ICA is to estimate a demixingmatrixW that can separate themixed signals and
give us back signals that are as independent as possible:

y = Wx (2.65)

where

y Estimated original source vector

W Demixingmatrix to approximateA−1

The resulting vector y is an estimate of the original sources, although they may be scaled
or appear in a different order [14].

2.5.2 Preprocessing for ICA

Before applying ICA, the observed signal must go through two preprocessing steps:
centering andwhitening [14].

Centering involves removing themean from the observed data vector to ensure it has zero
mean. This is done by subtracting the expected value (or sample mean, in practice) from
x:

x← x− E[x] (2.66)

The left arrownotation "←" indicates thatwe’re updating the vectorxwith the result of the
right-hand operation.

Centering is important because it simplifies the ICA model, which assumes zero mean
for both the observed mixtures and the source signals. Without centering, an additional
bias term would be needed, complicating the separation. Additionally, centering is a
prerequisite for the whitening step that follows.

Whitening transforms the centered data so that its components are uncorrelated and each
has unit variance. This is achieved by computing the covariance matrix of the centered
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data:

Cx = E[xxT ] (2.67)

SinceCx is a real, symmetric, and positive semi-definitematrix, it can be decomposed via
eigenvalue decomposition (EVD) as:

Cx = EDET (2.68)

where

E Orthogonal matrix of eigenvectors (i.e.,ET = E−1)

D Diagonal matrix of eigenvalues

The whiteningmatrix is defined as [14]:

V = D−1/2ET (2.69)

Applying this whiteningmatrix to the centered data yields the whitened vector:

z = Vx (2.70)

The result is the vector z, a whitened version of the observed data x with uncorrelated,
standardised components. For simplicity, the complete whitening process is denoted by
the function whiten().

The next step involves applying ICA to the whitened signal z to extract statistically
independent source components.

2.5.3 FastICA Algorithm

FastICA is an efficient algorithm that finds independent components by maximising
non-Gaussianity. This approach is based on the central limit theorem, which suggests
thatmixtures of independent randomvariables tend tobemoreGaussian than theoriginal
variables themselves.

Measuring Non-Gaussianity

A common measure of non-Gaussianity is kurtosis, defined for a zero-mean random
variable y as [14]:
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kurt(y) = E[y4]− 3(E[y2])2 (2.71)

For a Gaussian distribution, kurtosis equals zero. Deviations from zero indicate
non-Gaussianity. However, since kurtosis is sensitive to outliers, amore robust alternative
is the use of negentropy [14]. Negentropy is defined as the difference in entropy between a
Gaussian random variable and the variable of interest. If only one nonquadratic function
G is used, the approximation becomes [14]:

J(y) ≈ (E[G(y)]− E[G(ν)])2 (2.72)

where

ν Standard Gaussian variable

G(·) Non-quadratic function

Commonly used approximations forG include [14]:

G1(y) =
1

a1
log cosh(a1y), 1 ≤ a1 ≤ 2 (2.73)

G2(y) = − exp

(
−y2

2

)
(2.74)

Estimating a Single Independent Component

The FastICA algorithm begins by preprocessing the observed data x, which includes
centering and whitening. Let z denote the whitened data.

The estimation of a single independent component proceeds iteratively. First, a random
vector w of unit norm is Initialised. Then, the algorithm updates this vector using a
fixed-point iteration scheme [14]:

w← E[zg(wT z)]− E[g′(wT z)]w (2.75)

The nonlinearity g is derived from G. For example, when using G1(y) = log cosh(y), the
corresponding derivative and second derivative are [14]:

g(y) = tanh(y) (2.76)

g′(y) = 1− tanh2(y) (2.77)

After each update, the vectorw is normalised:
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w← w

∥w∥
(2.78)

The iterationcontinuesuntil convergence, typicallydeterminedbya threshold ϵ, such that:

|w⊤wold| > 1− ϵ (2.79)

The resulting independent component is then obtained by projecting the whitened data:

y = wT z (2.80)

Algorithm 4 summarises the FastICA steps for a single component [14]:

Algorithm 4 FastICA for a single component
1: x← x− E[x] // Center the data
2: z← whiten(x) // Whiten the data
3: Initialisew // Random initial demixing vector
4: repeat
5: wold ← w // Store current vector
6: w← E[zg(wT z)]− E[g′(wT z)]w // Fixed-point update
7: w← w/∥w∥ // Normalise to unit norm
8: until |wTwold| > 1− ϵ // Check convergence
9: y = wT z // Extract component

So far, this process has focused on estimating a single independent component. While it
is possible to estimating multiple components by repeatedly running the algorithm with
different initialisations, this approach tends to be unreliable due to potential redundancy
between the components.

A more effective strategy leverages the fact that, in the whitened space, the independent
components’ correspondingvectors,wi, areorthogonal tooneanother. Thisorthogonality
property allows for the use of orthogonalisation techniques to reliably estimate multiple
independent components.

EstimatingMultiple Independent Components

When estimating multiple components, one must ensure that each component
corresponds to a distinct source. FastICA supports two strategies to avoid redundant
estimation: deflationary and symmetric orthogonalisation. In the deflationary
approach, components are estimated one at a time, with each new component being
made orthogonal to the ones already found components using Gram-Schmidt-like
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projections. In the symmetric approach, all components are estimated simultaneously
and orthogonalised after each iteration.

Deflationary orthogonalisation is chosen in this project due to its ease of implementation.

The process begins with whitening, followed by iterative estimation of each independent
component. After computing the weight vectorwp for the p-th component, orthogonality
is enforced by subtracting its projections onto all earlier components [14]:

wp ← wp −
p−1∑
j=1

(wT
p wj)wj (2.81)

This is followed by normalisation:

wp ←
wp

∥wp∥
(2.82)

Once allm components are estimated, they are stacked into a demixingmatrixW, and the
full set of independent components is obtained via:

y = Wz (2.83)

Algorithm 5 outlines the full procedure for deflationary FastICA [14].

Algorithm 5 FastICA with deflationary orthogonalisation for multiple components
1: x← x− E[x] // Center the data
2: z← whiten(x) // Whiten the data
3: Choosem // Set number of components
4: p← 1 // Initialise component counter
5: while p ≤ m do
6: Initialisewp // Initial demixing vector
7: repeat
8: wp ← E[zg(wT

p z)]− E[g′(wT
p z)]w // Fixed-point update

9: wp ← wp −
p−1∑
j=1

(wT
p wj)wj // Deflationary orthogonalise

10: wp ← wp/∥wp∥ // Normalise to unit norm
11: untilwp has converged // Check convergence
12: p← p+ 1 // Move to next component
13: end while
14: y = Wz // Extract all components
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Computational Complexity for FastICA

The computational complexity of the FastICA algorithm is summarised in Table 2.4 based
on real-valued data for estimating m independent components from N observations of
M-dimensional data [15].

Table 2.4: Computational cost of the FastICA algorithm for real-valued data.

Term × + or – ÷
Preprocessing:
x← x− E[x] MN
Cx = E[xxT ] M2N M2(N − 1)
Cx = EDET O(M3) O(M3)

V = D−1/2ET M2 M
z = Vx M2N M(M − 1)N

Per iteration (for component p):
w← E[zg(wT z)]− E[g′(wT z)]w 2MN +M 2MN +M

wp ← wp −
∑p−1

j=1(w
T
p wj)wj Mp M(p− 1)

w← w/∥w∥ M M − 1 1

Preprocessing total 2M2N +M2 +O(M3) M2(N − 1) +M(M − 1)N +O(M3) M
Per iteration total 2MN +M +Mp+M 2MN +M +M(p− 1) +M − 1 1

FastICA’s total complexity depends on the average iterations per component, K (usually
3–10 [15]), and the number of components, m. The preprocessing step takes about
O(M3 + M2N) operations, mainly from eigenvalue decomposition (O(M3)) and
covariance/whitening (O(M2N)) [16]. The iterative part adds roughly O(KmM2 +

KmMN) for all components, since each new componentmust be orthogonalised against
previous ones. So, the overall complexity is

O(M3 +M2N +KmM2 +KmMN) (2.84)

where for large M the eigenvalue step dominates, but for large N or many components
m, the iteration costs matter more. With a small K, FastICA is efficient compared to
gradient-based ICA [17, 18], but still more costly than simple adaptive filters [19].

Figure 2.8 compares the computational complexity of LMS, NLMS, RLS, and FastICA
algorithms.
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Figure 2.8: Computational cost of the LMS, NLMS, RLS, and FastICA algorithms across varying filter/input
dimensionsM .

The simulation evaluates these complexities over filter/input dimensionsM = 1 to 100,
fixing the number of observations to N = 500. For FastICA, the number of independent
components is set to m = 2 with an average of K = 5 iterations per component. The
complexity calculations incorporate key operations specific to each algorithm. All results
are presented on a logarithmic scale to clearly illustrate the differences in computational
cost.

2.6 Comparison Criteria

To evaluate the performance of the filtering algorithms used in this project, three criteria
are considered: signal-to-noise ratio (SNR), convergence rate, and the Mel spectrogram.
These metrics provide insight into how effectively each algorithm adapts to noise,
improves signal quality, and enhances perceptual sound characteristics.

2.6.1 Signal-to-Noise Ratio (SNR)

The Signal-to-Noise Ratio (SNR) is a key metric used to evaluate the effectiveness of
filtering algorithms in enhancing signal quality. It quantifies the ratio of the power of the
original clean signal to thepower of the residual noise remaining after filtering. Theoutput
SNR is defined as [10]:
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SNRout = 10 log10

( ∑N
n=1 s

2[n]∑N
n=1(s[n]− ŝ[n])2

)
(2.85)

where

s[n] Original clean signal

ŝ[n] Estimated (filtered) signal

N Total number of samples

A higher SNR value indicates better suppression of noise and improved fidelity of the
recovered signal.

2.6.2 Convergence Rate

The convergence rate describes how quickly a filtering algorithm minimises the error
between the desired signal and the filter output. It is typically evaluated using the Mean
Square Error (MSE), which is defined as [10]:

MSE[n] = E[|e[n]|2], e[n] = d[n]− ŝ[n] (2.86)

where

e[n] Error signal

d[n] Desired signal

An algorithm that rapidly reduces the MSE to a low and steady value is said to converge
quickly. In this project, convergence rate is visualised by plotting MSE versus the number
of input samples. Filtering algorithms that quickly converge typically deliver faster
results with better performance, although they may be more computationally intensive
depending on the approach.

2.6.3 Mel Spectrogram

The Mel spectrogram is used to analyse the time-frequency characteristics of the signals,
as it aligns more closely with human auditory perception. Humans perceive pitch and
loudness on a logarithmic scale, being more sensitive to differences at lower frequencies
than at higher ones [20]. The Mel scale accounts for this non-linear perception of pitch,
while the Decibel scale reflects the logarithmic perception of loudness. Therefore, the
Mel spectrogram provides a more perceptually relevant visual representation of sound,
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making it easier to evaluate improvements in signal quality. The Mel spectrogram is
particularly useful for evaluating the effectiveness of filtering algorithms in preserving
important perceptual features while reducing noise, providing a more intuitive way of
assessing filtering performance.

2.7 Identifying Normal and Abnormal Heart and Lung Signals

The identification of normal and abnormal heart and lung signals plays a crucial role in
diagnosing cardiovascular and pulmonary conditions. Heart and lung sounds result from
physiological processes and can exhibit significant variations depending on pathological
conditions. This section outlines the key characteristics of normal sounds, indicators of
abnormalities, andmethods used for their identification.

2.7.1 Heart Sounds

Normal heart sounds are primarily produced by the closure of the heart valves, specifically
the atrioventricular valves. This results in the two fundamental heart sounds (FHS): S1
("Lub") and S2 ("Dub") [21]. Each of these sounds corresponds to distinct valvular events,
as illustrated in Figure 2.9:

(a) S1 sound is produced by the closure of the
Mitral and Tricuspid valves.

(b) S2 sound is produced by the closure of the
Aortic and Pulmonary valves.

Figure 2.9: Heart sounds and their corresponding valve closures [21, 22].

Further analysis of these sounds can be observed in the heart sound waveform shown in
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Figure 2.10, which provides an example of the cyclical nature of the sounds.
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Figure 2.10: Example of normal heart sound waveform

In addition to the primary heart sounds (S1 and S2), S3 and S4 sounds may occur under
specific conditions. The heart cycle consists of two main phases: Systole, during which
the heart contracts and pumps blood (from S1 to S2), andDiastole, when the heart relaxes
and fills with blood (from S2 back to the next S1). The heart cycle duration (HCD) is the
total time for one complete cardiac cycle, which includes both systole (contraction) and
diastole (relaxation):

HCD ∝ 1

HR
(2.87)

Thus, ahigherheart rate (HR) results in a shorterheart cycleperiod, reducing thedurations
of both systole and diastole.

In addition to the typical durations of the primary heart sounds (S1: 120 ± 22 ms,
S2: 92 ± 22 ms [23]) , the frequency ranges of various heart sounds provide important
diagnostic information. Table 2.5 summarises the frequency ranges of common heart
sounds, including S3, S4, and abnormal sounds associated with conditions like mitral
stenosis, ejectionmurmurs, and regurgitation.
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Table 2.5: Heart sound frequencies and associated ranges [23].

Heart sound Frequency ranges (Hz)
S3 and S4 15-65
S1 and S2 20-200

Mitral stenosis 40-80
Ejectionmurmurs 200-400
Regurgitation 250-700

These frequency ranges are key in identifying specific cardiac conditions and can aid in
differentiating between normal and abnormal heart sounds.

2.7.2 Lung Sounds

Normal lung sounds are primarily produced by inspiration, during which air flows into
the lungs, and expiration, when air is expelled. These sounds can be categorised into two
main types: Vesicular breath sounds and Tracheal/Bronchial sounds [22]. The process of
breathing is illustrated in figure 2.11.

Figure 2.11: The variations in thoracic cavity and lung capacity during respiration [22].

Further analysis of these sounds can be observed in the lung sound waveform shown
in Figure 2.12, which provides an example of the characteristic cyclical patterns during
inspiration and expiration.
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Figure 2.12: Example of normal lung sound waveform and its spectrogram.

