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Abbreviations

If an abbreviation is in plural, there is added “s” at the end when the abbreviation consists of
upper-case letters and “ ’s” if the abbreviation consists of lower-case letters.

Abbreviation Meaning

FOV Field of view

RCS Radar cross section

MIMO Multiple-input multiple-output

BLaT Bayesian localisation and tracking

MRBLaT Multiple radar Bayesian localisation and tracking

MRCaTBLaT Multiple radar clutter and target Bayesian localisation and tracking

FMCW Frequency modulated continuous wave

SNR Signal-to-noise ratio

SINR Signal-to-interference-plus-noise ratio

IF Intermediate frequency

FDM Frequency division multiplexing

TDM Time division multiplexing

KL Kullback-Leibler

pdf Probability density function

CF1T Clutter-free environment with one target

C0T Clutter environment with no target

C1T Clutter environment with one target

DFT Discrete Fourier transform

FFT Fast Fourier transform

Table 1. List of abbreviations used in the project.

iv



Nomenclature

Symbol Meaning

Pr Power of received signal

PI Power of interference

PN Average noise power

λ Wavelength

τ Two-way time delay

r Range

θ Angle

α Path loss

c Speed of light

NT Number of transmitters

NR Number of receivers

m Transmitter

j Receiver

k Radar

X (m,k)(t) Emitted signal from the mth transmitter on radar k

u(m,k)(t) Complex baseband signal from the mth transmitter on radar k

ωc Angular carrier frequency

fc Carrier frequency

Y(j,k)(t) Received signal on the jth transmitter on radar k

s
(j,k)
n,target(t) Target signal

s
(j,k)
n,clutter(t) Clutter signal

w
(j,k)
t (t) Noise unrelated to the radar signal

z(m,j,k) Match filtered signal in the time domain

Z(m,j,k) Match filtered signal in the frequency domain

Z
(k)
n Vectorised match filtered signal in the frequency domain

S
(k)
n Vectorised match filtered target signal in the frequency domain

M (k)Γ(k)
n Vectorised match filtered clutter signal in the frequency domain

Table 2. List of important symbols used in the project.
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Symbol Meaning

W
(k)
n Vectorised noise unrelated to the radar signal
∗ Complex conjugate

ϕ Kinematic parameters

Γ Vectorised expansion coefficients for the clutter field

µC Mean of clutter field

ΛC Precision of clutter field

Λa Precision of acceleration

·̂ Estimate

· Mean

· Variance

ε Message

γ(l) Expansion coefficients

ψ(l) Deterministic basis functions

⟨·, ·⟩ Inner product

δ Kronecker delta function

NB Number of retained basis functions

Ψ Complete set of basis functions

ΨNB
Subset of basis functions containing NB basis functions

ENB
Error between two clutter fields

C
(k)
n Clutter field

DKL Kullback-Leibler divergence

κ Scaling factor

σ2
w Variation of noise

A Steering matrix

(·)0:n (·)0, (·)1, . . . , (·)n

Table 3. List of important symbols used in the project.
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Introduction to the Problem 1
Drones are a versatile and accessible tool, due to their wide range of sizes and use cases. They have
been employed in many different industries, including law enforcement, military, photography,
and agriculture. In recent years, drones have become more accessible to the public, leading to a
significant increase in private ownership and their presence in both public and private spaces. In
Denmark alone, 20 000 drones are being sold each year [Thaysen, 2023].

Due to the increasing number of drones in active use, it has become necessary to tighten the
restrictions concerning drones and their fly zones [Trafikstyrelsen, 2023a]. In Denmark, it is illegal
to operate a drone within 2 km to 5 km of an airport no matter the intentions [Trafikstyrelsen,
2023b]. These restrictions were implemented after multiple instances in which airports were
forced to shut down due to drones operating near runways [Døssing, 2025b; Witten, 2024]. Illegal
drone flights in air routes are a global problem, having led to rerouted landings, delays, flight
groundings, and airport closures [Lu et al., 2021, p. 1].

Despite restrictions, a record high number of drone flights near Danish airports occurred
in 2024, as shown in Figure 1.1, with the number of incidents more than tripled from the year
before [Døssing, 2025a]. As the number of incidents continues to rise, airport security systems
must be able to detect and localise unauthorised drone activity, since an undetected drone can
have fatal consequences [Lu et al., 2021, p. 11]. For small areas, manual observations may suffice,
but several problems can arise due to poor visibility caused by weather conditions and darkness.
Furthermore, manual observation is not ideal for bigger areas, such as airports, due to the high
labour and resource costs.

There is a wide variety of drone detection and tracking methods relying on sensors such
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Figure 1.1. Number of drone flights near Danish airports through the years. Data from [Døssing, 2025a].
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Group MT10-02 1. Introduction to the Problem

as radars or cameras. Radars are ideal for detection and tracking, as they operate in all-day,
all-weather conditions. The fundamental concept of radar involves a transmitter emitting an
electromagnetic wave that scatters upon objects in its field-of-view (FOV). The scattered waves
reflect back and are captured by a receiver, where they induce a measurable signal. This concept
is depicted in Figure 1.2. Reflections from objects other than the drone interfere with the desired
signal, where these unwanted reflections are referred to as clutter signals. The clutter signals are
represented as grey dashed lines in Figure 1.2. Apart from the reflected waves, a noise signal is
added at the receiving end, arising primarily from thermal noise. Consequently, the received
signal y(t) is a sum of the clutter signal c(t), the target signal from the drone s(t) and the noise
signal w(t) from the receiver:

y(t) = s(t) + c(t) + w(t). (1.1)

In perspective to tracking a drone using radars, the clutter and noise signals can mask the signal
from the drone, resulting in unreliable tracking, false detections, and missed detections. [Kingsley
and Quegan, 1992, pp. 1, 38, 40, 63]

Drones are generally difficult to track using radars due to their low radar cross section
(RCS) and high manoeuvrability. Multiple-input multiple-output (MIMO) radars have proved to
overcome some of these challenges as they can obtain continuous observations within the whole
FOV with a fine angular resolution [Grove, 2022, p. 3]. Several papers have presented their work
on how to enhance tracking performance in low SNR conditions using MIMO radars. In [Huang
et al., 2023], a sequential Monte Carlo method was presented, jointly detecting and tracking
a target with constant velocity using a 4D MIMO radar. For localisation and tracking in a
noncoherent MIMO radar system, [Niu et al., 2012] derived the maximum-likelihood estimate for
the target location and velocity. In [Westerkam et al., 2023], a MIMO radar was utilised along
with a Bayesian localisation and tracking (BLaT) algorithm to effectively track and localise a
small RCS target with high manoeuvrability. We have expanded upon this algorithm in [Kitchen
et al., 2025], developing a distributed algorithm that operates on multiple communicating radars.

Transmitter

Receiver

Figure 1.2. Fundamental concept of a radar, showing how a transmitted signal reflects on objects before
being received. The red dashed line represents the desired signal while the grey dashed lines represents
the clutter signals.
2



1.1. Problem Statement Aalborg University

This variant of the algorithm is called multiple radar BLaT (MRBLaT). Both papers are able to
track and localise a small RCS target in low SNR conditions. They evaluate their algorithms
through simulations conducted in clutter-free environments with one target present. However, in
a real-world setting, clutter signals are nearly always present with reflections arising from hills,
buildings, and vegetation [Kingsley and Quegan, 1992, p. 38]. Thus, it is of great interest to
model and track clutter.

Clutter can be modelled and tracked with various methods depending on the application and
it is often tailored to the clutter type. A key distinction is made between sea clutter and ground
clutter [Kingsley and Quegan, 1992, pp. 106-107]. This project focuses on ground clutter, as
it aligns with the scenario of drone tracking in an airport environment. The characteristics of
ground-clutter signals vary widely due to the diversity of ground clutter objects which include
plants, trees, bare ground, rocks, buildings, other human-made structures, and ground snow
[Hubbert et al., 2009].

As the clutter within the FOV changes over time, it is common to model it using a stochastic
process, where each resolution cell is assigned a reflectivity drawn from a specific distribution.
The choice of distribution for a specific circumstance relies on empirical distributions and physical
reasoning [Kingsley and Quegan, 1992, p. 106]. In the Gamma model [Barton, 1985], the
parameters of the distribution are derived from measurements of similar terrain along with the
grazing angle for the area under surveillance. This approach requires prior knowledge of the
area within the FOV. In [Westerkam and Pedersen, 2025], the clutter is modelled as a random
field defined on a set of orthonormal separable basis functions. This enables clutter tracking
by using message passing on a Bayesian network to learn the parameters of the random field.
An advantage of this method is that it provides a general framework which does not make
assumptions about the specific type of clutter present in the FOV.

Typically, tracking algorithms are tested in clutter environments by modelling clutter and
incorporating it as noise or interference in simulations without explicitly tracking the clutter
[Barton, 1985; Capraro et al., 2007; Musicki and La Scala, 2008]. Instead, we aim to implement
the algorithm in [Westerkam and Pedersen, 2025] and combine it with the MRBLaT algorithm
to propose a multiple radar clutter and target Bayesian localisation and tracking (MRCaTBLaT)
algorithm.

1.1 Problem Statement

How can MRBLaT be expanded to take clutter into account? How does a combined clutter and
tracking algorithm perform?

1.1.1 Scope of the Problem

The scope of the problem is restricted by a set of assumptions that limit the boundaries of the
scenario under consideration. These assumptions enables an initial performance evaluation of
the method under controlled conditions. The assumptions are as follows:

Two-Dimensional Setting
A two-dimensional setting is considered, with the radars detecting signals along the x- and y-axes.
This is depicted in Figure 1.3.

3



Group MT10-02 1. Introduction to the Problem

(a) Example of a clutter environment observed
by a radar. The red line indicates the plane that
will be modelled.

(b) Clutter environment modelled as a two-
dimensional plane.

Figure 1.3. Visualisation of two-dimensional setting assumption.

Scattering Environment
The clutter signals are assumed to be from point clutter, that is clutter signals from individual
reflective surfaces such as trees, buildings, and birds. It is assumed that at most one target is
present in the environment and that it can be modelled as a point target. Additionally, only
single-bounce reflections are considered, meaning the signals reflect off objects only once.

Monostatic MIMO Radars
It is assumed that all radars are monostatic MIMO radars, where the transmitted signal from
a radar is only collected by the receivers on the radar it originated from. Additionally, it is
assumed that the radars do not interfere with each other. It is assumed that the elements of the
radar system are placed close enough such that the received signals are identical up to a small
time delay, also assuming the target is in the far-field.

No Doppler Information
The objects are assumed to be slow moving, allowing the “stop-and-hop” approximation to be
used. As a result, velocity effects are neglected and no Doppler information is available.

Target
It is assumed that the target is high-manoeuvring and has a small RCS to mimic a drone.
Furthermore, it is modelled as a single reflected signal. It is assumed that only one target is
present.

1.2 Structure of the Report

The remainder of the report is structured as follows:

Chapter 2 - Radar Principles introduces basic radar principles for MIMO FMCW radars. It
focuses on the structure of transmitted and received signals, which forms the basis for developing
the signal model for a radar.

4



1.2. Structure of the Report Aalborg University

Chapter 3 - Signal Model presents the signal model for the received signal of a MIMO FMCW
radar for both the target signal and the clutter signal, which will be used to simulate data.
As the clutter field is modelled as a random field, the chapter also includes an introduction of
random fields and how to represent the field using orthogonal expansions.

Chapter 4 - Estimation of Signal Model Parameters derives how the parameters of the
signal model are estimated using variational message passing. Thus, the chapter starts with an
introduction to variational message passing using the mean field approach. The MRCaTBLaT
algorithm is presented in the end of the chapter.

Chapter 5 - Prototype Implementation of Algorithm provides insight into how the
algorithm is implemented and how the simulation setup is implemented in order to evaluate the
performance of the algorithm.

Chapter 6 - Target and Clutter Tracking using Bayesian Inference presents the
results from the simulations and evaluates the MRCaTBLaT algorithm through a Monte Carlo
Simulation.

Chapter 7 and 8 - Discussion and Conclusion discusses the results from Chapter 6 and at
last, conclusions are drawn in Chapter 8.

5



Radar Principles 2
In this chapter, based on [Kingsley and Quegan, 1992, pp. 11-13], the radar equation is presented
first, followed by an introduction to MIMO FMCW radars.

Target detection is fundamentally limited by the strength of the received target signal,
quantified by the signal-to-interference-plus-noise ratio (SINR). To this end, the radar equation
is used to calculate the power of the received target signal Pr. As the transmitted signal travels
through space, the power density is attenuated according to the inverse square law, which is
dependent on the distance the signal travels. The radar equation for a single point target is
given as

Pr = PtGtGrρλ
2Ls

(4π)3r4 , (2.1)

where Pt is the power of the transmitted signal, Gt and Gr is the gain of the transmitter and
receiver antennas, respectively, ρ is the RCS of the target, λ is the wavelength of the transmitted
signal, Ls is the loss factor, and r is the range to the target. The SINR is defined as the power
of the received target signal divided by the sum of the interference power and the power of the
noise at the receiver:

SINR = Pr
PI + PN

= PtGtGrρλ
2Ls

(4π)3r4(PI + PN ) , (2.2)

where PI is the interference power and PN is the average noise power. If there is no interference
present in the signal, then the SINR reduces to the SNR given as

SNR = Pr
PN

= PtGtGrρλ
2Ls

(4π)3r4PN
. (2.3)

The reduction in signal strength as it travels from the transmitter to the receiver is captured
by the path loss α. The power path loss is defined as the ratio between the received and
transmitted power:

αP = Pr
Pt

= GtGrρλ
2Ls

(4π)3r4 . (2.4)

The amplitude path loss is defined as

αA =
√
αP . (2.5)

2.1 MIMO Frequency Modulated Continuous Wave Radar

This section is based on [Klauder et al., 1960], [Jankiraman, 2018, Section 2], [Richards et al.,
2010, p. 395], [Kingsley and Guerci, 2022, p. 193], [Brooker et al., 2005], [Steer, 2019, p. 187],
and [Grove, 2022, p. 43, 57].
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2.1. MIMO Frequency Modulated Continuous Wave Radar Aalborg University

A MIMO radar consists of multiple transmitting and receiving antennas to increase the level
of information. It transmits separate signals from each transmitter, and the received signals from
the multiple receivers are processed together. This creates a virtual array consisting of NTNR

virtual channels, where NT is the number of transmitter and NR is the number of receivers. In a
MIMO radar, the elements of the radar system are placed close enough such that the received
signals are identical up to a small time delay, assuming the target is in the far-field. Figure 2.1a
shows the MIMO principle and Figure 2.1b shows how the positions of the virtual channels are
determined by the location of the physical channels.

An FMCW radar continuously transmits an electromagnetic wave with a frequency that
changes over time within a given bandwidth. One of the simplest signal patterns is a sawtooth
function which consists of chirps. Figure 2.2 shows the frequency and amplitude of a chirp.
A chirp is a sinusoid where the frequency increases linearly with time, and it is characterised
by a start frequency fc, bandwidth Bc, and duration Tc. The slope of the chirp is defined as
S = Bc/Tc. Thus, the instantaneous frequency of the transmitted baseband chirp is expressed as:

f(t) = St ⇔ ω(t) = 2πSt, (2.6)

where ω is the angular frequency. Given that ω(t) = dφ(t)
dt , it follows that

φ(t) =
∫

2πSt dt (2.7)

= πSt2 + φ0, (2.8)

where φ is the phase. This implies that the instantaneous amplitude of the chirp including the

x

y
z

T1

T2

T3

R1

R2

R3

(a) Side-view.

x

y

T1

T2

T3

R1

R2

R3

Virtual array

(b) Top-view.

Figure 2.1. The MIMO principle showing the physical and virtual channel positions when assuming the
target is in the far-field. The colours indicate each transmit and receive channel and their combination.

7



Group MT10-02 2. Radar Principles

t

f(t)

fc

Bc

Tc

(a) Frequency-time plot.

t

A(t)

(b) Amplitude-time plot.

Figure 2.2. Illustration of a chirp.

angular carrier frequency can be expressed as

A(t) = A0 sin
(
πSt2 + ωct+ φ0

)
for 0 < t < Tc, (2.9)

where A0 is the peak amplitude of the chirp.

Consider the FMCW radar setup in Figure 2.3. Here, a generated chirp is emitted by the
transmitter. The chirp is then reflected on an object and the reflected chirp is received at the
receiver, where a mixer is used to downconvert the received chirp. An ideal mixer is a multiplier
that multiplies two input signals and gives the mixed signal as an output. Consider the two
sinusoids

f1(t) = sin(ω1t+ φ1) and f2(t) = sin(ω2t+ φ2) (2.10)

as inputs. Then, the mixed signal is

fout(t) = f1(t) · f2(t) (2.11)
= sin(ω1t+ φ1) · sin(ω2t+ φ2) (2.12)

= 1
2

(
cos
(
(ω1 − ω2)t+ (φ1 − φ2)

)
− cos

(
(ω1 + ω2)t+ (φ1 + φ2)

))
. (2.13)

This has two components: one at the radian frequency (ω1 − ω2) with phase (φ1 − φ2) and the
other at the radian frequency (ω1 + ω2) with phase (φ1 + φ2). If the frequencies of the two
input signals are similar, then the component at (ω1 − ω2) will be much lower than both the
input signals, and the component at (ω1 + ω2) will be almost twice the input frequencies. Thus,
a bandpass filter is needed to sort away the unwanted component. In an FMCW radar, the

Transmitter
Transmitted signal

Signal generator
t

f

Receiver
Mixer Bandpass filter

IF signal

Figure 2.3. FMCW radar setup.
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2.1. MIMO Frequency Modulated Continuous Wave Radar Aalborg University

t

f(t)

Tx chirp Rx chirp

τ

Tc

fIF

(a) Frequency of transmitted and received chirp.

t

f(t)

IF signal

τ

Tc

fIF

(b) Frequency of the IF signal.

Figure 2.4. IF for a SISO FMCW radar with the transmitted chirp being reflected on a single object.

two inputs in the mixer are the transmitted and received signals, and the output is called an
intermediate frequency (IF) signal.

To gain a better understanding of the IF signal, consider a single-input single-output (SISO)
radar where the transmitted signal is reflected on a single object. The frequency of a transmitted
and received chirp in this scenario is illustrated in Figure 2.4a. Note that, the received chirp
is just a delayed version of the transmitted chirp, where τ denotes the two-way time delay
between the radar and the object. Typically, τ is a small fraction of the total chirp time, thus the
non-overlapping segments of the chirps are usually negligible. The frequency of the corresponding
IF signal is shown in Figure 2.4b which is constant since it is the difference of the instantaneous
frequency of the transmitted and received chirp. The frequency of this constant wave is

fIF(t) = fTx(t)− fRx(t) = St− S(t− τ) = 2Sr
c
, (2.14)

where fRx(t) and fTx(t) are the frequency of the received and transmitted signal, respectively,
since τ = 2r/c, where r is the range to the object and c is the speed of light. In an amplitude-time

t

A(t)

Tx chirp

t

A(t)

τ

Rx chirp

t

A(t)

τ

IF signal

Figure 2.5. Amplitude of a transmitted chirp, a received chirp, and the corresponding IF signal.
9
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t

f(t)

Tx chirp

Rx chirps

τ

Tc

fIF

(a) Frequency of the transmitted and received signals.

t

f(t)

IF signals

τ

Tc

fIF

(b) Frequency of the IF signals.

Figure 2.6. IFs for a SISO FMCW radar with the transmitted signal being reflected on multiple objects.

plot, the amplitude of the transmitted and received chirp with the corresponding amplitude of
the IF signal is seen in Figure 2.5. Here, the IF signal ends up being a sinusoid with constant
frequency.

When multiple objects reflect the transmitted signal, the received signal is composed of all
the reflected signals due to the superposition principle. The frequency of a single transmitted
chirp and the multiple received chirps is illustrated in Figure 2.6a. The resulting IF signal is
composed of multiple signals with different frequencies as shown in Figure 2.6b.

When using a MIMO FMCW radar, the contributions from each transmitter on each receiver
must be separated. For this, the transmitted signals should ideally be orthogonal to ensure that
there is no correlation between the signals, but this is not a strict requirement. One simple
approach to obtain separable signals is through frequency division multiplexing (FDM). Here,
the total bandwidth is divided into a number of sub-bands that do not overlap in frequency
depending on the number of transmitters. Each transmitter is then allocated a certain sub-band,
as depicted in Figure 2.7. [Li and Stoica, 2009, p. 67]

t

f(t)

fc3

fc2

Bc

fc1

Tc

Figure 2.7. Illustration of the FDM principle for sawtooth patterns.

Another approach to obtain separable signals is to use time division multiplexing (TDM)
where each transmitter sends out a signal during a specific frame. The signal transmitted in one
frame is called a pulse. After the frame for one transmitter ends, the next transmitter transmits
the same signal during its allocated frame. This sequence, repeated for all transmitters, forms a

10



2.1. MIMO Frequency Modulated Continuous Wave Radar Aalborg University

MIMO cycle. Figure 2.8 illustrates this principle for four transmitters. [Zwanetski and Rohling,
2012]

Transmitter 1

Transmitter 2

Transmitter 3

Transmitter 4

Frame 1 Frame 2 Frame 3 Frame 4

Figure 2.8. Illustration of the TDM principle with four transmitters.
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Signal Model 3
In this chapter, a signal model will be derived for the signals received by the Nradar MIMO
FMCW radars, each equipped with NT transmitters and NR receivers, considering a clutter
environment containing one target.

Consider the setup in Figure 3.1. Here, transmitter m on radar k emits a signal

X (m,k)(t) = Re
¶
u(m,k)eiωct

©
, (3.1)

where u(m,k) ∈ C is the complex baseband signal, i is the imaginary unit, and ωc = 2πfc is the
angular carrier frequency. The transmission is repeated with an interval ∆t. The transmitted
signal propagates throughout, reflects on the environment, and is collected by each receiver on
the radar it originated from.

The environment is assumed to be slow moving compared to the total transmission time
across all transmitters, hence the “stop-and-hop” approximation is employed. Therefore, the
model parameters are considered time invariant between pulses. The reflected signals induce a
signal Y(j,k)

n ∈ C in receiver j on radar k, where n is the MIMO cycle index. The induced signal
is seen as a sum of the received signals from the target and the received signals from the clutter
environment:

Y(j,k)
n (t) = s

(j,k)
n,target(t) + s

(j,k)
n,clutter(t) + w(j,k)

n (t), (3.2)

where s(j,k)
n,target(t) is the received target signal, s(j,k)

n,clutter(t) is the received clutter signal, and w(j,k)
n (t)

is the thermal noise unrelated to the received signal given as complex circularly symmetric white
Gaussian noise with zero mean and variance σ2

w. This allows for finding an expression for the
target signal and the clutter signal separately, and joining them later to get the total signal
model.

The received signals are matched filtered to obtain the signal for each individually reflected
signal. This results in NTNR signals for each radar, each of which is described as

z(m,j,k)
n (t) = Y(j,k)

n (t) ∗
Ä
u(m,k)

ä∗
(t) (3.3)

= s
(j,k)
n,target(t) ∗

Ä
u(m,k)

ä∗
(t) + s

(j,k)
n,clutter(t) ∗

Ä
u(m,k)

ä∗
(t) + w(j,k)

n (t) ∗
Ä
u(m,k)

ä∗
(t) (3.4)

= s
(m,j,k)
n,target(t) + s

(m,j,k)
n,clutter(t) + w(m,j,k)

n (t), (3.5)

where
Ä
u(m,k)

ä∗
denotes the complex conjugate of u(m,k).
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Radar 1

Radar k

Radar Nradar

Target

Trajectory

Figure 3.1. Setup of radars illuminating a clutter environment containing one target.

3.1 Target Signal Model

Start by considering one target in a clutter-free environment as depicted in Figure 3.2 to model
s

(j,k)
n,target in (3.2). The target is described by its kinematic parameters

ϕ(t) =
ï
x(t) y(t) v(x)(t) v(y)(t)

ò⊤
, (3.6)

where [x(t) y(t)]⊤ denotes the position of the target in a global Cartesian coordinate system
while v(x)(t) and v(y)(t) denote the velocities along the x- and y-axes, respectively. Each radar
observes the kinematic parameters of the target in local coordinates. The relation between the
local coordinate system [x(k) y(k)]⊤ and the global coordinate system [x y]⊤ is seen in Figure 3.3.

As the “stop-and-hop” approximation is utilised, the kinematic parameters are considered
time invariant between pulses, meaning ϕ(t) = ϕn for n∆t ≤ t < (n+ 1)∆t. As a result, it is
assumed that the Doppler shift is zero.

The target signal model is modelled as a single reflected signal from each transmitter. By
assuming single-bounce, the target signal for radar k is given as

s
(j,k)
n,target(t) =

NT∑
m=1

α̃(m,j,k)
n u(m,k)

Ä
t− τ (m,k)

n − τ (j,k)
n

ä
eiωc

Ä
t−τ (m,k)

n −τ (j,k)
n

ä
, (3.7)

where α̃(m,j,k)
n is the path loss between transmitter m and receiver j on radar k, calculated by

(2.5). Furthermore, τ (m,k)
n is the time delay from transmitter m on radar k to the target and

τ
(j,k)
n is the time delay from the target to receiver j on radar k. [Li and Stoica, 2009, p. 156]

Figure 3.4 shows the notation used for the transmitter array, where the notation for the
receiver array is denoted similarly. The total two-way time delay from transmitter m to the

13
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Radar 1

Radar k

Radar Nradar

Target

Trajectory

Figure 3.2. Setup of radars illuminating a clutter-free environment containing one target.

x

y

y
(k

)

x
(k

)

Θ
(k)

Radar k

Targetxn
yn

 x(k)
n

y
(k)
n



Figure 3.3. The relation between the local coordinate system [x(k) y(k)]⊤ and the global coordinate
system [x y]⊤ which the algorithm runs in.

T
(k)
1 · · · · · · T (k)

m · · · · · · T (k)
NT

r(1,k)

r(m,k)

d(m,k)rn(t0)

r
(m,k)
n,target = rn(t0)− r(m,k)

(t− t0)vn(t0)

Figure 3.4. Transmitter array and target in a single coordinate system, including their position vectors
and corresponding notation. The notation for the receiver array is denoted similarly.
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target and back to receiver j is expressed as

τ (k)
n = τ (m,k)

n + τ (j,k)
n = 1

c

(∣∣∣rn(t)− r(m,k)
∣∣∣+
∣∣∣rn(t)− r(j,k)

∣∣∣), (3.8)

where rn(t) = [xn(t) yn(t)]⊤ denotes the position vector of the target, and r(m,k) = [x(m,k) y(m,k)]⊤

and r(j,k) = [x(j,k) y(j,k)]⊤ denotes the position vector of transmitter m and receiver j on radar k,
respectively. By assuming that the positions of the radar and target are described with a single
coordinate system, the position vector of a moving target is estimated as a first order Taylor
series around t0:

r̂n(t) = rn(t0) + (t− t0)vn(t0), (3.9)

where r̂n(t) ≈ rn(t) and vn(t0) = [v(x)
n (t0) v(y)

n (t0)]⊤ denotes the velocity vector of the target at
time t0. Inserting (3.9) into (3.8) yields

τ (k)
n ≈ 1

c

(∣∣∣rn(t0) + (t− t0)vn(t0)− r(m,k)
∣∣∣+
∣∣∣rn(t0) + (t− t0)vn(t0)− r(j,k)

∣∣∣). (3.10)

The first term in the parenthesis is now looked upon. By the triangle inequality:∣∣∣rn(t0) + (t− t0)vn(t0)− r(m,k)
∣∣∣ ≤ ∣∣∣rn(t0)− r(m,k)

∣∣∣ + (t− t0)|vn(t0)| (3.11)

By assuming that the changes in distance due to the velocity vector are small compared to the
initial distance over short time intervals, the inequality is seen as an approximation. Denoting the
distance between transmitter m on radar k and the target at time t0 as r

(m,k)
n,target, the corresponding

unit vector is

r⃗
(m,k)
n,target =

r
(m,k)
n,target∣∣∣r(m,k)
n,target

∣∣∣ . (3.12)

Assuming the target is in the far-field, the unit vectors for different transmitters on radar k
become approximately equal:

r⃗
(1,k)
n,target ≈ r⃗

(2,k)
n,target ≈ · · · ≈ r⃗

(NT ,k)
n,target. (3.13)

This shared direction is denoted as r⃗
(T,k)
n,target. As it is the velocity component along the line of

sight that is of interest, the velocity vector is projected onto the unit vector. The projection
is seen as an approximation, because the distance due to the velocity term is assumed small
compared to the initial distance. Thus, (3.11) becomes∣∣∣rn(t0) + (t− t0)vn(t0)− r(m,k)

∣∣∣ ≈ ∣∣∣r(m,k)
n,target

∣∣∣+ r⃗
(T,k)
n,target · vn(t0)(t− t0). (3.14)

The same holds for the second term in the parenthesis in (3.10) in relation to the receiver array.
Thus, (3.10) becomes

τ (k)
n ≈ 1

c

(∣∣∣r(m,k)
n,target

∣∣∣+ r⃗
(T,k)
n,target · vn(t0)(t− t0) +

∣∣∣r(j,k)
n,target

∣∣∣+ r⃗
(R,k)
n,target · vn(t0)(t− t0)

)
(3.15)

≈ 1
c

(∣∣∣r(m,k)
n,target

∣∣∣+ v(T,k)
n (t− t0) +

∣∣∣r(j,k)
n,target

∣∣∣+ v(R,k)
n (t− t0)

)
, (3.16)
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where v(T,k)
n = r⃗

(T,k)
n,target · vn(t0) and v

(R,k)
n = r⃗

(R,k)
n,target · vn(t0)(t − t0). The distances from the

transmitter and receiver arrays to the target is rewritten as∣∣∣r(m,k)
n,target

∣∣∣ =
∣∣∣rn(t0)− r(m=1,k)

∣∣∣︸ ︷︷ ︸
r

(m=1,k)
n,target

+
Ä
−r⃗

(m=1,k)
n,target · d(m,k)

ä
︸ ︷︷ ︸

∆r(m,k)
n

, (3.17)

∣∣∣r(j,k)
n,target

∣∣∣ =
∣∣∣rn(t0)− r(j=1,k)

∣∣∣︸ ︷︷ ︸
r

(j=1,k)
n,target

+
Ä
−r⃗

(j=1,k)
n,target · d(j,k)

ä
︸ ︷︷ ︸

∆r(j,k)
n

, (3.18)

where d(m,k) = r(m,k) − r(m=1,k) and likewise for d(j,k). Note that ∆r(m,k)
n denotes the difference

in travel distance for the transmitted signal from transmitter m on radar k compared to the
transmitted signal from transmitter 1 on radar k, and likewise for ∆r(j,k)

n . Now, (3.16) is written
as

τ (k)
n ≈ 1

c

Ä
r

(m=1,k)
n,target + ∆r(m,k)

n + v(T,k)
n (t− t0) + r

(j=1,k)
n,target + ∆r(j,k)

n + v(R,k)
n (t− t0)

ä
(3.19)

=
r

(m=1,k)
n,target + r

(j=1,k)
n,target

c
− t0

v
(T,k)
n + v

(R,k)
n

c︸ ︷︷ ︸
slow changing, τn,S

+ t

τ
(T,R,k)
n,D︷ ︸︸ ︷

v(T,k)
n + v(R,k)

n

c
+

∆τ (m,k)
n︷ ︸︸ ︷

∆r(m,k)
n

c
+

∆τ (j,k)
n︷ ︸︸ ︷

∆r(j,k)
n

c︸ ︷︷ ︸
fast changing

, (3.20)

where τ (T,R,k)
n,D contains the information from the Doppler shift. The terms labelled “fast changing”

in (3.20) are ignored for the complex baseband signal since a small timing offset does not affect it
significantly due to the long time scale of a single pulse repetition interval. Thus, (3.7) is written
as

s
(j,k)
n,target(t) =

NT∑
m=1

α̃(m,j,k)
n u(m,k)(t− τn,S)eiωc

Ä
t−τn,S−τ (T,R,k)

n,D +∆τ (m,k)
n +∆τ (j,k)

n

ä
. (3.21)

As described in Section 2.1, the received signal at the Rx antenna is downconverted using a
mixer. Thus, (3.21) is multiplied with the transmitted signal:

s
(j,k)
n,target(t) =

NT∑
m=1

α̃(m,j,k)
n u(m,k)(t− τn,S)eiωc

Ä
t−τn,S−τ (T,R,k)

n,D +∆τ (m,k)
n +∆τ (j,k)

n

äÄ
X (m,k)

ä∗
(t). (3.22)

Inserting (3.1) and using (2.8) in the complex baseband signal yields

s
(j,k)
n,target(t) =

NT∑
m=1

α̃(m,j,k)
n ei

(
πS(t−τn,S)2+φ0

)
eiωc

Ä
t−τn,S−τ (T,R,k)

n,D +∆τ (m,k)
n +∆τ (j,k)

n

ä
e−i(πSt2+φ0)e−iωct

(3.23)

=
NT∑
m=1

α̃(m,j,k)
n eiπS

(
(t−τn,S)2−t2

)
eiωc

Ä
−τn,S−τ (T,R,k)

n,D +∆τ (m,k)
n +∆τ (j,k)

n

ä
. (3.24)

The first exponential term is rewritten as

eiπS
(
(t−τn,S)2−t2

)
= eiπS(t2+τ2

n,S−2τn,St−t2) (3.25)

= eiπS(τ2
n,S−2tτn,S) (3.26)

= eiπSτ
2
n,S · e−i2πSτn,St. (3.27)
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Inserting (3.27) into (3.24) yields

s
(j,k)
n,target(t) =

NT∑
m=1

α̃(m,j,k)
n · eiπSτ

2
n,S · e−i2πSτn,St · eiωc

Ä
−τn,S−τ (T,R,k)

n,D +∆τ (m,k)
n +∆τ (j,k)

n

ä
(3.28)

=
NT∑
m=1

α̃(m,j,k)
n · eiπSτ

2
n,S · e−i2πSτn,St · e−iωcτn,S · e−iωcτ

(T,R,k)
n,D · eiωc

Ä
∆τ (m,k)

n +∆τ (j,k)
n

ä
.

(3.29)

The terms containing the slow changing time delay τn,S in the first and third exponential term
is put into the path loss term. The fourth exponential term containing the time delay for the
Doppler shift is disregarded as the “stop-and-hop” approximation is used. The last exponential
term represents the time delay in relation to the distance between the transmitters and receivers,
thus this term is contained in the steering matrix A(m,j,k)(x(k)

n , y
(k)
n ). The second exponential

term is rewritten using (2.14), thus the target signal model ends up being

s
(j,k)
n,target(t) =

NT∑
m=1

α(m,j,k)
n A(m,j,k)

Ä
x(k)
n , y(k)

n

ä
e−i2πfIF

Ä
x

(k)
n ,y

(k)
n

ä
t︸ ︷︷ ︸

u(m,k)(t−τn)(u(m,k))∗(t)

. (3.30)

3.2 Clutter Signal Model

To model s(j,k)
n,clutter in (3.2), consider the clutter environment without a target present as depicted

in Figure 3.5. Instead of modelling the received signal as a single reflected signal as for the
target signal, now, the received signal consists of multiple reflected signals across the FOV. The
clutter signal is modelled as a superposition of reflected signals according to the clutter field
C(k)(x, y; t) ∈ C. The “stop-and-hop” approximation is utilised, thus C(k)(x, y; t) = C

(k)
n (x, y)

for n∆t ≤ t < (n+ 1)∆t. As a result, it is assumed that the Doppler shift is zero for the whole
field. By assuming single-bounce, the clutter signal for radar k is given as

s
(j,k)
n,clutter(t) =

NT∑
m=1

∫
R2
C(k)
n (x, y)u(m,k)

Ä
t− τ (m,k) − τ (j,k)

ä
eiωc(t−τ (m,k)−τ (j,k)) dxdy. (3.31)

This expression is rewritten using the same procedure as in Section 3.1, yielding

s
(j,k)
n,clutter(t) =

NT∑
m=1

∫
R2
C(k)
n (x, y)A(m,j,k)(x, y)e−i2πfIF(x,y)t dxdy. (3.32)

The clutter field is modelled as a two-dimensional stochastic process, known as a random
field, to effectively represent its spatial and temporal dynamics.

3.2.1 Random Fields

In this section, based on [Adler and Taylor, 2015, pp. 23, 27-28, 30, 36-37], [Root and Pitcher,
1955], [Başar et al., 2016, p. 39] and [Li and Chen, 2014, pp. 16, 19], an introduction to random
fields is presented including Gaussian random fields and orthogonal expansions of random fields.
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Radar 1

Radar k

Radar Nradar

Figure 3.5. Setup of radars illuminating a clutter environment containing no target.

Definition 3.2.1 (Random Field)
Given an index space Z, a stochastic process C over Z is a collection of random variables

{C(z) : z ∈ Z}. (3.33)

If Z is a set of dimension N , and the random variables C(z) are all vector valued of dimension
d, then the vector valued stochastic process C is called an (N, d) random field.

[Adler and Taylor, 2015, Definition 2.1.1]

Note that the index variable z can represent time, space, or other relevant domains. Furthermore,
an (N, 1) random field is called an N -dimensional random field.

By Kolmogorov’s extension theorem, Theorem A.1.1, a random field’s distributional properties
are completely determined by the finite-dimensional distributions for the field. These finite-
dimensional distributions are defined as the joint probability distributions of the random variables
C(z1), . . . , C(zn) for any finite subset of indices {z1, . . . ,zn} ⊆ Z. From this, the definition of
Gaussian random fields naturally follows, as the field is called a Gaussian random field if all the
finite-dimensional distributions of the random field are multivariate Gaussian. Gaussian random
fields are determined by their mean µC and precision ΛC .

When modelling a random field, problems might be encountered due to the complexity of the
field. One solution is to transform the representation of the field using orthogonal expansions.
Transforming the representation of a random field is essential for both theoretical insights and
practical calculations.
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Orthogonal Expansions of Random Fields

Consider an N -dimensional random field C(z) ∈ C with z ∈ RN . The random field is expressed
by the synthesis equation:

C(z) =
∞∑
l

γ(l)ψ(l)(z), (3.34)

where {γ(l)}∀l are random variables called expansion coefficients and {ψ(l)}∀l are deterministic
basis functions. The basis is denoted by Ψ = {ψ(l)(z)}∀l and (3.34) holds if Ψ forms a complete
basis, meaning that any square integrable function C defined over a domain in z can be represented
as a linear combination of the basis functions in Ψ. The basis functions are orthonormal in
L2(RN ), meaning ¨

ψ(l)(z), ψ(l′)(z)
∂

=
∫
RN

ψ(l)(z)
Ä
ψ(l′)
ä∗

(z) dz = δl,l′ , (3.35)

where δl,l′ is the Kronecker delta function and ⟨·, ·⟩ is the inner product. Some properties of
orthogonal expansions of random fields are presented in Section A.1.1, including the covariance
and autocorrelation function.