In addition to these normal sounds, abnormal lung sounds such as wheezes, crackles, and
rhonchi may occur which indicate respiratory distress or obstructions. The respiratory
cycle duration (RCD) is the total time for one complete respiratory cycle, including both
inspiration and expiration:

RCD ∝ 1

RR
(2.88)

Thus, a higher respiratory rate (RR) results in a shorter respiratory cycle period, reducing
the durations of both inspiration and expiration.

In addition to the typical durations of vesicular and tracheal sounds, the frequency ranges
of various lung sounds provide important diagnostic information. Table 2.6 summarises
the frequency ranges of common lung sounds, including wheezes, crackles, and rhonchi.
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Table 2.6: Lung sound frequencies and associated ranges [24].

Lung Sound Frequency Range (Hz)
Normal Breath Sounds 100 – 2000

Wheezes 400 Hz – 2 kHz
Crackles < 200
Rhonchi < 300

Cough Sound 50 – 3000

These frequency ranges are key in identifying specific lung conditions and can aid in
differentiating between normal and abnormal lung sounds.

2.7.3 Measurement and Auscultation Points

This section outlines key auscultation points for heart and lung sounds using a
stethoscope. It highlights standard anatomical sites for accurate assessment, with figures
illustrating the equipment and auscultation locations.

Stethoscope

The stethoscope is a vitalmedical instrumentused for auscultation, enabling thedetection
of heart and lung sounds [25]. It consists of a chest piece with a diaphragm and a
bell, tubing for sound transmission, and earpieces for listening. Figure 2.13 illustrates a
standard stethoscope.

Figure 2.13: Standard stethoscope [25].

The stethoscope enables clinicians to assess heart function by auscultating specific
anatomical locations where heart sounds are best heard. These auscultation points
correspond todifferentheart valvesandareessential fordetectingabnormalities incardiac
activity.
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Heart Auscultation Points

Auscultation is performed using a stethoscope at specific anatomical locations
corresponding to heart valves. Figure 2.14 illustrates the standard auscultation sites
for heart sounds.

Figure 2.14: Standard auscultation sites for heart sounds [25].

Beyond cardiac assessment, the stethoscope is also used to evaluate lung sounds. Proper
lung auscultation follows a systematic approach, allowing for the identification of normal
breath sounds and potential respiratory conditions.

Lung Auscultation Points

Lung auscultation follows a stepladder pattern, comparing sounds on both sides of the
chest [25]. Figure 2.15 illustrates the standard auscultation sites for heart sounds.

Figure 2.15: Standard auscultation sites for lung sounds [25].
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Despite the effectiveness of auscultation, environmental noise and interference from
body sounds can obscure critical details in heart and lung sounds. Traditional
stethoscope-based assessments rely heavily on clinical experience, making them prone
to variability and subjective interpretation. The integration of advanced signal processing
techniques, such as adaptive noise cancellation, can enhance auscultation by improving
the clarity of heart and lung sounds. Addressing these challenges is crucial for developing
more reliable diagnostic tools.

2.8 Problem statement

The introduction and technical analysis lead to the following problem statement:

How can adaptive noise cancellation techniques be utilised to enhance the quality of heart
and lung sound auscultation in clinical and non-clinical environments?
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This chapter defines the requirements necessary to address the problem statement
presented in section 2.8. These requirements serve as the foundation for the design,
implementation, and evaluation of the signal enhancement system.

3.1 Objective

The objective of this project is to develop a system capable of improving the quality
of heart and lung sound recordings through adaptive filtering or FastICA. The system
must ensure that key biomedical features remain distinguishable and analysable in the
presence of environmental andphysiological noise. Effectivenesswill be assessed through
quantitative metrics. A key goal for the adaptive filter is to find a fixed set of general
parameters i.e. step sizes, forgetting factors and filter length, that work for different noise
types.

3.2 Technical Requirement

The effectiveness of the system is evaluated using a single,measurable technical criterion:

Table 3.1: Technical Requirement

Index Requirement Target Value
T1 Minimum SNR improvement after signal enhancement. > 20 dB

The technical requirement focuses solely on achieving a minimum SNR improvement
because SNR is a widely accepted and quantifiable metric for assessing signal
enhancement performance. This objective measurement provides a clear benchmark for
system effectiveness across different noise conditions.
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This chapter presents the design and implementation of the adaptive filtering system for
noise cancellation inheart and lung sound recordings. The system isdeveloped inmultiple
stages, beginning with simulations on synthetic data and progressing towards real-world
testing. The purpose of this approach is to ensure a systematic evaluation of the filtering
techniques before applying them to actual heart and lung sound recordings.

4.1 SystemOverview

Adaptive noise cancellation (ANC) is a signal processing method that suppresses
unwanted noise by estimating it from the input and subtracting it, thereby isolating and
recovering the clean underlying signal. In this project, ANC is applied to denoise heart and
lung recordings. Figure 4.1 shows a block diagram of the ANC system.

Filtered Output

Adaptive Filter

Clean Signal Primary Signal

Noise

Reference Signal

Error Signal

Primary 
Sensor

Reference 
Sensor

Acoustic Enviroment Digital Signal Processing

Figure 4.1: Block diagram of the ANC system. The system is divided into two domains: the Acoustic
Environment, where signals are captured by sensors, and Digital Signal Processing, where adaptive filtering
occurs to suppress noise.
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The system consists of twomain components: the Acoustic Environment and theDigital
Signal Processing block.

• In the Acoustic Environment, thePrimary Sensor captures the clean signal s[n] (e.g.,
heart or lung sounds) along with noise np[n], resulting in the primary signal p[n] =
s[n] + np[n] (also called the noisy signal). The Reference Sensor records only noise
nr[n], producing the reference signal r[n] = nr[n].

• The reference signal is passed to the Adaptive Filter, which estimates the noise
component n̂′′

p[n] correlatedwith theprimary signal. This estimate is subtracted from
the primary signal to produce the Filtered Output ŝ[n] = s[n] + np[n]− n̂′′

p[n].

• The same output is used internally as the Error Signal e[n] for the adaptive
algorithm to update its coefficients. Although the error signal and the filtered output
are mathematically equivalent, the error signal serves a feedback role within the
adaptive filtering process.

This system configuration enables real-time noise reduction and dynamic adaptation to
changing noise conditions.

4.2 Grid Search for Parameter Optimisation

Grid search is a method for tuning hyperparameters by testing all possible combinations
fromapredefined range. For adaptive filtering (LMS,NLMS,RLS), this involves varying the
filter length and either the step size (µ) or forgetting factor (λ) to find the best setup.

The tested parameter ranges are shown in Table 4.1.

Table 4.1: Parameter ranges used in the grid search.

Parameter Range

Filter Length [1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 24, 32, 40, 60, 80, 100]
Step Size (µ) [0.0001, 0.001, 0.002, 0.005, 0.0075, 0.01, 0.015, 0.02, 0.025,

0.03, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
Forgetting Factor (λ) [0.92, 0.95, 0.97, 0.98, 0.985, 0.99, 0.995, 0.998, 0.9985,

0.999, 0.9992, 0.9995, 0.9997, 0.9999]
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Filter lengths vary from 1 to 100, while step sizes vary from 0.0001 to 0.9 and forgetting
factors vary from 0.92 to 0.9999. Each combination is evaluated by applying the filter and
calculating the resulting SNR. The configuration with the highest SNR is selected as the
optimal choice.

4.3 SinusWave

To establish a functional baseline, the filtering algorithms are first tested on synthetic data
consisting of artificially generated signals with additive noise. The objective is to verify the
basic functionality of the adaptive filters before applying them to real recordings.

4.3.1 System Setup

The simulateddata includes a clean10Hz sinewave signal,which is corruptedbyGaussian
noisewith standard deviation of 0.5. The parameters for each filtering algorithmare tuned
to evaluate their noise suppression capabilities. The system’s performance is assessed by
calculating the SNR before and after filtering. The tuning parameters used for this setup
were set using the gridsearchmethod and can be seen in the table 4.2.

Table 4.2: Tuning parameters for the adaptive filters.

Parameter Value

Sampling rate 8000 Hz
Filter length (LMS) 1
Filter length (NLMS) 1
Filter length (RLS) 1
Step size (LMS) 0.015
Step size (NLMS) 0.005
Forgetting factor (RLS) 0.9999

TheMATLAB code for setup can be found in appendix A.

4.3.2 Performance Evaluation

The figure 4.2 displays a side-by-side comparison of the clean signal, primary signal, and
error signals produced by the LMS, NLMS, and RLS filters.

Page 41 of 150



Gruppe 924 4. SystemDesign

0 2000 4000 6000 8000 10000 12000 14000 16000
Sample Number

-1
0
1

A
m

pl
itu

de Clean Signal

0 2000 4000 6000 8000 10000 12000 14000 16000
Sample Number

-1
0
1

A
m

pl
itu

de Primary Signal (Clean + Noise)

0 2000 4000 6000 8000 10000 12000 14000 16000
Sample Number

-1
0
1

A
m

pl
itu

de Error signal (LMS)

0 2000 4000 6000 8000 10000 12000 14000 16000
Sample Number

-1
0
1

A
m

pl
itu

de Error signal (NLMS)

0 2000 4000 6000 8000 10000 12000 14000 16000
Sample Number

-1
0
1

A
m

pl
itu

de Error signal (RLS)

Figure 4.2: Error signals - SinusWave.

Figure4.2 shows thatduring thefirst 500 samples, all filters exhibit ahighererror amplitude
but that the error amplitude gradually decrease approaching near-zero levels in later
samples. The RLS filter yields the cleanest error signals.

Figure 4.3 illustrates how the output SNR varies with filter length across all three
algorithms.
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Figure 4.3: Output SNR vs Filter Length - SinusWave.
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The output SNR as a function of filter length shows that as the filter length increases, the
output SNRof the filtered signals decreases, appearing to follow an exponential trend. The
highest output SNR is achieved with a filter length of 1 by the RLS algorithm at 38 dB,
followed by LMS and NLMS reaching 27 dB and 26 dB respectively.

Figure 4.4 shows themel spectrogram of the sinus wave.
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Figure 4.4:Mel Spectrogram - SinusWave.

The clean sinusoidal signal shows spectral content at very low frequencies, while the
primary signal includes noise from addedGaussian noise. The filtered outputs using LMS,
NLMS, and RLS recover the sinus wave leaving no visible noise behind.

Figure 4.5 shows the error convergence curves for the LMS, NLMS, and RLS algorithms
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when applied to a noisy sinusoidal signal.
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Figure 4.5: Error Convergence Curve - SinusWave.

The LMS filter converges fast, reaching steady-state after around 400 samples with a small
residual error. The NLMS filter converges a bit slower than LMS. The RLS filter shows the
fastest convergence, reducing the error significantly within the first sample and achieving
the lowest steady-state error overall. All curves are smoothed with a moving average
window to highlight general trends.

The SNR values before and after filtering for each algorithm are summarised in the table
4.3:

Table 4.3: Results after adaptive filtering for sinus wave.

FilteringMethod Output SNR (dB) SNR Improvment (dB)

No Filtering -1.7496 -
LMS 25.7225 27.4721
NLMS 24.3545 26.1041
RLS 36.8042 38.5539

The results demonstrate that the NLMS filter is the least effective filter whilst the LMS and
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RLS filters achieves the highest SNR improvement.

4.4 Synthetic Heartbeat

Following the sinus wave evaluation, the system is tested using synthetic heartbeat sound
generated using Matlab. The test setup includes controlled noise environments, allowing
for a systematic analysis of filter performance.

Below is an illustration of the experimental setup used in real-life conditions:

Figure 4.6: Experimental setup for heartbeat sound acquisition in noisy environments.

The requiredmixtures were combined digitally as follows:

Primary = Clean Signal+Noise (4.1)

Secondary = Noise (4.2)

These input mixture are meant to imitate what would happen if two microphones were
employed: Microphone 1 being placed directly on the chest near the heart to capture both
heartbeat andnoise, whileMicrophone 2 is positioned slightly away from thebodybut still
close to the chest, oriented toward the noise source to capture reference noise signals.
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4.4.1 System Setup

The tuning parameters used for this setup were set using grid search and can be seen in
the table 4.4.

Table 4.4: Tuning parameters for the adaptive filters.

Parameter Value

Sampling rate 8000 Hz
Filter length (LMS) 1
Filter length (NLMS) 1
Filter length (RLS) 1
Step size (LMS) 0.01
Step size (NLMS) 0.03
Forgetting factor (RLS) 0.9999

TheMATLAB code for this setup, including the simulation of signal andnoise aswell as the
implementation of the filtering algorithms, can be found in appendix A.

4.4.2 Performance Evaluation

The figure 4.7 displays a side-by-side comparison of the clean signal, primary signal, and
error signals produced by the LMS, NLMS, and RLS filters.
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Figure 4.7: Error signals - Synthetic Heartbeat.
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All filters significantly reduce the noise but both LMS and NLMS exhibit a slight periodic
error pattern during the synthetic heartbeats, whereas RLS produces the cleanest result,
demonstrating superior performance on the synthetic heartbeat signal.

Figure4.8 illustrates theoutputSNRasa functionoffilter lengthacrossall threealgorithms.
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Figure 4.8: Output SNR vs Filter Length - Synthetic Heartbeat.

The output SNR appears to decrease with the increase of the filter length. The greatest
output SNR is achieved with a filter length of 1 by the RLS algorithm at 35 dB, followed by
LMS and NLMS, both reaching around 16 dB.

Figure 4.9 shows themel spectrogram of the synthetic heartbeat.
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Figure 4.9:Mel Spectrogram - Synthetic Heartbeat.

The clean signal exhibits distinct, well-separated low-frequency heartbeat components.
In the primary signal, added noise spreads across the entire frequency range, masking the
heartbeat structure. Both the LMS and NLMS filters reduce the noise but leave a little
residual artifact, particularly around the final heartbeat at 4.75 seconds above 500 Hz.
In contrast, the RLS filter produces the cleanest mel spectrogram, effectively eliminating
visible noise.

Figure 4.10 shows theMSE convergence for the LMS, NLMS, and RLS filters.
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Figure 4.10: Error Convergence Curve - Synthetic Heartbeat.

The LMSandNLMSfilters start with a high initial error, which rapidly decreaseswithin the
first 200 samples before gradually stabilising at a lowMSE level. The RLS filter, in contrast,
achieves near-zero error almost immediately with minimal fluctuations throughout,
demonstrating its much faster convergence and higher precision.