Given an observation of a random field C(z), the expansion coefficients {γ(l)}∀l for the
random field is determined by calculating the inner product. For one expansion coefficient ψ(g)

the inner product is given as¨
C(z), ψ(g)(z)

∂
=
Æ ∞∑

l

γ(l)ψ(l)(z), ψ(g)(z)
∏

(3.36)

=
∞∑
l

γ(l)
¨
ψ(l)(z), ψ(g)(z)

∂
. (3.37)

Since the basis functions are orthonormal they satisfy¨
ψ(l)(z), ψ(g)(z)

∂
=
{

1, if l = g,

0, otherwise.
(3.38)

Thus,

γ(g) =
¨
C(z), ψ(g)(z)

∂
(3.39)

=
∫
RN

C(z)
Ä
ψ(g)
ä∗

(z) dz. (3.40)

The same procedure is repeated to determine all expansion coefficients {γ(l)}∀l. This is called
the analysis equation.

When using orthogonal expansions, the orthogonal basis can either be constructed using
the Gram-Schmidt procedure or be chosen from well-known bases such as the Fourier basis.
Expansion in the Fourier basis is useful for modelling periodic and stationary processes, since it
decomposes the field into a sum of complex exponentials:

C(z) =
∞∑

l=−∞
γ(l)eiω⊤

l z, (3.41)
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where ΨF = {eiω⊤
l z}∀l is the Fourier basis. The complex exponential basis functions form a

complete orthogonal basis for square integrable functions on a bounded interval due to the
periodicity of the basis.

The expansion coefficients {γ(l)}∀l can follow either a Gaussian distribution or non-Gaussian
distributions. If {γ(l)}∀l follow a complex Gaussian distribution, then C(z) would be a complex
Gaussian random field. Expansions using Gaussian expansion coefficients are typically used to
model processes that exhibit smoothness and predictability, where the noise is characterised
by Gaussian distributions. When the expansion coefficients follow a non-Gaussian distribution,
such as the Poisson or complex Laplace distribution, the resulting random field is also non-
Gaussian. These distributions work well for representing non-stationary, complex random fields
with non-linear behaviour such as spikes, discontinuities, and skewness.

Approximation of Random Fields using Orthogonal Expansions

Theoretically, a random field is expanded as an infinite sum of orthogonal basis functions, however,
a digital implementation require a finite approximation due to memory and computational
limitations. Thus, the field must be represented using a finite number of orthogonal basis
functions to reduce complexity while preserving its characteristics.

The field will be approximated using a subset of the basis. Let Ψ = {ψ(l)}∀l be the complete
set of basis functions and ΨNB

⊂ Ψ be the selected subset, where NB denotes the number of
retained basis functions. The approximation of C(z) is given as

Ĉ(z) =
NB∑
l=1

Ä
γ(l)
ä′Ä

ψ(l)
ä′

(z), (3.42)

where {(ψ(l))′(z)}NB
l=1 form the reduced basis and {(γ(l))′}NB

l=1 are the corresponding expansion
coefficients. The selected subset of basis functions does not necessarily correspond to the first
NB elements of the complete basis, that is {(ψ(l))′}NB

l=1 ̸= {ψ(l)}NB
l=1. In practice, it is desired to

use the fewest basis functions necessary to represent the random field while minimising the error:

ENB
= 1
A

∫
RN

∣∣∣C(z)− Ĉ(z)
∣∣∣2 dz, (3.43)

where A is the area of the domain that is integrated over. For discrete representations of the
field, the integrals are replaced with summations, and A is the number of elements in the sum.

Example 3.2.2 (Fourier Basis Functions)
Consider a two-dimensional discrete random field given as C(x, y) for x = 0, . . . , Nx − 1 and
y = 0, . . . , Ny − 1. The field is represented using the Fourier basis functions

ψ(l,g)(x, y) = 1√
NxNy

ei2π(lx/Nx+gy/Ny), (3.44)

which form a complete orthonormal basis when NxNy basis functions are used. To represent
a random field using the orthonormal basis, the NxNy basis functions are scaled by the
expansion coefficients and summed. Thus,

C(x, y) =
Nx−1∑
l=0

Ny−1∑
g=0

γ(l,g)ψ(l,g)(x, y). (3.45)
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3.2. Clutter Signal Model Aalborg University

Let Nx = Ny = 20, such that

ψ(l,g)(x, y) = 1
20ei2π(lx+gy)/20. (3.46)

Using l = 2 and g = 0, Figure 3.6 shows different representations of the basis function
ψ(2,0)(x, y), where the real and imaginary part of ψ(2,0)(x, y) are given as

ψ(2,0)(x, y) = 1
20ei4πx/20 (3.47)

= 1
20 cos(4πx/20)︸ ︷︷ ︸

Re(ψ(2,0)(x,y))

+i 1
20 sin(4πx/20)︸ ︷︷ ︸

Im(ψ(2,0)(x,y))

. (3.48)

Note that |ψ(2,0)(x, y)| = 1/20 for all (x, y) since the real and imaginary part of ψ(2,0)(x, y)
lies on the unit circle scaled by 1/20.

(a)
∣∣ψ(2,0)(x, y)

∣∣. (b) Re
(
ψ(2,0)(x, y)

)
. (c) Im

(
ψ(2,0)(x, y)

)
.

Figure 3.6. Different representations of the Fourier basis function ψ(2,0)(x, y).

Using l = 2 and g = 4 instead, Figure 3.7 shows the real and imaginary part of ψ(2,4)(x, y).
The absolute value of ψ(2,4)(x, y) is the same as in Figure 3.6a.

(a) Re
(
ψ(2,4)(x, y)

)
. (b) Im

(
ψ(2,4)(x, y)

)
.

Figure 3.7. Different representations of the Fourier basis function ψ(2,4)(x, y).

Figure 3.8 shows different representations of the sum of ψ(1,0)(x, y) and ψ(2,4)(x, y), where

Re
Ä
ψ(1,0)(x, y) + ψ(2,4)(x, y)

ä
= 1

20

Å
cos(2πx/20) + cos(2π(2x+ 4y)/20)

ã
, (3.49)

Im
Ä
ψ(1,0)(x, y) + ψ(2,4)(x, y)

ä
= 1

20

Å
sin(2πx/20) + sin(2π(2x+ 4y)/20)

ã
. (3.50)
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Now, the absolute value is no longer 1/20 for all (x, y) as the real and imaginary part no
longer lies on the unit circle.

(a)∣∣ψ(1,0)(x, y) + ψ(2,4)(x, y)
∣∣. (b)

Re
(
ψ(1,0)(x, y) + ψ(2,4)(x, y)

)
.

(c)
Im
(
ψ(1,0)(x, y) + ψ(2,4)(x, y)

)
.

Figure 3.8. Different representations of the combined Fourier basis functions ψ(1,0)(x, y) and
ψ(2,4)(x, y).

Consider an observation of a 20× 20 discrete Gaussian random field C(x, y), which is
shown in Figure 3.9. This field can be represented exactly using the Fourier basis functions
from (3.46):

C(x, y) = 1
20

19∑
l=0

19∑
g=0

γ(l,g)ei2π(lx+gy)/20. (3.51)

The expansion coefficients can be calculated using the analysis equation from (3.39):

γ(l,g) =
¨
C(x, y), ψ(l,g)(x, y)

∂
(3.52)

= 1
20

19∑
x=0

19∑
y=0

C(x, y)e−i2π(lx+gy)/20. (3.53)

The absolute value of the expansion coefficients are shown in Figure 3.11a. Note that the
majority of the expansion coefficients are close to zero, indicating that their corresponding
basis functions do not contribute to the sum.

Figure 3.9. Example of a 20× 20 discrete Gaussian random field.
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Instead of describing the random field using all 400 basis functions, it is now approximated
using the 37 basis functions for which |γ(l,g)| > 2. The approximation Ĉ(x, y) is depicted in
Figure 3.10 and the corresponding absolute value of the expansion coefficients are shown in
Figure 3.11b.

Figure 3.10. An approximation of the random field in Figure 3.9 using 37 basis functions.

(a) Figure 3.9. (b) Figure 3.10.

Figure 3.11. The expansion coefficients of the random field in Figure 3.9 and Figure 3.10.

The error of the approximation is

E37 = 1
400

∑
x,y

∣∣∣C(x, y)− Ĉ(x, y)
∣∣∣2 = 0.33. (3.54)

3.2.2 Clutter Signal Model using Random Fields

The clutter signal model from (3.32) is now rewritten using orthogonal expansions of random
fields, where the clutter field is expressed using the synthesis equation from (3.34):

C(k)
n (x, y) =

∑
l,g

γ(l,g,k)
n ψ(l,g)(x, y), (3.55)
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where the basis functions are the same for all radars across all transmitter-receiver pairs. Inserting
(3.55) in (3.32) results in

s
(j,k)
n,clutter(t) =

NT∑
m=1

∫
R2

∑
l,g

γ(l,g,k)
n ψ(l,g)(x, y)︸ ︷︷ ︸
C

(k)
n (x,y)

A(m,j,k)(x, y)e−i2πfIF(x,y)t dxdy (3.56)

=
NT∑
m=1

∑
l,g

γ(l,g,k)
n

∫
R2
ψ(l,g)(x, y)A(m,j,k)(x, y)e−i2πfIF(x,y)t dxdy. (3.57)

A similar expansion is applied to
Ä
A(m,j,k)(x, y)e−i2πfIF(x,y)t

ä∗
using the same basis functions as

in (3.55): Ä
A(m,j,k)(x, y)e−i2πfIF(x,y)t

ä∗
=

∑
l,g

β(l,g,m,j,k)(t)ψ(l,g)(x, y), (3.58)

resulting in

A(m,j,k)(x, y)e−i2πfIF(x,y)t =
∑
l,g

Ä
β(l,g,m,j,k)

ä∗
(t)
Ä
ψ(l,g)

ä∗
(x, y). (3.59)

An expression for the expansion coefficients is obtained by using the analysis equation from
(3.39) on (3.59): Ä

β(l,g,m,j,k)
ä∗

(t) =
¨
A(m,j,k)(x, y)e−i2πfIF(x,y)t,

Ä
ψ(l,g)

ä∗
(x, y)

∂
. (3.60)

Inserting (3.59) in (3.57) yields:

s
(j,k)
n,clutter(t) =

NT∑
m=1

∑
l,g

γ(l,g,k)
n

Ä
β(l,g,m,j,k)

ä∗
(t)︸ ︷︷ ︸

⟨A(m,j,k)(x,y)e−i2πfIF(x,y)t,(ψ(l,g))∗(x,y)⟩

∫
R2
ψ(l,g)(x, y)

Ä
ψ(l,g)

ä∗
(x, y) dxdy. (3.61)

By choosing an orthonormal basis, the signal model for the clutter signal reduces to

s
(j,k)
n,clutter(t) =

NT∑
m=1

∑
l,g

Ä
β(l,g,m,j,k)

ä∗
(t)γ(l,g,k)

n . (3.62)

3.3 Total Signal Model

The total signal model is obtained by inserting (3.30) and (3.62) into (3.2):

Y(j,k)
n (t) =

NT∑
m=1

[
α(m,j,k)
n A(m,j,k)

Ä
x(k)
n , y(k)

n

ä
e−i2πfIF

Ä
x

(k)
n ,y

(k)
n

ä
t +

∑
l,g

Ä
β(l,g,m,j,k)

ä∗
(t)γ(l,g,k)

n

]
+ w(j,k)

n (t), (3.63)

where the model is based on the following assumptions:

- Objects are located in the far-field.
- The received signals contain only single-bounce reflections.
- Objects move slowly compared to transmission time, meaning the “stop-and-hop”

approximation applies.
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3.3. Total Signal Model Aalborg University

The total signal model is derived in continuous time, but must be sampled for digital
processing. First, the total received signal from (3.63) is match filtered to obtain the received
signal from each channel:

z(m,j,k)
n (t) = s

(m,j,k)
n,target(t) + s

(m,j,k)
n,clutter(t) + w(m,j,k)

n (t). (3.64)

Now, the signal is discretised by sampling it

z(m,j,k)
n [h] = z(m,j,k)

n (hTs), (3.65)

where h = 1, . . . , Ns is the sampling index and Ts = 1
fs

is the sampling period. In the frequency
domain, the signal is on the form:

Z(m,j,k)
n [h′] = Fh→h′

¶
z(m,j,k)
n [h]

©
(3.66)

= Fh→h′
¶
s

(m,j,k)
n,target[h]

©
+ Fh→h′

¶
s

(m,j,k)
n,clutter[h]

©
+ Fh→h′

¶
w(m,j,k)
n [h]

©
(3.67)

= S(m,j,k)
n [h′] +M (m,j,k)[h′]Γ(k)

n +W (m,j,k)
n [h′], (3.68)

where M (m,j,k)[h′] = Vec(Fh→h′
¶
β(l,g,m,j,k)[h]

©
)†, Γ(k) = Vec(γ(l,g,k)) ∈ CNB , and Vec(·) denotes

the vectorisation. Lastly, Z(m,j,k)
n [h′] is vectorised for all Ns samples for all transmitter-receiver

pairs. This yields

Z(k)
n = S(k)

n + M (k)Γ(k)
n + W (k)

n , (3.69)

where Z
(k)
n ∈ CNsNTNR and M (k) ∈ CNsNTNR×NB . Note that Z

(k)
n is constructed by concate-

nating the received signal samples across all transmitter–receiver pairs. For each transmitter m
and receiver j, the Ns samples Z(m,j,k)

n [1], Z(m,j,k)
n [2], . . . , Z(m,j,k)

n [Ns] are placed consecutively in
Z

(k)
n . These sample blocks are first stacked over all transmitters for a given receiver, and then

repeated for each receiver.
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Estimation of Signal Model

Parameters 4
In this chapter, expressions for the signal model parameters are derived. The parameters to
be estimated are the target state vector ϕn = [xn yn v(x)

n v
(y)
n ]⊤ and the expansion coefficients

Γ(k)
n = Vec(γ(k)

n ) for the clutter field. Since these parameters cannot be estimated directly from
the received signals Z1:Nradar

n = Z
(1)
n , . . . ,Z

(Nradar)
n , variational message passing is introduced as

an inference method to estimate their posterior distributions.

4.1 Inference in Graphical Models using Variational Message
Passing

This section, based on [Bishop, 2006, pp. 360-361, 394-398, 462-466], gives a brief introduction
to inference in graphical models and variational message passing using the mean field approach.

A probabilistic graphical model represents random variables by nodes and their probabilistic
dependencies through edges. Probabilistic graphical models are generally used to visualise
probabilities and provide an overview of conditional independence between latent and observed
variables. Message passing in graphical models is a method used for inference, where messages
are exchanged between the nodes in a graph to compute marginal distributions. A message
contains information about the probabilities of the respective nodes in the graphical model.

4.1.1 Inference in Graphical Models

Consider a joint probability p(x1, x2, x3), where xi is a random variable. The joint probability is
decomposed into a product of conditional probabilities such that

p(x1, x2, x3) = p(x3|x2, x1)p(x2|x1)p(x1). (4.1)

Each variable xi is depicted as a node and the conditional probabilities are depicted as an edge
between the linked nodes. An example is shown in Figure 4.1. When the graph is constructed
this way, it forms a directed acyclic graph. The direction of each edge is determined by the
underlying conditional probability, and acyclicity means that the graph never returns to the
starting node when following the direction of the edges. This type of graphical model is also
known as a Bayesian network.

Consider a joint probability with N variables, where the Markov property is satisfied:

p(x1, . . . , xN ) = p(xN |xN−1) . . . p(x2|x1)p(x1). (4.2)

This joint probability, is depicted in Figure 4.2. The marginal distribution p(xn) is calculated as

p(xn) =
∑
x1

∑
x2

· · ·
∑
xn−1

p(x1, . . . , xN ). (4.3)
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x1

x3

x2

Figure 4.1. Directed, acyclic Bayesian network depicting the joint distribution p(x1, x2, x3).

When calculating the marginal distribution as in (4.3), the joint distribution is evaluated first,
followed by the summations. This results in computational costs that scale exponentially with
N . Thus, an alternative representation of (4.3) is necessary for large N . This is found using the
product rule of probabilities along with the Markov property:

p(xn) =
∑
x1

· · ·
∑
xn−1

p(x1)p(x2|x1)p(x3|x2) · · · p(xn|xn−1). (4.4)

While this does not directly influence the computational cost, it enables the use of local calculations
instead of global calculations. For instance, only the last term is dependent on xn−1, the
summation over xn−1 simplifies to: ∑

xn−1

p(xn|xn−1). (4.5)

This is repeated for each summation, where each summation results in a function of the next
variable, such that the summation over xn−1 results in a function of xn−2 and so on. Thus, the
marginal distribution can now be written as

p(xn) =
∑
xn−1

p(xn|xn−1) · · ·
∑
x2

p(x3|x2)
∑
x1

p(x2|x1)p(x1)︸ ︷︷ ︸
εmsg(xn)

, (4.6)

where εmsg(xn) is the message containing information passed from preceding nodes. Each node
has their own message εmsg(·), making it possible to evaluate the messages recursively, where the
first message εmsg(x2) is evaluated followed by the succeeding messages.

4.1.2 Variational Message Passing

Consider a Bayesian network where all parameters are given prior distributions. The network
may have latent variables and parameters collectively denoted by ϕ, while the set of observed
variables is denoted by Z. The probabilistic model specifies a joint distribution given as p(Z,ϕ),
and the distribution of interest is the posterior distribution p(ϕ|Z). As this posterior distribution

x1

εmsg(x2)
· · ·

xn−1

εmsg(xn−1)

xn

εmsg(xn)
· · ·

xN

εmsg(xn+1) εmsg(xN )

Figure 4.2. Directed, acyclic Bayesian network depicting the joint distribution p(x1, . . . , xN ), where
εmsg is the information sent to the next node.
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often is intractable, the goal of the method is to approximate it. Furthermore, the marginal
distribution, given as

p(Z) =
∫
p(Z,ϕ) dϕ, (4.7)

is also of interest. However, it is assumed that optimisation of the marginal distribution p(Z) is
difficult and optimisation of the joint distribution p(Z,ϕ) is much easier. A proper distribution
q(ϕ) is now introduced, where this is used as a surrogate function for the true posterior. For any
q(ϕ), the following decomposition of the log marginal probability holds true:

ln (p(Z)) = L(q) + DKL(q||p), (4.8)

where DKL(q||p) is the Kullback-Leibler (KL) divergence between the posterior distribution
p(ϕ|Z) and the surrogate function q(ϕ), defined as

DKL = −
∫
q(ϕ) ln

Å
p(ϕ|Z)
q(ϕ)

ã
dϕ, (4.9)

and L(q) is given as

L(q) =
∫
q(ϕ) ln

Å
p(Z,ϕ)
q(ϕ)

ã
dϕ. (4.10)

The decomposition in (4.8) can be explained by examining (4.10). Using the definition of
conditional probability, the log joint probability distribution is rewritten as

ln(p(Z,ϕ)) = ln(p(ϕ|Z)p(Z)) (4.11)
= ln(p(ϕ|Z)) + ln(p(Z)). (4.12)

Inserting (4.12) into (4.10) yields

L(q) =
∫
q(ϕ)
Å

ln
Å
p(ϕ|Z)
q(ϕ)

ã
+ ln(p(Z))

ã
dϕ =

∫
q(ϕ) ln

Å
p(ϕ|Z)
q(ϕ)

ã
dϕ︸ ︷︷ ︸

=−DKL(q||p)

+ ln(p(Z))
∫
q(ϕ) dϕ︸ ︷︷ ︸

=1

.