The SNR values before and after filtering for each algorithm are summarised in the table
4.5:

Table 4.5: SNR improvement after adaptive filtering for Synthetic Heartbeat.

FilteringMethod Output SNR (dB) SNR Improvment (dB)

No Filtering -14.9449 -
LMS 16.6320 31.5769
NLMS 15.6893 30.6342
RLS 35.6963 50.6412

These controlled experiments facilitate the refinement of the adaptivefilteringparameters
before applying them to actual physiological recordings.
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4.5 FastICA on Synthetic Heartbeat

This section evaluates the performance of the FastICA algorithm, specifically using
deflation-based orthogonalisation, for estimating synthetic heartbeat from a controlled
noise environment.

4.5.1 System Setup

In this experiment, the noise was created as square-modulated narrowband noise with
a 2 Hz modulation rate, 50 Hz bandwidth centered at 500 Hz, and a sampling rate of 8
kHz. It was made by filtering white noise and turning it on and off with a square wave.
Unlike normal Gaussian noise, which FastICA can’t separate well, this modulated noise
has a changing pattern that helps FastICA work by giving it the non-Gaussian structure it
needs.

To simulate real-world sensor inputs, synthetic mixtures were digitally created by linearly
mixing a clean heartbeat recording and the modulated noise at different ratios. This
emulates the scenario where two sensors are placed at slightly different positions on the
body, each capturing a distinct linear mixture of the original sources.

Below is an illustration of the experimental setup used in real-life conditions:

Figure 4.11: Experimental setup for heartbeat sound acquisition in noisy environments for the purpose of
FastICA.
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Let s = (s1, s2)
T represent the source vector, where s1 is the clean heartbeat and s2 is the

noise component. The observed signal vector x = (x1, x2)
T is then constructed using a

knownmixingmatrixA ∈ R2×2: x = As (4.3)

The specificmixingmatrix used in this experiment is given in decibel (dB) scale as:

AdB =

[
A B

C D

]
=

[
−10 dB 0 dB
−18 dB −5 dB

]
(4.4)

The linear scale values are obtained by converting from dB using the formula:

A = 10
AdB
20 =

[
10

−10
20 10

0
20

10
−18
20 10

−5
20

]
=

[
0.3162 1

0.1259 0.5623

]
(4.5)

This corresponds to:

x1 = A · s1 +B · s2 (4.6)

x2 = C · s1 +D · s2 (4.7)

The signals x are then used as input to the FastICA algorithm, which attempts to estimate
the original sources by learning a demixingmatrixW such that:

y = Wx (4.8)

where y is the estimated source signals (heartbeat and noise seperated).

This controlled approach allows for quantitative evaluation of the source separation
performance, since the true sources are known and the clean heartbeat signal can be used
as a reference for calculating signal-to-noise ratio (SNR) improvements.

4.5.2 Performance Evaluation

Figure A.27 shows a comparison between the clean signal, the noisy primary signal, and
the error signal produced by the FastICA algorithm.
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Figure 4.12: Error signals—Heartbeat signal corrupted by squaremodulated noise.

Separated Signal 1 represents the estimated heartbeat component with near-zero error
plot. Separated Signal 2 represents the estimated noise component. FastICA successfully
estimates the original source components from themixed noisy inputs.

Figure4.13providesavisual analysis viaMel spectrograms,whichhelp illustratehowmuch
noise the FastICA algorithm removes across time and frequency.
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Figure 4.13:Mel spectrograms—Heartbeat signal in the presence of squaremodulated noise.

The clean signal shows distinct heartbeat patterns below 200 Hz, while the noisy signals
exhibit energy—particularly around 1000 Hz. Separated Signal 1 successfully recovers the
heartbeat, while Separated Signal 2 captures the noise.

Table 4.6 summarises the SNR improvements for FastICA.

Table 4.6: SNR improvement—Heartbeat signal with Noise.

FilteringMethod Output SNR (dB) SNR Improvement (dB)

No Filtering -0.72 -
FastICA (Separated Signal 1) 37.94 38.66
FastICA (Separated Signal 2) -6.74 -6.02
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This controlled experiment confirms the correct implementation of FastICA, ensuring its
reliability before applying it to real physiological data.
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The results show theperformanceof the adaptivenoise cancellation systemunder realistic
and challenging conditions. The objective is to verify that the systemmeets the functional
and technical requirements outlined in Chapter 3. While initial testing was conducted
using synthetic signals to validate baseline functionality, this stage focuses on real-world
applicability by analysing real heartbeat recordings contaminated with different types of
environmental and physiological noise.

5.1 Adaptive Filtering of Public Heart Sounds

To assess the effectiveness of the system in practical scenarios, normal heartbeat
recordings are sourced from publicly available databases, while noise samples were
provided by industry partners at Ai Health Highway India Pvt Ltd [24, 5]. These recordings
simulate various clinical andpre-hospital conditions inwhichnoise significantly degrades
signal quality. The aim is to evaluate how well the LMS, NLMS, and RLS adaptive filters
perform in estimating clean heartbeat signals from these noisy recordings.

The evaluation focuses on four representative noise types commonly encountered in real
clinical and field settings:

1. Artifacts — Transient noises caused by patient movement, clothing friction, or
stethoscopemanipulation.

2. Ambulance & Traffic — Sirens, engine noise, and road vibrations typical in
pre-hospital emergency response environments.

3. Conversation — Overlapping speech or staff communication during auscultation
procedures.
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4. Hospital Ambient Noises — Background sounds in a hospital ward such as
equipment beeps, footsteps, and ventilation systems.

Each noise type is evaluated individually to understand its specific impact on the adaptive
filter performance. The following section presents detailed results for the Artifacts
noise type, including parameter configurations, spectrogram analysis, error convergence
behavior, and quantitative SNR metrics. Results for the remaining noise types are
summarised in Table 5.3, with full details provided in the appendix.

5.1.1 Artifacts

This test case evaluates the system’s ability to denoise a heartbeat signal contaminated
with typical body movement artifacts, such as stethoscope handling noise and clothing
friction. Table 5.1 outlines the adaptive filter parameters optimised for this scenario using
grid search.

Table 5.1: Tuning parameters for adaptive filters— Artifacts.

Parameter Value

Sampling rate 16 kHz
Filter length (LMS) 12
Filter length (NLMS) 8
Filter length (RLS) 12
Step size (LMS) 0.001
Step size (NLMS) 0.001
Forgetting factor (RLS) 0.9999

Figure 5.1 shows a comparison between the clean signal, the noisy primary signal, and the
error signals produced by the LMS, NLMS, and RLS filters.
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Figure 5.1: Error signals - Heartbeat signal corrupted with Artifacts.

All three filters substantially reduce the artifact noise showing near zero error signal plots.

Figure 5.2 illustrates how the output SNR varies with filter length across all three
algorithms.
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Figure 5.2: Output SNR vs Filter Length - Heartbeat signal corrupted with Artifacts.

The RLS filter exhibits the best overall performance, achieving the highest SNR values
across most filter lengths. Its peak performance occurs at a filter length of approximately
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10, where it reaches about 31.5 dB, indicating optimal efficiency with shorter filter
configurations. Beyond this peak, the SNR gradually declines as the filter length increases,
dropping to roughly 24.5 dB at a length of 100.

The LMSfilter follows a similar trend in its SNR curve but attains a lowermaximumSNRof
around 29 dB at a filter length near 10.

Finally, the NLMS filter also shows a comparable shape in performance but peaks at a
significantly lower SNR of about 26 dB around a filter length of 9, making it the least
effective among the three.

The spectrogram in figure 5.3 provides a time-frequency view of how effectively each
algorithm removes noise from the signal.
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Figure 5.3:Mel Spectrogram - Heartbeat signal corrupted with Artifacts.
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The clean signal exhibits periodic low-frequency components characteristic of heartbeats.
The primary signal, contaminated by artifacts, shows substantial spectral energy across a
wide frequency range. All three adaptive filters reducemuchof themid- to high-frequency
noise. TheRLSfilter produces the cleanest spectrogram, leavingminimal noise above 1000
Hz.

Figure 5.4 presents the convergence of MSE over number of samples, demonstrating how
quickly and effectively each algorithm adapts.
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Figure 5.4: Error Convergence Curve - Heartbeat with Artifacts.

Fromapractical standpoint, theMSEvalues remainmostly below 5×10−3 across the entire
duration—indicating that all three algorithms achieve excellent performance. To better
illustrate the scale of the fluctuations across the samples, a zoomed-out view is provided
in figure 5.5.
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Figure 5.5: Zoomed-out error convergence curves for heartbeat signal with artifacts.

As shown, the error curves appear as nearly flat lines approaching zero, clearly
demonstrating rapid convergence to a steady state. Although the RLS algorithm shows
slightly better performance, all three methods effectively suppress the artifacts from the
heartbeat signal.

Table 5.2 shows the SNR improvements for eachmethod.

Table 5.2: SNR improvement—Heartbeat with Artifacts.

FilteringMethod Output SNR (dB) SNR Improvement (dB)

No Filtering -3.87 -
LMS 29.26 33.13
NLMS 27.66 31.53
RLS 31.44 35.31

Based on the results in table 5.2, the RLS filter achieves the highest output SNR and SNR
improvement, making it themost effective method for artifact removal in this case.

5.1.2 Performance Across Different Noise Types

While the detailed analysis of the Artifacts noise type demonstrates the effectiveness of
adaptive filtering in removing patient movement and equipment handling noise, it is
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important to examine how the system performs across all noise environments. Table 5.3
provides a comprehensive summary of SNR improvements achieved by each algorithm
across all four noise types.

Table 5.3: Performance summary across all noise types (best performer in bold).

Noise Type Input SNR (dB) Output SNR (dB)

LMS NLMS RLS

Artifacts -3.87 29.26 27.66 31.44
Ambulance & Traffic -4.64 19.75 18.32 30.33
Conversation -0.03 37.86 37.85 44.21
Hospital Ambient -0.26 29.44 30.46 30.27

As evident from Table 5.3, the adaptive filtering system effectively enhances heartbeat
signals across all noise environments tested. The RLS algorithm consistently outperforms
both LMS and NLMS in three out of four noise scenarios, with particular strength in
handling conversation noise where it achieves an exceptional 44.21 dB output SNR. For
hospital ambient noise, the NLMS filter slightly outperforms the others, achieving 30.46
dB output SNR.

Themost challengingnoiseenvironmentappears tobe theambulanceand trafficscenario,
where input SNR is lowest at -4.64 dB. Even in this demanding situation, the RLS filter
achieves a remarkable 30.33 dB output SNR, demonstrating the system’s robustness in
emergency transport conditions.

These results confirm that adaptive filtering provides an effective solution for heart sound
denoising across diverse clinical environments. The detailed analysis for the remaining
noise types can be found in Appendix A.2.

5.2 General Adaptive Filter

This section examines a general-purpose adaptive filter configuration with fixed
parameters for heart sound denoising across diverse noise environments. The objective
is to establish a single robust parameter set achieving consistent SNR improvement of at
least 20 dB across all tested noise scenarios without requiring type-specific tuning.
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5.2.1 Fixed Hyperparameter Selection

Performance analysis across both experimental and public heart sound datasets yielded
the following optimal general parameter configuration:

Table 5.4: General adaptive filter parameters applicable across noise types.

Parameter Value

Sampling rate 16 kHz
Filter length (LMS) 8
Filter length (NLMS) 8
Filter length (RLS) 8
Step size (LMS) 0.1
Step size (NLMS) 0.01
Forgetting factor (RLS) 0.9999

These parameters represent a balance between computational efficiency and consistent
performance across varied noise characteristics. The moderate filter length of 8 provided
optimal results across most scenarios, while the selected step sizes and forgetting factor
demonstrated stability across different signal-to-noise ratios.

5.2.2 Performance on Experimental Recordings

Table 5.5 presents a comparison of fixed versus tuned filter performance across all noise
types in the experimental heart sound recordings:

Table 5.5: Fixed vs. tuned parameters performance (Output SNR in dB) on experimental recordings.

Noise Type Input SNR (dB) LMS NLMS RLS

Fixed Tuned Fixed Tuned Fixed Tuned

Ambient Noise -8.82 5.10 13.98 6.96 14.02 25.56 26.23
Baby Crying -8.90 20.22 22.84 18.12 23.53 44.91 46.26
Drilling -0.23 22.09 26.15 21.74 27.43 36.18 41.43
Hammering -1.46 21.92 25.63 19.74 26.91 43.26 45.58
Speech -9.30 9.55 15.28 12.58 17.64 36.45 38.37

Average 15.78 20.78 15.83 21.91 37.27 39.57

The experimental results reveal that theRLS algorithmusingfixedparameters consistently
achieves SNR improvements exceeding 25 dB across all noise types, including the
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challenging ambient noise and speech scenarios. LMS and NLMS algorithms show more
significant performance variation between fixed and tuned parameters, with average
differences of 5.00 dB and 6.08 dB respectively. The RLS algorithm demonstrates
the smallest average difference (2.30 dB), indicating its inherent robustness with fixed
parameters across diverse noise environments. For ambient noise and speech scenarios,
LMS and NLMS with fixed parameters fall substantially short of the RLS performance,
highlighting the limitations of simpler algorithms with generalised parameters.

5.2.3 Performance on Public Heart Sound Dataset

Extending the analysis to the public heart sound dataset with diverse clinical noise types
yields additional insights:

Table 5.6: Fixed vs. tuned parameters performance (Output SNR in dB) on public heart sound dataset.

Noise Type Input SNR (dB) LMS NLMS RLS

Fixed Tuned Fixed Tuned Fixed Tuned

Artifacts -3.87 25.50 29.26 25.49 27.66 32.12 31.44
Ambulance & Traffic -4.64 16.69 19.75 16.65 18.31 18.29 30.33
Conversation -0.03 36.95 37.86 36.96 37.85 36.03 44.21
Hospital Ambient -0.26 20.67 29.44 23.44 30.46 32.50 30.27

Average 24.95 29.08 25.64 28.57 29.74 34.06

For the public dataset, the RLS algorithm with fixed parameters yields exceptional
performance in artifacts, conversation, and hospital ambient noise scenarios, even
outperforming tuned parameters in the hospital ambient case. The most challenging
scenario forall algorithmswithfixedparameters is ambulanceand trafficnoise,whereonly
parameter tuning enables the RLS algorithm to exceed 30 dB SNR improvement. Unlike in
the experimental recordings, theRLSalgorithmshows similar averagedifferencesbetween
fixed and tuned parameters (4.32 dB) as the LMS algorithm (4.13 dB), suggesting certain
real-world clinical noises benefit more from customised parameter selection.