(4.13)

When inserting (4.13) into (4.8), it is seen that the first term cancels out KL divergence while
the second term equals the log marginal probability ln(p(z)) as q(ϕ) is a proper probability
distribution. It is known that the KL divergence only satisfies DKL(q||p) = 0, if q(ϕ) = p(ϕ|Z),
thus L(q) ≤ ln(p(Z)), meaning L(q) is a lower bound on ln(p(Z)).

As the true posterior of a model is often intractable, a restricted family of distributions for
which the lower bound L(q) is maximised is considered. This corresponds to minimising the KL
divergence between the surrogate function q(ϕ) and the true posterior p(ϕ|Z). Furthermore,
the surrogate functions q(ϕ) needs to be tractable, hence it is desired to restrict the family
sufficiently such that they comprise only tractable distributions. To achieve this, the mean field
approximation is commonly applied.
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4.1.2.1 Mean Field Approximation

A common family of distributions q(ϕ) is the set of fully factorised functions, where

q(ϕ) =
N∏
i=1

qi(ϕi). (4.14)

The elements of ϕ have been partitioned into disjoint groups denoted ϕi for i = 1, . . . , N . Using
this family of distributions leads to the method known as the mean field approximation. The
general idea is to consider all distributions q(ϕ) on the form in (4.14), and then choose the one
for which the lower bound L(q) is largest. For this purpose, a free form variational optimisation
of L(q) with regard to all the distributions qi(ϕi) will be performed by optimising with respect
to each of the factors, one at a time.

First, (4.14) is substituted into (4.10):

L(q) =
∫ N∏

i=1
qi(ϕi) ln

Ç
p(Z,ϕ)∏N
i′=1 qi′(ϕi′)

å
dϕ. (4.15)

Next, the dependence of qj(ϕj) is pulled out of the first product as it is desired to obtain an
optimisation expression for one factor qj(ϕj). Thus,

L(q) =
∫
qj(ϕj)

N∏
i ̸=j

qi(ϕi) ln
Ç

p(Z,ϕ)∏N
i′=1 qi′(ϕi′)

å
dϕ (4.16)

=
∫
qj(ϕj)

(
N∏
i ̸=j

qi(ϕi) ln(p(Z,ϕ))−
N∏
i ̸=j

qi(ϕi)
N∑
i′

ln(qi′(ϕi′))
)

dϕ. (4.17)

The integral is split up and converted into a double integral, to integrate over ϕi and ϕj :

L(q) =
∫
qj(ϕj)

(∫
ln(p(Z,ϕ))

N∏
i ̸=j

qi(ϕi) dϕi

)
︸ ︷︷ ︸

ln(p̃(Z,ϕj))

dϕj −
∫
qj(ϕj) ln(qj(ϕj)) dϕj

+
∫ N∏

i ̸=j
qi(ϕi)

N∑
i′ ̸=j

ln(qi′(ϕi′)) dϕi. (4.18)

In (4.18), ln(p̃(Z,ϕj)) is written as

ln(p̃(Z,ϕj)) = E
i ̸=j

[ln(p(Z,ϕi))] + constant, (4.19)

where E
i ̸=j

is the expected value over all variables Z except Zi. Note that the last term in (4.18)
is constant, thus,

L(q) =
∫
qj(ϕj) ln(p̃(Z,ϕj) dϕj −

∫
qj(ϕj) ln(qj(ϕj)) dϕj + constant (4.20)

=
∫
qj(ϕj)

Å
ln
Å
p̃(Z,ϕj)
qj(ϕj)

ãã
dϕj + constant (4.21)

= −DKL(q||p̃), (4.22)

for the set of fully factorised functions. This means that maximising the lower bound is equivalent
to minimising the KL divergence between p̃(Z,ϕj) and qj(ϕj). From the definition of the KL
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divergence, it is known that the minimum of (4.22) occurs when qj(ϕj) = p̃(Z,ϕj), thus an
optimal solution is given by

ln(q⋆j (ϕj)) = E
i ̸=j

[ln(p(Z,ϕi))] + constant. (4.23)

The expression in (4.23) is iteratively solved for each variable qj(ϕj).

By combining variational message passing with the mean field approximation, an approach
for approximating the posterior distributions of the parameters of interest has been obtained.

4.2 Parameter Estimation using Variational Message Passing

The concepts of variational message passing and the mean field approximation is now applied to
the problem of jointly estimating all ϕ0,ϕ1, . . . ,ϕn and Γ(k)

0 ,Γ(k)
1 , . . . ,Γ(k)

n for k = 1, . . . Nradar
in a system with multiple MIMO FMCW radars. These parameters will be estimated for one
target in a clutter environment using the observations Z1:Nradar

0:n from (3.69), representing the
first n MIMO cycles for each radar, where n = 0, 1, . . . , N . To ease notation, Z1:Nradar

0:n =
Z

(1)
0 , . . . ,Z

(1)
n , . . . ,Z

(Nradar)
0 , . . . ,Z

(Nradar)
n and likewise for ϕ0:n and Γ1:Nradar

0:n . The MRBLaT
algorithm presented in [Kitchen et al., 2025] will be utilised for the target parameter estimation
along with the clutter field estimation presented in [Westerkam and Pedersen, 2025]. The goal is
to combine the clutter tracking algorithm with the MRBLaT algorithm.

4.2.1 Local or Global Clutter Field Framework

In a multi-radar setup, the clutter field can be modelled either as a global or a local clutter field.
For the global clutter field, all radars jointly estimate one common clutter field from different
perspectives, meaning that Γ(k)

n is the same for all radars. For the local clutter field each radar
independently estimate their own individual clutter field.

Both approaches has its advantages and disadvantages. The Bayesian network for the global
clutter field can be seen in Figure 4.3. Using a global clutter field ensures a common interpretation
of it, leading to a potentially more accurate joint estimation. Another advantage is that fewer
parameters needs to be estimated. A disadvantage for a global clutter field is that information
about Γ0:n must be exchanged between the radars, which either requires centralised processing or
sending very large data vectors between the radars. Both cases will likely cause the computational
complexity to increase. Furthermore, blind spots can cause discrepancies between radars, as one
radar may detect objects that are obstructed from another’s view.

The Bayesian network for the local clutter field can be seen in Figure 4.4. For local clutter
fields, one advantage is that no data needs to be exchanged between the radars since the
parameters are estimated independently for each radar. Additionally, the clutter field is then
independent of the geometry and position of the radar. Lastly, local estimation can better account
for varying terrain and obstructions specific to each radar. The disadvantages of a local clutter
field are that more parameters must be estimated and that there is no shared interpretation of
the clutter environment across radars.

We have chosen to use the local clutter field setting, due to its advantages on decentralised
parameter estimation and to avoid discrepancies among radars regarding whether or not there
is an object present. Furthermore, by having local clutter fields both the target tracking and
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k = 1 : Nradar

Z
(k)
0 Z

(k)
1 Z

(k)
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Figure 4.3. The Bayesian network for target and clutter tracking using a global clutter field. The
observed variables are marked with grey.
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Figure 4.4. The Bayesian network for target and clutter tracking using a local clutter field. The observed
variables are marked with grey.
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clutter tracking are distributed algorithms. Thus, the rest of the parameter estimation will be
carried out using a local clutter field approach.

It is assumed that the target follows a kinematic model with mean µa = 0 and precision
matrix Λa as described in [Kitchen et al., 2025]. Furthermore, it is assumed that Γ(k)

n |µ(k)
C ,Λ(k)

C ∼
NC(µ(k)

C ,Λ(k)
C ) and that Γ(k)

n |µ(k)
C ,Λ(k)

C ,Γ(k)
n−1 form a Markov process with mean µ

(k)
C and precision

matrix Λ(k)
C :

Γ(k)
n = κΓ(k)

n−1 + V
(k)
N , (4.24)

where V
(k)
N ∼ NC(µ(k)

V ,Λ(k)
V ) is the process noise and κ =]0, 1[ is a scaling factor. Note that the

clutter field is complex Gaussian as the expansion coefficients are complex Gaussian. Assuming
that Γ(k)

n |µ(k)
C ,Λ(k)

C is wide sense stationary, the mean and precision of the noise are

µ
(k)
V = µ

(k)
C (1− κ), Λ(k)

V = Λ(k)
C

1− κ2 . (4.25)

This comes from the fact that the mean for the Markov process is given as

µ
(k)
C = κµ

(k)
C + µ

(k)
V , (4.26)

and the covariance is given asÄ
Λ(k)
C

ä−1
= κ2

Ä
Λ(k)
C

ä−1
+
Ä
Λ(k)
V

ä−1
. (4.27)

4.2.2 Parameter Estimation using a Local Clutter Field

The dependencies of the target parameters and the clutter parameters, illustrated in Figure 4.4,
are modelled as a Markov process, which yields a joint density function of the unknown parameters
and the data:

p
Ä
Z1:Nradar

0:N ,ϕ0:N ,Γ1:Nradar
0:N ,Λa,µ

1:Nradar
C ,Λ1:Nradar

C

ä
= p(ϕ0|Λa)p(Λa)

N∏
n=0

(
Nradar∏
k=1

p
(

Z(k)
n

∣∣∣ϕn,Γ(k)
n

))

×
N∏

n′=1
p(ϕn′ |ϕn′−1,Λa)

(
Nradar∏
k′=1

p
Ä
Λ(k′)
C

ä
p
Ä
µ

(k′)
C

ä
p
(

Γ(k′)
0

∣∣∣µ(k′)
C ,Λ(k′)

C

)
p
(

Γ(k′)
n′

∣∣∣Γ(k′)
n′−1,µ

(k′)
C ,Λ(k′)

C

))
.

(4.28)

Here, Λa and Λ(k)
C are the precision matrix of the target’s acceleration and clutter field according

to radar k, respectively, and µ
(k)
C is the mean of the clutter field according to radar k. Note

that the variance of p(ϕ0|Λa) will tend to infinity for any stationary solution, thus an improper
distribution is chosen such that p(ϕ0|Λa) = 1.

As the goal is to estimate ϕ0:N and Γ1:Nradar
0:N based on the data Z1:Nradar

0:N , the
posterior distributions p

Ä
ϕn|Z1:Nradar

0:n ,Λa

ä
and p

Ä
Γ(k)
n |Z1:Nradar

0:n ,µ1:Nradar
C ,Λ1:Nradar

C

ä
are examined.

However, these posteriors are intractable, thus the mean field approach is used to approximate
the joint posterior with surrogate functions:

Nradar∏
k=1

q
Ä
ϕ0:N ,Γ(k)

0:N ,Λa,µ
(k)
C ,Λ(k)

C

ä
= q(Λa)

Nradar∏
k=1

q
Ä
µ

(k)
C

ä
q
Ä
Λ(k)
C

ä N∏
n=0

q(ϕn)q
Ä
Γ(k)
n

ä
. (4.29)

These are obtained by minimising the KL divergence with regards to the true posterior.
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Target Tracking

An expression for the posterior of the target parameters is derived first. From [Kitchen et al.,
2025], the two surrogate functions from (4.29) related to the target are written as

ln(q(ϕn)) =
Nradar∑
k=1

ln
(
p
(

Z(k)
n

∣∣∣ϕn,Γ(k)
n

))
+ E

\ϕn

[ln(p(ϕn|ϕn−1,Λa))]

+ E
\ϕn

[ln(p(ϕn+1|ϕn,Λa))] + constant, (4.30)

and

ln(q(Λa)) =
N∑
n=1

E
\Λa

[ln(p(ϕn|ϕn−1,Λa))] + ln(p(Λa)) + constant, (4.31)

where each of the terms in the surrogate functions is viewed as a message. Note that while the
messages are derived for each radar, the expressions for the messages are the same for all radars
and the superscript (k) is therefore omitted. The messages that are derived for the target are:

1. ε(Zn→ϕn) from (4.30).
2. ε(ϕn−1→ϕn) from (4.30).
3. ε(ϕn+1→ϕn) from (4.30).
4. ε(Λa→ϕn) from (4.31).

The derivations of the second and third message are found in Section B.1.

The first message is now derived, where ε(Zn→ϕn) is expanded as

E
\ϕn

[ln(p(Zn|ϕn,Γn))] ∝ − E
\ϕn

ïÅ
Zn −MΓn︸ ︷︷ ︸

Źn

−S(ϕn)
ã†

ΛZ

Å
Zn −MΓn︸ ︷︷ ︸

Źn

−S(ϕn)
ãò

(4.32)

= − E
\ϕn

î
Ź†
nΛZŹn

ó
︸ ︷︷ ︸

constant

− E
\ϕn

î
S(ϕn)†ΛZS(ϕn)

ó
+ 2Re

Å
E

\ϕn

î
Ź†ΛZS(ϕn)

óã (4.33)

= −S(ϕn)†ΛZS(ϕn) + 2Re
Å

E
\ϕn

î
Ź†ΛZS(ϕn)

óã
− constant (4.34)

= −
Å

E
\ϕn

î
Źn

ó
− S(ϕn)

ã†
ΛZ

Å
E

\ϕn

î
Źn

ó
− S(ϕn)

ã
− constant. (4.35)

Here,

E
\ϕn

î
Źn

ó
= Zn −MΓn = Žn, (4.36)

where · denotes the mean, and Žn shows that when the target parameters are estimated, the
mean of the clutter field Γn is subtracted. This attempts to suppress the interference from the
clutter environment through mutual interference cancellation. Since (4.35) is not recognised as
any known distribution in ϕn, it is desired to estimate the message by a Gaussian distribution:

ε(Zn→ϕn) = NC
(
ε(Zn→ϕn),

Ä
ε

(Zn→ϕn)ä−1)
, (4.37)
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where · denotes the covariance matrix. The optimal approximation of the message is obtained by
minimising the KL divergence between ε(Zn→ϕn) and a Gaussian distribution in ϕn:ß

ε̂
(Zn→ϕn)

, ε̂
(Zn→ϕn)

™
= arg min

ε,ε

DKL

(
NC
Ä
ϕn; ε, ε

−1ä∥∥∥ε(Zn→ϕn)
)
, (4.38)

where

DKL

(
NC
Ä
ϕn; ε, ε

−1ä∥∥∥ε(Zn→ϕn)
)

= −
∫

ϕn

NC
Ä
ε, ε

−1ä ln
Ä
ε(Zn→ϕn)

ä
dϕn +

∫
ϕn

NC
Ä
ε, ε

−1ä ln
Ä
NC
Ä
ε, ε

−1ää dϕn. (4.39)

Here, the second term is the entropy of a Gaussian distribution, denoted by ζ(ε), and the first
term is the expectation of ln(ε(Zn→ϕn)) with regards to the Gaussian distribution NC

Ä
ε, ε

−1ä.
As (4.38) is difficult to optimise numerically, the first term is (4.39) is rewritten as

E
ϕn

[(Ä
Sn(ϕn)− Žn

ä†
ΛZ

Ä
Sn(ϕn)− Žn

ä)]
= E

ϕn

î
Sn(ϕn)†ΛZSn(ϕn)

ó
− Žn

†ΛZ E
ϕn

[Sn(ϕn)]− E
ϕn

î
Sn(ϕn)†

ó
ΛZŽn + Žn

†ΛZŽn, (4.40)

where

E
ϕn

î
Sn(ϕn)†ΛZSn(ϕn)

ó
= E

ϕn

î
tr
Ä
Sn(ϕn)†ΛZSn(ϕn)

äó
(4.41)

= E
ϕn

î
tr
Ä
Sn(ϕn)Sn(ϕn)†ΛZ

äó
(4.42)

= tr
Å
E
ϕn

î
Sn(ϕn)Sn(ϕn)†

ó
ΛZ

ã
. (4.43)

Inserting (4.43) in (4.40) yields

E
ϕn

[(Ä
Sn(ϕn)− Žn

ä†
ΛZ

Ä
Sn(ϕn)− Žn

ä)]
= tr
Å
E
ϕn

î
Sn(ϕn)Sn(ϕn)†

ó
ΛZ

ã
− Žn

†ΛZ E
ϕn

[Sn(ϕn)]− E
ϕn

î
Sn(ϕn)†

ó
ΛZŽn + Žn

†ΛZŽn. (4.44)

The expectations in (4.44) are intractable, therefore, the delta method [Zepeda-Tello et al.,
2022] is utilised to approximate them. The calculation for this approximation is seen in Section B.2,
yielding (B.29)

E
ϕn

[Sn(ϕn)] ≈ Sn(ϕn), (4.45)

and (B.35)

E
ϕn

î
Sn(ϕn)Sn(ϕn)†

ó
≈ Sn(ϕn)Sn(ϕn)† +∇ϕnSn(ϕn)ϕn∇ϕnSn(ϕn)†. (4.46)

An expression for the KL divergence in (4.39) is obtained by inserting these approximations into
(4.44):

DKL ∝ tr
(Ä

Sn(ϕn)Sn(ϕn)† +∇ϕnSn(ϕn)ϕn∇ϕnSn(ϕn)†
ä
ΛZ

)
− Žn

†ΛZSn(ϕn)− Sn(ϕn)†ΛZŽn + Žn
†ΛZŽn − ζ(ϕn)

(4.47)

= Sn(ϕn)†ΛZSn(ϕn) + tr
Ä
ϕn∇ϕnSn(ϕn)†ΛZ∇ϕnSn(ϕn)

ä
− 2Re

Ä
(Sn(ϕn)− Žn)†ΛZ

Ä
Žn − Sn(ϕn)

ää
− ζ(ϕn).

(4.48)
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Now, (4.48) can be numerically minimised in ϕn and ϕn.

An approximation of the path loss α is needed as it contains information about the reflectivity
of the target. This will be done using a maximum likelihood estimate, using the mean of the
previous target parameter ϕn−1:

α̂ =
Sn(ϕn−1)†ΛZŽn

Sn(ϕn−1)†ΛZSn(ϕn−1)
. (4.49)

As mentioned in [Kitchen et al., 2025], the real operator in (4.48) causes instability and is
therefore replaced by an absolute value. Thus the objective function becomes

DKL ∝ −2
∣∣∣∣α̂ÄSn(ϕn)− Žn

ä†
ΛZ

Ä
Žn − Sn(ϕn)

ä∣∣∣∣
+ |α̂|2Sn(ϕn)†ΛZSn(ϕn) + |α̂|2tr

Ä
ϕn∇ϕnSn(ϕn)†ΛZ∇ϕnSn(ϕn)

ä
− ζ(ϕn). (4.50)

As the first three messages going to ϕn are described as multivariate complex Gaussian
distributions, the surrogate function q(ϕn) is described as a product of these distributions:

q(ϕn) = N (µtot,Λtot) =
N∏
n=0
N (µn,Λn) (4.51)

where

Λ−1
tot =

N∑
n=0

Nradar∑
k=1

ε
(ϕn−1→ϕn) + ε

(ϕn+1→ϕn) + ε
Ä
Z

(k)
n →ϕn

ä
(4.52)

is the total precision matrix, and

µtot = (Λtot)−1
N∑
n=0

Ä
ε

(ϕn−1→ϕn) + ε
(ϕn+1→ϕn) + ε

(Zn→ϕn)ä
×
Ä
ε(ϕn−1→ϕn) + ε(ϕn+1→ϕn) + ε(Zn→ϕn)

ä
(4.53)

is the total mean vector. Here, the precision matrices of the messages are given by (B.24), (B.27),
and (4.50) and the means of the messages are given by (B.23), (B.26), and (4.50).