5.2.4 Combined Performance Analysis

To evaluate the overall effectiveness of the general adaptive filter parameters, Table 5.7
presents the aggregated performancemetrics across both datasets:
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Table 5.7: Consolidated performance analysis across both datasets (Output SNR in dB).

Dataset LMS NLMS RLS

Fixed Tuned Fixed Tuned Fixed Tuned

Experimental (Avg. SNR) 15.78 20.78 15.83 21.91 37.27 39.57
Public (Avg. SNR) 24.95 29.08 25.64 28.57 29.74 34.06

Overall Avg. SNR 20.37 24.93 20.74 25.24 33.51 36.82
%of Tuned Performance 81.7% 82.2% 91.0%

TheRLS algorithmwith fixed parameters achieves 91.0%of the performance possiblewith
optimal tuning, significantly outperformingLMS (81.7%) andNLMS (82.2%) in this regard.
While LMS and NLMS with fixed parameters deliver acceptable average performance
(20.37 dB and 20.74 dB respectively), they fail to meet the 20 dB SNR improvement for
several individual noise scenarios. The RLS algorithm with fixed parameters consistently
exceeds the targetminimumperformanceacrossmost scenarios,withonly theambulance
and traffic noise in the public dataset presenting a significant challenge.

Based on these results, the RLS algorithm with filter length 8 and forgetting factor
0.9999 provides themost robust general-purpose configuration for heart sound denoising
across diverse noise environments. This configuration offers an optimal balance
between performance consistency and implementation simplicity, eliminating the need
for scenario-specificparameter tuningwhiledeliveringnear-optimal results inmost cases.

5.3 FastICA for Heart Sound Data

This section evaluates the performance of the FastICA algorithm, employing
deflation-based orthogonalisation to estimate clean heart sound signals from noisy
recordings. We analyse both publicly available data and experimental recordings to
demonstrate the algorithm’s effectiveness.

5.3.1 Digitally createdmixture of heart and artifact sound

This test case evaluates the system’s ability to denoise a heartbeat signal contaminated
with typical body movement artifacts, such as stethoscope handling noise and clothing
friction. The requiredmixtures were digitally generated by combining the clean heartbeat
recordings with noise signals at differentmixing ratios, simulating the effect of having two
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sensors placed at slightly different locations, each capturing adistinct linearmixture of the
underlying source with no delay.

Thespectrograminfigure5.6providesa time-frequencyviewofhoweffectively theFastICA
algorithm removes noise from the signal.
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Figure 5.6:Mel Spectrograms showing FastICA estimation of heartbeat signal corrupted with artifacts.

The clean signal exhibits clear, periodic low-frequency components characteristic of
heartbeats. Noisy signals display the heartbeats corrupted by artifacts. Separated Signal
1 closely matches the original clean heartbeat pattern, demonstrating successful noise
removal. Separated Signal 2 isolates the artifacts. This visual representation confirms
FastICA’s ability to accurately estimate heartbeat sound frommixed recordings.
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Table 5.8 summarises the SNR improvements achieved for each noise type across public
datasets.

Table 5.8: Comprehensive SNR improvement summary for FastICA across different noise types.

Noise Type Input SNR (dB) Output SNR (dB) SNR Improvement (dB)

Artifacts -1.40 47.20 48.60
Ambulance & Traffic -9.05 44.85 53.90
Conversation -15.91 38.42 54.33
Hospital Ambient -8.68 41.78 50.46

Average -8.76 43.56 51.82

Detailed analyses for the ambulance & traffic, conversation, and hospital ambient noise
are provided in Appendix A.4.

5.3.2 Simulating real world by added delay

Using the same digital mixture of heart and artifact sounds, a 10 ms delay is introduced
between Noisy Signal 1 and Noisy Signal 2.
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Figure 5.7:Mel Spectrograms showing FastICA estimation of heartbeat signal corruptedwith artifacts with 10
ms delay between noisy 1 and 2

The spectrograms show that the fastICA fails in separating the components, because
FastICA cannot track time-varyingmixtures effectively.

5.3.3 Real world recording

FastICA was tested on real-world recordings in which speech interference corrupts the
heartbeat signal. Twomicrophones were placed on the chest—one positioned close to the
heart, and the other slightly farther away, capturing the heartbeat at a lower gain.
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Figure 5.8:Mel Spectrograms showing FastICA estimationof heartbeat signal corruptedwith speech from real
world.

The spectrograms show that the fastICA fails in separating components. Compared to the
digitallymixed case, highlighting the increased complexity of real-world audio separation.
One reason it doesn’twork is because two identicalmicrophones capturing the sameaudio
will still have a difference in real life as shown in figure 5.9.
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Figure 5.9: Waveform of mic 1 and mic 2 capturing ambient noise subtracted from each other still leaves us
with noise.
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Even though the error signal should be zero in theory as they are capturing the
same ambient noise. In real-world settings two separate mics rarely capture perfectly
synchronised audio due to slight hardware differences, clock drift, and unsynchronised
recording starts, making precise alignment and separation not possible with FastICA.

5.4 DenoisingMethods on Lung Sound Data

To assess the performance of different noise reduction techniques on lung sound data,
recordings were obtained from publicly available databases, while noise samples were
providedby industrypartnersatAiHealthHighway IndiaPvtLtd [24, 5]. In this experiment,
only hospital ambient noise is considered, including machinery beeps, footsteps, and
background conversations. The required signals for FastICA were digitally generated by
combining the clean heartbeat recordings with noise signals at different mixing ratios.

5.4.1 Hospital Ambient Noise

Both adaptive filtering and FastICAwere applied to isolate lung sounds consisting of three
consecutive inhalations corrupted by hospital ambient noise. For the adaptive filtering
approach, parameters were optimised using grid search, as summarised in Table 5.9.

Table 5.9: Tuning parameters for adaptive filters— Lung Sounds.

Parameter Value

Sampling rate 16 kHz
Filter length (LMS) 24
Filter length (NLMS) 24
Filter length (RLS) 32
Step size (LMS) 0.004
Step size (NLMS) 0.0015
Forgetting factor (RLS) 0.9998

Figure 5.10 presents a side-by-side comparison of the error signals produced by both
methods.
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Figure 5.10: Comparison of error signals— Lung sound corrupted by Hospital Ambient Noise.

In the adaptive filtering approach (left), all three filters (LMS,NLMS, andRLS) significantly
reduce hospital ambient noise, with the RLS filter showing the cleanest error signal. For
the FastICA approach (right), the algorithm successfully estimates the original source
components from the mixed noisy inputs, with Separated Signal 1 representing the
estimated lung component with near-zero error and Separated Signal 2 representing the
estimated noise component.

Figure 5.11 illustrates how the output SNR varies with filter length for each adaptive
filtering algorithm.
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Figure 5.11: Output SNR vs Filter Length— Adaptive filtering of lung sounds with Hospital Ambient Noise.
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The RLS filter consistently outperforms LMS and NLMS across all filter lengths,
maintaining a 1-1.5 dB advantage throughout. All three filters show rapid SNR
improvement from negative to positive values as filter length increases from 0 to 15, with
RLS peaking at approximately 7.8 dB around filter lengths 30-40. LMS and NLMS perform
almost identically, reachingmaximumSNR values of about 6.5-7 dB at filter lengths 15-20.

Mel spectrograms provide time-frequency representations of both methods’ ability to
attenuate background noise while preserving lung sound characteristics.
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(b) FastICAmethod

Figure 5.12: Mel spectrograms of lung sounds before and after noise reduction using adaptive filtering and
FastICA.

In both methods, the clean signal displays three distinct inhalations occurring at
approximately 2.5, 6.5, and 11.5 seconds, with lung sound components concentrated
primarily in the 400-1400 Hz frequency range. Both approaches successfully recover
the original signal structure, significantly reducing noise across the spectrum. In the
adaptive filtering approach, there are no obvious performance differences between the
threealgorithmsbasedon these spectrograms. For theFastICAapproach, SeparatedSignal
1 closelymatches theoriginal clean lung signal,while SeparatedSignal 2 effectively isolates
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the hospital ambient noise.

5.4.2 Performance Comparison

Table 5.10 presents a comprehensive comparison of SNR improvements achieved by all
methods.

Table 5.10: SNR improvement comparison— Lung sounds with hospital ambient noise.

Method Initial SNR (dB) Output SNR (dB) SNR Improvement (dB)

Adaptive Filtering
No Filtering -14.46 -
LMS -14.46 7.09 21.55
NLMS -14.46 6.84 21.30
RLS -14.46 7.67 22.13

FastICA
No Filtering -20.37 -
FastICA -20.37 30.05 50.42

FastICA and adaptive filtering both effectively reduce hospital ambient noise in lung
sound recordings. Among adaptive methods, RLS performs best with a 25.11 dB SNR
improvement, followed byNLMS (24.84 dB) and LMS (23.17 dB). FastICA achieved an SNR
improvement of 50.42 dB.

5.4.3 Fixed Hyperparameters

To evaluate the practicality of using a general adaptive filter configuration, fixed
hyperparameter settings were tested on lung sound recordings contaminated with
hospital ambientnoise. Thegoalwas to assesshowwell thesefixedconfigurationsperform
compared to their individually tuned counterparts.

Table 5.11 presents a comparison of output SNR values (in dB) achieved by LMS, NLMS,
and RLS algorithms under both fixed and tuned hyperparameter settings.
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Table 5.11: Comparison of output SNR (in dB) for fixed vs. tuned hyperparameters under hospital ambient
noise. The last row shows the percentage of tuned performance retained by the fixed configuration.

Noise Type LMS NLMS RLS

Fixed Tuned Fixed Tuned Fixed Tuned

Hospital ambient noise 3.96 7.09 4.46 6.84 5.12 7.67

%of Tuned Performance 55.85% 65.20% 66.73%

Thefinal rowshows theperformanceof thefixedconfigurationasapercentageof the tuned
performance, highlighting how close eachmethod comes to its optimal configuration.
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Discussion 6
This chapter critically evaluates the results presented in Chapter 5 against the
requirements outlined in Chapter 3. The discussion examines the effectiveness of
the implemented signal enhancement techniques, considers their limitations, and
explores the theoretical and practical implications for clinical applications.

6.1 Evaluation of Results Against Requirements

Adaptive filtering with fixed parameters and FastICA both surpassed the 20 dB SNR
improvement requirement. RLS delivered the best results, averaging around 34 dB due to
its fast convergence and tracking ability. LMS and NLMS showedmoderate performance,
averaging 20.37 dB and 20.74 dB respectively, but failed to meet the requirement under
noise conditions like ambient noise and speech.

While tuned parameters achieved optimal performance for each specific noise type
through grid search optimisation, this approach is impractical for real-world deployment
as it requires prior knowledge of the noise characteristics and computational resources for
parameter optimisation. Thefixedparameter analysis revealed thatRLSmaintained91.0%
of its optimal tuned performance, significantly outperforming LMS (81.7%) and NLMS
(82.2%) in robustness. This finding is crucial for practical deployment, as it eliminates the
need for scenario-specific parameter tuning andmakes the system usable without expert
knowledge.

FastICA achieved an average SNR improvement of 51.82 dB across the four tested noise
typeswhenapplied to digitallymixed signals. This highlights FastICA’s theoretical strength
in exploiting statistical independence for blind source separation. However, FastICA’s
practical applicabilitywas limitedwhen testedon real recordingswhere it failed toproduce
meaningful results. Potential reasons for this discrepancy are discussed in Section 6.3.

Page 74 of 150



6.2. Adaptive Filtering: Theory vs. Practice Aalborg University

Although the primary focus was heart sound enhancement, early tests on lung sounds
showed promising results. Adaptive filtering and FastICA improved lung sound quality
corrupted by hospital ambient noise. The RLS algorithm achieved a 22.13 dB SNR
improvement, while LMS and NLMS achieved 21.55 dB and 21.30 dB, respectively.
Fixed-parameter adaptive filters still provided moderate noise reduction, retaining
55.85%, 65.20%, and 66.73% of the tuned performance for LMS, NLMS, and RLS. However,
these fixed parameters were originally tuned for heart sounds, not lung sounds. Ideally,
lung sound enhancement should be guided by dedicated tuning experiments because of
their different characteristics. Due to time constraints, this was not done here, so future
work should optimize parameters specifically for lung sounds.

FastICA achieved an SNR improvement of 50.42 dB in the digitally mixed lung sound
scenario, though as with the heart sounds this result was not replicated in real-world
recordings.

6.2 Adaptive Filtering: Theory vs. Practice

Among the adaptive filtering algorithms tested, RLS consistently demonstrated superior
performance but at the cost of higher computational complexity. This trade-off is
important to consider in practical applications, especially for portable or battery-powered
devices. The LMS algorithm, while simpler and less computationally intensive,
provided reasonable performance in many scenarios and might be preferable in
resource-constrained implementations.

The NLMS algorithm, which normalises the step size by the power of the input signal, did
not consistently outperform standard LMS despite its theoretical advantages in handling
signals with varying power levels.

A likelymistake occurred in the preprocessing steps, such as normalising the input signals
before filtering, because this removed the natural power differences between signals that
the NLMS filter relies on to adjust properly. Therefore, normalisation should have been
reserved only for the plotting stage tomake the data visually comparablewithout affecting
the filter’s operation.
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6.3 FastICA: Theory vs. Practice

In theoryFastICAworkswell in separatingheart/lung signals fromnoise. However, FastICA
does have some limitations that are important to keep in mind. One issue is that it can’t
figure out the exact scale or order of the separated components on its own. This means
someextrapost-processing isneeded tofigureoutwhich component actually corresponds
to the heart/lung sound.

Another assumption FastICA makes is that the mixing process, how sources combine in
the microphones, is linear and stationary meaning it doesn’t change over time [26, 27].
Testing revealed that even a 10 ms mismatch between input signals was enough to cause
the algorithm to break down, proving its sensitivity to time alignment.

This is not an issuewhen combining the signals digitally but in practice two identicalmics
rarely capture perfectly synchronised audio due to slight hardware differences, clock drift,
and unsynchronised recording starts.

On top of that, real environments are always changing. People move around, background
noise changes, and rooms affect how sound travels. Even if nothing is moving, sound
still hits each mic differently because of things like walls, echoes, and where the mics
are placed. This makes the mixing non-stationary, which breaks one of the main things
FastICA relies on [26, 27].

To sum up, while FastICA has strong theoretical foundations, it lacks robustness in
real-world applications. This isn’t too surprising, since the field of source separation
has come a long way since FastICA was introduced back in the late ’90s [15, 28]. These
days, deep learning methods have taken the lead. They are better at handling the messy,
unpredictable nature of real-life sound environments and generally performmore reliably
than older approaches like ICA [29].

6.4 Comparison of Methods

Both adaptive filtering and FastICA can enhance heart and lung sounds, but adaptive
filters are currently the better choice for practical use. RLS in particular offers strong
performance with known trade-offs in computational cost. LMS and NLMS are simpler
but still effective inmany cases.
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FastICA, while powerful in theory and working well on digitally mixed signals, did not
performwell with real recordings due to challenges like signalmisalignment and changing
acoustic conditions. Because of this, adaptive filtering remains the preferredmethod until
FastICA or other ICA variants can be adapted for real-life scenarios.

In summary, adaptive filtering is currently more reliable and easier to implement, making
it the practical option for heart and lung sound enhancement in clinical settings.

6.5 Limitations and FutureWork

Even though the results were encouraging, there are a few important limitations that
should be pointed out. First, most of the evaluation was based on SNR values. While
SNR is a helpful way to measure signal quality from a technical point of view, it doesn’t
necessarily reflect how the signals sound to a human listener orwhether they’re still useful
for medical diagnosis. It would be a good idea for future work to include some kind of
feedback involving experts in the medical field to check if the important features of the
heart or lung sounds are still there after processing.

Another limitation is that this project focused only on normal heart sounds. This choice
made sense given the available data and the goal of avoiding false negatives in screening,
but it alsomeans we don’t yet know howwell themethods would work on abnormal heart
sounds. Early tests with normal lung sounds showed potential, so it’s definitely worth
exploring further.

The current setup doesn’t support real-time processing, which would be really important
for clinical or mobile applications. Going forward, it would make sense to work on
optimising the code for real-time use and trying it out on portable devices, like the ones
that might be used in clinics or in the field.

When talking about real time processing looking into the computational complexity is
another important factor, especiallywhen comparingfiltering algorithms, as it affects how
suitable each algorithm is for real-time or embedded applications.

Furthermore,while SNRservedas themainperformance requirement in thisproject,more
requirements could have been added to get a fuller understanding of how the system
performs. For instance, the MSE provides a measure of how close the filtered signal is
to the desired one, and the convergence rate shows how quickly the algorithm adapts to
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changes in the environment both of which are valuable in real-time or rapidly changing
conditions. Because of limited time, these additional requirements were not included in
the evaluation. However, incorporating them in future work would help make the system
more reliable, especially for real-world use inmedical settings.
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Conclusion 7
Adaptive filtering has been investigated for its ability to enhance heart and lung sound
recordings inboth clinical andnon-clinical noisy environments. Themotivation stemmed
from the need to support heart sound screening in resource-constrained settings, such
as rural India, where environmental and equipment-related noise often compromises
recording quality.

The problem statement to addresswas as following: “How can adaptive noise cancellation
techniques improve heart and lung sound recordings in clinical and non-clinical
environments?” Results showed that among the LMS, NLMS, and RLS adaptive filtering
methods, all were effective in reducing noise and improving signal clarity, with RLS
standing out. RLS consistently achieved substantial SNR improvements of around 34 dB
on average across a variety of noise types, facilitated by hyperparameter tuning through
grid search.

Moreover, a general RLS filter configuration was identified that performs well across
multiple noise conditions, suggesting that a single fixed set of hyperparameters can
reliably enhance heart sounds without the need for frequent recalibration. This capability
is critical for real-world applications, where noise characteristics are often unpredictable.

In contrast, alternative approaches such as FastICA, while effective in controlled
simulations, proved unreliable with real-world recordings due to sensitivity to
environmental variability and signal mismatches.

In conclusion, adaptive filtering especially the RLS algorithm offers a practical, robust,
and effective solution for enhancing heart and lung sound recordings in diverse noisy
environments. These improvements support better auscultation quality and potentially
more accurate clinical assessments in both well-equipped healthcare facilities and
resource-constrained settings.
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Appendix: Simulations and

Test Reports A
Link tomatlab code for figures and simulations used in the project: https://github.com/
elomarjc/new_adaptivefilter

A.1 Measurement of Heart Sound Recording Locations

The goal of this measurement is to evaluate various chest locations for heart sound
recording and determine the optimal site for signal clarity and diagnostic utility. The
standard auscultation points include the Mitral, Aortic, Pulmonic, Tricuspid areas, and
Erb’s Point.

Setup

Heart sounds were recorded in Audacity using a Presonus PRM1 precision measurement
microphone connected to an Alesis MultiMix 4 USB audio interface. Recordings were
conducted in a quiet environment with the subject in a upright sitting position. The
measurement setup is shown in figure A.1.
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Figure A.1:Measurement setup for heart sound acquisition using PRM1 andMultiMix 4 USB

FigureA.2 shows a comparisonbetweena real-life example of auscultation site positioning
on a human subject and a corresponding anatomical diagram.

FigureA.2: Comparisonbetweenpractical andanatomical heart soundauscultation locations (modified from
[25]

Post-Processing in Audacity

After recording, the following steps were performed in Audacity to obtain clean heart
soundmeasurements:

• Normalise the entire audio track to ensure consistent volume levels.

• Select a short segment containing only ambient noise and generate a noise profile.
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• Applynoise reduction to theentire trackusing thenoiseprofile,witha reduction level
of 48 dB.

Figure A.3 illustrates the effect of post-processing on the heart sound recordings.
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Figure A.3:Waveform andMel Spectrogram comparison before and after Audacity post-processing

The left panel shows the raw waveform and Mel spectrogram captured directly from the
microphone, which contains ambient noise and inconsistent amplitude. The right panel
displays the same signal after normalisation and noise reduction in Audacity, highlighting
improved clarity and reduced background interference.

Mitral Area

Located at the apex of the heart, typically at the 5th intercostal space along the
midclavicular line. This site provided the strongest S1 (lub) signal.
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Figure A.4: Heart sound waveform recorded at theMitral Area

Aortic Area

Positioned in the right 2nd intercostal space at the sternal border. Dominant S2 (dub)
sounds were observed, making it suitable for high-frequencymurmurs.
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Figure A.5: Heart sound waveform recorded at the Aortic Area

Erb’s Point

Located at the 3rd left intercostal space, Erb’s Point offered a balanced audibility of both S1
and S2 sounds, ideal for general analysis.
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Figure A.6: Heart sound waveform recorded at Erb’s Point

Tricuspid Area

Located at the lower left sternal border (4th intercostal space), this area highlighted
right-sided heart sounds and tricuspid valve activity.
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Figure A.7: Heart sound waveform recorded at the Tricuspid Area
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Pulmonic Area

Situated at the left 2nd intercostal space near the sternum. This site revealed a clear S2 and
in some cases a split S2.
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Figure A.8: Heart sound waveform recorded at the Pulmonic Area

Summary Table
Table A.1: Summary of standard auscultation sites for heart sound recording, consistent with [30].

Location What You Hear Best Use For

Mitral Area S1 (lub) Loudest heartbeat, strong S1
Aortic Area S2 (dub) High-pitchedmurmurs, S2 focus
Erb’s Point S1 and S2 (balanced) Best for hearing both lub-dub clearly
Tricuspid Area Right-sided heart sounds S1, tricuspidmurmurs
Pulmonic Area S2, split S2 Pulmonary valve sounds

Results

Each auscultation site exhibited distinct acoustic characteristics. The Mitral Area
produced the most prominent S1 (lub) sounds, while the Aortic and Pulmonic
Areas highlighted S2 (dub) components more clearly. Erb’s Point offered a balanced
representation of both heart sounds, making it well-suited for general-purpose recording.
Based on these findings, Erb’s Point will be used in this project as it provides the clearest
andmost consistent capture of the complete lub-dub cycle.

A.2 Additional Adaptive Filter Results For Public Heart Data

This appendix provides detailed analysis of the adaptive filter performance on the
remaining three noise types: Ambulance & Traffic, Conversation, and Hospital Ambient
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Noises. For each noise type, we present parameter configurations, error signals, SNR vs.
filter length analysis, spectrograms, convergence behavior, and quantitative results.

A.2.1 Ambulance & Traffic

This scenario simulatesurbanemergency conditionswhere sirens and roadnoise interfere
with heartbeat recordings. Table A.2 lists the parameters used for this environment.

Table A.2: Tuning parameters for adaptive filters— Ambulance & Traffic.

Parameter Value

Sampling rate 16 kHz
Filter length (LMS) 16
Filter length (NLMS) 16
Filter length (RLS) 24
Step size (LMS) 0.1
Step size (NLMS) 0.005
Forgetting factor (RLS) 0.9999

Figure A.9 displays the error signals obtained after filtering.

0 1 2 3 4 5 6 7 8 9
Sample Number 104

-1
0
1

A
m

pl
itu

de Clean Signal

0 1 2 3 4 5 6 7 8 9
Sample Number 104

-1
0
1

A
m

pl
itu

de Primary Signal (Clean + Noise)

0 1 2 3 4 5 6 7 8 9
Sample Number 104

-1
0
1

A
m

pl
itu

de Error signal (LMS)

0 1 2 3 4 5 6 7 8 9
Sample Number 104

-1
0
1

A
m

pl
itu

de Error signal (NLMS)

0 1 2 3 4 5 6 7 8 9
Sample Number 104

-1
0
1

A
m

pl
itu

de Error signal (RLS)

Figure A.9: Error signals - Heartbeat signal corrupted with Ambulance & Traffic.

All three filters significantly reduce the ambulance & traffic noise, with the RLS filter
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showing the cleanest error signal among them.

Figure A.10 presents output SNR across varying filter lengths.
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Figure A.10: Output SNR vs Filter Length - Heartbeat signal corrupted with Ambulance & Traffic.

The RLS filter achieves the highest SNR across all filter lengths, peaking around 30
dB at filter lengths of 25–40, and maintaining a substantial performance advantage of
approximately 10 dB over both LMS and NLMS throughout the entire range.

The LMS filter shows moderate performance, with a maximum SNR of approximately 20
dB at filter lengths around 15–20, after which it gradually declines.

Similarly, the NLMS filter reaches its peak SNR of about 18 dB at filter lengths of 15–20,
followed by a slight decrease in performance. Both LMS and NLMS exhibit comparable
behavior, with their performance curves nearly converging as filter length increases
beyond 60.

Figure A.11 shows theMel spectrograms post-filtering.
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Figure A.11:Mel Spectrogram - Heartbeat signal corrupted with Ambulance & Traffic.

The clean signal exhibits clear, periodic low-frequency components characteristic of
heartbeats, primarily concentrated below 200 Hz. In contrast, the primary signal,
contaminated by ambulance and traffic noise, shows substantial spectral energy between
300–2000 Hz. All three adaptive filters effectively attenuate much of this mid- to
high-frequency noise. Among them, the RLS filter produces the cleanest spectrogram,
closely resembling the clean signal. The LMS filter also performs well but retains a faint
spectral remnant, particularly around 500 Hz at the beginning of the signal. The NLMS
filter exhibits the same artifact, though to a slightly lesser extent than LMS.

The convergence behavior of each algorithm is illustrated in figure A.12.
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Figure A.12: Error Convergence Curve - Heartbeat with Ambulance & Traffic.

The RLS algorithm demonstrates superior performance, converging faster than the
alternatives. Its MSE drops rapidly and reaches a relatively stable state by around sample
1000. The RLSmaintains the lowest overall steady-state error among the three algorithms,
hovering around 0.002-0.003 for much of the latter portion of the samples.

Both LMS and NLMS algorithms exhibit very similar convergence patterns, with nearly
identical behavior throughout the sample range. They both experience higher initial
error peaks (reaching approximately 0.02MSE around sample 500) and reach their steady
states around sample 1000. Their final steady-state errors appear slightly higher than RLS,
generally maintaining around 0.003-0.004MSE.

All three algorithms show some fluctuation in their error patterns, particularly between
samples 400-600 where each experiences a notable peak in MSE, likely indicating a
challenging section in the input signal where the ambulance and traffic noise may have
beenmore prominent or complex.

Table A.3 quantifies the SNR improvements for eachmethod.
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Table A.3: SNR improvement—Heartbeat with Ambulance & Traffic Noise.

FilteringMethod Output SNR (dB) SNR Improvement (dB)

No Filtering -4.6374 -
LMS 19.7498 24.3872
NLMS 18.3145 22.9519
RLS 30.3316 34.9690

Based on the results in table A.3, the RLS filter achieves the highest output SNRmaking it
themost effective method for ambulance & traffic noise removal in this case.

A.2.2 Conversation

This test simulates a clinical environment where conversations among staffmay interfere
with heartbeat recordings. Table A.4 details the selected parameters.

Table A.4: Tuning parameters for adaptive filters— Conversation.

Parameter Value

Sampling rate 16 kHz
Filter length (LMS) 8
Filter length (NLMS) 8
Filter length (RLS) 10
Step size (LMS) 0.3
Step size (NLMS) 0.03
Forgetting factor (RLS) 0.9999

Figure A.13 shows the error signals resulting from the filtering process.
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Figure A.13: Error signals - Heartbeat signal corrupted with Conversation noise.

All three filters significantly reduce the conversation noise, with the RLS filter showing the
cleanest error signal among them.

Figure A.14 demonstrates how output SNR changes with filter length.
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Figure A.14: Output SNR vs Filter Length - Heartbeat signal corrupted with Conversation noise.
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The RLS filter demonstrates superior performance at short filter lengths, reaching a peak
SNRofapproximately44dBatfilter lengthsaround8-10whenprocessingheartbeat signals
corrupted with conversation noise. However, its performance deteriorates rapidly as filter
length increases, dropping to approximately 27 dB at M=100.