The fourth message ε(Λa→ϕn) is, by [Westerkam et al., 2025], written as

exp
(

N∑
n=1

E
\Λa

[ln(p(ϕn|ϕn−1,Λa))]
)

= exp
(
−1

2

N∑
n=1

tr
Ä
ΛaV

(k)
n,n−1

ä)
|Λa|

N
2 , (4.54)

where

V(k)
n,n−1 = E

\Λa

[(
ϕn − T ϕn−1

)Ä
G⊤G

ä−1(
ϕn − T ϕn−1

)⊤
]
. (4.55)

By using a factorised prior probability density function (pdf), that is p(Λ(k)
a ) =

∏4
j=1 p(Λ

(k)
a,j ),

the trace is written as

tr
Ä
Λ(k)
a ,Vn,n−1

ä
=

4∑
j=1

Λ(k)
a,j

î
V(k)
n,n−1

ó
j,j
. (4.56)
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Inserting (4.56) in (4.54) results in

exp
(

N∑
n=1

E
\Λa

[ln(p(ϕn|ϕn−1,Λa))]
)

= exp
(
−1

2

N∑
n=1

4∑
j=1

Λ(k)
a,j

î
V(k)
n,n−1

ó
j,j

)
|Λa|

N
2 , (4.57)

which is recognised as the functional form of a gamma distribution Gamma(G, ϵ) with parameters

G = N/2 + 1 and ϵ =
∑N

n=1 V(k)
n,n−1,j,j

2 .

Clutter Tracking

The expression for the posterior for the clutter parameters are derived. The three surrogate
functions that are related to the clutter parameters in (4.29) are

ln
Ä
q
Ä
Γ(k)
n

ää
=

N∑
n=0

ln
Ä
p
Ä
Z(k)
n |ϕn,Γ(k)

n

ää
+ E

\Γ(k)
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î
ln
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(k)
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(k)
C ,Λ(k)

C

ääó
+ E

\Γ(k)
n

î
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Ä
Γ(k)
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n ,µ
(k)
C ,Λ(k)

C

ääó
+ constant, (4.58)

ln
Ä
q
Ä
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C

ää
= ln
Ä
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C

ää
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N∑
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E
\µ

(k)
C

î
ln
Ä
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Ä
Γ(k)
n |Γ

(k)
n−1,µ

(k)
C ,Λ(k)

C

ääó
+ constant, (4.59)

and

ln
Ä
q
Ä
Λ(k)
C

ää
= ln
Ä
p
Ä
Λ(k)
C

ää
+

N∑
n=0

E
\Λ(k)

C

î
ln
Ä
p
Ä
Γ(k)
n |Γ

(k)
n−1,µ

(k)
C ,Λ(k)

C

ääó
+ constant. (4.60)

Once again, note that while the message is calculated for each radar, the expression for the
message is the same for all radars, and the superscript (k) is therefore omitted. The messages
that are derived for the clutter are:

1. ε(Γn−1→Γn) from (4.58).
2. ε(Γn+1→Γn) from (4.58).
3. ε(Zn→Γn) from (4.58).
4. ε(µC→Γn) from (4.59).
5. ε(ΛC→Γn) from (4.60).

The first message ε(Γn−1→Γn) is derived, where

ln
Ä
ε(Γn−1→Γn)

ä
= E

\Γn

[ln(p(Γn|Γn−1,µC ,ΛC))]. (4.61)

By (4.24) and (4.25):

p(Γn|Γn−1,µC ,ΛC) = NC

Å
κΓn−1 + µC(1− κ)︸ ︷︷ ︸

ξ

,
ΛC

1− κ2︸ ︷︷ ︸
η

ã
(4.62)

=
√

det(η)
2π exp

Å
−1

2(Γn − ξ)†η(Γn − ξ)
ã
. (4.63)
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Inserting (4.63) in (4.61) yields

ln
Ä
ε(Γn−1→Γn)

ä
= E

\Γn

[
ln
(√

det(η)
2π exp

Å
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(4.64)

= E
\Γn

î
−(Γn − ξ)†η(Γn − ξ)

ó
+ E

\Γn

[g(ΛC)] (4.65)

= E
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nηΓn − ξ†ηΓn − Γ†

nηξ + ξ†ηξ)] + E
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[g(ΛC)] (4.66)

= −
Å
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nηΓn − ξ

†
ηΓn − Γ†

nηξ + E
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ξ†ηξ

ó
︸ ︷︷ ︸

constant

ã
+ E

\Γn

[g(ΛC)] (4.67)

= −(Γn − ξ)†η(Γn − ξ) + E
\Γn

[g(ΛC)] + constant, (4.68)

where g is a deterministic function of ΛC . The first term is recognised as the pdf of a Gaussian
distribution with mean ξ = κΓn−1 +µC(1−κ) and covariance η =

(
ΛC

1−κ2

)−1
. Thus, the statistics

of the message are

ε(Γn−1→Γn) = µC + κ
(
Γn−1 − µC

)
, (4.69)

ε
(Γn−1→Γn) = (1− κ2)Λ−1

C , (4.70)

where µC and ΛC themselves are stochastic variables.

The second message ε(Γn+1→Γn) is derived similarly, except that the Markov chain is now
given by

Γn = 1
κ

(Γn+1 + VN ), (4.71)

where this expression is obtained by (4.24). Thus, the statistics of the message are

ε(Γn+1→Γn) = µC + 1
κ

(
Γn+1 − µC

)
, (4.72)

ε
(Γn+1→Γn) = 1− κ2

κ2 Λ−1
C . (4.73)

The third message ε(Zn→Γn) is now derived. This is the same expression as in (4.32) with
the expectation taken for all variables except Γn instead. Thus,

E
\Γn

[ln(p(Zn|ϕn,Γn))] ∝ − E
\Γn

ïÅ
Zn − S(ϕn)︸ ︷︷ ︸

Z̀n

−MΓn
ã†

ΛZ

Å
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Z̀n

−MΓn
ãò
. (4.74)

Applying the the same steps as in (4.32)-(4.35) results in

E
\Γn

[ln(p(Zn|ϕn,Γn))] ∝ −
Å

E
\Γn

î
Z̀n

ó
−MΓn

ã†
ΛZ

Å
E
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Z̀n

ó
−MΓn

ã
, (4.75)

where

E
\Γn

î
Z̀
ó

= Zn − S
(
ϕn

)
= ‹Zn. (4.76)
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The expression in (4.75) is recognised as a Gaussian distribution in ‹Zn, but not in Γn. The
non-Gaussian nature of Γn becomes apparent when examining the pdf:

p(Zn|ϕn,Γn) ∝ exp
(
−
Ä‹Zn −MΓn

ä†
ΛZ

Ä‹Zn −MΓn
ä)
. (4.77)

If the distribution were Gaussian in both ‹Zn and Γn, it would allow the following rewriting:

p(Zn|ϕn,Γn) ∝ exp
(
−
Ä
M−1‹Zn − Γn

ä†
ΛZ

Ä
M−1‹Zn − Γn

ä)
. (4.78)

However, as M is non-square, M−1 does not exist, making (4.78) an invalid rewriting. Since it
is desired for the distribution to be Gaussian, this is enforced:

ε(Zn→Γn) = NC
(
ε(Zn→Γn),

Ä
ε

(Zn→Γn)ä−1)
. (4.79)

To obtain a distribution that is close to p(Zn|ϕn,Γn), moment matching is utilised. Thereby,
the mean ε(Zn→Γn) and covariance ε(Zn→Γn) is set to the mean and covariance of p(Zn|ϕn,Γn).
Thus,

ε(Zn→Γn) =
∫

Γn

Γnp(Zn|ϕn,Γn) dΓn. (4.80)

As this is difficult to evaluate directly, the integral is instead taken over the entire complex space
C, while still restricting it to a specific plane of Γn. Thus,

ε(Zn→Γn) =
∫
C
p(Zn|SC)

∫
Γn

Γnδ(SC −MΓn) dΓndSC , (4.81)

where SC ∈ C and δ(·) is the Dirac delta function. The innermost integral in (4.81) outputs a
value when

SC = MΓn. (4.82)

However, when solving for Γn, a solution is not guaranteed to exist for (4.82) as the equation
is over-determined. A solution is found, using the Moore-Penrose pseudo inverse denoted as ·+

such that

Γn = M+SC . (4.83)

The innermost integral in (4.81) is then equal to∫
Γn

Γnδ(SC −MΓn) dΓn = M+SC , (4.84)

due to the integral only giving an output when SC = MΓn. Inserting (4.84) into (4.81), results
in

ε(Zn→Γn) =
∫
C
p(Zn|SC)M+SC dSC (4.85)

= M+
∫
C
p(Zn|SC)SC dSC (4.86)

= M+Zn. (4.87)

38



4.2. Parameter Estimation using Variational Message Passing Aalborg University

The same procedure is used for the covariance matrix. Here, it is utilised that the covariance
is written as

ε
(Zn→Γn) = Cov(p(Zn|ϕn,Γn)) (4.88)

= E
\Γn

î
(p(Zn|ϕn,Γn)− ε)(p(Zn|ϕn,Γn)− ε)†

ó
. (4.89)

It is known that

E
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where
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∫
Γn

ΓnΓ†
nδ(SC −M+Γn) dΓndSC︸ ︷︷ ︸

M+SCS†
C(M+)†

(4.92)

= M+ E
\Γn

î
SCS†

C

ó
︸ ︷︷ ︸
Λ−1

Z +‹Zn
‹Z†

n

(
M+)† (4.93)

= M+Λ−1
Z (M+)† + M+‹ZÄ‹ZM+

ä†︸ ︷︷ ︸
ε·ε†

. (4.94)

Inserting (4.91) into (4.94) results in

E
\Γn

î
(Γn − ε)(Γn − ε)†

ó
= M+Λ−1

Z (M+)† + ε · ε† − ε · ε† (4.95)

= M+Λ−1
Z (M+)†. (4.96)

Thus, the statistics of the message are given as

εZn→Γn = M+Zn, (4.97)

ε
Zn→Γn = M+Λ−1

Z

(
M+)†

. (4.98)

As the first three messages going to Γn are described as multivariate complex Gaussian
distributions, the surrogate function q(Γn) is described as a product of these distributions:

q(Γn) = NC(µtotal,Λtotal) =
N∏
n=0
NC(µn,Λn), (4.99)

where Ä
Λ(k)

total

ä−1
=

N∑
n=0

ε
(Γn−1→Γn) + ε

(Γn+1→Γn) + ε
(Zn→Γn) (4.100)

is the total precision matrix, and

µ
(k)
total =

Ä
Λ(k)

total

ä−1 N∑
n=0

ÅÄ
ε

(Γn−1→Γn) + ε
(Γn+1→Γn) + ε

(Zn→Γn)ä
×
Ä
ε(Γn−1→Γn) + ε(Γn+1→Γn) + ε(Zn→Γn)

äã
(4.101)
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is the total mean vector. The precision matrices are given by (4.70),(4.73), and (4.98) and the
means are given by (4.69), (4.72), and (4.97).

The fourth message ε(µC→Γn) is now derived. This is done similarly as for ε(Γn−1→Γn), but
where the expectation is taken for all variables expect µC instead. Thus,

ln
Ä
ε(µC→Γn)

ä
= E

\µC

[ln(p(Γn|Γn−1,µC ,ΛC))]. (4.102)

Here,

p(Γn|Γn−1,µC ,ΛC) = NC

Å 1
1− κΓn −

κ

1− κΓn−1︸ ︷︷ ︸
Υ

,
ΛC

1− κ2︸ ︷︷ ︸
η

ã
(4.103)

=
√

det(η)
2π exp

Å
−1

2(µC −Υ)†η(µC −Υ)
ã
. (4.104)

Applying the same steps as in (4.64)-(4.68), yields

ln
Ä
ε(µC→Γn)

ä
= = −((µC −Υ)†η(µC −Υ)) + E

\µC

[g(ΛC)] + constant. (4.105)

Thus, the statistics of the message are given as

ε(µC→Γn) = 1
1− κΓn −

κ

1− κΓn−1, (4.106)

ε
(µC→Γn) = (1− κ2)Λ−1

C . (4.107)

As a result, the surrogate function q(µC) becomes

q(µC) =
N∏
n=1
NC

Å 1
1− κΓn −

κ

1− κΓn−1, (1− κ2)Λ−1
C

ã
. (4.108)

The fifth message ε(ΛC→Γn) is written similarly to ε(Γn−1→Γn) but where the expectation
is taken across all variables except ΛC . Thus,

ε(ΛC→Γn) = E
\ΛC

[ln(p(Γn|Γn−1,µC ,ΛC))] (4.109)

= E
\ΛC

ñ
ln
Ç√

det(η)
2π exp

Å
−1

2(Γn − ξ)†η(Γn − ξ)
ãåô

, (4.110)

where

ξ = κΓn−1 + µC(1− κ), η = ΛC

1− κ2 . (4.111)

The message is rewritten as

ε(ΛC→Γn) = − E
\ΛC

îÄ
Γ†
nηΓn − Γ†

nηξ − ξ†ηΓn + ξ†ηξ
äó

+ h(ΛC) (4.112)

= −
(

E
\ΛC

î
Γ†
nηΓn

ó
︸ ︷︷ ︸

tr
(

ηΓn

)
+Γ†

nηΓn

−Γ†
nηξ − ξ

†
ηΓn + E

\ΛC

î
ξ†ηξ

ó)
+ h(ΛC), (4.113)
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where h is a deterministic function of ΛC . Thus, the surrogate function ln(qn(ΛC)) becomes

ln(qn(ΛC)) ∝ −tr
Ä
ηΓn
ä
− Γ†

nηΓn + Re
Ä
Γ†
nηξ
ä

+ h(ΛC). (4.114)

With this a factorised diagonal prior is imposed on ΛC such that p(ΛC,i̸=j) = 0. Thus, each term
is rewritten using the diagonal prior:

tr(ηΓn) = 1
1− κ2

Nb∑
j=1

ΛC,nΓn, (4.115)

Γ†
nηΓ = 1

1− κ2

Nb∑
j=1

∣∣Γn,j∣∣ΛC,j , (4.116)

Γ†
nηξ = 1

1− κ2

Nb∑
j=1

Γn,jξjΛC,j , (4.117)

h(ΛC) = det(ΛC) =
Nb∏
j

ΛC,j . (4.118)

Inserting these into (4.114) yields

q(ΛC) =
NB∏
j=1

ΛC,j exp
(
− 1

1− κ2

(
NB∑
j=1

ΛC,nΓn +
NB∑
j=1

∣∣Γn,j∣∣2ΛC,j − 2
NB∑
j=1

Re
(
Γn,jξj

)
ΛC,j

))
.

(4.119)

The surrogate function factorises in ΛC,j , thus

q(ΛC,j) = ΛC,j exp
(
−

NB∑
j=1

Wn,n−1,jΛC,j

)
, (4.120)

where

Wn,n−1,j = 1
1− κ2

Ä
Γn,j +

∣∣Γn,j∣∣2 − 2Re
(
Γn,jξn,j

)ä
. (4.121)

The total surrogate function then becomes a sum of (4.120) over j and a product over n:

N∏
n=0

Nb∑
j=1

q(ΛC,j) =
N∏
n=0

ΛC,j exp
(
−

N∑
n=0

Wn,n−1,jΛC,j

)
(4.122)

= ΛN
C,j exp

(
−

N∑
n=0

Wn,n−1,jΛC,j

)
. (4.123)

This is recognised as a Gamma distribution with parameters

G = N + 1, ϵ = Wn,n−1,j . (4.124)

4.3 Multiple Radar Clutter and Target Bayesian Localisation
and Tracking Algorithm

Having obtained expressions for all messages, it is possible to construct the recursive Bayesian
filter to estimate ϕ0:N and Γ1:Nradar

0:N using the observed Z0:N . The pseudo code for the algorithm
can be seen in Algorithm 1.
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Algorithm 1: Multiple Radar Clutter and Target Bayesian Localisation and Tracking

1: procedure MRCaTBLaT(Z1:Nradar
N ,µ1:Nradar

C ,µ
1:Nradar
C ,Λ1:Nradar

C ,Λ
1:Nradar
C )

In parallel at each radar k:
2: if N = 0 then

Initialisation

3: Calculate ε
Ä
Z

(k)
N →Γ(k)

N

ä
and
Å
ε
Ä
Z

(k)
N →Γ(k)

N

äã−1
using (4.98) ▷ Stays constant ∀N

4: ε
Ä
Z

(k)
N →Γ(k)

N

ä
← Γ(k)

N

5: Γ(k)
N ← ε

Ä
Z

(k)
N →Γ(k)

N

ä
6: Γ

(k)
N ← ε

Ä
Z

(k)
N →Γ(k)

N

ä
7: µ

(k)
C ← Γ(k)

N

8: ϵ
(k)
j ←

∣∣∣Γ(k)
N,j − µ

(k)
C,j

∣∣∣2 + Γ
(k)
N,j,j

9:
(

Λ(k)
C

)−1
← ϵ(k)

10: else
Local message passing at each radar

Clutter Message Passing
11: ‹Z(k)

N ← Z
(k)
N − S

(k)
N (ϕ̄N )

12: ε(ZN →ΓN ) ←M †‹ZN using (4.97)
13: Calculate ε(ZN →ΓN ) and

Ä
ε

(ZN →ΓN )ä−1
using (4.98). ▷ Stays constant ∀N

14: for ite ← 1 to Nite do
15: for n← 0 to N do
16: Γ

−1
n ←

∑
ε∈NΓn

¯̄ε−1
n

17: Γn ← Γn
∑
ε∈NΓn

¯̄ε−1ε̄

18: Update µC using (4.106) and µC using (4.107)
19: ϵ←

∑N
n=0 Wn,n−1,j using (4.121)

20: Λ−1
C = ϵ/(N + 1)

Target Message Passing
21: Ž

(k)
N ← Z

(k)
N −MΓ(k)

N

22:
Å

ε̄
Ä
Z

(k)
N →ϕN

ä
, ¯̄ε
Ä
Z

(k)
N →ϕN

äã
← arg min

ε,ε

DKL
Ä
Ž

(k)
N

ä
using (4.50)

23: Broadcast to all radars
Å

ε̄
Ä
Z

(k)
N →ϕN

ä
, ¯̄ε
Ä
Z

(k)
N →ϕN

äã
and save to memory

24: for ite ← 1 to Nite do
25: for n← 0 to N do
26: ¯̄ϕ−1

n ←
∑
εn∈Nϕn

¯̄ε−1
n

27: ϕ̄n ← ¯̄ϕn
∑
εn∈Nϕn

¯̄ε−1
n ε̄n

28: if N > 1 then
29: β =

∑N
n=1 Vn,n−1 using (4.55)

30: Λ̄−1
a = β/(N + 1)

31: else
32: Λa ← Λ(init)

a

33: return
Ä
Γ̄1:Nradar

0:N , ¯̄Γ1:Nradar
0:N

ä
,
Å

µ1:Nradar
C ,µ

1:Nradar
C ,Λ1:Nradar

C ,Λ
1:Nradar
C

ã
, and

Ä
ϕ̄0:N ,

¯̄ϕ0:N
ä

42



Prototype Implementation

of Algorithm 5
With the MRCaTBLaT algorithm formulated in ??, a prototype implementation of it has been
developed to enable performance evaluation. This chapter describes the simulation setup and
provides an overview of the different code components involved. The general structure of the
implementation is depicted in Figure 5.1, where the arrows represents the flow of information.
The prototype code is written in MATLAB and executed on consumer-grade hardware. A brief
explanation of each block in Figure 5.1 is now given, followed by a deeper explanation of the
signal generator and MRCaTBLaT.

Scenarios
This script defines all settings based on a case selected through a switch statement by a user.
Each case specifies the settings for the target, target trajectory, clutter field, and radars.

Trajectory Generator
This class, provided by supervisor Anders Westerkam, creates the trajectory of the target based
on the settings defined in “Scenarios”. It is ensured that Newton’s laws of motion are fulfilled.
It supports both linear and circular motion, as well as acceleration and deceleration phases. It

Simulation

Monte Carlo
Simulations

Trajectory Generator*

Clutter Field Generator

Scenarios Signal Generator MRCaTBLaT

File

Display

Select
case

NB, µC , ΛC

ϕ0:N

ϕ0
ϕ0:N

Γ1:Nradar
0

Γ1:Nradar

Γ1:Nradar

Z1:Nradar
0:N

M1:Nradar

ϕ̂0:N , Γ̂
1:Nradar

Figure 5.1. Structure of implementation of prototype code. The block marked with * contains code
provided by a third party. The arrows represent the flow of information, where the dashed line indicate
that only a small part of the output is sent.
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outputs the trajectory of the target, consisting of its positions and the corresponding time steps
for each position. An example of a target trajectory is seen in Figure 5.2.

Clutter Field Generator
This function generates a clutter field for each radar based on the statistics defined in “Scenarios”.
It outputs the subset of basis functions ΨNB

and the expansion coefficients Γ(k) ∼ NC(µC ,ΛC)
for each radar k = 1 : Nradar. An example of a clutter field is depicted in Figure 5.3.

Signal Generator
This class generates the received signal Z

(k)
n in a radar. It uses the settings for the system setup

from “Scenarios” together with the position of the target along with ΨNB
and Γ(k)

n .

MRCaTBLaT
This script contains the MRCaTBLaT algorithm. It uses the first position from “Trajectory
Generator”, the position of the radars from “Scenarios”, and the received signals Z1:Nradar

0:n and
M1:Nradar from “Signal Generator” to output the estimated parameters of the target ϕ̂0:n and
clutter field Γ̂

1:Nradar

0:n .

5.1 Implementation of Signal Generator

The signal generator outputs a received signal Z
(k)
n in a radar operating in TDM mode transmitting

complex baseband signals with a linear chirp. This data is generated using the signal model in
(3.69). As input, it takes the current position of the target in local coordinates [x(k)

n y
(k)
n ] and

the system settings of the radar as well as Γ(k)
n and ΨNB

. The target signal and clutter signal is
generated separately which allows them to be combined as needed. This enables modelling of
three scenarios:

1. Clutter-free environment with one target (CF1T), Z
(k)
n = S

(k)
n + W

(k)
n .

2. Clutter environment with no target (C0T), Z
(k)
n = M (k)Γ(k)

n + W
(k)
n .

3. Clutter environment with one target (C1T), Z
(k)
n = S

(k)
n + M (k)Γ(k)

n + W
(k)
n .

Apart from the target signal and clutter signal, the signal generator also outputs the matrix
M (k) from (3.69).

Figure 5.2. Example of a target trajectory. The discretised positions are marked with +.
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Figure 5.3. Example of a clutter field obtained using NB = 80, µ(k)
C = 0, and σ

(k)
C = 0.001.

5.1.1 Generation of Target Signal

The received signal for the target is based on S
(k)
n from (3.69), where fIF and α

(m,j,k)
n are

calculated as in (2.14) and (2.5), respectively. To get a closed form expression, the Fourier
transform of the target signal with respect to time is done as a discrete Fourier transform (DFT):

S(m,j,k)
n

[
h′] = Fh→h′

¶
s

(m,j,k)
n,target[h]

©
(5.1)

=
Ns−1∑
h=0

α(m,j,k)
n A(m,j,k)

Ä
x(k)
n , y(k)

n

ä
ei2πfIF

Ä
x

(k)
n ,y

(k)
n

ä
hTse−i2π h′

Ns
h (5.2)

= α(m,j,k)
n A(m,j,k)

Ä
x(k)
n , y(k)

n

äNs−1∑
h=0

ei
(

2πfIF
Ä
x

(k)
n ,y

(k)
n

ä
Ts−2π h′

Ns

)
h
. (5.3)

The expression is simplified by recognising the sum as a finite geometric series. Applying the
result from Section C.1, the DFT of the target signal model becomes

S(m,j,k)
n [h′] = α(m,j,k)

n A(m,j,k)
Ä
x(k)
n , y(k)

n

ä
× ei(Ns−1)π

(
fIF
Ä
x

(k)
n ,y

(k)
n

ä
Ts− h′

Ns

)
·

sin
Ä
Nsπ
Ä
fIF
Ä
x

(k)
n , y

(k)
n

ä
Ts − h′

Ns

ää
sin
Ä
π
Ä
fIF
Ä
x

(k)
n , y

(k)
n

ä
Ts − h′

Ns

ää .

(5.4)

Using the received signals S
(k)
n , the range is estimated as

r̂(k)
n = median

Ç
arg max

r(k)

∣∣∣S(k)
n

∣∣∣å, (5.5)

where arg max is computed individually over each of the NTNR channels and the median is
taken across all resulting range estimates. The angle θ(k)

n is found using the Capon beamformer.

The Cartesian coordinates of the target is found from the range and angle as

x(k)
n = r̂(k)

n sin
Ä
θ̂(k)
n

ä
, y(k)

n = r̂(k)
n cos

Ä
θ̂(k)
n

ä
. (5.6)

Example 5.1.1 (Clutter-free Environment with one Target)
Looking at the CF1T scenario for Nradar = 1, where the radar is placed at [0 0]⊤m and the
target is in position [x(1)

n y
(1)
n ]⊤ = [3 20]⊤m, results in Figure 5.4. The plot is generated by

calculating
∣∣∣S(1)(ϕn)†Z

(1)
n

∣∣∣, where the x- and y-coordinate in ϕn are evaluated across a grid.
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Figure 5.4. Plot of
∣∣∣S(1)(ϕn)†Z

(1)
n

∣∣∣ with varying ϕn. The radar is placed at [0 0]⊤m in the CF1T

scenario with [x(1)
n y

(1)
n ]⊤ = [3 20]⊤m. The ground truth position is marked with a triangle.

The range and angle estimates based on the received signals are

r̂(1)
n = 20 m, θ̂(1)

n = 0.15 rad, (5.7)

which aligns with the true range and angle. Plots of the range and angle estimations are
depicted in Figure 5.10.

(a) Range estimation. The black vertical line
represents the true range.

(b) Angle estimation. The black vertical line
represents the true angle.

Figure 5.5. Range and angle estimation. The radar is placed at [0 0]⊤m in the CF1T scenario with
[x(1)

n y
(1)
n ]⊤ = [3 20]⊤m.

Converting the range and angle to Cartesian coordinates using (5.6) yields

x̂(1)
n = 3 m, ŷ(1)

n = 20 m. (5.8)
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5.1.2 Generation of Clutter Signal

The received signal for the clutter is calculated using M (k)Γ(k)
n in (3.69). Only the matrix M (k)

should be calculated since Γ(k) is obtained from the “Clutter Field Generator”.

The matrix M (k) ∈ CNsNTNR×NB contains information of Fh→h′{(β(l,g,m,j,k))∗[h]}. From
(3.60), (β(l,g,m,j,k))∗[h] is given asÄ

β(l,g,m,j,k)
ä∗

[h] =
¨
A(m,j,k)(x, y)e−i2πfIF(x,y)hTs ,

Ä
ψ(l,g)
n

ä∗
(x, y)

∂
. (5.9)

Following (5.1)-(5.4), the DFT is applied to Fourier transform in the time domain using the
expression obtained in (5.4):

Fh→h′
¶Ä
β(l,g,m,j,k)

ä∗
[h]
©

=
¨
Fh→h′

¶
A(m,j,k)(x, y)e−i2πfIF(x,y)hTs

©
,
Ä
ψ(l,g)
n

ä∗
(x, y)

∂
(5.10)

=
¨
F(m,j,k)(x, y, h′),

Ä
ψ(l,g)
n

ä∗
(x, y)

∂
, (5.11)

where

F(m,j,k)(x, y, h′) = A(m,j,k)(x, y)ei(Ns−1)π
(
f

(k)
IF Ts− h′

Ns

) sin
Ä
Nsπ
Ä
fIF(x, y)Ts − h′

Ns

ää
sin
Ä
π
Ä
fIF(x, y)Ts − h′

Ns

ää . (5.12)

Here, F(m,j,k)(x, y, h′) is calculated for all values (x, y) ∈ Z in the FOV of the radar for all
Ns samples. The FOV of the radars is simulated as a rectangle as seen in Figure 5.6, where
the red dashed line represents the simulated FOV and the blue shaded area represents the
typical FOV of a real-world radar. Thus, for each transmitter-receiver pair, Ns matrices of size
(2rmax + 1)× (rmax + 1) are obtained meaning the resolution is 1 m.

The Fourier basis is selected as the basis function since it is well-know and is separable.
Furthermore, this allows for (5.11) to be calculated as the 2D Fourier transform:

Fh→h′
¶Ä
β(l,g,m,j,k)

ä∗
[h]
©

=
¨
F(m,j,k)(x, y, h′),

Ä
ψ(l,g)
n

ä∗
(x, y)

∂
(5.13)

=
∫∫

F(m,j,k)(x, y, h′)ψ(l,g)
n (x, y) dxdy (5.14)

= F(x,y)→(l,g)
¶
F(m,j,k)(x, y, h′)

©
. (5.15)

x

y

−rmax rmax

rmax

B
or

es
ig

ht
di

re
ct

io
n

Figure 5.6. Illustration of the radar’s FOV in the local coordinate system. The blue shaded area
represents the typical FOV of a real-world radar, while the red dashed line indicates the FOV used in the
simulations.
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Figure 5.7 shows the process, which yields all expansion coefficients for all basis functions
Ψ(2rmax+1)(rmax+1). From this set of expansion coefficients, the values corresponding to the basis
functions in ΨNB

are then subsampled. This should be repeated for all Ns samples across all
transmitter-receiver pairs, where all the resulting expansion coefficient are gathered in M (k).
Section C.2 shows how these expansion coefficients are organised in M (k). Having computed
M (k), the received signal for the clutter is calculated as M (k)Γ(k).

x

y

−rmax rmax

rmax

F(m,j,k)(x, y, h′)
2D FFT

F(x,y)→(l,g){·}

Fh→h′
{Ä
β(l,g,m,j,k)

ä∗
[h]
}

l

g

Figure 5.7. Illustration of how the expansion coefficients are obtained from the F(m,j,k)(x, y, h′) signals.

To test the clutter signal generator, it is desired to compare the clutter signal to the output
of the target signal. Consequently, a field is generated for a radar in [0 0]⊤m. The field is 0 for
(−rmax, rmax)× (0, rmax) except for [x y]⊤ = [0 30]⊤m where C(0, 30) = 1. From this field, Γ(k)

is generated using the analysis equation Equation 3.39. This Γ(k) is used to generate the clutter
signal M (k)Γ(k). To compare it with S(k), we let α = 1 and place the target in [x y]⊤ = [0 30]⊤m.
From Figure 5.8, the two signals are the same.

(a) Target signal. (b) Clutter signal.

Figure 5.8. Comparison of the target signal and the clutter signal.

Example 5.1.2 (Clutter Environment with no Target)
Looking at the C0T scenario for Nradar = 1, where the radar is placed at [0 0]⊤m and
the clutter field is given as in Figure 5.3, results in Figure 5.9. The plot is generated by
calculating

∣∣∣S(1)(ϕn)†Z
(1)
n

∣∣∣, where the x- and y-coordinate in ϕn are evaluated across a grid.
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Figure 5.9. Plot of
∣∣∣S(1)(ϕn)†Z

(1)
n

∣∣∣ with varying ϕn. The radar is placed at [0 0]⊤m in the C0T
scenario using the clutter field from Figure 5.3.

Plots of the range and angle estimations are depicted in Figure 5.10.

(a) Range estimation. (b) Angle estimation.

Figure 5.10. Range and angle estimation. The radar is placed at [0 0]⊤m in the C0T scenario
using the clutter field from Figure 5.3.

Note that the clutter field for each radar is generated from Γ(k) where Γ(k′) and Γ(k) are
generated independently. Thus, discrepancies can occur in the global clutter field if the FOVs of
two radars overlap. An example of this is shown in Figure 5.11, where two clutter fields have
been generated for a radar in [0 0]⊤m and a radar in [0 40]⊤m. Here, it is seen that there is a
discrepancy between the two radars in the overlapping area (x, y) ∈ (−10, 50)× (0, 50).

5.1.3 Generation of Total Signal

The target and clutter signal is generated separately, so to generate the combined signal, the two
separate signals are added together. Note that the noise is added to either of the signals. Thus,
noise should only be added to one of the signal in the C1T scenario.
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(a) Radar placed at [0 0]⊤m. (b) Radar placed at [40 0]⊤m.

Figure 5.11. Example of two clutter fields for two radars with overlapping FOV.

Example 5.1.3 (Clutter Environment with one Target)
Looking at the C1T scenario for Nradar = 1, where the radar is placed at [0 0]⊤m, the
target is in position [x(k)

n y
(k)
n ]⊤ = [3 20]⊤m, and the clutter field is given as in Figure 5.3,

results in Figure 5.12. The plot is generated by calculating
∣∣∣S(1)(ϕn)†Z

(1)
n

∣∣∣, where the x-
and y-coordinate in ϕn are evaluated across a grid.

Figure 5.12. Plot of
∣∣∣S(1)(ϕn)†Z

(1)
n

∣∣∣ with varying ϕn. The radar is placed at [0 0]⊤m in the C1T

scenario with [x(k)
n y

(k)
n ]⊤ = [3 20]⊤m using the clutter field from Figure 5.3. The ground truth

position of the target is marked with a triangle.

The range and angle estimates based on the received signals are

r̂(k)
n = 20 m, θ̂(k)

n = 0.15 rad, (5.16)

which aligns with the true range and angle of the target. Plots of the range and angle
estimations are depicted in Figure 5.13.
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(a) Range estimation. The black vertical line
represents the true range.

(b) Angle estimation. The black vertical line
represents the true angle.

Figure 5.13. Range and angle estimation. The radar is placed at [0 0]⊤m in the C1T scenario with
[x(k)

n y
(k)
n ]⊤ = [3 20]⊤m using the clutter field from Figure 5.3.

Converting the range and angle to Cartesian coordinates using (5.6) yields

x̂(k)
n = 3 m, ŷ(k)

n = 20 m. (5.17)

5.2 Implementation of Multiple Radar Clutter and Target
Bayesian Localisation and Tracking Algorithm

Algorithm 1 is implemented using the messages derived in Section 4.2 and Section B.1. The
algorithm takes the received signals Z1:Nradar

0:N as inputs and outputs the estimate of ϕ0:N and
Γ1:Nradar

0:N . The algorithm consists of two parts: clutter tracking and target tracking, each
implemented individually. When combining them, note that clutter tracking must be implemented
first, as Γ1:Nradar

n is required in the target tracking to calculate Ž
(k)
N .

As discussed in Section 4.2.1, the clutter field is modelled as a local clutter field. This means
each radar has it own set of clutter field parameters that needs to be estimated. On the other
hand, the target parameters are global, meaning the statistics of the messages needs to be sent
from one radar to the others in order to make the global estimate based on all radars.

5.3 Implementation of Clutter Tracking Algorithm

The red parts of Algorithm 1 corresponds to the clutter tracking. For each time step n, a true
Γ(k)
n is generated to generate the received signal Z

(k)
n . After obtaining the received signal for

radar k, Γ(k)
n is estimated using the messages. This estimate is updated with each time step for

all time steps up to the current Γ(k)
0:n.
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There are two different ways to generate Γ(k)
n . The first approach, as described in Section 4.2.2,

initialises Γ(k)
0 from a Gaussian distribution with mean µC and covariance Λ−1

C , after which
subsequent Γ(k)

n are generated based on the Markov chain in (4.24). When generating Γ(k)
n using

the Markov chain, κ controls the correlation between successive values. As κ→ 0, Γ(k)
n become

increasingly different, while κ→ 1 results in more similar values of Γ(k)
n . An example of this is

seen in Figure 5.14. To ensure the assumptions of Γ(k)
n follows the Markov chain, the clutter

signal is generated based on these values. This approach is used to confirm that the method
works under the model’s assumptions. The second method generates not only the initial Γ(k)

0
from a Gaussian distribution with mean µC and covariance Λ−1

C , but also subsequent Γ(k)
n from

the same distribution. This method allows for generating Γ(k)
n which do not follow the assumed

Markov chain.

The Moore-Penrose inverse is implemented using MATLAB’s svds function and used to
calculate (M (k))+ from M (k). This function performs a singular value decomposition for a given
matrix and returns the left singular vectors U , diagonal matrix S of singular values, and right
singular vectors V . This function also allows for choosing the amount of singular values. This
enables a computationally simple and accurate way to compute the inverse. Figure 5.15 shows
that the signal created from the singular value decomposition of M and the true Γn are very
close to the true clutter signal ZC .

5.3.1 Target Tracking

The blue parts of Algorithm 1 corresponds to the target tracking. After obtaining the received
signal and the estimate of the clutter field, the path loss α is estimated by (4.49) and the
KL divergence in (4.50) is minimised. This optimisation is computed numerically in a four-
dimensional space as both the mean and variance in terms of x and y is found. The bounds for
the optimisation method are given as

−rmax ≤ µx ≤ rmax, 0 ≤ µy ≤ rmax, 0 ≤ σx ≤ vmax, 0 ≤ σy ≤ vmax. (5.18)

(a) Γ1,Γ10, and Γ20 generated with κ = 0.1. (b) Γ1,Γ10, and Γ20 generated with κ = 0.99.

Figure 5.14. The effect of κ when generating Γn.
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(a) The true clutter signal ZC and the singular
value decomposition clutter signal M+Γn, with 60
singular values for one transmitter-receiver pair.

(b) The error between ZC and MΓn, calculated
as ∥ZC −MΓn∥2

Figure 5.15. The effects of using the singular value decomposition for calculating the Moore-Penrose
inverse.

An example of (4.50) for the mean and variance is shown Figure 5.16, where the radar is placed
at [0 0]⊤m and the target is in position [3 20]⊤m .

The minimum of (4.50) is found using MATLAB’s fmincon function. This function is used
to find the minimum of constrained non-linear multivariable functions. The default optimisation
algorithm of the function is interior-point which is also used in our case. This algorithm
approaches the solution from the interior of the feasible region by incorporating constraints into
the objective function using a barrier method. The barrier method is an optimisation technique
that prevents constraint violations by adding a penalty term to the objective function, which
grows rapidly near the boundary of the feasible region. The optimisation method will not be
elaborated further as it is out of scope of the project.