In contrast, both LMS andNLMSfilters exhibit similar behavior, achievingmaximumSNR
values around 37-38 dB at filter lengths of 10-15, followed by a more gradual decline.
Notably, as filter length exceeds 40, LMS and NLMS consistently outperform RLS, with
their performance curvesmaintaining relatively stable SNR values above 34 dB even at the
maximum filter length of 100, while the RLS filter shows significant degradation in noise
cancellation capability.

Figure A.15 showsMel spectrograms of the filtered outputs.
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Figure A.15:Mel Spectrogram - Heartbeat signal corrupted with Conversation noise.
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The clean signal displaysperiodic low-frequency components characteristic of heartbeats,
primarily concentrated below 200 Hz. The primary signal, corrupted by conversation
noise, introduces prominent spectral energy between 300–2000 Hz. The LMS, NLMS, and
RLS filter effectively suppress this interference. Among them, the RLS filter achieves the
most accurate reconstruction, producing a spectrogram that closely resembles the clean
signal. While the LMS and NLMS filters also perform well and appear nearly identical
in output, both retain minor high-frequency artifacts, particularly around 0.2 and 0.65
seconds near the 1500 Hz range.

Convergence performance is detailed in figure A.16.
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Figure A.16: Error Convergence Curve - Heartbeat with Conversation noise.

The RLS algorithm demonstrates superior performance with the fastest convergence rate.
Its MSE drops rapidly within the first 100 samples and stabilises at an extremely low
level (near zero) by approximately sample 300. RLS maintains this excellent performance
throughout the remainder of the samples, exhibiting only minimal fluctuations.

In comparison, both LMS andNLMS algorithms display similar initial behavior, with high
starting MSE values around 3 × 10−4. They experience noticeable fluctuations during the
first 200–300 samples before gradually stabilising.
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Although all three algorithms eventually reach steady-state behavior, RLS clearly
outperforms the others by achieving faster convergence and maintaining the lowest
steady-state error across most of the sample range. This highlights RLS as particularly
effective in filtering conversation noise from heartbeat signals, outperforming the LMS
and NLMS approaches.

Table A.5 summarises the SNR improvements for each filtering algorithm.

Table A.5: SNR improvement—Heartbeat with Conversation Noise.

FilteringMethod Output SNR (dB) SNR Improvement (dB)

No Filtering -0.0282 -
LMS 37.8633 37.8915
NLMS 37.8504 37.8786
RLS 44.2082 44.2364

Based on the results in table A.5, the RLS filter achieves the highest output SNRmaking it
themost effective method for conversation removal in this case.

A.2.3 Hospital Ambient Noises

This test case evaluates the system’s ability to extract a heartbeat signal contaminated
with typical hospital ambient noises, such asmachinery beeps, footsteps, andbackground
conversations. TableA.6 outlines the adaptivefilter parameters optimised for this scenario
using grid search.

Table A.6: Tuning parameters for adaptive filters—Hospital Ambient Noise.

Parameter Value

Sampling rate 16 kHz
Filter length (LMS) 10
Filter length (NLMS) 12
Filter length (RLS) 8
Step size (LMS) 0.005
Step size (NLMS) 0.002
Forgetting factor (RLS) 0.9999

FigureA.17 showsacomparisonbetween thecleansignal, thenoisyprimary signal, and the
error signals produced by the LMS, NLMS, and RLS filters. This comparison demonstrates
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howwell each algorithm isolates the heartbeat signal from the hospital ambient noise.
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Figure A.17: Error signals—Heartbeat signal corrupted by Hospital Ambient Noise.

All three filters significantly reduce the hospital ambient noise, with the RLS filter showing
the cleanest error signal among them.

To further explore filter behavior, figure A.18 plots the output SNR as a function of filter
length. This highlights the influence of filter length on noise suppression performance for
each algorithm.
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Figure A.18: Output SNR vs. filter length—Heartbeat signal with Hospital Ambient Noise.

The NLMS filter achieves the highest peak SNR (approximately 30.5 dB) at filter lengths
around 10-15 and maintains superior performance across most filter lengths when
processing heartbeat signals with hospital ambient noise. LMS and RLS filters reach
similar maximum SNR values (approximately 29.5 dB) at filter lengths of 8-12, but their
performance diverges significantly afterward. NLMS demonstrates the most gradual
decline, while RLS deteriorates most rapidly, dropping to 21 dB at M=100. All algorithms
perform optimally at relatively short filter lengths, withNLMS consistently outperforming
the others at medium to long filter lengths.

Figure A.19 provides a visual analysis via Mel spectrograms, which help illustrate how
much ambient noise each filter removes across time and frequency.
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Figure A.19:Mel spectrograms—Heartbeat signal in the presence of Hospital Ambient Noise.

The clean signal shows the periodic low-frequency characteristic of heartbeats, primarily
below 200 Hz. In contrast, the primary signal corrupted by hospital ambient noise shows
additional spectral energy spread up to 1000 Hz, especially between 2.5 to 3.5 seconds.
All three adaptive filters reduce much of this interference. The RLS filter achieves the
best reconstruction, closely resembling the clean reference with minimal residual noise.
The LMS filter, while effective, retains more pronounced noise components, particularly
between 0.5 and 1 seconds in the 300–700 Hz range. The NLMS filter exhibits the same
artifact, though to amuch lesser extent than LMS.

Figure A.20 illustrates how quickly each algorithm reduces its mean squared error (MSE)
over time, indicating adaptation speed and stability.
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Figure A.20: Error convergence curves—Hospital Ambient Noise.

All algorithms show a rapid initial decrease in MSE, with RLS converging the fastest and
maintaining themost stable performance. In contrast, LMS andNLMS continue to exhibit
minor fluctuations throughout the signal duration.

The final output SNR values and corresponding improvements from baseline are
summarised in table A.7.

Table A.7: SNR improvement—Heartbeat signal with Hospital Ambient Noise.

FilteringMethod Output SNR (dB) SNR Improvement (dB)

No Filtering -0.2624 —
LMS 29.4407 29.7031
NLMS 30.4623 30.7247
RLS 30.2715 30.5339

These results confirm the superior performance of NLMS and RLS in complex ambient
noise conditions, validating the practical application of adaptive filtering in clinical
settings.
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A.2.4 Performance Across Different Noise Types

The FastICA algorithm was evaluated across nine different noise types that commonly
interfere with heartbeat recordings in clinical settings. Table A.8 summarises the SNR
improvements achieved for each noise type across both public and experimental datasets.

Table A.8: Comprehensive SNR improvement summary for FastICA across different noise types and datasets.

Dataset Noise Type Input SNR (dB) Output SNR (dB) SNR Improvement (dB)

Public

Artifacts -1.40 47.20 48.60
Ambulance & Traffic -9.05 44.85 53.90
Conversation -15.91 38.42 54.33
Hospital Ambient -8.68 41.78 50.46

Experimental

Ambient Noise -2.15 45.70 47.85
Baby Crying -3.20 42.50 45.70
Drilling -1.75 46.30 48.05
Hammering -2.85 43.90 46.75
Speech -4.10 41.00 45.10

Average -5.45 43.52 48.93

A.3 Additional Adaptive Filter Results For Fixed Parameters on
Public Heart Data

Table A.9 provides a comprehensive summary of SNR improvements achieved by each
algorithm across all four noise types for Adaptive Filter Results For Fixed Parameters on
Public Heart Data.

Table A.9: Performance summary across all noise types (best performer in bold) - Adaptive Filter Results For
Fixed Experimental Data

Noise Type Input SNR (dB) Output SNR (dB)

LMS NLMS RLS

Artifacts -0.1263 25.5023 25.4894 32.1179
Ambulance & Traffic -4.6374 16.6868 16.6501 18.2903
Conversation -0.0285 36.9492 36.9582 36.0344
Hospital Ambient -0.1866 20.6690 23.4364 32.4988

Page 101 of 150



Gruppe 924 A. Appendix: Simulations and Test Reports

A.4 Additional FastICA Results For Public Heart Data

This appendix provides detailed results for the FastICA algorithm’s performance on three
additional noise types: ambulance & traffic noise, conversational speech, and hospital
ambient sounds.

A.4.1 Artifacts

This test caseevaluates thesystem’sability todenoiseaheartbeat signal contaminatedwith
typical bodymovement artifacts, suchas stethoscopehandlingnoise andclothing friction.

Figure A.21 shows a comparison between the clean heartbeat signal, two noisy input
signals processed by FastICA, and the resulting error signals.
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Figure A.21: FastICA separation of heartbeat signal fromartifact noise: original clean signal, noisy inputs, and
component error signals.

FastICA successfully estimates the original source components from the mixed noisy
inputs. Separated Signal 1 represents the estimated heartbeat component with near-zero
error plot. Separated Signal 2 represents the estimated noise artifact component. These
results demonstrate FastICA’s effectiveness in isolating the cardiac information from
artifact contamination, enabling accurate analysis of the heartbeat signal.
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The spectrogram in figure A.22 provides a time-frequency view of how effectively the
FastICA algorithm removes noise from the signal.
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Figure A.22:Mel Spectrograms showing FastICA estimation of heartbeat signal corrupted with artifacts.

The clean signal exhibits clear, periodic low-frequency components characteristic of
heartbeats, primarily concentrated below 200 Hz. Noisy signals display the heartbeats
corrupted by artifacts. Separated Signal 1 closely matches the original clean heartbeat
pattern, demonstrating successful noise removal. Separated Signal 2 isolates the artifacts.
This visual representation confirms FastICA’s ability to accurately estimate heartbeat
sound frommixed recordings.

Table A.10 summarises the SNR improvements for FastICA.
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Table A.10: SNR improvement—Heartbeat with Artifacts Noise.

FilteringMethod Output SNR (dB) SNR Improvement (dB)

No Filtering -1.40 -
FastICA (Separated Signal 1) 47.20 48.60

A.4.2 Ambulance & Traffic

This scenario simulatesurbanemergency conditionswhere sirens and roadnoise interfere
with heartbeat recordings.

Figure A.23 displays the error signal obtained after FastICA processing.
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Figure A.23: Error signals - Heartbeat signal corrupted with Ambulance & Traffic.

Separated Signal 1 represents the estimated heartbeat component with near-zero error
plot. Separated Signal 2 represents the estimated noise ambulance & traffic component.
FastICA successfully estimates the original source components from the mixed noisy
inputs.

Figure A.24 shows theMel spectrogram post-FastICA processing.
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Figure A.24:Mel Spectrogram - Heartbeat signal corrupted with Ambulance & Traffic.

The clean signal displays distinct heartbeat patterns below 200 Hz, while the noisy signals
include additional energy at 300 Hz and 2000 Hz due to ambulance and traffic noise.
Separated Signal 1 recovers the heartbeat, and Signal 2 captures the noise. This confirms
FastICA’s effectiveness in isolating heart sounds from ambulance and traffic noise.

Table A.11 quantifies the SNR improvements for FastICA.

Table A.11: SNR improvement—Heartbeat with Ambulance & Traffic Noise.

FilteringMethod Output SNR (dB) SNR Improvement (dB)

No Filtering -9.05 -
FastICA (Separated Signal 1) 44.85 53.9
FastICA (Separated Signal 2) -9.06 -0.01
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A.4.3 Conversation

This test simulates a clinical environment where conversations among staffmay interfere
with heartbeat recordings.

Figure A.25 shows the error signal resulting from the FastICA processing.

0 0.5 1 1.5 2 2.5 3
Sample 105

-1
0
1

A
m

pl
itu

de Clean Signal

0 0.5 1 1.5 2 2.5 3
Sample 105

-1
0
1

A
m

pl
itu

de Noisy Signal 1

0 0.5 1 1.5 2 2.5 3
Sample 105

-1
0
1

A
m

pl
itu

de Noisy Signal 2

0 0.5 1 1.5 2 2.5 3
Sample 105

-1
0
1

A
m

pl
itu

de Error Signal (Separated Signal 1)

0 0.5 1 1.5 2 2.5 3
Sample 105

-1
0
1

A
m

pl
itu

de Error Signal (Separated Signal 2)

Figure A.25: Error signals - Heartbeat signal corrupted with Conversation Noise.

Separated Signal 1 represents the estimated heartbeat component with near-zero error
plot. Separated Signal 2 represents the estimated conversation noise component. FastICA
successfully estimates the original source components from themixed noisy inputs.

Figure A.26 shows spectrograms of the FastICA output.
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Figure A.26:Mel Spectrogram - Heartbeat signal corrupted with Conversation Noise.

The clean signal displays clear, periodic heartbeat patterns. In contrast, the noisy
signals are dominated by conversation noise, which obscures the heartbeat components.
Separated Signal 1 successfully recovers the heartbeat, while Separated Signal 2 isolates
the noise. This demonstrates FastICA’s effectiveness in estimating heart sounds from
speech-contaminated recordings.

Table A.12 summarises the SNR improvements for FastICA.
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Table A.12: SNR improvement—Heartbeat with Conversation Noise.

FilteringMethod Output SNR (dB) SNR Improvement (dB)

No Filtering -15.91 -
FastICA (Separated Signal 1) 38.42 54.33
FastICA (Separated Signal 2) -6.24 9.67

A.4.4 Hospital Ambient Noises

This test case evaluates the system’s ability to extract a heartbeat signal contaminated
with typical hospital ambient noises, such asmachinery beeps, footsteps, andbackground
conversations.

Figure A.27 shows a comparison between the clean signal, the noisy primary signal, and
the error signal produced by the FastICA algorithm.
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Figure A.27: Error signals—Heartbeat signal corrupted by Hospital Ambient Noise.

Separated Signal 1 represents the estimated heartbeat component with near-zero error
plot. Separated Signal 2 represents the estimated hospital ambient noise component.
FastICA successfully estimates the original source components from the mixed noisy
inputs.
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Figure A.28 provides a visual analysis via Mel spectrograms, which help illustrate how
much ambient noise the FastICA algorithm removes across time and frequency.
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Figure A.28:Mel spectrograms—Heartbeat signal in the presence of Hospital Ambient Noise.