The optimisation of (4.50) is performed in the local coordinate system of each radar. Since
the MRBLaT algorithm runs in a global coordinate system, the local solution of the optimisation
needs to be translated to the global coordinate system. The relation between the local and global

(a) Mean. The ground truth position is marked with a triangle. (b) Variance.

Figure 5.16. Illustration of (4.50), where the radar is placed at [0 0]⊤m and the target is in position
[3 20]⊤m .
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coordinate system is depicted in Figure 3.3. The mean is translated asµ(k)
x

µ
(k)
y

 =

x(k)
radar

y
(k)
radar

+Q ·

µ̂(k)
x

µ̂
(k)
y

, (5.19)

where [x(k)
radar y

(k)
radar]⊤ is the position of the radar, [µ̂(k)

x µ̂
(k)
y ]⊤ is the first two entries of solution

from the optimisation, and

Q =

cos(Θ) − sin(Θ)

sin(Θ) cos(Θ)

, (5.20)

is the rotation matrix of the radar, where Θ denotes the angle measured clockwise from the
positive y-direction with respect to the centre of the radar - see Figure 3.3. The variance is
translated as σ(k)

x

σ
(k)
y

 =

Œ
diag

Ö
Q ·


Ä
σ̂

(k)
x

ä2
0

0
Ä
σ̂

(k)
y

ä2

 ·Q⊤

è
, (5.21)

where σ̂(k)
x and σ̂

(k)
y is the variance estimate for the x- and y-coordinate respectively, and it is

assumed that the covariance matrix is diagonal.

The global estimate is obtained from the globalised local estimates by using (4.101) and
(4.100). Having obtained the global ϕ̂n, the backwards smoothing is applied to obtain ϕ̂0:n.
Furthermore, the estimate of Λa is calculated using (4.55) for each MIMO FMCW radar cycle.
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Target and Clutter Tracking

using Bayesian Inference 6
The MRCaTBLaT algorithm has been implemented where the goal is to track the target and
clutter in a clutter environment with one target. The performance of the algorithm is evaluated
on simulated data from multiple MIMO FMCW radars. It is assumed that both the target and
clutter has been detected and categorised correctly as either target or clutter.

6.1 Data Simulation

The data is simulated as described in Section 5.1, where the radar settings can be seen in
Table 6.1. The settings are chosen based on a TI AWR1642 radar.

The system consists of three 2×4 MIMO FMCW radars resulting in eight transmitter-receiver
pairs. Each radar uses its own carrier frequency to simulate the absence of mutual interference
between the radars. The carrier frequencies are chosen based on the bandwidth of the signal is
1.2 GHz. The three radars are positioned 20 m apart along the x-axis, with the first radar placed
in Origo. The radar placement is outside scope of this project and will not be looked further
into. The boresight direction of all radars is the positive y-direction.

The RCS of the target is based on the findings in [Sedivy and Nemec, 2021], which examined
the RCS values for different drones at different angles. Taking the average of the mean values of
their findings results in an RCS of 0.03 m2.

The noise power applied at the receivers is calculated as thermal noise by

σ2
w = kb · T0 ·BW, (6.1)

where kb ≈ 1.38 · 10−23 J/K is the Boltzmann constant, T0 is the temperature in Kelvin, and
BW is the bandwidth [Kingsley and Quegan, 1992, p. 42]. Using T0 = 290 K, as it is the general
assumption [Kingsley and Quegan, 1992, p. 41], with a bandwidth of 1.2 GHz yields

σ2
w = 1.38 · 10−23 J/K · 290 K · 1.2 GHz = 4.8 pW. (6.2)

The FOV of the radars is simulated as a rectangle as seen in Figure 5.6, where the red dashed
line represents the simulated FOV and the blue shaded area represents the typical FOV of a
real-world radar.

From (??), the SINR is calculated as

SINR = Pr
PI + PN

, (6.3)

55



Group MT10-02 6. Target and Clutter Tracking using Bayesian Inference

Parameter Value

Radar centres [0 0]⊤m, [20 0]⊤m, [40 0]⊤m

#Transmitters, NT 2

#Receivers, NR 4

Pulse repetition frequency 10 Hz

Maximum range, Rmax 50 m

Maximum velocity, vmax 10 m/s

RCS of target, σ 0.03 m2

RCS model Swerling 0

Noise power, σ2
w 4.8 pW

Gain of antenna 1

Bandwidth 1.2 GHz

Power of transmitted signals 1 MW

#Samples, Ns 128

Chirp rate 9.994 THz/s

Sampling rate, fs 10 GHz

Carrier frequencies 77 GHz, 78.2 GHz, 79.4 GHz

# Basis functions, NB 80

Initial mean of Γ1:Nradar , µC,init 0

Initial precision of Γ1:Nradar , ΛC,init 106

Backwards smoothing steps 100

Monte Carlo iterations 5

Table 6.1. Settings used for simulation.

where Pr, PI , and PN is the power of the target signal, the clutter signal, and the noise signal,
respectively. The power of the signal is written as

Pr = |Aα|2S̃†S̃ = A2|α|2, (6.4)

where S̃ is the received signal without the path loss and A is the amplitude of the signal. The
power of the clutter signal is calculated as

PI = (MΓ)†MΓ. (6.5)

The power of the noise signal is written as

PN = E
î
N †N

ó
, (6.6)

where the noise is generated as

N =

 
σ2
w

2 (N (0, 1) + iN (0, 1)). (6.7)
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Thus,

PN = E
ï
σ2
w

2
(
2N (0, 1)2)ò = σ2

wE
[
N (0, 1)2] = σ2

w. (6.8)

6.2 Simulation Results

The implementation of Algorithm 1 is tested using two different trajectories. The two trajectories
can be seen in Figure 6.1. Trajectory (A) is a vertical linear motion, where the target moves
at a speed of 5 m/s away from the radars. This trajectory consists of 80 samples. Trajectory
(B) is an S motion consisting of 29 samples. When changing direction, the circle segments are
separated by a linear motion where the target comes to a full stop with a constant deceleration
of 5 m/s2. After the full stop, the target will accelerate with a constant acceleration of 5 m/s2.

First, Algorithm 1 is tested part wise, meaning that the MRBLaT algorithm and clutter
tracking algorithm is tested separately and then combined. Thus, it is assured that each part of
the algorithm works as intended before combining them.

6.2.1 Multiple Radar Bayesian Localisation and Tracking

The MRBLaT algorithm is tested both on trajectories in Figure 6.1. For both trajectories,
MRBLaT will be tested in two scenarios: CF1T and C1T. The latter scenario is chosen to see
how the algorithm performs in an environment it is not designed for and to showcase the need
for clutter tracking.

One Target in a Clutter-Free Environment

The results for simulating one target in a clutter-free environment based on trajectory (A) and
trajectory (B) are now presented. For trajectory (A), the starting position is in [20 5]⊤m, where

r
(1)
1 = 20.6 m, r

(2)
1 = 5 m, r

(3)
1 = 20.6 m, (6.9)

(a) Trajectory (A). (b) Trajectory (B).

Figure 6.1. Two different trajectories of a target. The yellow dots represents the radars positions and
the arrow represents the boresight direction. The discretised positions are marked with +.
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and,

θ
(1)
1 = 1.3 rad, θ

(2)
1 = 0 rad, θ

(3)
1 = −1.3 rad. (6.10)

The received signal at this position for each radar is seen in Figure 6.2, where a peak in signal
strength is observed at the correct range for each of the radars. The angle estimates in this
position can be seen in Figure 6.3. Once again, it is seen that there is a peak in the ground truth.

(a) Radar 1. (b) Radar 2. (c) Radar 3.

Figure 6.2.
∣∣∣Z(k)

1

∣∣∣. Target is at [xn yn]⊤ = [20 5]⊤m. The black vertical line represents the ground
truth range in local coordinates.

(a) Radar 1. (b) Radar 2. (c) Radar 3.

Figure 6.3. Angle estimate using the Capon beamformer. Target is at [20 5]⊤m. The black vertical line
represents the ground truth range in local coordinates.

The results from running the MRBLaT algorithm is seen in Figure 6.4. For both trajectories,
the MRBLaT algorithm estimate the position within 1 m as seen in Figure 6.5. From Figure 6.5a,
the error of the estimated position increases when the target gets further away from the radars.
Note that figures of

∣∣∣S(ϕ1)†Z
(k)
1

∣∣∣ and the KL divergence in this position for each radar is shown
in Section D.1.
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(a) Trajectory (A). (b) Trajectory (B).

Figure 6.4. Track estimates. The yellow dots represents the radars position and the arrow represents
the boresight direction.

(a) Trajectory (A). (b) Trajectory (B).

Figure 6.5. RMSE based on 5 Monte Carlo simulations.

The end position of trajectory (A) is at [20 45]⊤m. In this position, the received signal and
angle estimate is seen in Figure 6.6 and Figure 6.7, respectively. Comparing Figure 6.6 with
Figure 6.2, the target signal is much less noticeable. However, it is still possible to estimate the
position within less than 1 m of the true position. Note that figures of

∣∣∣S(ϕ80)†Z
(k)
80

∣∣∣ and the KL
divergence in this position for each radar is shown in Section D.1.

(a) Radar 1. (b) Radar 2. (c) Radar 3.

Figure 6.6.
∣∣∣Z(k)

80

∣∣∣. Target is at [20 45]⊤m. The black vertical line represents the ground truth range in
local coordinates.
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(a) Radar 1. (b) Radar 2. (c) Radar 3.

Figure 6.7. Angle estimate using the Capon beamformer. Target is at [20 45]⊤m. The black vertical
line represents the ground truth range in local coordinates.

One Target in a Clutter Environment

The MRBLaT algorithm is tested in the C1T scenario, where Γ(k) ∼ NC(µC = 0,ΛC = 106).
This yields the signals shown in Figure 6.8 and Figure 6.9. For n = 1 and n = 80 the target
signal is not visible which results in a bad performance of the MRBLaT algorithm. This is seen
in Figure 6.10 and Figure 6.11.

(a) Radar 1. (b) Radar 2. (c) Radar 3.

Figure 6.8.
∣∣∣Z(k)

1

∣∣∣. Target is at [20 5]⊤m. The black vertical line represents the ground truth range in
local coordinates.
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(a) Radar 1. (b) Radar 2. (c) Radar 3.

Figure 6.9.
∣∣∣Z(k)

80

∣∣∣. Target is at [20 45]⊤m. The black vertical line represents the ground truth range in
local coordinates.

(a) Trajectory (A). (b) Trajectory (B).

Figure 6.10. Track estimates. The yellow dots represents the radars position and the arrow represents
the boresight direction.

(a) Trajectory (A). (b) Trajectory (B).

Figure 6.11. RMSE based on 5 Monte Carlo simulations.

6.3 Clutter Tracking

The clutter tracking algorithm is tested in the C0T scenario by letting Γ(k)
n ∼ NC(µC = 0,ΛC =

106), where NB = 80 and Γ(k)
n follows the Markov chain with κ = 0.169 based on [Westerkam

et al., 2023]. The clutter tracking algorithm is only tested for Nradar = 1 since the procedure
would be the same for all radars. Thus, the superscript (k) is dropped.

61



Group MT10-02 6. Target and Clutter Tracking using Bayesian Inference

Now, Γn are estimated using Algorithm 1. Figure 6.12 shows the clutter fields based on the
Γn and Γ̂n for n = 160, where the two clutter fields are very similar.

(a) Ground truth clutter field. (b) Estimated clutter field.

Figure 6.12. Ground truth and estimated clutter field for n = 160.

In Figure 6.13, Γn and Γ̂n are compared visually. For each time step n, Figure 6.14 shows
this error between Γn and Γ̂n calculated as

O(Γn, Γ̂n) =
∥∥∥Γn − Γ̂n

∥∥∥2
. (6.11)

Figure 6.13. Γn plotted against Γ̂n for n = 80. The diagonal line shows where the values ideally should
lie.
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Figure 6.14. Error between Γ and Γ̂, calculated as in (6.11). This was calculated with 80 basis functions.

In Figure 6.15 it is seen that, as n→ N , where N = 160, then µ̂C → µC = 0, which is the
underlying mean for the clutter field. The same be said for the precision matrix “ΛC as seen in
?? where “ΛC → ΛC as n→ N .

Figure 6.15. µ̂C for the first and last time step.

The true signal Zn is compared with the estimated signal M Γ̂n in Figure 6.16.
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Figure 6.16. The true signal Zn is compared with the estimated signal M Γ̂n for one transmitter-receiver
pair.

When increasing the number of basis functions, Γ̂ and Γ become less similar as seen in
Figure 6.18. Similarly, Γ̂ and Γ become more similar when decreasing the number of basis
functions as seen in Figure 6.18.

Figure 6.17. Γn plotted against Γ̂n for n = 160 and NB = 16. The diagonal line shows where the values
ideally should lie.
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Figure 6.18. Γn plotted against Γ̂n for n = 160 and NB = 16. The diagonal line shows where the values
ideally should lie.

6.4 Clutter and Target Tracking

The MRBLaT algorithm and the clutter tracking algorithm function as intended, thus they are
now combined. The following results focuses on target tracking.

The MRCaTBLaT algorithm is tested in the C1T scenario, where Γ(k) ∼ NC(µC = 0,ΛC =
106). This yields the signals shown in Figure 6.19 and Figure 6.20 for the first and last position
in trajectory (A). This shows that it is possible to see the target signal in the total signal, but
overall the clutter..

The results from running the MRCaTBLaT algorithm is shown in Figure 6.21. Here it is
seen that the algorithm is able to track the target in a C1T scenario. For both trajectories, the
MRCaTBLaT algorithm estimate the position within 0.05 m as seen in Figure 6.22.

Using NB = 180 to estimate trajectory (A) gives the results in ??.
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(a)
∣∣∣S(1)

1

∣∣∣. (b)
∣∣∣M (1)Γ(1)

1

∣∣∣. (c)
∣∣∣Z(1)

1

∣∣∣.

(d)
∣∣∣S(2)

1

∣∣∣. (e)
∣∣∣M (2)Γ(2)

1

∣∣∣. (f)
∣∣∣Z(2)

1

∣∣∣.

(g)
∣∣∣S(3)

1

∣∣∣. (h)
∣∣∣M (3)Γ(3)

1

∣∣∣. (i)
∣∣∣Z(3)

1

∣∣∣.
Figure 6.19. Absolute value of the target, clutter, and total signal. Target is at [20 5]⊤m. The black
vertical line represents the ground truth range in local coordinates.
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(a)
∣∣∣S(1)

80

∣∣∣. (b)
∣∣∣M (1)Γ(1)

80

∣∣∣. (c)
∣∣∣Z(1)

1

∣∣∣.

(d)
∣∣∣S(2)

80

∣∣∣. (e)
∣∣∣M (2)Γ(2)

80

∣∣∣. (f)
∣∣∣Z(2)

80

∣∣∣.

(g)
∣∣∣S(3)

80

∣∣∣. (h)
∣∣∣M (3)Γ(3)

80

∣∣∣. (i)
∣∣∣Z(3)

80

∣∣∣.
Figure 6.20. Absolute value of the target, clutter, and total signal. Target is at [20 45]⊤m. The black
vertical line represents the ground truth range in local coordinates.
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(a) Trajectory (A). (b) Trajectory (B).

Figure 6.21. Track estimates. The yellow dots represents the radars position and the arrow represents
the boresight direction.

(a) Trajectory (A) estimate. The yellow dots
represents the radars position and the arrow
represents the boresight direction.

(b) Trajectory (B).

Figure 6.22. MRCaTBLaT results using NB = 160.

(a) Trajectory (A). (b) RMSE.

Figure 6.23. The performance on MRCaTBLaT using NB = 160.
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The results we obtain from using the MRBLaT algorithm in the CF1T scenario are satisfactory
as the ground truth and estimated tracks are similar as seen in Figure 6.4, where the RMSE of
the estimations are given in Figure 6.5. The algorithm is then tested in the C1T scenario where
it is no longer able to find the target as seen in Figure 6.10. Note that the RMSE shown in
Figure 6.11 is not higher due to the bounds for the optimisation from (5.18).

The clutter tracking algorithm is evaluated using data from a single radar as the clutter field
parameters are estimated locally. The results from this radar demonstrate how the algorithm
performs. Using 80 basis functions, Γ̂ yields similar clutter fields and clutter signals as for Γ.
This is seen in Figure 6.12 and Figure 6.16. The Γ̂ and Γ are similar as shown in Figure 6.13
and Figure 6.14. Interestingly, Γ is estimated more precise when fewer basis functions are used,
likely due to the reduced number of parameters. Note that the estimation also benefits from the
clutter signal being generated using the same number of basis functions as used in the estimation
process. Future work could explore how the estimation performs when applied to clutter signals
generated with a significantly larger number of basis functions.

Separately, the MRBLaT algorithm and the clutter tracking algorithm both show good
results, obtaining estimates close to the ground truth. The algorithms are combined to form the
MRCaTBLaT algorithm. This algorithm is tested in the C1T scenario for three radars where the
target parameters are estimated globally while the clutter parameters are estimated locally for
each radar. Figure 6.21 shows that the combined algorithm estimates the ground truth positions
almost perfectly. From Figure 6.22 the estimates are always within 0.05 m of the ground truth
positions. Thus, the MRBLaT algorithm is actually improved by including clutter tracking.

Looking at Figure 6.19 and Figure 6.20, it is seen that the target signal is concealed by the
clutter signal for radar 1 and 3, indicating that the MRCaTBLaT algorithm works in low SINR
settings. Thus, the clutter tracking part of the MRCaTBLaT algorithm effectively removes the
clutter signal such that the target is detected correctly. This property is indicated by Figure 6.16.

Due to time constraints, MRCaTBLaT has not been tested with varying numbers of basis
functions. Initial results suggest that the number of basis functions should not be too high, as
indicated in Figure 6.23. One possible reason is that the clutter field may include the target
signal as a part of the estimate of Γn. Thus, using fewer basis functions may lead to better
performance in target tracking within cluttered environments.
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Conclusion 8
In this project, we have developed and implemented a joint multiple radar clutter and target
Bayesian localisation and tracking algorithm, MRCaTBLaT, in Cartesian coordinates with local
clutter fields for each radar, with the ability to track a low RCS target in low SINR conditions.
This was accomplished by deriving the signal model for a target signal and for clutter signals
via random fields. Furthermore, the mean field theory was utilised in order to approximate the
intractable distributions for the target and clutter signals.

The MRCaTMRBLaT algorithm was evaluated in a clutter environment with one target.
We have evaluated the algorithm through simulations, where the simulated data was obtained
by modelling a MIMO FMCW radar. The MRCaTBLaT algorithm has been evaluated for two
different tracks, both in the low SINR environment. We have showed that the performance of
the MRBLaT algorithm has been improved by including clutter tracking. This holds for the
performance of MRBLaT in a clutter and clutter-free environment with one target.

8.1 Further Works

(a) The true clutter field based on
5151 basis functions.

(b) A representation of the true
clutter field using 80 basis func-
tions.

(c) The estimated clutter field
based on Γ̂80.

Figure 8.1. Different representations of a clutter field.