The clean signal shows distinct heartbeat patterns below 200 Hz, while the noisy signals
exhibit additional energy—particularly around the 4-second mark—due to hospital
ambient noise. Separated Signal 1 successfully recovers the heartbeat, while Separated
Signal 2 captures thenoise. This highlights FastICA’s effectiveness in isolatingheart sounds
from ambulance and traffic noise.

Table A.13 summarises the SNR improvements for FastICA.
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Table A.13: SNR improvement—Heartbeat signal with Hospital Ambient Noise.

FilteringMethod Output SNR (dB) SNR Improvement (dB)

No Filtering -8.68 -
FastICA (Separated Signal 1) 41.78 50.46
FastICA (Separated Signal 2) -6.13 2.55

A.5 Additional Adaptive Filter Results For Experimental Data

This appendix provides detailed analysis of the adaptive filter performance on the
remaining four noise types: BabyCrying, Drilling, Hammering and Speech. For each noise
type, we present parameter configurations, error signals, SNR vs. filter length analysis,
spectrograms, convergence behavior, and output SNR results.

A.5.1 Baby Crying

This scenario models an infant crying in close proximity to the recording device,
introducing highly non-stationary, mid- to high-frequency bursts.

Table A.14 summarises the tuning parameters used for LMS,NLMS, andRLS algorithms in
the presence of baby crying noise.

Table A.14: Tuning parameters for the adaptive filters in the baby crying scenario.

Parameter Value

Sampling rate 16 kHz
Filter length (LMS) 1
Filter length (NLMS) 1
Filter length (RLS) 2
Step size (LMS) 0.7
Step size (NLMS) 0.1
Forgetting factor (RLS) 0.9997

FigureA.29 showsa comparisonbetween the clean signal, theprimary signal, and the error
signals produced by the LMS, NLMS, and RLS filters.

Page 110 of 150



A.5. Additional Adaptive Filter Results For Experimental Data Aalborg University

0 1 2 3 4 5 6 7 8 9
Sample Number 104

-1
0
1

A
m

pl
itu

de Clean Signal

0 1 2 3 4 5 6 7 8 9
Sample Number 104

-1
0
1

A
m

pl
itu

de Primary Signal (Clean + Noise)

0 1 2 3 4 5 6 7 8 9
Sample Number 104

-1
0
1

A
m

pl
itu

de Error signal (LMS)

0 1 2 3 4 5 6 7 8 9
Sample Number 104

-1
0
1

A
m

pl
itu

de Error signal (NLMS)

0 1 2 3 4 5 6 7 8 9
Sample Number 104

-1
0
1

A
m

pl
itu

de Error signal (RLS)

Figure A.29: Error signals - Heartbeat signal corrupted with Baby Crying Noise.

All three adaptivefilters substantially reduce thenoise showingnear zero error signal plots.

The relationship between output SNR and filter length is illustrated in figure A.30,
highlighting the performance sensitivity to filter configuration with the RLS filter
performing the best.
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Figure A.30: Output SNR vs Filter Length - Heartbeat signal corrupted with Baby Crying.

The RLS filter delivers the highest performance, peaking at an SNR of 46 dB with a filter
length of 1. NLMS and LMS follow a similar trend; both reach their maximum SNR of 25
dB at the same filter length, with NLMS edging out LMS by a small margin.

Figure A.31 shows theMel spectrograms post-filtering.

Page 112 of 150



A.5. Additional Adaptive Filter Results For Experimental Data Aalborg University

Clean Signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

0

1000

2000

F
re

qu
en

cy
 (

H
z)

-60

-50

-40

-30

Primary Signal (Clean + Noise)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

0

1000

2000

F
re

qu
en

cy
 (

H
z)

-60

-50

-40

-30

Filtered LMS Signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

0

1000

2000

F
re

qu
en

cy
 (

H
z)

-60

-50

-40

-30

Filtered NLMS Signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

0

1000

2000

F
re

qu
en

cy
 (

H
z)

-60

-50

-40

-30

Filtered RLS Signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

0

1000

2000

F
re

qu
en

cy
 (

H
z)

-60

-50

-40

-30

Figure A.31:Mel spectrogram of heartbeat recording with baby crying in the background.

Among all three adaptive filters, the RLS filter produces the cleanest spectrogram, closely
resembling the clean signal. The LMS filter also performs well but retains a faint spectral
remnant, particularly around 1500 Hz at 0.5 s of the signal. The NLMS filter also retains a
faint spectral remnant at the same spot, though to a slightly lesser extent than LMS.

The convergence behavior of each adaptive algorithm is illustrated in figure A.32,
providing valuable insight into both stability and adaptation speed.
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Figure A.32: Error convergence curves for heartbeat signal with baby crying noise.

From a practical standpoint, the MSE values remain consistently low—below 5 ×
10−6 across the entire duration—indicating that all three algorithms achieve excellent
performance. To better illustrate the scale of the fluctuations across the samples, a
zoomed-out view is provided in figure A.33.
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Figure A.33: Zoomed-out error convergence curves for heartbeat signal with baby crying noise.

Page 114 of 150



A.5. Additional Adaptive Filter Results For Experimental Data Aalborg University

As shown, the error curves appear as nearly flat lines approaching zero, clearly
demonstrating rapid convergence to a steady state. Although the RLS algorithm shows
slightly better performance, all three methods effectively suppress the baby crying noise
from the heartbeat signal.

Finally, Table A.15 compares the SNR performance before and after filtering, quantifying
the improvements achieved by eachmethod.

Table A.15: SNR improvement—Heartbeat with Baby Crying Noise.

FilteringMethod Output SNR (dB) SNR Improvement (dB)

No Filtering -8.9011 -
LMS 24.1021 33.0033
NLMS 24.8095 33.7107
RLS 46.2584 55.1595

Table A.15 shows that RLS delivers the highest output SNR, making it themost effective of
the three filters for attenuating the baby-cry noise.

A.5.2 Drilling

This test involves mechanical noise from an electric drill being used periodically,
representing a high-intensity, narrow-band interference source. It evaluates the system’s
robustness to intervals of high-energy noise.

Table A.16 details the parameters used for the adaptive filters in the drilling noise scenario.

Table A.16: Tuning parameters for the adaptive filters in the drilling scenario.

Parameter Value

Sampling rate 16 kHz
Filter length (LMS) 1
Filter length (NLMS) 1
Filter length (RLS) 1
Step size (LMS) 0.9
Step size (NLMS) 0.9
Forgetting factor (RLS) 0.9999

Figure A.34 displays the error signals, showing how effectively each algorithm suppresses
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the drilling interference.
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Figure A.34: Error signals - Heartbeat signal corrupted with Drilling Noise.

All three filters significantly reduce the drilling noise, with the RLS filter showing the
cleanest error signal among them.

Figure A.35 illustrates howSNR varieswith different filter lengths, helping identify optimal
configurations.
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Figure A.35: Output SNR vs Filter Length - Heartbeat signal corrupted with Drilling.

RLS peaks at 41 dB, ahead of NLMS at 35 dB and LMS at 27 dB. As filter length increases,
all three methods converge to about 24–25 dB at filter length 100, showing diminishing
returns beyond that point. RLS remains the best performer overall, though its SNR falls
more steeply than the others as the filter length grows.

Figure A.36 shows theMel spectrograms post-filtering.
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Figure A.36:Mel spectrogram of heartbeat recording with drilling noise.

The primary signal shows the heartbeat corrupted with drilling noise, visible as diffuse
energy bands across 1000-4000 Hz. The RLS filter achieves superior noise reduction,
closely resembling the clean signal, while LMS and NLMS leaves some residual noise at
around the 1 s mark. All filters effectively preserve the heartbeat’s fundamental frequency
components while suppressing the drilling interference.

To visualise algorithm stability and speed, figure A.37 shows the convergence of error
signals during adaptation.
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Figure A.37: Error Convergence Curves - Heartbeat with Drilling Noise.

From a practical standpoint, the MSE values remain consistently low—below 5 ×
10−6 across the entire duration—indicating that all three algorithms achieve excellent
performance.

Table A.17 summarises the resulting output SNR and corresponding improvements from
each adaptive filter.

Table A.17: SNR improvement—Heartbeat with Drilling Noise.

FilteringMethod Output SNR (dB) SNR Improvement (dB)

No Filtering -0.2283 -
LMS 26.7973 27.0255
NLMS 35.0002 35.2285
RLS 41.4302 41.6585

Table A.17 indicates that RLS yields the highest output SNR, making it the most effective
filter for suppressing the drilling noise.
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A.5.3 Hammering

This test evaluates the filtering system’s ability to manage hammering, which features
sharp and short components that can easily mask important signal details.

TableA.18 lists the tuningparameters for each adaptive algorithmunderhammeringnoise
conditions.

Table A.18: Tuning parameters for the adaptive filters in the hammering scenario.

Parameter Value

Sampling rate 16 kHz
Filter length (LMS) 1
Filter length (NLMS) 1
Filter length (RLS) 1
Step size (LMS) 0.9
Step size (NLMS) 0.4
Forgetting factor (RLS) 0.9999

Figure A.38 illustrates the error signals after adaptive filtering, reflecting how well the
methods suppress impulsive hammer strikes.
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Figure A.38: Error signals - Heartbeat signal corrupted with Hammering Noise.
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All three filters significantly reduce the drilling noise, with the RLS filter showing the
cleanest error signal among them.

SNR variation with respect to filter length is plotted in figure A.39, providing insights into
filter size optimisation.
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Figure A.39: Output SNR vs Filter Length - Heartbeat signal corrupted with Hammering.

RLS demonstrates significantly superior performance across all filter lengths, starting at
46 dB and declining to 27 dB at filter length 100. LMS and NLMS show similar but much
lower performance 26-29 dB initially, with NLMS performing slightly worse than LMS as
filter length increases. Unlike previous results with drilling noise, the algorithmsmaintain
distinct performance differences even at maximum filter length, with RLS consistently
outperforming the others by approximately 8-10 dB.

Figure A.40 displays the Mel spectrogram of the noisy recording, revealing how hammer
impacts distort the signal’s frequency domain.
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Figure A.40:Mel spectrogram of heartbeat recording with hammering in the background.

The primary signal combines the heartbeat with hammering noise, seen as vertical bands
extending from 0-2000 Hz. RLS removes most of this interference, yielding a spectrogram
that closely matches the clean reference, whereas LMS and NLMS leave residual noise
near 0.4 s. Despite these differences, all three filters retain the heartbeat’s fundamental
low-frequency components while reducing the hammering noise.

To evaluate convergence behavior, figure A.41 shows the learning curves for each
algorithm.
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Figure A.41: Error Convergence Curves - Heartbeat with Hammering Noise.

From a practical standpoint, the MSE values remain consistently low—below 5 ×
10−6 across the entire duration—indicating that all three algorithms achieve excellent
performance.

Table A.19 reports SNR values before and after filtering, comparing the effectiveness of
LMS, NLMS, and RLS.

Table A.19: SNR improvement—Heartbeat with Hammering Noise.

FilteringMethod Output SNR (dB) SNR Improvement (dB)

No Filtering -1.4565 -
LMS 26.6031 28.0597
NLMS 29.2561 30.7127
RLS 45.5780 47.0346

Table A.19 shows that RLS gives the highest output SNR, making it themost effective filter
for reducing the hammering noise.
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A.5.4 Speech

In this test case, background speech interferes with heartbeat recordings. This introduces
challenges due to the wideband, non-stationary nature of speech that may overlap
spectrally with the target signal.

Table A.20 provides the algorithm parameters tailored for this speech interference
scenario.

Table A.20: Tuning parameters for the adaptive filters in the speech scenario.

Parameter Value

Sampling rate 16 kHz
Filter length (LMS) 1
Filter length (NLMS) 1
Filter length (RLS) 1
Step size (LMS) 0.2
Step size (NLMS) 0.025
Forgetting factor (RLS) 0.9999

The filtered error signals are plotted in figure A.42, indicating how well each method
reduces spoken interference.

0 1 2 3 4 5 6 7 8 9
Sample Number 104

-1
0
1

A
m

pl
itu

de Clean Signal

0 1 2 3 4 5 6 7 8 9
Sample Number 104

-1
0
1

A
m

pl
itu

de Primary Signal (Clean + Noise)

0 1 2 3 4 5 6 7 8 9
Sample Number 104

-1
0
1

A
m

pl
itu

de Error signal (LMS)

0 1 2 3 4 5 6 7 8 9
Sample Number 104

-1
0
1

A
m

pl
itu

de Error signal (NLMS)

0 1 2 3 4 5 6 7 8 9
Sample Number 104

-1
0
1

A
m

pl
itu

de Error signal (RLS)

Figure A.42: Error signals - Heartbeat signal corrupted with Speech Noise.
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All three filters significantly reduce the speech noise, with the RLS filter showing the
cleanest error signal among them.

Figure A.43 shows the effect of filter length on SNR for each method in the presence of
background speech.
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Figure A.43: Output SNR vs Filter Length - Heartbeat signal corrupted with Speech.

RLS demonstrates significantly superior performance across all filter lengths, starting at
38 dB and declining to 25 dB at filter length 100. LMS and NLMS show similar but much
lower performance 17-18 dB initially, with NLMS performing slightly worse than LMS as
filter length increases. RLS consistently outperformes the others by approximately 20 dB.

TheMel spectrogram in figure A.44 shows howbackground speechmasks the heartbeat in
both time and frequency domains.
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Figure A.44:Mel spectrogram of heartbeat recording with background speech.

The primary signal consists of the heartbeat mixed with speech noise, as evident in the
spectrogram. Among the three algorithms, RLS performs the best, effectively removing
most of the interference and producing a spectrogram that closely resembles the clean
reference. In contrast, LMS and NLMS leave behind noticeable remnants of the speech
noise around each heartbeat. Nevertheless, all three filters successfully preserve the
heartbeat’s fundamental low-frequency components while significantly attenuating the
unwanted speech interference.

The convergence curves for the three adaptivemethods in this speech scenario are shown
in figure A.45.
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Figure A.45: Error Convergence Curves - Heartbeat with Speech Noise.

From a practical standpoint, the MSE values remain consistently low—below 5 ×
10−3 across the entire duration—indicating that all three algorithms achieve excellent
performance. Although the RLS algorithm shows better performance.

Table A.21 details the SNR improvements obtained using eachmethod.

Table A.21: SNR improvement—Heartbeat with Speech Noise.

FilteringMethod Output SNR (dB) SNR Improvement (dB)

No Filtering -9.2980 -
LMS 17.8150 27.1130
NLMS 18.2781 27.5762
RLS 38.3709 47.6689

Table A.21 shows that RLS gives the highest output SNR, making it themost effective filter
for reducing the speech.

A.5.5 Summary Table

Table A.22 provides a comprehensive summary of SNR improvements achieved by each
algorithm across all four noise types.
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Table A.22: Performance summary across all noise types (best performer in bold).

Noise Type Input SNR (dB) Output SNR (dB)

LMS NLMS RLS

Ambient Noise -8.8182 13.9755 14.0150 26.2265
Baby Crying -8.9011 24.1021 24.8095 46.2584
Drilling -0.2283 26.7973 35.0002 41.4302
Hammering -1.4565 26.6031 29.2561 45.5780
Speech -9.2980 17.8150 18.2781 38.3709

As evident from table A.22, the adaptive filtering system effectively enhances heartbeat
signals across all noise environments tested. The RLS algorithm consistently outperforms
both LMS and NLMS in all five noise scenarios, with particular strength in handling baby
crying noise where it achieves an exceptional 46 dB output SNR. The NLMS filter slightly
outperforms the LMS through all tests.

These results confirm that adaptive filtering provides an effective solution for heart sound
denoising across diverse noisy environments.

A.6 Additional Adaptive Filter Results For Fixed Parameters on
Experimental Data

This appendix provides detailed analysis of the adaptive filter performance on the
remaining four noise types: Baby Crying, Drilling, Hammering and Speech using the fixed
parameters from A.23.

Table A.23: Filter parameters based on clinical testing

Parameter Value

Sampling rate 16 kHz
Filter length (LMS) 8
Filter length (NLMS) 8
Filter length (RLS) 8
Step size (LMS) 0.3
Step size (NLMS) 0.03
Forgetting factor (RLS) 0.9999
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A.6.1 Baby Crying

This scenario models an infant crying in close proximity to the recording device,
introducing highly non-stationary, mid- to high-frequency bursts.

FigureA.46 showsa comparisonbetween the clean signal, theprimary signal, and the error
signals produced by the LMS, NLMS, and RLS filters.
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Figure A.46: Error signals - Heartbeat signal corrupted with Baby Crying Noise.

All three adaptivefilters substantially reduce thenoise showingnear zero error signal plots.

Figure A.47 shows theMel spectrograms post-filtering.
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Figure A.47:Mel spectrogram of heartbeat recording with baby crying in the background.

Among all three adaptive filters, the RLS filter produces the cleanest spectrogram, closely
resembling the clean signal. The LMS filter also performs well but retains a faint spectral
remnant, particularly around 1500 Hz at 0.5 s of the signal. The NLMS filter also retains a
faint spectral remnant at the same spot, though to a slightly lesser extent than LMS.

The convergence behavior of each adaptive algorithm is illustrated in figure A.48,
providing valuable insight into both stability and adaptation speed.

Page 130 of 150



A.6. Additional Adaptive Filter Results For Fixed Parameters on Experimental DataAalborg University

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples

0

5

M
S

E

10-6

LMS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples

0

5

M
S

E
10-6

NLMS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples

0

5

M
S

E

10-6

RLS

Figure A.48: Error convergence curves for heartbeat signal with baby crying noise.

From a practical standpoint, the MSE values remain consistently low—below 5 ×
10−6 across the entire duration—indicating that all three algorithms achieve excellent
performance.

A.6.2 Drilling

This test involves mechanical noise from an electric drill being used periodically,
representing a high-intensity, narrow-band interference source. It evaluates the system’s
robustness to intervals of high-energy noise.

Figure A.49 displays the error signals, showing how effectively each algorithm suppresses
the drilling interference.
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Figure A.49: Error signals - Heartbeat signal corrupted with Drilling Noise.

All three filters significantly reduce the drilling noise, with the RLS filter showing the
cleanest error signal among them.

Figure A.50 shows theMel spectrograms post-filtering.
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Figure A.50:Mel spectrogram of heartbeat recording with drilling noise.

The primary signal shows the heartbeat corrupted with drilling noise, visible as diffuse
energy bands across 1000-4000 Hz. The RLS filter achieves superior noise reduction,
closely resembling the clean signal, while LMS and NLMS leaves some residual noise at
around the 1 s mark. All filters effectively preserve the heartbeat’s fundamental frequency
components while suppressing the drilling interference.

To visualise algorithm stability and speed, figure A.51 shows the convergence of error
signals during adaptation.
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Figure A.51: Error Convergence Curves - Heartbeat with Drilling Noise.

From a practical standpoint, the MSE values remain consistently low—below 5 ×
10−6 across the entire duration—indicating that all three algorithms achieve excellent
performance.

A.6.3 Hammering

This test evaluates the filtering system’s ability to manage hammering, which features
sharp and short components that can easily mask important signal details.

Figure A.52 illustrates the error signals after adaptive filtering, reflecting how well the
methods suppress impulsive hammer strikes.
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Figure A.52: Error signals - Heartbeat signal corrupted with Hammering Noise.

All three filters significantly reduce the drilling noise, with the RLS filter showing the
cleanest error signal among them.

Figure A.53 displays the Mel spectrogram of the noisy recording, revealing how hammer
impacts distort the signal’s frequency domain.
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Figure A.53:Mel spectrogram of heartbeat recording with hammering in the background.

The primary signal combines the heartbeat with hammering noise, seen as vertical bands
extending from 0-2000 Hz. RLS removes most of this interference, yielding a spectrogram
that closely matches the clean reference, whereas LMS and NLMS leave residual noise
near 0.4 s. Despite these differences, all three filters retain the heartbeat’s fundamental
low-frequency components while reducing the hammering noise.

To evaluate convergence behavior, figure A.54 shows the learning curves for each
algorithm.
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Figure A.54: Error Convergence Curves - Heartbeat with Hammering Noise.

From a practical standpoint, the MSE values remain consistently low—below 5 ×
10−6 across the entire duration—indicating that all three algorithms achieve excellent
performance.

A.6.4 Speech

In this test case, background speech interferes with heartbeat recordings. This introduces
challenges due to the wideband, non-stationary nature of speech that may overlap
spectrally with the target signal.

The filtered error signals are plotted in figure A.55, indicating how well each method
reduces spoken interference.
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Figure A.55: Error signals - Heartbeat signal corrupted with Speech Noise.

All three filters significantly reduce the speech noise, with the RLS filter showing the
cleanest error signal among them.

TheMel spectrogram in figure A.56 shows howbackground speechmasks the heartbeat in
both time and frequency domains.
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Figure A.56:Mel spectrogram of heartbeat recording with background speech.

The primary signal consists of the heartbeat mixed with speech noise, as evident in the
spectrogram. Among the three algorithms, RLS performs the best, effectively removing
most of the interference and producing a spectrogram that closely resembles the clean
reference. In contrast, LMS and NLMS leave behind noticeable remnants of the speech
noise around each heartbeat. Nevertheless, all three filters successfully preserve the
heartbeat’s fundamental low-frequency components while significantly attenuating the
unwanted speech interference.

The convergence curves for the three adaptivemethods in this speech scenario are shown
in figure A.57.
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Figure A.57: Error Convergence Curves - Heartbeat with Speech Noise.

From a practical standpoint, the MSE values remain consistently low—below 5 ×
10−3 across the entire duration—indicating that all three algorithms achieve excellent
performance. Although the RLS algorithm shows better performance.

A.6.5 Summary Table

Table A.24 provides a comprehensive summary of SNR improvements achieved by each
algorithm across all four noise types for Adaptive Filter Results For Fixed Parameters on
Experimental Data.

Table A.24: Performance summary across all noise types (best performer in bold) - Adaptive Filter Results For
Fixed Experimental Data

Noise Type Input SNR (dB) Output SNR (dB)

LMS NLMS RLS

Ambient Noise -8.8182 5.0992 6.9643 25.5552
Baby Crying -8.9011 20.2224 18.1210 44.9098
Drilling -0.2283 22.0850 21.7362 36.1780
Hammering -1.4565 21.9232 19.7391 43.2578
Speech -9.2980 9.5512 12.5831 36.4451
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A.7 Additional FastICA Results For On Experimental Data

This appendix presents the detailed FastICA separation results for noise types not fully
discussed in the main text. For each noise type, we show the error signals, Mel
spectrograms, and SNR improvements.

A.7.1 Ambient Noise

This case investigates FastICA’s ability to separate heartbeat sounds contaminated with
typical ambient hospital noise.

Figure A.58 compares the original cleanheartbeat signal, the noisy inputmixtures, and the
resulting error signals after FastICA.
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Figure A.58: FastICA separation of heartbeat signal from ambient noise: original clean signal, noisy inputs,
and error signals.

FastICA effectively isolates the heartbeat component, as seen by the low error in Separated
Signal 1, while Separated Signal 2 captures the ambient noise.

The Mel spectrogram in figure A.59 highlights the frequency content and confirms the
removal of noise.
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Figure A.59:Mel Spectrograms showing FastICA separation for heartbeat corrupted by ambient noise.

FastICA effectively separates the underlying sources from the observed noisy mixture.
Separated Signal 1 reveals a clear reconstruction of the heartbeat, whereas Separated
Signal 2 captures primarily the noise.

A.7.2 Baby Crying

This subsection analyses separation performance when heartbeat recordings are
contaminated by baby crying noise, a highly non-stationary source.

Figure A.60 shows the FastICA error signals alongside input and clean signals.
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Figure A.60: FastICA separation of heartbeat from baby crying noise: error signals comparison.

FastICA effectively isolates the heartbeat component, as seen by the low error in Separated
Signal 1, while Separated Signal 2 captures the baby crying.

The Mel spectrogram, figure A.61, shows how FastICA successfully recovers heartbeat
components while isolating the baby crying noise.
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Figure A.61:Mel Spectrograms for FastICA separation of heartbeat corrupted by baby crying noise.

FastICA effectively separates heartbeat signal from the noise leaving us with Separated
Signal 1 which is a clear reconstruction of the heartbeat with no noise, whereas Separated
Signal 2 captures primarily the noise.

Table A.25 presents the corresponding SNR improvements.

Table A.25: SNR improvement—Heartbeat with Baby Crying Noise.

Method Output SNR (dB) SNR Improvement (dB)

No Filtering -3.20 -
FastICA (Separated Signal 1) 42.50 45.7
FastICA (Separated Signal 2) -2.10 1.10
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A.7.3 Drilling

Here, the effect of construction noise from drilling on heartbeat signal separation is
evaluated.

Figure A.62 illustrates the error signals after FastICA processing.
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Figure A.62: FastICA error signals for heartbeat corrupted by drilling noise.

FastICA effectively isolates the heartbeat component, as seen by the low error in Separated
Signal 1, while Separated Signal 2 captures the drilling noise.

TheMel spectrogram (figure A.63) confirms successful heartbeat extraction.
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Figure A.63:Mel Spectrograms after FastICA separation for heartbeat with drilling noise.

FastICA effectively separates theheartbeat fromdrillingnoise, producing Separated Signal
1 as a clear, noise-free heartbeat and Separated Signal 2 as primarily the isolated drilling
noise.

SNR improvements are summarised in table A.26.

Table A.26: SNR improvement—Heartbeat with Drilling Noise.

Method Output SNR (dB) SNR Improvement (dB)

No Filtering -1.75 -
FastICA (Separated Signal 1) 46.30 48.05
FastICA (Separated Signal 2) -4.20 -2.45
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A.7.4 Hammering

This subsection examines the FastICA performance when heartbeat signals are corrupted
by hammering noise.

Figure A.64 presents the error signal comparison.
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Figure A.64: Error signals for heartbeat separation from hammering noise via FastICA.

FastICA effectively isolates the heartbeat, evident from the low error in Separated Signal 1,
while Separated Signal 2 contains the hammering noise.

TheMel spectrogram shown in figure A.65 demonstrates the clear separation of heartbeat
and hammering noise components.
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Figure A.65:Mel Spectrograms for FastICA separated signals from hammering noise corrupted heartbeat.

FastICA effectively separates the heartbeat from noise, producing Separated Signal 1 as a
clear, noise-free heartbeat and Separated Signal 2 as primarily the isolated noise.

Table A.27 quantifies SNR improvements.

Table A.27: SNR improvement—Heartbeat with Hammering Noise.

Method Output SNR (dB) SNR Improvement (dB)

No Filtering -2.85 -
FastICA (Separated Signal 1) 43.90 46.75
FastICA (Separated Signal 2) -3.95 -1.10
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A.7.5 Speech

The final experimental noise case involves separation of heartbeat signals corrupted by
conversational speech.

Figure A.66 shows error signals obtained after FastICA separation.

0 1 2 3 4 5 6 7 8 9
Sample 104

-1
0
1

A
m

pl
itu

de Clean Signal

0 1 2 3 4 5 6 7 8 9
Sample 104

-1
0
1

A
m

pl
itu

de Noisy Signal 1

0 1 2 3 4 5 6 7 8 9
Sample 104

-1
0
1

A
m

pl
itu

de Noisy Signal 2

0 1 2 3 4 5 6 7 8 9
Sample 104

-1
0
1

A
m

pl
itu

de Error Signal (Separated Signal 1)

0 1 2 3 4 5 6 7 8 9
Sample 104

-1
0
1

A
m

pl
itu

de Error Signal (Separated Signal 2)

Figure A.66: Error signals after FastICA separation of heartbeat signal contaminated by speech.

FastICA effectively isolates the heartbeat, as indicated by the low error in Separated Signal
1, while Separated Signal 2 predominantly contains the speech.

The Mel spectrogram in figure A.67 illustrates the separation of heartbeat and speech
components.
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Figure A.67:Mel Spectrograms for heartbeat separated from speech by FastICA.

FastICA successfully extracts the heartbeat from speech interference, with Separated
Signal 1 containing a clean heartbeat and Separated Signal 2 capturing the speech noise.

Table A.28 summarises the SNR improvements.

Table A.28: SNR improvement—Heartbeat corrupted with Speech.

Method Output SNR (dB) SNR Improvement (dB)

No Filtering -4.10 -
FastICA (Separated Signal 1) 41.00 45.10
FastICA (Separated Signal 2) -2.50 1.60
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