An interesting extension of the current algorithm would include the ability to obtain a Z1:Nradar
0:N

from a clutter environment, and then be able to estimate the clutter field by using an initial Γ(k)
0

and then purely estimate all the parameters from this. The procedure would be

1. A clutter field is constructed
2. An initial Γinit is found based on this clutter field and a complete basis is utilised.
3. From this complete basis, the signal Z = ZC + Zt + W is generated.
4. Then a subset of Γinit is chosen and a basis is chosen alongside it.
5. Based on this subset of Γinit, M is calculated.
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6. M is then used along with Z, which is based on the complete basis, to calculate Γ̂n.
7. Γ̂n is then compared to Γinit, to evaluate the performance of the algorithm.

A bare-bone example of this procedure can be seen in Figure 8.1. Furthermore, it would be
interesting to evaluate MRCaTBLaT on real-world data, as this would come with its own set
of problems. One of these interesting problems, would be the placement of each radar, to help
mitigate the interference between each individual radar, and also cover the most ground, with
the least radars.

It would be interesting to have a case where the number of basis functions were equal to the
number of samples in a signal. Then M would become a square matrix, which would allow for
the use of the MATLAB function inv, instead of using the function svds, thus making it less
computationally heavy and fast. This would be relevant, as the algorithm should run locally on
smaller radars.
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Random Fields A
A.1 Properties of Random Fields

Kolmogorov’s Extension Theorem is presented along with properties of orthonormal expansions
of random fields.

Theorem A.1.1 (Kolmogorov’s Extension Theorem)
For all t1, . . . , tk ∈ T, k ∈ N let νt1,...,tk be probability measures on Rnk such that

νtσ(1),...,tσ(k)(F1 × · · · × Fk) = νt1,...,tk(Fσ−1(1) × · · · × F−1
σ (k)) (A.1)

for all permutations σ on {1, 2, . . . , k} and

νt1,...,tk(F1 × · · · × Fk) = νt1,...,tk,tk+1,...,tk+m
(F1 × · · ·Fk × Rn × · · · × Rn) (A.2)

for all m ∈ N, where the set on the right hand side has a total of k +m factors. Then there
exists a probability space (Ω,F , P ) and stochastic process {f(t)} on Ω, ft : Ω → Rn such
that

νt1,...,tk(F1 × · · · × Fk) = P [ft1 ∈ F1, · · · , ftk ∈ Fk], (A.3)

for all ti ∈ T, k ∈ N and all Borel sets Fi.

[Øksendal, 2003, Theorem 2.1.5]

Note that Rn is an n-dimensional euclidean space.

A.1.1 Orthonormal Expansions of Random Fields

Before presenting the properties, note that the order of summation and integration, as well as
double summations, can be interchanged under the assumption of completeness of the basis and
the additional assumption of finite energy. That is∫

RN

∞∑
n

γ(n)ψ(n)(z) dz =
∞∑
n

∫
RN

γ(n)ψ(n)(z) dz, (A.4)

and
∞∑
n′

∞∑
n

Ä
γ(n)
ä∗
γ(n′)
Ä
ψ(n)
ä∗

(z)ψ(n′)(z) =
∞∑
n

∞∑
n′

Ä
γ(n)
ä∗
γ(n′)
Ä
ψ(n)
ä∗

(z)ψ(n′)(z). (A.5)

With this, the mean becomes

E[C(z)] = E
ñ ∞∑
n

γ(n)ψ(n)(z)
ô

=
∞∑
n

E[γ(n)]ψ(n)(z), (A.6)
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and variance

Var(C(z)) = Var
Ç ∞∑

n

γ(n)ψ(n)(z)
å

(A.7)

=
∞∑
n,n′

Cov
Ä
γ(n), γ(n′)

ä
ψ(n)(z)

Ä
ψ(n′)

ä∗
(z) (A.8)

=
∞∑
n

Var
Ä
γ(n)
ä∣∣∣ψ(n)(z)

∣∣∣2 +
∑
n̸=n′

Cov
Ä
γ(n), γ(n′)

ä
ψ(n)(z)

Ä
ψ(n′)

ä∗
(z). (A.9)

The orthogonal expansion in (3.34) has covariance function

Cov(C(z1), C(z2)) = Cov
Ç∑

n

γ(n)ψ(n)(z1),
∑
n′

γ(n)ψ(n)(z2)
å

(A.10)

where z1, z2 ∈ RN . Using the bi-linearity of the covariance yields:

Cov(C(z1), C(z2)) =
∞∑
n

∞∑
n′

Cov
Ä
γ(n), γ(n′)

ä
ψ(n)(z1)

Ä
ψ(n′)

ä∗
(z2). (A.11)

From this, the covariance of C(z1) and C(z2) depends on the covariance of the expansion
coefficients.

The orthogonal expansion in (3.34) has autocorrelation function

RC(z1, z2) = E[C(z1)C∗(z2)] (A.12)

=
∞∑
n=1

∞∑
n′=1

E
î
γ(n)
Ä
γ(n′)
ä∗ó

ψ(n)(z1)
Ä
ψ(n′)

ä∗
(z2) (A.13)

=
∞∑
n=1

∞∑
n′=1

Å
E
î
γ(n)
ó
E
îÄ
γ(n′)
ä∗ó

+ Cov
Ä
γ(n), γ(n′)

äã
ψ(n)(z1)

Ä
ψ(n′)

ä∗
(z2). (A.14)

Note that, the covariance and autocorrelation function are equal if E[γ(n)] = 0 or E[γ(n′)] = 0.

If the basis functions are orthonormal, this leads to

∫
RN
|C(z)|2 dz =

∫ ∣∣∣∣∣ ∞∑
n

γ(n)ψ(n)(z)
∣∣∣∣∣
2

dz (A.15)

=
∫ ∞∑

n

∞∑
m

γ(n)
Ä
γ(m)
ä∗
ψ(n)(z)

Ä
ψ(m)

ä∗
(z) dz (A.16)

=
∞∑
n

∞∑
m

γ(n)
Ä
γ(m)
ä∗

∫
RN

ψ(n)(z)
Ä
ψ(m)

ä∗
(z) dz (A.17)

=
∞∑
n

∣∣∣γ(n)
∣∣∣2. (A.18)

Thus,

E
ï∫

RN
|C(z)|2 dz

ò
=

∞∑
n

E
ï∣∣∣γ(n)

∣∣∣2ò. (A.19)
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Derivation of Messages B
B.1 Derivation of the Second and Third Message for the Target

Recall that the joint distribution for the network is given as

p(Z0:N ,ϕ0:N ,Γ0:N ,Λa,µC ,ΛC) = p(ϕ0|Λa)p(Λa)
N∏
n=0

(
Nradar∏
k=1

p
Ä
Z(k)
n |ϕn,Γ(k)

n

ä)
×

N∏
n′=1

p(ϕn′ |ϕn′−1,Λa)
(
Nradar∏
k′=1

p
Ä
Λ(k′)
C

ä
p
Ä
µ

(k′)
C

ä
p
(

Γ(k′)
0

∣∣∣µ(k′)
C ,Λ(k′)

C

)
p
(

Γ(k′)
n′

∣∣∣Γ(k′)
n′−1,µ

k′
C ,Λk′

C

))
.

(B.1)

Note that there will be some complications with p(ϕ0|Λa), thus it is set to an improper distribution
such that p(ϕ0|Λa) = 1. The messages for the target will now be derived. Assume linear motion
for the target, which is described by the Markov chain

ϕn = T ϕn−1 + Ga, a|Λa ∼ N (a; 0,Λa). (B.2)

Here, T denotes the kinematic matrix in Cartesian coordinates, while G denotes the process
noise matrix. They are given as

T =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


, G =



∆t2
2 0 0 0

0 ∆t2
2 0 0

0 0 ∆t 0

0 0 0 ∆t


, (B.3)

where ∆t is the time interval between transmissions.

There are two surrogate functions related to the target:

ln(q(ϕn)) =
Nradar∑
k=1

Ä
ln
Ä
p
Ä
Z(k)
n |ϕn

äää
+ E\ϕn

[ln(p(ϕn|ϕn−1,Λa))]

+ E\ϕn
[ln(p(ϕn+1|ϕn,Λa))] + constant (B.4)

ln(q(Λa)) =
N∑
n=1

E\Λa
[ln(p(ϕn|ϕn−1,Λa))] + ln(p(Λa)) + constant. (B.5)

First (B.4) is examined, where the first term is calculated in Section 4.2.2. Thus the second
term is looked upon. Note that ϕn|ϕn−1,Λa is Gaussian, meaning

ϕn|ϕn−1,µa,Λa ∼ N
Ä
T ϕn−1 + Gµa, (G⊤Λ−1

a G)−1
ä

= p(ϕn|ϕn−1,µa,Λa). (B.6)
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Thus, the natural logarithm of the probability density function is written as

ln(p(ϕn|ϕn−1,µa,Λa)) (B.7)

= ln
Ç√

det(Λa)
2π exp

Å
−1

2(ϕn − T ϕn−1 −Gµa)⊤
Ä
G⊤Λ−1

a G
ä−1

(ϕn − T ϕn−1 −Gµa)
ãå

(B.8)

∝ −(ϕn − T ϕn−1 −Gµa)⊤
Ä
G⊤Λ−1

a G
ä−1︸ ︷︷ ︸‹Λ (ϕn − T ϕn−1 −Gµa) + constant(Λa). (B.9)

By letting η = ϕn −Gµa, the expression becomes

ln(p(ϕn|ϕn−1,µa,Λa)) (B.10)

∝ −(η − T ϕn−1)⊤‹Λ(η − T ϕn−1) + constant(Λa) (B.11)
= −(T −1η − ϕn−1)⊤ T ⊤Λ̃T︸ ︷︷ ︸

Λ̌

(T −1η − ϕn−1) + constant(Λa) (B.12)

= −(T −1η)⊤Λ̌T −1η + (T −1η)⊤Λ̌ϕn−1 + ϕ⊤
n−1Λ̌T −1η − ϕ⊤

n−1Λ̌ϕn−1 + constant(Λa).
(B.13)

The expectation is taken on both sides of (B.13) with respect to ϕn−1:

E
ϕn−1

[ln(p(ϕn|ϕn−1,µa,Λa))] (B.14)

∝ E
ϕn−1

î
−(T −1η)⊤Λ̌T −1η + (T −1η)⊤Λ̌ϕn−1 + ϕ⊤

n−1Λ̌T −1η − ϕ⊤
n−1Λ̌ϕn−1

ó
+ constant(Λa)

(B.15)

= −(T −1η)⊤Λ̌T −1η + (T −1η)⊤Λ̌ E
ϕn−1

[ϕn−1] + E
ϕn−1

î
ϕ⊤
n−1
ó
Λ̌T −1η + constant(Λa),

(B.16)

since E
ϕn−1

[ϕ⊤
n−1Λ̌ϕn−1] = constant. By denoting E

ϕn−1
[ϕn−1] = µϕn−1 , (B.16) is written as

E
ϕn−1

[ln(p(ϕn|ϕn−1,µa,Λa))] (B.17)

∝ −
(
T −1η

)⊤Λ̌T −1η +
(
T −1η

)⊤Λ̌µϕn−1 + µ⊤
ϕn−1Λ̌T −1η + constant(Λa) (B.18)

= −
(
T −1η − µϕn−1

)⊤Λ̌
(
T −1η − µϕn−1

)
+ constant(Λa) (B.19)

= −(η − T µϕn−1)⊤‹Λ(η − T µϕn−1) + constant(Λa) (B.20)

= −(ϕn − T µϕn−1 −Gµa)⊤‹Λ(ϕn − T µϕn−1 −Gµa) + constant(Λa) (B.21)

Here, the first term is recognised as the exponent in a multivariate normal distribution in ϕn

with mean T µϕn−1 + Gµa and precision matrix ‹Λ = (G⊤Λ−1
a G)−1. Thus the message is

ε(ϕn−1→ϕn) = NC
Ä
ε(ϕn−1→ϕn), ε

(ϕn−1→ϕn)ä
, (B.22)

where

ε(ϕn−1→ϕn) = T µϕn−1 + Gµa, (B.23)

ε
(ϕn−1→ϕn) =

Ä
G⊤Λ−1

a G
ä−1

. (B.24)
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The same is done for the message ε(ϕn+1→ϕn), thus

ε(ϕn+1→ϕn) = NC(ε(ϕn+1→ϕn), ε
(ϕn+1→ϕn)), (B.25)

where

ε(ϕn+1→ϕn) = T µϕn−1 + Gµa, (B.26)

ε
(ϕn+1→ϕn) =

Ä
G⊤Λ−1

a G
ä−1

. (B.27)

B.2 Derivation of Expectations using the Delta Method

First, Sn(ϕn) is approximated by a first-order Taylor expansion around ϕn such that

Sn(ϕn) ≈ Sn(ϕn) + dSn(ϕn)
dϕn

(ϕn − ϕn), (B.28)

where ϕn follows a distribution with mean ϕ and covariance ϕ. Taking the expectation of (B.28)
yields

E
ϕn

[Sn(ϕn)] ≈ Sn(ϕn) + dSn(ϕn)
dϕn

Å
E
ϕn

[ϕn]− ϕn

ã
︸ ︷︷ ︸

=0

= Sn(ϕn). (B.29)

Thus,

E
ϕn

[
Sn(ϕn)Sn(ϕn)†

]
≈ E

ϕn

[Ç
(Sn(ϕn) + dSn(ϕn)

dϕn
(ϕn − ϕn)

åÇ
(Sn(ϕn) + dSn(ϕn)

dϕn
(ϕn − ϕn)

å†]
(B.30)

≈ Sn(ϕn)Sn(ϕn)† + dSn(ϕn)
dϕn

Å
E
ϕn

[ϕn]− ϕn

ã
︸ ︷︷ ︸

=0

Sn(ϕn)†

+ Sn(ϕn)dSn(ϕn)
dϕn

Å
E
ϕn

[ϕn]− ϕn

ã
︸ ︷︷ ︸

=0

+E
ϕn

[
dSn(ϕn)

dϕn
(ϕn − ϕn)(ϕn − ϕn)† dSn(ϕn)

dϕn

†]
.

(B.31)

The last term in (B.31) is rewritten as

E
ϕn

[
dSn(ϕn)

dϕn
(ϕn − ϕn)(ϕn − ϕn)† dSn(ϕn)

dϕn

†]
= dSn(ϕn)

dϕn
E
ϕn

î
(ϕn − ϕn)(ϕn − ϕn)†

ó
︸ ︷︷ ︸

ϕn

dSn(ϕn)
dϕn

†

(B.32)

= dSn(ϕn)
dϕn

ϕn

dSn(ϕn)
dϕn

†

(B.33)

= ∇ϕnSn(ϕn)ϕn∇ϕnSn(ϕn)†, (B.34)

where ∇ϕnSn(ϕn) is the Jacobian of Sn evaluated in ϕn. Inserting (B.34) into (B.31) then yields

E
ϕn

î
Sn(ϕn)Sn(ϕn)†

ó
≈ Sn(ϕn)Sn(ϕn)† +∇ϕnSn(ϕn)ϕn∇ϕnSn(ϕn)†. (B.35)
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Results used for

Implementation of the

Signal Model C
C.1 Rewriting a Geometric Series

It is known that a finite geometric series can be written as

Ns−1∑
h=0

χh = 1− χNs

1− χ . (C.1)

By multiplying (C.1) with 1, it can be written as

Ns−1∑
h=0

χh = 1− χNs

1− χ · χ
− 1

2

χ− 1
2

(C.2)

= χ− 1
2 − χNs− 1

2

χ− 1
2 − χ

1
2

(C.3)

= χ− 1
2 − χ

2Ns−1
2

χ− 1
2 − χ

1
2

(C.4)

= χ
Ns−1

2
χ− Ns

2 − χ
Ns
2

χ− 1
2 − χ

1
2
. (C.5)

Using χ = eiν , (C.5) becomes

Ns−1∑
h=0

eiνh = e
iν(Ns−1)

2
e− iνNs

2 − e
iνNs

2

e− iν
2 − e

iν
2

. (C.6)

Applying Euler’s formula then yields

Ns−1∑
h=0

eiνh = ei(Ns−1) ν
2

sin
(
Nsν

2
)

sin
(
ν
2
) . (C.7)

C.2 Structure of M (k)

All the NTNRNs vectors B(m,j,k)[h′] = Fh→h′{(β(m,j,k))∗[h]} ∈ CNB are organised in M (k) in
the following way
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C.2. Structure of M (k) Aalborg University

M (k) =



B
(1,1,k)
1 [1] B

(1,1,k)
2 [1] · · · B

(1,1,k)
NB

[1]

B
(1,1,k)
1 [2] B

(1,1,k)
2 [2] · · · B

(1,1,k)
NB

[2]
...

B
(1,1,k)
1 [Ns] B

(1,1,k)
2 [Ns] · · · B

(1,1,k)
NB

[Ns]

B
(2,1,k)
1 [1] B

(2,1,k)
2 [1] · · · B

(2,1,k)
NB

[1]

B
(2,1,k)
1 [2] B

(2,1,k)
2 [2] · · · B

(2,1,k)
NB

[2]
...

B
(2,1,k)
1 [Ns] B

(2,1,k)
2 [Ns] · · · B

(2,1,k)
NB

[Ns]
...

B
(NT ,1,k)
1 [1] B

(NT ,1,k)
2 [1] · · · B

(NT ,1,k)
NB

[1]

B
(NT ,1,k)
1 [2] B

(NT ,1,k)
2 [2] · · · B

(NT ,1,k)
NB

[2]
...

B
(NT ,1,k)
1 [Ns] B

(NT ,1,k)
2 [Ns] · · · B

(NT ,1,k)
NB

[Ns]

B
(1,2,k)
1 [1] B

(1,2,k)
2 [1] · · · B

(1,2,k)
NB

[1]

B
(1,2,k)
1 [2] B

(1,2,k)
2 [2] · · · B

(1,2,k)
NB

[2]
...

B
(1,2,k)
1 [Ns] B

(1,2,k)
2 [Ns] · · · B

(1,2,k)
NB

[Ns]
...

B
(NT ,NR,k)
1 [Ns] B

(NT ,NR,k)
2 [Ns] · · · B

(NT ,NR,k)
NB

[Ns]



. (C.8)
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Additional Results D
D.1 Multiple Radar Bayesian Localisation and Tracking

(a) Radar 1. (b) Radar 2.

(c) Radar 3.

Figure D.1.
∣∣∣S(ϕ1)†Z

(k)
1

∣∣∣ where ϕ1 is varied across a grid. Target is at [20 5]⊤m. The ground truth
position is marked with a triangle.
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D.1. Multiple Radar Bayesian Localisation and Tracking Aalborg University

(a) Radar 1. (b) Radar 2.

(c) Radar 3.

Figure D.2. Illustration of the KL divergence in (4.50) with respect to the mean. The target is at
[20 5]⊤m. The ground truth position is marked with a triangle.

(a) Radar 1. (b) Radar 2.

(c) Radar 3.

Figure D.3.
∣∣∣S(ϕ1)†Z

(k)
80

∣∣∣ where ϕ1 is varied across a grid. Target is at [20 45]⊤m. The ground truth
position is marked with a triangle.
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Group MT10-02 D. Additional Results

(a) Radar 1. (b) Radar 2.

(c) Radar 3.

Figure D.4. Illustration of the KL divergence in (4.50) with respect to the mean. The target is at
[20 45]⊤m. The ground truth position is marked with a triangle.
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